
 
 

 
 
 
 
 
 

 
Lincoln University Digital Thesis 

 
 

Copyright Statement 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

This thesis may be consulted by you, provided you comply with the provisions of the Act 
and the following conditions of use: 

 you will use the copy only for the purposes of research or private study  
 you will recognise the author's right to be identified as the author of the thesis and 

due acknowledgement will be made to the author where appropriate  
 you will obtain the author's permission before publishing any material from the 

thesis.  

 



Microarray Gene Expression: Towards Integration and Between-

Platform Association of Affymetrix and cDNA arrays 

 

 

 

A thesis 

submitted in partial fulfilment 

of the requirements for the Degree of 

Doctor of Philosophy 

at 

Lincoln University 

by 

Chintanu Kumar Sarmah  

 

 

 

 

Lincoln University 

2010 

 



 ii 

Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Doctor of Philosophy. 

Abstract 

Microarray Gene Expression: Towards Integration and Between-Platform 

Association of Affymetrix and cDNA arrays 

 

by 

 

Chintanu Kumar Sarmah 

 

Microarrays technology reveals an unprecedented view into the biology of DNA. Information 

science is moulding this revolution in gene expression profiling with its distinctive skilfulness 

to transform it into a technologically-advanced and perpetually rejuvenating branch of science 

while simultaneously contributing to further streamlining the processes involved. 

With the advancement of the technology along with the increase of popularity, microarrays 

afford the luxury that gene expressions can be measured in any of its multiple platforms, 

which include arrays from commercial vendors like Affymetrix
®
 (Santa Clara, CA, USA), 

Agilent
®
 (Palo Alto, CA, USA), and other proprietorial arrays of various laboratories. The 

technology is expanding rapidly providing an extensive as well as promising source of data 

for better addressing complex questions involving biological processes. The ever increasing 

number and publicly available gene expression studies of human and other organisms provide 

strong motivation to carry out cross-study analyses. Integration of multiple studies that are 

based on the same technological platform, or, combining data from different array platforms 

carries the potential towards higher accuracy, consistency and robust information mining. The 

integrated result often allows constructing a more complete and broader picture. 

Various comparison studies have been published over the years, and the overall observation 

on accuracy, reliability and reproducibility of microarray investigations can be summarized as 

cautious optimism. In the midst of all the relentless chase in finding suitable remedies for the 

issues of microarray data integration, this project is an attempt of cross-platform data 

integration belonging to chilhood leukaemia patients tested on microarray platforms, 

Affymetrix and cDNA. Keeping in mind the nature of the resultant microarray data from the 
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two platforms, a new ratio-transformation method has been proposed, and is applied to the 

cancer data. The approach, subsequently, highlights that its usage can address the issue of 

incomparability of the expression measures of Affymetrix and cDNA platforms. The method 

is, later, tested against two established approaches, and is found to produce comparative 

results.     

The encouraging cross-platform outcome leads to focus attention on examining further in the 

direction of defining the association between the two platforms. With this motivation, a wide 

range of statistical as well as machine learning approaches is applied to the microarray data. 

Specifically, the modelling of the data is elaborately explored using – regression models 

(linear, cubic-polynomial, loess, bootstrap aggregating) and artificial neural networks (self-

organizing maps and feedforward networks). In the end, the existing relationship between the 

data from the two platforms is found to be nonlinear, which can be well-delineated by 

feedforward network with relatively more precision than the rest of the methods tested.  

 

Keywords: microarray technology, gene expression, Affymetrix, cDNA, DNA, cross-

platform, data integration, childhood leukamia, cancer, ratio-transformation, machine 

learning, artificial neural networks, regression, linear, nonlinear, polynomial, loess, bootstrap 

aggregating, self-organizing maps, feedforward networks.  
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    Chapter 1  

Introduction 

The new millennium is currently witnessing a high-paced information revolution that was 

initiated in the latter part of the 20
th

 century. This has gifted the common people to realise that 

the dreams that were seemed distant not a too long ago are indeed possible to see under the 

broad daylight. Computer technology and internet have catalysed and continually been adding 

a fuel to this ongoing renaissance. With regards to the promise of our better health through its 

huge impact on the bioscientific, bioengineering and medical fields, the pair has ushered 

Bioinformatics, ‗the combination of biology and information technology, dealing with the 

computer-based analysis of large biological data sets‘ (Fogel & Corne, 2003). The 

applications of bioinformatics in gene expression profiling help disease diagnosis, prognosis, 

and therapy. Particularly, microarray-based methods are conferring the freedom to conduct 

large-scale gene expression profiling measurements; and in conjunction with bioinformatics, 

it has unleashed a wealth of powerful and previously unattainable prognostic information on 

cell growth and survival. This availability, versatility as well as integration of new 

technologies have eliminated many previously existing obstacles and boundaries to march 

towards unravelling the complex mechanisms hidden beneath complex diseases and networks 

that regulate gene expression.  

The methods to measure gene expression were revolutionized by Kary Banks Mullis‘s 

invention of the in vitro technique, polymerase chain reaction (PCR) in 1985 that awarded 

him Nobel prize for Chemistry in 1993. PCR (Mullis et al., 1986; Saiki et al., 1985) 

exponentially amplifies and synthesises new DNA molecules via enzymatic replication. While 

the variants of PCR, such as RT-PCR (reverse transcription polymerase chain reaction) or Q-

PCR (real time quantitative polymerase chain reaction, or qrt-PCR) can detect the expression 

of one gene within one reaction or to a maximum of a few genes in optimised state, high-

throughput analysis of higher number of genes is very time consuming, and requires a lot of 

technical and personal power. In 1995, two seminal publications, namely Schena et al. (1995) 

and Smith et al. (1995), led by investigator, Patric O. Brown of the Howard Hughes Medical 

Institute and his colleagues, launched the era of low cost gene-expression microarray analysis. 

From 1995, the technique of microarrays, which started off with simultaneous gene 

expression analysis of 45 genes within one experiment, has been improved dramatically and 

has become a widely used tool for studying global gene expression of cells in culture or 

complex tissues in different organisms. This technology has indeed transformed the classical 
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paradigm of studying ‗one gene at a time‘, and provided technological and conceptual 

advancement through its high-throughput capability of simultaneously interrogating the RNA 

expression of the whole genomes on a single chip. From the late nineties, researchers have 

started conducting microarray experiments using either of the two distinct techniques - cDNA-

microarrays and Oligonucleotide microarrays. With the development of this field, different 

labs have begun to routinely fabricate customized arrays.      

