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Abstract

The purpose of this study is to develop an understanding of the observability of

small-scale dynamical Solar System features in meteor orbit radar data, particularly with

reference to mean motion resonance effects. Particular focus is placed on the presence

of ‘resonant swarms’ in meteoroid streams: the resonant swarm at the 7:2 Jovian mean-

motion resonance is used as an example, as it best satisfies radar observability criterion.

Furthermore, evidence for this structure exists in visual meteor data. The radar dataset

used for this study is that of the Canadian Meteor Orbit Radar (CMOR) as this dataset

contains the largest number of meteoroid stream particles. The aim here is to determine

whether the Taurid resonant swarm is observable in datasets produced by radars such

as CMOR, or what improvements in individual orbital uncertainties are necessary for

positive detection to be possible.

The observability of the Taurid swarm in radar data depends on the limitations of the

radar data (in terms of the individual measurement uncertainties); and on the properties of

the resonance itself. Both aspects are investigated in this thesis. A statistical study is first

conducted to assess whether evidence for the swarm exists in a dataset containing CMOR

Northern and Southern Taurids from the years 2002 to 2007. It is found that the level of

variations present is consistent with that expected due to random fluctuations: there is

no evidence for a statistically significant resonant feature at the location of the 7:2 Jovian

resonance. Additionally, the observability of various sizes of resonant peak for different

sizes of dataset and for different levels of measurement uncertainties is investigated by

addition of a modelled resonant feature to the data, followed by replacement of individual

meteors by Gaussian profiles to simulate the effect of orbital uncertainties. It is clear that

the level of broadening resulting from the uncertainties of the CMOR data used will not

allow the observation of a resonant peak of the expected size. Detection is expected to be

more likely in a ‘swarm encounter year’ (a year in which the geometry between the resonant

swarm and Earth is favourable to detection). The velocity uncertainties of a meteor orbit

radar (similar to CMOR) need to be improved by a factor of 5 to 10 (relative to the

CMOR uncertainties) in order to detect a resonant swarm that is composed of ∼ 30%

to ∼ 5% (respectively) of the total number of observed Taurids in a swarm encounter

year. An improvement significantly greater than a factor of ∼ 10 is unlikely to result

in a significant improvement in the ability to detect the resonant swarm. It is expected

that a factor of 10 improvement in radar measurement uncertainties is achievable with

the current techniques of radar systems and signal processing.

These statistical tests require knowledge of the resonant width of the 7:2 Jovian
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resonance in semi-major axis, as this provides the size of the resonant feature of interest.

Such resonant or libration widths can be determined analytically for orbits with low

eccentricities. As Taurid orbits have high eccentricities (e ∼ 0.83), a hierarchical N-

body integrator is used to examine the dynamics in the region of the 7:2 resonance, and

determine a resonant width of (0.047 ± 0.005) AU. To verify this method the standard

analytic equations and a semi-analytic method are compared (at low eccentricities) with

the numerical resonant width values: the agreement is within 10% for eccentricities below

0.4.

It is important to know what proportion of radar Taurids are expected to be resonant

in a swarm year in order to evaluate the observability of the swarm in radar data. One

important factor that may affect this is the mass distribution of particles in the swarm.

This is investigated by ejecting particles in multiple directions from three model comets:

the first with a mass and orbit in agreement with those of the current 2P/Encke; the

second with 2P/Encke mass and an orbit matching that of the proposed proto-Encke

object; and a third with the mass and orbit of proto-Encke. The resulting orbits are

examined to determine what proportion will land within the 7:2 resonance, for a range of

particle masses and densities. The instantaneous effect of radiation pressure on the orbits

of ejected particles is also considered. However, it is difficult to determine accurate capture

percentage values due to the uncertainty surrounding cometary ejection mechanisms.

Nevertheless, it is found that capture of Taurids into the 7:2 resonance by all comets

is possible. Using comparisons between the percentages of visual-sized and radar-sized

particles captured, it is determined that in weak swarm years (in which only ∼ 20% of

visual meteoroids detected are resonant) only 4% to 5% of observed visual Taurids are

expected to be resonant. Such a swarm would be on the edge of observability. However,

in stronger swarm years (such as 2005), the resonant proportion will exceed that required

for detection with a reduction in CMOR measurement uncertainties of a factor of ten.
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Chapter 1

Introduction

This thesis involves a study of the dynamical structure of the meteoroid population of

the Solar System, as sensed by meteor orbit radar systems, and in particular reference to

resonance effects. In context, such a study is useful because knowledge of this dynamical

structure is necessary to develop an understanding of the formation and evolution of the

Solar System that encompasses the observed meteoroid population. By understanding the

evolutionary processes of our own Solar System, it is then possible to apply this knowledge

to studies of planetary systems forming in debris disks around other stars (Krivov, 2007).

The dynamical effects of interest here are largely gravitational resonance effects on the

Solar System dust population, but include also non-gravitational effects. In addition,

understanding meteoroid dynamics is important for studying the probabilities and effects

of meteoroid impacts on spacecraft, man-made satellites, and Earth itself.

1.1 Meteoroids, Meteors, and Meteorites

The Solar System has ∼ 3 × 1017 kg of dust particles of mass less than 0.1 kg: such

objects are known as meteoroids (Hughes, 1996). This definition is generally assigned

to objects of size from a few microns to a few metres - below the observation limit

of telescopes. Smaller particles exist, but are ejected from the Solar System by the

radiation force of the Sun and must be constantly replenished; larger object are classified

as asteroids, comet nuclei, satellites, or planets depending on their origins, properties and

orbital characteristics. Small particles in the Solar System are usually termed ‘meteoroids’

or ‘dust particles’, depending partially on their size and observation techniques: these

terms are used interchangeably in this thesis to describe the micron to centimeter-sized

dust of interest. Solar System meteoroids are concentrated close to the ecliptic plane, with

most orbits having inclinations less than ∼ 20◦ (Baggaley, 1999). In general, the orbits

of such particles around the Sun are prograde, though ∼ 5% are retrograde (Baggaley,

2001). Four sources for these particles exist: ejecta from planetary and satellite surfaces,

cometary dust, asteroidal fragments, and interstellar sources.

1
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1.2 History of Meteor Observation

For thousands of years meteors (more precisely, the heated and thus luminous head and

train of a meteoroid) have been observed visually by the naked eye, with, in particular,

Chinese, Korean and Japanese observers conducting systematic observations of showers

for more than a thousand years. Jenniskens (2006) provides a compilation of historic

records of meteor observations from Asia and Europe: the earliest record is from China in

687 BC (March 26.7), possibly of the Lyrid meteor shower. However, in the West it was

not until the early 1800s that meteors were considered extraterrestrial bodies, previously

having been thought to be an atmospheric phenomena, or superstitious omens.

It is believed that Chladni (1798) first correctly attributed the origin of meteors to

extraterrestrial bodies that are vaporised as they pass through the Earth’s atmosphere.

However, this explanation was not widely accepted, with little scientific interest in study-

ing meteors or confirming their origin until the spectacular 1833 Leonid storm (Williams

and Murad, 2002). In 1833 Denison Olmsted recognised that the Leonid meteors all

appeared to have a common source direction in the sky, the radiant, and that this was

the result of bodies moving parallel to each other entering the Earth’s atmosphere from

the direction of the star γ Leonis. It was Giovanni Virǵınio Schiaparelli who determined

that the near-parabolic orbit of the Perseid meteoroid stream was very similar to that of

the comet Swift-Tuttle, thus discovering the first source of meteoroids. This was further

confirmed in 1866 when a parent comet for the Leonid stream was observed (55P/Tempel-

Tuttle) (Jenniskens, 2006).

Visual observations have continued to be important for understanding meteor be-

haviour. The invention of photography and television and the development of radar

technology led to significant improvements in our ability to study meteors remotely as

they enter the Earth’s atmosphere. Additionally, the development of spacecraft allowed

in-situ detection of meteoroids: that is, capture or study of meteors directly. This has

become increasingly powerful with the development of dust detector technology, capable

of determining speed, mass, and approximate trajectories of particles still in orbit around

the Sun, Jupiter or Saturn. Such detectors are not limited by detection only of particles

with orbits that intersect the Earth’s. In general the masses of particles detected are much

smaller than those detected by remote sensing methods within the Earth’s atmosphere.

Further detail on spacecraft and remote sensing methods is given in Section 3.1.
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1.3 Sources of meteoroids

1.3.1 Cometary and Asteroidal streams

The most significant sources of meteoroids are comets and asteroids. After ejection from

these objects, dust particles follow, to some extent, the orbit of the parent object, forming

a cometary or asteroidal stream. In more detail, these ejection mechanisms are as follows.

For comets, particles are expelled from the cometary nucleus as the comet approaches

perihelion. Comet nuclei consist of conglomerates of dust and ‘snow’ (mainly of ∼ 80%

H2O and ∼ 15% CO2), with a snow to dust ratio of ∼ 2 (Hughes, 1993). Solid at large

distances from the Sun, the increase in solar radiation as the comet nucleus approaches

perihelion causes sublimation of the surface snow to occur within about 3-4 AU of the Sun.

Momentum transfer from the expanding gas expels dust from the nucleus, thus creating

a population of meteoroids with orbits similar, though not identical, to the parent comet.

As dust is ejected in all directions (relative to the nucleus), it is eventually dispersed

around the orbit of the comet: dust emitted in the opposite direction to the comet’s

direction of motion has a slightly lower velocity than the comet and thus falls behind,

while particles ejected in the comet forward velocity direction start to move ahead of the

comet in its motion. These particles form a cometary meteoroid stream, which can be

observed at the Earth as a meteor shower if an orbital node (see Chapter 2) exists near the

Earth. Further details of the cometary dust ejection mechanism can be found in Section

6.2.

Ejection of dust particles from asteroids can be accomplished by collisions between

asteroids, spinup of asteroids as a result of the Yarkovsky-O’Keefe-Radzievskii-Paddack

(YORP) effect (Rubincam, 2000), or electrostatic levitation of particles (Lee, 1995). Dust

particles ejected from main belt asteroids or near-Earth asteroids both have the potential

to form asteroidal streams in a similar manner to the cometary case, though the dispersal

of particles will be larger, and thus the spatial density lower, than for cometary streams.

Only streams from near-Earth Earth-crossing asteroids will be visible on Earth as meteor

showers. In addition, asteroidal collisions create fragments with low geocentric velocities

and with prograde orbits relative to cometary particles. Because the light and plasma

produced by a meteor are highly speed dependent, these factors render asteroidal streams

more difficult to observe on Earth. Such streams are thus among the minor meteor

showers (Porubc̆an et al., 2004). An exception is the possible association of the Geminids

with (3200) Phaethon, which was considered the first confirmed asteroidal stream (Stohl

and Porubc̆an, 1993). However, there are indications that this body may be an extinct

comet, and as such, there is still debate as to whether there is any direct evidence for

an asteroidal meteoroid stream (Jenniskens, 2006). There is a high probability that one
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of the increasingly-large number of near-Earth asteroids will coincidently appear to have

a similar orbit to a current meteoroid stream. Verification of a true physical connection

between an asteroid and an observed meteor shower requires numerical studies to trace

the history of the meteor shower and the potential parent asteroid (Porubc̆an et al., 2004).

Thus, while cometary meteor streams and their corresponding showers are relatively well

understood, this is not the case for asteroidal streams.

1.3.2 Interstellar Particles

In addition to the various meteoroid sources within the Solar System, a small proportion

of meteoroids have an interstellar origin. These particles enter the Solar System on

hyperbolic orbits with respect to the Sun. Their orbits are either perturbed such that the

particles assume bound parabolic or elliptical orbits, or remain sufficiently unaltered such

that the meteoroids are carried back beyond the Solar System. Alternatively, the particles

can be destroyed by collisions with other Solar System bodies. Observationally, these

particles are initially identified by heliocentric velocities that are greater than the escape

velocity from the Sun at that particular heliocentric distance (∼ 42 kms−1 at 1 AU).

If perturbed into elliptical orbits, generally no orbit information remains to determine

an interstellar origin. Care must be taken in the identification of interstellar particles

as other mechanisms exist in the Solar System with the ability to produce hyperbolic

particles, including radiation forces (creating hyperbolic β particles), magnetic and electric

fields accelerating small grains near Jupiter, and ejection of particles from near-parabolic

comets. There are several dust populations in the galaxy that form potential sources for

dust inflow to the Solar System, including interstellar dust originating in stars, dust clouds

in the diffuse interstellar medium, dust in molecular clouds and circumstellar dust in young

stellar objects (Dorschner, 1996). Objects that can act as individual sources of interstellar

dust include expanding atmospheres of asymptotic giant branch, red giant branch carbon

rich and Wolf-Rayet stars, protoplanetary dust disks and supernova (Baggaley, 2004).

1.3.3 Sporadic Meteoroids and Dynamical Effects

Lastly, there also exists an observed population of sporadic meteoroids which are members

of no apparent cometary or asteroidal streams. Largely, these particles were originally

ejected from comets or asteroids, but gravitational perturbations and radiation effects

have dispersed their original orbits.

Such effects can be significant, being responsible for both the dynamics and survival

of particles in the Solar System. In general, gravitational forces include gravitational

perturbations that occur when a particle’s orbit takes it close to a large gravitational

mass such as Jupiter or Saturn; and resonance effects, which occur at specific locations
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where the gravitational effect of giant planets is enhanced. Here we are concerned only

with mean-motion resonances. These occur when the orbital period of the particle is a

small-order ratio of a planet’s orbital period (for example, 2:1 or 3:1): at such locations

the same gravitational effect from that planet occurs repetitively, producing an enhanced

effect. Non-gravitational effects include radiation pressure, the Poynting-Robertson effect

and Lorentz forces. A summary of such effects follows in Chapter 2. A summary of

resonance effects in the Solar System, as relevant to the meteoroid population, is given

in Chapter 4. In particular, meteoroid resonances can have ramifications for the level

of meteoroid dust that impacts the Earth: the 1998 Leonid shower showed significant

enhancement due to the presence of a ‘swarm’ of particles trapped in a Jovian resonance

(Jenniskens et al., 2008). Thus, understanding the effect of resonances on the meteoroid

population is important for understanding the dust that is encountered at the orbit of

the Earth, or indeed at any location in the Solar System at which knowledge of the dust

environment is necessary. In particular, this includes determining the hazard meteoroids

can pose to spacecraft.

1.4 The Taurid Meteoroid Stream

This thesis is largely concerned with resonant effects in the Taurid meteoroids stream - in

particular, that of a resonant swarm at the 7:2 Jovian resonance. This choice is justified

in Section 4.4. The Taurid meteoroid stream consists of Northern and Southern branches

and a large dispersion in orbital elements is known to exist. The Taurid shower is active

in October to December each year, with a radiant situated such that it is most visible

from the northern hemisphere. Comet 2P/Encke is the expected parent object, though it

is hypothesised that a fragmentation event occurred, perhaps leaving two or more bodies

capable of populating the Taurid meteoroid stream. This may explain the presence of

a number of asteroidal bodies with similar orbits to Taurid meteoroids. However, a

competing theory is also capable of explaining this observation.

Early observations of the Taurids largely concerned the position of the radiant (such

as Dennings (1928)). The first orbits were determined from photographic Taurid mete-

oroids by Whipple (1940), who used a rotating shutter technique to determine velocities

for Taurid meteoroids from 1937 and 1948. Orbital element data were achieved for six

meteoroids. These observations were used to associate the Taurids with Comet 2P/Encke,

though this required an understanding of the perturbation history of this comet. Addi-

tionally, Whipple suggested that the dispersion in the orbital elements might be explained

by the disintegration of one large comet into many fragments, possibly producing Taurid

meteoroids. Using this model, a lower limit to the age of the Taurids of ∼ 14000 years
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was provided.

Whipple and Hamid (1952) suggested that ejection of meteoroids occurred from two

bodies: one being Comet Encke, and the other being a body that split from Comet Encke

at some unknown time. They suggested that particle ejection occurred far from perihelion

as a result of encounters with small bodies in the asteroid belt. They produced a reduced

age for the Taurids of about 6000 years, with ejection of particles occurring approximately

4700 and 1500 years ago.

Identification of Northern and Southern branches requires a large dataset of precise

photographic meteoroids. These branches were first isolated by Wright and Whipple

(1950), who found structure comprising four branches in the stream. Kresák and Porubc̆an

(1970) used a larger dataset to show that there were only two branches. The existence

of two branches also implies an age of in excess of ∼ 5500 years, as this is the minimum

time required for the two branches to have been produced by the same parent comet

(Jenniskens, 2006).

Steel and Asher (1996) found that an age of ∼ 10000 years is consistent with the

dispersion of orbital elements found for Taurid meteoroids. However, this scenario required

higher ejection velocities than are consistent with the ejection of particles from Comet

2P/Encke. In addition, ejection near aphelion was found to be unable to produce this

dispersion. Other age estimates include those of Levison and Duncan (1994) who found

∼ 2× 104 years, and Jones (1986) who found a much greater age of ∼ 105 years. The age

of the Taurid stream is still highly uncertain.

Clube and Napier (1984) expanded the fragmentation theory first proposed by

Whipple (1940), and hypothesised that a giant comet entered the inner Solar System and

assumed an orbit similar to Comet 2P/Encke. It was thought to suffer a breakup event

that produced Comet 2P/Encke and other asteroidal-type fragments that are observed

to have orbits similar to the Taurid meteoroids. They make connections between Earth

climate conditions and bombardment events on Earth and the presence of such a giant

comet. This comet may have left a moderately large remnant (perhaps 30 km in diameter)

that may no longer exhibit cometary activity. This object may have fragmented on more

than one occasion over the past 20000 years, and may have produced dust through both

cometary activity and during the fragmentation events. The breakup event producing

comet Encke was thought to have occurred about 5000 years ago, or at a much earlier

point.

Clube and Asher (1990) use observations of dust streams associated with the Taurids

by the IRAS detector to hypothesis the presence of a swarm of particles at the 7:2 Jovian

resonance. They suggest that this swarm is a result off, and perhaps direct observational

evidence for, the giant comet hypothesis. Steel et al. (1991) studied the structure of the
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Taurid meteoroid complex in photographic, TV and radar orbital element data archived

by the IAU Meteor Data Center. They found evidence for clustering in semi-major axis

at approximately 2.25 AU and at 1.91–2.1 AU. These correspond to the locations of the

7:2 resonance and 4:1 (or 9:2) resonances respectively. This may be evidence for a swarm

at the 7:2 resonance.

Asher and Clube (1993) provide a detailed analysis of the characteristics and ob-

servational properties of a 7:2 resonance swarm. This includes a list of years in which

it is expected that the geometry between the Earth and the swarm is favourable for

observation of the swarm. While these years appear to agree with years of increased

Taurid rates from 1938 to 1988, swarm at other nearby resonances would not be able

to match these observations. In the following years several papers have found increased

rates of visual meteoroids in years in which the swarm is expected to be near to the Earth

(including Beech et al. (2004), Asher and Izumi (1998) and Dubietis and Arlt (2007)). A

more complete review of this literature is found in Section 4.3.4.

Finally, we note that a breakup hypothesis is not the only model capable of pop-

ulating the Taurid region with a number of observable asteroids. Valsecchi et al. (1995)

find that dynamical processes involving secular resonances exist that allow asteroids to

move from orbits within the Asteroid Belt to orbits within the Taurid region. However,

such processes require several 105 years to work. This would imply a very old age for the

Taurids that is much longer than that usually assumed for the stream or Comet 2P/Encke.

Hence though a comet breakup model is not required to produce the observed population

of asteroids with orbits similar to the Taurids, such a model is in better agreement with

the expected age of the Taurid stream.

Furthermore, we would expect that the cumulative mass of the asteroidal objects in

the Taurid region would be indicative of the total size of the cometary body that produced

them (though of course this would not account for the loss of a fraction of the mass the

original object, particularly in the form of small dust particles). Indeed, large objects of

size ∼ 1 km exist in the Taurid region, including 2004 TG10. Nevertheless, Jenniskens

(2006) calculates that even if it is assumed that 20 large objects exist, most of which are

unobserved, the original size of the ‘giant comet’ would not exceed 15 km in diameter.

As this is the size of comet Halley, this does not represent a giant comet. Moreover,

the theory implies that the asteroidal bodies we observe are actually extinct cometary

fragments. This seems unlikely given that all except one of the objects associated with

Comet Encke have asteroidal spectral types (Jenniskens, 2006).

Regardless of the validity of the giant comet fragmentation hypothesis, it is still

possible that there exists a Taurid resonant swarm at the 7:2 resonance with Jupiter. This

is supported by visual meteor data. In this thesis we are interested in the observability
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of this swarm in meteor orbit radar data.

1.5 Purpose and Content of the Thesis

The purpose of this thesis is to evaluate the detectability of meteoroid resonances with

meteor radar systems. Currently, resonance swarms have been identified in visual and

photographic meteoroid datasets that, while precise, have low number statistics. Radar

meteoroid individual orbits are less accurate, but are available in large numbers and ad-

ditionally probe a different part of the dust mass range, sensing relatively small particles.

Thus use of radar for resonance studies has the potential to provide new information on

the properties of these resonant swarms.

To this end, this thesis studies the observability of a resonant swarm in the Taurid

meteoroids stream associated with the 7:2 Jovian resonance, evidence for which has been

found only in visual data (see Section 4.3.4). We approach this problem in two ways.

First, we search for evidence of this swarm in Canadian Meteor Orbit Radar data (see

Section 3.2.3), and analyse what improvements to present radar systems would permit

the identification of such a swarm. This involves a variety of statistical techniques. This

work is given in Chapter 4.

Second, numerical integrations are used to analyse the properties of the 7:2 Jovian

resonance, and to determine the mass range of particles likely to be trapped in this

resonance. Chapter 5 introduces these methods and determines the resonance width

of the 7:2 resonance; while Chapter 6 develops a simple cometary ejection model in

order to establish how resonant trapping of particles may occur. This latter search also

demonstrates the effects of radiation pressure on such ejected particles.



Chapter 2

Relevant Dynamics

This chapter elaborates on relevant dynamical considerations, including the parameters

used to describe meteoroid orbits, and the forces that act to change these orbits. Further

detail on dynamics, with particular reference to resonance effects, is given in Chapter 5.

2.1 Orbits

Orbits of objects within the Solar System are usually described by one of two sets of

coordinates. In general, at least six independent coordinates are required to describe an

orbit in three dimensional space (three for its position; and three for its velocity). The

most simple such system is that defined by heliocentric Cartesian coordinates: that is,

a Sun-centred coordinate system where X and Y vectors are perpendicular and form a

plane that lies within the ecliptic plane, and the Z vector is perpendicular to both X and

Y vectors. The position and velocity of the particle can then form a set of coordinates X,

Y , Z, VX , VY , VZ . The orientation of the vectors is usually such that the X axis points to

the vernal equinox: that is, the point of the celestial sphere at which the Sun is located

at the vernal equinox - also known as the first point of Aries.

In many situations, a system of coordinates that more easily describes the shape,

orientation and position of the orbit is required. Thus, for describing orbital motion it is

most common to use orbital elements based on the elliptical configuration in space.

2.1.1 Orbital Elements

The orbital motion of a body around a star, as a two dimensional ellipse, parabola or

hyperbola in a three dimensional celestial sphere, may be uniquely described in terms of

six orbital elements, as given in Table 2.1, and shown in Figure 2.1.

The six elements are defined as follows. The semi-major axis is a measure of the size

of the orbit, given by a in Figure 2.1(b). In the elliptical case (the only case of concern

in this thesis) the semi-major axis is half the length of the major axis of the ellipse. The

eccentricity defines the shape of the ellipse, and is defined by e =
√

a2−b2

a
, where a is the

9
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Orbital Element Symbol Defines Range
Semi-major Axis a orbit size 0.5AU – ∞

Eccentricity e orbit shape 0–1 ellipse
> 1 hyperbola
=1 parabola

Inclination i orientation of orbit 0 – π
in orbital plane

Longitude of Ascending Node Ω orientation of orbit 0 – 2π
Argument of Perihelion ω orientation of orbit 0 – 2π

True Anomaly ν position in orbit 0 – 2π

Table 2.1: Elements of the Orbit.

semi-major axis and b the semi-minor axis (see again Figure 2.1(b)). Inclination I or i

defines the tilt of the orbit, and is the angle between the ecliptic plane (the plane of the

Earth’s orbit) and the plane of the orbit. The longitude of the ascending node Ω defines

the location of the ascending node of the object, and thus provides the orientation of the

orbital plane with respect to the vernal equinox. An elliptical orbit has two nodes, or

locations where the orbit crosses the ecliptic plane. The ascending node is that where an

object on the orbit will cross from south of (below) the ecliptic plane to north of (above)

it; the descending node is that where the opposite occurs. The longitude of the ascending

node Ω is thus the angle between a reference point (the vernal equinox is standard) and

the ascending node. The argument of perihelion ω defines the orientation of the ellipse in

the orbital plane, and is the angle between the ascending node and the perihelion point.

Alternatively, the longitude of perihelion $ is sometimes used, being the ‘dogleg’ angle

that results from the addition of the longitude of the ascending node and the argument

of perihelion: $ = Ω + ω.

Finally, a variable is required that provides information on the location of an object

in this orbit: for this purpose we will use either the true anomaly ν or the mean longitude

λ. The true anomaly describes a physical angle between the perihelion point and the

location of the object (see Figure 2.1(b)). The mean longitude, however, describes the

angle of the object on an ‘eccentric circle’ of radius a, thus is not a geometric angle on

the orbit. The mean longitude is sometimes convenient as it can be calculated using

λ = M + $, where M is the mean anomaly, which can be calculated using any of:

M = (T − t)n =
2πt

T
=

√
µ

a3
t

where T is the orbital period, t is the time of perihelion passage, and n is the mean motion
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(a) (b)

Figure 2.1: Orbital Elements, defined for a prograde orbit with a = 3 AU, e = 0.4,
Ω = 40◦, ω = 50◦, and inclination is (a) 40◦ and (b) 0. In (a) we see the main angular
parameters for an inclined orbit, and in (b) we have an orbit with no inclination in order
to demonstrate the remaining orbital elements and other parameters of interest.

given by:

n =

√
µ

a3
=

2π

T

where µ = G(M� + m), where G is the gravitational constant, m is the mass of the

orbiting object and M� is the mass of the sun. For cometary and meteoroid bodies, the

approximation µ = GM� is sufficient.

A conversion between the true anomaly and the mean longitude is given by:

λ = M + $ = E − e · sin E + $

using mean anomaly M = E − e · sin E. E is the eccentric anomaly, given by:

E = 2 · arctan

√
1 + e

1 − e
tan

ν

2

A reverse conversion requires an iterative solution for the eccentric anomaly E.

Other orbital parameters in general use include:

• The perihelion distance q: This is the distance from the Sun (at the focus of the

ellipse) to the perihelion position on the orbit (the closest point of the orbit to the

Sun). It can be calculated by q = a(1 − e).
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• The aphelion distance Q: Similarly, the aphelion distance is the distance from

the Sun to the aphelion point (the furthest point on the orbit from the sun). It is

calculated by Q = a(1 + e).

• The semilatus rectum p: This is the distance from the Sun 90◦ from perihelion,

given by p = a(1 − e2).

• The heliocentric distance rh: This is simply the distance of the object from

the Sun, and is given by rh = a(1−e2)
1+e cos ν

. In Cartesian coordinates it is equal to the

modulus of the position vector rh =
√

X2 + Y 2 + Z2.

• The angular momentum per unit mass h: This is the cross product of the po-

sition vector rh and the velocity vector v. For an elliptical orbit: h =
√

a(1 − e2)µ.

These parameters allow us to transform from orbital elements to heliocentric Carte-

sian coordinates if required:

X = rh(cos Ω cos (ω + ν) − sin Ω cos (ω + ν) cos i)

Y = rh(sin Ω cos (ω + ν) + cos Ω sin (ω + ν) cos i)

Z = rh(sin (ω + ν) sin i)

VX =
Xhe

rhp
sin ν − h

rh
(cos Ω sin (ω + ν) + sin Ω cos (ω + ν) cos i)

VY =
Y he

rhp
sin ν − h

rh
(sin Ω sin (ω + ν) − cos Ω cos (ω + ν) cos i)

VZ =
Zhe

rhp
sin ν +

h

rh

(cos (ω + ν) sin i)

2.2 Gravitational and Non-Gravitational Effects

The above section describes an elliptical - thus recurrent - orbit around the Sun or any

gravitating object (in the Newtonian case). Such an orbit of a meteoroid or other body

in the Solar System is subject to gravitational and non-gravitational effects. In some

cases these perturbations can cause the particle to move from an elliptical to a hyperbolic

orbit, which may cause the particle to be lost from the Solar System. In many cases,

the particles remain in bound orbits around the Sun, but may display dynamical features

that indicate the effects of forces other than solar gravity. In this thesis we are primarily

concerned with resonant perturbations. However, we first summarise the full extent of the
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perturbations that can affect objects in the Solar System in order to understand which

are likely to be important at the mass scales probed by meteor radar.

2.2.1 Gravitational Effects

Gravitational forces on a given meteoroid are largely those of the Sun or star and planetary

bodies. The gravitational force of the Sun dictates the main elliptical, hyperbolic or

parabolic form of the particle’s orbit around the Sun. More interesting are the effects of

planetary bodies, especially the larger gas giants. These bodies can produce planetary

perturbations, which can be significant for particles passing sufficiently close to Jupiter

or Saturn, or resonant effects - with particles in or near resonances with giant planets

experiencing enhanced gravitational effects. The effect of gravitational perturbations

depends on the closest approach distance of a particle to a given planet, and a sphere of

gravitational influence can be defined around a planet inside which the gravitational effect

of the planet on a small body is significant. Often a Hill’s sphere is used for this purpose.

Only the largest gas giants are expected to produce significant perturbations, though in

some cases it is important to include the effects of all planets. Numerical methods are

usually required to solve this three (or greater) body problem of the dynamics of the Sun,

giant planet and meteoroid particle. Further details on solving the three body problem

are given in Chapter 5.

Resonance effects occur when a commensurability of orbital periods exists. Here

we are concerned primarily with mean motion resonances, which occur when the orbital

period of the particle is a small-order ratio of the period of a given planet. For example,

a particle in the 3 : 1 Jovian resonance has an orbital period one third of that of Jupiter.

Resonances are responsible for many dynamical structures in the Solar System, including

Kirkwood gaps in the asteroid main belt, where the overlap of mean motion resonances,

secular and secondary resonances creates chaotic motion that clears regions around low-

order Jovian resonances (Murray and Dermott, 1999). Section 4.1 provides more detailed

information on resonances in the Solar System.

Similarly, resonant perturbations may affect dynamics of meteoroid streams. Lind-

blad (1973) published the first attempt at searching for such effects in meteor data. He

found considerable fine structure correlated with Jovian resonances in a histogram of

1/a for 1822 photographic meteoroids, and concluded that this structure was real. It is

also possible for resonant swarms to develop within meteoroid streams, particularly when

the parent body is in or near libration. A full review of the literature on resonances in

meteoroid streams is given in Section 4.3.

Certain resonances, such as the 3:1 Jovian resonance, have the potential to act as

a transport mechanism for meteoroids from the main asteroid belt. As mentioned above,
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the main sources of meteoroids are comets and asteroids. However, meteorites - that is,

objects that reach the Earth’s surface - originate largely from the asteroid main belt.

This is because it is difficult for comets to be able to eject meteoroids of sufficient size,

of sufficient density, or of sufficiently low speed to survive passage through the Earth’s

atmosphere (despite these limitations, Campins and Swindle (1998) review material that

indicates that cometary meteorites should exist, though they will be rare). Two main

sources of asteroidal meteorites exist: Earth-crossing asteroids; and main belt asteroids.

Collisions in the asteroid main belt can produce asteroid or meteoroid-sized fragments.

One main mechanism for transporting such fragments to Earth crossing orbits is through

interactions with Jovian (or Saturnian) resonances. Collisions can alter the orbital periods

of asteroid and meteoroid-sized fragments such that they move into resonant regions. This

mechanism can act to continually replenish resonances. Thus, there always exists a small

population of objects, of asteroid and meteoroid sizes, even in well-defined Kirkwood gaps.

Overlapping of resonances in low-order mean motion resonances creates chaotic regions,

and objects that move into these regions can undergo rapid increases in eccentricity,

followed by a decrease in the perihelion distance. This allows objects to move into Earth-

crossing orbits, providing a continuing supply of Earth-crossing asteroids and meteoroids.

For observed Near-Earth asteroids, approximately (37 ± 8)% do so due to the ν6 secular

resonances with Saturn, and (23±9)% due to the 3:1 mean motion resonance with Jupiter.

The remaining (33 ± 3)% are from various other secular and mean motion resonances in

the main belt (et al, 2003).

2.3 Radiation forces on Interplanetary Dust

Gravitational effects, including perturbations and resonance effects, affect all meteoroids

in the Solar System. However, for some particles non-gravitational radiation effects may

be significant or dominant. These include the Poynting-Robertson, the diurnal and sea-

sonal Yarkovsky-Radzievskii effects, and solar radiation pressure effects. Such influences

are most important for smaller particles, which have a high surface area to mass ratio.

In consequence, radiation effects that act on the surface area are important compared

to gravitational effects, which are dictated by the mass of the particle. Magnetic forces

arising from any charge carried by the dust particles can also affect the motion of particles:

this is particularly true if these particles interact with the solar or Jovian magnetic fields.

2.3.1 Solar Radiation Pressure and the Poynting-Robertson Effect

The force exerted by photons of solar radiation on a particle can be divided into radiation

pressure, which applies an outward radial force and acts to remove the smallest particles
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from the Solar System, and the Poynting-Robertson effect, which exerts a drag force that

causes particles to spiral into the Sun on long timescales.

Radiation pressure is the result of the absorption of solar radiation. In consequence,

the meteoroid receives a radially-directed outward force due to the momentum possessed

by the photons. This pressure is proportional to the cross-sectional area of the absorbing

particle, its albedo and the flux of the solar radiation field.

Poynting-Robertson drag occurs on re-radiation of encountered photons, and is the

result of the transverse velocity of the particle. This re-radiation is, in the simplest cases,

isotropic, and thus the particle feels no net force in its own frame. However, in the rest

frame of the Sun, photons emitted in a forward direction relative to the orbital motion of

the particle are relatively blueshifted (frequency increased) by the Doppler effect (and red-

shifted (frequency decreased) in the opposite direction): thus, more momentum is emitted

in a forward direction. This creates a net braking force on the particle, which causes it to

very slowly spiral inwards towards the Sun. Anisotropic emission and scattering are also

important, particularly when the particle is irregularly shaped and has a fixed spin axis,

in which case scattering is non-uniform and the particles are dispersed.

The Poynting-Robertson drag effect was first correctly described by Robertson(1937).

The formalism used was complex, relying on the metric of special relativity for a math-

ematical description. However, Burns et al. (1979) show this is not necessary, and the

Poynting-Robertson effect - and, indeed, the radial radiation pressure force - can be

derived from purely classical considerations. They show by two separate approaches that

the total force exerted by a solar photon on a dust particle, considering both absorption

and scattering of photons, is given by the equation of motion:

mv̇ ≈ SA

c
Qpr[(1 − 2ṙ/c)r̂ − (rθ̇/c)θ̂]

where m is the mass of the particle, v̇ is its acceleration, S is the integrated flux density

of the solar radiation beam (Wm−2), A is the geometrical cross-section of the heliocentric

particle, c is the speed of light, ṙ = v · Ŝ, and θ̇ is an angular velocity such that the particle

velocity v = ṙr̂+rθ̇θ̂ and θ̂ is normal to r̂. Qpr ≡ Qabs+Qsca(1− < cos α >) is the radiation

pressure coefficient, where Qabs and Qsca are the absorption and scattering coefficients, and

represent the fractions of energy scattered and absorbed. In Qpr, non-isotropic scattering

is considered in the < cos α >=
∫
4π

f(α) cosαdχ term, with dχ = 2π sin αdα, f(α) the

phase function of the scattered particle and α is the angle between the scattered light

and the incident beam. Since Qpr, Qabs and Qsca depend on wavelength, often an average

value integrated over the solar spectrum is used.

In this equation, the radiation pressure force is given by the constant radial term,
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and the Poynting-Robertson drag by the velocity-dependent components.

2.3.2 Solar Wind Corpuscular Effects

The solar wind, comprised of continuous streams of charged electrons, protons and He+

ejected from the upper atmosphere of the Sun, is also able to affect the dynamics of

Solar System dust particles. This is similar to the force of solar radiation, but produces

a much smaller effect due to the low, non-relativistic speeds of solar wind particles (of

∼ 350kms−1: 103 less than the speed of photons). The equivalent of radiation pressure by

solar wind particles is not significant compared with the photon radiation pressure. The

Poynting-Robertson solar wind drag can be important, however, because the aberration

angle of the solar wind between the velocity of the particle and that of the solar wind

(tan v/vsw
−1) is much larger than for solar radiation - given by tan v/c−1 (Meyer-Vernet,

2007). The ratio of the solar wind drag to the Poynting-Robertson radiation drag is about

30% of the total radiation effect (Grün et al., 2001). However, for particles with radii less

than about one micron in size, this ratio increases significantly, being ∼ 10 at a radius of

∼ 5 × 10−2 µm (Burns et al., 1979).

2.3.3 Poynting-Robertson Timescales

The timescale on which a particle spirals from its current position to the Sun under

the Poynting-Robertson effect is important for determining whether this effect creates a

noticeable variation in a given particle’s motion in a given time-frame. This timescale is

related to the particle radius s (m) (or mass) and density ρ (kgm−3), the energy output of

the Sun L0 (W), and the radiation pressure coefficient Qpr (equal to 1 for pure absorption

and 2 for direct reflection). It is usually defined approximately for an initial circular orbit

as:

τpr,circ,0 =
1

4

16πc2

3L0

ρs

Qpr

a2
in

for objects to spiral from a = ain to a = 0 (that is, the Sun). If necessary, this can be

generalised to:

τpr,circ,a =
1

4

16πc2

3L0

ρs

Qpr
[a2

in − a2]

in order to calculate the time for the particle to reach a semi-major axis of a from its

current position ain under the Poynting-Robertson effect.

Inserting the constants for the a = 0 case produces:

τpr,circ,0 = 2.2 × 1013 ρs

Qpr

a2
in
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in seconds ((Grün et al., 2001)) or:

τpr,circ,0 = 7.0 × 105 ρs

Qpr
a2

in

in years ((Dohnanyi, 1978) and (Klačka and Kocifaj, 2008)). In both cases the semi-major

axes values are in AU. This formula can be derived for the circular case by integrating

da

dt
=

−3E0Qpr

16πc2sρ

(2 + 3e2)

a(1 − e2)3/2

with e = 0.

The finite e case is more difficult, requiring the integration of da
dt

and

de

dt
=

−5

2

3E0Qpr

16πc2sρ

e

a2(1 − e2)1/2

However, an analytic solution is possible, and produces the unexpected result that the

Poynting-Robertson timescale is large for very small particles. However, the solar wind

drag has an increased efficiency at these mass scales and acts to lower the inspiralling

time.

A typical timescale for a perfectly absorbing particle (Qpr = 1) with radius s =

10−6m and density ρ = 1000kgm−3 starting at a = 1AU with e = 0 to spiral into the Sun

(and thus be lost from the system by evaporation) is ∼ 2450 years. A similar particle,

but with a radius s = 10−2 m, will take ∼ 24.5 × 106 years.

2.3.4 Yarkovsky-Radzievskii effect

A further effect of solar radiation is the Yarkovsky-Radzievskii effect, which is the result of

non-isotropic emission from a rotating object. Two main types are usually distinguished:

a diurnal version, in which the particle rotates between absorption of radiation on one

hemisphere (the ‘daytime’ hemisphere) and emission; and a seasonal type, in which the

warmer summer hemisphere absorbs radiation from a different direction to that in which

it is emitted, because of a thermal-lag delay in re-emission. Due to the dependency of this

effect on a number of variables - including the size and direction of rotation, and variations

in emission due to irregular surface features - dust grains have largely arbitrary spin axes

orientations, and the net effect of the Yarkovsky effects is dissipative. Yarkovsky effects

are also small because of the low temperature differences between day and night-time sides

of the particle: this is only 0.04 K for a 200µm diameter silicon particle, and ∼ 0.0009 K

for an iron grain (Jenniskens, 2006). This effect is most important for large particles: by

considering figures in Burns et al. (1979) (p. 39) it is possible to estimate that particles
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with radii greater than 0.1 m may have a Yarkovsky to Poynting-Robertson force ratio

of greater than one, and particles less than 10−4m will have a ratio << 1. These values

are dependent on the spin rates and composition of the affected particles. The Yarkovsky

force FY to gravity force Fgrav,max ratio is approximately:

FY

Fgrav,max
≈ 5 × 10−8r

−3/2
h

where rh is the heliocentric distance in AU. It is apparent that the Yarkovsky effect applies

only a small perturbation to particle orbits, though this can affect the smooth inspiralling

or long-term stability of objects (Burns et al., 1979).

2.3.5 Variations with particle size

It is clear that the above radiation effects will,except for the Yarkovsky-Radzievskii effect,

only have a significant effect on low-mass particles. It is important to gain an idea of the

mass regions for which radiation forces are negligible. For this purpose it is useful to

define the parameter β as the ratio between the radiation force Fr and gravitational force

Fg experienced by a particle. The gravitational force is expressed by:

Fg =
GM�m

r2
h

r̂ =
4

3

πs3ρGM�
r2
h

r̂

where G is the gravitational constant, M� is the mass of the Sun, m is the particle mass,

rh is the distance of the particle from the Sun, s is the effective radius of the particle, and

ρ is its density. r̂ indicates that the force is radial. The radiation pressure force is:

Fr =
SAQpr

c
r̂ =

L0s
2Qpr

4πr2
hc

r̂

where S is the radiation flux of the Sun at distance rh, A is the geometrical cross-section

of the particle, L0 is the solar luminosity, and Qpr is the radiation pressure coefficient (as

given above). This allows us to define β by:

β =
Fr

Fg

=
3L0Qpr

16πGM�cρs
= 5.7 × 10−4Qpr

ρs

which is now only dependent on particle properties (SI units).

Thus, for a purely absorbing particle (nearly true for particles larger than the ef-

fective wavelength of light, for which < Qpr >≈ 1) with effective radius s = 10−6 m,

and density ρ = 1000 kgm−3, we have β = 0.57 (Grün et al., 2001). From simplistic

physical considerations, it can be seen that a particle with β > 1 has a stronger radiation
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force than gravitational force, and will feel a net radiation pressure away from the Sun:

it will be removed from the Solar System. However, when calculated fully particles only

require β > 0.5 (even when e = 0) to be removed in this way. A particle with β < 1 (or

β < 0.5) has a stronger gravitational effect than radiation effect, and will spiral into the

Sun by the Poynting-Robertson effect on a timescale dependent on its physical properties.

Broadly, it will take longer for the orbit of a more massive particle to undergo a significant

change due to the Poynting-Robertson drag, and the importance of this drag effect will

be dependent on whether the inspiralling time is significant relative to the time frame of

interest.

Composition has a strong influence on the importance of radiation effects as a result

of the density inverse proportionality of β. In general, β is sufficiently small for particles of

radius greater than ∼ 10 µm and less than 0.01 µm that these particles will not be pushed

out of the Solar System. However, they may suffer small orbital perturbations. The peak

in β for most materials is at ∼ 0.1 µm. The reason for the decrease in the importance

of radiation for particles smaller than this peak is that the characteristic wavelength of

solar radiation is ∼ 0.5 µm, which is too large relative to the particle size for significant

absorption or scattering to occur. The ratio β is particularly large for graphite and various

metals, and does not decrease as quickly for very small particle sizes (Burns et al., 1979).

For the Poynting-Robertson effect, we consider the time taken for a particle to spiral in

by 1% (to 99%) of its initial semi-major axis, when started at a semi-major axis of a = 1

AU. This is equivalent to:

τpr,circ,0 = 7.0 × 105 ρs

Qpr
[a2

in − (0.01 × ain)2]

Considering particles on circular orbits with a Qpr of 1 and a density of 2 × 103kgm−3

(roughly equivalent to graphite), a particle of radius 1 µm will spiral in to 0.99 AU in 1400

years; a particle of radius 20 µm will take 28000 years. Thus, a particle of 20 µm (the lower

limit for the AMOR radar: see Section 3.1) will only suffer significant inspiralling under

the Poynting-Robertson effect on very long timescales. At finite eccentricities the problem

is more complex, generally increasing the timescales for very small particles. However,

in this regime the solar wind drag becomes important (below ∼ 1 µm): it is judicious to

consider the Poynting-Robertson effect for all very small particles, in consideration of the

time period of interest.

2.3.6 Electromagnetic Forces

Dust particles in the Solar System are also subject to electromagnetic effects, due to the

interaction of their charge with the interplanetary magnetic field associated with the solar
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wind. Particles acquire this charge largely by the photoelectric effect: photoemission of

electrons after the absorption of ultraviolet solar radiation. This process is usually domi-

nant as a charging mechanism over capture of solar wind electrons. Such particles usually

have a small positive surface potential of U ≈ 5V due to the photo-electric effect. The

charge of a spherical particle can then be given by q = 4πε0Us, with ε0 the permeability

of vacuum, and s the particle radius. This can be generalised for non-spherical particles

to q = ε0ηUm1/3 where η is a constant containing information on the shape, structure and

density of the particle (with η = 7.8ρ1/3 for a sphere with density ρ). The electromagnetic

Lorentz force exerted on the particle is then:

FL = qvrel × B

(Gustafson, 1994). Here vrel is the velocity relative to the field, and the interplanetary

magnetic field B (Parker spiral) is often expressed in spherical coordinates as:

Br = Br0(
r0

rh
)2

Bφ = Bφ0(
r0

rh

) cos θ

Bθ = 0

where θ = 0 is the latitude from the solar equatorial plane. The ratio of the Lorentz force

to the solar gravitational force is:

FL

Fgrav

∝ s−2rh

Thus, we see that Lorentz forces are important for small particles and at large heliocentric

distances (Grün et al., 2001).

The size and direction of these Lorentz forces depend on the polarity of the solar

magnetic field. Since this polarity varies faster (with the 11 year solar cycle) than the

orbital period of typical micron-sized particles, the long-term average effects expected are

small.

The solar magnetic field has a marked affect on small, interstellar particles entering

the Solar System. In general, the motion of a 10 nm sized particle is dominated by Lorentz

forces, while a 10 µm particle will feel little of this effect. Due to the variations in polarity,

such particles are either deflected towards or away from the solar equatorial plane (∼ 7◦

variant from the ecliptic plane): they are alternately prevented from reaching the ecliptic

plane and then concentrated to it. However, over the ∼ 20 years it takes for interstellar
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particles to travel the distance from the boundary of the heliosphere (∼ 100 AU from the

Sun) to the ecliptic plane, they will be affected by both polarities. This increased filtering

of small interstellar dust particles in solar minima has been detected by the Ulysses dust

detector (Krüger and Grün, 2009).

2.3.7 β Meteoroids

To understand the effect of radiation forces on the meteoroid distribution in general,

potential particle sources resulting from such radiation effects must be identified. One

possible detectable source of particles is β-meteoroids (see Section 2.3.5). These are

interplanetary particles small enough to have a sufficiently large surface area to mass

ratio to be significantly affected by solar radiation pressure, and thus have β > 1 (though

a value of β = 0.5 is sufficient for the particle to escape from the Solar System) (Zook

and Berg, 1975). Such particles can be detected on hyperbolic orbits moving out of the

Solar System, with origins in collisions or partial evaporation of micrometeoroids close to

the Sun.

β-meteoroids were first detected by cosmic dust sensors on the Pioneer 8 and 9

spacecraft (Berg and Grün, 1972). Subsequent measurements were made by the HEOS-

2, Helios 1 and Ulysses missions. Zook and Berg (1975) were the first to name these

particles β-meteoroids and to investigate potential sources. One potential formation

mechanism is collisions of particles near the Sun. These collisions can produce fragments

sufficiently small that the effect of solar radiation pressure creates particles on hyperbolic

orbits. Another important mechanism may be partial vaporisation of particles that have

spiralled towards the Sun by the Poynting-Robertson drag force. Radiation effects on such

particles then exceed gravitational effects, thus creating hyperbolic particles. However,

Zook and Berg (1975) conclude that collisional processes should be more efficient. This

they justify by calculating collision probabilities for particles spiralling towards the Sun

under Poynting-Robertson, showing that most of the mass of meteoroids will suffer a

catastrophic collision before they are close enough to the Sun for vaporisation to occur.

Later studies such as Mann et al. (2000) show collisional formation of β-meteoroids is still

most consistent with observations.

Also detected is a population of more massive and more energetic β-meteoroids in

the apex direction of spacecraft. These particles were later associated with a separate for-

mation mechanism, and named α-meteoroids, by Grün and Zook (1980). In this scenario,

so-called α-meteoroids, with origins in collision fragments, are too large to spiral outwards

from the Sun like β-meteoroids and instead are observed spiralling inwards under the

Poynting-Robertson effect. These particles are intermediate in mass between β-particles

and the larger ‘sporadic’ particles, whose dynamics are dominated by solar gravity and
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show no apparent directionality. Zook and Berg (1975) discuss also the possibility that

there exist two distinct classes of particles: sporadic and β meteoroids. These would be

visible in the mass distribution as two peaks - one for sporadics, and another (at smaller

masses - ∼ 10−15 to 10−12 g) for β-meteoroids. Microcratering observations of the Moon

may support this (Schneider et al., 1973). Grun and Zook (1980) expand this to three

sources: α, β and sporadic meteoroids.

Results from the Ulysses dust experiment have provided important insights. In

particular, this mission detected a significant flux of β-meteoroids at high inclinations

(Wehry and Mann, 1999). Hamilton et al. (1996) suggest that solar magnetic field

variations on an 11-year solar cycle may be responsible for the presence of such particles,

naming them ‘electromagnetic β-meteoroids’. Wehry et al. (2004) further investigate the

non-negligible electromagnetic effects on β-particles created further than 0.5 AU from the

Sun, and conclude that the Lorentz force can deflect these particles such that they are

deflected out of the ecliptic during one polarity of the solar cycle (for example, 1991-2002),

and focussed towards the ecliptic in the other (for example, 2002-2013).

2.4 Collisions

We also expect collisions between interplanetary particles to alter their orbits or destroy

them. These collisions will remove particles from the meteoroid stream on a ‘collision

timescale’ that is a function of both the mass of the particle and of its orbital elements.

This timescale provides one estimation of the expected lifetime of a particular size of

particles in a given stream. The lifetime of the particle will also be affected by various

radiation effects, as given above. It is expected that the collision lifetime will have a

minimum for particles of radius ∼ 1 mm (10−3 m). This is a result of an equilibrium

condition between the increasing meteoroid cross-section and the decreasing population

of meteoroids able to cause fragmentation.

Early estimates of the collision timescale were found by Dohnanyi (1978), who found

a collisional lifetime of 1 × 104 years for 100 µm particles and 3 × 103 years for 1 mm

particles. The model of Leinert et al. (1983) produced improved estimates by accounting

for the semi-major axis and eccentricity of the orbit: at 1 AU this model gives 2 × 105

years for 100 µm particles and 4 × 104 years for 1 mm particles. The model of Grün

et al. (1985) investigates the variation of collision lifetime with mass at 1 AU. They find

that particles with mass greater than ∼ 10−8 kg (or radius ∼ 100 µm) are removed

on a timescale of ∼ 104 years. They conclude that collisions are the most important

removal mechanism for such particles, while the Poynting-Robertson effect is the main

loss mechanism for particles of mass 10−13 to 10−8 kg. Finally, Steel and Elford (1986)
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determine the collisional lifetimes for 1 mm particles of individual meteoroids streams,

accounting for the effect of their semi-major axes, eccentricities and inclinations. For

Southern Taurids they find a collisional lifetime of (85− 90)× 103 years; for the Northern

Taurids they find (59 − 67) × 103 years.

Given that radar particles have radii less than about 1 mm, we can consider these

values upper estimates for the Taurid stream. We expect the lifetimes of radar Taurid

particles to be limited by collisions, and not by the Poynting-Robertson effect. Their

lifetimes are likely to be between 6 × 104 and 9 × 104 years. This is in excess of the

expected age of the Taurid stream of 104 to 2 × 104 years.

2.5 Summary

There is considerable dynamical structure in the Solar System dust cloud. It is valuable

to know the dynamical structure in terms of the above effects in order to understand the

formation of our Solar System, and hence be able to apply this knowledge to formation of

planetary systems around other stars (Krivov, 2007). Geological studies of Solar System

material, using both meteorites collected from Earth and returned material from various

space missions (Lunar rocks from the Apollo and Luna missions, and cometary material

from comet Wild 2 in the Stardust mission) have been valuable in understanding the

origins of the Solar System (Russell, 2007). However, meteoroid studies can further

explore the dynamical origins of the particles. Not all effects are important for all

particles: gravitational effects dominate for larger particles; radiation effects for smaller

particles. The relative importance of each type can be crudely understood using the ratio

β: generally a β near to or greater than 0.5 indicates that radiation forces are able to

expel particles from the Solar System. To study such radiation effects therefore requires

a variety of detectors sensitive to particle mass on different levels.
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Chapter 3

Determining Meteoroid Influx Trajectories:

Observational Techniques

3.1 History and Development of Meteor Detection Methods

Meteoroids can be detected in two ways: either in-situ by use of dust-detectors on space-

craft; or by observation of the meteor phenomena produced by the meteoroid particles on

impact with the Earth’s atmosphere.

3.1.1 In-situ Detection of Meteoroids

Space detection of meteoroids began in 1950 when a ceramic microphone detector was

attached to a V-2 rocket (Fechtig et al., 2001). The number of amplified signals received

suggested a very high flux rate and led to suggestions of a dense ‘dust belt’ surrounding

the Earth. It is now understood that a large number of the events recorded were most

likely produced by other phenomena, and were not the result of particle detections (Grün,

2001).

Early satellites and space probes began to carry dust detectors, with the aims of

studying dust particles as a component of the interplanetary system, and of determining

the hazard such particles could pose to spacecraft. The latter aim focussed on relatively

large particles (of size greater than 100 µm), as these pose the largest risk to satellites

and spacecraft (Grün, 2001).

Later detectors investigated a variety of dust populations. These included the in-

space dust at ∼ 1 AU (Pioneer 8), in the inner Solar System (Pioneer 9 and Helios 1 and

2), and in the outer Solar System (Pioneer 10,11). Additionally of interest was the dust

associated with various objects such as comets (Vega 1,2 and Giotto to Comet Halley;

Stardust to Comet Wild 2) and to planets Jupiter (Galileo) and Saturn (Cassini). In

addition, the Ulysses spacecraft travelled out to the orbit of Jupiter, then used a swing-

by of this planet to reach an orbit inclined at 79◦ to the ecliptic plane. This allowed the

spacecraft to obtain measurements of the dust distribution in three dimension (Krüger

et al., 2007).

25
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Highly sensitive impact ionisation detectors were developed by the dust group at

the Max-Planck-Institut für Kernphysik in Heidelberg, Germany. First used on HEOS2,

the detector size was increased by a factor of ten for inclusion on the Galileo and Ulysses

spacecraft. Missions such as Stardust and Cassini also carried particle mass spectrom-

eters/analysers in order to return information on particle compositions in addition to

dynamics. Although particle collecting areas have been vastly improved since those on

the earliest dust detectors, the incoming velocity direction of particles remains highly

uncertain: producing uncertainties in individual velocities of a factor of 2 for (most recent)

the Cassini mission (Altobelli et al., 2007).

Various advances made by space craft detectors include the discovery of the presence

of β meteoroids leaving the Solar System on hyperbolic orbits by Pioneer 8 and 9 (and also

Poynting-Robertson affected α meteoroids); discovery and understanding of interstellar

meteoroids (various, including Pioneer 8 and 9 and Ulysses); discovery of Jovian dust

streams from Io’s volcanoes (Ulysses and Galileo); and achieving a greater understanding

of the magnetic fields in the Solar System (in particular solar and Jovian) through their

dynamical effects on interplanetary and interstellar particles (Grün, 2001). Enhancement

of our understanding of dust dynamics, sources and behaviour can therefore lead to an

improvement in our understanding of other Solar System processes.

3.1.2 Remote Sensing (ground-based) Detection of Meteoroids

Ground-based observations of meteoroids rely on the light and ionisation produced when

a meteoroid is partially or fully vaporised in the Earth’s atmosphere. A meteoroid which

passes sufficiently close to the Earth may impact the atmosphere. It is the light and

ionisation created by this impact that is termed a meteor. Here, collisions with air

molecules heat the meteoroid surface. For meteoroids, where the free path of the air

molecules (about 6 cm at meteor heights) is greater than the size of the meteoroid, no

hydrodynamic cushion or ‘air cap’ is formed at the head of the meteoroid. Rather, the

momentum and energy of each collision with air molecules is transferred to the meteoroid

nucleus directly. The meteoroid is vaporised rapidly and little deceleration is observed

before the body disintegrates. However, when the meteoroid is large compared with the

free path of the air molecules, an ‘air cap’ is formed, which hinders the heat transfer

and thus the vaporisation and also limits aerodynamic resistance. As a consequence, the

meteoroid may penetrate significantly further into the atmosphere, and may hit the Earth

as a meteorite before complete disintegration has occurred.

A special case exists for particles of mass less than ∼ 10−11 kg. As the ratio of the

heat radiated to the heat absorbed via ablation is proportional to the ratio of surface

area to volume, such particles may not reach sufficient temperatures for vaporisation.
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They will be quickly decelerated in the atmosphere, and eventually settle to the ground

as micrometeorites.

During their passage through the Earth’s atmosphere more massive particles produce

a meteor train consisting of excited and ionised atoms and molecules, and free electrons.

This is formed from ablated (usually vaporised) atoms which are ionised in collisions with

air molecules. Such a train may be 1m in width (at ∼ 95 km), between 7 and 20 km long,

and will persist while ablation occurs (usually at heights between 115 and 85 km).

Magnitudes

Before describing advanced visual methods of observing meteors, we discuss the role

of apparent visual magnitudes. An apparent visual magnitude estimate provides the

only means by which to estimate the size or mass of the observed meteoroid. Apparent

magnitudes are a measure of the apparent brightness of an object from the distance at

which they are observed. Absolute magnitudes are what their apparent magnitudes would

be if the object was at a set observation distance - often 100 km for meteors - and in the

zenith.

Originally devised as a mechanism by which to compare the brightness of stars, the

magnitude is defined by:

M1 − M2 = 2.5(log10 L2 − log10 L1)

where M1 and M2 are the stellar or meteor magnitudes, and L1 and L2 are their respective

luminosities. The result is a logarithmic inverse magnitude scale with an arbitrary zero

point; such that a meteor of magnitude 7 has one hundredth of the luminosity of a

magnitude 2 meteor. For reference, the Sun has an apparent magnitude −26; the brightest

stars ∼ −1. The visual limit for unaided naked-eye observations is ∼ 4− 6, depending on

the conditions.

Meteor absolute magnitudes vary depending on the size, composition and the at-

mospheric velocity of the meteor, as well as the elevation of the meteor at observation.

Empirical relationships are used to determine meteoroid masses from meteor magnitudes

for visual, photographic and radar observations. For example, for radio meteoroids de-

tected in the Harvard Radio Meteor Project in 1962 Verniani (1973) finds the following

empirical relationship linking radio magnitude M , the pre-atmospheric velocity v∞, the

pre-atmospheric mass m∞ and the zenith angle ZR:

M = 62.3 − 9.8 log10 v∞ − 2.3 log10 m∞ − 2.5 log10 cos ZR.
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Observation Techniques

Visual observations dominated our understanding of meteor behaviour until the mid-

1900s. Individual observers can record the apparent paths in the sky and their magni-

tudes. With multiple observers, information from two or more paths can be combined

to determined the radiant, height, path length and velocity of the object. Accuracies

of 10◦-20◦ (inexperienced observers) to ∼ 1◦ (experienced observers) are achievable for

radiant positions. However, velocity timing errors can be approximately 20-30%, and as

such visual velocities are not reliable for dynamical information (Lovell, 1954).

Photographic techniques allow a significant improvement in radiant/position and

velocity accuracy. High precision Super-Schmidt cameras can achieve ∼ 0.4% accuracy

in velocity and ∼ 0.1◦ in radiant position (Baggaley, 1995). However, the sensitivity of

photographic methods does not exceed that of visual methods, with a magnitude limit

of +2 for small cameras and +4 for Super-Schmidt cameras, compared to the limiting

magnitude of the human eye of ∼ +4 magnitudes in good conditions. More advanced

photographic methods utilise two cameras, one with a rotating shutter which produces

a fragmented trail on a photographic plate. From this trail, the path and velocity of

the segmented trail of the meteor can be obtained, providing sufficient information to

determine an accurate meteor orbit (Lovell (1954) provides further information).

Television camera methods have also proved valuable. A television camera is in-

tensified either through the camera itself, or by attaching an image intensifier to the

video detector. These systems have the advantage of improved sensitivity compared

with photographic methods (to ∼ +10 magnitude). However, technological limitations,

including a low signal to noise ratio, restrict the accuracy to ∼ 3% in velocity and ∼ 0.2◦

in radiant position (Hawkes, 1993).

Photographic methods provide small but highly accurate datasets, detecting rel-

atively large bright meteors. In the following section we will see that radar methods

produce large datasets, but with reduced velocity accuracy (∼ 5 to 10%), and generally

sample smaller particles (with magnitudes ∼ +8 to ∼ +14). Such radar techniques more

heavily sample the smaller, sporadic meteor population. Photographic meteors are found

to have a relatively higher proportion of more recently formed shower meteoroids. This

is because they have not suffered the same level of collisions or perturbations that older

sporadic particles have, and thus shower particles are generally larger in size than sporadic

particles.

Radar detection of meteoroids is important because it allows detection of meteoroids

to much smaller mass limits and at all times of day, regardless of the weather. Radar

systems observe meteors by detecting the train of ionisation formed as atoms ablated

(vaporised) from the surface collide with atmospheric molecules and become ionised. By
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reflecting radio waves from this ionised train, information on the orbit and mass of the

meteoroid can be obtained.

Development of radar (RAdio Detection And Ranging) type systems began in the

early 20th century after the development of radio communication technology (Rinehart,

2004). Research into atmospheric phenomena using reflections of radio waves began in

the 1920’s, with the first publications of radar studies of ionized layers in the upper

atmosphere in 1925 (Appleton and Barnett, 1925) and 1926 (Breit and Tuve, 1926).

In 1929-30 unexplainable night-time radio echoes from the atmospheric E-region were

recorded, and Nagaoka (1929) was the first to propose a meteoric origin, though the

mechanism suggested was incorrect. In the early 1930’s the definitive proof for the origin

of these echoes was obtained by correlation of the occurrence of E-region radio echoes

with visual observations of meteors (in particular, Leonid meteors in 1931 and 1932).

Robert Watson-Watt in Britain is credited with the invention of a practical radar

system with his RDF (Radio Direction Finding) system in 1935. Though the original

radar could only operate at low frequencies, the invention in 1940 by John Randall and

Harry Boot of the cavity magnetron allowed radar operation with microwave frequencies

up to 10GHz. This improved radar direction determination of the target (Rinehart,

2004) (Carey-Smith, 2003). These developments enabled radar to be used extensively

during the Second World War as a means of detecting aircraft. Military development

during this time also greatly improved radar technology (Rinehart, 2004). During the

war, meteorological phenomena such as rain cloud and meteor trains had been detected

but were considered clutter (that is, legitimate radar echoes which did not correspond to

the object or phenomena required), to the extent that on many occasions meteor echoes

were mistaken for aircraft.

With the conclusion of the Second World War, surplus military equipment (such

as radar) was made available for research use (Rinehart, 2004). A number of these

radars were used for atmospheric research. With radar technology now not exclusively

military, various applications and new radar techniques were developed leading to radar

for air traffic control, radar for monitoring traffic speed, and a number of meteorological

applications.

As a result, the first radar meteor studies in the late 1940s involved ex-military

World War II equipment (Hey and Stewart, 1947). From the mid 1950’s, new methods

were developed at Jodrell Bank (England), utilising Fresnel diffraction pattern methods

and employing three station systems to deduce meteor trajectories. 2509 meteors to

a limiting magnitude of +7 were detected (Davies and Gill, 1960). These techniques

were later used in the Harvard meteor survey (Illinois, USA) during the 1960s. Eight

stations were used to improve coverage, and a 2MW radar power allowed detection of
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nearly 40000 meteors to a limiting magnitude of +12 from 1961-69 (Hawkins, 1963). A

number of studies at Adelaide (Australia) in the 1960s also used three spaced receivers

to detect meteors down to +6 (1960-61 survey) and +8 (1968-69) Gartrell and Elford

(1975). Other studies in this period, such as those at Obninsk (Russia) in 1967-68 and

Mogadisho (Somalia) in 1968-70, tended to focus on detecting specific meteor showers

Galligan (2000).

More recently, the AMOR (New Zealand) and CMOR (Canada) respectively, have

provided new datasets. AMOR (Advanced Meteor Orbit Radar), which has been in

operation since the early 1990s, has produced ∼ 106 orbits with a limiting magnitude

of +13 (1990-1994: ∼ 3 × 105 orbits) and +14 (1995-1999: ∼ 6 × 105 orbits) (Galligan,

2000). CMOR (Canadian Meteor Orbit Radar) has been operating since late 2001 and

archives approximately 1500 trajectories per day to a limiting magnitude of +8 (Jones

et al., 2005). Meteor radar data from the Adelaide, Harvard and Obninsk surveys have

been archived by the International Astronomical Union’s Meteor Data Centre and are

available on request.

3.1.3 Interstellar Meteoroids

Detection of interstellar particles has been achieved by both space-based (in-situ) and

ground-based (remote) observation. It is described here as a case study to illustrate the

benefits and issues associated with in-situ and remote-sensing methods of detection.

In-situ observations of interstellar particles have been possible with dust detectors

on a number of spacecraft missions including Pioneer 8 and 9, Hiten, Galileo, Ulysses,

Cassini, Helios and Stardust. These detectors are able to determine the flux and speed of

particles, but velocity directions are only attainable to a low precision. Dust detected by a

space-based detector with collecting area ∼ 0.3 m2 is small: of order ∼ 0.05 µm to ∼ 1 µm

for the Ulysses detector. Ulysses, with its high inclination orbit that allows it to sample

dust away from the interplanetary dust concentrated to the ecliptic plane, has provided

particularly valuable data on interstellar dust entering the Solar System. This has been

important in understanding the filtering effect at the heliospheric boundary due to the

solar magnetic field of particles less than ∼ 0.3 µm, and the focussing and defocussing of

particles from the solar magnetic plane by changes in polarity of the solar magnetic field.

Ulysses also established an apparent inflow direction of interstellar particles in the

Solar System which is in agreement with the flow direction of interstellar neutral hydrogen

and helium. However, the latest 2005-06 data shows a 30◦ shift from the neutral hydrogen

direction, the cause of which is not yet known. Furthermore, radiation pressure has a

significant effect on interstellar particles of the size detected by Ulysses: this results in an

increase in the masses of observed particles closer to the Sun (Krüger and Grün, 2009).
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Radar has largely been the mechanism for ground-based observation of interstellar

particles. The Advanced Meteor Orbit Radar (AMOR) in New Zealand first reported a

significant detection of interstellar particles in 1996 (Taylor et al., 1996). These particles

are larger than those detected by Ulysses or other spacecraft-based detectors: AMOR has

a limiting particle size of ∼ 20 µm. This demonstrates that interstellar particles of highly

varying sizes are able to penetrate the heliosphere and reach the inner Solar System. The

interstellar dust detected by AMOR includes a strong stream of particles that appear to

have originated from near the dust-debris disk star β Pictoris (λ ≈ 260◦, β ≈ −58◦). The

ability to trace the dynamics of interstellar particles back to a source is limited by the

mean-free path of collisions between ambient interstellar dust and the particles from the

source. This is radius dependent. For AMOR sized particles, the distance particles are

expected to retain origin information of the source direction is ∼ 1 kpc; for Ulysses sized

particles it is considerably smaller (∼ 0.1 kpc) (Grün and Landgraf, 2000).

3.2 Details of Radar Detection of Meteors

Radar detection of meteors relies on the ionisation produced by the meteoroid as it is

heated on entry to the Earth’s atmosphere. Both free electrons and positive ions exist in

the resulting meteoric plasma: only the electrons are of interest here, as radio energy is

not significantly scattered by the relatively massive ions.

Meteor radars, such as AMOR and CMOR, transmit evenly-spaced radar pulses

(∼ 400 s−1 for AMOR). The pulse of radio waves specularly (orthogonally) reflects from

the ionised meteor train, allowing the pulse to be detected at one or more receivers.

Significant (above noise) signals at all three receiving sites represent meteor detections

for which velocity components and therefore orbital elements can be determined.

In the application of diffraction radio theory to meteor radar it is usually adequate to

approximate the meteor train by a linear, stationary column of free electrons. This column

extends from −∞ to +∞, with small diameter compared with the radar transmitted

wavelength. It is assumed that this trail is underdense: that is, one in which electrons

scatter independently; and the scattered radiation from each electron is not affected by

the presence of scattered radiation from other electrons. Collisions with other particles

are also neglected. The scattering cross-section of each electron in the train is given

by σe = 4πr2
e sin γ2, with re the classical scattering radius, and γ the angle between the

electric vector of the incident radar wave and the direction of scattering (also the direction

to the receiving antenna) and σe ' 10−28 m2. For backscatter radar such as AMOR and

CMOR, γ = 90◦ (McKinley, 1961).

This backscatter or column echo is also known as the body echo. In addition, a head
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echo is expected as a result of the spherical plasma generated near the meteoroid itself

(Baggaley, 2002). The power that reaches the receiving antenna after reflection of radar

waves from either the head or body is given by the radar equation. Knowing that the

power flux at the train (at range R) is PT GT /4πR2 Wm−2 (where PT is the transmitted

power and GT is the gain of the transmitting antenna), the receiving antenna receives

flux of:
PT GT

4πR2

σe

4πR2

If the receiving antenna has gain GR and an effective collecting area GRλ2/4π, then the

radar equation is:

∆PR =
PTGT

4πR2

σe

4πR2

GRλ2

4π
=

PT GT GRλ2σe

64π3R4

where ∆PR is the power received by the receiver after scattering from a single underdense

meteor train.

3.2.1 Calculating a meteor orbit from radar measurements

The raw information from a meteor radar system undergoes a number of transformations

and corrections in order to provide the orbit of the detected particle, in orbital elements.

First, the velocity components of the observed meteor in the atmosphere are de-

termined. This is achieved by combination of the returned meteor amplitude and phase

signals at three stations. The end result is an in-atmosphere speed and trajectory for the

particle.

In order to convert these to heliocentric coordinates, several corrections are required.

First, the meteor will suffer deceleration in the Earth’s atmosphere, which must be esti-

mated and removed from the measured speed. Such estimation methods are a main source

of error in the final orbit. For CMOR, decelerations are calculated by comparison of the

raw radar speeds with the velocities determined from photographic major shower data

(Brown et al., 2004). An improved CMOR II radar intends to measure this deceleration

directly to reduce this uncertainty in the velocity determination (Brown et al., 2010).

Additionally, there will be a deviation in the particle orbit caused by the gravity

of the Earth (zenith attraction); a velocity correction caused by the spin of the radar

station on the Earth’s surface; and a velocity correction due to the motion of the Earth

around the Sun. Applying these corrections will produce heliocentric position and velocity

coordinates. Finally, these heliocentric coordinates are converted to orbital elements using

standard transformations (see Murray and Dermott (1999), pages 52-53). This completes

the determination of a meteor orbit by radar methods.
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3.2.2 Advanced Meteor Orbit Radar

We now provide specific information on two current meteor radar: The Advanced Meteor

Orbit Radar (AMOR) and The Canadian Meteor Orbit Radar (CMOR).

AMOR is located at Birdling’s Flat, near Christchurch, New Zealand (at longitude

172◦39′E, latitude 43◦34′S), and is operated by the Department of Physics and Astronomy,

University of Canterbury, Christchurch. AMOR is a pulsed radar, which uses signals

received at three stations to determine the radiant position and velocity of an observed

meteoroid.

Prior to 2001, AMOR consisted of one transmitting array (radiating peak pulse

power at 60 kW) and three receiving arrays at the central or ‘Home’ site, and two

additional sites each containing receiving arrays. These outstations were roughly to the

North-West (distance 10.54 km) and West (distance 8.18 km) of the Home site (Galligan

and Baggaley, 2004). The transmitted radiation consisted of a ‘fan’ broad in elevation,

but narrow (∼ 2◦) in azimuth, along the North-South meridian. Radiant coverage was

limited to declinations +20◦ to −90◦. The pulse repetition frequency was ∼ 400s−1, and

the pulse length 66 µs. Upgrades to this configuration in 2001 added an antenna to

transmit and receive perpendicular to the original antenna (towards the East and West).

The three receivers at the Home site act as a dual spacing interferometer, allowing

unambiguous determination of the elevation of the meteor echo to an accuracy of ∼ 0.5◦.

The echo range is determined by the time difference between a pulse and its reflected

echo, with several individual pulses contributing. The azimuth angle is constrained by

the narrow extent of the radar beam, and thus has ∼ 1◦ uncertainty. The zenith angle is

calculated by determining the echo elevation found using the phase measurements on the

dual-spacing interferometer. These parameters define the radiant direction and velocity

vector. The speed is determined using the time difference between detection of the meteor

at each of the three stations. This requires a comparison between points of maximum

gradient on the rising leading edge of the three echo amplitude profiles. There is an

uncertainty in the time lags between stations of approximately one radar pulse (2.64ms),

which gives a heliocentric velocity uncertainty of ∼ 3% for a 20kms−1 meteoroids. In

general, uncertainties of up to 5% are expected.

A Fresnel velocity determination method, as was common prior to the AMOR radar,

can be used for the small percentage of echoes that contain clear Fresnel oscillation

patterns at one or more station. Fresnel oscillations are the result of Fresnel diffraction

zones, which arise from constructive interference between the radar signal reflected at

different points on the meteor train. Speed can be determined by measuring the size

of the Fresnel zones. The result is an improved velocity accuracy for these meteoroids.

(Galligan, 2000).
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In excess of 106 meteor orbits have been collected by the AMOR system. In

particular, the ∼ 5 × 105 collected from May 1995 to October 1999 represent almost

continuous operation at the same radar configuration. This dataset contains orbits to a

limiting magnitude of +14: corresponding to velocity-dependent mass and radius lower

limits of ∼ 3 × 10−10 kg and ∼ 20 µm in radius respectively. With this high sensitivity

to small particles, the AMOR dataset is ideal for investigating sporadic particles in the

Solar System and interstellar dust; both of which tend to be smaller than the meteoroid

stream dust observed as meteor showers and sampled by photographic and visual surveys.

3.2.3 The Canadian Meteor Orbit Radar

The Canadian Meteor Orbit Radar (CMOR) is also a three station pulsed meteor radar.

Situated near Tavistock, Ontario, Canada (80.772◦W, 43.364◦N), it has two remote sites

8.1km and 6.2km away from the central site. The three stations form an angle of 96.8◦.

It is a SKYiMet radar system with a peak power of 6.0 kW capable of three frequencies

(17.45, 29.85 and 38.15 MHz). It uses a 5-element interferometer that allows determina-

tion of echo directions to ∼ 1◦ (above 20◦ elevation). Vertically directed Yagi arrays are

used, resulting in almost all-sky coverage down to ∼ 20◦ elevation. A pulse repetition

frequency of 532 Hz is used, and a pulse length of 75 µs. Radiant directions have an

uncertainty ∼ 6◦.

CMOR meteor velocities are determined with multi-station timing, in a similar way

to AMOR. Time delay errors are given as ∼ 0.7 of a pulse. The measured velocities have

∼ 10% uncertainties. A pre-t0 Fresnel oscillation method is used to provide speeds with

uncertainties ∼ 5% for a approximately 10% of meteors that have high signal-to-noise

Fresnel patterns (Hocking, 2000). Deceleration corrections are computed using empirical

expressions determined by comparing the raw radar-determined speeds with the speeds

found in photographic studies of major meteor showers (Brown et al., 2004).

CMOR detects about 7000 meteors per day, of which about 1500 have usable am-

plitude profiles at all three stations, allowing orbit determination: as of 2008, the dataset

contained more than 2.5 × 106 orbits. The 29.85 MHz system has an effective limiting

magnitude of ∼ +8, giving velocity-dependent mass and radius limits of ∼ 10−8-10−7 kg

and 0.1 mm respectively. CMOR is more efficient at detecting meteoroid streams as it is

sensitive to more massive particles than AMOR. Brown et al. (2008) outlines an initial

search for meteoroid streams.



Chapter 4

A Search for Resonance Effects in Radar

Meteor Orbit Data

4.1 Resonance effects in the Solar System

Resonance behaviour is observed in a variety of dynamical systems in the Solar System.

As in any other physical application, resonances here arise when a simple numerical ratio

exists between frequencies (usually orbital periods) of different objects in the system: a

commensurability. At mass scales where gravitational forces are dominant, this allows

small gravitational forcings to occur repeatedly over a number of orbital periods, the net

effect of which is to produce a dynamical feature that may be observable. Several types

of resonances are observed in the Solar System relating to ratios of different parameters.

These are subdivided into spin-orbit coupling (ratios between spin and orbital rotation

periods) and orbit-orbit coupling (ratios between two orbital parameters). The latter

includes mean motion resonances involving orbital periods or mean motions, and secular

resonances involving slower precession frequencies.

The Earth’s Moon, with an orbital period approximately equal to its rotational

period, represents a simple example of spin-orbit coupling. A more dramatic example

is that of the Pluto-Charon system, where both objects are in a synchronous spin state:

this is known as a totally tidally despun system (Murray and Dermott, 1999). This is

considered the stable end state of the system (Farinella et al., 1979).

Mean motion resonances are the simplest manifestation of orbit-orbit coupling. In

their simplest form, the ratio between mean motions can be converted to periods of

revolution, which in turn can be related approximately to semi-major axis distances from

the central body by Kepler’s second law (see Section 2.1.1). Thus, resonances with respect

to one major body often appear at particular semi-major axes distances. A planetary

example of such resonance is the 3:2 commensurability between the mean motions of

Pluto and Neptune which results in Pluto orbiting the Sun three times for every two of

Neptune, and has dynamics that ensure that close approaches between the two planets

are avoided. There are indeed a whole class of trans-Neptunian objects protected in this

35
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manner by their location at the 2:3 Neptunian resonance: these are known as Plutinos.

Other families of resonant Kuiper belt objects also exist.

Several examples of mean-motion resonances exist between the satellites of the giant

planets in the Solar System. For example, three Galilean satellites of Jupiter - Io, Europa

and Ganymede - exhibit a Laplace resonance. This is a configuration where there is a ratio

between orbital motions of three bodies, and this is the only instance of such a resonance

in the Solar System. In this case the relationship is given by nI − 3nE + 2nG = 0 (n

being the mean motion), with Io in a 2:1 resonance with Europa, which in turn is in a 2:1

resonance with Ganymede. This geometry ensures that whenever a conjunction occurs

between any two of the satellites, the third is at least 60 degrees away, thus preventing a

triple conjunction. The 2:1 resonance between Io and Europa is also responsible for the

observed vulcanism on Io. Similar resonances exist between satellites of Saturn, such as

2:4 Tethys-Mimas and 3:4 Hyperion-Titan. Resonant perturbations also create gaps in

Saturn’s ring structure, such as the Cassini division between the A and B rings. Here the

sharp inner edge, known as the Huygens Gap, is caused by the ring particles being at the

2:1 resonance with Mimas.

Secular resonances are also important in determining the dynamical structure of the

Solar System. These are long-term resonances that occur when the precession frequency

of a small body is nearly equal to an eigenfrequency of the planetary system. A linear

secular resonance involves one of each frequency; other types can involve combinations of

frequencies of both bodies. For example, the ν6 (the name given to the resonance g = g6)

secular resonance occurs when the precession frequency of the longitude of perihelion g of

an object is nearly equal to the average precession rate of the longitude of perihelion of

Saturn (g6). The ν5 (g = g5) resonance is similarly a resonance with Jupiter’s longitude

of perihelion g5 (Froeschlé and Morbidelli, 1994).

Resonant structure in the asteroid belt has been recognised since Kirkwood (1867),

who noticed gaps that corresponded to Jovian resonance locations: these gaps are now

known as Kirkwood Gaps, and occur when the resonance at that mean-motion (and thus

semi-major axis location) destabilizes the objects. In addition, certain resonances can

stabilize and protect orbits, creating concentrations of particles. Thus, major gaps occur

at 4:1, 3:1, 5:2 and 2:1, while concentrations exist at the 3:2 and 1:1 resonances, which

correspond to the Hilda and Trojan families respectively. Furthermore, Kirkwood gaps

are not entirely empty, with a small population of asteroids observed in each.

Acknowledging the effects of resonance dynamics at a variety of mass scales in

the Solar System, it is probable that such effects may also affect the meteoroid-scale

population. As we are dealing with a large population of objects dispersed throughout

the Solar System, we expect such effects to be analogous to those seen in the asteroid belt
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- specifically, gaps and concentrations at certain semi-major axis values in the distribution

of orbits. Resonance effects in the meteoroid population are discussed in Section 4.3.

This chapter outlines a search for such effects in the radar meteor population.

Though radar surveys suffer from large orbital uncertainties in comparison to photo-

graphic studies, these large radar datasets benefit from improved statistics. More details

of resonance structure and formation in the asteroid belt are covered first, to serve as a

basis for determining what we can expect for the meteoroid population. Combining this

with radar limitations allows a narrowing of the search field in the Canadian Meteor Orbit

Radar (CMOR) dataset. This is followed by analysis of the semi-major axis distribution

of Taurid meteors selected from this data.

4.2 Resonances in the Main Asteroid Belt

The asteroid main belt exhibits three types of resonance structure: its relatively sharp

confinement to the main belt; gaps created by Jovian and Saturnian mean-motion and

secular resonances; and concentrations at other resonances.

The outer extent of the main belt is fairly well defined, with a significant decline in

the number of asteroids beyond the 3:2 resonance at 3.97AU (except for a concentration

of a small number of orbits at the 4:3 resonance (4.29AU)). The absence of orbits in the

region is caused by chaotic motion due to a region of overlapping first order resonances

extending ∼ 0.9AU inside the orbit of Jupiter.

Explaining the formation of gaps at some resonances and enhancements at others

can be difficult. Concerning the Kirkwood gaps in the asteroid belt, a number of theories

for the origin of Kirkwood Gaps have been proposed - these can be classified (as by

Greenberg and Scholl (1979)) into four types:

1. The Statistical Hypothesis: The gaps are purely an illusion, since an asteroid in

resonance spends the majority of its time at the extremes of its orbit, and thus of

its librational motion (defined as oscillation in the resonant argument: see Section

5.1). Thus, at any given time the asteroid is most likely to be at the edges of the

resonance. Numerical studies indicate this is not the source of the gaps, however.

2. The Collisional Hypothesis: The gaps are depopulated by collisions of resonant

gap objects with nearby asteroids, due to variations in orbital elements (such as

eccentricity e). This may be due to corresponding increases in the velocity of the

resonant particles, which increases the collisional probability. The effect could be

either to alter the mean motions of resonant objects such that they move out of

resonance and accrete in the regions in between, or to fragment or destroy the

asteroids. This is the mechanism first proposed by Kirkwood.
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3. The Cosmogonic Hypothesis: The gaps are formed in the early Solar System, either

due to the failure of asteroids to form in those regions or due to early processes

that no longer operate. An example of the latter is resonant sweeping during

the expansion of Jupiter’s orbit. While such theories may explain gap formation,

they cannot explain the difference between resonance - such as between 2:1 and 3:2

resonance.

4. The Gravitational Hypothesis: This hypothesis is the favoured explanation for the

asteroid belt resonant structure at present. This theory proposes that the gaps

can be explained using three-body mechanics of the Sun-Jupiter-asteroid system.

Here, motion is governed by processes described by resonance theory, and a removal

mechanism should be apparent in a sufficiently long-term integration of the orbits

of these objects..

Chaos is involved in many commensurabilities. In particular, it has been shown

that the overlapping of secular resonances or mean motion resonances can create chaotic

regions within resonances which actively remove objects. This was first demonstrated by

Wisdom (1982) and Wisdom (1983) for the 3:1 resonance, who showed that significant

variations in eccentricity would continually put objects orbiting in the 3:1 resonance on

Mars-crossing orbits, and eventually such an object would impact, or be significantly

perturbed by, Mars and removed from the resonance. In addition, the extent of the

chaotic region agreed well with the size of the 3:1 gap.

Moons and Morbidelli (1995) studied the 4:1, 3:1, 5:2 and 7:3 gaps. They show

that chaotic motion is present at each for the majority of the a-e phase space due to

interactions between the ν5 and ν6 secular resonances. This chaotic motion leads to

significant increases in eccentricity that cause asteroids in these resonances to assume

orbits that cross the orbits of Mars, Earth and Venus.

More complicated combinations of resonant phenomena are needed for the 2:1 (Hecuba

gap) and 3:2 (Hilda group) resonances. Again secular resonances ν5 and ν6 are responsible

for chaotic motion, but for these resonances this is only present for high eccentricity

objects. Between these chaotic regions a more stable zone exists. However, Henrard et al.

(1995) found evidence for a dynamical ‘bridge’ between these two regions at high libration

amplitudes, which allows lower eccentricity orbits to have their orbits sufficiently altered

to leave the resonant region. Thus, the Hecuba gap is observed at the 2:1 resonance.

Moons (1997) suggests that the observation of a concentration of Hilda asteroids at the

3:2 resonance is due to a difference in timescales: there has not been sufficient time since

the formation of the Solar System for the bridge mechanism to remove these asteroids.

In addition, the near 5:2 resonance between the orbits of Jupiter and Saturn (‘the great
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inequality’) acts to enhance the depletion of the 2:1 resonance (Murray and Holman,

2001).

Trojan asteroids are a final example of concentration of particles by a resonance.

These are located at the 1:1 resonance with Jupiter, situated 60◦ either side of its position

in orbit at the L4 and L5 Lagrange points. It is thought asteroids exist at these locations

as the stability of the resonance prevents close approach to Jupiter, thus ensuring their

survival (Greenberg and Scholl, 1979).

The research summarised above on the origin of resonant structure in the asteroid

belt demonstrates that determining the expected behaviour at a given resonance can be

problematic. Though it is possible to determine the locations in semi-major axis at which

resonance effects may be important in the meteoroid population, it may be difficult to

ascertain the nature of such effects.

4.3 Resonances and the Solar System Meteoroid Population

The search for resonance effects in the meteoroid population has proved more elusive

than within the asteroid belt. This is due to a number of factors, largely concerning the

difficulties of observing these smaller objects and of determining their orbital properties

with sufficient accuracy, leading to small number statistics in some (mainly photographic)

datasets, and high uncertainties in others, including radar datasets. Much of the previous

work on resonances in meteoroid populations has involved searching within meteoroid

streams or meteor showers. These represent a manageable section of the population

that is easier to understand dynamically than the effects of resonances on the overall

distribution. This does not mean resonances do not affect non-stream sporadic particles,

and, in particular, there may exist evidence of a transfer mechanism of meteoroids from

the asteroid belt that utilises strong Jovian resonances: such a conveyor belt mechanism

is observed for asteroids (40% of Near Earth Asteroids have moved from asteroid belt

orbits to Near Earth orbits due to the ν6 secular resonances with Saturn, and 25% due to

the 3:1 mean motion resonance with Jupiter (Jenniskens, 2006)), and is expected to be

present at lower mass scales.

Given the large number of possible resonances and meteor showers, we use previous

research to provide a dataset of cases in which resonance effects are more likely to be

present. Many have been studied previously and the presence of resonance effects es-

tablished using a combination of observational results (in particular for outburst events),

numerical studies of shower history, and analytic equations. An overview of this research

is given below.
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4.3.1 Types of Resonant Effects Detectable in Meteor Showers

There are two types of resonant phenomena that can occur in meteoroid streams. First, a

structure of gaps, displaying similar significant decreases in the orbital density of objects

to those observed in the asteroid belt, may be expected to occur. As particles are expelled

from the (potentially) chaotic region within the resonance, they may temporarily settle

down on the edges of these regions, forming apparent concentrations.

Secondly, particles injected into the stream by the parent comet each have slightly

different orbits, with a small proportion having the correct dynamics to place them inside

a resonance, particularly if the comet already librates within a given resonance. These

particles can remain in this region for relatively long periods of time, their existence inside

the resonance (or near a librating comet) protecting them from planetary perturbations

and other such effects that act to more quickly disperse other stream particles. Inside the

resonance, these particles librate through a narrow set of mean motions, thus forming an

outburst on Earth when the displacement between the Earth’s position and the resonance

centre is small. Built up over a number of comet returns to the resonance centres, these

regions are of relatively high density and are wider than outburst dust created by dust

trails from a single comet pass. These dust trails produce outbursts simply because

the particles are young and have not had sufficient time to disperse into the stream

background. Thus, it is important to distinguish between relatively old, wider resonant

swarms or filaments injected into the region over a number of years, and young dust trails

of recently released material.

A third mechanism by which resonances are known to affect meteoroid streams also

exists: dispersal of a meteoroid stream into arcs. This has been shown numerically, but

has only been observed for the Quadrantids stream.

It was with regard to the Quadrantids that much early work on meteors in resonances

developed. Initially, variations on ∼ 59 year timescales in orbital elements were found in

numerical studies (Hughes et al., 1979), which were incorrectly attributed at first to the

11:5 Jovian resonance. Murray (1982) showed analytically that such variations could in

fact be produced by the 2:1 resonance. This is true for Quadrantids in near resonance,

such as particles near the mean orbit with a semi-major axis of ∼ 3.07 AU. For particles

within the 2:1 Jovian resonance region (approximately a = 3.24 AU to a = 3.26 AU),

Froeschlé and Scholl (1986) showed that gravitational splitting occurs, disrupting the

stream into a number of arcs on timescales of ∼ 103 years. This behaviour also requires

high eccentricities e ≥ 0.4 and high inclinations, as are observed for the Quadrantids

stream.
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4.3.2 Resonant Gaps and Concentrations in Meteoroid Streams

A search for structure in meteoroid orbits similar in nature to the Kirkwood Gaps was

begun by Lindblad (1973). He found gaps at locations of mean motion resonances of

Jupiter in the reciprocal semi-major axis (proportional to the orbital energy) distribution

of photographic meteor orbits. Wu and Williams (1995) searched for gaps in the reciprocal

semi-major axis distribution of photographic Perseids (as they have the largest population

of all known showers in the IAU Meteor Data Centre database). Significant gaps were

observed at many resonances, including the 1:1, 1:2, 2:1, 2:3 and 3:2 resonances of major

planets. Numerical simulations were used to show that these gaps can develop after 150

years and remain present thereafter. Peaks are initially formed either side of gaps as par-

ticles are displaced from the gaps and settle temporarily on the edges, but these dissipate

gradually. Svoren̆ et al. (2006) confirmed the presence of gaps in photographic Perseids

at the position of mean motion resonances of Jupiter and Saturn to greater statistical

significance. Additionally, they identified filamentary structure within the stream which

occurs near to important resonances, and are expected to represent the peaks of expelled

particles on resonance edges seen in the simulations of Wu and Williams (1995).