As gene expression microarrays gradually became widely applied for addressing increasingly 

complex biological questions, an unprecedented amount of data have started been generated. 

This catalyzes contributions from various interdisciplinary fields, which constitute integral 

components of the technology. The knowledge of different fields soon becomes a necessity 

while studying microarray technology, as depicted in Figure 1.1. It has also liberated the 

researchers to employ microarray technology in a much wider range of applications, including 

experimental annotation of the human genome, discovery of gene functions, analysis of 

complex diseases, biological-pathway dissection, tumour profiling, diagnostic and prognostic 

predictions for various cancers, drug-target identification and validation, biomarker 

identification, and compound-toxicity studies (Imbeaud & Auffray, 2005).    

 

 

Figure 1.1 Microarray technology requires interdisciplinary knowledge 
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Over a short time, microarray technology has indeed positioned itself in the scientific world as 

a reliable approach for gene expression analysis. There are, however, still issues that are not 

yet unanimously resolved, such as reliability and reproducibility (S Draghici, Khatri, Eklund, 

& Szallasi, 2006; P. J. Park et al., 2004), experimental design (Yee Hwa Yang & Speed, 

2002), statistical issues (Nadon & Shoemaker, 2002; Gordon K. Smyth, Yang, & Speed, 

2003), image processing (Jouenne, 2001), and others (Imbeaud & Auffray, 2005; Murphy, 

2002; P. J. Park et al., 2004). One such critically unresolved niche of microarray technology 

lies in the integration of data from different microarray experiments.  

The freedom of having multiple platforms to conduct microarray investigations as well as the 

ever increasing number and publicly available gene expression studies of human and other 

organisms provide the researchers with strong motivations to carry out cross-study analyses. 

Integration of multiple microarray experiments carries enormous potential towards obtaining 

higher accuracy, consistency and robust information mining. Moreover, the integrated results 

can help in constructing a broader picture crystallizing the biological mechanisms.  

The goal intended to be attained in this research work remains within the vicinity of 

intersection of two specific platforms - cDNA (or, spotted arrays) and Affymetrix
®

. Firstly, a 

novel approach is to be designed and implemented that integrates the data from the two 

platforms. This method is then required to be validated as well as evaluated to examine where 

it stands in the midst of methods available from microarray literature. Further, investigation 

needs to be carried out with the merged data towards analysing whether there is any 

association between the two platforms; and if the answer is positive, then carry out 

investigations and find out how best this association could be defined.   

The overall thesis, including this introductory segment, is comprised of seven chapters. A 

glimpse of the layout follows.   

 

Chapter 2: Microarray Technology and Cancer   

The 2
nd

 chapter provides a broad overview of microarray technology. Starting with an 

introductory overview, it explains the various microarray types and the process of microarray 

data analysis along with the challenges and applications of the technology. The chapter also 

highlights the fact that cancer has become a perfect candidate for evaluation by microarray 

technology, being the disease both dreadful and challenging because of its polygenic nature. It 

appraises the application of microarray technology in cancer research. Besides, this chapter 
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provides an overview of this disease in general, and leukaemia in particular as the data used in 

this project belong to a group of childhood leukemia patients.    

Chapter 3: Microarray Data Integration: A Review 

Integration of data from different microarray experiments is a challenging problem. This 

chapter carries out a review on several important experiments conducted and published with 

regards to microarray data integration.  

Chapter 4: Data Assessment and Normalization 

Assessing the quality of data is critical prior to carrying out any analytical investigations. This 

chapter begins with introducing the data, which would be used for carrying out the 

investigations, and then conducts an elaborate assessment of the quality of these data.   

Normalization is a transformation method applied to expression data that appropriately adjusts 

the individual hybridization intensities so that meaningful biological comparisons can be 

made. After data quality assessment, the focus remains on the application of normalization on 

the datasets along with the effects. Finally, the chapter conducts a post-normalization quality 

check on the data. 

Chapter 5: Transformation of Expression Data 

Microarray experiments are often conducted using two of the most commonly used platforms 

- Affymetrix
®
 and spotted arrays. However, there is always an issue of incomparability 

between the expression data from these two microarray platforms. This chapter attempts to 

address this issue by structuring a new approach, which is subsequently validated as well as 

evaluated.     

Chapter 6: Formation of a Crossover 

The 6
th

 chapter explores in the direction of seeking an association between the two platforms, 

Affymetrix and spotted arrays. In this regard, a wide range of statistical and machine learning 

approaches are applied to the microarray data to probe into this possibility. Finally, the 

chapter compares all the methods, and highlights the ones that stand out in this investigation. 
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Chapter 7: Closing Remarks 

This chapter presents the concluding segment of the thesis that contains the final remarks on 

the work including the advantages and limitations, and potential lines of future investigations.  

References 

The final section furnishes the list of citations used in this research. 

 

 



 

 

    Chapter 2  

Microarray Technology and Cancer 

2.1 Microarray Technology 

2.1.1 Microarrays – An Overview 

All living organisms contain DNA, a molecule that holds all the information required for 

development and functioning of any organism. Deoxyribo nucleic acid, or DNA encodes for 

genes, and through the process of gene expression, the information from a gene is used in the 

synthesis of a functional gene product - either protein or RNA. The process usually starts in 

the nucleus of a cell when the genetic information of DNA flows to messenger RNA (mRNA) 

by a process called transcription. The mRNA then goes out of the nucleus to the cytoplasm of 

the cell, and interacts with ribosome, a specialized complex. Ribosome decodes the 

information to amino acids, the building blocks of proteins, through another process known as 

translation. A type of RNA called transfer RNA (tRNA) assembles the protein, one amino 

acid at a time. This flow of information from DNA to RNA to proteins is so fundamentally 

important in molecular biology that it is called the central dogma. A portrayal of the process, 

as given by US National Library of Medicine, is in Figure 2.1. In brief, this process of turning 

the genetic information present in the DNA into proteins is known as gene expression.  

 

Figure 2.1 Formation of proteins from genes 

The human body contains different types of cells, and all the cells contain the same DNA. 

However, each type of cell expresses a unique configuration of genes. This is assured by the 
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control of the regulatory elements, which switch the genes to either on- or off- state. 

Microarrays are a tool used to record such states of DNA.      

Microarrays provide a way to gain information on the deepest biological mysteries encoded in 

the informationally complex DNA. Cellular DNA is structurally helical often with two 

antiparallel strands made up of a combination of four nucleotides, or bases: adenine, cytosine, 

guanosine, and thymidine (abbreviated respectively as A, C, G, or T). The nucleotides are 

covalently linked to a sugar phosphate backbone of each strand. According to a set of pairing 

rules, the nucleotides of one strand remain hydrogen-bonded with the nucleotides of the other 

strand. For the cells to express genes, the strands are opened by gene expression machinery so 

that complementary RNA-copies of a gene can be synthesised. Two complementary single-

stranded nucleic acid molecules tend to come together and reanneal to form a double helix 

complex (Marmur & Doty, 1961). Two single-stranded nucleic acid molecules that are not 

fully complementary can also bind, but as the complementarity increases, the binding 

becomes stronger. Overall, this binding process is called hybridization. Hybridization is at the 

centre of many biological as well as in vitro analytical processes. Even if molecules come 

from different sources, they will hybridize if they match. 

Hybridization-based approaches have been used for decades to measure nucleic acid 

sequences (Amos, 2005). Developed at Stanford University, northern blot technique (Alwine, 

Kemp, & Stark, 1977) is the most widely accepted standard for hybridization-based assay of 

gene expression where the size and abundance of RNA transcribed from a gene is measured. 

Microarrays are developed from blotting assays, the techniques that are used in molecular 

biology and clinical research to identify unique nucleic acid (or, protein) sequences in a 

highly specific and sensitive way (Hayes, Wolf, & Hayes, 1989).  

In a microarray framework, there is a substrate, or an array made of nylon membrane, plastic 

or glass on which various fragments of single stranded DNA, or ssDNA are attached in 

localised features while arranging in regular grid-like pattern. The substrate is then used to 

answer a specific query regarding the ssDNA on its surface. The term, probe is used to refer 

the ssDNA. The target is a solution of ssDNA that is applied for hybridization with the probes 

on the substrate. This hybridization between the targets and the probes on the surface of the 

substrate is essential to conduct the required interrogation. During the hybridization process, 

the target formes heteroduplexes
1
 via base-pairing with the probes. Subsequently, as the 

                                                 
1
 A heteroduplex is a double-stranded molecule of nucleic acid where each complementary strand is derived 

from different parent molecules.  
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hybridization completes, the amount of gene expression is computed, probed into and 

quantified.  

2.1.2 Microarray Types 

There are mainly two commonly used microarrays that fall into a broader category known as 

nucleic acid microarrays: cDNA microarrays and Oligonucleotide microarrays. Each 

effectively serves as a genomic readout while possessing unique characteristics along with 

advantages as well as disadvantages in a given context.   

2.1.2.1 Spotted Microarrays 

Spotted, or cDNA microarrays were the first available platform that originated in Pat Brown‘s 

laboratory, and continue to enjoy broad application. These are primarily a comparative 

technology where relative concentrations between two samples are examined.  

In spotted microarrays, the probes are either libraries of PCR (polymerase chain reaction) 

products that correspond to mRNAs, cDNAs
2
 or oligonucleotides

3
. Once synthesised, these 

are transferred to the substrate, usually glass microscope slide. The probes are printed in an 

orderly manner at specific locations called spots or, features using a robot equipped with nibs 

capable of wicking up DNA from microtiter plates and depositing it onto the glass surface 

with micron precision (M  Schena et al., 1995). Babu (2004) explains it with a schematic, 

which is given in Figure 2.2.      

Samples to be compared are labelled with uniquely coloured fluorescent tags before being 

mixed together. The fluorescent labelling is done with the fluorophores Cy3 and Cy5, 

represented by the pseudo-colours green and red respectively, using either of the two common 

approaches – direct or indirect labelling. In direct fluorescent labelling, the fluorescent tags 

are attached in a covalent manner to the target molecules using enzymatic or chemical means, 

while in indirect labelling, the tags are attached in a non-covalent and indirect way to the 

target molecules using dendrimers, antibodies or other reagent (Mark Schena, 2003). Some 

investigators believe that all arrays should be performed both forward- and reverse labelled. 

That is, for an array with sample A labelled with Cy3 and sample B with Cy5, there should be 

another array where sample A is labelled with Cy5 and sample B with Cy3. However, Dobbin 

and his colleagues (Kevin Dobbin, Joanna H. Shih, & Richard Simon, 2003; K. Dobbin, J. H. 

Shih, & R. Simon, 2003) recommend against this reverse labelling, also known as dye-swap. 

                                                 
2 mRNA is very unstable outside of a cell, and converted in the laboratory to complementary DNA (cDNA), 

which only contains expressed DNA sequences, or exons. In the process, often incomplete sequences, called 

expressed sequence tags (ESTs) result from each mRNA molecule due to certain technical aspects.  

3
 A short sequence of nucleotides. 
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Figure 2.2 Spotting in cDNA microarrays 

The labelled cDNAs are allowed to hybridize with the probes on the substrate under stringent 

conditions. Hybridization process continues for several hours, which provides a way of 

comparing the relative differences between the two samples on a per spot basis depending on 

the fractional occupancy of the spot hybridized by each sample. At the end of hybridization, 

excess of the labelled samples is removed by washing, and the slide is dried. Laser scanning is 

the next and final experimental stage. Here, the slide is excited using a laser at different 

wavelengths, one for each of the fluorophores used, and the respective fluorescence is 

captured as two independent, 16-bit, black-and-white TIFF
4
 images (Causton, Quackenbush, 

& Brazma, 2003). The intensity of each spot on these two images is theoretically proportional 

to the amount of mRNA transcripts of the query (or, test) and control (or, reference) sample. 

Image recognition software processes the two images, and produces the gene expression 

levels by converting the gene expression pixel-level intensities into numeric values. An 

overview
5
 of a typical experiment is provided in Figure 2.3. 