Murray (1996) commented on this paper (Wu and Williams (1995)) and noted that a

distinction must be made between real gaps demonstrating actual removal of particles from

the resonant region, and ‘imaginary’ gaps present as a result of resonant perturbations

leading to the failure to identify some meteoroids of a given stream. For a gap detected

at the 3:1 Jovian resonance location in Quadrantid meteors, an analytical method for

determining the upper limits on the changes in orbital elements the resonance is capable

of exerting is used to argue that this gap is probably ‘imaginary’. In addition, the paper

commented that it may not be resonant effects that create the gaps observed in the

Perseids. Resonant effects need several orbital periods to occur. Thus, for cases such as

the Perseids where the timescale for gaps to form (∼ 150 years (Wu and Williams, 1995))

is roughly the same as the timescale on which new material is added to the stream by the

passage of the parent comet P/Swift-Tuttle, it is difficult to see how the resonances can act

to create gaps. It is suggested that perturbations from near approaches to major planets

may provide an alternative mechanism, as it is noted that the numerical simulations of

Wu and Williams (1995) do suggest that real physical structure exists in the Perseids.

4.3.3 Resonant Swarms Producing Meteor Shower Outbursts

The Perseids are also among showers that have displayed recent outbursts that have been

attributed to resonant swarms, along with others such as the Leonids, Orionids, Taurids,

and June Bootids. These outbursts consist of particles librating around a particular

resonant centre, or which are sufficiently close to a librating parent body to be protected



42 Chapter 4. A Search for Resonance Effects in Radar Meteor Orbit Data

by the libration of the comet. A common starting point for such studies is Emel’yanenko

(2001a), which used simple analytic arguments to determine which showers (of a selec-

tion of eight) are capable of containing particles in libration near centres of nearby 1:j

resonances. Aquarids, Orionids, Lyrids and Leonids were shown to be capable of showing

such librations, and the role of the 2:1 resonance in shielding the June Bootid stream was

demonstrated.

The following section will expand on some of the resonant behaviour seen in the

streams mentioned above. The Leonids shower has produced a number of strong out-

bursts in recent history. These are largely meteoroid trails due to the crossing of the

Earth through young debris clouds released by the parent comet 55P/Tempel-Tuttle on a

previous orbit. Over time these clouds disperse, thus requiring the cloud to be the product

of a recent comet pass in order to be visible as a storm or outburst. However, in 1998, a

strong Leonid shower was observed 16 hours before the main shower was expected. This

outburst was also visible, but to a lesser extent, in subsequent years. This outburst has

now been attributed to relatively old dust released in 1333, which has been protected from

Jovian perturbations and preserved for such an extended period of time by its injection

into the 5:14 mean motion resonance with Jupiter. Such a concentration of dust represents

a meteoroid swarm, which is in general wider than a meteoroid trail, and thus produces

a wider feature. Numerical studies in Asher et al. (1999) have shown this to be possible.

This conclusion was supported by the observations and analysis of Jenniskens and

Betlem (2000) and Jenniskens et al. (2008). However, the former notes that their results

do not allow a distinction between a situation where the particles themselves are librating

or where the particles are protected by their proximity to the parent comet in libration.

This paper also points out a number of similarities of this filament with a similar structure

in the Perseids, and from this speculates that these filaments are a common feature of

streams resulting from Halley-type comets (comets with orbital periods of about 50 to

250 years which are the result of evolution of long period comets to smaller orbits), which

may also prove a useful key to the dynamical evolution of cometary dust.

The Perseids demonstrate similar behaviour near the return of comet 109P/Swift-

Tuttle. Two separate structures were identified in Jenniskens et al. (1998) from observa-

tions near the last return of this comet: a ‘Perseid Filament’ and ‘Nodal Blanket’. They

conclude that, in a similar way as for the Leonids, these are formed by the protection of

particles of many comet returns by the libration of the comet in the 1:11 Jovian mean

motion resonance. In particular, the Nodal Blanket may possess its smaller distribution

of semi-major axes orbits because it contains dust that is itself librating around this same

resonance centre.

The case of the Orionid meteor stream differs from the Perseids and Leonids in that
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the parent comet (1P/Halley) is not in resonance with Jupiter or other major planets,

and as such can theoretically inject meteoroids into all resonances over long timescales.

There is a considerable body of research on the resonant origin of the 2006 Orionids

outburst. However, there are large uncertainties in orbital parameters - particularly in

the semi-major axis - even in photographic Orionid meteors. This is due to the high

incoming speeds, and thus high semi-major axis values. This has lead to some variation

in the Jovian resonance attributed to this outburst. Emel’yanenko (2001a) gave widths

for three nearby resonances: 1:6, 1:5 and 1:4 with Jupiter, at semi-major axis values of

17.1AU, 15.22AU and 13.12AU respectively. Of these, the 1:6 resonance has the largest

width (δa = 1.0AU) and thus is most easily populated. Two works use semi-major axis

arguments to determine which resonance is populated by Orionids. Trigo-Rodŕıguez et al.

(2007) found vastly different resonances for each of three CCD camera-observed meteors,

attributing the discrepancies to large errors in entry velocities. In Spurný and Shrbený

(2008) photographic data of ten fireballs recorded by the Czech section of the European

Fireball Network gave a mean semi-major axis of a = 14.8 AU, corresponding most closely

to the 1:5 resonance.

Sato and Watanabe (2007) and Rendtel (2008) employed a different strategy: use

of the time difference expected between occurrences of an outburst caused by the same

resonant swarm. This time difference depends on its orbit, and thus on the particular

resonance it occupies. Both found a similar time difference: the former used numerical

studies to determine that these outburst meteors have an orbital period of 70 to 72 years

(and were ejected from the comet in -1265 (1266BC), -1197 (1198BC) and -910 (911BC)),

and record two cases of records of high Orionid shower rates in 1936 (70 years prior to the

date of the 2006 outburst); Rendtel (2008) described a detailed cumulation of datasets

dating back to 1928 and concluded that the apparent increase in 1936 (through sketchy

data collection) could also be evidence of a 70 year period. As six Jupiter revolutions take

∼ 71.2 years for an orbital period of ∼ 11.86 years, a strong signature of the 1:6 Jovian

resonances appears to be present. The two year disagreement is suggested by Rendtel

(2008) to be the result of observing the swarm at two different ends of the extent of the

resonant-trapped meteoroids. Some further observations from the 2007 shower have also

shown increased rates, giving weight to this proposal.

Asher and Emel’yanenko (2002) also propose that a large segment of the June

Bootid meteors are in the 2:1 Jovian resonance, which protects them, and produced

the unexpected 1998 outburst. The parent 7P/Pons-Winnecke, a Jupiter-family comet,

librates irregularly in the 2:1 resonance. This argument is not universally agreed on,

however (Jenniskens, 2006). Trapping of the Lyrids in the 1:10, 1:11 and 1:12 (or even

1:5) Jovian mean motion resonances has been a suggested explanation for its unusual ‘far-
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comet’ outburst in 1982. Similarly, the 6:7 resonance has been suggested as an explanation

for outbursts in 1945 and 1986 in the Ursid meteor shower (Emel’yanenko, 2001a).

4.3.4 The 7:2 Resonance and the Taurid Meteoroid Complex

The final stream to be covered here is the Taurid meteoroid complex. This consists of

a vast number of objects from dust size to asteroid size, for which determination of a

parent body has proved difficult: though comet P/Encke has been implicated widely, it

is thought to be too small to generate the amount of material observed in the complex.

Resonance effects have been identified here, as for the Orionids, by a mixture of

studies of semi-major axis characteristics and studies of the time-differences between

observed increases in shower rates. The latter requires a more complex approach that

involves using the displacement between the swarm and the Earth in the mean anomaly,

rather than just time. The resonance implicated here is the 7:2 mean motion resonance

with Jupiter.

Initial research came from a mixture of observations and historical data. Clube and

Asher (1990) propose a meteoroid swarm due to a proto-Encke (a comet preceding, and

producing, the rather weak comet 2P/Encke) with a period of about 3.35 years (close

to the 7:2 resonance period of 3.38 years): this was done on the basis of combining

observational data (including IRAS dust band detections (Sykes and Walker, 1992)),

orbital integrations of near-Encke orbits, historic observations, and modulations of the

Earth’s climate. Clustering in the values of semi-major axis and values of longitude of

the ascending node distribution of optical Southern Taurids at about 2.25 AU, close to

the 7:2 resonance position of 2.256 AU, was detected in Steel, Asher, and Clube (1991).

Clustering at 1.9 – 2.1 AU is also seen, close to the 9:2 and 4:1 Jovian resonances at

a = 1.9 AU and a = 2.06 AU respectively.

Asher and Clube (1993) outline the expected properties of a Taurid resonant swarm

at the 7:2 Jovian resonance. This paper is primarily concerned with understanding the

possible fragmentation of an undiscovered parent body to Comet 2P/Encke and the Taurid

Complex known as ‘proto-Encke’, which may inhabit the 7:2 resonance and produce a

corresponding resonant meteoroid swarm and climate effects as indirect evidence. The

supposition of the 7:2 resonance position is made based on a number of arguments. Tree-

ring growth pattern data for Mount Campito bristlecone pine over 5500 years show high

frequency variations at twice and 2
7

of the Jovian period. This paper also examined records

of elevated Taurid meteor observations from 1931 to 1988, and finds five have |∆M | less

than 40◦ (where, ∆M is the displacement in mean anomaly of the resonant centre from

the point at which the Earth and swarm orbits cross in space and time), suggesting a

potential link. The nearby 3:1, 4:1, 10:3 and 11:3 Jovian resonances were found incapable
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of matching these observations. They construct a table of predicted years at which the

swarm may be observed on Earth: these are years in which |∆M | ≤ 40◦. This covers

both the usual pre-perihelion November observation of Taurids with a swarm peak date

of November 3, and a post-perihelion June apparition expected to peak on June 23. The

characteristics of the expected 7:2 Jovian resonance are also outlined. These include its

development over many thousands of years, its distribution around the resonance centre,

and its high libration amplitude and period (∼ 400 years). This should produce maxima

every 200 years, agreeing with the observed 200 years variations in climate. In concluding,

they note that the arguments for a resonant swarm can stand alone from the theorising

on an unconfirmed parent body, especially in consideration of the apparent observational

support. This is important given that the presence of such a proto-Encke and associated

climatic implications are not universally accepted (Jenniskens, 2006). Additionally, Asher

and Clube (1998) expand on the proto-Encke theory, making use of numerical integrations

to try and understand the dynamical history of such a body.

Further observational support of the resonant swarm was provided in Asher and

Izumi (1998) with analysis of Taurid data obtained in Japan over several decades. A

statistical test retrieved a result that the null hypothesis (that the agreement between the

years of observed increase in Taurid numbers and the predicted swarm years is possible

by chance) is rejected at the 98% level. Considering other factors that may affect results,

such as returns of the parent comet 2P/Encke and the presence of moonlight interfering

with observations, they conclude that the data support the presence of a 7:2 resonant

swarm.

Fireball meteor numbers from six observing stations covering the period 1962 to

2002 are examined in Beech et al. (2004). It was tentatively confirmed that there ex-

ist enhancements in Taurid fireball numbers for all predicted swarm years, though two

possible extra peaks were identified in 1974 and 1985: the suggestion is that they may

represent ‘missed’ peaks in the predictions.

A more recent paper (Dubietis and Arlt, 2007) uses data collated in the Visual

Meteor Data Base (VMDB) of the International Meteor Organisation for 1985 to 2005.

Fireball rates are also examined separately. They find a correlation between observed

enhancements and predicted swarm encounters, with enhancements in 1988, 1991, 1998

and 2005. The 1995 peak was absent, and this was attributed to the influence of the

full Moon on observing conditions. Peaks in the fireball proportions also showed general

agreement with swarm predictions. Overall the swarm theory is supported by their results.
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4.3.5 Size and Mass Distributions of Resonant Swarms

One final point of interest is the mass distribution expected for particles exhibiting res-

onant behaviour. Particles small enough to be affected by radiation pressure or the

Poynting-Robertson effect will be dispersed more rapidly than larger particles, such that

even protected meteoroid swarms in libration will be stripped of their smaller particles over

long periods of time. These effects may also broaden the resonant swarm. Furthermore,

heavier particles may be more easily injected into resonance, if the comet itself is in or

near libration.

Concerning the broadening of resonant peaks resulting from a mass distribution:

particles affected by solar radiation pressure feel an outward force, the effect of which

is to counteract the gravitational force from the Sun. Thus, the resonance appears to

be closer to the Sun (in semi-major axis) from the perspective of the particle. This

effect, of course, is different for particles of different masses and thus a continuum of

particles of different (small) masses have a continuum of resonance positions. This leads

to a broadened resonance location in semi-major axis, instead of the single semi-major

axis resonance position that applied for larger bodies. Section 6.17 demonstrates that

this effect is not significant for radar particles. This section also demonstrates the small

alteration of orbital elements that will occur as a result of the instantaneous effect of

radiation pressure on ejected radar-sized particles.

The mechanism by which particles are injected into libration can affect directly the

mass distribution of such swarms. For the resonant particles detected in the Orionid,

Leonid and Perseid streams, low mass indices of 1.5 – 1.7 have been reported (see below).

The population index is defined as being the number of meteors in neighbouring magnitude

intervals, given by χ = r = NM+1

NM
, where NM is the number of meteors of absolute

magnitude M and brighter (see Section 3.1.2 for the definition of absolute magnitude).

The corresponding (differential) mass distribution index can be shown to be s = 2.5 log r+

1, with a lower mass or population index thus indicating, in general, a higher proportion

of larger, brighter meteors.

Rendtel (2008) find a population index χ = 1.6 for the 2006 outburst Orionids,

which corresponds to a mass index s = 1.5. Concerning Leonids, Jenniskens and Betlem

(2000) find χ = 1.4 to 2.3 for outburst meteors in successive years, giving s ∼ 1.6. This

compares with χ = 3.0 ± 0.2 for non-resonant outbursts, corresponding to s = 2.19. The

resonant filament component was still visible during the 2006 outburst caused by the

1932 dust trail, and gave χ = 2.1, compared with χ = 2.60 ± 0.15 for the 1932 dust

trail outburst Leonids (which was indeed much brighter than expected, with a predicted

population index of χ ∼ 3.47 or more). In Perseids, the observed mass distribution index

for the 1998 observations of the resonant swarm was s ∼ 1.73 ± 0.04, whereas sporadic
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meteors in the same range had s = 2.3 (Jenniskens et al., 1998).

For these streams it appears, in general, that the outbursts resulting from resonant

swarms (as opposed to those caused by young dust trails) consist of brighter meteors,

and thus larger meteoroids (low population and mass indices). This agrees with a model

in which particles in resonant swarms consist of heavier particles ejected from the comet

with small ejection velocities. These particles remain close to the orbit of the parent

comet, and if the comet itself is in libration these particles can be either protected by

the resonance, or can enter librational motion. Smaller particles have higher ejection

velocities and are thus spread further from the comet: they are thus not protected by, or

within, the resonance. This is clearly possible for cases such as the Perseids and Leonids

where the comets are themselves librating, but is more problematic in the case of the

Orionids that are not associated with a librational comet.

The Taurid case is also more complex. Dubietis and Arlt (2007) found no apparent

trend in the population index of Taurid meteors. The population index was found to

scatter around an average value of χ = r = 2.4, and there was no correspondence

between variations from this mean value and swarm prediction years. This was calculated

from visual meteor observations: it is noted that there are insufficient data to produce a

fireball mass distribution index. Contrastingly, they found some correspondence between

production years and the ‘fireball proportion’. This is measured as a number ratio of

fireballs to total meteor numbers:
Nf

Nmet
. The average fireball proportion was 1.09%. For

the entire Taurid shower, peaks in the fireball proportion were seen in 1988, 1998 and 2005.

When the proportions were calculated only for a reduced period of time corresponding to

the maximum of the shower (λ� = 215◦ to 235◦), a peak was seen in these three years,

and also in 1995. No peak is revealed for the remaining predicted year in the timespan

of interest (1991). The weakness or absence of peaks in 1995 and 1991 is attributed to

a larger ∆M than for other years. This elevated fireball rate in most prediction years

is to be compared with previous research (such as Bone (1991)) that reported a roughly

constant fireball proportion within the Taurid stream. Beech et al. (2004) also report a

very good correspondence between fireball numbers and prediction years.

Thus, it appears unclear whether the Taurid swarm includes the bias towards heavier

particles that is observed for other resonant swarms. In the original description of the

structure and origin of such a swarm given in Asher and Clube (1993), the formation

mechanism they proposed for the Taurid swarm was similar to that attributed to the

Leonid and Perseid outburst swarms. That is; their method of population of the resonance

involved the ejection at low velocities (≤ 50 ms−1) of dust particles into the librating orbits

occupied by their parent comets, while higher velocity particles were ejected into orbits

beyond the 7:2 Jovian resonance. This would suggest a similar deficit in small particles,
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but this remains to be shown observationally.

4.4 Choice of Meteor Shower for Resonant Study

From the above review of resonances in meteoroid streams, the strongest and best-studied

meteoroid streams are the Quadrantids, Perseids, Leonids, Orionids (and potentially Eta

Aquarids, which are associated with the same comet), June Bootids, Lyrids, Ursids, and

Taurids. From analytic study of Emel’yanenko (2001a), Perseids, Eta Aquarids, Orionids,

Lyrids, Leonids, and June Bootids have dynamics that may allow stable swarms to form

at resonance locations. Some authors also note that the Geminid stream may contain

a resonant concentration due to its close proximity to the narrow 7:1 and 8:1 resonance

regions (Ryabova, 2005).

To evaluate the observability of resonance effects in these streams in radar data,

the position of the radiant of the corresponding meteor shower, the velocity of incoming

meteors, the zenith hourly rate, and the resonance width must all be considered. The

radiant declination will determine whether a radar system at a given latitude can observe

the shower. The velocity is used to determine semi-major axis values for the particle

orbits, but most importantly gives an impression of relative uncertainties: observational

radar uncertainties increase as the geocentric velocity of the particle increases, and are

dependent on the relative impact geometry with the Earth, being greater for head-on

collision. Therefore, high Earth-impact velocities can increase the difficulty of observing

small-scale structure in the semi-major axis. The zenith hourly rate (ZHR) is the number

of meteors expected to be observed per hour on a clear, moonless night with the shower

radiant at the zenith (Murad and Williams, 2002). Here it is used as a relative measure

of meteor shower strengths: showers of higher ZHR are more likely to produce statistics

sufficient to overcome large measurement uncertainties. However, ZHR values are usually

based on visual observations, and are not always indicative of the strength of the shower

at radar level. Instead, therefore, we use the ‘maxZ’ parameter defined in the CMOR

meteor shower search as ‘the relative activity strength at maximum’ (Brown et al., 2008).

The resonance width will determine if a resonant feature is important with respect to

uncertainties: a very small resonant width compared with measurement uncertainties will

make observation difficult as the uncertainties will restrict the ability of the data to sense

small-scale features.

Table 4.1 summarises approximate values for the above parameters for the showers

of interest. All of the showers fall within the observing limits for CMOR (declinations&

−20). The effects of different impact velocities (Vg) is demonstrated by a representative

semi-major axis uncertainty δa at the resonance semi-major axis, determined using CMOR
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Shower Dec Vg a(AU) res aR(AU) width δa maxZ ratio
Quadrantids +48.5 42 ± 4 3.14 2 : 1 3.28 0.17 1.5 − 3.5 238 0.11
Perseids +56.9 62.1 ± 7.2 ∼ 25 1 : 11 25.7 1.4 128 − 230 103 0.011
Leonids +21.6 69 ± 6.8 9.8 5 : 14 10.3 0.13 20 − 38 82 0.0065
Orionids +15.5 66.4 ± 6.3 18 1 : 6? 17.2 1.0 55 − 105 132 0.018
Eta Aquarids −0.7 64.6 ± 6.2 16.16 1 : 5? 15.2 0.9 45 − 80 277 0.020
Lyrids +32.6 47.3 ± 4.1 45.7 1 : 12? 27.3 1.8 140 − 260 36 0.013
N Taurids +21.0 28.1 ± 2.9 2.12 7 : 2 2.25 0.05 0.6 − 1.6 31 0.083
S Taurids +8.0 27.9 ± 3.7 2.07 7 : 2 2.25 0.05 0.6 − 1.6 56 0.083
Geminids +32.1 35 ± 3.8 1.37 7 : 1 1.42 0.006 0.17 − 0.57 817 0.036
Ursids +74.6 37.6 ± 5.1 4.62 6 : 7 5.76 0.09 5.5 − 11.57 29 0.016

Table 4.1: Parameters of use in determining the suitability of meteor showers in resonant studies. Dec is the shower mean
declination; Vg is the shower mean geocentric velocity; a is the shower mean semi-major axis; res is the known or theorised (marked
with ?) resonance in which shower particles are involved; aR is the approximate semi-major axis location of the resonance; width is
the approximate resonant width, generally taken from (Emel’yanenko, 2001b); δa is the range of uncertainties in CMOR semi-major
axis values at a; maxZ is the relative activity strength at maximum (a Zenith Hourly Rate); and ratio is the ratio between the
resonant width and δa(a measure of the how appropriate the shower is for radar resonance studies)
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data. A useful measure for deciding the potential for resonance effects in a given meteor

shower to be observed by radar is the ratio of the approximate width of the resonance to

this representative δa. The greater the resonant width compared with the uncertainties

(thus the higher the ratio), the higher the chance that the resonant feature will be visible

above the uncertainty broadening of the radar data. These values are also given in Table

4.1. Indeed, a resonant feature that is too wide will blend easily into the background

dust cloud. Thus we would prefer a relatively low resonant width, but a high ratio of

resonant width to semi-major axis uncertainty. The best showers (in order), chosen for

their relatively high ratio, are found to be the Quadrantids, Taurids, and Geminids.

The Taurids are chosen for continual study due to the lack of observational support

for resonant effects in the Geminids, and the large radar meteor uncertainties that will

result from the larger velocities and semi-major axis values of the Quadrantids. The

observational evidence in visual meteor data for the Taurid swarm at the 7:2 Jovian

resonance and the relatively low uncertainties in its velocities and semi-major axes make

the Taurid 7:2 resonant swarm a good candidate for a radar search.

Below we present an evaluation of statistical and numerical information on CMOR

Northern and Southern Taurids. A variety of tests are used in order to investigate whether

the information the Taurid resonant swarm can be extracted from current meteor datasets.

4.5 The Taurid Meteor Complex

The Taurids are a Northern Hemisphere meteor shower observed in October-November

each year. Commonly, the shower is defined by the Northern and Southern Taurid

branches. These are both part of a wider Taurid Complex, to which a number of asteroids

have been associated. It is from such associated bodies that a ‘Giant Comet’ hypothesis

was formed (Asher et al., 1993): however, the apparent asteroidal nature of many Taurid

complex bodies puts this hypothesis in doubt (Jenniskens, 2006).

The Taurid stream is very dispersed, and covers a number of named showers - Piscids,

Arietids, Taurids, and χ Orionids - all with ‘northern’ and ‘southern’ components. June

apparitions of the stream also exist (corresponding to the passage of the Earth through

the stream’s second node): these are the β Taurids and Southern May Arietids (both

southern branches), ζ Perseids, and Northern May Arietids (northern branches) (Asher

and Clube, 1993).

The Tunguska event, additional bombardment or meteorite-forming events, and var-

ious climatic influences on Earth have also been linked tentatively to the Taurid complex,

leading to further interest in the study of the Taurid meteoroids.

As discussed above, it is the potential resonant concentration of particles at the 7:2
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Jovian resonance that is of interest here. Though generally this is investigated using a

time-based approach where the years in which the resonant swarm should be visible are

calculated, here a semi-major axis method is used. A possible detection of the swarm in

semi-major axis data was found by Steel et al. (1991). Furthermore, we do not expect

there to be sufficient years of CMOR data to search for a evidence for increased Taurid

rates in swarm years. Orbital element data only encompasses one swarm-encounter year

(2005). Single-station data is available for more years, but this would not allow extraction

of Taurid particles from the dataset, as a received signal from at least three stations is

required for an orbit to be calculated. Additionally, despite the presence of stronger

resonances in the Taurid vicinity (such as the 3:1 and 4:1 Jovian resonances) we only

study the 7:2 resonance as Asher and Clube (1993) find that only this resonance can

explain the observed yearly rates of Taurid meteoroids.

As for Kirkwood gaps, resonant effects should be evident as a peak around the

location of the 7:2 resonance at a semi-major axis a = 2.256 AU (found using Kepler’s

third law ( a
a′ )

3 ≈ ( T
T ′ )

2, where T
T ′ = 2

7
as defined by the resonance). Here a number of

methods are employed to attempt to extract evidence of this resonant swarm in CMOR

radar data, including statistical techniques and numerical studies.

4.6 Extracting Taurid Data

Parameter North Taurids South Taurids
Starting Solar Longitude 207◦ 172◦

Ending Solar Longitude 235◦ 218◦

Right Ascension α 53.3◦ 31.0◦

Declination δ 21.0◦ 8.0◦

Drift in RA ∆α 0.88◦ 0.82◦

Drift in Dec ∆δ 0.19◦ 0.29◦

Geocentric Velocity Vg 28.1 kms−1 27.92 kms−1

Standard Deviation in Vg 2.9 kms−1 3.7 kms−1

Table 4.2: Properties of North and South Taurids.

Initially, programs developed by Dr. P. Brown and the meteor group at the Univer-

sity of Western Ontario, London, Canada, were used to extract Taurids from the entire

CMOR dataset as of July 2008 (thus encompassing Taurids from 2002 until 2007). Solar

longitude limits, right ascension and declination, and velocity specifications were used in

accordance with the findings of a wavelet coefficient search for shower structure given in

Brown et al. (2008) (see Table 4.2). The ∆α and ∆δ values correspond to expected daily

drifts in the radiant locations, which are applied in the extraction process. Meteoroids

within an (α,δ) region 3◦ in size around the right ascension and declination values are
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selected, provided velocity criterion agree within the given σVg (which is required in

percentage form). This resulted in separate datasets of Northern and Southern Taurids,

of 1617 and 6032 meteoroids respectively. These are combined here, unless otherwise

stated. The Taurid radiants are too far north and outside the detection area of AMOR.
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Figure 4.1: Right Ascension and Declination for extracted Taurids. The movement of the
radiant is clear when the meteors are grouped according to month.

The selected Taurid dataset behaves as expected. The mean semi-major axis is

1.8AU. The mass distribution peaks around 2.4×10−7 kg. The inclinations and velocities

are low, and peak at around 5◦ and 28 kms−1 respectively. Dates range from 9 September

to 19 November. In Figure 4.1 the movement of the radiant is visible.

Given that the extended Taurid stream encompasses showers either side of the

Northern and Southern Taurids, and also in June each year, additional resonance informa-

tion may be acquired by extension of the dataset to include these showers. However, here

we only extract Northern and Southern Taurids as determined by the previous CMOR

shower survey of Brown et al. (2008).

Though we will examine only the CMOR dataset, the techniques that we develop in

this chapter are applicable to the general problem. They can thus be used to investigate

whether evidence exists for any dynamical feature in meteoroid streams in any radar

dataset. Thus the purpose here is, in addition to searching for evidence of the 7:2 Taurid

swarm, to establish a procedure for tackling searches for small-scale structure in radar

meteoroid stream data.
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4.7 Statistical Methods

In order to investigate the existence of a swarm at the 7:2 Jovian resonance, we search

for evidence of a statistically significant feature at the location of the resonant centre

(at a = 2.25 AU) in the semi-major axis distribution of the selected Taurid meteoroids.

In Chapter 5 we determine the ‘resonance width’ (or width over which the resonance

can produce an observable effect) for the 7:2 resonance at Taurid orbital elements. This

resonant width provides the expected width of the feature in semi-major axis. However,

no knowledge is available on the height of the peak the swarm can produce. In Sections

4.7.1 to 4.9 we search for evidence for the resonant swarm in the CMOR Taurid dataset.

In Section 4.10 we investigate the effects of radar uncertainties on the ability the detect

a resonant feature.
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Figure 4.2: Histograms of CMOR Taurids, with bin width of 0.04 AU, for (a) all selected
Taurids and (b) Taurids from 1-4 AU.

We begin by constructing a histogram distribution of the Taurid semi-major axis

values (see Figure 4.2). AS an initial test we investigate with the choice of the number

of histogram bins employed: too many and visible structure may only be indicative of

random variations; too few bins and important structure may be hidden within bins.

4.7.1 Optimum Bin Number Selection for Semi-major Axis Histograms

A method to determine the optimum number of bins in histogram creation was developed

by Knuth (2006b). Determining an optimum number of bins, or an optimum bin size,

can amount to a statistical test, as a good choice can eliminate the presence of random

fluctuations that cause statistically insignificant structure in the resulting histogram. This

‘OPTBINS’ optimum binning method relies on a number of statistical tools. As further

outlined in Knuth (2006b), the resulting method finds the optimum number of bins by
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maximising the logarithm of the posterior probability:

log p(M |d, I) = N log M +log Γ(
M

2
)−M log Γ(

1

2
)− log Γ(N +

M

2
)+

M∑

k=1

log Γ(nk +
1

2
)+K

where M is the number of bins, N is the size of the dataset, I describes other known

variables, k is the bin index, Γ is the Gamma function (an extension of the factorial

function that can be used for real or complex numbers), and d = d1, d2, ..., dN represents

all data points.

This expression is derived by balancing the likelihood function and the prior prob-

ability of the model. Since the former increases with increasing number of bins while

the latter decreases with increasing number of bins, there should exist a median point

corresponding to an optimum number of bins. A full derivation is available in Knuth

(2006b). Information and code for implementation are available at Knuth (2006a).
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Figure 4.3: Resulting histograms from the OPTBINS procedures for (a) all Taurids in the
CMOR dataset and (b) Taurids from (1-4 AU).

For a dataset including all extracted Taurids, the optimum number of bins is derived

to be 46. We also test a reduced dataset of Taurids in the most populated semi-major

axis region (1-4 AU). These particles are most likely to be particles associated with the

Taurid stream. In this reduced case, 24 bins are deduced (a slight increase on the full

dataset). The resulting histograms are given in Figure 4.3. No structure at the location

of the 7:2 resonance (∼ 2.25 AU) is evident in either diagram. To check the result of

the optimum binning program, plots of logp against M are made (see Figure 4.4). The

diagrams have a shape consistent with successful examples given in Knuth (2006). The

flat maxima suggests that the process is relatively insensitive to the number of bins. The

program produces an error concerning the excessive rounding of the input data, but the
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agreeable shape of the logp against M figures suggests that the results given are accurate.
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Figure 4.4: The logarithm of the posterior against the number of bins in the histogram,
as used for K H Knuth’s optimal binning procedure. Data used are (a) all Taurids in
the CMOR dataset and (b) Taurids from (1-4 AU). From the maxima of these graphs
(shown more clearly in (c) and (d) respectively) the optimal number of bins are found to
be M = 46 and M = 24 bins respectively.

Examination of Figure 4.3 suggests there is no evidence for a resonant swarm in

CMOR radar Taurids. However, this program provides no test as to whether the resulting

distribution is smooth, as it appears to be. We now use simple statistical analysis and

Monte Carlo simulations to provide knowledge on whether an anomaly exists at the 7:2

resonance position.

4.7.2 Statistics of Variations from a Mean Curve

A simple statistical test is used to determine whether the sizes of the small scale (.

0.5 AU) variations in the CMOR Taurid semi-major axis distribution are consistent with

the size of the random fluctuations expected for this size of dataset. This involves fitting
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a model distribution to the data excluding the region in which we expect the resonance

centre to be present. The resulting dataset should not contain any signature of the

resonance region. Variations are obtained by subtraction of the model distribution and

the data distribution. We can then compare the standard deviation of these variations

with the size of the variations in the resonance region.

Ideally, we would use a model of the physical underlying distribution, including

knowledge of observational biases. Since such a theoretical model is unknown, the actual

model fit chosen is not a concern as long as it describes the data well: we choose an

eighth order polynomial fit to model the underlying distribution of the data. Higher-

order polynomials can produce non-monotonic behaviour or be overdetermined. Again,

such issues are not of concern here provided the polynomial fits the data, particularly given

we are not attempting to make predictions outside the data range. For the polynomials

used here, we find that undesirable behaviour can occur beyond the range over which the

polynomial fitting is applying, but that the eighth order polynomial works well within the

range of the data.
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Figure 4.5: The variation of the standard deviation of the resulting variations as an
increasing percentage of the data around 2.25 AU is removed.

A semi-major axis histogram is created with a bin width equal to 0.04 AU. This

is chosen as it is approximately the size of the resonant width for the 7:2 resonance

(see Chapter 5) and thus is approximately the expected size of the resonant feature.

This produces 75 histogram bins, which is larger than suggested by the optimum bins

algorithm. However, the insensitivity of the process to the number of bins suggests the

choice in the number of bins is not critical. Also, the analysis used here will deal with



4.7. Statistical Methods 57

the statistical fluctuations that we expect to arise when the number of bins is increased.

An area around the expected location of the resonance is removed in order to ensure

any signature of the resonance does not bias the mean curve fit produced. In principle,

the large measured uncertainties of the CMOR data will broaden such a resonant feature

to cover a large area: this is further addressed in Section 4.10. The removed section is

centred on the known resonance centre at 2.25AU.

We wish to remove the largest section possible around the resonance centre that

still produces a satisfactory fit to the whole dataset. To test for the optimum number

of data bins to remove the fitting of the data is monitored using the standard deviation.

We progressively remove an increasing set of points either side of the position of the

resonance centre, and find that the fitting is good and the standard deviation steady up

until the removal of about 14 data bins. After this point the fitting diverges from the

data distribution, and the standard deviation begins to rapidly increase (see Figure 4.5).

This is the result of removing in excess of 20% of the data points before completing the

fitting. We therefore remove the region 2.0 AU to 2.5 AU (a total of 12 histogram bins:

a safe choice below 14 points) before fitting an eighth order polynomial to the histogram

(see Figure 4.6).
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Figure 4.6: (a) The CMOR data semi-major axis histogram, with the fitted 8th order
polynomial fit determined from the data (red line), but with the section 2.0-2.5 AU
removed, as explained in the text. (b) The CMOR data semi-major axis histogram values
(black line), with the error range created by the region two standard deviations either
side of the fitted polynomial curve.

We now analyse the variations between the polynomial fit and the CMOR data

distribution. Figure 4.7(a) shows the variations in units of the standard deviation of the

variations. The histogram shown in Figure 4.7(b) demonstrates the approximate Gaussian

nature of the variations. We observe five peaks at or above 1.95 standard deviations: in a
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Figure 4.7: (a) The variations determined by subtraction of the CMOR data histogram
bin numbers from the polynomial fitting to the reduced dataset. (b) A histogram of these
variations, demonstrating an approximately Gaussian form.

statistically random distribution we expect ∼ 4, as we expect 5% of fluctuations to exceed

1.95 standard deviations. Similarly, there are 20 peaks above one standard deviation,

and a statistically random distribution is expected to have ∼ 24 (32%). While these

numbers do not match exactly, they are within acceptable fluctuation ranges given the

small number examined. This suggests the fluctuations in the CMOR data distribution

have random statistical origin. In particular, there is only one sample variation greater

than two standard deviations in the region 2.0 AU to 2.5 AU (the region in which we

expect resonance indications to be present). However, this feature is below the fitted

curve (a variation of −2.64) and therefore is not evidence of a resonant peak. Moreover,

there are fluctuations of this size in regions known not to contain a resonant swarm. These

reasons allows us to disregard this feature as unrelated to our present problem. However,

the resolution of the problem does benefit from an alternative approach: this is provided

by the Monte Carlo method in the next section.

4.7.3 Monte Carlo Random Testing

We now describe an independent test for whether the fluctuations visible in the CMOR

data distribution are consistent with the expected size of random variations. Here we

determine whether a random selection of particles from the test distribution (an eighth

order polynomial) can form, by chance, features of the same level of significance as

observed in the Taurid meteor data. This would suggest no evidence for a resonant

feature in the current data. To perform this analysis requires Monte Carlo simulation.

A simple Monte Carlo method is used to select a random sample of semi-major

axis values from a cumulative distribution created from a model distribution, and this
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distribution is then compared with the Taurid data. The method consists of the following

steps:
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Figure 4.8: Four examples of random selections of 7649 particles from an 8th order
polynomial distribution (shown as the overlying bold curve on each histogram). Note
their similarly in appearance to Figure 4.2

1. Selection of a comparison function: An eighth order polynomial fit was deter-

mined. The aim is to determine whether a random sample from this distribution

gives the same level of fluctuations observed in the Taurids.

2. Construction of a cumulative distribution from the comparison function:

Sufficiently small steps were taken along the comparison function, and the cumu-

lative sum of all previous points was computed. Normalisation was not necessary.

As this discrete function will act in the place of a difficult to compute continuous

function, small steps of 1 × 10−4 AU are taken for 1-4 AU (after which very low

rates of Taurids are observed) in order to produce a smooth cumulative probability

distribution function.
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3. Random selection of values in the cumulative distribution: A random num-

ber was chosen (up to the maximum of the cumulative distribution), and the value

in the discrete cumulative distribution nearest to this was selected. The original

semi-major axis distribution (from which the cumulative function was produced)

was then used to provide a semi-major axis value, defining the property required

for the test meteor. This process was repeated until a dataset of random meteors

was created that was the same size as the original CMOR Taurid dataset (of 7649

meteoroids).

4. Determining the histogram and statistics of the randomly selected dataset

to compare with those of the real dataset: We analyse the resulting set of

random meteor semi-major axis values using the process given in Section 4.7.2. The

variations (or residuals) between the random semi-major axis histogram distribution

and a mean curve (an eighth order polynomial) were found. These variations would

be close to zero in a very large dataset of semi-major axis values, as there would

be little or no statistical fluctuations. Thus, in this case the size of the variations

determines the size of fluctuations from the mean curve that can be expected from

statistics alone. If the residual fluctuations in the real data are of the same size as

or lower than these variations, then we can conclude that the fluctuations in the

real data are statistically insignificant.

5. Repetition of the process a large number of times: This process was repeated

a large number of times in order to obtain the average statistical fluctuations ex-

pected for a dataset of this size.

Figure 4.8 shows four example distributions created by this process. 600 such

distributions of 7649 random meteor semi-major axis values are created. In order to

compare the statistical fluctuations of the observed Taurid distribution and the random

distributions from the Monte Carlo process, we count the number of variations in each

dataset that exceed 2, 3 and 4 standard deviations. For the observational CMOR data,

12 features are 2 standard deviations above the mean of the eighth order polynomial fit, 3

exceed 3 standard deviations, and 2 exceed 4 standard deviations. For the artificial data,

the average numbers of features (over the 600 datasets) exceeding 2, 3 and 4 standard

deviations respectively are 12.12, 3.92 and 1.13. These can be seen to have converged

appropriately after 600 datasets (Figure 4.9).

A second simple test using these random datasets involves the simple maximum and

minimum of the random datasets at each point. We produce 500 random distributions

and determine the maximum and minimum bin height at each semi-major axis. These

we plot in Figure 4.10, along with a line plot of the number of CMOR meteors in each
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Figure 4.9: Convergence of the average number of features exceeding 2, 3, and 4 standard
deviations respectively. As the number of runs increases, the average number of features
within all preceding runs converges to ∼ 12.12, ∼ 3.92 and ∼ 1.13.

semi-major axis bin. It can be seen that the CMOR data distribution falls within the

maximum and minimum bounds produced by the random distributions except for the

sharp section with positive gradient (a < 1.5 AU). In this region the errors are a result

of the poor fitting of the polynomial distribution. These errors are tolerated as this is

not the region in which resonant signatures are expected. We therefore conclude that the

CMOR data fluctuations can be produced by random distribution for at least the region

a > 1.5 AU.

4.8 Yearly Variations

Traditionally, the Taurid resonant swarm is investigated by comparison of data over

several years. It is possible to compute a measure of the distance of the swarm from

the Earth. This is given by ∆M , which is defined as the displacement in mean anomaly

of the resonant centre from the point at which the Earth and swarm orbits cross in space
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Figure 4.10: (a) The maximum and minimum bin values (thin black lines) at each point
here form a band inside which the majority of the CMOR data semi-major axis histogram
distribution falls. (b) The dotted line shows the differences between the maximum curve
and the CMOR data; the solid line represents the differences between the CMOR data and
the minimum curve. These differences are calculated such that positive values indicate
that the data distribution is within the maximum and minimum limits. We can see that
only on the sharp upward section (semi-major axis less than 1.5 AU) does the CMOR
data exceed the maximum or minimum boundaries. In particular, there are no deviations
outside these limits in the resonance region (2.0 to 2.5 AU).

and time. In years in which ∆M is small, significant increases in Taurid meteors numbers

are expected due to the resonant swarm. Asher and Clube (1993) produce a list of such

‘swarm encounter’ years, defined as year for which |∆M | < 40◦ on November 23 (the

expected swarm encounter date). In the period of the CMOR observations available, only

2005 year is a ‘swarm encounter’ year. In this year |∆M | < 11◦, which confirms that this

is expected to be a good year for observations of this swarm: it is the closest November

swarm encounter for 17 years.

4.8.1 Yearly Data

In the above sections a search for a resonant feature in the semi-major axis distribution

in the complete CMOR Taurid dataset is presented. We here repeat this analysis to

determine whether a resonant feature is visible in the 2005 swarm encounter year.

The statistical analysis of Section 4.7.2 is repeated for the years 2002 to 2007, to

determine whether there is any significant difference in the semi-major axis distribution

of 2005 relative to non-swarm years. However, in contrast to the method given in this

section, only five points either side of the resonant centre location are removed before a

mean fit curve is produced. This is because the 2005 data produces unstable fits for six

or more points removed each side (see Section 4.7.2 for the test used to determine this).
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Figure 4.11: (a) Histograms and mean curve fittings for 2004, 2005 and 2006 CMOR
Taurid data. (b) The Histogram bin values (solid line) on a shaded area that described
the region 2 standard deviations away from the mean curve fittings (an eighth order
polynomial). For all three years the data fits mostly within this region, and thus is
largely consistent with random.

This is a consequence of the reduced size of the dataset.

The histograms and the resulting mean curves for 2004, 2005 and 2006 are displayed

in Figure 4.11(a). Figure 4.11(b) demonstrates that the data variations fit within a

region 2 standard deviations either side of the mean curve for all except a few randomly

located histogram bins. Figure 4.12 shows the variations of the data from the mean curve

more explicitly. Table 4.3 gives the number of features that are more than 1, 2 and 3

standard deviations above the mean curves for the years 2002 to 2007. We now make two

observations:

1. The size of the data variations are nearly, but not exactly, consistent with the size

expected for random statistical fluctuations. The histograms in Figure 4.12(b) have

a roughly Gaussian form. For this number of histogram bins, the numbers of features

expected to be more than 1, 2 and 3 standard deviations are ∼ 24, ∼ 4 and ∼ 1

respectively. These numbers of features do not agree exactly with those given for

2005 is Table 4.3. However, the differences are not sufficient to conclude that there

are significant differences between the variations observed and Gaussian random

variations.

2. The data variations, as quantified in Table 4.3, are consistent between each year.

There is no significant difference between the variations for 2005 and those for other
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Year # 1 std # 2 std) # 3 std
2002 18 6 1
2003 18 6 1
2004 15 6 2
2005 17 7 1
2006 17 6 1
2007 19 6 2

Approx. Expected Number 24 4 0 or 1

Table 4.3: The number of features in excess of 1, 2 and 3 standard deviations for CMOR
Taurid data for 2002-2006. Here ‘# 1 std’ denotes the number of features that are more
than 1 standard deviation away from the mean curve for that year. The final row gives
the expected (comparison) numbers for the number of histogram bins used here.

(non-swarm encounter) years. Thus, there is no evidence of additional features due

to the presence of the resonant swarm in 2005.

Analysis therefore suggests that there is no evidence for a resonant swarm in CMOR-

detected Taurids either in the combined datasets, or in the 2005 dataset. This may

indicate that the measurement uncertainties are too large for such small scale structure

to be visible; or that the mass distribution of the swarm is such that there are few radar-

sized particles in the swarm. The former is tested in the following sections, while the

latter is investigated in Chapter 6.
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Figure 4.12: Variations of 2004, 2005 and 2006 CMOR Taurids from a mean curve, in
units of standard deviations.(a) Variations for each year (b) Histograms of the variations
(which we expect to be Gaussian).
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4.9 Higher Quality Taurid Orbit

Year # 1 std # 2 std) # 3 std
All Years 19 4 1
Approx. Expected Number All Data 24 4 0 or 1

2005 8 1 0
Approx. Expected Number 2005 Data 10 1 or 2 0

Table 4.4: The number of features in excess of 1, 2 and 3 standard deviations for CMOR
Taurid data for a restricted dataset containing higher-quality orbits, defined by echoes
for which the time-lag and Fresnel/pre-t0 velocities agree to 3%. Results are shown for
the whole dataset, and for echoes from the year 2005 only. Here ‘# 1 std’ denotes the
number of features that are more than 1 standard deviation away from the mean curve
for that year. Alternate rows gives the expected (comparison) numbers for the number of
histogram bins used for each dataset.

Additionally, it is possible to extract higher quality orbits from the total CMOR

Taurid dataset. These are the result of higher-precision velocity measurements made

possible by the presence of Fresnel oscillations in the amplitude and phase of the meteor

echo (see Section 3.2.2). Such echoes will then have about ≤ 5% speed errors instead of

about ≤ 10% (Jones et al., 2005), and should therefore provide more reliable semi-major

axis values. If the Fresnel oscillation pattern is sufficiently distinct (generally for meteors

with a high signal-to-noise ratio), then both a time-lag speed and a hybrid Fresnel/pre-

t0 speed are achievable (see Hocking (2000) for further detail). Following Wiegert and

Brown (2005), we form a new dataset containing only echoes for which a Fresnel/pre-t0

speed is given, and for which the two speeds agree within 3%. The resulting dataset has

1025 meteors, 200 of which are from the year 2005. However, neither the new dataset

nor the meteors from 2005 in this dataset display evidence of the 7:2 resonant swarm:

using the method given in Section 4.7.2 we find that the variations of both datasets do

not significantly exceed those expected as a result of random fluctuations (see Table 4.4).

As mentioned above, these meteors have in-atmosphere speed uncertainties of ap-

proximately ≤ 5%, as opposed to about ≤ 10% for the time-lag speed method. Heliocen-

tric velocity (VH) uncertainties are related to semi-major axis (a) uncertainties by:

(
∆a

a

)
=

V 2
H

1 − V 2
H

2

(
∆VH

VH

)
. (4-1)

The derivation of this equation, given by Galligan (2000), uses units such that VE = 1,

GM� = 1, RE = 1 and assuming rh = 1 AU. Here VE and RE are the velocity in space

and the radius of the Earth, respectively; G is the gravitational constant and M� is the

Solar mass.
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The uncertainty in heliocentric velocity ∆VH will include errors from several sources,

most notably from errors in atmospheric deceleration calculations. Thus, we can deduce

that reducing the error in the in-atmosphere speed by a factor of two will reduce the

semi-major axis uncertainties by not more than a factor of two. We will see in Section

4.10 that such a reduction is not expected to allow us to resolve a resonant feature of the

size expected.

4.10 Numerical Study of Observational Uncertainties

It is important to gain an understanding of what issues observational uncertainties may

cause in the identification of any resonant peak. In particular, such uncertainties will

broaden the Taurid semi-major axis distribution and individual resonant features. It

is useful, therefore, to determine whether such features are detectable after they are

broadened by the meteor radar orbital uncertainties, or what level of reduction in these

uncertainties is required for such features to become significant. The uncertainties used

are semi-major axis uncertainties. The results are applicable to velocity uncertainties

also, as reducing the velocity uncertainties by a factor x will reduce the semi-major axis

uncertainties by the same factor x. This can be determined using equation 4-1 in Section

4.9.

This involves a ‘convolution’ (or, here, an addition) of:

1. The overall distribution of non-resonant Taurids: This is modelled here by

the observed Taurid distribution from the CMOR dataset. This may contain a small

component of resonant swarm meteors, but this would make little difference to the

results obtained, as we have shown that the level of fluctuations from a random

curve are consistent with the expected level of statistical fluctuations.

2. A modelled resonant peak: This is modelled by randomly selecting a number

of meteors NR from a Gaussian curve with the standard deviation equal to one

quarter of the resonance width (determined to be ∼ 0.0470 in Section 5.5.2). This

is because the full resonant width is equated with the 2σ 95% confidence section

of the Gaussian distribution: we define the resonant width as spaning 4σ across

the Gaussian distribution. The number of meteors NR injected into the swarm

determines the height of the peak. This is varied as no information is available on

the height of the resonant features in semi-major axis distributions. We will usually

express this as a percentage of the total number of particles in the combined dataset.

3. The (assumed) Gaussian profiles for the uncertainty on each individual

observed particle: Each data value from (1) and (2) above is converted from a
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point into a Gaussian profile in order to simulate the effect of uncertainties. The

given semi-major axis uncertainties in the CMOR datasets are taken as the standard

deviations σ for each Gaussian profile. Each Gaussian is scaled to have an area of

1 under the curve.

We conduct two separate tests using this model. The first assumes zero uncertainties

and thus only combines distributions (1) and (2) above. This ‘perfect’ data case can

demonstrate the absolute lower size limit of a resonant feature that can be detected in a

meteor radar dataset (of the size of the CMOR Taurid dataset used here). This is given

in Section 4.10.2. The second test includes uncertainty broadening and thus all three

distributions above are used. This test is given in Section 4.10.3.

The addition of uncertainty broadening can also be thought of as two distributions -

the Taurid distribution and a model resonant feature - each composed of many individual

Gaussians instead of many individual points (delta functions). This convolution is dealt

with numerically by creating a histogram Gaussian to represent each point. Each Gaussian

histogram meteor is defined from −4σ to +4σ, with steps of 0.04 AU (approximately the

expected width of the resonance feature): thus, each meteor will cover a different number

of bins depending on its corresponding uncertainty. The standard Gaussian formula is

used:

G =
1

σ
√

2π
exp−(

z2

2σ2
)

where z defines the size of the region covered by the Gaussian meteor in semi-major axis

(−4σ to +4σ). By adding these Gaussian-broadened meteors we achieve a histogram of the

semi-major axis distribution similar to that seen in Figure 4.6, but in which each meteor is

fractionally split over several bins. The resulting distribution is scaled in situations where

the peak of the convolved distribution exceeds the peak of the original CMOR distribution.

This is to ensure that the statistics remain comparable (to allow the standard deviation

for the original dataset variations to be used: see Section 4.10.1).

Figure 4.13 shows a representative model resonant feature peak of 200 meteoroids

(2.5%) randomly selected from the model Gaussian, and the complete distribution achieved

by the addition of the fictitious resonant feature meteors to the Taurid dataset.

We are now able to apply uncertainties to this combined dataset (Figure 4.13(b))

and determine whether the peak is statistically significant on application of uncertainty

broadening. The percentage or number of meteors in the swarm, which is unknown,

can then be varied. The applied uncertainties are reduced by applying a fractional

multiplication factor to the orbital uncertainties in the CMOR dataset.
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Figure 4.13: Model resonant features with NR = 200 meteoroids in the resonance (that is,
2.4% of the total dataset are in the model resonant feature). We first show the selected
peak alone, and then its addition into the Taurid distribution.

4.10.1 A Statistical Test

A statistical test is required to evaluate whether the resonant feature is statistically

significant, both in the ‘perfect’ data case and in the uncertainty-broadened case. This is,

for consistency, the first statistical test carried out on the CMOR data distribution (see

Section 4.7.2). In summary, this involves:

1. Removal of the resonant area of the distribution (approximately 2.0 AU to 2.5 AU)

2. Fitting of a test distribution to the remaining sections of the distribution

3. Analysis of the variations between the distribution of interest and the fitted distri-

bution

Previously this was completed by comparing the variations (of (3) in the statistical test

summary) to the standard deviation of the variations themselves. Here the comparison

value is the standard deviation of the variations of the original data distribution. This is

because the uncertainty broadening will remove the small statistical fluctuations. Thus

the statistical fluctuation information is contained only in the standard deviation of the

variations of the original CMOR data.

By comparison with the statistical fluctuations in the CMOR data distribution, we

conclude that a peak will be considered significant if two conditions are fulfilled:
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1. The peak is above three standard deviations

2. Two adjacent points are above two standard deviations

The second condition is required because it is expected that these peaks will cover more

than one histogram bin, and will not resemble the sharp statistical fluctuation features

seen in Figure 4.7. We expect the feature to be a peak, not a trough, such that the

variations should be positive (if we are subtracting the distribution of interest from the

fitted distribution).

In addition, the model resonant peak involves a random element in the selection

of particles from a Gaussian. This means that the decision as to whether a particular

resonant feature peak size is significant may vary each time the process is run. Thus, we

require a positive detection of the peak in 20 successive tests in order to conclude that

the peak is statistically significant for that uncertainty level and peak size.
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Figure 4.14: The variation in the number of trials for which a significant peak is found,
for a variety of fictitious resonant peak sizes. Above 112 meteoroids in the peak we can
see that 99% of trials result in a significant peak.

4.10.2 Perfect Data

Here we apply a statistical test to ‘perfect’ datasets with a range of sizes for the test

resonant peak. Here ‘perfect data’ is defined as data with no uncertainties or negligible

uncertainties in the measured semi-major axis values: it is a consideration of the case

in which statistical variations are larger than observational uncertainties. Therefore, no

uncertainty broadening is included at this stage: we only add a resonant peak of a specific
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Figure 4.15: The lowest resonant peak which is statistically significant for ‘perfect’ data
(that is, data with no uncertainties) for 99% of trials is one with 112 meteoroids (1.4%
of a dataset of this size). The combined semi-major axis distribution containing the
CMOR Taurid data and the ficticious resonant peak is shown in (a), along with the
8th order polynomial fit to the dataset (without the resonant region 2.0 to 2.5 AU).(b)
shows the variations between the data histogram (with resonant peak) and polynomial
fit distributions, scaled to the standard deviation of the variations of the original CMOR
dataset.

size, determined by the number of particles in the peak, and determine whether the

resulting peak is statistically significant, and thus observable. The size of this resonant

peak is also called the ‘resonant feature strength’.

This test is first run 20 times and the first peak size that is significant in all 20 tests

is determined. This is a peak of 108 meteoroids: 1.39% of the total number of particles in

the distribution (for a dataset of this size). This provides a result that can be compared

with the uncertainty broadening case (Section 4.10.3). A higher accuracy test is then

run, where this process is run 1000 times and the point at which 99% of trials result in a

significant peak is determined (see Figure 4.14). It is found that an added resonant feature

greater than or equal to 1.44% (112 meteoroids) fulfills this criterion. Additionally, any

peak with size greater than 1.53% (119 meteoroids) produces significant features 100% of

the time. An uncertainty of 4 meteoroids is determined from the difference between the

limiting values determined in 20 and 1000 consecutive tests. Thus, ∼ 1.44± 0.05% is the

lower limit on the proportion of the stream that must be resonant in order for detection

to be made by radar for this size of dataset. A distribution with a peak of this limiting

size, and the variations from the polynomial fit are shown in Figure 4.15.
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4.10.3 Data with Varying Uncertainty Levels

Here we determine the approximate uncertainties (relative to those of CMOR) required

of a meteor radar system for it to be capable of detecting a Taurid resonant swarm. This

requires the addition of uncertainty broadening, as outlined in Section 4.10. To accomplish

this we apply a range of fractional multiplicative factors to the uncertainty Gaussians

based on CMOR uncertainties, and determine which result in statistically significant

detections of the modelled resonant peak, for a range of sizes for this peak.
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Figure 4.16: The effect of high resonant feature particle numbers on the convolved dataset.
Here we see two examples of the behaviour of the numerical convolution at an uncertainty
reduction factor of 2: (a) at a resonant feature strength of 4500 and (b) at a resonant
feature strength of 6000. Therefore in (a) the resonant feature comprises 37% of the total
dataset, and in (b) it comprises 44%. We can see that for the first example , elements
of the underlying (dotted) original distribution remain, but that in (a) the distribution
is dominated by the resonant feature. However, in neither case would a statistical test
be able to determine that there was evidence for a resonant feature unless the underlying
Taurid distirbution is known.

We explore the range of integer-value ‘uncertainty reduction factors’ from three to

fourteen. These factors represent values by which the uncertainties are divided: that is,

an ‘uncertainty reduction factor’ of three represents a reduction in the uncertainties to 1
3

of their original values. An uncertainty reduction factor of 2 requires an unrealistically

large number of particles to be in the resonant swarm in order for a statistically significant

peak to be observed. We therefore do not include uncertainty reduction factors less than

3. Furthermore, the method is less robust after the modelled resonant swarm comprises

∼ 40% to 50% of the total dataset, as after this point the convolution starts to move the

peak of the distribution away from the Sun (see Figure 4.16 ). However, the percentage of

the total number of Taurid particles that are in the 7:2 Taurid resonant swarm is unlikely

to be higher than 40% (see below). If this method were to be applied in a situation
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where a swarm may comprise more that 50% of the total dataset, use of this numerical

convolution would require a different model for the overall distribution of non-resonant

Taurids.

Also, this restriction implies that an uncertainty reduction factor of 1 (that is, no

change to the current uncertainties) will not result in a significant detection of the resonant

swarm, unless more than 50% of observed Taurids are resonant, which is unlikely. Thus,

the broadening as a result of the uncertainties of the CMOR dataset used here will not

allow observation of the Taurid resonant swarm.

For uncertainty reduction factor values greater than fourteen the method reaches its

limitation as the uncertainties begin to become smaller than the histogram bin size used.

This only affects the smallest semi-major axis values at first, but will affect the whole

distribution for very high uncertainty reduction factor values. An improved algorithm

would be able to deal with this situation. However, given that by a reduction factor

of 14 the resonant feature values required for significance are almost equivalent to those

required in the ‘perfect’ case, this is not pursued here.
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Figure 4.17: The variation in the number of trials for which a significant peak is found,
for a variety of fictitious resonant peak sizes, and at an uncertainty reduction factor of
9. Above 190 meteoroids in the peak we can see that 100% of the 20 consecutive trials
resulted in a significant peak.

For each uncertainty reduction factor we determine the minimum modelled resonant

peak size required. The method for this is given in Section 4.10.1. Uncertainties are

given by the difference in resonant peak size between a size for which 1
20

tests provide a

statistically significant result, and one that allows 20
20

to pass. This is usually a maximum

of ∼ 3 meteoroids, though in some cases it is 1 meteoroid or less. As an example, we use
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Figure 4.18: The lowest resonant peak which is statistically significant in 100% of 20
trials for uncertainty broadened data with an ‘uncertainty reduction factor’ of 9. This is
a feature with 190 meteoroids (2.4% of a dataset of this size), with an uncertainty ±3
meteoroids. The combined semi-major axis distribution containing the CMOR Taurid
data and the ficticious resonant peak, both uncertainty broadened, is shown in (a), along
with the 8th order polynomial fit to the dataset (without the resonant region 2.0 to
2.5 AU).(b) shows the variations between the data histogram (with resonant peak) and
polynomial fit distributions, scaled to the standard deviation of the variations of the
original CMOR dataset.

the size of the resonant feature required at an uncertainty reduction factor of 9. Figure

4.17 shows the percentage of tests that produced a significant result for resonant feature

sizes of 2.37% to 2.42% (equivalent to 186 to 190 particles for an initial dataset of 7649

meteoroids). The minimum significant resonant feature size for which all 20 tests produce

a significant result is 2.42% (190 meteoroids). The uncertainty is 1 meteoroid (or 0.013%

of this total dataset), as only one ‘resonant feature size’ below 190 meteoroids can produce

a significant result (see Figure 4.17). The resulting broadened distribution and variations

from the mean curve are given in Figure 4.18

Figure 4.19 shows the resonant feature strengths that are observable for a given

reduction in the radar uncertainties. This figure can be used to either:

• Determine the required minimum uncertainty reduction factor for a CMOR type

radar for a given resonant feature size.

• Determine the required minimum resonant feature size for a given level of uncer-

tainty reduction.

The values given in Figure 4.19 are only valid for the size of CMOR dataset used here. We

note that an uncertainty reduction factor of 14 will allow a swarm of a similar size to be

detected as for the perfect data (120 meteoroids for a reduction in uncertainties of 14; and



74 Chapter 4. A Search for Resonance Effects in Radar Meteor Orbit Data

2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

3000

Uncertainty Reduction Factor

R
es

on
an

t F
ea

tu
re

 S
tr

en
gt

h 
R

eq
ui

re
d

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

5

10

15

20

25

30

Uncertainty Reduction Fraction

R
es

on
an

t F
ea

tu
re

 S
tr

en
gt

h 
R

eq
ui

re
d

(a
s 

pe
rc

en
ta

ge
 o

f t
ot

al
 n

um
be

r 
of

 d
at

ap
oi

nt
s)

(a) (b)

Figure 4.19: The resonant feature strength detectable for each uncertainty reduction
fraction. We can see that, for example, a reduction in uncertainty by a factor of about 9
is required to observe a resonant feature with 200 particles (2.6% of the dataset). Here
the ’uncertainty reduction fraction’ is the reciprocal of the ’uncertainty reduction factor’.
The former is the fraction by which CMOR uncertainties must be multiplied in order to
detect a resonant feature of that size.

108 for a ‘perfect’ data). This implies that a limit is reached by the radar uncertainties:

after a reduction in uncertainties of 12 to 14 statistical variations will largely govern the

visibility of resonant swarms, and further improvement in the radar will not assist greatly

in detection. This study, and the ‘perfect’ data study, thus imply that for radar datasets of

this size, swarms which comprise less than ∼ 1.5% of the meteoroid stream are unlikely to

be detectable using this methodology, regardless of the uncertainties of the radar system.

Therefore, for a radar dataset of this size, and with the requirement that resonant

meteoroids comprise more than 2% of the radar Taurid dataset, a radar with improvement

in uncertainties given by a reduction factor of 12 or higher (equivalent to 8% of the

current uncertainties) should be able to detect a resonant swarm in Taurid meteoroids

(assuming that the radar system has approximately the same mass sensitivity as CMOR).

A resonant peak that is 2.2% of the number of Taurids in the dataset should be detectable

by reducing CMOR uncertainties to 10% of their current values (reduction factor of 10).

Such an enhancement is considered feasible with the current techniques of radar systems

and signal processing.

The uncertainty reduction levels considered above require knowledge of the approx-

imate proportion of Taurids that are resonant. This is difficult to determine, and is

dependent on the location of the swarm with respect to the Earth, the number of particles

in the swarm and the size distribution of these particles. Visual observations are used

to obtain estimates of the size of the resonant swarm: since no radar observations of the
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Taurid swarm exist, we must use such visual observations. Results from visual meteoroid

studies will only be applicable to radar data if the number of radar-sized particles in the

swarm is similar to the number of visual particles. We use the activity profile (of ZHR as a

function of solar longitude) for visual Taurids of 2005 given in Dubietis and Arlt (2007) to

estimate the maximum proportion of 2005 Taurids that are resonant. ZHR is an indicator

of particle numbers: an actual mass flux is dependent on the population index. However,

Dubietis and Arlt (2007) find that the population index of visual Taurids is roughly

constant, fluctuating around a population index of 2.4. Simple area calculations are used

to determine the approximate number of meteoroids in the 2005 profile, compared with

the number of meteoroids in a typical annual profile averaged over 1985-2004. We find

that the enhanced ‘swarm’ region of the profile (the region that differs markedly from

the typical annual profile) contains ∼ 30% of the meteoroids contained in the total 2005

profile. For 1988 and 1998 we obtain 23% and 41% respectively. These values are only

accurate to an estimated ∼ 20%. We note that the three years tested here represent

optimal years for swarm detection, with the mean longitude of the resonant centre of the

swarm being within 15◦ of the mean longitude of the Earth; but also that the proportion of

swarm meteoroids and maximal ZHR values (calculated by Dubietis and Arlt (2007)) are

not well correlated with the proximity of the swarm to the Earth. This is still an issue after

consideration of the presence of a full moon in some years - particularly in 1995 and 1998.

This could reflect other variations in observational geometry of the swarm. Additionally,

the proportion of swarm particles detected by visual methods may be larger than that

detected by radar methods, because it is expected that larger particles are more easily

trapped in the resonance if ejected from a resonant or near-resonant comet (see Chapter

6). For these reasons we are not able to be precise on the expected proportion of swarm

particles in radar datasets. In general, however, we expect that the proportion of particles

will not exceed 20-30% of the total dataset for a swarm year. This is equivalent to ∼ 5–8%

of the CMOR dataset spanning 2002-2007.

4.10.4 Variation with the Dataset Size

Here we determine how the results of Section 4.10.3 vary for datasets of different sizes.

A larger dataset will contain relatively smaller random statistical variations, and thus a

large radar dataset with a given measurement uncertainty level will detect, to a given

significance, a smaller resonant feature than a smaller dataset. This serves two purposes

here:

• To determine the effect if an improved radar is operated for a shorter or longer time

than the 2002-2007 period producing the CMOR dataset used here.
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• To determine the required number of particles in any one year required to produce

a statistically significant result for a given reduction in uncertainties.
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Figure 4.20: The variation in the size of the resonant peak (as a percentage of the
size of the total dataset) required for a statistically significant detection at each level of
uncertainty reduction, relative to the CMOR uncertainties of the current dataset. Each
line shows a different number of particles in the source dataset. The lower three lines
(15298, 7649 and 3825 meteors) represent datasets of double, equal and half the size of
the CMOR dataset used in this chapter. The upper line (1470 meteors) represents the
number of particles detected in the 2005 swarm year by CMOR: that is, this provides the
approximate percentages of meteoroids that must be in the observable radar Taurid stream
in order for detection to be made based only on one year of data. This is important given
that the swarm’s location relative to the Earth is only optimal for observation every 3 to
5 years. The uncertainty reduction fractions are the inverse of the uncertainty reduction
factors.

These aims require modifications to be made to the numerical method given in

Section 4.10. To obtain a representative dataset that has the same distribution shape as

the CMOR Taurid semi-major axis distribution, but is composed of a different number

of particles, the Monte-Carlo method given in Section 4.7.3 is employed. This allows the

random selection of a given number of particles from an eighth order polynomial fit to the

CMOR Taurid semi-major axis distribution. A standard deviation of the variations of the

random dataset from this fitted curve is determined in order to perform the statistical test

given in Section 4.10.1. The uncertainty values for each semi-major axis are determined
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using a quadratic fitting to the CMOR data uncertainties, which provides the uncertainty

as a function of semi-major axis. A random component is added to each uncertainty

to model the scatter in uncertainty values, again using a fitting to the CMOR data.

The remainder of the methodology is identical to that used in Section 4.10. Due to the

fact that the distribution is now randomly produced, the uncertainty levels will be much

higher than previously (where only the model resonant feature was produced randomly).

However, this method is more robust as it accounts for the variations in the statistical

fluctuations that can occur (whereas the results of Section 4.10.3 depend on the statistical

fluctuations of an improved dataset being the same as those in the current CMOR Taurid

dataset).

We choose four sizes of test datasets:

• the size of the CMOR dataset used here (7469 meteors)

• half size of the CMOR dataset (3825 meteors)

• double size of the CMOR dataset (15298 meteors)

• the size of the CMOR dataset for 2005 (1470)

The final dataset size is important as it illustrates the approximate uncertainty

reduction factor or proportion of resonant meteors required to detect the swarm in one year

of data, which is necessary because the swarm is only in a good location for observation

relative to the Earth once every 3 to 5 years (see Section 4.8).

For each dataset, and for each integer-value uncertainty reduction factor of 3 to 10,

the first resonant feature strength that produces 20 consecutive significant tests is found

(see Figure 4.20). Figure 4.20 identifies the approximate resonant feature size that can be

observed for a given uncertainty in meteor radar semi-major axis data. It can also provide

the approximate uncertainty reduction required in order to detect a feature of a given size.

As expected, a smaller dataset requires a larger resonant feature for significant detection

to be made. However, the differences in the required resonant feature strengths are not

as large as the size of the dataset. For example, doubling the size of the dataset from

7649 to 15298 meteors only decreases the size of the resonant feature required by 15-25%.

Similarly, a dataset of half the size (3825 meteors) can produce significant detection of a

resonant feature 25-40% smaller.

As mentioned above, there will be significant fluctuations in the results due to the

random element of the method. We evaluate this error by testing a region around a

number of the points on Figure 4.20. For each dataset size, for uncertainty reduction

factors of 4 and 8, we test between 50 and 100 resonant feature strength values (in steps

of 5 or 10) either side of those resonant strength values given in Figure 4.20. Again, 20
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Figure 4.21: The number of tests resulting in a significant resonant feature for each
resonant feature strength at datasets of sizes 1470, 3825, 7649 and 15298, for uncertainty
reduction factors 4 and 8. Arrows on each graph indicate the values of resonant feature
strength plotted on Figure 4.20.
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Figure 4.22: Figure 4.20 with the addition of points (in red) demonstrating the resonant
feature strengths required for a 95% probability of a significant detection of the resonant
swarm for a given uncertainty reduction factor and dataset size. Again, each line shows
a different number of particles in the source dataset: 15298, 7649 and 3825 and 1470
meteors.

tests are run for each set of values. In Figure 4.21 the number of tests out of 20 that

produce a significant result for each resonant feature strength is plotted. The resonant

feature strength values used to produce Figure 4.20 are indicated by red arrows on each

graph. It is evident that the values given in Figure 4.20 refer to the resonant features

strengths that will in all but two cases provide a greater than 80% chance of detecting a

significant feature. The two exceptions are for datasets of size 15298 and 1470 meteors,

with uncertainty reduction factor 8: in these cases there is a greater than 70% of detecting

a significant feature. In both cases an increase in the resonant feature size of less than

5% would produce a greater than 80% chance of sucess.

We are interested also in what resonant feature strength (for each uncertainty re-

duction factor) would allow a significant detection of the resonant feature in 95% (19

out of 20) of cases. It is at this level of confidence that we would expect a radar with

such an orbital measurement uncertainty (or uncertainty reduction) to be able to detect

a swarm of that resonant feature size. For an uncertainty reduction factor of 4, values

∼ 10% greater than those in Figure 4.20 are required to achieve a significant resonant
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peak in 95% of cases. For an uncertainty reduction factor of 8, values 11 - 17% greater are

required. A revised version of Figure 4.20 is given in Figure 4.22. This demonstrates with

red points the 10-17% improvement in the results required to provide a 95% probability

of detecting the resonant swarm in the given values.

If one year of data from a swarm close-approach year is available, then the expected

proportion of resonant swarm particles will be higher than in a general dataset: it may

be as high as 20-30% for a strong swarm encounter year (see Section 4.10.3). If this is the

case, it is possible that a radar with an improvement of measurement uncertainties of only

a factor of 4-5 could detect this resonant swarm (this can be seen from Figure 4.22). The

required improvement in uncertainties will depend on whether there are approximately

the same number of radar-sized swarm particles as visual-sized particles (see Chapter 6).

However, as long as the resonant swarm results in a 5–6% increase in particles, a radar

with uncertainties one tenth of those of the CMOR dataset used here should be capable

of detecting the swarm.

4.11 Summary

In summary, the detection of a resonance swarm with a meteor orbit radar requires

improvement of the orbital uncertainties. In this work we find no evidence for the

7:2 resonance swarm, which should theoretically be amongst the most easily observed

resonance effects in radar data (see Section 4.4). In addition, the uncertainties of the

CMOR dataset used here are too large to allow observation of the resonant swarm. The

level of improvement required is highly dependent on the size of the resonant swarm, and

the resulting increase in the number of Taurid particles observed in a swarm year. If the

resonant swarm comprises 20-30% of resonant particles in a swarm year, then potentially

one year of observations with a meteor orbit radar with orbital uncertainties a factor

of 5 lower than CMOR could detect the swarm; however, if the swarm comprises only

5–6% of the total Taurids, a factor of 10 improvement in the radar uncertainties would be

required. We recall here that these factors of reduction in semi-major axis uncertainties

are equivalent to the required reduction factors for the velocity uncertainties. The size of

swarm that can be observed to plateau after an improvement in orbital uncertainties of a

factor of ∼ 10 (see Figure 4.19). At this point a swarm ∼ 5% of the Taurid dataset would

be observable in about one year of radar data. Therefore, improvements above a factor

of 10 are not likely to greatly improve the chance of observing a resonant swarm.

Such improvements in meteor radar measurement uncertainties, though they present

technical difficulties, may be feasible with current techniques of radar systems and signal

processing. In particular, the addition of more stations with the ability to recover phase



4.11. Summary 81

information would produce independent speed measurements. These would allow calcu-

lation of the deceleration of meteors in the Earth’s atmosphere, and would significantly

improve the velocity uncertainties for detected particles. This approach is the motivation

behind an improved CMOR II radar which will have five remote stations in addition

to the home site (Brown et al., 2010). Higher sampling rates (by an improvement in

the pulse repetition frequency) would also improve orbital uncertainties. The Fresnel

velocity method can provide a factor of ∼ 2 improvement in the velocity uncertainties in

comparison to the time-lag method (see Section 4.9). An additional important method

of determining meteoroid velocities is the Fresnel transform method, developed by Elford

(2001). This method is capable of producing speeds with precision of ∼ 0.1 km−1,

compared with uncertainties of ∼ 3 kms−1 for a 30 kms−1 meteor with the time-lag

method: equivalent to a 10% velocity uncertainty (Baggaley and Grant, 2004). However,

it is limited to use for meteors with high signal-to-noise ratios. It is therefore expected

that improvement of deceleration calculations provides the greatest chance of reaching

the required accuracy.
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Chapter 5

Modelling Resonance Dynamics

We now examine more fully the dynamics of the 7:2 Jovian resonance. Such a background

is required for a number of purposes: to gain knowledge on the resonant width (as it is

utilised in several occasions in Chapter 4); and to determine the likelihood of resonant

trapping of CMOR-sized particles.

This chapter is largely concerned with introducing the dynamical problem and de-

termining the resonant width, or size of the region of influence of the resonance. This is

important here as such knowledge aids in the search for such a resonance in the dataset;

in the confirmation that a particular feature meets resonant feature criterion; and in

determining the upper limits on radar sensitivities and orbital resolution that would enable

detection of the resonance.

5.1 Available Analytic and Semi-Analytic Methods

We discuss here two existing methods for determining the width or strength of a given

resonance. First, the derivation for an approximate libration width expression is outlined

as given in Murray and Dermott (1999): this comprises the purely theoretical standard

libration width approximation, valid at low eccentricities. This approximation can be used

to give an approximate resonant width. The theory also allows the introduction of various

concepts important for understanding resonant dynamics, including the disturbing func-

tion and the resonant argument. Second, there exists a semi-analytic or numerical method

available for determining resonance strength, developed by Tabare Gallardo (Gallardo,

2006b). Both methods have limitations that lead to the decision to turn to a numerical

method for the purposes of this investigation (see Section 5.2).

5.1.1 Defining the Resonant Width

Before attempting to determine its value, it is useful to understand the concept of the

resonant width. Broadly, it describes the influence of the resonance: the variations in

orbital elements (here particularly semi-major axis) that the resonance can produce; or

83



84 Chapter 5. Modelling Resonance Dynamics

the extent (again usually in semi-major axis) over which the resonance exerts a significant

effect. We expect values from these two definitions to match and also expect these values

to agree with the observed widths of physical resonance features, such as the Kirkwood

Gaps in the Asteroid Belt. This also demonstrates the interest in the resonance width

in semi-major axis over the width in other parameters, as it is most closely related to

observable quantities of resonances in the Solar System. In this chapter it will be assumed

that the resonance width refers to a semi-major axis width, unless otherwise stated.

Mathematically, the width can be defined (from the first definition above) as a

maximum libration amplitude or libration width by considering the librational motion

within resonance. Considering a particle at the exact resonance position, the width is

then equal to the maximum change in energy or semi-major axis that can occur and still

leave the particle in resonance (defined by the presence of libration - which is discussed

further in Section 5.3). Note that this defines a half width, and care must be taken to

determine whether a full width (from resonance edge to resonance edge) or half width

(from resonance centre to resonance edge) is given by a particular method.

5.1.2 Resonance Theory and Derivation of an Analytic Approximation to the

Resonant Width

Before expanding on the resonance width, it is valuable to mention herein aspects of

resonance theory that are necessary for this chapter. This will be explained as far as

is required to understand the origin of an analytic approximation to the resonant width

in semi-major axis. This theory is limited to a low order approximation, assuming zero

inclinations and eccentricity, and a negligible mass for the inner body. This renders

this method not directly useful for this meteoroid problem as Taurid meteoroid stream

particles have high eccentricity, with an average of e = 0.83. It is, however, useful as

a comparison method, and can be used to verify the results from the numerical method

used later. The theory outlined here is as given in Murray and Dermott (1999) Chapters

six and eight. Additional analytical details (also from Murray and Dermott (1999)) that

assist in the understanding of the following material are given in Appendix A .

Resonance derives from the argument of the disturbing function. The disturbing

function results from considering a general three-body problem, where the motion of

a third body is determined by the gravitational effects of the other two bodies. The

disturbing function is given by:

R =
µ′

|r′ − r| − µ′ r · r′
r′3

where µ′ = Gm′, and r′ and r are the position vectors of the two secondary bodies relative
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to the central (primary) body (here the Sun). This is derived in Appendix A. The use of

the three body problem here implies that the only bodies of interest are the Sun, Jupiter

and one particle. This is a good approximation given the large mass of Jupiter: in Section

5.7 it is confirmed that exclusion of other planetary bodies does not produce significant

errors.

It is now shown how this disturbing function leads to resonant terms, and how this

theory can be simplified to give an approximation for the resonant width.

5.1.3 Series Expansion of the Disturbing Function

The disturbing function is required for many problems in Solar System dynamics. A non-

integratable expression is encountered, however, which can only be solved by numerical

methods. For many cases, some knowledge of variations in orbital elements is required,

and it is more convenient to express the disturbing function as a series expansion in orbital

elements. This is achieved using Legendre polynomials, and it can be shown that such an

expansion has the form:

R = µ′
∑

S(a, a′, e, e′, I, I ′) cos ϕ

in which µ = Gm, and ϕ has the general form:

ϕ = j1λ
′ + j2λ + j3$

′ + j4$ + j5Ω
′ + j6Ω (5-1)

where ji are integers, λ is the mean longitude, $ is the longitude of perihelion and Ω is the

longitude of the ascending node. Here λ′ denotes the mean longitude of the perturbing

body, and λ the mean longitude of the perturbed body. Also required is the d’Alembert

relation:
6∑

i=1

ji = 0

That is, that the coefficients ji sum to zero. This symmetry also requires an appropriate

choice of angles referred to a fixed direction: the longitudes here fill this criterion.

It can be shown that the ‘strength’ term S that describes the variation with orbital

elements can be approximated, for lowest order terms in eccentricities and inclinations,

as:

S ≈ f(α)

a′ e|j4|e′|j3|s|j6|s′|j5| (5-2)

where f(α) is a function of Laplace coefficients, with α = a/a′. Murray and Dermott

(1999) provide an explanation of the origin of this approximation. This equation can

provide an indication of the importance of each of the terms in equation 5-1, dependent
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on the orbital elements of the bodies involved. For example, in a situation where the

eccentricity of the perturbed body is high, while the eccentricity of the perturbing body

and the inclinations of both bodies are all low, then it can be seen that only the e|j4| term

is important in the strength equation 5-2, and thus the j4ω term will produce the most

significant term in the argument ϕ (from equation 5-1).

The disturbing function is a sum of terms containing many arguments ϕ, only some

of which are of interest here, specifically those that cause long term variations. Those of

particular interest are secular and resonant terms. Secular terms arise when mean longi-

tudes are not present in the argument. As mean longitudes are the only rapidly varying

longitude used, their absence means the argument varies slowly with time. Resonant

terms are different long period terms that arise when a commensurability exists between

mean motions. Considering that the mean longitude λ can be related to the mean motion

n of the orbit by: λ ≈ nt + ε, then j1λ
′ + j2λ ≈ (j1n

′ + j2n)t + constant (where the

angle ε is the mean longitude at epoch defined by λ = nt + ε). If j1n
′ + j2n ≈ 0 (a

commensurability) the argument will only change very slowly with time. Converting n to

semi-major axis a using n = 2π
T

and T 2 = 4π2

µ
a3, this is equivalent to a resonant situation

such that a ≈ (|j2|/|j1|)
2

3 a′. The resonant argument is the argument ϕ such that this

semi-major axis condition holds.

5.1.4 Defining Resonant Motion

Exact resonance is defined as the behaviour seen when a resonant argument has a time

variation equal to zero: ϕ̇ = 0. Using the general form of the argument given by equation

5-1, the time variation is given by:

ϕ̇ = j1(n
′ + ε̇′) + j2(n + ε̇) + j3$̇′ + j4$̇ + j5Ω̇′ + j6Ω̇

If only mean motion contributions are considered (neglecting all angle contributions) this

reduces to:

j1n
′ + j2n ≈ 0.

It is now possible to define j1 = p + q and j2 = −p, with p and q both positive

integers, and q is the order of the resonance. Using relations between T , n and semi-

major axis a it can be seen that:

an = (
p

p + q
)2/3a′

defines the resonant position of the inner body. For example, for the 3:1 resonance with

Jupiter (a′ ≈ 5.2AU) in order to be at the resonance location, the inner body must have



5.1. Available Analytic and Semi-Analytic Methods 87

a semi-major axis of: an = (1
3
)2/3 × 5.2 = 2.50 AU.

This is only an approximate definition of the resonance position because of the

exclusion of angle terms in the time derivative of the resonant argument. Inclusion of these

precession terms leads to a range of different time derivatives of the resonant argument,

and thus resonance positions in semi-major axis. Considering the 3:1 resonance, and

ignoring mean longitude of epoch variations, there are six possible time derivatives of the

resonant argument:

ϕ̇1 = 3n′ − n − 2$̇

ϕ̇2 = 3n′ − n − $̇ − $̇′

ϕ̇3 = 3n′ − n − 2$̇′

ϕ̇4 = 3n′ − n − 2Ω̇

ϕ̇5 = 3n′ − n − Ω̇ − Ω̇′

ϕ̇6 = 3n′ − n − 2Ω̇′

The presence of these terms produces resonant splitting of the resonance position

over a range of semi-major axes. This will depend on the strengths of different terms,

and also whether they are positive or negative.

5.1.5 An Analytic Resonant Width Expression

Determination of the resonant width of a given resonance requires both the disturbing

function and Lagrange’s planetary equations (see Appendix A or Roy (1988)). Lagrange’s

planetary equations describe the variations in orbital elements experienced by a body as

a result of external perturbations, which in turn are described by the disturbing function.

A simplification of the disturbing function is then required in order to allow an analytic

derivation of an expression for the resonant width: this requires reduction to a circular

(e = 0), planar (all inclinations zero) case. Negligible mass for the inner perturbed

body is also assumed: this is known as the restricted case. These restrictions provide

simplified equations of motion in orbital elements (see Appendix A Section A.2). Use of a

pendulum model to provide an expression for the total energy of the system then provides

an expression for the resonant width in semi-major axis, which is given by:

δamax = ±
(

16

3

|Cr|
n

e|j4|
) 1

2

a. (5-3)

This can be used to directly obtain a resonant width from knowledge of the resonance

and the three bodies involved. Here Cr/n = (m′/mc)αfd(α), where m′ is the mass of
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the outer perturbing body (Jupiter), mc is the mass of the central body (Sun), fd(α)

is a function of Laplace coefficients describing the direct terms of the expansion of the

disturbing function, α = a/a′, n is the mean motion and Cr describes a strength term (see

equation 5-2), and is given by:

Cr =
Gm′

na2a′fd(α) = (
m′

mc
)nαfd(α). (5-4)

Here G = n2a3/mc is used, from Kepler’s third law.

For first order resonances it is more appropriate to use:

δamax

a
= ±

(
16

3

|Cr

n
e

) 1

2
(

1 +
1

27j2
2e

3

|Cr|
n

) 1

2

− 2

9j2e

|Cr|
n

. (5-5)

These expressions are valid for orbits with low eccentricities (e . 0.3) and low

inclinations, and are only easily computable for resonances for which the product αfd(α)

is easily obtainable. These values are given for certain first and second order interior

resonances in Chapter 8 of Murray and Dermott (1999). These include the 2:1, 3:2, 4:3,

3:1, 5:3 resonances, but do not include the 4:1 or 7:2 resonances, which are both used

later.

5.1.6 The Resonance Strength program of Gallardo (2006)

An additional comparison method is given by the semi-analytic method of Gallardo

(2006b). This evaluates the disturbing function R(σ) numerically, and then calculates

a resonance strength SR(a, e, i, ω) = 〈R〉 − Rmin, where 〈R〉 is the mean value of R(σ)

with respect to σ (equivalent to the resonant argument ϕ), and Rmin is the minimum

value of R(σ). These resonance strengths are notably different from the other methods in

that they are in energy units with k2m = 1, k being the Gaussian constant of gravity: the

square root of the Newtonian gravitational constant in a particular set of astronomical

units. In order to compare these values to semi-major axis resonant widths of other

methods, it is necessary to convert SR in energy units to a semi major axis width. We

derive this conversion using the expression for the expansion of the disturbing function

for the circular, planar restricted problem as given by Murray and Dermott (1999):

〈R〉 =
Gm′

a′ [fs,1(α)e2 + fd(α)e|j4| cos ϕ]

where

ϕ = j1λ
′ + j2λ + j4$.

We can simplify this using Cr as given in equation 5-4 and:
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Cs =
Gm′

na2a′fs,1(α) = (
m′

mc

)nαfs,1(α)

This simplification produces:

〈R〉 = Csna2e2 + Crna2e|j4| cos ϕ

Gallardo’s resonant strength is the amplitude of the disturbing function R(σ). Mur-

ray and Dermott’s expression is a simple cosine function with amplitude Crna2e|j4|. Thus

we find:

SRapprox = Crna2e|j4|. (5-6)

We can substitute this into the expression for δamax (given in Section 5.1.5) to obtain an

expression for the resonant width as a function of Gallardo’s resonant strength:

δamax = ±
(

16

3

SRapproxa
3

GM�

) 1

2

(5-7)

Here we have also used n =
√

µ
a3 where µ = GM�.

For first order resonances, we obtain instead

δamax

a
= ±

(
16

3

SRapprox

n2a3

) 1

2
(

1 +
SRapprox

27e4n2a2

) 1

2

+
2SRapprox

e2n2a2
(5-8)

Because this method relies on low eccentricity approximations, it is expected that these

conversion formulae will only be valid for eccentricities less than ∼ 0.3.

A program (ATLAS) to implement this method is available on Gallardo’s website

(Gallardo, 2006a). The strengths determined using the Gallardo (2006) programs for the

region 2-2.5 AU are shown in Figure 5.1.

5.2 A Numerical Width Determination Method

The resonance width can also be determined by simple examination of the dynamics of a

body within the resonance over time. This can be accomplished using an integrator such

as the Hierarchical N-Body (HNBody) integrator designed by K. Rauch and D. Hamilton

(Rauch and Hamilton, 2002). Here HNBody is used to inject particles into Taurid-like

orbits in the vicinity of the 7:2 resonance and study their continuing motions over 104

years. The maximum size of oscillations of a particle in resonance provides the width. An

additional measure of the width is the size of the region inside which librational motion

occurs.
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Figure 5.1: Resonant strengths as calculated for Taurid orbital elements e, i and ω from
the amplitude of the disturbing function using SR(e, i, ω) = 〈R(σ)〉−Rmin using numerical
techniques and programs developed by Gallardo (2006b)

HNBody is appropriate for use in self-gravitating systems with one object dominat-

ing the mass of the system, such as is the case for the Solar System. It is primarily a

symplectic integrator, but provides Runge-Kutta and Bulirsch-Stoer integrators that are

useful in cases where the symplectic integrator cannot provide sufficient accuracy. It is

capable of dealing with the cases of objects orbiting the Sun or planetary bodies, and of

dynamical systems outside the Solar System, provided they represent a self-gravitating

system. It also allows distinction of particles as heavy weight particles (HWPs), light

weight particles (LWPs) and zero weight particles (ZWPs), and treats each class differently

according to their interactions via gravity. All gravitational interactions with all bodies

are included for HWPs, only interactions with HWPS are included for LWPs, and all

gravitational interactions are ignored for ZWPs (thus assuming they are massless). The

central body of the system (for the Solar System, the Sun) is always a HWP. Input

and output orbit coordinates can be given as orbital elements or Cartesian coordinates.

Together with the particle mass (usually in solar mass units), seven values are required to

specify each particle. Coordinates are either ‘bodycentric’ (heliocentric in the case where

the Sun is the central object) or Jacobi coordinates. In this chapter we use bodycentric

coordinates; Jacobi coordinates are used in Chapter 6 as this requires a conversion from

orbital elements to Cartesian coordinates. Other radiation forces can be included by use

of the extension HNDrag: these are not considered at present. In Section 6.17 we will

show that the effect of radiation pressure on the resonant width for CMOR-sized particles
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is small.

Parameters in HNBody are set by changing individual values in the input file. If

large numbers of input particles are required, it is possible to include an input text file

containing the orbits of all particles. This can be generated automatically if necessary

using a Perl script. HNBody is then run as an executable. Runtimes for the program

are several seconds for the case with only one particle and Jupiter orbiting the Sun; less

than an hour for the case of 200-300 particles in a similar model; and several hours for

the case where all Solar System planets are included (which is only dealt with in section

5.7). Output files are text files containing the orbital elements of Cartesian coordinates

of particles at the specified time intervals (set at 10 years here).

In our implementation of the meteoroid resonant problem, we consider the Sun,

Jupiter, and a number of test meteoroid particles. The exclusion of other planets and

asteroids will cause a small error: this is dealt with in Section 5.7. The Runge-Kutta

integrator is most suitable for this problem due to the highly eccentric Taurid orbits.

This requires a maximum timestep, which is set here at 1 year. However, the Runge-

Kutta integrator uses a variable step size. This is defined by the stepsize that limits the

error in the state vectors (x, y, z, Vx, Vy, Vz) to a specified accuracy. In this case we

use an accuracy of 10−10 years. Over a 104 year integration this produces an error in the

semi-major axis in the fifth decimal place compared to use of an accuracy of 10−11 years:

this accuracy is sufficient for this problem. Jupiter is defined as a heavy weight particle,

and meteoroids are set as light-weight particles, whose interactions with each other are

ignored. This is acceptable for cases where the masses of the heavy weight bodies are

significantly greater than those of the light weight particles: this is certainly true for the

giant planet-meteoroid case here. The mass and orbital elements used here for Jupiter

are taken from the Astronomical Almanac 2009 (US Naval Observatory and The Royal

Greenwich Observatory, 2007): MJ = 9.54 × 10−4M�; aJ = 5.204 AU; eJ = 0.04890;

iJ = 1.3038◦; ΩJ = 100.509◦; $J = 14.5926◦. The meteoroids are given initial orbital

elements of Taurid meteoroids, with the exception of the semi-major axis, which is varied

slowly between each of the test meteoroids. A Perl script is used to generate a file

containing the input orbital elements. The Taurid orbital elements used are e = 0.83,

i = 5.4◦, Ω = 152.7◦, Ω + ω = 37.3◦ (Jenniskens, 2006). Particle masses are set small

(MP < 10−34M�) to approximate meteoroids. The mean longitudes of both Jupiter

and the particles are currently given a value of zero: the implications of this choice

are discussed in Section 5.5. The result is a set of meteoroids that scan through the

resonance, having starting semi-major axis values first outside the resonance; then inside

the resonance region; and outside the resonance again.