 

 

 

 

                                                 
4
  Tagged Image File Format (abbreviated, TIFF) is a file format for storing images. 

5
  Modified image. Original source: University of Wisconsin, USA (http://tinyurl.com/27gh2ez)   
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Figure 2.3 Overview of a typical spotted microarray experiment 

For the purpose of visually displaying the information, both the images of raw intensities are 

compressed into 8-bit images, using a square root transformation, from which the image 

processing software creates a composite image (usually 24 bit) that exhibits artificial 

florescence colours for Cy3- and Cy5- channels ranging from green through yellow to red for 

the spots (Y. H. Yang, Buckley, & Speed, 2001). Therefore, in the absence of dye-swap, the 

decisions or comments can be made based on the spot-colours: a) Red spot: genes prevalently 

expressed (upregulated) in the tumour sample; b) Green spot: genes prevalently expressed in 

the normal sample (downregulated in tumour); c) Yellow spot: Genes equally expressed in 

both normal and tumour tissue; d) Black spot: Genes not detected in any of the samples. This 

is summarised in Table 2.1, and is also shown in Figure 2.4. 
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Table 2.1 Significance of the spot-colours 

Spot color Signal strength Gene expression 

Yellow Healthy = Diseased Unchanged 

Red Healthy < Diseased Induced 

Green Healthy > Diseased Repressed 

Black Unknown/no expression Unknown/no expression 

 

 

 

Figure 2.4 Scanned cDNA image 

2.1.2.2 Oligonucletide Arrays 

Oligonucleotide arrays are fundamentally different from spotted arrays. Unlike cDNA arrays 

which can use long DNA sequences, oligo arrays can ensure the required precision only for 

short sequences. Therefore, these arrays represent a gene using several short ssDNA 

sequences, called oligonucleotides, or oligos. Three approaches represent the in-situ process 

of microarray fabrication:  

 The photolithographic approach is based on the same technique as used in the semi-

conductor industry to make the microprocessors. Affymetrix Inc. (Santa Clara, 

California) has commercialised the photolithographic method, pioneered by Fodor et 

al. (1991). Affymetrix refers their technology as GeneChip
TM

 microarrays, where 
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GeneChips are the probe-holding devices, and are also generally referred to as 

biochips. At Affymetrix, GeneChips are manufactured by a proprietary, light-directed 

chemical synthesis process, which combines solid-phase chemical synthesis with 

photolithographic fabrication techniques. 

 The ink jet approach employs the technology used in the ink jet colour printers. 

Nucleotides (A, T, G and C) are loaded in the four cartridges. As the print head with 

the cartridges moves over the array-substrate, specific nucleotides are deposited where 

required. Several companies such as Protogene (Menlo Park, CA) and Agilent 

Technologies (Palo Alto, CA) in collaboration with Rosetta Inpharmatics (Kirkland, 

WA) have developed methods of in situ synthesis of oligonucleotides on glass arrays 

using ink jet technology.  

 The electrochemical synthesis approach is introduced by CombiMatrix Corporation
6
 

(Washington, USA). The process uses small electrodes embedded into the substrate. 

After solutions containing specific bases are washed over the substrate, electrodes are 

activated on required positions in a predetermined sequence allowing them to be 

constructed base-by-base.  

Here, the focus would remain on Affymetrix GeneChips, which are the most ubiquitous and 

long-standing commercial microarray platform in use (Seidel, 2008).  

Affymetrix represents a gene through multiple probe-pairs which are contained in a silicon 

chip, GeneChip. Typically 16–20 of these probe-pairs, each interrogating a different part of 

the sequence for a gene, make up what is also known as a probeset; and some more recent 

arrays, such as the HG-U133 arrays, use as few as 11 probes in a probeset (B. M. Bolstad, 

Irizarry, Astrand, & Speed, 2003). The size of a standard GeneChip is 1.28 cm × 1.28 cm; 

and over 6.5 million squares, or features are present on each chip. In each feature, there are 

millions of identical probes. The design of Affymetrix probes is not usually in the hands of 

the researchers. A probe consists of a short oligonucleotide sequence containing 25 

nucleotides, called a 25-mer; and all the probes are synthesised on the chip one base at a time, 

and in parallel at all locations. A paired probe is composed of: a) a perfect match (PM), which 

is the exact sequence of the chosen fragment of the gene, b) a mismatch (MM), which is same 

as PM but contains a mismatch nucleotide in the middle of the fragment. Affymetrix 

anticipates that the MM probe does not hybridize well to the target transcript, but hybridizes 

to many transcripts to which the PM probe cross-hybridizes (Simon et al., 2004). Therefore, 

                                                 
6
  http://www.combimatrix.com/index.htm  
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the intensity difference between PM and MM paired probe is considered to be a better 

estimate of the hybridization intensity to the true target transcript. 

A single sample is usually hybridized to GeneChips. For using as target, the total mature, 

spliced, poly-A tail added RNA isolated from the cell being studied is turned into a double 

stranded cDNA through reverse transcription. At the time of running the array, the cDNA is 

allowed to go through in vitro transcription back to RNA (now known as cRNA), and labelled 

with biotin. The labelled cRNA is then randomly fragmented in to pieces anywhere from 20 

to 400 nucleotides in length, and the cRNA fragments are added to GeneChip for 

hybridization.  

The hybridization occurs at a critical temperature. After hybridization, the difference in 

hybridization signals between PM and MM, as well as their intensity ratios, detected by 

scanning the array with a laser serves as indicators of specific target abundance. The value 

that is usually taken as representative for each gene‘s expression level is the average 

difference between PM and MM. Ideally, this average value is expected to be positive 

because the hybridization of the PM is expected to be stronger than the hybridization of the 

MM. However, many factors, including non-specific hybridizations and a less than optimal 

choice of the oligonucleotide sequences representative of the gene, might result in an MM 

hybridization stronger than the PM hybridization for certain probes. The calculated average 

difference might be negative in such cases, and these negative values introduce noise into the 

dataset. The overall principle behind Affymetrix technology is summarised in Figure 2.5 (S. 

Draghici, 2002).  

 

Figure 2.5 The principle behind Affymetrix technology 

The expression data from both types of microarrays are finally obtained in the form of a 

matrix with genes as rows and conditions as columns, and subsequently biologically 
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meaningful information is extracted and added. Accordingly, Figure 2.6 presents the final fate 

of a microarray image
7
.      

 

Figure 2.6 A theoretical account of the fate of a microarray image 

2.1.3 Processing of Array Output 

The outputs of microarray experiments require processing before they can be used for 

extracting meaningful information. Image processing and normalization are the two 

preliminary microarray data processing stages.   

2.1.3.1 Image Processing 

Regardless of the technology, the arrays are scanned after hybridization and independent, 16 

bit, digital, grey-scale TIFF images are generated for query and control samples (Causton et 

al., 2003). Figure 2.7 presents two typical pseudo-coloured images from Affymetrix and 

cDNA platforms. The process of image processing for the two platforms is different, and is 

briefly given below.     