We begin by analysing a region constrained near the 7:2 resonance centre, intended
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Figure 5.2: Behaviour of orbital elements over 104 year of numerical integration, for
particles at Taurid elements e = 0.83, i = 5.4◦, Ω = 152.7◦, Ω + ω = 37.3◦, and at (a)
a = 2.2505 AU and (b) a = 2.22305 AU. The axes for the semi-major axis results is the
same for both figures in order to aid comparison. Medium-period resonant oscillations (of
period ∼ 260 years) and long-term variations are clearly visible in the former, and only
longer-term variations are seen in the latter (which is outside of the resonance).

to show only the behaviour close to the resonance. The results obtained for one meteoroid

particle in interaction with the Sun and Jupiter are presented first. It is given a semi-

major axis which starts it within the resonance (2.2505AU) and its motion is integrated

for 104 years in 1 year time steps. HNBody produces output files of time and orbital

elements (a (AU), e, i (◦), Ω, Ω + ω and mean longitude λ) at specific set time intervals

(10 years). Figure 5.2(a) shows the orbital element variations of such a particle over 104

years. This particle can be identified as resonant by the relatively long period and large

amplitude oscillations in semi-major axis (of period ∼ 260 years). These oscillations are

also present in the eccentricity, superimposed on much longer scale oscillations caused by

planetary (Jovian) perturbations (with period ∼ 3000 years). In addition, smaller scale

variations exist, also the result of Jovian perturbations, which will be discussed in Section

5.4.

A small movement in the starting semi-major axis of the meteoroids (to 2.2305

AU) moves the particle outside the resonance. Figure 5.2(b) shows the orbital element

variations for this particle: the absence of the large resonant oscillations in the semi-major

axis and eccentricity confirms that this particle is not resonant. While the characteristics

of semi-major axis oscillations are a good indicator of resonant behaviour, a more rigorous

test using the resonant argument is often required (see Section 5.3).

To examine the effects of all the oscillations at once, we test a range of particles that

scan through the resonance. These provide an indication of the size of the oscillations in
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semi-major axis over the whole resonance region. This is achieved by stepping through

the 7:2 resonance region in steps of 0.0005 AU, with starting semi-major axes from 2.22

to 2.28 AU. For each particle, an approximate maximum size for the oscillations in semi-

major axis is computed by taking the difference of the maximum and minimum values

over the 104 year integration. The result is equal to twice the amplitude of the oscillations.

This method is limited in accuracy for several reasons, including the presence of long-term

variations, but it is sufficiently accurate for our purposes. These approximate ‘resonant

widths’ (as defined in Section 5.1.1) can be plotted as a function of semi-major axis

position to create a picture of the resonance effects in that region (Figure 5.3 ). Figure

5.4 shows the changing size of the semi-major axis oscillations at a number of points

indicated on Figure 5.3 that scan through the resonance.
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Figure 5.3: The variation in approximate size of resonant oscillations for particles at
starting locations of 2.22 to 2.92 AU. The black points marked above this resonant feature
indicate the starting locations for the particles shown in Figure 5.4.

5.2.1 Analysing the Resonance Feature

The structure seen in Figure 5.3 defines the ‘resonant feature’ form that is the subject of

the remainder of this chapter. Such resonant features can contain valuable information

on the dynamics of the resonance. The general structure can be described by three main

parameters (indicated in Figure 5.5): the width, height and dip height. We will refer to

the width as the ‘resonance feature width’ to avoid confusion with the ‘resonance width’,

although as we will see they should be equivalent.
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Figure 5.4: The variation in semi-major axis with time, for particles inside and outside
of the resonance (over a reduced period of 2 × 103 years). The numbers above each plot
indicate the starting semi-major axis locations of each particle.

The height of the feature, equal to the height of the peaks at approximately 2.236 AU

and 2.2785 AU, gives the maximum size of the oscillations a particle is able to undergo

within the resonance. This is similar to the classical definition for resonant width or

libration width: the maximum librational motion possible without the particle being lost

from the resonance. In Figure 5.3 these heights are 0.0569 and 0.0578 AU respectively.

The width of the feature (between 2.237 AU and 2.2795 AU, giving a width of ∼ 0.0425

AU) provides a more physical definition of resonant width: it is the width of the resonant

region in which amplified oscillations are present. The minimum inside the dip occurs

approximately (and, theoretically, exactly) at the position of the resonance centre in

semi-major axis. The dip height (equal to 0.0321 AU, and located at a semi-major axis

of 2.2575 AU), therefore, physically represents the size of the oscillations at this resonant
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Figure 5.5: The variation in approximate size of resonant oscillations for particles at
starting locations of 2.22-2.92 AU, showing the resonance feature parameters width, height
and dip height that will be used extensively for the remainder of the chapter.

centre. This is theoretically zero at the mean longitude of the resonant centre, and in the

case where no other underlying perturbations exist. Its large finite value in Figure 5.3

provides us with extra information, in particular that we are not at the resonant centre,

and must adjust the mean longitude to find this.

There are, therefore, other factors that must be considered in order to obtain the

resonant width from this resonant feature. We will now consider the variations in the

resonant feature width and depth with mean longitude; the effect of small scale Jovian

perturbations; and the use of the resonant argument to determine what particles on the

resonant feature undergo resonant librations.

5.3 Librations within the Resonant Feature

Given that the location of the 7:2 resonant feature of Figure 5.3 matches well with the

expected location of ∼ 2.256 AU, and given that inside these features high amplitude

oscillations are observed that are not present immediately outside these features, it is

reasonable to conclude that they do indeed represent the dynamical presence of the

resonance, and therefore its width. However, to prove this is the case it must be shown

that particles inside these features undergo librational motion. This can be determined

using the resonant argument. From Section 5.1.1, libration exists when the resonant

argument oscillates through only a limited range of angles. Circulation is expected to be
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found just outside the sharply defined edges of the resonance features, and is observable

as slow ‘circulation’ of the resonant angle, continuously passing through the full 360◦. In

consequence, in this section we test that librational motion is occurring in the 2:1, 3:1, 4:1

and 7:2 resonances, after which we are satisfied that the dynamics within all such strong

resonant features fulfil the libration requirement.
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Figure 5.6: The 2:1 resonant feature (approximate widths distribution). Points mark the
location of particles studied in Figure 5.7 below.

5.3.1 The 2:1 Jovian Resonance

We begin with the 2:1 Jovian resonance at an eccentricity of 0.1. As the strongest reso-

nance under examination here, it demonstrates the clearest transition from non-resonant

motion, to circulation, and finally to libration, before returning to circulation on the

opposite side of the resonance. The main resonant argument here is:

ϕ = 2λJ − λP − $P

where λJ is the mean longitude of Jupiter, λP is the mean longitude of the particle and

$P is the longitude of perihelion of the particle.

Six particles are selected to study the resonant argument and probe different be-

haviour in and near the 2:1 resonance: a first particle well outside the resonance (which

should show non-resonant behaviour, including fast, non-oscillatory variations in resonant
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argument), a second particle just outside the resonance to demonstrate circulation, and

four particles inside the resonance showing increasing libration amplitudes. The 2:1

resonant feature and the location of these particles is shown in Figure 5.6.

The semi-major axis variations and resonant argument variations for these particles

are shown in Figure 5.7. The first particle chosen shows no resonant signatures in the

semi-major axis or resonant argument, with no coherent oscillations visible in either.

The second particle has semi-major axis oscillations. However, it can be seen that the

resonant argument undergoes long period circulation, not libration. This highlights the

necessity of checking the dynamics in the resonance, as semi-major axis variations alone

may not indicate of whether circulation or libration is present. The third particle is in

libration: it demonstrates the restriction of resonant argument to a small range of values.

Semi-major axis oscillations are not large, which is expected as they should tend to zero

as the resonant centre is approached. Indeed, they are not significantly different to the

semi-major axis oscillations for the previous circulating particle. Particles four to six are

all also in libration. The size of their librations increases steadily, such that the librations

in particle six cover nearly a full 360◦. This is still defined as libration as the particle

never quite completes a full circle in the resonant argument.

This is more clearly demonstrated by applying a mixed canonical transformation (as

used by Murray and Dermott (1999) Sections 8.8 and 8.9)(see Figure 5.8). This consists

of a radial distance determined from the eccentricity, and a polar transformation of the

resonant argument. The transformation is given by x =
√

2Φ cos φ and y =
√

2Φ sin φ,

where the radial distance is given by:

R =
√

2Φ =

[−3

fd
(j − 1)

4

3 j
2

3

mc

m′

] 1

3

e

with parameters defined in Section 5.1.5.

Figure 5.8(a) shows each of the particles in turn. The increasing size of the libration

in particles three to six is clearly shown, with near 360◦ libration for particle six. The

out-of-resonance and circulating particles cover all resonant argument values and so form

full circles. The influence of the resonance on particles that are not exactly in resonance

causes the circle for circulation to not be centred on the origin. This is a result of the

resonance imposing a forced eccentricity. In the Figure 5.8 (b) the innermost curve is

the circulation case (particle two), while the second curve is the out-of-resonance particle

(particle one). The four librational particles form concentric curves.
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Figure 5.7: Using the six points cutting through the 2:1 resonance defined in Figure 5.6,
we have (a) the semi-major axis variation over the 104 year integration period, and (b)
the corresponding variations in resonant argument.
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Figure 5.8: Demonstration of libration within the 2:1 Jovian resonance feature, and lack
of libration outside of this. The semi-major axes values above each graph refer to the
starting values for each particle. The locations of each particle relative to the resonant
feature are seen in (a).
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5.3.2 The 3:1, 4:1 and 7:2 Jovian Mean Motion Resonances

We now present evidence for librational motion within the observed resonant features of

the 3:1, 4:1 and 7:2 resonance. Low eccentricities are used for the 3:1 and 4:1 resonances

(e = 0.1). The Taurid average eccentricity of 0.83 is used for the 7:2 resonance as this is

more relevant to the current application. The strongest resonance arguments are:

ϕ = 3λJ − λP − 2$P

for the 3:1 resonance;

ϕ = 4λJ − λP − 3$P

for the 4:1 resonance; and

ϕ = 7λJ − 2λP − 5$P

for the 7:2 resonance.

For the 3:1 resonance, we take one particle in circulation either side of the resonant

feature, and three within the libration. Figure 5.9 (a) shows the particles studied: Figure

5.9 (b) and (c) show the particle librations (or circulation for particles 1 and 6) in standard

and polar form.

We show similar graphical representation of libration within the 4:1 and 7:2 Jovian

resonances in Figures 5.10 and 5.11. We are satisfied that resonant librations for the

strongest resonant argument exist within the clear resonant structures observed.

5.3.3 Libration Detail in the 3:1 Resonance

The examples above illustrate librations in the main resonant argument. Here we evaluate

the role of other resonant arguments (to second order), using the 3:1 resonance as an

example. The mean longitude for each particle is optimised (as is described in Section

5.5 below) for the ϕ = 3λJ − λP − 2$P argument, so as to produce the widest resonant

feature possible. The eccentricity and inclination of Jupiter are set to zero.

There are six possible resonant arguments for the 3:1 resonance (to second order).

These are discussed in Section 5.1.4; we rewrite them here in terms of λP and λJ as:

ϕ1 = 3λJ − λP − 2$P

ϕ2 = 3λJ − λP − $P − $J

ϕ3 = 3λJ − λP − 2$J

ϕ4 = 3λJ − λP − 2ΩP
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Figure 5.9: (a):The 3:1 resonant feature (approximate widths distribution). The points
mark the location of particles studied in (b) and (c). (b) and (c): Demonstration of
libration within the 3:1 Jovian resonance feature. The semi-major axes values above each
graph refer to the starting values for each particle. The locations of each particle relative
to the resonant feature are seen in (a).
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Figure 5.10: (a): The 4:1 resonant feature (approximate widths distribution). The points
mark the location of particles studied in (b) and (c). (b) and (c): Demonstration of
libration within the 4:1 Jovian resonance feature. The semi-major axes values above each
graph refer to the starting values for each particle. The locations of each particle relative
to the resonant feature are seen in (a).



102 Chapter 5. Modelling Resonance Dynamics

(a)

2.23 2.24 2.25 2.26 2.27 2.28
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Semi−Major Axis (AU)A
pp

ro
xi

m
at

e 
m

ax
im

um
 s

iz
e 

of
 S

em
i−

M
aj

or
 A

xi
s 

O
sc

ill
at

io
ns

 (
A

U
)

0 2000 4000 6000 8000 10000
−200

0
200

2.2305 AU

0 2000 4000 6000 8000 10000
−200

0
200

2.2395 AU

0 2000 4000 6000 8000 10000
−200

0
200

2.2495 AU

0 2000 4000 6000 8000 10000
−100

0
100

2.2595 AU

R
es

on
an

ce
 A

rg
um

en
t (

de
gr

ee
s)

0 2000 4000 6000 8000 10000
−200

0
200

2.2695 AU

0 2000 4000 6000 8000 10000
−200

0
200

2.28 AU

time (years)

−1 0 1
−1

0

1

x

y

2.2305 AU

−1 0 1
−1

0

1

x

y

2.2395 AU

−1 0 1
−1

0

1

x

y

2.2495 AU

−1 0 1
−1

0

1

x

y

2.2595 AU

−1 0 1
−1

0

1

x

y

2.2695 AU

−1 0 1
−1

0

1

x

y

2.28 AU

(b) (c)

Figure 5.11: (a): The 7:2 resonant feature (approximate widths distribution). The points
mark the location of particles studied in (b) and (c). (b) and (c): Demonstration of
libration within the 7:2 Jovian resonance feature. The semi-major axes values above each
graph refer to the starting values for each particle. The locations of each particle relative
to the resonant feature are seen in (a).
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ϕ5 = 3λJ − λP − ΩP − ΩJ

ϕ6 = 3λJ − λP − 2ΩJ

Each argument has two similar terms (3λJ and −λP ). The third term is composed

of an allowed combination of longitudes of perihelion or of the ascending node of Jupiter

and the test particle. This must meet symmetry requirements such that the sum of all

coefficients of longitudes is zero and the sum of all ascending node terms is even.

A simple method is used to determine where on the resonant feature librations exist,

by finding where the resonant argument has a range of less than 360◦: that is, a finite

libration amplitude exists. Figure 5.12 demonstrates this for the resonant argument ϕ1, for

two eccentricity values. The range, or double the libration amplitude, of this argument is

equal to ∼ 360◦ everywhere except inside the resonance. For high eccentricities (here e =

0.83 is shown), the resonant feature in semi-major axis is symmetrical around the resonant

centre, as are the variations in the resonant argument. The agreement between the region

in which the resonant argument undergoes libration and the region encompassing the

resonant feature is good. However, the resonant feature becomes increasingly asymmetric

at lower eccentricities (here e = 0.1 is shown). This is speculated to be a result of the

equilibrium points in mean longitude not being where expected due to the strength of

the indirect term in the disturbing function (indirect terms are strong relative to direct

terms for n:1 resonances). At e = 0.1 there is still a good general agreement between the

region inside which librations occur and the resonant feature. There is some disagreement

at the sunward edge of the resonance. The reason for this disagreement is not clear, but

may be the result of resonant interactions other than the simple mean-motion resonances

considered here. This behaviour is also seen for the $4 resonant argument, libration

regions for which are demonstrated in Figure 5.13.

By this process we establish that libration is possible, at low and high eccentricities,

in resonant arguments ϕ1, ϕ4, ϕ5 and ϕ6, but not in ϕ2 or ϕ3. We do not expect these

latter two arguments to be important as the eccentricity of Jupiter is zero (see equation 5-

2). At high eccentricities, the region of libration for ϕ1 matches the extent of the resonant

feature, supporting our decision to assume that this is the main resonant argument (which

was also supported by examination of equation 5-2). It is also important to check that this

is the main resonant argument as the derivation of an analytic description (in a circular,

planar restricted case) for the maximum resonant width in semi-major axis also assumes

that the main resonance is given by ϕ1.

The libration test used here additionally addresses a further issue concerning the

resonant feature. It is possible that the particles that appear at the edge of the resonance

do not start in libration, but instead in circulation, and that a minor perturbation allows
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Figure 5.12: Demonstration of libration in resonant argument ϕ1 within the 3:1 Jovian
resonance feature, at eccentricities e = 0.1 and e = 0.83. Here dots represent the
approximate double amplitude of semi-major axis variations (left-hand axis), and crosses
represent the range in resonant argument values (right-hand axis). Inside the resonance,
the ‘resonant argument range’ used here is equal to double the libration amplitude.
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Figure 5.13: Demonstration of libration in resonant argument ϕ4 within the 3:1 Jovian
resonance feature, at eccentricities e = 0.1 and e = 0.83. Here dots represent the
approximate double amplitude of semi-major axis variations (left-hand axis), and crosses
represent the range in resonant argument values (right-hand axis). Inside the resonance,
the ‘resonant argument range’ used here is equal to double the libration amplitude.
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them to enter the resonance after a period of time. Thus, over the 104 year period their

orbits have maximum and minimum values (and thus maximum oscillation size) equivalent

to a resonant particle, even if their starting semi-major axis was not within the libration

region.

This behaviour is displayed in Figure 5.14, where the librations for six particles near

and at the second peak of the resonant feature at a mean longitude of zero are shown.

The first four particles exhibit librations immediately. The fifth particle, which is at the

peak of the resonant feature, shows circulation initially, with librations starting at around

2300 years. We consider that this demonstrates that a particle started at this semi-major

axis (2.2795 AU) is not in libration, and as such is outside the resonance. The resonance

edge therefore ends at 2.279 AU (the second point within the resonant feature). Even

though particles three and four appear to exhibit resonant arguments which do not strictly

vary between ±180◦, we still consider these particles to be in libration, as the resonant

argument is noticeably bounded compared with particles five and six. This may be due to

the long-scale oscillations that the resonant argument undergoes underneath the resonant

variations.

The libration test above will detect particles that are in libration and not in cir-

culation, providing a potentially more accurate test than the use of just the semi-major

axis resonance feature alone. However, we note that this method will only detect strict

librational motion, and as such would indicate that particles three and four are non-

librational. Such a strict definition may not be necessary for our purposes, though this

method does crucially allow an automatic determination of the width. The error in this

case is a maximum of 0.015 AU between the width from semi-major axis variations; the

width from libration strictly less than ±180◦ (for the 7:2 resonance); and the width from

libration defined as clearly bounded resonant argument variations. This uncertainty is

doubled as this error occurs on both resonance feature edges. This magnitude of error is

typical for resonance features: we will, however, individually deal with these errors for 50

different starting mean longitude values in Section 5.5. Similar errors occur for the peak

heights: the height of the left hand peak decreases from 0.0569 AU to 0.0560 AU if the

outer edge of the resonance is more strictly defined.

5.4 Non-Resonant Variations

Resonant oscillations are only one of the variations present in the semi-major axis dis-

tribution, such as seen in Figure 5.2 (a). Jovian perturbations cause small-scale (small

amplitude and period) repetitive variations that are seen superimposed on top of the res-

onant oscillations for a particle in resonance. These are more clearly visible when a small
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Figure 5.14: Demonstration of the absence of librations at the peak of the resonance
feature (at 2.2795 AU). (a) shows the section of the resonant feature of interest, with
points marking the locations of particles with the semi-major axis and resonant argument
variations shown in (b) and (c) respectively. The far left point in (a) has semi-major axis
variations and librations given by the first particles in (b) and (c).
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section of the semi-major axis variations is examined, as seen in Figure 5.15. This shows

the small-scale variations of particles inside and outside the resonance. The particle inside

the resonance demonstrates large resonant oscillations with a period of approximately 250

years and small scale irregularly shaped Jovian perturbation oscillations with a period of

24 ± 1 years. Outside of the resonance, the small scale oscillations with this period are

still visible. The same dynamical configuration between Jupiter and the particle occurs

every 23.7 years, as this is the time between conjunctions that are as close to Jupiter

as possible. This number is derived using the resonance ratio 7:2, from which it can be

seen that the closest approaches between the two objects occur on a frequency equal to

twice Jupiter’s period, or seven times the particle’s period. This time (23.7 years) is in

agreement with the 24±1 year period of the small scale variations in both the resonant and

the non-resonant particles. It can be inferred from this that the small scale oscillations

are the result of gravitational forcing. Their size will therefore increase as the distance

between Jupiter and the particle decreases. Their frequency will also change as the ratio

of periods between Jupiter and particle varies: only at or near the 7:2 resonance centre

will a period of ∼ 24 years be observed.
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Figure 5.15: Small-scale variations in motion for a particle outside the resonance zone at
2.220 AU (so is not displaying significant resonant oscillations) and a particle inside the
resonance at 2.245 AU (close to the resonant centre. Here (a) displays the variations over
a 1000 years cycle; (b) shows the detail of the small scale variations, with only 200 years
integration shown.

In consequence, the removal of these small scale variations is required in order to

obtain an accurate estimation of the size of the resonant oscillations. We accomplish this

by estimating manually the size of the small-scale variations and subtracting this from

the total size of the oscillations, which includes resonant and small-scale amplitudes. The

variations in the size of the small-scale variations found at different points on the resonant
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feature are less than 0.001 AU: mostly these errors are in the range 0.0002-0.0006 AU.

We are left with a more accurate representation of the size of resonant oscillations alone.

For the example of the resonant feature in Figure 5.3, generated with the particle

mean longitude set to zero, the small scale variations are 0.007 ± 0.0005 AU at the left

hand peak, and 0.0078 ± 0.0002 AU at the right hand peak. This gives us final left and

right peak heights (originally 0.0569 and 0.0578, decreased to 0.056 AU and 0.0569 AU

after libration checks) of 0.0490 AU and 0.0491 AU respectively.

5.5 Mean Longitude Variations

Here we seek to understand the effect of the initial mean longitude of the particle on the

resonant feature. The aim is to determine the optimum mean longitude of the resonant

centre, which is expected to be the most appropriate mean longitude at which to determine

the resonant width.

In the above numerical integrations of the orbits of particles and Jupiter, it was

assumed that the initial mean longitude of all bodies was equal to zero: that is, the

starting positions of both Jupiter and particle were in the direction of the vernal equinox

as viewed from the Sun. As the particle and Jupiter orbit the Sun, the difference between

their mean longitudes will increase from zero and eventually reach a 360◦ difference. This

is a fairly random process for particles not in the vicinity of the resonance. However,

within the resonance a particular combination of mean longitudes, given by the resonant

argument, remains roughly constant, or oscillates through a small range of values around

the resonant centre (often λ = 0 or 180◦). This defines resonant libration. Circulation of

the orbit is defined by a slow change of the resonant argument that does complete 360◦

‘circulation’. Thus, the relative mean longitudes of the particle and Jupiter are important

for determining whether a particle’s motion is resonant.

First we consider what variations in particle behaviour with mean longitude are

expected, and how such variations may affect our determination of the resonant width.

This is not easy to appreciate using orbital elements or heliocentric coordinates: instead,

a mixed canonical transformation is used, as given in Section 5.3.1. We consider the 2:1

resonance for simplicity: in this case we have
√

2Φ = 15.874e and φ = 2λJ − λ − $.

Figure 5.16 shows several curves demonstrating the librational motion of five parti-

cles at different locations inside the resonance. The outermost curve shows nearly maximal

libration. Since the angle φ = 2λJ − λ−$ is a scaled difference of mean longitudes (plus

an additive constant), changing the starting mean longitude of the particle, while holding

Jupiter’s starting mean longitude constant at 0, is equivalent to taking slices at different

angles through this librational motion. Each slice will produce a resonant feature. The
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Figure 5.16: Libration curves for four locations inside the resonant feature. The outer
curve is close to the maximal possible libration.

radial axis in Figure 5.16 is measured in eccentricity units. As we have seen (see Figure

5.2) the behaviour of semi-major axis mimics that of eccentricity in terms of oscillation

time period and amplitude changes:both sharp at the defined resonant edges and smooth

through the resonance itself.

We now consider two slices through the polar libration curves: one along y = 0;

another along x = 0. Both slices pass through the near-maximal curve. However, while

the y = 0 slice cuts through the widest part of the libration curve, the x = 0 line

slices through a much narrower section. The near-maximal libration curve corresponds

to the (near) greatest amplitude variations in eccentricity or semi-major axis which form

the resonant feature edges; the inner curves correspond to particles inside these edges

and progressively closer to the resonant centre, at which point there is theoretically no

variation in resonant argument. The maximal curve is therefore equal to the height of the

resonant feature. This defines the maximum variation in semi-major axis possible within

the resonance, which is also the standard definition of ‘resonant width’. The maximal or

near-maximal libration curve passed through does not vary for the y = 0 or x = 0 slices,

and by extension is independent of the slice taken, and thus independent of the difference

in mean longitudes.

However, as mentioned above, the width of the region enclosed by the libration curve

does vary. This is the distance between two maxima of librational amplitude in eccentricity
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or semi-major axis, and is therefore equal to the width of the resonant feature: it is the

distance between the two peaks of the resonant feature. The y = 0 curve produces a large

difference between maximal libration peaks, while x = 0 sees a narrower region between

peaks, and thus a reduced width. A cut taken through one of the far ends of the libration

curve produces a lower width again. As the widths of the features are dependent on the

slice taken, they are also dependent on the difference in mean longitudes between Jupiter

and the test particle.

Additionally, the ‘dip height’ (defined in Section 5.2.1) will vary depending on the

slice taken through the libration curve. The dip height is the minimum oscillation size

possible for a resonant particle. At different mean longitudes, different minimum (or

inside) curves are intersected: in Figure 5.16, a y = 0 slice intersects four curves, including

the smallest libration curve, while a x = 0 slice only intersects larger libration curves.

The libration halfway through the resonant feature is therefore low for the x = 0 slice,

giving a low dip height. At the x = 0 slice only large libration curves are intersected and

therefore a high dip height occurs. Note also that this is opposite to the resonant feature

width, which is large for the y = 0 slice and low for the x = 0 slice. Hence, at a maximum

in resonant feature width, we have a minimum in dip height, and vice versa.

In summary, the height of the resonant features used here should be insensitive to

mean longitude. However, there will be strong variations in the width and dip height

of these features, with maximum width and minimum dip height occurring at the mean

longitude of the resonant centre.

Determination of the maximum resonant feature width for 7:2 resonant Taurids

requires the mean longitude of the resonant centre. This can be accomplished analytically

using the resonant argument, or numerically, by finding the resonant feature width for

a number of different mean longitude values and determining the one that gives the

maximum width.

5.5.1 Analytic Determination of the Mean Longitude of Maximum Width

We expect the maximum width to occur at resonance centres; and we expect resonance

centres to occur at a resonant argument of zero. There are a large number of resonant

arguments associated with the 7:2 resonance, and six that involve longitudes of perihelion.

From equation 5-2 (and accompanying discussion) it can be seen that the importance

of perihelion arguments depends on the relative magnitude of the eccentricities of the

perturbing body (Jupiter) and the perturbed body (the particle). As the eccentricity of

the Taurid particle (eP = 0.83) is much greater than the eccentricity of Jupiter (eJ =
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0.0489), it is expected that the main resonant argument important for the Taurid case is:

ϕ = 7λJ − 2λP − 5$P .

This is consistent with use of the 7:2 resonance elsewhere for similar problems (see Asher

and Clube (1993)).

Setting λJ = 0 and knowing $ = 152.7◦ for Taurid meteoroids, we determine two

values of mean longitude of the particle λP that will achieve ϕ = 0:

λP = −21.75◦ = 338.25◦

and

λP = 158.25◦

As expected the 7:2 resonance has two resonant centres in mean longitude. This

can also be inferred from the multiplier 2 for the mean longitude of the dust particle λP

in the expression for the resonant argument.

5.5.2 Numerical Study of the Variations with Mean Longitude for the 7:2

Resonance

We now numerically analyse at the variations in the width and height of the resonant

feature with mean longitude for the 7:2 resonance. We begin by generating a resonant

feature, such as in Figure 5.3, for each of a range of 50 mean longitude values between

0 and 360◦. For each mean longitude, the width and the height of the feature are

determined. The size of the small-scale variations in height are subtracted from the left

and right hand side peaks (see Section 5.4). The heights of the two peaks are averaged

to provide one height value for each resonant feature. A libration correction, as discussed

in Section 5.3.3, is also necessary. As discussed in this section, two possible correction

methods are possible: the first considering a particle in libration when it demonstrates

clear bounded oscillatory motion in the resonant argument (distinct from circulation); the

second considering particles in resonance only when they demonstrate libration strictly

within ±180◦.

Figure 5.17 shows the corrected widths for the first method superimposed on the

original data, and heights from the left and right hand sides. Figure 5.18 shows the widths

from both libration correction methods. As expected, widths by the stricter definition

are lower. The locations of peaks and troughs are the same for both sets of widths. We

choose to use the more lenient libration test here: the results from this for the widths and

heights are shown in Figure 5.19. The heights given in this figure are the averages of the
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Figure 5.17: The variations of resonant feature width and height with mean longitude.
The widths plot shows the widths not corrected for librations with triangles, and the
corrected widths as dots. The largest variations are observed to occur at minima. The
heights plot shows the heights of the left hand side peak as downwards pointing triangles,
and right hand side heights as upward pointing triangles. All heights are corrected for
small-scale variations and the actual starting point of librations.

left and right hand side values.

We now examine the structure of the final resonant width data with mean longitude.

The width values have clear maxima of (0.047±0.001) AU at mean longitudes of (43±5)◦

and (327±5)◦, and minima of (0.003±0.001) AU at (56±1)◦ and (236±1)◦. Uncertainties

in the widths are a result of the 0.001 AU resolution between semi-major axis steps, which

gives a total uncertainty of 0.0005 AU over the two peaks. Uncertainties in the mean lon-

gitude positions of maxima and minima result from the difficulty of determining the exact

locations of maximum or minimum: the uncertainty is found using the greatest movement

away from the optimum value that can still be considered at the maximum/minimum of

the width plot.

The height of the resonant feature is relatively robust against variations in mean

longitude, varying between 0.0459 AU and 0.0490 AU, with a mean of 0.0471 AU. Since

the variations appear random over the 360◦ of mean longitude, and variations of height

with mean longitude are not expected theoretically, we assume that the resonant feature

height and uncertainty are defined by the mean, maximum and minimum. This gives
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Figure 5.18: The variations of resonant feature width and height with mean longitude
for both libration tests. Widths for librations defined as when clear bounded oscillatory
motion in the resonant argument (distinct from circulation) is demonstrated are shown by
dots and widths where libration is defined only when they demonstrate libration strictly
within ±180◦ are given by circles.

a height of 0.0471+0.0019
−0.0012 AU or (0.0471 ± 0.0019) AU for simplicity. The addition of

the ±0.001 uncertainty in the estimation of the size of the small scale variations gives:

(0.0471 ± 0.0029) AU.

As an illustration, Figure 5.20 shows the change in the resonant feature with mean

longitude: narrow features with high dip heights are visible at the mean longitudes of

the width minima in Figure 5.19; and wide features with low dip heights are seen for

the mean longitudes near the width maxima. The vertical dotted lines at the expected

resonant centre location of 2.256 AU highlight the small variations in the position of the

feature relative to the expected position. This is most likely due to resonant splitting:

small variations in the exact resonance centre location occur because of the presence of

multiple resonant argument terms (see Section 5.5.1) and thus produce slightly different

resonant centre locations.

The final concern is the level of the agreement between the resonant centres, or

location in mean longitude of maximum width, determined by the numerical method and

by the analytical approach. The resonant argument method gives values for the particle

mean longitude required for a resonant centre as 158.25◦ and 338.25◦. The numerical
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Figure 5.19: The variations of resonant feature width and height with mean longitude.
The widths plot shows the widths corrected for when librations begin. The heights plot
shows the mean of corrected heights at the left and right hand sides.

method gives (143±5)◦ and (327±5)◦. We speculate that the disagreement between these

values could indicate the presence of more than one resonant argument term (besides the

ϕ = 7λJ − 2λP − 5$P term assumed here). A significantly larger uncertainty in the

numerical results, sufficient to encompass the mathematical resonance centre values, is

not expected given the smooth form of the variation of the resonant feature width with

mean longitude in Figure 5.19. We additionally convert the mean longitude scale in Figure

5.19 to the resonant argument (see Figure 5.21). This demonstrates that the maximum

width is not coincident with the theoretical resonance centre location of ϕ = 0.

Consideration of mean longitude variations represents the final correction required

in the analysis of the 7:2 resonant feature. This allows us to draw conclusions on the

width of the 7:2 Jovian resonance at Taurid orbital elements. The resonance width has

been shown to be given both by the width and height of the resonant feature: these have

values (0.047± 0.001) AU and (0.047± 0.003) AU respectively. We consider the width of

the resonant feature is the more accurate measure of the resonant width as it has a lower

uncertainty and is less susceptible to other factors, such as asymmetry of the resonant

feature. We therefore use this to give our final resonant width:

(0.047 ± 0.001)AU
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Figure 5.20: The variation in the shape of the resonant feature with mean longitude.
The mean longitudes used to generate each figure are (a) 56◦, (b) 146◦ (c) 236◦ and (d)
327◦. They represent roughly the maxima and minima in dip height and width. Note
the width and dip height of the feature varies greatly, as does the position of the peaks
used to define the width and height. However, the height of the feature and the position
of the minimum of the resonant feature dip are roughly constant. The vertical line on
each represents the location of the expected resonance centre in semi-major axis at 2.256
AU (as predicted using the ( a

a′ )
3 ≈ ( T

T ′ )
2 approximation from Kepler’s third law). Due

to resonant splitting we do not expect an exact agreement between the minima of the
resonant features and this location.
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Figure 5.21: The variations of resonant feature width with resonant argument.

The only previous result for the resonant width of the 7:2 resonance at Taurid orbital

elements is that given by Asher and Clube (1998), who find that librations are possible

between 2.23 and 2.28 AU, implying a libration width of ∼ 0.05 AU. Our final resonant

width is in good agreement with their result, and represents a significant improvement in

accuracy.

5.6 Resonance Behaviour in the Inner Asteroid Belt and the

Variation with Eccentricity

The region of interest is now extended beyond the 7:2 resonance. Figure 5.22 shows the

resonance activity for Taurid-like particles (with high eccentricity e = 0.83) between 1.0

AU and 4.0 AU in steps of 0.002 AU. The corresponding Jovian resonance is marked above

each prominent resonance feature. The inclusion of only Jupiter in the integration means

only Jovian resonances will be seen: inclusion of other planets is discussed in Section 5.7.

For particles with semi-major axes larger than about 2.6 AU the highly eccentric particles

have a high chance of close Jupiter encounters, which can drastically alter their orbits.

Such significant changes in the semi-major axis are responsible for the large number of

semi-major axis spikes after this point. Figure 5.23 demonstrates the large variations of

four particles started at 2.9 AU 2.902 AU, 2.924 AU and 2.938 AU respectively.
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Figure 5.22: The resonance activity at Taurid orbital elements (e = 0.83, i = 5.4, ω =
115.4) at semi-major axes values 1.0 to 4.0 AU. Gallardo resonant strengths (doubled for
visibility) are given by the stem plot below.

In Figure 5.22 the resonant features between 2.5 and 4.0 AU are generated only

using the 200 years of iterations. This limits the spikes and provides a clearer view of

the resonant activity in this region. Notably, the action of the resonances to protect

particles from close encounters and preserve their initial conditions for much longer

than non-resonant particles is evident, particularly in the 2:1, 5:3 and 3:2 resonances.

The Gallardo strengths (see Section 5.1.6) are doubled (for visibility) and graphed as a

stem plot underneath the resonant features. This reconfirms the good agreement of the

positions of resonant features with the locations of strong resonances. For clarity, Figure

5.24 shows the resonant activity from (a) 1.0 AU to 2.0 AU , and (b) 2.0 to 2.5 AU.

The latter represents the immediate vicinity of the 7:2 resonance. We note that the 7:2

resonances is relatively strong at e = 0.83, but this region is still dominated by the strong

3:1 resonance at 2.5 AU.

We now use this 2.0 to 2.5 AU ‘resonant map’ to illustrate the variations of reso-

nance strengths/widths with eccentricity. Figure 5.25 shows this region for particles with

eccentricities of 0.1, 0.3, 0.5 and 0.7 respectively. As the eccentricity increases, the width

or strength of higher order resonances increase relative to that of lower order resonances.

Thus, high order resonances are increasingly important with increasing eccentricity.
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Figure 5.23: Demonstration of the effect of close approaches to Jupiter for particles at
four different starting semi-major axis values (given above each figure).

5.7 Addition of All Solar System Planets

The above use of the HNBody numerical integrator includes only the Sun and Jupiter as

heavy weight particles: all other planetary bodies in the Solar System are excluded. We

now examine the impact of the inclusion of all planetary bodies Mercury-Neptune, and

include Pluto for completeness.

This procedure requires knowledge of the mass and orbital elements of each of

Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune and Pluto. These are

obtained from the Astronomical Almanac 2009 (US Naval Observatory and The Royal

Greenwich Observatory, 2007). An approximate set of mean longitudes from which to start

the integration are also taken from the Astronomical Almanac (for the date 1 January

2009 (Julian date 2454840.5)). The behaviour of the particles will vary with the choice

of the starting particle mean longitudes. In particular, this may vary the distance of the

particle from a resonant centre, thus varying the effect of each resonance. Input particles

are again given initial conditions equal to the mean Taurid orbital elements, except for

semi-major axes, which scans through starting values of 2.0 AU to 2.5 AU, in steps of
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Figure 5.24: A closer view at the inner Asteroid Belt: (a) shows Jovian resonant activity
between 1.0 and 1.5 AU (note that this is a region that may be have be significantly
affected by resonances involving inner planets); (b) shows the 7:2 resonance region (2.0
to 2.5 AU)



120 Chapter 5. Modelling Resonance Dynamics

2 2.1 2.2 2.3 2.4 2.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Semi−Major Axis (AU)

A
pp

ro
xi

m
at

e 
m

ax
im

um
 s

iz
e 

of
 S

em
i−

M
aj

or
 A

xi
s 

O
sc

ill
at

io
ns

3:1

7:2

4:1

2 2.1 2.2 2.3 2.4 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Semi−Major Axis (AU)

A
pp

ro
xi

m
at

e 
m

ax
im

um
 s

iz
e 

of
 S

em
i−

M
aj

or
 A

xi
s 

O
sc

ill
at

io
ns

4:1

7:2

3:1

(a) (b)

2 2.1 2.2 2.3 2.4 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

Semi−Major Axis (AU)

A
pp

ro
xi

m
at

e 
m

ax
im

um
 s

iz
e 

of
 S

em
i−

M
aj

or
 A

xi
s 

O
sc

ill
at

io
ns

3:1

7:2

4:1

2 2.1 2.2 2.3 2.4 2.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Semi−Major Axis (AU)

A
pp

ro
xi

m
at

e 
m

ax
im

um
 s

iz
e 

of
 S

em
i−

M
aj

or
 A

xi
s 

O
sc

ill
at

io
ns

3:1

7:2

4:1

(c) (d)

Figure 5.25: The variation in the resonant feature with eccentricity, between 2.0 and 2.5
AU. Eccentricities used are (a) 0.1, (b) 0.3, (c) 0.5 and (d) 0.7. Compare with Figure
5.24(b), which shows an identical plot to those shown here, but for 0.83. The positions
of the three strongest Jovian resonances in this region are marked (others are present).
Note the increase in strength/width of the resonances as the eccentricity increases, and
the relative increase in the strength of higher order resonances (such as the 7:2 resonance)
with eccentricity.
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Figure 5.26: Resonant activity of Taurid orbits with starting semi-major axes 2.0 AU to
2.5 AU, in steps of 0.002 AU. All planets Mercury-Neptune and Pluto are included in the
integrations.

0.002 AU.

Figure 5.26 shows the results of this integration, with maximum oscillations cal-

culated only from the first 100 time steps ( 1
10

th
of the total). This reduction lowers the

number of spikes caused by planetary gravitational perturbations that can drastically shift

the orbit of the particle and cause large variations in semi-major axis. Features resulting

from strong Jovian resonances (such as seen in Figure 5.24(b)) are clearly visible. The

additional structure has two sources: planetary perturbations causing drastic alterations

to particle orbits; and resonances of planets other than Jupiter.

We present two examples of particle behaviour that lead to an unrealistic impression

of the size of the oscillations at a particular semi-major axis. Figure 5.27 compares the

motion of two particles with starting semi-major axis values of 2.066 AU (dotted line)

and 2.068 AU (solid line). The larger oscillations of the second particle are responsible for

the first major spike within the 4:1 Jovian resonance (see Figure 5.26). The first particle

demonstrates the expected level of semi-major axis oscillations at that location in this

resonance. The second particle experiences larger oscillations after a perturbation occurs

approximately half an oscillation into the integration due to an inner planet. At about

8000 years the particle suffers a second perturbation which causes it to leave the resonance

altogether, and the size and period of the oscillations decrease. Since the approximate
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Figure 5.27: Comparison between a particle that remains in the resonance (dotted line),
and particle that might suffer a gravitational perturbation from a planet and therefore
does not remain in the resonance (solid line).
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Figure 5.28: Comparison between a particle that is perturbed into resonance (solid line),
and one that does not (dotted line).
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method calculates the oscillation width by taking the difference between the maximum and

minimum values from the first 1000 years, the large variation in semi-major axis caused by

the early perturbation is included for the width determination. This is effectively giving

the oscillation size for a particle with a larger starting semi-major axis: hence the peak.

Figure 5.28 shows the semi-major axis behaviour of two particles with starting semi-

major axes of 2.304 AU (dotted line) and 2.306 AU. The former undergoes non-resonant

motion suffering occasional perturbations that affect its motion. The second particle also

begins outside of the main resonances, but is subject to a perturbation at ∼ 2000 years

which is significant enough for it to reach the 10:3 Jovian resonance, the resonance centre

of which is at ∼ 2.33 AU. However, the perturbation for this particle occurs after the first

1000 years, and therefore it is not seen in Figure 5.26.

Possible signatures of other resonances can be investigated by superimposing the

resonant strengths of Gallardo (2006b) on to the maximum oscillation distribution (see

Figure 5.29). Here eighty strengths between 2.0 AU and 5.1 AU are computed (5.1 AU is

chosen instead of 5.0 AU to allow inclusion of the 3:1 Jovian resonance at 2.50045 AU).

Inputs to Gallardo’s ‘atlas’ program used are maximum q and p of 20, and maximum

|p + q| of 30. Orbital element inputs eccentricity, inclination and argument of perihelion

are the approximate Taurid values of 0.83, 5.4◦ and 115.4◦ respectively. The resulting list

of resonances includes those of planets from Mercury to Saturn. The square root of the

Gallardo strengths is taken for clarity: values should be considered indicative of relative

strength only.

Figure 5.29 shows that strong features seen in the numerical distribution correspond

to the locations of the 4:1, 11:3, 7:2, 10:3, 13:4 and 3:1 Jovian resonances. In addition,

weaker features may be evidence of the 15:4 and 16:5 resonances with Jupiter. Gallardo’s

strength program predicts that the 1:3 resonance with Earth and the 1:5 resonance with

Venus should be the most important resonances with planets other than Jupiter. We are

not able to verify this, possibly due to interference with other resonances.

We are most interested in verifying that the resonant width resulting from our one-

planet approximation (with Jupiter only) agrees well with that from the integrations

including all planets. To this end we superimpose the approximate oscillation width

distributions from integrations with all planets and with Jupiter only (see Figure 5.30).

The widths of the 7:2 resonance and 4:1 resonances do not vary at this resolution, and

we are thus satisfied that perturbations from other planets will not significantly interfere

with the edges of these strong Jovian resonances. Integrations with all planets can take

seven times longer to run (∼ 3 hours for 200 particles using HNBody) than integrations

with Jupiter and the Sun only: in consequence, below only the one-planet approximation

is used.
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Figure 5.29: Comparison of visible resonant features to positions of strong resonances of
all planets from Gallardo’s strength ‘atlas’ program.
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Figure 5.30: Resonant features for the region 2.0–2.5 AU, with a comparison between the
case with Jupiter only (crosses), and the case with all planets (dots). Errors in resonant
widths are within 0.002 AU.
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Figure 5.31: Comparison of the resonant strengths determined by Gallardo for eccentric-
ities of 0.2 and 0.83. Notice that the relative importance of resonances of inner planets
is higher for smaller eccentricity. Also note the increase in the relative importance of
the 7:2 resonance with higher eccentricity. The locations of the 1:3 Earth and 1:5 Venus
resonances are marked, but no librational evidence was found to support their detection.
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Figure 5.32: Comparison between the resonant feature map with Jupiter only, and includ-
ing all planets, for an eccentricity of 0.2. Crosses are Jupiter only, dots are all planets.
Errors in resonant widths are within 0.002 AU. Resonance features (and thus widths) of
the strong 4:1 and 7:2 Jovian resonances are in agreement within uncertainties.

Gallardo’s resonant strengths program demonstrates that resonances with rocky

inner planets are relatively more important than higher order Jovian resonances (such

as 7:2 and 8:3) at low eccentricities (Figure 5.31). This is because these inner planet

resonances are low order, and so their strength increases at a lower rate with eccentricity

than the higher order resonances. However, Jovian resonances are always the strongest

resonances present due to the large mass of Jupiter. We therefore repeat this test at a

low eccentricity of 0.2 (see Figure 5.32). It can be seen that the low-order resonances

of Earth and Mars are now comparable in strength to the 7:2 Jovian resonance. The

strong 4:2, 7:2 and 3:1 Jovian resonances are present. However, we are able to confirm

the presence of librations within the 1:3 Earth, 5:8 Mars and 3:5 Mars resonances. Again

the resonances from the inner planets do not affect the width of Jovian resonances. Inner

planet resonances can be seen as small variations from the Jupiter-only width distribution.

Finally, we note the existence of several large asteroids in the Taurid region. We now

repeat the above integration for e = 0.83, with the addition of four asteroids. This should

indicate whether such asteroids are able to significantly alter the orbits of particles in this

region. The asteroids included are Ceres, Pallas, Juno and Vesta, which have semi-major

axes of approximately 2.7664, 2.7729, 2.6716 and 2.3616 AU respectively. The results
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find no significant differences from Figure 5.26. This confirms that the exclusion of major

asteroids and planets apart from Jupiter has no significant effect on the resonant width

of the 7:2 Jovian resonance.