 

   

 

 

 

Figure 2.7 Typical cDNA (left) and Affymetrix image (right) 

                                                 
7
 Image Source: European Bioinformatics Institute (http://tinyurl.com/5uc5bg) 
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2.1.3.1.1 Image of cDNA Microarrays     

Analysis of a cDNA image seeks to extract intensity for each spot or feature on the array, and 

it involves various image processing stages that can be carried out through different 

microarray image analysis software. The analysis is done mainly using the following steps – 

A. Gridding.  

This is usually a semi or fully-automated measure based on Bayesian statistics to locate each 

spot on the slide. In the process of gridding, a grid is placed over the hybrid compound 

fluorescence in the image so that each fluorescence is contained within a patch. This is shown 

in the image
8
 of Figure 2.8. 

 

Figure 2.8 Aligning a grid for identification of each spot 

B. Segmentation.  

A microarray spot contains two components – signal and background. Signal corresponds to 

the true intensity values of the foreground, and the background, or noise is the unwanted 

intensity values associated with events like spurious biochemical processes and substrate 

reflection. It is depicted in the image
9
 of Figure 2.9. Once the signals are identified, they need 

to be separated from the background. Segmentation performs the task of partitioning the 

image into foreground (spot) and background.  

 

 

 

                                                 
8
 Image Source: The University of British Columbia, Canada (http://tinyurl.com/2amwsxe)  

9
 Image source: Stanford Microarray Database (http://smd.stanford.edu/) 
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Figure 2.9 A microarray slide and a spot 

Several algorithms are in use for segmentation process. Yang et al. (2002) categorises the 

various existing segmentation schemes into four groups: (1) fixed circle segmentation, (2) 

adaptive circle segmentation, (3) adaptive shape segmentation, and (4) histogram 

segmentation.  

Fixed Circle Segmentation sets a round region of constant diameter in the middle of each 

spot as the target site, and is provided in most existing software packages including 

ScanAlyze
10

, GenePix (Axon Instruments, Redwood City, CA) and QuantArray (GSI 

Lumonics, Inc., Watertown, MA). This is the most straightforward method which assumes 

that all spots are circular with constant diameter, and everything inside the circle is the signal 

and everything outside is the background. But this assumption rarely holds, and so most 

image analysis software includes some more advanced segmentation methods. Adaptive circle 

segmentation, used by tools like GenePix and Dapple
11

(Buhler, Ideker, & Haynor, 2000), 

estimates circle diameter separately for each spot. The circular spot signals are quite rare, and 

therefore, adaptive shape segmentation tries to find the best shape to describe a spot. 

Histogram method, used by tools like ImaGene (BioDiscovery, Inc., Los Angeles, CA) and 

QuantArray, analyses the signal distribution in and around each spot to determine which 

pixels belong to the spot and which pixels belong to the background.  

C. Foreground Intensity Extraction and Background Correction.  

Once the spot and background areas are defined, each pixel within the area is taken into 

account; and, the mean, median, and total value of the intensity over all the pixels in the 

defined area are reported for both the spot and background. The signal and background 

intensity is computed in several different ways, the most common being the mean and the 

                                                 
10

 Available at:  http://rana.lbl.gov/EisenSoftware.htm 
11

 Available at: http://www.cs.wustl.edu/~jbuhler/dapple/ 
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median. Background subtraction is the process where the intensity corresponding to the 

background is subtracted from the spot intensity to obtain more accurate quantitation 

representing a spot.  

D. Expression Ratio and its Transformation. 

The relative expression level for a gene can be measured as the amount of red or green light 

emitted after laser excitation. The common measurement used to relate this information is 

called Expression Ratio, Tk, which is denoted by:  

 

where for each gene k on the array, Rk and Gk represent the spot intensity metric for the 

tumour sample and the healthy sample, respectively. The spot intensity metric for each gene 

can be represented as a total intensity value or a background subtracted median value.  

It is common practice to transform the raw counts into a different scale that is more 

convenient and statistically sound. There are two kinds of transformation reported for the 

expression ratio - inverse transformation and logarithmic transformation. The latter takes the 

logarithm base 2 value of the expression ratio [i.e., log2 (expression ratio)]. It is considered a 

better transformation procedure because it treats differential up-regulation and down-

regulation equally, makes the distribution more symmetrical and the variation less dependent 

on absolute signal magnitude (Babu, 2004; Simon et al., 2004). The log2–ratio for each spot 

can be written as given in equation 2, where RForeground and GForeground represents the 

foreground (the patch of a spot) mean or median intensities of red and green channels, and 

RBackground and GBackground denotes the corresponding background mean or median intensities. 

 

  

2.1.3.1.2 Image of Affymetrix GeneChip
TM 

Affymetrix has integrated its image processing algorithms into the experimental process of 

GeneChip
 
software, and thus, there are no decisions to make for the end users (Stekel, 2006).  
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Affymetrix GeneChip experiments are managed with the Affymetrix GeneChip Operating 

Software (GCOS) or Affymetrix Microarray Suite (MAS). Once the fluorescent-tagged 

nucleic acid sample is injected into the hybridization chamber, and hybridization takes place 

to the complementary oglionucleotides on the chip, the hybridized chip is scanned and the 

laser excited fluorescence across the chip is converted to a 2D image. This image data file 

(.DAT) can be exported as a .TIFF image. The image data file is used by the software to 

generate a .CEL file that gives the position and intensity information of each probe for one 

GeneChip, in addition to the position of masks and outliers. 

The Affymetrix output result file is the .CHP file, where the average signal intensities are 

linked to gene identities. The report file (.RPT) is generated from the .chip file, and it 

summarizes the quality control information about expression analysis settings and probe set 

hybridization intensity data. Besides, there are two more files that are used in the actual 

analysis process - Experiment File (.EXP) and Chip Description file (.CDF). The former 

contains parameters of the experiment such as probe array type, experiment name, equipment 

parameters and sample description. The .CDF file is provided by Affymetrix and describes the 

layout of the chip. According to the overall Affymetrix file types summarised in Figure 2.10, 

the .DAT files are analysed and the intensity data, thus generated, are saved as .CEL files. The 

.TXT file is a .CHP file in text format. 

 

Figure 2.10 Affymetrix data files 

A typical Affymetrix probe set contains 11 perfect match probes and 11 mismatch probes. 

Although Affymetrix has a standard method for summarizing 22 readouts to obtain a single 

number for gene expression (Affymetrix, 2002), many approaches are available (Rafael A. 