5.8 Comparison of Analytic, Semi-Analytic and Numerical Meth-

ods

Here we will directly compare the resonant width values (in semi-major axis) that are

given by the three methods outlined in this chapter. The analytic method is as given in

Murray and Dermott (1999): it is derived using a simple pendulum model, and applies in

the circular, planar restricted case (see Section 5.1.5). The semi-analytic method is that

developed in Gallardo (2006b) (see Section 5.1.6), which can output a ‘strength’ for a given

resonance, at a given set of orbital elements. The numerical method (see Section 5.2) is

the subject of the majority of this chapter, and involves a numerical determination of the

resonant width directly from integrated particle orbits. The purpose of this comparison

is to determine the accuracy of the numerical method, and to verify that it agrees with

the resonant widths expected by other methods.

The HNBody numerical method will have limitations in accuracy. The procedure

presently has only Sun, Jupiter and meteoroid particles as input masses: neglecting other

planets (in particular, minor planets) may have some effect on dynamics, though this

does not have a significant effect on resonant widths (see Section 5.7). Radiation effects

are also ignored: this again is only likely to cause a small error, in consideration of the

relatively large mass of CMOR particles used in the integrations.

However, the numerical method is not restricted by the assumptions of other meth-

ods. The analytic approximation requires low eccentricities and zero inclinations, and the

Gallardo semi-analytic method assumes that the perturbing planet has zero eccentricity

and inclination. HNBody integrations make no orbital element assumptions, and are

valid for all orbital elements. Both the analytic and semi-analytic methods deal with

an individual resonance, which does not allow for interference effects between different

resonances. HNBody considers all gravitational effects, so interference effects of included

planets are accounted for. The comparison methods will also not include separate resonant

splitting components of the same resonance: these are dealt with by HNBody.

In consequence, there will be intrinsic discrepancies between the brute-force numer-

ical HNBody method and the verification methods, but there should still be a good level

of agreement, particularly if HNBody is limited in order to restrict the differences (by not

adding gravitational effects of other planets; and by restricting eccentricity and inclination

of the perturbing body to zero). Thus, the eccentricity and inclination of Jupiter are set
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to zero for agreement between the three methods.

The numerical widths used here are the ‘width’ of each resonant feature. To obtain

an accurate width we first determine the mean longitudes that describe the resonant

centres (see Section 5.5). We can estimate these using the equations for the most impor-

tant resonant argument for each resonance (see Section 5.3.2), using the method given in

Section 5.5.1. There will be a small error in this due to the presence of resonant splitting

terms, but as seen in Section 5.5.2 this will not create a large error in the resulting resonant

width.

Resonance Numerical Analytic Semi-Analytic % Variation % Variation
Analytic Semi-Analytic

2:1 0.0635 0.0701AU 0.0648AU −9.4% −2.0%

Table 5.1: Numerical resonant widths, analytic width, and semi-analytic widths approx-
imations for 2:1 resonances. Percentage variations are with respect to the numerical
widths.

Eccentricity Numerical Analytic Semi-Analytic Variation Variation
(×10−3AU) (×10−3AU) (×10−3AU) Analytic Semi-Analytic

0.10 0.00870 0.0960 0.0091 −9.4% −4.1%
0.15 0.01375 0.0144 0.0138 −4.5% −0.36%
0.20 0.01825 0.0191 0.0183 −4.5% −0.27%
0.25 0.0225 0.0239 0.0226 −5.9% −0.044%
0.30 0.0275 0.0287 0.0267 −4.2% +3.0%
0.40 0.0365 0.0383 0.0344 −4.7% +6.1%
0.50 0.0460 0.0479 0.0413 −4.0% +11%
0.60 0.0545 0.0574 0.0474 −5.1% +15%
0.70 0.0625 0.0670 0.0528 −6.7% +18%
0.83 0.0700 0.0795 0.0588 −12% +19%

Table 5.2: Numerical resonant widths, analytic width, and semi-analytic widths approx-
imations for 3:1 resonances. Percentage variations are with respect to the numerical
widths: that is, a variation of −7.27% indicates the analytic width is 92.73% of the
numerical width.

For the analytic case, we can use equation 5-3 to provide direct comparison values.

However, its use is expected to be limited to low eccentricities (below values of 0.3) due

to the circular orbits assumption inherent in its derivation. In order to evaluate this

equation, we must also know the values for the relevant direct term in the expansion of

the disturbing function fd(α). These are difficult to compute, but are given as products

αfd(α) with α = a/a′ for simple first and second order internal resonance in Murray and

Dermott (1999). We therefore restrict this comparison to the 2:1 and 3:1 resonances: at

an eccentricity of 0.1 for the 2:1 resonance (as high eccentricity orbits in the vicinity of the
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2:1 resonance are subject to close encounters with Jupiter); and at eccentricities between

0.1 and 0.83 for the 3:1 resonance.

To compare the resonant strengths calculated by Gallardo’s semi-analytic method

with our numerical approach, we must convert Gallardo’s strengths into semi-major axis

units. This is given in Section 5.1.6 in equations 5-7 and 5-8, which we developed from the

circular planar restricted form of the disturbing function given by Murray and Dermott

(1999). The resulting resonant widths are thus are only valid for low eccentricity, zero

inclination cases.

Table 5.1 sumarises the analytic, semi-analytic and numerical widths for the 2:1

resonance; while Table 5.2 contains the same information for the 3:1 resonance. The

numerical widths are divided by two in order to give a half width or amplitude that can

be directly compared to the analytic and semi-analytic amplitudes. Variations between the

methods are also given. It can be seen that these do not exceed 10% for low eccentricity

values e ≤ 0.4. As expected, higher differences between the methods occur at high

eccentricities, as a result of the circular assumption used to generate the analytic and

semi-analytic equations. This is also illustrated in Figure 5.33, which shows that the

analytic strength model we use (given by equation 5-6) diverges from Gallardo’s resonant

strengths after e ∼ 0.4.

Because the αfd(α) terms cancel out for the Gallardo width equation for comparison

of the Gallardo method and the numerical method only we are not restricted to certain

simple resonances such as the 3:1 and 2:1 resonances. We do not study the 7:2 resonance

here as this is very weak at low eccentricities. Table 5.3 compares the numerical and

Gallardo widths for the 4:1 resonance at various eccentricities. The percentage differences

in the methods are less than ∼ 5% for all eccentricities except e = 0.83.

Eccentricity Numerical Semi-Analytic Variation
(×10−3AU) (×10−3AU) Semi-Analytic

0.10 1.29 1.32 −1.5%
0.15 2.40 2.52 −4.8%
0.20 3.76 3.92 −4.3%
0.25 5.35 5.49 −2.6%
0.30 6.98 7.39 −5.3%
0.40 10.70 10.80 −0.93%
0.50 14.55 14.60 −0.34%
0.60 18.50 18.35 −1.1%
0.70 22.75 21.87 −3.9%
0.83 27.25 25.73 −6.0%

Table 5.3: Numerical resonant widths, analytic width, and semi-analytic widths approxi-
mations for 4:1 resonances. Percentage variation are relative to the numerical width.
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Figure 5.33: Comparison of ‘Gallardo’ strengths determined analytically (given by equa-
tion 5-6), and the Gallardo strengths given by the ATLAS program, for the 3:1 Jovian
resonance. It can be seen that divergence between the Gallardo strengths given by the
ATLAS program, and those we determine from the analytic approximation diverge after
an eccentricity of ∼ 0.4. The divergence here indicates the error from our conversion of
the Gallardo strengths (in energy units) to semi-major axis widths, using equation 5-7

We also test whether the analytic and semi-analytic widths are within the resolution

uncertainties of the numerical widths. This resolution uncertainty arises as a result of the

step-size between the starting semi-major axes values of each particle used to create the

resonant feature. For the 2:1 resonance this is 0.002; for the 3:1 resonance this is between

0.0002 and 0.001 AU; and for the 4:1 resonance this is between 0.00003 and 0.0005 AU. For

the 2:1 resonance, neither the semi-analytic or analytic values are within the uncertainty.

For the 3:1 resonance, the analytic and semi-analytic values at e = 0.1 are not within the

uncertainty of the numerical value. However, those values between e = 0.15 and e = 0.4

are. For higher eccentricities we do not expect an agreement between the method, and

indeed the semi-analytic and analytic values are again not within the uncertainties of

the numerical widths. For the 4:1 resonance however, six of the eccentricity values do

result in agreement, and four do not, with no particular preference of agreement at low

eccentricities. We conclude that we cannot expect our numerical method values to agree

with the analytic or semi-analytic values within the uncertainties. This is not unexpected,

due to the limitations of the various methods, as described at the beginning of this section.
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We now discuss the adequacy of ∼ 10% differences between the numerical widths

and the comparison methods for eccentricities e < 0.4. It is difficult to know what

fraction of the variation is from HNBody, and what is fraction is a result of inadequacies

of the analytic and semi-analytic approximations. The variation is limited by setting the

eccentricity and inclination of Jupiter to zero. Nevertheless, the worst-case scenario is

that the differences in the numerical resonant widths are in fact ∼ 10%: this can be

considered an upper limit for the total inaccuracy of this numerical width method. While

the accuracy of the numerical width method is interesting from a theoretical perspective,

in this case we are interested in the accuracy required for application to meteor orbit radar

data. Such 10% uncertainties are supportable for this problem: CMOR uncertainties in

semi-major axis can be ∼ 34 − 40% in individual Taurid orbits.

5.9 Summary

In this chapter we have determined a numerical value for the width of the 7:2 resonance

for Taurid-like orbits, and evaluated the agreement of this method with respect to two

existing methods for determining the resonant width. The former produced a resonant

width of (0.047 ± 0.001) AU. The latter has provided what may be considered an upper

limit of this error in the numerical width method of ∼ 10%. We can therefore conclude

that the resonant width for the 7:2 resonance for Taurid orbital elements is:

(0.047 ± 0.005)AU.

This is in agreement with the resonant width given in Asher and Clube (1998). Our

resonant width method is able to give accurate results for orbits with high eccentricities,

and is notably capable of providing a physical semi-major axis width, as opposed to the

resonant ‘strengths’ given by the the work of Gallardo (2006b). The simple conversion

formula used to convert the Gallardo resonant strengths to resonant widths is found

to provide results that agree with our numerical width values to within ∼ 10% for

eccentricities below 0.4. The analytic width method is also found to agree with the

numerical widths to this level. Thus, to this level of accuracy, both the Gallardo and

analytic methods are able to give reliable width estimates provided e < 0.4. However, our

simple numerical width method is capable of determining the importance of resonances at

any orbital elements (as given by Gallardo (2006b)), and additionally provides a physical

value whch defines the region of influence of the resonance.

One benefit of the Gallardo strength progam is the computation time: the strengths

of a large number of resonances can be calculated to high precision in seconds; while the

numerical width method may require 20 - 30 minutes to calculate the resonant width (or
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several hours if several planets are included), and requires use of both HNBody and a

MATLAB script to process the output orbital elements. This numerical width method is

thus most useful in the case where information is required on a specific resonance, or in

which there is a requirement for a semi-major axis width, as is the situation here. In other

situations, the method of Gallardo (2006b) may provide a faster approach to analysing

the effects of several resonances for objects with high eccentricity or inclination.



Chapter 6

Mass Selection Effects in Resonant Swarms

As discussed in Section 4.3, evidence for resonant swarms of meteoroids exists largely in

visual meteor data. In this work we are concerned with radar detection of meteoroids,

which involves particles of a much smaller mass regime. It is therefore important to know

the mass distribution of swarm particles, and in particular whether we expect there to be

more particles of visual or radar-detectable mass in the Taurid resonant swarm. In other

words, we need to determine whether the mass distribution of the swarm helps or hinders

efforts to observe radar resonant Taurids.

If we assume that the formation mechanism for these swarms is by ejection of

particles by a librational or near librational comet directly into the nearby resonance,

then the value of the ejection velocity of such particles is critical for determining whether

individual particles are likely to enter the swarm. Particles with high ejection velocities

are expected to assume an orbit far from the resonance, while particles with low ejection

velocities are likely to assume orbits close to the parent comet, and thus also be librational

or near librational. As, in general, ejection velocity (as given by models) is related to

particle mass, this will produce a filtering of ejected particles by mass (see Section 4.3.5).

This is discussed further from Section 6.1 to Section 6.16.

Radiation pressure can alter the orbit and apparent location of the resonance for

small particles and thus alter the trapping of very small particles in the resonance. Radi-

ation effects are discussed in Section 6.17. Poynting-Robertson inspiralling may similarly

strip particles, but is not expected to be important for resonant particles except as a

result of gravitational perturbations (see Section 6.18.1).

6.1 Comet Ejection Velocities and Mass Selection Effects in

Resonance Particles

The heliocentric velocity of a particle ejected from a comet is the sum of the comet’s

velocity and the ejection velocity the particle receives. For gas drag cometary ejection,

this is mass dependent as given by simple cometary ejection models, with a heavy particle

133
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having a lower ejection velocity. Ths situation is different for the case of fragmentation

ejection of particles (see section 6.2). Here we will examine the first situation. If the

ejection velocity is small (larger particles), the particle’s velocity will be very close to

the original comet velocity, and the orbit it assumes will be very similar to that of the

comet. Similarly, a smaller particle will have a larger ejection velocity, which will result

in a particle orbit that is much further from the comet orbit. If this comet is in or near

libration, there is then a possibility that the ejected particles will librate, and thus form

a resonant swarm. Whether this occurs is dependent on the orbit and thus the velocity,

and therefore the mass of the particle: large particles have orbits more similar to the

librational orbit of the comet than small ones and, in consequence have a higher chance

of librating.

It is necessary to model the ejection behaviour of cometary particles in order to

understand what fraction (or amount) is likely to land in a resonant swarm. This is

achieved by integrating the orbits of particles ejected from a comet and using the resonant

argument to establish whether each particle is librating. The particles span a variety of

ejection angles using spherical coordinates θ and φ , and a range of points of ejection along

the comet orbit, determined by the true anomaly ν or mean longitude λ. The particle

mass, specified by effective radius s, is also varied. This model is used to determine

whether particles of AMOR or CMOR mass ranges are likely to be present in the 7:2

Taurid resonant swarm.

Radiation pressure will dictate a minimum particle size for an ejected particle that

can survive in the 7:2 resonance, such that particles below this size limit will assume

hyperbolic orbits that may cause them to be lost from the Solar System. This mass limit

is dependent on the eccentricity of the particle, and the β ratio dictated by the radius

and density of the particle (see Section 2.3.5). The β required for a particle ejected at

perihelion to be lost from the Solar System is given by Burns et al. (1979) as:

β ≥ (1 − e)

2

and the β required for ejection at aphelion is given by:

β ≥ (1 + e)

2
.

For Taurid-type particles, with eccentricity 0.83, this implies that β ≥ 0.085 is required

for loss of the particle at perihelion, and β ≥ 0.915 is required at aphelion. We can thus

calculate that particles of a minimum size of 2.68 µm will survive (with orbits that are not

hyperbolic) when ejected at perihelion, but particles down to a minimum size of 0.25 µm
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will survive if ejected at aphelion. Given that both limits are lower than the limiting mass

for AMOR and CMOR particles (∼ 20 µm and ∼ 100 µm respectively) we expect radar

particles to be capable of surviving after ejection from the comet. We now investigate

their capture in the 7:2 resonance.

6.2 Ejection of Cometary Particles

The motion of ejected particles is governed by the comet’s position and velocity, and by

the ejection velocity they receive. The former can be determined from the comet’s orbital

elements; the latter requires application of an ejection velocity model for the comet.

The current view of the ejection of dust particles from comets, which then form me-

teoroid streams, stems from the 1950 model of Fred L Whipple (Whipple, 1950) (Whipple,

1951). In this he introduced his ‘icy-conglomerate’ model of the nucleus, more commonly

referred to as the ‘dirty snowball’ model. This envisages a spherical ball of ice embedded

with dust grains with radii less than a few centimeters. These ices consist of H2O, CO2,

NH3 and CH4, among others. Currently we understand this model to be inadequate, with

nuclei composition known to consist of much higher levels of solid meteoritic material,

giving rise to the term ‘icy dirtball’ (Jenniskens, 2006).

Regardless, the ejection mechanism for cometary particles as proposed by Whipple

(1950) still holds. As the comet in its orbit approaches the Sun, it reaches a point at

which sublimation of the surface ice is possible: within ∼ 3 − 4 AU of the Sun for H2O;

larger distances for other ices. This process releases dust particles from the comet, which

are then propelled away from the nucleus by momentum transfer from gas molecules.

Alternately, ejection may be as the result of a fragmentation event, which may

produce small particles as well as large resulting fragments. Such a mechanism would

populate the resonance in the same way as the cometary ejection modelled here, except

that the ejection velocity would be different. The ejection velocity of particles produced by

a fragmentation event is difficult to define. It would also be dependent on the mechanism

by which the fragmentation event occurred, such as by collision with an asteroidal body,

by comet spin-up, or by disruptions caused by tidal forces. In literature, models of the

ejection of particles by comet fragmentation use a wide variety of ejection velocities.

For Comet 79P/Schwassmann-Wachmann 3, Weigert et al. (2005) use ejection velocities

between 1 ms−1 and 100 ms−1. For a fragmented parent comet for the Quadrantids,

Tanigawa et al. (2010) uses 1 ms−1 while Wiegert and Brown (2004) use velocities between

1 ms−1 and 1000 ms−1. For fragmentation of comet 3D/Biela, Jenniskens and Vaubaillon

(2007) use ejection velocities of ‘a few ms−1’. Jenniskens and Lyytinen (2005) expect that

ejection velocities of meteoroids as a result of comet fragmentation will be comparable to
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or lower than ejection velocities due to cometary activity (under a Whipple-type model:

see Section 6.2). In general, these ejection velocities for fragmentation models do not

differ significantly from those used for cometary activity ejections. The most significant

difference to the model that we develop is that these simple estimates for the ejection

velocity do not vary with particle mass. In addition, ejection by fragmentation can occur

further from perihelion, whereas cometary activity is limited to within ∼ 2 or 3 AU from

the Sun. Given the uncertainty in the ejection velocities required, we do not develop a

model of particles from a fragmented comet. It is likely that both ejection mechanisms

produce a significant amount of Taurid meteoroids.

6.2.1 Ejection Velocity Models

The velocity obtained by particles ejected from the comet is important for modelling and

understanding the formation and evolution of meteoroids streams.

An early model for this was provided by Whipple (1951). This model adds the force

from the momentum transferred to the particle to the gravitational force of the comet

restraining the particle. This produces the following formula for the relative velocity of

the particles at infinity, assuming ρparticle = 4 gcm−3 and ρcomet = 1 gcm−3:

V∞ = 3.28 × (
1

nsr
9

4

− 0.052Rc)
1

2 R
1

2
c

in ms−1. Here n is the efficiency of the solar radiation in sublimating cometary gases; s is

the radius of the ejected particles (m); r is the heliocentric distance (AU); and Rc is the

radius of the comet (km).

If we generalise this for ρ = ρparticle and ρc = ρcomet, and combine everything under

the square root we obtain, in ms−1:

V∞ =

√
43.0Rc

ρnsr
9

4

− 0.00559ρcR2
c

A number of assumptions are inherent in his derivation. These include that water

vapour dominates the momentum transfer from gas to dust; that this water vapour evapo-

rates radially from the comet surface; that the particle velocity is always small compared

to the gas velocity; that the gas velocity obeys a Maxwellian speed distribution; that

evaporation only on the sunward side of the comet need be considered; that the whole

sunlit face is active and that the radiation balance is defined by input solar radiation and

output blackbody radiation.

While all these assumptions produce inaccuracies in the model, the most important

to address is the radiation balance. Whipple’s model neglects the role of heat loss to
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sublimation: indeed, sublimation of ices is the primary heat loss mechanism of comets

close to the Sun. We expect radiation to only be important once the comet is beyond

about 2.5 AU from the Sun.

Jones (1995) accounts for this heat loss in his model of cometary dust ejection, and

adds the effect of the adiabatic expansion of the gas to the gas velocity. The result is an

equation similar in form to Whipple’s, with varying coefficients, but which neglects the

gravitational attraction of the comet nucleus:

V∞ = 20.3R
1

2
c m− 1

6 ρ− 1

3 r−1.038

with m the ejected particle mass in kg, and other parameters are as given for the Whipple

model. This expression still assumes the resulting meteoroid speed is low compared to

that of the gas molecules. Additionally, Jones (1995) includes a model for ejection in jets

from a discrete region, and finds that the resulting speed is almost independent of the

polar angle of ejection, but varies strongly with the size of the active region or spherical

‘cap’ of the water ices. This is modelled with an empirical fit to data, giving:

V∞ = V∞,isotropic[sin
α

2
]0.37

where α is the ‘cap angle’, denoting the size of the active region, and:

V∞,isotropic = 41.7R
1

2
c m− 1

6 ρ− 1

3 r−1.038

is the velocity for a spherical comet with uniform solar flux over its surface equal to the

actual solar flux at the sub-solar point: this is a simple approximation which neglects

the effect on velocity of variations in the solar zenith angle of the cap. However, it will

be sufficiently accurate in the limit of a small cap, and can be replaced with a spherical

model (as given above) in the case of a large cap. In particular, Brown and Jones (1998)

choose an ejection cone angle (the angle of the particle trajectory away from the comet)

of 90◦ which, from empirical models in Jones (1995), implies a cap angle of 60◦. This

gives:

V∞ = 32.3R
1

2
c m− 1

6 ρ− 1

3 r−1.038

Brown and Jones (1998) also propose a modified heliocentric distance dependence,

encompassing the observational result that the heliocentric distance dependence of the

velocity is closer to V∞ ∝ r−0.5:

V∞ = 32.3R
1

2
c m− 1

6 ρ− 1

3 r−0.5
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in units ms−1.

Various other models for comet ejection velocities have been proposed. In par-

ticular, the hydrodynamic models of J F Crifo and collaborators have a very different

form compared to that of Whipple. In Crifo (1995) a ‘distributed production’ model is

developed, in which sublimation causing release of dust particles occurs not only on the

spherical nucleus surface, but also throughout the coma. This is possible as fragments of

intermixed ice and particles are ejected from the comet, which then undergo sublimation.

His ejection velocity is expressed as:

V∞(X) =
W

0.9 + 0.45X0.615/2 + 0.275X0.615

where W is roughly the terminal gas velocity (of sublimated gas):

W =

√
(
γ + 1

γ − 1
)
γkBT 0

g

mg

where γ is the ratio of specific heats (equal to 4
3
); kB = 1.38 × 10−23 m2kgs−2K−1 is the

Boltzmann constant; Tg is the gas temperature of the comet’s coma; and mg is the mass

of a gas molecule, taken to be that of H2O.

X =
2πadρdWrh

mgQg

where ad is the ejected dust particle radius, and ρd its density; rh is the heliocentric

distance (AU); mg is the mass of one gas molecule; and Qg is the total gas production

rate. As with the Whipple-type models, subtraction of the gravitational attraction of

the nucleus (or escape velocity Vesc = 2Gm
r

= 8π
3

GρcR
2
c) may be necessary, using V 2

eject =

V 2
∞ − V 2

esc. This model is most valid at high gas densities (small rh).

In Crifo and Rodionov (1997) an altered version of this model is given, with:

V∞ = WΦ =
W

1.2 + 0.72
√

ad/a∗

where

W =

√
(
γ + 1

γ − 1
)
γkBT

mg

as before, and

a∗ =
mg(1 − A)c�

ρdαsLsV 0
g

Rc
f(rh)cosz

r2
h

is a characteristic particle size. Here A is the comet albedo; c� = 1353 Wm−2 is the
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solar flux at Earth; αS is the coefficient of sublimation for H2O (assumed to be 1); Ls

is the latent heat of sublimation; V 0
g ∼

√
γkBT/mg is the initial gas velocity; Rc is the

comet nucleus radius; f(rh) is the active surface icy area fraction; z is the zenith angle;

and rh is the heliocentric distance. This expression cannot be used in situations where

the fluid approximation is invalid (true at large enough values of rh and z) or where the

gravitational force from the comet nucleus becomes important. The latter occurs when

ad ∼ am, where am is the maximum ejectable grain radius. The value am is found by

considering the point where the free-molecular drag force on a spherical particle at the

surface is equal to the gravitational attraction of the nucleus, at which point the particle

would have an ejection velocity of zero.

Various authors have compared the different ejection velocity models, with the aim

of establishing the most appropriate for their situation. Five models of interest are:

1. Whipple (1950): V∞ = 3.28 × ( 1

nsr
9
4

− 0.052Rc)
1

2 R
1

2
c ms−1

2. Jones (1995): V∞ = 32.3R
1

2
c m− 1

6 ρ− 1

3 r−1.038 ms−1

3. Crifo (1995): V∞(X) = W
0.9+0.45X0.615/2+0.275X0.615 where W is roughly the terminal

gas velocity: W =
√

γ+1
γ−1

γkBT 0
g

mg
ms−1 and X = 2πadρdWrh

mgQg

4. Crifo and Rodionov (1997): V∞ = WΦ = W
1.2+0.72sqrtad/a∗

where W =
√

γ+1
γ−1

γkBT
mg

as

before, and a∗ = mg(1−A)codot

ρdαsLsV 0
g

Rc
f(rh)cosz

r2
h

ms−1

5. Jones (1995) modified: V∞ = 32.3R
1

2
c m− 1

6 ρ− 1

3 r−0.5 ms−1

Brown and Jones (1998) compare models (2), (2) with a parabolic velocity dis-

tribution (to account for variations in the particle shape), (3) and (5) (with the Crifo

velocity distribution). They conclude that (5) (the Jones (1995) model with a modified

heliocentric dependency) provides the best fit between their simulated Perseid stream

and observed features. Gockel and Jehn (2000) test the same set of models against

1999 Leonid observations and find the Crifo (1995) model with a high particle density

(ρ = 4000kgm−3) provides the best fit (though it is noted that the particle density chosen

has a greater effect on how close the fit is than the ejection model chosen). Welch (2003)

tests models (2),(3),(4) and (5), and finds the Crifo and Rodionov (1997) model produces

streamlets that are too narrow, and selects the standard Jones (1995) model (number (2))

for use in his work on the Leonid stream as it requires less fine tuning of parameters.

Stream modellers continue to use different models: Vaubaillon, Colas, and Jorda

(2005) uses Crifo and Rodionov (1997); Meng (2005) uses Jones (1995) with V∞ ∝ rα.



140 Chapter 6. Mass Selection Effects in Resonant Swarms

It is apparent that though the hydrodynamic models of Crifo et. al. may provide more

accurate models in some cases, they are more difficult to implement.

For our present problem, which involves no long term integration of orbits over time,

a simple ‘Whipple’ form model should be sufficient. We select the Jones (1995) model,

with a heliocentric radius distribution V∞ ∝ r−0.5:

V∞ = 32.3R
1

2
c m− 1

6 ρ− 1

3 r−0.5

where Rc is is km, m is in kg, ρ is in kgm−3 and r is in AU, and the velocity V∞ is in ms−1.

However, for completeness we add the gravitational term, given by V 2
esc = 2Gm

r
= 8π

3
GρcR

2
c ,

using V 2
eject = V 2

∞ − V 2
esc (however, we rename Veject as V∞). This gives a final velocity

model of:

V∞ =

√
(32.3R

1

2
c m− 1

6 ρ− 1

3 r−0.5)2 − 0.00559ρcR2
c . (6-1)

6.3 Modelling the Ejection of Cometary Particles

We employ the HNBody numerical integrator to assist in developing an understanding of

7:2 resonant particles in the Taurid stream. We simulate ejection of cometary particles by

releasing particles from various positions along the comet’s orbit, with velocities given by

the sum of the comet velocity and the ejection velocity. A variety of ejection angles are

used: these are produced by changing the relative sizes of the x, y and z ejection velocity

components. The only other objects included in the integrations are Sun, Jupiter and a

model comet.

This procedure requires the determination of the types of the comet required to inject

particles into the 7:2 resonance. Two clear candidates are the current Comet 2P/Encke,

and the proto-Encke body proposed by Asher and Clube (1993). Comet 2P/Encke itself

is not directly in the 7:2 resonance: proto-Encke, however, may have exhibited strong

or weak resonant activity for at least part of its lifetime, allowing it to more easily

populate the resonance with cometary dust. We test three model cometary bodies: Comet

2P/Encke in its current orbit (Comet 1); a model Comet Encke in a proto-Encke orbit

(Comet 2); and a proto-Encke fragment (of size proposed in Asher and Clube (1993) in

their proposed proto-Encke orbit (Comet 3)). The orbital parameters and masses used

for all comets are given in Table 6.1. Orbital parameters for Comet 2P/Encke are from

Jenniskens (2006); the mass is as determined in Sosa and Fernández (2009). The orbital

elements and mass of a potential (unobserved) proto-Encke fragment are as estimated by

Asher and Clube (1993).

A modification of the ejection velocity formula of Jones (1995), given in equation 6-

1, is used here. We understand that the simplicity of the model, and our choice of model,
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Comet mass (kg) mass (M�) a (AU) e i Ω $
2P/Encke 9.2 × 1013 4.623 × 10−17 2.21 0.85 11.93 334.72 160.99
Disp. Encke 9.2 × 1013 4.623 × 10−17 2.256 0.847 11.9 334.2 160.2
Proto-Encke 2.5 × 1018 1.256 × 10−12 2.256 0.847 11.9 334.2 160.2

Table 6.1: The mass and orbital elements for three model comets. We may refer to Comet
2P/Encke, Displaced Comet Encke (Disp. Encke) and proto-Encke in later text as ‘Comet
1’ , ‘Comet 2’ and ‘Comet 3’ respectively.

Body mass (kg) mass (M�) a (AU) e i Ω $
Jupiter 1.898 × 1027 9.538 × 10−4 5.202504 0.0489 1.3 100.5 14.6

Table 6.2: Mass and orbital elements for Jupiter, as used for the comet ejection model.
Values are from the Astronomical Almanac (2009)

may affect the accuracy of our results: this is addressed below (Section 6.12). The density

of Taurid meteoroids, required to provide the density of ejected particles ρm, is not well

known. In general, we do not expect the density of cometary particles to exceed 2700

kgm−3 as such densities usually apply to meteoroids of asteroidal origin. However, there

may be reasons to believe that Comet Encke does not possess a typical comet composition.

Borovic̆ka (2006) notes that Taurid meteoroids are ‘stronger’ than those of Halley-type

comets which have a density 800 kgm−3. Konovalova (2003) finds the density of bright

Taurids to be 2300-2800 kgm−3, with an average of 2500 kgm−3. In addition, Sosa and

Fernández (2009) find the density of Comet 2P/Encke itself is 800 ± 800 kgm−3, using

the mass they determined and an estimated comet radius of 3 km. These studies suggest

that the average Taurid particle density lies in the range 800-2800 kgm−3. We thus use

test values of 1000 kgm−3 and 2500 kgm−3.

The meteoroid mass m and comet distance from the Sun rh are altered by varying

the meteoroid radius s and comet true anomaly ν (or mean longitude λ) respectively. For

this we use rh = a(1−e2)
1+e cos ν

and assume spherical particles such that m = 4
3
πs3ρ.

The effective comet radii used are given in Table 6.3. The radii of Comet 2P/Encke

is as determined in Fernández et al. (2000). Their given uncertainty is ±0.3 km; but

in consideration of the range of radius values found for Comet 2P/Encke (discussed in

Sosa and Fernández (2009)) we will later adopt an uncertainty of ±1km in this value.

The radius for the proto-Encke fragment is calculated from the mass given by Asher and

Clube (1993) (and shown in Table 6.1), and a density for the current Comet 2P/Encke

from Sosa and Fernández (2009) of 800 kgm−3.

A number of ejection angles and comet mean longitudes at particle ejection are

possible. We start by considering a simplified case: that of a particle ejected at perihelion

in the direction of the comet’s motion. The resulting ejection velocity is expected to
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Comet Rc

Comet 1: 2P/Encke 2.4km
Comet 2: displaced Encke 2.4km
Comet 3: proto-Encke 14.4km

Table 6.3: The effective comet radius Rc (km) used for each of the three model comets.

be greatest at this point, as the resulting difference in the meteor orbit from the comet

orbit will be maximised. This situation is shown in Figure 6.1. The ejection of particles

in different directions and ejection from different points along the comet orbit is then

included.

Figure 6.1: Dust particle ejection at perihelion in the direction of the comet’s motion.
This gives the ejection velocity that results in maximal variation between the orbit of the
comet and the orbit of the ejected meteoroid.

HNBody can accept input orbit coordinates as either orbital elements, or as Carte-

sian position and velocity components (in an arbitrary reference frame). We assume the

frame here is a heliocentric coordinate system with the ecliptic plane as the reference

plane in which the orthogonal X and Y vectors lie. The Z vector is perpendicular to both
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and to the ecliptic plane. Thus the X, Y and Z vectors are Sun-centred. This is also seen

in Figure 6.1. Velocity vectors VX , VY and VZ are the velocity components along these

directions. Orbital element inputs are a, e, i, $, Ω and λ.

Since the velocity of the ejected meteoroids is the sum of the comet and ejection

velocities, it is more appropriate to deal with input parameters as Cartesian position and

velocity. Output coordinates are osculating orbital elements.

A conversion from the initial orbital elements of Jupiter and the comet into he-

liocentric Cartesian position and velocity coordinates is required. This is accomplished

using HNBody. By integrating Jupiter and comet with orbital element inputs but with

Cartesian coordinate output specified, the first line of the resulting output file will provide

the Cartesian coordinate conversion of the input orbital elements. Jacobi coordinates are

used. We initially start both the comet and Jupiter at the mean longitude of perihelion

of the comet.

This conversion process also provides part of the meteoroid parameters. The po-

sition of the comet (X, Y and Z) gives the position of the meteoroid; and the velocity

components of the comet (VX , VY , VZ) are added to the ejection velocity components

to obtain the final meteoroid velocity components. The following section involves the

determination of these ejection velocity components.

6.4 Ejection Velocity Components

The approximate ‘ejection velocity’ of particles leaving the surface of a comet is discussed

above, and is given by equation 6-1. This, however, should more properly be referred to

as a speed, as we have yet to involve a directionality component. We will refer to this

scalar velocity below as V∞.

In the simple case, a vector in the plane of the comet’s orbit is required. Thus we

define Sun-centred Cartesian vectors x, y and z in the orbit plane, which are separate and

distinct from the ecliptic plane vectors X, Y and Z that are described above (see Figure

6.2 for a demonstration of this for Comet proto-Encke (or the displaced Encke)). It is

clear that at perihelion a velocity vector along the y direction defines an ejection in the

direction of the comet’s motion: thus the velocity in the orbit plane is:

V = 0.x̂ + V∞.ŷ + 0.ẑ

or: 


Vx,ej

Vy,ej

Vz,ej


 =




0

V∞

0



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Figure 6.2: Demonstration of vectors with the reference plane as the ecliptic plane (X, Y
and Z) and with the reference plane as the orbital plane of the comet (x, y and z). We
begin with vectors with respect to the orbital plane, and later transform them so the x-y
plane is coincident with the X-Y plane.

In the general case, the ejection velocity vector will have x, y and z components.

This situation is seen in Figure 6.3. This figure shows two angles that completely define

the direction of the ejection velocity vector in three dimensions. These angles can be used

to express the components Vx,ej, Vy,ej and Vz,ej in terms of the scalar velocity V∞:

Vx,ej = V∞ cos θ sin φ

Vy,ej = V∞ sin θ sin φ

Vz,ej = V∞ cos φ

or: 


Vx,ej

Vy,ej

Vz,ej


 = V∞ ·




cos θ sin φ

sin θ sin φ

cos φ


 (6-2)

These vectors are, as discussed above, referred to the plane of the comet orbit. It is

more usual to deal with a coordinate system with the ecliptic plane as the reference plane.

A transformation from the comet orbit frame to the ecliptic frame is therefore required.

This can be given as a combination of three rotations, which are: (i) a z axis rotation

through angle ω; (ii) a x axis rotation through angle I = i; (iii) a z axis rotation through
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Figure 6.3: Demonstration of the ejection angles θ and φ, with respect to vectors with the
reference plane as the ecliptic plane (X, Y and Z) and vectors with the reference plane
as the orbital plane of the comet (x, y and z).

angle Ω. These can be expressed by three rotation matrices:

P1 =




cos ω − sin ω 0

sin ω cos ω 0

0 0 1




P2 =




1 0 0

0 cos I − sin I

0 sin I cos I




P3 =




cos Ω − sin Ω 0

sin Ω cos Ω 0

0 0 1




The ecliptic plane referenced coordinates (X, Y , Z) can then be derived from the

orbit plane referenced coordinates by:




X

Y

Z


 = P3P2P1




x

y

z


 (6-3)
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For completeness, the opposite transformation is given by:




x

y

z


 = P1

−1P2
−1P3

−1




X

Y

Z


 (6-4)

Where P1
−1 is the inverse of P1, etc.

Thus, knowing the argument of perihelion ω = $−Ω, the inclination I = i and the

longitude of the ascending node Ω for the orbit, a transformation P = P3P2P1 can be

constructed. By applying this to the (Vx, Vy, Vz) components of the ejection velocity we

can to obtain (VX , VY , VZ) : the ejection velocity components in a Cartesian coordinate

system with the ecliptic plane as the plane of reference.




VX,ej

VY,ej

VZ,ej


 = P3P2P1




Vx,ej

Vy,ej

Vz,ej


 (6-5)

For a general model with specification of the ejection direction through the an-

gles θ and φ (see Figure 6.3), the heliocentric velocity components are thus given by a

combination of equations 6-2 and 6-5:




VX,ej

VY,ej

VZ,ej


 = P3P2P1 · V∞ ·




cos θ sin φ

sin θ sin φ

cos φ


 (6-6)

We choose here to study the angles 0 to 360◦ in θ and 0 to 180◦ in φ, in 20 degree

steps. The expected ejections areas of the comet surface are further addressed in Section

6.11.1. These angles will not provide a uniform distribution of particles, and as a result

a correction factor of cos (90 − φ) must be applied.

Finally, generalising this model to account for ejection at any given point on the

comet’s orbit requires specification of the true anomaly ν, or mean longitude λ. This

will affect the initial comet position and velocity coordinates. New values for these are

found by altering the mean longitude in the orbital elements set before it is converted

to Cartesian coordinates. This will also affect the scalar ejection velocity V∞, which is

dependent on rh(ν) = a(1−e2)
1+e cos ν

.

A conversion from true anomaly ν to mean longitude λ is necessary, as the true

anomaly is required to determine rh, and the mean longitude is required to give an input

position to HNBody (given in Section 2.1.1). True anomaly values 0◦ to 340◦ in steps of

20◦ are used.
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6.5 Additional Considerations

Before proceeding with ejection of particles and study of their resultant dynamics we

consider two final issues required for running the model.

In particular, careful placement of Jupiter is necessary when ejecting particles at

different positions on the comet orbit. As discussed in Chapter 5, the resonance condition

arises when a certain combination of mean longitudes and angles sums to zero: that is,

for the 7:2 Jovian resonance, when ϕ = 7λJ − 2λP − 5$ = 0. It is shown in Section 5.5.1

that when Jupiter is placed at λJ = 0, the width or strength of the resonance varies with

the mean longitude of the particle, and that two maxima exist at approximately 158.25◦

and 338.25◦. If a similar strategy is adopted here, holding the position of Jupiter fixed

and moving the position of the comet and ejected particles, the effect of the resonance

on the particles would vary strongly as a function of mean longitude as a result of simple

resonant dynamics. In order to find the maximum effect of the resonance on particles

at each point in the orbit, Jupiter is positioned each time so that the location of the

comet is a resonant centre. Using the equation ϕ = 7λJ − 2λP − 5$ = 0 we find that for

each comet mean longitude, there are seven Jupiter mean longitudes that will satisfy this

condition. For example, if the comet is at a true anomaly of 160◦, then in order to have a

resonant centre at this location we can use λJ = 26.9938◦, 78.4224◦, 129.8509◦, 181.2795◦,

232.70807◦, 284.1366◦ or 335.5652◦. The solution closest to the comet mean longitude is

used for the mean longitude of Jupiter.

Secondly, only at perihelion will an ejection velocity vector along the y direction

represent ejection in the direction of the comet’s motion. At all other points the forward

motion direction of the comet can be deduced knowing the components of the velocity

vector in the x and y directions. These can be calculated from the orbital elements. A

conversion from orbital elements to X, Y , Z, VX , VY and VZ Cartesian coordinates is

required, with the ecliptic plane as the reference plane. This can be calculated using

standard transformations:

X = rh(cos Ω cos (ω + ν) − sin Ω cos (ω + ν) cos i)

Y = rh(sin Ω cos (ω + ν) + cos Ω sin (ω + ν) cos i)

Z = rh(sin (ω + ν) sin i)

VX =
Xhe

rhp
sin ν − h

rh

(cos Ω sin (ω + ν) + sin Ω cos (ω + ν) cos i)

VY =
Y he

rhp
sin ν − h

rh
(sin Ω sin (ω + ν) − cos Ω cos (ω + ν) cos i)
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VZ =
Zhe

rhp
sin ν +

h

rh
(cos (ω + ν) sin i)

where rh = a(1−e2)
1+e cos ν

, p = a(1 − e2) and h = (µa(1 − e2))1/2. Here we expect

V =
√

V 2
X + V 2

Y + V 2
Z should equal V =

√
µ(2

r
− 1

a
). The conversion from ecliptic plane

referenced coordinates to orbit plane referenced coordinates (equation 6-4) is then applied

to the heliocentric velocity components, producing velocity coordinates Vx, Vy and Vz in

the orbital plane.

The angle between the comet’s velocity and the positive x direction is now de-

termined. The angle α between the Vx and Vy components is calculated using simple

right-angle trigonometry. Using knowledge of whether Vx and Vy are positive or negative

the required angle is then found. These angles, as a function of the true anomaly, are

shown in Figure 6.4. These comet velocity directions are important as they correspond to

the directions of maximum velocity for the ejected particles, and therefore indicate where

the maximum variation of the particle orbits from the comet orbit occurs (along with the

corresponding opposite ejection direction in angle θ).
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Figure 6.4: Variation of the angles between the comet velocity vector and x direction as
a function of true anomaly.
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6.6 Combined Model for the Ejection of Cometary Particles

Here we assemble of the components required to integrate the motion of a particles ejected

from a model comet. We required two elements: the initial comet and Jupiter position

and velocity components in Cartesian coordinates; and the ejection velocity components,

also in Cartesian coordinates. The former is obtained by conversion from orbital elements

given in Tables 6.1 and 6.2, using HNBody in the manner described in Section 6.3. The

ejection velocity components are given by equation 6-6, using equation 6-1 to determine

the scalar velocity V∞.

We use particle radius values s in the range 100 µm to 700 µm (the size range of

CMOR particles). The radius to mass conversion is achieved assuming a spherical particle

of density ρ = 2500 kgm−3 or 1000 kgm−3. The resulting mass is divided by the solar

mass M� to give mass in units of solar masses, as required by HNBody. HNBody is

used to integrate each ejected meteoroid for 500 years, with (Cartesian) input parameters

mass (in units M�), Xcom, Ycom,Zcom, VX,com+VX,ej, VY,com+VY,ej, VZ,com+VZ,ej. We find

it is most convenient to choose orbital element outputs for HNBody. We thus input each

particle as an object at the location of comet, but with a slightly variant velocity; and

from the orbital element output can deduce the particle’s subsequent orbit, and follow its

dynamical behaviour. The 500 year time period is short to reduce computation time, but

is sufficient to determine whether the particle is exhibiting resonance behaviour.

Our primary objective is to know if each ejected particle achieves a resonant orbit.

This is determined using the resonant argument, as discussed in Section 5.3. We calculate

the resonant argument ϕ = 7λJ − 2λP − 5$P = 0 for each particle for each timestep.

Particles for which the variations in resonant argument (with time) are less than 360◦ are

considered resonant. In practice, 354◦ is used in order to limit false positives generated

by cases that are clearly circulating rather than librating: this can be a consequence of

the finite timesteps. The choice of 354◦ as a cut off point is subjective, and is based on

surveying a representative fraction of the data. It is out of concern for the possibility of

false negatives that this cut-off is not set lower.

For each HNBody run, we automatically eject 614 particles that cover θ from 0 to

360◦ and φ from 0 to 180◦, both in 20◦ intervals. This would provide 703 directions,

but this is reduced to 614 when redundant (repeated) angles are removed. Once we have

determined which particles are in resonance using the variation in the resonant argument

(the libration amplitude), it is possible to produce a map of ejection directions that

result in capture of the particle in the resonance. The number of particles that enter

resonant motion can also be summed to calculate the percentage of the 614 particles that

successfully reach resonance.



150 Chapter 6. Mass Selection Effects in Resonant Swarms

0 100 200 300
2.1

2.12

2.14

2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

Direction Angle θ (°)

S
ta

rt
in

g 
S

em
i−

m
aj

or
 A

xi
s 

(A
U

)

0 50 100 150
2.1

2.12

2.14

2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

Direction Angle φ (°)

S
ta

rt
in

g 
S

em
i−

m
aj

or
 A

xi
s 

(A
U

)

(a)

0 100 200 300
2.1

2.12

2.14

2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

Direction Angle θ (°)

M
ea

n 
S

em
i−

m
aj

or
 A

xi
s 

(A
U

)

0 50 100 150
2.1

2.12

2.14

2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

Direction Angle φ (°)
M

ea
n 

S
em

i−
m

aj
or

 A
xi

s 
(A

U
)

(b)

Figure 6.5: Variation in the (a) starting semi-major axis and (b) mean semi-major axis
with θ and φ, for ejection of a 100 µm particle at perihelion by Comet 1. Each curve
represents a different φ value (for graph one) or θ value (for graph two).

This approach will concentrate particles to the poles when compared with uniformly

spaced ejection directions from the comet surface. As a consequence of this non-uniform

distribution of ejection angles, the number of particles at each angle φ is multiplied by

cos (90 − φ). The resulting percentages can be compared when this process is repeated

at a number of mean longitudes, particles radii and particle densities. The chance of

false positives (or negatives) in the automatic determination of the resonant status of the

particles is expected to contribute a maximum uncertainty in the number of particles in

resonant of ±8 of the 614 particles (∼ 1.3%). Other uncertainties in input parameters

will produce much larger overall uncertainties (see Section 6.12).

6.7 Ejection of Particles at Perihelion

6.7.1 Comet 1: 2P/Encke

As an illustration, we analyse the results for ejection of 100 µm particles in 614 directions

at perihelion, for all three model comets. We first examine various semi-major axis

distributions to demonstrate the effect of the resonance. The starting semi-major axis

should be a smooth function of θ and φ, as it is directly related to the velocity of the

particle: this is demonstrated in Figure 6.5 (a). We see a broad sine function shape, with
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Figure 6.6: (a):The mean semi-major axis against the starting semi-major axis: devia-
tions from a straight line of gradient equal to one indicate the presence of resonances.
(b):Contour plot of the mean semi-major axis of the final orbit for each ejection velocity
direction, given by the angles θ and φ .

the maximum in the comet forward velocity direction (θ = 90◦ at perihelion: see Figure

6.4) and minimum in the opposite θ direction. This shape is expected as a result of the

vector addition of the comet forward velocity and the ejection velocity.

The mean semi-major axis demonstrates the location of the resonance. The mean

semi-major axis is different to the starting semi-major axis for particles that are trapped

in a resonance. For non-resonant particles the mean is approximately equal to the starting

semi-major axis. However, resonant particles will undergo resonant oscillations around the

resonant centre and thus their mean value will be equal to the location of the resonant

centre. The variations in the mean semi-major axis over 500 years as functions of the

angles θ and φ are seen in Figure 6.5 (b). The presence of resonances is demonstrated by

deviations from a smooth sine curve and, in particular, by the indents at approximately

2.26 AU as a result of the 7:2 resonance: this is where the mean value for these (resonant)

particles changes from the starting values to the resonant centre value. It is possible that

the features seen at approximately 2.18 AU are indicative of the presence of the 11:3

Jovian resonance.

Figure 6.6(a) shows directly the variation between the starting semi-major axis and

the mean semi-major axis for each particle. The deviation in the straight line at 2.25

AU demonstrates that these particles have a depressed mean semi-major axis due to the

resonant-centre oscillations induced by the resonance. Figure 6.6 (b) shows more clearly

the variations in mean semi-major axis for each θ and φ.

We now select particles that are exhibiting resonant behaviour. This is achieved

using the method given in Section 6.6: by determining whether the variation in the
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Figure 6.7: (a):Contour plot of the maximum variation in the resonant argument over 500
years for each ejection velocity direction given by the angles θ and φ (b):The maximum
variations in resonant argument of each orbit, against θ. (c):Contour plot demonstrating
the ejection directions of resonant particles ejected at perihelion (d):The mean semi-
major axis distribution with direction angle θ with φ = 90◦. The superimposed dots
represent whether the particles at each θ are inside or outside of resonance (with the
higher dots representing resonance particles as indicated on the figure). We observe that
the deviations in the mean semi-major axis distribution do indeed represent regions where
the particles are in resonance.
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Figure 6.8: Mean semi-major axis as a function of the starting semi-major axis, for (a)
Comet 2 (2P/Encke displaced to a proto-Encke orbit) and (b) Comet 3 (proto-Encke)
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Figure 6.9: Resonant particles, for each θ and φ, for (a) Comet 2 (2P/Encke displaced to
a proto-Encke orbit) and (b) Comet 3 (proto-Encke)

0 50 100 150 200 250 300 350

2.16

2.18

2.2

2.22

2.24

2.26

2.28

2.3

2.32

2.34

Direction Angle θ (°)

M
ea

n 
S

em
i−

m
aj

or
 A

xi
s 

(A
U

)

Resonant Particles

Non Resonant Particles

0 50 100 150 200 250 300 350
2

2.1

2.2

2.3

2.4

2.5

2.6

Direction Angle θ (°)

M
ea

n 
S

em
i−

m
aj

or
 A

xi
s 

(A
U

)

Resonant Particles

Non Resonant Particles

(a) (b)

Figure 6.10: Mean semi-major axis as a function of θ, with information on which particles
are resonant given by dots, for (a) Comet 2 (2P/Encke displaced to a proto-Encke orbit)
and (b) Comet 3 (proto-Encke). Note that deviations caused by other Jovian resonances
are visible.
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resonant argument is limited to less than 360◦. However, 354◦ is used to limit false

positives). The variations in the resonant argument for each particle ejection direction

are shown in Figure 6.7(a); and the variations as a function of θ in Figure 6.7(b). In

Figure 6.7(c) the contour plot of Figure 6.7(a) is repeated, but in this resonant particles

are marked in white; non-resonant particles are shown in black. Finally, we check whether

this selection of resonant particles matches with the deviations observed in Figure 6.6(b)

(with φ equal to 90◦): Figure 6.7(d) shows that this is indeed the case. In total, 23% of

100 µm particles ejected from Comet 2P/Encke at perihelion are trapped in resonance.

Since Comet 2P/Encke (Comet 1) orbits interior to the resonance, the particles that are

trapped in resonance are only those emitted in the comet forward direction, and that

therefore assume more distant orbits to that of the comet.

6.7.2 Comets 2 and 3: Displaced Encke and Proto-Encke

We now present the results for the remaining two comets, also at perihelion, and for 100

µm particles. These are seen in Figures 6.8, 6.9 and 6.10. Both comets orbit in the

proposed position of proto-Encke, but with different masses. These orbits start within

the resonance so particles ejected in both forward and backward directions (relative to the

comet velocity direction) are able to populate the resonance. The resulting distribution

of resonant particles is symmetric in θ and φ. The heavier comet (Comet 3) produces

particles with higher ejection velocities, the majority of which are too energetic to be

trapped in a resonance close to the comet. Thus while 24% of particles ejected by Comet

2 are trapped in resonance, only 8% of Comet 3 particles are trapped.

6.8 The Effect of Meteoroid Mass on the Percentage of Particles

Trapped in Resonance

The process of Section 6.7 is now repeated with different particle radii (or masses). We

choose radii of 50 µm to 1000 µm, in steps of 50 µm, as we expect radar-detected

meteoroids to fall within this range. This choice is justified using distribution of masses

of CMOR Taurid particles (given in Figure 6.11 (a)). These masses are determined from

observable quantities using a relationship between mass, velocity, magnitude and electron

line density for radio meteors determined by Verniani (1973) (see Brown et al. (2008)).

The masses can be converted to radii by making an assumption on the density of the

observed particles. The corresponding radius distributions for densities of 2500 kgm−3

and 1000 kgm−3 are shown in Figure 6.11 (b). The range of radii is approximately 100

µm to 600 µm for ρ = 2500 kgm−3, and 200 µm to 800 µm for ρ = 1000 kgm−3.

The percentage of ejected meteoroids trapped in resonance as a function of particle
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(a) (b)

Figure 6.11: (a) Distribution of the masses of CMOR Taurids. (b) Distribution of the
radii of CMOR Taurids, for densities 2500 kgm−3 and 1000 kgm−3.

radius is seen in Figure 6.12. This is given for all three model comets, at particle densities

of 2500 kgm−3 and 1000 kgm−3. Increasing particle size is accompanied by a decrease in

ejection velocity. For Comets 2 and 3, this means that an increasing number of particles

stay sufficiently close to resonance to be captured: hence the percentage of trapped

meteoroids is a strictly increasing function of radius. However, as Comet 1 is not directly

in the resonance, many particles of low radii reach orbits beyond the resonance as their

total velocity after ejection is too high, and only a small fraction are trapped. As the

particle radius increases, more particles have the correct velocity for resonant orbits to

occur. With even larger values of radius, most particles are not able to reach the position

of the resonance, as their orbits are increasingly close to that of their comet. Thus,

for Comet 1 an initial increase in the percentage of trapped particles is seen for smaller

particles, while at large particle masses the capture percentage decreases with mass.

We now convert the scale on Figure 6.12 from radius (in µm) to mass (in kg), and

limit the scale to values less than 2 × 10−6 kg (see Figure 6.11 (a)): the result is shown

in Figure 6.13. We will extend this to visual meteoroid masses in Section 6.15

6.9 The Effect of Density on Percentage of Particles Trapped in

Resonance

It can be seen from the results of Section 6.8 that the density of the ejected particles can

significantly affect their final orbits. This is due to the ρ− 1

3 dependence of the ejection

velocity model used. Here we show the variations possible in the captured percentage of

100 µm particles ejected at perihelion for densities between 800 kgm−3 and 2700 kgm−3.
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Figure 6.12: The variation in the percentage of ejected meteoroids trapped in resonance
as a function of particle radius, shown for all three comets, for two different particle
densities.

Over this choice of realistic densities for Taurid meteoroids, the percentage of particles

in resonance increases with density. The percentage variations over the whole region

(normalised to the result at 2700 kgm−3) are 45% for Comet 1, 55% for Comet 2 and 31%

percent for Comet 3. We conclude that the density can affect the percentage of particles

that are captured by the resonance by up to ∼ 60%.

6.10 Variation of Resonant Trapping with True Anomaly

We expect the percentage of particles that enter the 7:2 resonance to vary with the

position of ejection on the comet’s orbit, and thus with true anomaly ν. This is due to

the variations with heliocentric distance of solar radiation and thus of comet temperatures.

Such variations are accounted for by the heliocentric distance dependence of the ejection

velocity. The effect of the resonance will also change with true anomaly as a result of the



6.10. Variation of Resonant Trapping with True Anomaly 157

0 0.5 1 1.5 2

x 10
−6

0

20

40
Comet 1;ρ=2500kgm−3

Particle Mass (kg)
0 0.5 1 1.5 2

x 10
−6

0

20

40
Comet 1;ρ=1000kgm−3

Particle Mass (kg)

0 0.5 1 1.5 2

x 10
−6

0

20

40

60

80
Comet 2;ρ=2500kgm−3

Particle Mass (kg)

P
er

ce
nt

ag
e 

M
et

eo
ro

id
s 

in
 R

es
on

an
ce

0 0.5 1 1.5 2

x 10
−6

0

20

40

Comet 2;ρ=1000kgm−3

Particle Mass (kg)

P
er

ce
nt

ag
e 

M
et

eo
ro

id
s 

in
 R

es
on

an
ce

0 0.5 1 1.5 2

x 10
−6

0

20

40
Comet 3;ρ=2500kgm−3

Particle Mass (kg)
0 0.5 1 1.5 2

x 10
−6

0

10

20
Comet 3;ρ=1000kgm−3

Particle Mass (kg)

Figure 6.13: The variation in the percentage of ejected meteoroids trapped in resonance as
a function of particle mass, shown for all three comets, for two different particle densities.

variation in the location of Jupiter. This effect, however, is removed by careful selection

of the mean longitude of Jupiter at each point (see Section 6.5). For all three model

comets the variation in the percentage of trapped particles is examined for (a) 100 µm

radius particles of density 2500 kgm−3; (b) 600 µm radius particles of density 2500 kgm−3;

and (c) 100 µm particles of density 1000 kgm−3. A full range of true anomaly values 0

to 360◦ are tested, in steps of 20◦. In general, however, we expect ejection of particles

to occur only for heliocentric distances rh <∼ 3 AU, this being the region within which

sublimation of water ice can occur (though sublimation of other ices may produce a small

effect beyond this point). This is further addressed in Section 6.11.2. The results are

shown in Figures 6.15, 6.16 and 6.17.

The behaviour illustrated by these figures is as expected. For Comet 1 (a model

Comet 2P/Encke) near perihelion (ν = 0, rh = 0.3315AU, λP = 160.99◦) between 10%

and 20% of particles are captured in resonance. As this comet is not within the resonance,

these are particles that have sufficient ejection velocity to reach an orbit that is resonant.
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Figure 6.14: The variation in the percentage of ejected meteoroids trapped in resonance
as a function of particle density, for all three comets.

As the comet moves beyond perihelion, a small increase in the capture percentage may

be expected if there is a significant proportion at perihelion that reach orbits beyond

the resonance: their velocities drop with increasing distance from the Sun, and they are

eventually trapped in the resonance. Once the ejection velocity has dropped further (with

increasing heliocentric distance), however, fewer particles are able to reach the resonant

orbit, and the numbers trapped decline sharply to zero. We see, as expected, symmetrical

behaviour as the comet re-approaches perihelion. Comet 1 is only able to inject particles

into the resonance in the inner part of the orbit, within ∼ 2 AU. The 600 µm particles

have the lowest ejection velocities and therefore mostly have orbits close to the (non-

resonant) Comet 2P/Encke, which cannot reach resonance: hence the lowest numbers

of resonant particles are seen. For 100 µm particles, we expect those of density 1000

kgm−3 to have the highest velocities. Relatively low numbers of trapped particles are

seen at perihelion, however, because of a significant number of particles reaching orbits

beyond the resonance: that is, orbits with semi-major axes higher than the semi-major

axis of the resonant centre. These numbers recover as the ejection velocity decreases

with increasing heliocentric distance, and surpass the numbers for 2500 kgm−3 particles

at around ν = 90◦.

Comets 2 and 3 display similar behaviour, except that particles from Comet 3

have higher ejection velocities (because of the higher comet mass) and therefore more
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Figure 6.15: Variation in the percentage of ejected meteoroids trapped in resonance for
Comet 1 as a function of true anomaly, heliocentric distance and mean longitude (all of
which are related measures of the position on the comet orbit).
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Figure 6.16: The variation in the percentage of ejected meteoroids trapped in resonance
for Comet 2 as a function of true anomaly, heliocentric distance and mean longitude (all
of which are related measures of the position on the comet orbit).
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Figure 6.17: The variation in the percentage of ejected meteoroids trapped in resonance
for Comet 3 as a function of true anomaly, heliocentric distance and mean longitude (all
of which are related measures of the position on the comet orbit).



162 Chapter 6. Mass Selection Effects in Resonant Swarms

easily exit the resonance region near the comet. Trapped particle numbers are therefore

lower for Comet 3 than for Comet 2. For both comets the number of trapped particles

increases approaching aphelion, and decreases approaching perihelion. This is the result of

decreasing ejection velocity with increasing heliocentric distance, which causes increasing

numbers to be trapped in the near-comet resonance. All tests reach a point in the outer

orbit where all ejected particles are trapped in the resonance. As expected, the slower

600 µm particles have higher capture percentages. The 1000 kgm−3 particles with 100

µm radii are faster as they are effectively lighter (though the density also affects the

ejection velocity directly): thus these particles are less easily captured by the resonance.

This is more important for Comet 2 (a 2P/Encke-sized comet) than for the larger proto-

Encke Comet 3. As expected, capture of particles in a resonance is significantly easier for

particles ejected from a resonant comet.

6.11 Details of Cometary Dust Ejection

Our model above assumes dust emission from the entire cometary surface, with uniform

ejection of dust over the comet orbit. There are several reasons why this is a poor

description of the behaviour of the ejected dust.

6.11.1 Ejection Areas on the Comet Surface

We first consider the ejection area of the cometary surface. There are two areas of interest

here: whether ejection occurs only on the sunlit side of the comet, or on some fraction of

the dark side also; and whether ejection occurs only from discrete regions of the comet,

as ‘jets’ of activity.

Understanding whether ejection of dust is able to occur on the dark side of the

comet depends on the temperature profile of the comet, which depends on the rotation

speed of the comet nucleus and the thermal inertia of the comet surface. Light curves

have been used to derive a variety of rotation periods for the nucleus of Comet 2P/Encke.

Luu and Jewitt (1990) find 15.08 hours and Fernández et al. (2000) find 15.2± 0.3 hours

for the rotation period of nucleus of Comet 2P/Encke; however, Fernández et al. (2005)

find P = 11.079 ± 0.009 hours (or 2P = 22.159 ± 0.012 hours). The thermal inertia

Γ is not known for Comet Encke. Fernández et al. (2000) show that, using a rotation

period of 15.2 hours, if Comet Encke has a thermal inertia similar to that of the moon

(Γ = 50 JK−1m−2s−1/2) it would be classed as a (moderately) slow rotator. However, if

instead it has a thermal inertia similar to the surface of (3200) Phaethon (presumed to

be an extinct comet) (Γ = 320) it would fall somewhere near the border between a fast

and slow rotator. They thus conclude that a slow rotator thermal model that results in a
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symmetrical temperature distribution centred on the subsolar point is a sufficient (but not

perfect) model for Comet 2P/Encke. Further information on the thermal inertia of Comet

Encke is required for a more satisfactory conclusion. For meteoroid stream modelling it

is often assumed that only the sunlit side of the comet is able to eject significant numbers

of particles (such as Vaubaillon et al. (2005)).

A complicating factor is that Comet Encke is thought to eject particles in discrete

jets. Sekanina (1988) first proposed such a model, which also included the rotation of

the nucleus, to explain the observed asymmetry in Comet Encke’s outgassing. In this

model the two jets were located at latitudes of −75◦ and +55◦, with a pole position of

RA = 206◦ and Dec = +3◦. However, Reach (2000) were able to produce similar (an

observationally supported) results using a model with only one jet at latitude −15◦, with

a pole position of RA = 102.8◦ and Dec = +32.6◦. Interestingly, this then creates a

situation where the jet is on the dark side of the comet through perihelion. The jet is

thus not able to eject particles through the inner part of the comet orbit, turning off ∼ 30

days before perihelion, and turning on ∼ 25 days after perihelion. In the model of Ferŕın

(2008), however, two jets - one near the south pole, the other near the north pole - are

located such that one is active through perihelion, and the other near aphelion. This

also assists in accounting for the significant level of activity that Comet Encke exhibits at

aphelion (Ferŕın, 2008) (Belton et al., 2005) (though they find the coma is observationally

unresolvable).

In addition, it is expected that the active surface area of Comet Encke is small.

A’Hearn et al. (1995) find an active surface area for Comet Encke of 0.72km2: if we assume

a comet radius of 2.4 km, we find that this is equivalent to the active area comprising

∼ 1% of the comet surface area. Jenniskens (2006) quotes 5% of Comet Encke’s surface

being active.

Thus, we expect that only discrete areas of the comet, amounting to . 5% of the

comet’s surface, are able to eject particles. Unless comet Encke has a high thermal inertia,

it is also unlikely that these ‘jets’ will eject significant amounts of dust unless they are

on the sunlit side of the comet, at each point in its orbit. In our coordinate system, the

sunward side is given by the angles θ = ν + 90◦ to θ = ν + 270◦, and φ = 0 to φ = 180◦.

6.11.2 Variation in Dust Output with Heliocentric Distance

The variation in the dust output of Comet 2P/Encke with heliocentric distance is governed

by the temperature decrease suffered by the comet with increasing heliocentric distance,

and by the location and orientation of the jets with respect to the Sun.

General empirical expressions can be formulated to describe the dust release rates

with heliocentric distance. These use H2O release rates determined from observed visual
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magnitudes of the comet. The assumption is that water vapour is the major component of

the ice of Comet 2P/Encke: indeed, there is no present detection of CO or CO2 associated

with Comet Encke. Sanzovo et al. (2001) use water release rates for rh < 2.5 AU to derive a

relationship for the dust rate with heliocentric distance of qd ∝ r−n where n varies for each

comet return for which data exist: n = 3.94 for 1977; n = 3.0 for 1980; n = 2.3 for 1984;

n = 2.9 for 1990. We average these to obtain qd ∝ r−3.0. This gives a dust production

rate that drops to below 1% of the value at perihelion at rh = 1.57AU (see Figure 6.18).

Thus, such a model is not able to account for the observed aphelion outgassing. However,

we expect the dust released at aphelion to represent only a small fraction of the total dust

released (the secular light curve given in Ferŕın (2008) supports this conclusion).
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Figure 6.18: The particle ejection rate for comet 2P/Encke, as derived from water produc-
tion rate observations Sanzovo et al. (2001). The percentage ejection rates are relative
to that at perihelion. Crosses demonstrate the ejection rates for particles at the true
anomaly values tested in Section 6.10.

In terms of the dust output, the majority of outgassing of Comet 2P/Encke occurs

∼ 200 days around perihelion, with the majority of the dust ejected between 10 days before

perihelion and 30 days after (equivalent to ν = 303.69◦ to ν = 102.99◦) (Jenniskens, 2006).

However, Comet Encke also displays aphelion activity (Fernández et al., 2005). Ferŕın

(2008) finds that the first source is active from 87 ± 5 days before perihelion to 94 ± 15

days after perihelion (ν = 234◦ to ν = 138◦), and the second source is active from 160±25

days after perihelion to 243 ± 15 days before perihelion (ν = 150◦ to ν = 201◦). Though
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it is often assumed that water ice is not able to undergo significant sublimation beyond

∼ 3 AU, this may not be the case. Meech and Svoren (2004) summarize research that

suggests water ice sublimation processes are able to eject particles out to heliocentric

distances of 5 to 6 AU. Given that the level of activity at aphelion is not well known, and

should be significantly lower than that at perihelion, we proceed in the assumption that

the relationship for the dust rate with heliocentric distance of qd ∝ r−3.0 is sufficiently

accurate. In our case this gives us ejection of particles from ν = 225◦ to ν = 135◦ (roughly

equivalent to the outgassing region of the first source used by Ferŕın (2008)).

6.11.3 Variation in Capture Percentages with the Relative Mean Longitude

of Jupiter

The resulting capture percentages are maximum possible values, as they assume Jupiter

is in an optimal mean longitude position. The true values at each comet location will

vary with Jupiter’s mean longitude approximately as a sine function, with a minimum

of zero percent trapped particles. Accounting for this in a robust manner would involve

integrating the comet orbit for many revolutions and ejecting particles at each location

within the outgassing regions. This is beyond the scope of the present work.

6.12 Uncertainties

We here attempt to account for the variety of uncertainties that exist in the method.

This is achieved by determining ‘high’ and ‘low’ values of the ejection velocity, and using

these to determine minimum and maximum percentages of trapped particles. In order

to determine these maximal ejection velocities, we must understand the uncertainties in

each parameter in the ejection velocity equation (equation 6-1):

1. The constant 32.3: This constant encompasses information on various properties,

including temperature. Values given in the literature fluctuate about ±10 of this

value. We use this as an approximate uncertainty in this constant.

2. Comet Radius Rc: The radius we use for Comet 2P/Encke, with the uncertainty

as given by Fernández et al. (2000), is Rc = 2.4± 0.3 km. This is dependent on the

assumption that the Standard Thermal Model holds (essentially that the comet acts

as a slow rotator). Furthermore, other studies have found a wide range of radius

values. For example, Tancredi et al. (2006) find 1.95+1.96
−0.67 km while Luu and Jewitt

(1990) find 3.28 ± 0.06 km. In the light of this we use an uncertainty ±1 km. For

Comet 3 (proto-Encke) 14.4± 5 km is used, to reflect the lack of knowledge on this

proposed comet.
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3. Density ρ: As discussed above, the density of Taurid/Encke stream particles is

highly uncertain: we use 800 kgm−3 as a minimum and 2500 kgm−3 as a maximum.

4. Heliocentric Distance Dependence r−x
h : There is some level of uncertainty as

to the dependency of the ejection velocity on heliocentric distance. Simple models

give r−1.038
h , while some observations support r−0.5

h : we will here compare results

from both dependencies.

In addition, there will be uncertainty in the automatic selection of resonant captured

particles. This is not dealt with in this section, but this error should not exceed ±8

particles. As such, this error is small compared with other uncertainties.

Initially, a ‘low velocity’ and a ‘high velocity’ are created. For the low velocity we

use Rc = 1.4 km, r−0.5
h , ρ = 2500 kgm−3 and a constant of 22.3. For the high velocity we

use Rc = 3.4 km, r−1.038
h , ρ = 800 kgm−3 and a constant of 42.3. For Comet 3 (proto-

Encke) we instead use 14.4 ± 5 km for the comet radius. 100 µm particles are ejected in

614 directions at perihelion (ν = 0) at the low velocity and the high velocity, for all three

comets. The results are presented in Table 6.4

Velocity Comet 1 Comet 2 Comet 3
Vhigh (ρ = 800 kgm−3) 2% 7% 7%
Vhigh (ρ = 2500 kgm−3) 9% 8% 6%
Vnormal (ρ = 800 kgm−3) 13% 11% 6%
Vnormal (ρ = 2500 kgm−3) 23% 24% 8%
Vlow (ρ = 800 kgm−3) 28% 46% 17%
Vlow (ρ = 2500 kgm−3) 28% 46% 17%

Range 26% 39% 11%
Range (ρ = 800 kgm−3) 22% 18% 17%
Range (ρ = 2500 kgm−3) 19% 38% 36%
Result (ρ = 800 kgm−3) 13+11

−11% 11+13
−5 % 6+2

−1%
Result (ρ = 2500 kgm−3) 23+5

−14% 24+13
−3 % 8+2

−1%

Table 6.4: Here we consider the uncertainties in the ejection velocity parameters: Here we
present the variations in the capture percentages for particles ejected with maximum and
minimum ejection velocities, found by analysing the uncertainties in each parameter in
equation 6-1. Here ‘Vhigh (ρ = 800)’ refers to ejection using the highest velocity possible,
with a density of ρ = 800 kgm−3. Each column gives the percentage of captured ejected
particles for the given comet and velocity condition. The ‘Range’ values give an idea of
the spread of the results. The ‘Result’ values give the upper and lower bounds to the
capture percentages determined for all three comets, for ρ = 800 kgm−3 and ρ = 2500
kgm−3

As given by the final three rows of Table 6.4, this method allows us to obtain

uncertainty estimates for the capture percentages obtained. These uncertainty values
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vary highly in magnitude. This is partially a result of the crude 10◦ resolution in the

angles θ and φ, which may mean the number of particles captured do not vary smoothly

with ejection velocity. Certain dynamical situations also have an impact. For instance,

for Comet 1 the plateau of the number of particles captured for lower velocities represents

the turning point of the capture percentage, as demonstrated in Figure 6.15. For these

reasons, the resulting uncertainties are unique to each situation.

We use the above process to obtain uncertainties values for all comets at ρ = 2500

kgm−3 for true anomaly values 40◦, 80◦ and 120◦. These results are seen in Table 6.5.

For Comet 1 the distribution of particles in resonance with true anomaly first increases

then decreases, with a maximum at a capture percentage of ∼ 30.5% of particles. In some

situations it is thus more sensible to use 30.5% as the maximum percentage of captured

particles to produce an upper uncertainty.

Velocity Comet 1 Comet 2 Comet 3
Result at ν = 40◦ 25+5

−16% 25+23
−16% 9+10

−3 %
Result at ν = 80◦ 30+1

−13% 37+34
−20% 16+12

−8 %
Result at ν = 120◦ 7+16

−7 % 80+20
−25% 34+27

−10%

Table 6.5: Uncertainty calculations for true anomalies 40◦, 80◦ and 120◦. Absolute
uncertainties are given. Note that the uncertainties for Comet 1 for ν = 40◦ are based on
a maximum number of resonant particles of 167 (27.2%)

For Comets 2 and 3 that the percentage uncertainties vary between 13% and 118%.

Percentage uncertainties in excess of 100% occur when the trapped percentage is less than

11% of the total number of ejected particles: that is, in cases where very few particles

are trapped. In these cases the absolute variation is not in excess of 15%. For Comet

1, uncertainties are less than 85%, except in cases where less than 10% of particles are

captured. We expect these approximate limits on uncertainties to hold for any density. As

a result of these uncertainties, determination of the fraction of ejected particles captured

in resonance is unlikely. However, we may still be able to draw conclusions on whether a

trapped fraction is possible.

6.13 Accounting for Details of the Comet Ejection Process

6.13.1 Variations of Ejection with Heliocentric Distance

The distribution of particle ejections with semi-major axis is now applied to the resonance

capture percentages. We assume that the relationship for the dust ejection rate with

heliocentric distance is given by qd ∝ r−3.0 (see Figure 6.18). This relation is used to

produce a scaled distribution of capture percentages with true anomaly, with each capture
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percentage scaled to the amount of dust expected to be ejected at that heliocentric distance

(see Figure 6.19).

6.13.2 Particle Ejection from the Sunward Hemisphere of the Comet

Ejection of particles is not expected to occur over the whole comet surface. A more

realistic situation is ejection from the sunlit hemisphere only. In reality, we expect that

there will be some small component of ejection into the dark side of the comet (perhaps

20◦ to 30◦ into the dark side), but given the uncertainty of this we choose to assume

that ejection occurs only on the sunlit hemisphere. The numbers of captured particle is

therefore restricted to those ejected from angles θ = ν + 90◦ to θ = ν + 270◦, and φ = 0

to φ = 180◦. These new capture percentages are shown in Figure 6.20. A further issue is

the effect of ejection from a discrete jet (see Section 6.16).

6.14 Approximate Total Percentage of Particles Trapped in Res-

onance

For each model comet and set of particle parameters we now obtain the approximate

total percentage of ejected particles that are trapped in the 7:2 resonance over the whole

comet orbit. These percentages are calculated for the case of isotropic emission from the

sunward side of the comet, and using the approximate heliocentric dust distribution of

Comet 2P/Encke given in Figure 6.18. To accomplish this a test distribution is calculated

in which all particles at all true anomalies are injected into the 7:2 resonance. This

‘100%’ distribution is then scaled using the heliocentric dust distribution, and the resulting

values at each true anomaly are summed. This gives the maximum sum of capture

percentages possible. The sum of the scaled capture percentages produced by the model

with particle ejection on the sunlit side only is divided by the maximum sum of the ‘100%’

distribution. This provides the approximate total percentage of particles that are trapped

in the resonance over the whole orbit of the comet (see Table 6.6).

In addition to those uncertainties discussed in Section 6.12, uncertainty in the ejec-

tion of particles with heliocentric distance and uncertainty in the regions of ejection on

the comet surface will produce inaccuracies in these results. Total uncertainties in these

values are expected to be well in excess of 50%. Rigorous uncertainty analysis is not

justifiable, given that it is not expected to add significant information. We can thus only

conclude that ejected particles from all three comets are capable of being trapped in the

7:2 resonance, even at the ∼ 100 µm mass limit of the CMOR radar. Capture is usually

more likely for heavier particles, except in the case of a comet that is displaced from the

location of the resonance (such as Comet 1).
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Figure 6.19: The variation in the percentage of particles trapped in resonance, for all three
comets, with values scaled by the particle ejection rates for comet 2P/Encke as given in
Figure 6.18.
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Figure 6.20: The variation in the percentage of particles ejected from the sunward side of
the comet that are trapped in resonance, for all three comets. Values are again scaled by
the particle ejection rates for comet 2P/Encke as given in Figure 6.18.
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Comet s = 100 µm; s = 600 µm; s = 100 µm;
ρ = 2500 kgm−3 ρ = 2500 kgm−3 ρ = 1000 kgm−3

Comet 1 23% 17% 15%
Comet 2 27% 63% 17%
Comet 3 10% 27% 9%

Table 6.6: Approximate total percentages of ejected particles trapped in the 7:2 resonance
over the whole comet orbit.

6.15 Variation of the Sunlit-Hemisphere Capture Percentages

with Particle Mass

We are also interested in the difference between the capture percentages for visual and

radar meteoroids. For this we extend the results of Section 6.8 to visual meteoroids of

radii 2000 µm and 4000 µm, and determine the percentage of particles ejected from the

sunlit hemisphere at perihelion that are captured in the 7:2 resonance (see Figure 6.21).

We determine these approximate visual meteoroid radii limits by analysing the population

index r (see Section 4.3.5) for Taurids. Dubietis and Arlt (2007) find this is an average of

r = 2.4, with r = 1.9 for the 2005 swarm encounter year. The differential mass index is

usually given by s: here it is denoted by sMI to avoid confusion with the particle radius

s. The differential mass index is related to the population index by:

sMI = 2.5 log(r) + 1

A number distribution can be derived from the differential mass index using:

N = Cm−(sMI−1)

where C is a constant, and N is cumulative the number of meteors down to a limiting

mass m (Millman, 1973). The resulting distributions of N as a function of radius for

r = 2.4 and r = 1.9 are given in Figure 6.22. A meteor density of 2500 kgm−3 is used.

1000 µm is used as the lower radius limit as it is approximately equivalent to a visual

limiting magnitude of ∼ 6 (for a velocity of about 30 kms−1). This figure also indicates the

‘perception function’, which is a probability of visually observing a meteor of magnitude

m (which is dependent on the experience and concentration of the observer). The values

used are those derived by Koschack and Rendtel (2000), and are the same values used

by Dubietis and Arlt (2007) to derive the population indices for Taurid meteors. We

conclude from Figure 6.22 that most visual Taurids will be in the radius range 1000–4000

µm, with most meteors between 2000 and 3000 µm.

There are large differences between the results for different model comets (given in
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Figure 6.21: The variation in the percentage of meteoroids ejected from the sunlit side
that are trapped in resonance as a function of particle radius, shown for all three comets,
for two different particle densities, and for radius values up to 4000 µm.

Figure 6.21). Whether visual meteoroids ejected from Comet 2P/Encke (Comet 1) have

resonant orbits is dependent on their density. Meteoroids with densities 2500 kgm−3 and

radii greater than ∼ 2000 µm are not trapped in the resonance. However, about 16% of

meteoroids with densities of 1000 kgm−3 and radius ∼ 2000 µm are captured. In both

cases the proportion of radar meteoroids (100 to 1000 µm) captured is larger than the

proportion of visual meteoroids (2000 to 4000 µm) captured.

However, for comets orbiting in the proposed orbit of proto-Encke (Comets 2 and

3) the percentage of visual meteoroids captured is greater than the percentage of radar

meteoroids, as a result of the lower ejection velocities of visual meteoroids. Table 6.7 gives

these values for approximate maximum, minimum and mean masses. For example, the

radar rates for Comet 2 for 2500 kgm−3 particles are expected to be between 23% and

53% of the visual rates. The lowest radar rate is 23% of the visual rates (for Comet 2,

2500 kgm−3 particles). The uncertainties in these percentages should not be as significant
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Figure 6.22: Radius and magnitude distribution graphs for visual Taurids. The two solid
lines show the radius distribution (normalised to the number of particles of radius 1000
µm) for population indices r = 1.9 and r = 2.4. The dashed line is the approximate
perception function.

as the 50% uncertainties in individual capture percentages, as seen in Section 6.12.

In Section 4.10.3 we estimate that in a swarm year the proportion of visual Taurid

meteoroids that are in the resonant swarm is about 20% to 40%, dependent on the swarm

year. If we assume that the resonant Taurids are ejected from a resonant comet, this

estimate can be combined with the rates given in Table 6.7 to determine approximate

percentages of observed radar Taurids that are resonant. In consequence, the minimum

proportion of observed radar Taurids that are expected to be resonant is approximately

4–5% (found using 23% of 20%). If the mean radar values are used it is found that a

minimum of ∼ 5% of Taurids are expected to be in the resonant swarm. In Chapter 4 it is

also found that in order for the resonant swarm to be observable, we require a minimum

of ∼ 5–6% of observed Taurids to be in the resonant swarm. Observation is then possible

with a radar system with orbital uncertainties a factor of about one tenth of those of the

CMOR data used here.

For a year of data from such a radar system, these results suggest that in years in

which the swarm is weak there is a possibility that radar data may contain less than the

∼ 5–6% swarm particles required for observation. The mean values indicate that in most

cases the resulting capture rate of radar Taurids may still allow detection of swarm in

most cases. In stronger swarm years (such as 2005), detection chances are significantly

higher. The radar proportions of captured particles as a percentage of the visual values

are also lower for high density. This implies that we expect it to be more difficult to

detect the swarm if the particle density is high.

If the visual meteor results given in Section 4.10.3 are accurate, then for strong
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swarm years our results from the simulation of comet ejections produce a large enough

proportion of resonant radar Taurids for detection of the swarm to be possible. In years in

which the swarm only produces ∼ 20% increase in the numbers of particles, the swarm may

be on the edge of observability. A more complete cometary ejection model would include

the distribution of the masses of particles ejected by the comet. This would provide more

accurate estimates of the expected proportion of resonant Taurids of radar-detectable

masses. At present, the above results can only be considered indicative.

Minimum Maximum Mean
Comet 2 Comet 3 Comet 2 Comet 3 Comet 2 Comet 3

ρ = 2500 kgm−3 23% 23% 53% 34% 44% 24%
ρ = 1000 kgm−3 44% 42% 46% 43% 37% 33%

Table 6.7: Approximate radar maximum, minimum and mean capture rates, as percent-
ages of the visual maximum and minimum capture rates, for comets 2 and 3 at particle
densities ρ = 2500 kgm−3 and ρ = 1000 kgm−3. The minimum and maximum are defined
by particles of sizes 100 and 600 µm for radar meteoroids of density ρ = 2500 kgm−3;
200 and 800 µm for radar meteoroids of density ρ = 1000 kgm−3; and 2000 and 4000 µm
for visual meteoroids. The mean radar particle sizes are 350 µm and 500 µm for particle
densities ρ = 2500 kgm−3 and ρ = 1000 kgm−3 respectively. These maximum, minimum
and mean radar values are taken from Figure 6.11. The mean radar capture rates are
percentages of the maximum visual capture rate.

6.16 Ejection from a Discrete Jet on the Comet

In this section we consider the situation of ejection from a discrete jet comprising ∼ 4%

of the total comet surface, which is active around perihelion. This situation is an attempt

to account for the discrete ejection from an area of the comet, as opposed to the previous

assumption of even ejection from the whole sunlit hemisphere. We will make a number

of assumptions that are speculation to some extent: though it is thought that Comet

2P/Encke has an active region at perihelion (and aphelion) the nature of this is highly

uncertain (see Ferŕın (2008); Reach (2000)). We therefore make several assumptions to

provide an indicative model of the resonant status of particles ejected from a specific

discrete jet.

It is assumed that the active area is centred on the sunward direction at perihelion:

that is, its direction is defined by θ = 180◦ and φ = 90◦. We assume that this area is

located at the southern rotational pole of the comet, which we assume to point towards

the Sun at perihelion. We assume that the rotation axis of the comet is fixed in space,

such that it remains in the orbital plane. It is expected that the point at which the

southern pole faces the Sun is nearly coincident with perihelion: Ferŕın (2008) calculates
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Figure 6.23: The location of the five test jets on the comet surface.

that this occurs 6 ± 1 day after perihelion (at ν = 26.7 ± 4.5◦). We assume that ejection

of particles occurs while this area is sunlit: between ν = 250◦ and ν = 110◦.

The jet region is approximated by selection ∼ 4% of the direction angles used above.

The region itself ranges from direction angles θ = 160◦ to θ = 200◦ and from φ = 70◦ to

φ = 110◦ inclusive: that is it spans 50◦ in θ and φ. This comprises 4.07% of direction

angles.

In order to test whether the location of the jet is crucial, we additionally test four

alternative jets, positioned symmetrically either side of the south pole jet, such that they

are all on the sunlit side when the comet is at perihelion. These jets are also of the same

size in the angles θ and φ as the original jet. There will be a small difference in the size

of the ejection areas encompassed by each jet due to the non-uniform spacing between

ejection angles. This is not a major concern as we do not attempt to directly compare the

results for each jet. Their locations on the sunlit side of the comet, using the coordinates

θ and φ, are shown in Figure 6.23.

The percentages of jet particles captured in the 7:2 resonance are shown in Figure

6.24. What is apparent is that the capture percentages are highly variable with the comet,

particle radius and density, and true anomaly. However, it is evident from this method

that the capture of particles from a discrete jet in the southern hemisphere is possible:

that is, such a capture mechanism is not excluded by this study.
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Figure 6.24: Capture percentages for various jets (see Figure 6.23) for three comets. The capture percentages are out of the total
number of ejection directions from the jet (25 in this model). Parameters used are (a) particle radius 100 µm, particle density 2500
kgm−3; (b) particle radius 100 µm, particle density 1000 kgm−3; (c)particle radius 600 µm, particle density 2500 kgm−3. Note that
a true anomaly of 480◦ is equivalent to a true anomaly of 120◦. No correction for the variation in dust ejection with heliocentric
distance is made here.
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6.17 Inclusion of Radiation Pressure

Since the above study does not include the effects of radiation forces, we now address

whether radiation pressure will have a significant impact on the trapping of 100 µm

particles in the 7:2 Jovian resonance.

We expect radiation forces to have both short and long term impacts on the motion

of small meteoroid particles in the Solar System. Here we are only concerned with short

term effects (. a few years), including the instantaneous variation of orbital elements as

a result of the variation in energy provided by radiation pressure. There will also be a

shift in the location of the resonance.

An ejected particle immediately feels an increased radiation effect due to its apparent

reduction in mass. As given in Section 2.3.5, the combined force on a particle subject to

solar gravitational force and radiation pressure force is the vector sum F = Fg + Fr:

F = −GM�m

r2
h

r̂h +
L0s

2Qpr

4πr2
hc

r̂h

Using β = 3L0Qpr

16πGM�cρs
this reduces to

F = −G(1 − β)M�m

r2
h

r̂h.

From this is it is evident that the effect of radiation is to reduce the apparent

gravitational effect of the Sun: that is, the particle appears to be orbiting a star of

mass M�(1 − β). With the expression for the heliocentric velocity of an object V 2
h =

GM�( 2
rh

− 1
a
), this can be used to derive expressions for the new orbital elements of

a comet-ejected particle under radiation pressure (with the ejection velocity taken as

negligible):

a′ = a(
1 − β

1 − 2aβ/rh

) (6-7)

e′ = |1 − (1 − 2aβa/rh)(1 − e2)

(1 − β)2
| (6-8)

(These are also given in Moro-Mart́ın and Malhotra (2002) and Kortenkamp and

Dermott (1998)). From these, an expression for the true anomaly can be derived by

taking the position of the particle on ejection to be constant: thus r′h = rh = a(1−e2)
1+e cos ν

.

This produces:

ν ′ = arccos (
e cos ν + β√

(1 − β)2 − (1 − 2βa/rh)(1 − e2)
)
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Figure 6.25: The resonance shift experienced for 2 µm Taurid particles. Note that the
7:2 resonance is shifted from 2.256 AU to 2.173 AU (expected 2.1737 AU) and the 3:1
resonance is shifted from 2.5 AU to 2.408 AU (expected 2.4087 AU). This has also reduced
the full resonant width (to a maximum of ∼ 0.041)

Additionally, $′ = $+ν−ν ′ is expected, again determined by assuming the position

of the particle remains constant instantaneously. Because radiation pressure is radial it

cannot affect the inclination and longitude of the ascending node.

The location of the resonance is also dependent on the β factor of the ejected particle.

The location of a Jovian p+q : p resonance is given by Weidenschilling and Jackson (1993)

as:

ares = aJupiter × (1 − β)1/3

[
p

p + q

]2/3

or:

ares = ares,β=0 × (1 − β)1/3

For a 100 µm particle, this shift is only 0.00172 AU: such particles have β = 0.00228

assuming their density is ρ = 2500 kgm−3. We thus demonstrate (in Figure 6.25) the shift

for a 2 µm particle, with Taurid orbital elements and the semi-major axis stepping from

2 – 2.5 AU in 0.002 AU increments. This is not expected to produce a significant effect

for radar-sized particles.

Inclusion of radiation pressure in the comet ejection model requires use of the

HNDrag extension to HNBody. This requires a drag force input file which specifies

the type of force (such as radiation pressure), the β fraction for the object, and the

object on which the force is to act. We also need to consider the limits of the osculating
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orbital elements used by HNDrag. Osculating orbital elements describe the orbit of an

object in the absence of external perturbations, such as gravitational or radiation pressure

perturbations. Thus, the osculating coordinates do not well describe an object’s orbit

when radiation pressure is added. This could be rectified by converting the osculating

orbital elements to geometric elements. However, in order to avoid this conversion we

here force the program to produce sensible orbital elements by avoiding the addition

of radiation pressure directly to the ejected particles. The radiation pressure effect is

simulated by altering the mass of the Sun to (1 − β)M�. This means that the level of

radiation pressure experienced by the particle is now also applied to Jupiter and the model

comet. We therefore apply a ‘negative’ radiation pressure to Jupiter and the comet, of

magnitude β ′ = β
1−β

. This is the correct β to apply in this situation due to the fact that

this β is applied by a Sun of reduced mass M�× (1−β). We also correct the Jupiter and

comet orbital elements for the radiation pressure effect that they undergo in the scheme

used here. We note that for a 100 µm particle from Comet 2 at perihelion this amounts to

ejecting the particle from the comet at 2.318 AU instead of 2.256 AU. Note that the real

situation is that the comet has a semi-major axis of 2.256 AU, but its ejected particles

feel the radiation pressure effect instantaneously and embark on an orbit with semi-major

axis 2.318 AU. Given that the resonant half width for the 7:2 Jovian resonance is ∼ 0.024

AU, this will have a significant effect on the trapping of ejected particles in the resonance.

We demonstrate here the effect of radiation pressure on trapping for Comets 1 and

2 (100 µm particles of density 2500 kgm−3) and Comet 2 (600 µm particles of density

2500 kgm−3) (see Table 6.1). For efficiency a simple semi-major axis based resonance test

is developed that evaluates whether each particle’s semi-major axis places it within the

resonance width of the 7:2 resonance. It is first verified that this gives comparable results

to the resonant argument-based method in the case of no radiation pressure (as given

above). It is found that for Comet 2 ejections of 100 µm particles of density 2500 kgm−3

the semi-major axis method produces capture percentages that are between 97.9% and

101.5% of the capture percentages determined using the resonant argument test.