Irizarry, Wu, & Jaffee, 2006). Usually, the final expression of a gene is the average difference 

between all the PM and MM probes of a gene, and is considered proportional to the actual 

expression level of the gene. It is given in equation 3, where n represents the total number of 

probe pairs for the gene, and PMi and MMi indicate the corresponding PM and MM probe 

intensities after background correction for the i
th

 probe pair of the gene. 
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2.1.3.2 Data Normalisation 

Data normalisation is an important aspect, and plays an important role in the early stage of 

microarray data analysis as the subsequent analytical results are very much dependent on it. 

The normalization methods rely on the fact that gene expression data can follow a normal 

distribution, and the entire distribution can be transformed about the population mean and 

median without affecting the standard deviation. The objective of normalization is to 

eliminate the measurement variations and measurement errors, and to allow appropriate 

comparison of data obtained from the expression levels of genes so that the genes that are not 

really differentially expressed have similar values across the arrays. Normalization is also 

used to identify and eliminate questionable and low quality data.  

Normalization approaches typically use either a control set of genes or the entire genes from 

an array. The use of a control set requires only one assumption, i.e., the control genes are 

detected at constant levels in all of the samples being compared. 

Housekeeping genes constitute a type of control gene set, and are considered to be used in 

normalization as they are expressed in most, if not all cells. As the cells need these genes for 

cell maintenance and survival, such genes are expected to be similarly expressed in all 

samples of experiment. However, it is difficult to identify these genes as the genes regarded to 

be housekeeping for one tissue type may not be the same for another type of tissue. To ensure 

that a gene can be considered as a housekeeping gene, carefully controlled experiments are 

performed. A number of techniques are used to identify housekeeping genes based on the 

observed data, such as the rank invariant selection method of Schadt et al. (2001), and the 

iterative method of Wang et al. (2002). For GeneChips, Affymetrix Inc. claims to have 

integrated the housekeeping genes in the chips
 
after supposedly testing them on a large 

number of various tissue types with the resultant low variability in those samples.  

Spiked-ins, or spiked controls, are another set of control genes, which are exogenous RNA 

added proportionately to both query and reference samples, otherwise not found in either 

sample. The need of these exogenous control genes arises as there is accumulating evidence to 
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suggest that many housekeeping genes change in expression under some circumstances (P. D. 

Lee, Sladek, Greenwood, & Hudson, 2002; Thellin et al., 1999). 

Besides, there is one more alternative for selecting a dataset for applying normalization. It is 

to order the genes or signal from each spot based on expression level, and using only those 

within a fixed window centred within the dataset (e.g., those between the 30
th

 and 70
th

 

percentile) or those within a fixed number of standard deviations of the mean (Eric E. Schadt, 

Cheng Li, Byron Ellis, & Wing H. Wong, 2001; Tseng, Oh, Rohlin, Liao, & Wong, 2001).  

Once a gene set for normalization is selected, normalization process can be conducted. 

 

2.1.3.2.1 cDNA Normalization
 

For cDNA microarrays, normalization involves determining the amount by which the genes 

of the red channel are over- or under expressed relative to the green channel. This bias is 

known as normalization factor or scaling factor, and is different for different arrays. The 

normalisation factor, Cjk is subtracted from the log-ratio of the background-corrected red and 

green signals as shown in the equation 4 below to find the normalised signal intensity, Xjk for 

a gene, k on array, j. Here, Rjk and Gjk represent background-corrected red and green signals, 

respectively.  

 

Approaches to calculate the normalization factor can be divided into three categories: global 

normalization, intensity-based normalization and location-based normalization as well as a 

hybrid of intensity- and location-based normalization.    

i) Global, or Linear Normalization. 

Global normalization applies the same normalization factor to all the genes on the array, but 

the value varies from array to array. It assumes that the red and green intensities possess an 

approximately linear relation. Global normalization uses the global median of log intensity 

ratios as median is less likely to be influenced by the outliers. Moreover, as it is assumed that 

the over-expressed proportion of the genes in a given sample is approximately equal to the 
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under-expressed proportion, so by using median, focus remains on those genes which are not 

differentially expressed in the red and green channels and are expected to be at the centre of 

the log-ratio distribution.      

Global normalization is the simplest and widely used normalization method that works well 

for most applications including in situations where a relatively small number (example, 50-

100) of normalization genes are normalized. The expression can be formulated as below, 

where S represents the set of normalization genes. Here instead of median, mean can also be 

used, but it is to be noted that mean is affected by outliers.  

 

ii) Intensity-Based Normalization. 

Intensity-based normalization is described in Yang et al. (2002), and it is necessary that there 

be normalization genes across all intensity values in order to perform this normalization. 

Again, even if all genes are being used in normalization, there is the implicit assumption that 

at each intensity level, there are equal numbers of up- and down-regulated genes. However, it 

is possible that this assumption could be violated, if all the high- (or low-) intensity genes 

share similar biology. While using intensity-based normalization at intensities for which there 

are few spots, the normalization could be based on a rather small number of points that may 

result overfitting to those particular values.     

Dudoit et al. (2002) demonstrates a version of representation of intensity whereby a plot 

becomes more revealing in terms of identifying spot artefacts and detecting intensity 

dependent patterns in the log ratios. This representation plots log intensity ratio, M )log( 2
G

R


on the y-axis against the mean log intensity, A ( GR 2log ) on the x-axis (R and G 

represents background adjusted intensity levels for a given spot). This M vs. A plot (MA, or RI 

plot) shows whether log ratio, M is dependent on the overall spot intensity (which is RNA 

abundance over all normalization genes), A. In other words, the plot helps to detect intensity 

dependent patterns in the log-ratios. When it is so found, then it would suggest that an 

intensity (A) dependent normalization method may be preferable than global methods (such as 

normalization by the mean or median of M values).  

MA plots are interpreted as follows: The array requires –  
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 No normalization: The graph-points appears symmetrically scattered around the 

horizontal line, M=0.  

 Global normalization: The graph-points appears symmetrically scattered around a 

horizontal line, and the line will be shifted up or down, away from M=0 by an 

amount equal to the required normalization.  

 Intensity-based normalization: The graph-points follow a line with non-horizontal 

slope or a non-linear curve. 

Yang et al. (2002) suggest a normalization method for gene expression data that uses 

smoothing of the MA plot, and this approach is referred to as intensity-based normalization. If 

intensity-based normalization is decided to apply, a curve is fitted to the MA plot for the 

normalization genes. Loess curves are more commonly used compared to other smoothing 

functions. Then, normalization factor, Cjk is defined as in equation 6, where fj is the smoothing 

function fitted to j
th 

array, and Ajk is the average intensity of gene, k on the j
th 

array. 

 iii) Location-Based Normalization. 