We can then use a simple method to evaluate the capture percentages under radia-

tion pressure. We begin with the starting semi-major axis values for the resultant ejected

orbits of particles ejected without radiation pressure, and determine their corresponding

values under radiation pressure, given by equation 6-7. We can then determine which

particles are in resonance by using the simple semi-major axis test given above. We test

this method specifically for a 100 µm particle of density 2500 kgm−3 ejected at perihelion

from Comet 2 and inclusive of radiation pressure. In this case the simple semi-major axis

method produced a capture percentage 90.3% of that given by numerically integrating the



180 Chapter 6. Mass Selection Effects in Resonant Swarms

0 50 100 150 200 250 300 350
0

50

100

True Anomaly (degrees)

Comet 1, Radius 100 µm

0 50 100 150 200 250 300 350
0

50

100

True Anomaly (degrees)

Comet 2, Radius 100 µm
P

er
ce

nt
ag

e 
M

et
eo

ro
id

s 
in

 R
es

on
an

ce

0 50 100 150 200 250 300 350
0

50

100

True Anomaly (degrees)

Comet 2, Radius 600 µm

 

 

No radiation pressure included
Radiation pressure included

Figure 6.26: Capture percentages (inclusive and exclusive of radiation pressure) for 100
µm and 600 µm particles of density 2500 kgm−3 ejected from comets 1 and 2 at a range
of positions along the comet orbit. Variations between the rates inclusive and exclusive
of radiation pressure can be large for 100 µm particles, but are low for 600 µm particles.
No corrections for heliocentric distance or ejection only from the sunlit side are made at
this point.

orbits and using the resonant argument to determine whether they are resonant. This test

is sufficient as the uncertainty it adds is small compared to that found in the uncertainty

analysis above (Section 6.12).

We therefore see in Figure 6.26 the comparison between capture rates including and

not including radiation pressure. It is evident that the error created by not including

radiation pressure can be high for s = 100 µm particles:up to about 70% in isolated

cases). However, the variations for s = 600 µm particles for Comet 2 do not exceed 7% at

any point, as a consequence of the 1
s

dependence of the β factor on heliocentric distance.

Several effects contribute to the differences between the percentage of particles cap-

tured with and without radiation pressure. One of the most important is the apparent

ejection location of the comet: that is, the location that the particles appear to be ejected

from. This is also equal to the semi-major axis of a particle ejected under radiation

pressure with zero ejection velocity. Though the comet appears to be ejecting from a

larger semi-major axis, only the particles are significantly affected by radiation pressure,

due to the relatively large mass of the comet. Using equation 6-7 it can be seen that this
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Figure 6.27: Variation in the semi-major axis of 100 µm particles (of density 2500 kgm−3)
ejected from Comet 2 and subject to radiation pressure, using equation 6-7. The largest
variation in semi-major axis is experienced around perihelion, and the semi-major axis
decreases thereafter, such that the semi-major axis of the particle is within the resonance
further out than about rh = 0.8 AU (indicated by the dotted line). For Comet 1 the
particle is within the resonance if ejected within 0.8 AU.

change in semi-major axis is dependent on the mass of the particles and the true anomaly

of the comet at the ejection point.

The effect of this is different for comets 1 and 2, and for particles of different mass.

Equation 6-7 can be used to demonstrate this. Comet 2 is orbiting within the resonance

(aC2 = 2.256AU ≈ ares, where aC2 is the semi-major axis of Comet 2 and ares is the

semi-major axis of the 7:2 resonant centre). At perihelion and under radiation pressure

it appears to eject 100 µm particles from a location exterior to the resonance (a > ares).

However, as Figure 6.27 demonstrates, for solar distances rh ∼ 0.8 AU (ν ≈ 106◦) it

appears to eject particles from a semi-major axis inside the resonance. This allows it

to reach a point (near aphelion) at which all ejected particles are trapped in resonance,

as is seen in the case with no radiation pressure. This is seen in Figure 6.26 to be the

case between ν = 140◦ and ν = 220◦. 600 µm particles always appear to be ejected from

within the resonance: equation 6-7 shows that a 600 µm particle ejected with zero ejection

velocity at perihelion will have a resonant orbit.

Comet 1 is orbiting interior to the resonance with a = 2.21 AU. However, as a result



182 Chapter 6. Mass Selection Effects in Resonant Swarms

of radiation pressure, at perihelion it appears to be ejecting particles from within the

resonance. As the heliocentric distance increases, the difference between the original semi-

major axis and the apparent semi-major axis resulting from radiation pressure decreases.

For heliocentric distances greater than rh ∼ 0.8 AU (ν ≈ 104◦ for this comet) it is again

outside the resonance.

The change in the apparent location of the ejecting comet will also affect the ejection

directions that can produce resonant particles. This will to some extent influence the areas

on the comet surface from which ejection results in resonant orbits, and could indicate

that ejection is required from different areas on the comet surface for particles of different

masses to become resonant. However, this would depend on the distribution of ejection

angles of particles released from each point on the surface. This effect would only be

important when ejection is in discrete jets, as is proposed for Comet 2P/Encke.

Figure 6.28 shows the ejection directions (in θ and φ) from the surface of Comet 2

that can produce resonant orbits in two different cases (ejection at ν = 0 and ν = 120◦),

and demonstrates the differences between the resonant and non-resonant cases. We briefly

describe the behaviour represented in Figure 6.28 (a)–(d) as follows:

(a) Particles ejected at perihelion (ν = 0); without radiation pressure: As

Comet 2 starts in resonance, the ejected particles are ejected from approximately

the centre of the resonance. Many particles have a total resulting velocity that is too

high for them to retain resonant orbits. The highest-velocity particles are ejected

in the comet forward direction (θ = 90◦) and in the opposite (θ = 270◦) direction.

(b) Particles ejected at perihelion (ν = 0); with radiation pressure: The particles

now appear to be ejected from outside the resonance (a > ares). Most do not reach

resonance. Particles ejected in the opposite direction to the comet’s forward motion

direction (with θ = 270◦) are slower than the apparent comet, and therefore can

achieve orbits with lower semi-major axis values: they can thus reach resonant

orbits). However, a number of particles ejected in this direction reach orbits on the

opposite side of the resonance (a < ares), creating a region of non-resonant particles

centred on θ = 270◦.

(c) Particles ejected at a true anomaly ν = 120◦; without radiation pressure:

These particles are ejected from approximately the centre of the resonance. Particles

at ν = 120◦ are ejected with lower ejection speeds than those at perihelion, which

results in a larger proportion of particles being captured in resonance, in comparison

to (a). Those that are not captured are those that are ejected in the direction of

the comet’s motion (θ ≈ 158◦), and in the directly opposite direction (θ ≈ 338◦).
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Figure 6.28: Contour maps demonstrating the locations of ejected particles that have
resonant orbits, and the variation that occurs when radiation pressure is added. In all
cases s = 100 µm, ρ = 2500 kgm−3 particles are ejected from Comet 2. (a) and (b) are
ejected at perihelion; (c) and (d) are ejected at a true anomaly of ν = 100◦. (a) and (c)
are exclusive of radiation pressure; (b) and (d) are inclusive of radiation pressure.

(d) Particles ejected at a true anomaly ν = 120◦; with radiation pressure:

Particles now appear to be ejected from within the resonance (compared to (b)).

This ejection appears to occur near the edge of the resonance. This means particles

ejected in the comet forward direction (θ ≈ 158◦) can obtain velocities too high

to remain in resonance, and therefore have orbits external to the resonance. All

particles ejected in the opposite direction (θ ≈ 338◦) remain within the resonance.

Thus, the percentage of captured particles for each case is affected by the variation

in the apparent ejection location in semi-major axis (or the semi-major axis of a particle

under radiation pressure and zero ejection velocity) and on the decreasing ejection velocity

of the particles with heliocentric distance (or with true anomaly). The variation in the

apparent ejection position affects the number of particles captured directly and also affects
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Figure 6.29: Contour maps demonstrating the locations of ejected particles that have resonant orbits, and the variation that occurs
when radiation pressure is added, for particles at true anomalies of 80◦, 100◦ and 120◦. In all cases s = 100 µm, ρ = 2500 kgm−3s
particles are ejected from Comet 2. These figures demonstrate the change in the location of ejected particles for the radiation
pressure case at ν ∼ 100◦ (see Figure (e)).
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Figure 6.30: Capture percentages (inclusive and exclusive of radiation pressure) for 100
µm and 600 µm particles of density 2500 kgm−3 ejected from comets 1 and 2 at a range
of positions along the comet orbit.

the ejection directions required. Because there are different effects contributing to the

graphs in Figure 6.28, at any given point it is difficult to determine whether addition of

radiation pressure will increase or decrease the captured percentage, or leave it unchanged.

We observe that larger differences occur when the apparent ejection location of Comet

1 leaves the resonance, and when the apparent ejection location of Comet 2 enters the

resonance (after approximately ν = 100◦ to ν = 120◦). In both cases this dynamical

behaviour is a result of the change in ejection angles that can produce resonant orbits

(see Figure 6.29). In the case of Comet 1, at perihelion particles appear to be ejected

within the resonance. This should increase the number of particles captured. However,

because the resonance width is small, the inclusion of ejection velocity causes a number

of particles that are usually resonant (ejected in the comet forward direction) to achieve
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orbits exterior to the resonance (a > ares). This effect cancels out part of the benefit of

the ejections occurring within the resonance, and capture percentages at perihelion are

only ∼ 12% different between the cases inclusive and exclusive of radiation pressure. This

difference decreases with true anomaly as the difference between the apparent ejection

location and the true location of Comet 1 decreases (as given by equation 6-7). Similarly,

for Comet 2 particles appear to be ejected from an orbit exterior to the resonance, which

should decrease the numbers captured. The variation in the ejection directions required

for resonant capture again cancels partially with this effect. Thus, the capture percentages

for Comet 2 at perihelion in the case without radiation pressure are ∼ 15% different to

those with radiation pressure.

Capture percentages are now generated for ejections from the sunlit hemisphere

only (see Figure 6.30). Larger variations are seen between the radiation pressure and no

radiation pressure cases, particularly for Comet 2. For Comet 2 the maximum variation

between the radiation and no radiation pressure cases is ∼ 45% for 100 µm particles and

∼ 11% for 600% particles. Thus once the sunlit hemisphere correction is applied, which

we expect to be necessary, there is a clear difference between the 600 µm and 100 µm

cases.

The asymmetry in the capture percentages with true anomaly is due to the variation

in the coincidence of the sunlit hemisphere and the hemisphere able to inject particles into

the resonance. For example, for Comet 2 radiation pressure increases the semi-major axis

of the ejected particles. The effect is such that only those that have an ejection velocity

that produces a net decrease in the velocity of the particle will reach the resonance.

These particles will be ejected backwards from the comet. We see particularly low rates

of capture in the region ν = 240◦ to 300◦ as in this region there is little coincidence

between the sunlit hemisphere and the hemisphere ejecting particles backwards.

Comet 1; Comet 2; Comet 2;
s = 100 µm; s = 100 µm; s = 600 µm;

ρ = 2500 kgm−3 ρ = 2500 kgm−3 ρ = 2500 kgm−3

Total % 26% 26% 64%
% of No-Radiation 109% 97% 103%
Pressure Values

Table 6.8: Approximate total percentages of ejected particles trapped in the 7:2 resonance
over the whole comet orbit, with the inclusion of radiation pressure

Finally, we add the heliocentric distance scaling (using the values given in Figure

6.18) and produce approximate total capture percentages for the whole comet orbit using

the method given in Section 6.14(Table 6.8). This table also gives these resonant capture

rates as percentages of the capture rates for the case of no radiation pressure. These give
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an approximate idea of the error caused by the neglect of radiation pressure. In these cases

this is not highly significant (less than ∼ 10%) because the largest errors from excluding

radiation pressure occur at large heliocentric distances, at which Sun-comet distances the

ejection rate of particle is low (see Figure 6.18).

6.18 Summary

Capture of particles into the 7:2 Jovian resonance is dependent on several parameters

for which a high level of uncertainty exists. Cometary ejection processes for individual

comets are not well understood. It is thus not possible to produce confident estimates of

the percentages of particles that are likely to be trapped in a given resonance. However,

a number of observations can be made:

• Ejection of cometary particles is possible from any of the three model comets pro-

posed. Capture in the 7:2 resonance is easiest for Comet 2, which represents a small

comet inside the resonance. Comet 1 (a model of Comet 2P/Encke) is displaced

from the resonance, which hinders its ability to generate resonant particles. Comet

3 produces higher-velocity particles, which can more easily reach orbits beyond

the resonance. Approximate capture percentages are determined (see Table 6.6),

but are only considered indicative of the ability of these resonances to produce

resonant particles, and of the variations between different particle mass and density

combinations. Uncertainties are expected to be well in excess of 50%.

• The captured percentages of particles were found to be highly dependent on the

mass (or radius) and density of ejected particles. The location of the comet in

space with respect to the resonance dictates to some extent whether an increase in

the particle mass lead to an increase in the captured percentage (see Figure 6.21).

In particular, the variation between the capture percentages for photographic-sized

and radar-sized meteoroids was evaluated. Capture of large, photographic-sized

meteoroids is efficient for a librational comet such as model comets 2 and 3, but

is less probable for a comet displaced from the resonant centre such as Comet 1.

For librational comets (Comets 2 and 3), the capture percentages for radar-sized

meteoroids are 23% to 53% of the capture radar of photographic-sized meteoroids.

These are dependent on the comet, the particle density, and the exact mass limits.

• Ejection from a discrete jet (located such that it is active at perihelion) comprising

only ∼ 4% of the comet surface is not a barrier to trapping of radar-sized particles

in the resonance. However, we note that our model is very limited in this case as it

only accounts for strictly radial ejections, and includes several other assumptions.
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• Radiation pressure may have a significant effect on the capture probabilities of

particles at the lower end of the CMOR mass range (∼ 100 µm) and at moderate

heliocentric distances. As a result, different ejection angles are required for such

particles to obtain resonant orbits. For particles of size ∼ 600 µm, near the upper

end of the CMOR mass range, such effects are small at all heliocentric distances.

Without the heliocentric scaling, for sunlit hemisphere ejections from Comet 2 the

maximum variation between the radiation and no radiation pressure cases is ∼ 45%

for 100 µm particles and ∼ 11% for 600 µm particles. Overall, the effect of radiation

pressure was small, with . 10% variations between the radiation pressure and non-

radiation pressure cases for both Comet 1 and 2. This is partially a result of the fact

that the largest variations between the two cases were found to exist at moderate-

high heliocentric distances, where the relative dust output of the comet is expected

to be low.

We also use the results regarding the capture percentages of visual and radar me-

teoroids to investigate how the proportion of visual Taurid particles that are in the 7:2

Taurid resonant swarm is likely to compare to the proportion of radar-sized particles.

Along with estimates of the proportion of visual Taurids that are in the resonant swarm,

this allows us to determine whether the proportion of radar Taurids in the resonant swarm

is likely to be large enough to be detected using a CMOR type radar with measurement

uncertainties improved by a factor of ten. With such a reduction in the measurement

uncertainties we require approximately 5% to 6% of the total number of observed Taurids

to be resonant in order for observation in one year of data to be possible. In strong

swarm years, the size of the Taurid swarm should exceed this proportion. However, in

weak swarm years we may expect only 4% to 5% of Taurids to be resonant, meaning the

swarm would be on the edge of observability. Additionally, this is based on a gas-drag

ejection model for cometary particles. The dependency of the ejection velocity on particle

mass may vary for a fragmentation model: it is usually assumed that the ejection velocity

is not a function of particle mass or radius (Tanigawa et al., 2010). Thus in such a case

the proportion of radar particles captured may vary significantly from the results obtained

here.

We thus conclude that the capture of a significant proportion of ejected Taurids in

the 7:2 resonance is likely, but is highly dependent on the ejection velocities and ejection

directions from the comet. An improved understanding of the exact ejection circumstances

for a given comet is necessary to provide reliable capture percentages.
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6.18.1 Survival of the Resonant Swarm

A final concern is the survival of particles in the swarm with time. It is not the intention

in this chapter to address this question directly: we are concerned only with whether

cometary ejection processes allow the swarm to be populated by particles of radar masses.

An analysis of the population of particles within the swarm over time would require

integration of the ejected particles for the approximate lifetime of the Taurid stream

(∼ 2×104 years) including gravitational effects of all planets and non-gravitational effects

of radiation pressure, Poynting-Robertson effect and solar wind drag. This would also

require accurate modelling of the expected orbits of Comet 2P/Encke and proto-Encke.

Simple examples are used to study the approximate effects of such forces in the following

section. The survival of particles is also limited by their collisional lifetime. However,

the collisional lifetimes for Taurid particles of size 1 mm (calculated by Steel and Elford

(1986)) are several times greater than the expected age of the Taurid stream (see Section

2.4). Thus, it is expected that collisions between meteoroids will not deplete the swarm

in the timescale of interest.
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Figure 6.31: The effect of radiation pressure, Poynting-Robertson drag and solar wind
drag over 104 years. (a) shows the result when the starting mean longitude places the
particles very near the edge of the resonance; (b) demonstrates the behaviour when
the starting mean longitude (relative to Jupiter) is optimised to place the particles in
resonance. Particle sizes are 100, 200, 600 and 2000 µm. Each figure provides the semi-
major axis, eccentricity and inclination behaviour for each set of particles.

We first study the effect of non-gravitational forces on particle of radii 100, 200, 600

and 2000 µm, and of density 2500 kgm−3. Radiation pressure, Poynting-Robertson drag
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and solar wind drag are applied using HNDrag, the latter as a component equal to 30% of

the Poynting-Robertson drag (see Section 2.3.2). Integrations are run for 104 years (see

Figure 6.31. Particles in Figure 6.31(a) are started at a mean longitude that places them

at the edge of the resonance; particles in Figure 6.31(b) are placed at a mean longitude

that optimises their location inside the resonance. It is clear that small particles at the

resonance edge experience inspiralling that causes them to be lost from the Taurid region

within 104 years. However, particles that are at an optimised resonant location are able

to survive.

The action of planetary perturbations is expected to cause some particles to leave

the resonance. This would allow them to inspiral under the Poynting-Robertson and solar

wind drag forces. Thus, planetary perturbations (along with drag forces) will be a stronger

loss mechanism for resonant particles than non-gravitational forces alone. To demonstrate

this, the effect of planetary perturbations is shown for 200 µm particles. Particles are

started at a semi-major axis of 2.256 AU, at ten evenly-spaced mean longitude values

from 0 to 324◦. Other orbital elements are mean values for the Taurid stream. All

planetary bodies are included as HWPs, as well as Pluto and the asteroids Ceres, Pallas,

Juno and Vesta. Non-gravitational forces are unchanged from those used above. The

integrations are run for 104 and 105 years (see Figure 6.32). After 104 years, half of these

evenly-spaced orbits suffer an orbital perturbation that causes them to leave the resonance

and begin to inspiral. After 105 years, all particles have suffered such a perturbation, with

the last particles leaving the resonance after ∼ 4 × 104 years.

Thus, radar-sized particles will be removed from the resonance on a timescale of

approximately 1 × 104 to 3 × 104 years. This is approximately the expected age of the

Taurid stream. We note that those that survive in the resonance longest tend to be

those at optimal starting mean longitudes: in general we expect a resonant swarm to

form at such mean longitude locations (with respect to Jupiter), and thus to have longer

survival times. Given this, we conclude that it is possible for radar-sized particles to be

trapped in the resonance swarm and to survive for ∼ 2× 104 years. However, full stream

modelling over the age of the Taurid stream would be required to confirm the magnitude

of these loss mechanisms involving planetary perturbations. Such a study would require

inclusion of all large planetary bodies, and as such the integration runtimes would be

long. It is sufficient for our current study to have confirmed here that gravitational and

non-gravitational effects do not exclude the possibility of radar-sized particles surviving

in the swarm for such timescales.
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Figure 6.32: The effect of gravitational perturbations and non-gravitational effects over
104 and 105 years. Non-gravitational effects included are radiation pressure, Poynting-
Robertson drag and solar wind drag. (a) and (b) demonstrate integrations of length 104

years; (c) and (d) are extended integrations for 105 years. (a) and (c) demonstrate the
behaviour are particles with starting mean longitudes of 0 to 144◦, while (b) and (d)
demonstrate the behaviour of particles with starting mean longitudes of 180◦ to 324◦.
Each figure provides the semi-major axis, eccentricity and inclination behaviour for each
set of particles.
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Chapter 7

Conclusion

7.1 Summary and Conclusions

This thesis has analysed the observation of the 7:2 Taurid resonant swarm in meteor

orbit radar data. Evidence for a number of resonant swarms is indicated in earlier works

in photographic meteor orbit data: this study has investigated the ability of radar data

to provide similar dynamical insights. Both data analysis and numerical integration of

particle orbits are used to provide information on the observation of resonance structure

using Canadian Meteor Orbit Radar (CMOR) data from the years 2002 to 2007.

A statistical study searched for the presence of the 7:2 swarm (expected to have

a resonant centre at a semi-major axis of ∼ 2.25 AU) in this CMOR dataset. Two

statistical tests were employed: a simple statistical test using the size of variations from a

mean curve; and a Monte-Carlo test to determine the expected size of random variations

in a dataset of this size. No evidence was found for a resonant feature at this location

in the distribution of observed meteoroids with semi-major axis, in either the combined

dataset for the years 2002 to 2007, or the dataset for the 2005 ‘swarm encounter’ year (in

which observation of the 7:2 resonance swarm was optimal for the 2002 to 2007 period).

This must either be a consequence of the measurement uncertainties of the radar dataset;

or of physical limitations of the swarm itself, such as a low proportion of radar-sized

particles.

In order to address the former possibility, a numerical convolution method was

developed. This method analysed the affect of the CMOR orbital uncertainties in broad-

ening the Taurid semi-major axis distribution. It was found that the uncertainties of this

CMOR data will broaden small scale resonant features such that they are unobservable.

This method was used to determine the level of reduction of these radar meteor orbital

uncertainties that is required for a swarm, of various sizes, to be observable. This was

repeated for datasets of four different sizes to investigate the effect of dataset size on the

size of random statistical fluctuations. The results of this are given by Figure 4.22. In

summary, the results demonstrate that an improvement in the measurement uncertainties

193
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of a factor of 5 to 10 is required for observation of a 7:2 resonant swarm, dependent on

the size of the radar-sized proportion of the swarm (quantified by the proportion of the

total number of Taurids detected).

In order to accomplish the statistical tests on the CMOR data and the numerical

convolution method, it was necessary to know the approximate width of the resonant

feature, in semi-major axis units. This provided the size of the feature for which evidence

is sought in the radar data. Due to the high Taurid eccentricity of 0.83, the determination

of a ‘resonance’ or libration width is not possible using an analytic method. This is

because such methods are limited to the circular, planar restricted case. Thus, numerical

integrations of particle orbits in and near the 7:2 resonance were used to calculate the

resonant width. This required determination of the the region inside which the resonance

can affect the dynamics of meteoroid particles. The HNBody program developed by Rauch

and Hamilton (2002) was used to perform these numerical integrations. The resulting

resonant width for particles with Taurid orbital elements was (0.047± 0.005) AU. At low

eccentricities, this numerical method was compared to the analytic method (from Murray

and Dermott (1999)) and the semi-analytic method developed by Gallardo (2006b). The

latter required a conversion from resonant strengths to resonant widths: this was derived

using the planar, circular form of the disturbing function given by Murray and Dermott

(1999). Because different assumptions are inherent in the three methods, exact agreement

is not expected. A good (. 10%) agreement between the three method was achieved for

orbits with eccentricities less than 0.4.

In the final chapter, the effect of meteoroid mass on resonant trapping efficiency

was investigated. Evidence exists for the 7:2 Taurid resonant swarm in photographic

meteor data. These photographic particles are larger than those detectable by radar

(photographic particle have radii ∼ 1000 µm to 4000 µm; radar particles have radii ∼ 20

µm to 800 µm). If the mass distribution of swarm particles is weighted towards heavier

particles, it may be that it is possible to observe the swarm at photographic sizes but

not at radar sizes. Two possible mechanisms for producing such a mass distribution are:

variations in the comet ejection velocities with particle radii; and variations in the effect

of radiation pressure on orbital elements with particle sizes. Both areas were addressed

using a simple model of particle ejections from a model comet using the HNBody numerical

particle integrator and the HNDrag extension. The model comets used include one that

resembles the current Comet 2P/Encke (Comet 1); one with the mass of Comet Encke

but the orbital elements of an unconfirmed proto-Encke (Comet 2); and one with the

mass and orbital elements of proto-Encke (Comet 3). These cover the comets expected

to be capable of ejecting particles into the 7:2 Taurid resonant swarm. The aim was to

determine the percentage of particles ejected in uniform directions that are injected into
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resonant orbits. The mass dependency of the particle ejection speeds was determined

using a Whipple-like ejection velocity model (Whipple, 1951), of the form given by Brown

and Jones (1998).

Details of the particle ejection mechanism for individual comets remain highly un-

certain, including with regard to the ejection regions on the comet surface, the density

of ejected particles, and the distribution of particle ejections with heliocentric distance.

This limits the ability for the model used here to provide accurate percentages of captured

particles. In addition, the model makes assumptions on the locations of the model comets

and Jupiter, which will affect the ability of the resonance to trap affected particles. In

general, resonance capture of ejected cometary particles was found to be possible for all

three model comets. The capture percentages are highly dependent on the masses and

densities of the ejected particles. For comets 2 and 3, this effect is such that the capture

percentages for radar-sized meteoroids are about 23% to 53% of those for photographic-

sized meteoroids, dependent on the comet, the particle density, and the exact mass limits.

Additionally, radiation pressure may have a significant effect for 100 µm particles, but

will not for 600 µm particles. However, as the largest variations are not near perihelion

where the majority of dust output occurs, the overall effect of radiation pressure on the

total capture percentages over the orbit is found to be small. The variations between the

radiation pressure and non-radiation pressure cases are . 10% for both comet 1 and 2,

for 100 µm and 600 µm particles.

Estimates were calculated for the expected proportion of radar-sized particles in the

resonant swarm, compared to the total number of Taurids observed. This was achieved by

comparing the capture percentages of visual and radar meteoroids with estimates of the

proportion of visual Taurids that are in the resonant swarm. As given above, for detection

of the swarm in one year of data to be possible using a radar with orbital uncertainties

one tenth of those of the CMOR dataset used here, approximately 5% to 6% of the total

number of observed Taurids must be resonant. In a weak swarm year, the total number

of visual Taurids may increase by ∼ 20–40% (estimated using Taurid ZHR profiles given

by Dubietis and Arlt (2007)). Calculations using the proportions of visual and radar

meteoroids captured in the numerical integrations found that in the minimum 20% case

only 4% to 5% of radar Taurids are expected to be resonant. Such a swarm would then

be on the edge of observability. In strong swarm years, where a more optimal swarm

geometry is present, the size of the Taurid swarm should exceed this proportion.

The parent object that has produced such a resonant swarm is expected to be either

Comet 2P/Encke (modelled approximately by Comet 1), the currently unobserved proto-

Encke object (Comet 3), or a small version of this proposed giant comet (Comet 2). The

results of this study showed that there are vast differences in the resonance capture of
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particles ejected from these comets. Capture of visual-sized meteoroids was found to

be difficult for those that are ejected from a comet in the orbit of, and of approximate

size to, Comet 2P/Encke. This is particularly true for dense particles, with density

ρ = 2500 kgm−3. Thus, the possibility of resonant capture of particles ejected from

Comet Encke may depend on the density of such particles. As described in Section 6.3,

this is not well constrained for Taurid meteoroids, but is expected to be slightly greater

than that of other meteoroid stream particles. Thus, our study suggests that Taurid

swarm particles need low densities in order for the current Comet 2P/Encke to be able to

efficiently populate the 7:2 resonant swarm with visual-sized meteoroids.

7.2 Future Work

There is scope to improve the methods presented in this thesis. The numerical convolution

method is an approximate approach to the effect of the radar uncertainties. In addition,

it assumes a Gaussian form for the distribution of particles in the resonant swarm in semi-

major axis. A future project should test the sensitivity of the results to resonant features

with different distributions in semi-major axis: for example, a uniform distribution.

The ejection model problem would benefit from an improved treatment. By de-

veloping a model of streams from Comets 2P/Encke and proto-Encke, a more accurate

description of the resonant trapping of such particles may be achieved. Such a model would

include random ejections from the sunlit hemisphere, a mass distribution of particles, an

improved water production rate (and thus dust production rate), an improved ejection

velocity model (possibly using the Crifo model - which, notably, has the same mass

dependency as the Whipple-type models), and the gravitational influence of more planets

(here only Jupiter is included). Such a model would be computationally intensive but

would remove the necessity to test individual mass, density and true anomaly cases, and

would provide information on the behaviour of the whole stream. Further information

on the ejection mechanisms of comet Encke would also reduce the uncertainties in the

method.

Explicit modelling of a fragmentation model for stream formation, using a varied

ejection velocity and ejection from all directions, would also be useful. This is important

due to the expected role of fragmentation in the formation of Comet 2P/Encke and of a

fraction of Taurid meteoroids. The results presented here on the proportion of radar Tau-

rids expected to be resonant do not include such a fragmentation model, and as such these

results can only be considered indicative. However, modelling this fragmentation situation

would require the expected ejection velocities to be further constrained, particularly with

regard to the variation of ejection velocity with mass.
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These improvements, along with improved information on the increase in the ob-

served numbers of visual Taurid particles caused by the presence of the resonant swarm,

could provide a more exact value for the expected proportion of radar Taurids that are

resonant. This would in turn improve the conclusions regarding the radar improvement

required for the 7:2 resonant swarm to be detectable.

The results of this thesis imply that an improvement in the velocity uncertainties in

radar orbital datasets is required to detect resonant features. The velocity measurement

uncertainties in the CMOR dataset used in this thesis are ∼ 5% – ∼ 10% (for the hybrid

Fresnel method and the time-lag method respectively). The largest component to these

uncertainties is the error in the determination of particle decelerations in the atmosphere.

Reliable deceleration measurements are necessary to determine accurate pre-atmosphere

speeds. In the 2002 to 2007 CMOR dataset, pre-atmospheric speeds are calculated using

empirical expressions determined by comparing the radar-determined speeds and photo-

graphic speeds for major meteor showers. It is possible to determine acceleration values

for individual meteoroids using a number of individual speed measurements. This requires

several outlying stations in the radar system with interferometers capable of providing

phase information. A new CMOR II radar is being developed with a total of five outlying

stations (rather than the minimum of two): it is hoped that this configuration will be

sufficient to obtain deceleration information (Brown et al., 2010).

If such methods are successful they provide what is probably the greatest chance of

achieving the reductions in orbital measurement uncertainties required for studies of small-

scale resonant features (including of resonant swarms) to be feasible with meteor radar

data. Other methods of measuring the in-atmosphere speeds of detected meteoroids have

the potential to provide velocity uncertainties 0.1 kms−1 (comparative to uncertainties

of ∼ 3 kms−1 for Taurid meteoroids). However, such methods are dependent on clear

meteoroid amplitude and phase profiles, which are only found for a small proportion of

particles as a result of meteoroid fragmentation or atmospheric turbulence.

The methods outlined in this thesis are transferrable to the study of any other

resonant features of interest, or small-scale dynamical features. An understanding of

the level of radar orbital uncertainties necessary to detect such a feature is required. It

would be necessary to determine the resonant width, or descriptive width of the feature of

interest, in order to accomplish this. Depending on the situation, it may also be necessary

to develop an understanding of the effect of particle mass on trapping of particles in

this feature. From the results of Section 4.4 it is apparent that the Quadrantids are

expected to be the next potential candidate for study in radar data. However, this

section also demonstrates that the 7:2 Taurid resonant swarm is expected to be the most

easily observable resonant feature in radar data. Thus, the results of this thesis indicate
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that resonant features are not expected to be visible in meteor radar data until radar

measurement uncertainties in velocity are improved by a factor of 5 to 10.

In such a manner, this study naturally leads to further study of such features by

radar, and thus determination of the capabilities of a new radar system is preferable before

further research is conducted. However, if the new generation of meteor orbit radar are

found to be capable of probing dynamical resonant features, datasets from such radar

could provide a powerful new tool for analysing the structure of resonances in the Solar

System.



Appendix A

Details of Resonant Theory

Herein we include details and derivations of approximate resonant theory that help with

the understanding of Chapter 5. These derivations are reduced content that appears in

Murray and Dermott (1999).

A.1 Derivation of the Disturbing Function

The disturbing function arises considering relative motions of bodies in a three body

system due to their gravitational forces. The following derivation is given in Murray and

Dermott (1999) (Chapter 6). Consider three masses mc (primary), and mi and mj (two

secondary masses)) with position vectors relative to each other and to a central point as

shown in Figure A.1. Rc, Ri, Rj are the position vectors for the three bodies from the

fixed point O, and ri and rj are the position vectors of mi and mj from the primary.

Using Newton’s laws of motion and gravitation (mr̈ = Gm1m2

r3 r) we have:

mcR̈c = Gmcmi
ri

r3
i

+ Gmcmj
rj

r3
j

miR̈i = Gmimj
(rj − ri)

|rj − ri|3
+ Gmimc

ri

r3
i

mjR̈j = Gmjmi
(ri − rj)

|ri − rj|3
+ Gmjmc

rj

r3
j

The disturbing function describes the extra accelerations of the secondary masses

due to the primary that are seen in the three body system. By expressing the (total)

accelerations of the secondaries relative to the primaries, we will determine that they

are composed of a two-body part, and a three-body correction: the disturbing function.

These accelerations are given by

r̈i = R̈i − R̈c

r̈j = R̈j − R̈c
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mc

mj

mi

O

Rc

Ri

rj

Rj

rj-riri

Figure A.1: The Three-Body Problem: location of position vectors with respect to primary
mass mc and secondary masses mi and mj (After Murray and Dermott (1999), Chapter
6).

Substituting previous expressions gives:

r̈i + G(mc + mi)
ri

r3
i

= Gmj(
(rj − ri)

|rj − ri|3
− rj

r3
j

)

r̈j + G(mc + mj)
rj

r3
j

= Gmi(
(ri − rj)

|ri − rj|3
− ri

r3
i

)

In order to obtain the primary and secondary components, we write these relative

accelerations as gradients of scalar functions:

r̈i = ∇i(Ui + Ri) = (̂i
∂

∂xi
+ ĵ

∂

∂yi
+ k̂

∂

∂zi
)(Ui + Ri)

r̈j = ∇j(Uj + Rj) = (̂i
∂

∂xj

+ ĵ
∂

∂yj

+ k̂
∂

∂zj

)(Uj + Rj)

where Ui = G (mc+mi)
ri

and Uj = G (mc+mj)

rj
, and R is the disturbing function. Ui and

Uj represent the two-body part of the potential (pertaining to the effect of the central

mass); thus R is the three-body/secondary mass part of the potential (as supported by

the definition above). Considering that ri is only a function of xi, yi and zi (and similar

for rj) we have:

Ri =
Gmj

|rj − ri|
− Gmj

ri · rj

r3
j
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Rj =
Gmi

|ri − rj|
− Gmi

ri · rj

r3
i

By generalising this to notation such that the inner secondary is given by m, r and

R, and the outer secondary by m′, r′ and R′ we achieve final equations for the disturbing

function of each of these objects:

R =
µ′

|r′ − r| − µ′ r · r′
r′3

R′ =
µ

|r− r′| − µ
r · r′
r3

where µ′ = Gm′ and µ = Gm . The first term in these expressions is the direct

term; the second is the indirect term produced by the choice of coordinate system. For

the following sections, we note that we are primarily concerned with the inner secondary

and will only discuss R in following sections.

A.2 A Circular Restricted Simplification

In order to reach a simple approximation to the resonant width, simplification to a planar

circular problem assuming negligible mass for the inner perturbed body is necessary.

Here this means zero inclinations for both bodies; and zero eccentricity for the perturbing

body. Additionally, the use of a lowest order general form of the disturbing function

means that low eccentricity of the interior (perturbed) body is also assumed. This is a

standard practice for many Solar System applications: for example; for planetary resonant

perturbations on an inner asteroid residing in the asteroid belt, the necessary conditions

of small eccentricity and inclination of both bodies, and small mass ratio between the

bodies, are usually upheld. For meteoroid applications, this is not generally the case, but

we will see that this approximation still has useful functions for the problem at hand.

It can be shown that, to lowest order in eccentricity and inclination, the general

term of the averaged expansion of the disturbing function is given by:

〈R〉 =
Gm′

a′ [Rsec
D + e|j4|e′|j3|s|j6|s′|j5|[fd(α) + fe(α)] cosϕ]

and similarly for 〈R′〉. Here s = sin 1
2
I and s′ = sin 1

2
I ′ and secular contributions

are given by

Rsec
D = (e2 + e′2)fs,1(α)+ ee′fs,2(α) cos ($′ − $)+(s2 + s′2)fs,3(α)+ ss′fs,4(α) cos (Ω′ − Ω)
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In addition, fd(α), fe(α), fs,i(α) refer to direct terms, indirect terms (for an external

perturber) and secular terms in the expansion of the disturbing function.

For the circular, planar problem here, secular contributions are negligible, and the

general term in the averaged expansion (for an internal resonance) is reduced to:

〈R〉 =
Gm′

a′ [fs,1(α)e2 + fd(α)e|j4| cos ϕ]

where

ϕ = j1λ
′ + j2λ + j4$

The indirect terms are dependent on the mass of the inner body and thus are

negligible when this mass is negligible; the circular orbit of the perturber (e′ = 0) causes

cancellation of many eccentricity terms; with both orbits are in the same reference plan

the longitude of the ascending node terms are zero; an eccentricity of zero means that the

argument of perihelion of the external (perturbing) body is zero also.

Lagrange’s Planetary Equations are also required. These give the variations in

orbital elements experienced by the perturbed body. A derivation is not given here; refer

to Roy (1988).
da

dt
=

2

na

∂R
∂ε

de

dt
= −

√
1 − e2

na2e
(1 −

√
1 − e2)

∂R
∂ε

−
√

1 − e2

na2e

∂R
∂$

dε

dt
= − 2

na

∂R
∂a

+

√
1 − e2(1 −

√
1 − e2)

na2e

∂R
∂e

+
tan 1

2
I

na2
√

1 − e2

∂R
∂I

dΩ

dt
=

1

na2
√

1 − e2 sin I

∂R
∂I

d$

dt
=

√
1 − e2

na2e

∂R
∂e

+
tan 1

2
I

na2
√

1 − e2

∂R
∂I

dI

dt
=

− tan 1
2
I

na2
√

1 − e2
(
∂R
∂ε

+
∂R
∂$

) − 1

na2
√

1 − e2 sin I

∂R
∂Ω

Here the angle ε is the mean longitude at epoch defined by λ = nt+ ε; and all other

orbital elements are as defined in Chapter 2. We recognise that the inclination terms will

not be important in the circular planar case: they are included for completeness. These

can be simplified for the low-order (in eccentricity and inclination) problem addressed

here:

ṅ = − 3

a2

∂R
∂λ
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ė = − 1

na2e

∂R
∂$

İ = − 1

na2 sin I

∂R
∂Ω

$̇ =
1

na2e

∂R
∂e

+
sin 1

2
I

na2

∂R
∂I

Ω̇ =
1

na2 sin I

∂R
∂I

ε̇ =
e

2na2

∂R
∂e

Note this also involves a conversion from ṅ to ȧ, and from ∂R
∂ε

to ∂R
∂λ

.

These can be expanded for the circular restricted case, using 〈R〉 = Gm′

a′ [fs,1(α)e2 +

fd(α)e|j4| cos ϕ] and the corresponding argument ϕ = j1λ
′ + j2λ + j4$ to determine the

integrals:

ṅ = 3j2Crne|j4| sin ϕ

ė = j4Cre
|j4|−1 sin ϕ

$̇ = 2Cs + |j4|Cre
|j4|−2 cos ϕ

ε̇ = Cse
2 +

1

2
|j4|Cre

|j4| cos ϕ

where:

Cr =
Gm′

na2a′fd(α) = (
m′

mc
)nαfd(α)

Cs =
Gm′

na2a′fs,1(α) = (
m′

mc

)nαfs,1(α)

These also use G = n2a3/mc, from Kepler’s third law.

Finally, a conversion back from mean motion to semi-major axis is possible:

ȧ = −2j2Crae|j4| sin ϕ

which can be used to give:
da

de
= −2(j2/j4)ae

The variation in the argument is now:

ϕ̇ = j1n
′ + j2(n + ε̇) + j4$̇

using λ = nt + ε.
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A.3 A Pendulum Model and Libration Width

A simple way of obtaining an expression for the libration width is to determine the

maximum oscillation energy that a particle can attain before it is lost from the resonance.

This is illuminated by comparison to a pendulum model.

A simple pendulum has an equation of motion of the form:

θ̈ = −ω2
0 sin θ

where ω =
√

g
L
, g is the acceleration due to gravity and L is the length of the pendulum.

An equation of motion for the resonance situation of an identical form can be derived,

allowing a similar energy analysis to that of a simple pendulum.

The second time derivative of the argument of the general form of the disturbing

function (and for the circular restricted problem) is:

ϕ̈ = j2ṅ + j2ε̈ + j4$̈

Considering the equations of motion of the orbital elements ε and $, we can rewrite

these with F (e) = 1
2
e|j4| and G(e) = e|j4|−2 giving:

ε̇ = Cse
2 + |j4|CrF (e) cos ϕ

$̇ = 2Cs + |j4|CrG(e) cos ϕ

and these can be differentiated to give:

ε̈ = 2Cseė + |j4|Cr(
dF (e)

de
ė cos ϕ − f(e)ϕ̇ sin ϕ)

$̈ = |j4|Cr(
dG(e)

de
ė cos ϕ − G(e)ϕ̇ sin ϕ)

It can be shown that these two contributions can be neglected in most circumstances,

as the ė and ϕ̇ terms make them second order in m′/mc: see Murray and Dermott (1999)

for details and exceptions.

This simplifies the $̈ expression to:

ϕ̈ = 3j2
2Crne|j4| sin ϕ

which can be rewritten as:

ϕ̈ = −ω2
0 sin ϕ
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where

ω2
0 = −2j2

2Crne|j4|

Here ω2
0 is positive if only odd-order resonances are considered. In this case, the

formula is identical to that given for a simple pendulum at the beginning of this section.

For even order resonances, the formalism is the same, but with the subtlety that the

stable equilibrium point occurs at ϕ = π instead of ϕ = 0.

An expression for the total energy E, which can be given by the sum of the kinetic

energy and the potential energy of the system,, is now achievable. Per unit mass we have

kinetic energy T = 1
2
ϕ̇2 and potential energy U = 2ω2

0 sin 1
2
ϕ

2
, which gives:

E = T + U =
1

2
ϕ̇2 + 2ω2

0 sin
1

2
ϕ

2

By considering the value of the total energy E compared with the maximum of the

potential energy Umax = 2ω2
0, we can see that three cases of motion can result. For the

case E > Umax, the angle ϕ is unbounded and the motion is described as circular. For

E < Umax we have bounded oscillatory motion in ϕ: this is known as libration of the

resonant argument. The final case, E = Umax is the location of the separatrix, that is

the line at which motion changes from circulation to libration. This position, therefore,

defines the maximum libration (or oscillation) in ϕ that can occur, before the object leaves

libration and displays circulation. We define the libration width as the maximum energy

a particle can attain, or maximum oscillation distance a particle can move, before it is no

longer in the resonance. Thus, from this simple model, the maximum libration energy (at

which point ϕ̇ = 0 and ϕ = ±π) is at:

Emax = 2ω2
0 = −6j2

2Crne|j4|

By setting E = Emax the variation in the argument can then be studied, and

rearranging for ϕ gives:

ϕ̇ = ±j2(12|Cr|ne|j4|)
1

2 cos
1

2
ϕ

To describe the maximum width in semi-major axis, we must first convert to mean

motion, using the equation of motion for n:

dn = 3j2Crne|j4|
sin ϕ

ϕ̇
dϕ
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which can be simplified using the expression for ϕ̇ to:

dn = ±(3Crne|j4|)
1

2 sin

(
1

2
ϕ

)
dϕ

Integrating produces:

n = n0 ± (12|Cr|ne|j4|)1/2 cos

(
1

2
ϕ

)

with a maximum change in n given by the magnitude of the second term:

δnmax = ±(12|Cr|ne|j4|)1/2

Converting from mean motion n to semi-major axis a using Kepler’s third law T 2 = 4π2

µ
a3

and n = 2π
T

:

δamax = ±(
16

3

|Cr|
n

e|j4|)1/2a

which describes the maximum change in semi-major axis that can result for a particle in

a given resonance (defined by |j4| and the semi-major axis value a).

For first order resonances (|j4| = 1) there is an extra term in ϕ̈ that becomes non-

negligible, leading to a more complicated equation for δamax:

δamax

a
= ±

(
16

3

|Cr|
n

e

)1/2 (
1 +

1

27j2
2e

3

|Cr|
n

)1/2

− 2

9j2e

|Cr|
n

A more complete Hamiltonian model for resonance behaviour is described in detail

in Murray and Dermott (1999); it is not outlined further here. It does contain one result

that is interesting for our purposes: namely, that (for first order resonances for which

j4 = −1 so |j4| = 1) the resonant width as a result of the Hamiltonian formalism is

similar to that from the simple pendulum model above:

∆amax = ±(
16

3

|Cr|
n

eres)
1/2a

This gives us confidence that the initial δamax equation derived above gives an adequate

approximation to the resonant width in semi-major axis.
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I. Ferŕın. Secular light curve of 2P/Enkce, a comet active at aphelion. Icarus, 197:169–182,

2008.

C. Froeschlé and A. Morbidelli. The secular resonances in the Solar System. In Asteroids,

Comets and Meteoroids 1993. IAU Syposium no. 160, Kluwer Academic Publishers,

1994.



REFERENCES 211
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In B. Å. S. Gustafson and M. S. Hanner, editors, Physics, Chemistry, and Dynamics

of Interplanetary Dust, page 31. Astronomical Society of the Pacifics, 1996.
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