Many times, due to even subtle differences on the degree of wear of the print-tips used to 

create a slide, the spots on the array vary. Location-based normalization refers to this aspect 

which deals with normalizing with respect to the print-tip.  

Each print-tip generates a grid that is located at a separate place on the array. Yang et al. 

(2002) suggest performing normalization separately for each print-tip. For normalization 

within a grid, the same formula is used (i.e., with median) as mentioned under, Global 

Normalization on page 20.  

For location-based normalization, there should be significant numbers of normalization genes 

within each grid as well as on the entire array, and thus, the method is not applicable to a 

small number of housekeeping or spiked control genes. Moreover, to account for all location 

effects, estimation methods based on several parameters exist which look beyond the print-tip 

effect. 
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iv) Merging of Location and Intensity Normalization. 

It is possible to combine both location- and intensity-based normalizations for better results. 

Two possible actions can be taken in this regard. One option is to apply global normalization 

to each grid of the array and then, to apply intensity-based normalization to the entire array. 

According to Yang et al. (2002), a better alternative is to use intensity-based normalization 

separately within each grid. However, it is not suitable at intensities where the data are sparse.   

After normalization the processed data can be represented in the form of a matrix, gene 

expression matrix. Babu (2004) shows it figuratively as in Table 2.2, where each row 

corresponds to a particular gene, and each column either corresponds to an experimental 

condition or a specific time point at which expression of the genes has been measured. The 

expression levels of a gene across different experimental conditions are together termed as the 

gene expression profile, while that of all genes under an experimental condition are together 

termed as the sample expression profile.  

Table 2.2 Gene expression matrix 

 

[A: The value of each matrix-cell, in arbitrary units, reflects the expression level of a gene under a condition. B: 

Condition C4 is used as a reference and expression ratios are obtained by normalizing all other conditions with 

respect to C4. C: In this table, all expression ratios were converted into the log2 values. D: Discrete values for the 

elements in C are obtained by converting log2 values > 1 to 1, < –1 to –1, and a value between –1 and 1 to 0. (Babu, 

2004)] 
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2.1.3.2.2 Normalization of Affymetrix Arrays
 

Affymetrix GeneChip
 

arrays have single channel (and colour), and use the same 

normalization methods for all the arrays, unlike the two-colour cDNA microarrays. Location-

based normalization is not used for these arrays as location-specific intensity imbalances, 

even if they may appear, are less severe having smaller degree of impact on the mean 

differences of the individual genes. Normalization of Affymetrix arrays is done mainly to 

account for variations associated with technological reasons. Like cDNA microarrays, 

normalization factor should be calculated separately for these arrays too. 

 i) Global or Linear Normalization.  

It is a straight-forward method of normalisation, as used in cDNA microarrays, where one 

normalization factor is used for all the genes on the array. Affymetrix makes use of average 

intensity (different from cell average intensity) of an array which is defined as the mean of all 

the average difference values except the lowest and highest 2% of the data which is not 

included in the averaging calculation. The idea of this procedure is to find the normalization 

factor by making the average intensity of the experimental array numerically equivalent to the 

average intensity of the baseline array
12

, as given in equation 7. 

 

 

ii) Intensity Based Normalization.   

Like cDNA arrays, MA plots can also be generated for GeneChip
 
arrays to determine whether 

intensity-based normalisation is required. In such a plot, a pair of arrays is compared, prior to 

which a choice needs to be made as to which array to normalize against. If Xk and Yk denote 

the normalised signal log value for gene k on two arrays, X and Y, respectively, then M vs. A 

can be plotted based on equation 8.  

 

                                                 
12

 Baseline Array: An array designated as the baseline when used in comparison analysis with which the 

experimental array is compared to detect changes in expression.  
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The result of MA plots can be interpreted as follows:   

 No normalization: The graph-points appears to be scattered around the horizontal line 

at M=0. Many times, this is the case as the genes do not vary considerably from array 

to array.  

 Global normalization: The graph-points appear symmetrically scattered around a 

horizontal line, and the line will be shifted up or down, away from M=0 by an amount 

equal to the required normalization.  

 Intensity-based normalization: The graph-points follow a line with non-horizontal 

slope or a non-linear curve.  

There is another method of intensity-based normalization as recommended by Simon 

et al. (2004). Here, a baseline array is chosen whose scaling factor is closest to the 

median of the scaling factors of the arrays being analysed. Then MA plots are 

generated considering the signal for the array being normalised as the query channel 

and that for the baseline-array as the reference. If MA plot suggests intensity-based 

normalization, then quantile normalization or loess smoother-based normalisation can 

be applied using the baseline-array as the reference.                

Bolstad et al. (2003), based on a study on the methods of intensity-based normalization of 

Affymetrix data, recommends quantile normalization method. The method is based on the 

assumption that the distribution of the expression values does not change dramatically 

between arrays and that there is a monotone relationship between the gene expression level 

and probe value within a single array. 

Overall, for Affymetrix, there are dozens of methods - as of 2006, more than 30 methods have 

been identified (Rafael A. Irizarry et al., 2006). Many such methods are popular, namely 

MAS5 (Affymetrix, 2002), RMA (R. A. Irizarry et al., 2003), GCRMA, dCHIP (C. Li & 

Wong, 2001), GLA (Zhou & Rocke, 2005); however, no method is clearly the best (Qin et al., 

2006). 

2.1.4 Applications of Microarrays 

The development and use of microarrays are expanding rapidly. It was initially developed for 

DNA-mapping (Carig, Nizetic, Hoheisel, Zehetner, & Lehrach, 1990) and sequencing-by-

hybridization, or SBH (Bains & Smith, 1988; Drmanac, Labat, Brukner, & Crkvenjakov, 
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1989; Khrapko et al., 1989) applications. Over time, microarray technology has been used in 

varied applications.  

Commonly, microarrays are used in gene expression measurements – ranging from 

characterizing cells and processes (J. DeRisi et al., 1996; J. L. DeRisi, Iyer, & Brown, 1997; 

Hughes, Marton et al., 2000) to clinical applications such as tumour classification (Alizadeh 

et al., 2000; Golub et al., 1999). The technology is also very commonly used in genotyping 

and the measurement of genetic variation (Magi et al., 2007; Winzeler et al., 1998).  

Microarray technology can characterize different molecular complexes of DNA or RNA 

shedding light on their biological mechanisms. For example, P-bodies are such identified 

complexes of protein and RNA, which are believed to take part in gene expression by 

regulating mRNA in the cytoplasm (Parker & Sheth, 2007), and microarrays could be used to 

monitor and characterize the trafficking of cellular RNA through this complex.  

The position of a gene or a DNA sequence on a chromosome is location-specific, and any 

change in the positions is implicated in tumorigenesis and cancer. Using comparative genomic 

hybridization, microarrays have been used to examine this as well as aneuploidy
13

 in a variety 

of cell types (Pollack et al., 1999; Shadeo & Lam, 2006). As Khodursky et al. (2000) have 

examined, microarrays can be used to probe into the progress of replication forks, the 

structure that forms within the nucleus when two DNA strands start separating into two 

single-stranded DNA during the process of DNA replication. Microarray technology is also 

used for genome-wide screening of RNA modifying enzymes (Hiley et al., 2005), and 

increasing our understanding of gene regulatory circuitry (Boyer et al., 2005; T. I. Lee et al., 

2002). Hoheisel (2006) and Stears et al. (2003) are two useful reviews that highlights several 

other useful scientific applications of microarray technology.      

There is notable applications of microarray technology in pharmaceutical industry (Crowther, 

2002). The technology is intelligently applied in drug discovery (Debouck & Goodfellow, 

1999; Sauter, Simon, & Hillan, 2003) on the basis of obtained gene expression information. It 

gives rise to the production of preventive or curative drugs that impart their therapeutic 

activity by binding to specific cellular targets, inhibiting protein function and altering the 

expression of cellular genes. One could also envision an improved and reduced cost of health 

care, drugs with no or fewer side effects, patient genotyping, personalised medicine, besides 

efficient treatment and cure of patients of genetic diseases in time to come. 

                                                 
13

 Aneuploidy is a type of chromosome abnormality having an abnormal number of chromosomes. 
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Microarrays can be used for computational purposes as in DNA computing (Kari, 1997, 2001; 

Kari & Landweber, 2000; Tanaka, Kameda, Yamamoto, & Ohuchi, 2005). While being used 

in this form, microarrays merely turn into simple tools for parallel and efficient manipulation 

of a large number of symbolic strings to solve computationally intractable problems such as 

performing efficient searches in large dimensional spaces. 

In a nutshell, applications of microarray technology have completely diversified, and 

penetrated into a long list of varied scientific areas, which also includes domains such as 

genetic diseases and oncology (Albertson & Pinkel, 2003; Macgregor, 2003; Pusztai, Ayers, 

Stec, & Hortobagyi, 2003), proteomics (MacBeath, 2002), microbiology (Lucchini, 

Thompson, & Hinton, 2001),  toxicology (Nuwaysir, Bittner, Trent, Barrett, & Afshari, 1999), 

physiology (Gracey & Cossins, 2003), parasitology (Boothroyd, Blader, Cleary, & Singh, 

2003), psychiatry (Bunney et al., 2003), forensic science (L. Li, Li, & Li, 2005), and 

agriculture and crop science (Galbraith & Edwards, 2010). The full range of applications is 

too numerous to document, besides there are improvements and adaptations that are 

continually being made. Nevertheless, the technology in general permits the novice users to 

adopt it readily, and more experienced users to push the boundaries of discovery.  

2.1.5 Challenges in Microarrays 

Microarray Technology is relatively new as compared to other molecular biology techniques, 

and as such it has a number of challenges that its users often come across. A few are given 

below:  

A. Platforms. 

There are several microarray platforms. Various laboratories make their own arrays in 

addition to the popular commercial vendors such as Affymetrix, Agilent, Illumina (San 

Diego, US). Stears et al. (2003) provide a list of microarray vendors. With the increasing 

number and accessibility of gene expression studies of various organisms, each platform of 

this technology serves as a genomic readout along with unique characteristics that offer 

advantages or disadvantages in a given context.   

B. Noise. 

Noise is a major challenge in microarray technology. It is very unlikely that two experiments 

carried out separately but under the same conditions will give the same results. Due to the 

nature of the technology, noise is an inescapable phenomenon, and can infiltrate at any stage 
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during the process. Draghici (2005) compiles a list of major sources of noise, and it is 

presented  in Table 2.3. 

Table 2.3 List of major noise sources 

Source Comments 

mRNA preparation Kits and protocols vary  

Transcription Varies as per reactions, and enzymes used 

Labelling  Depends on label-type, protocols and age of labels  

Amplification (PCR protocol) Quantitative differences in different runs 

Pin geometry variations Different surfaces due to production random errors  

Target volume Fluctuates stochastically (even for the same pin) 

Target fixation The fraction of target cDNA linked to the surface of 

the substrate unknown 

Hybridization parameters Influenced by various factors like temperature, time, 

buffering and others.  

Slide inhomogeneities Slide production parameters, batch-to-batch variations  

Non-specific hybridization Hybridization with the background or not to the 

complementary sequences  

Gain setting (PMT) Shifting of pixel intensity distribution 

Dynamic range limitations Variability at low end or saturation at the high end 

Image alignment Images of the same array at various wavelengths are 

not aligned; pixels considered for the same spot 

corresponding to different channels are different   

Grid placement Locating the centre of the spot is not proper  

Non-specific background Erroneous elevation of the average intensity of the 
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background 

Spot shape Hard to segment irregular spots from background. 

Segmentation Contaminants may seem like true signal 

Spot quantification Pixel mean, median.    

 

C. Blind trust can be treacherous. 

Result of microarray experiments cannot be trusted entirely. This is a technology, which 

works at the mRNA level in most cases, and thus, remains distanced from many underlying 

mechanisms. For example, in most cases, the microarrays measure the amount of mRNA 

specific to a particular gene as it is based on the premise that the expression level of the gene 

is directly proportional to its amount of mRNA. However, it is not always true that the 

amount of mRNA accurately reflects the amount of protein. And, even if it is assumed that it 

does, a protein may require post-translational modification(s) to become active and perform 

its role in a cell. Therefore, validation of microarray results through investigation using other 

techniques and perspectives is an important aspect.  

D. Sheer Number of Genes. 

Microarrays interrogate thousands of genes in parallel. The classical metaphor, needle in a 

haystack is an accurate description of the task, which brings error in statistical inferences 

when the number of variables, usually genes, is much greater than that of the experiments. 

There are several statistical techniques that have been trialled and tested; however, this 

problem, termed the issue of multiple comparisons, remains to be one of the most challenging 

topics in life sciences. 

E. Analytical Methodology. 

There is no consensus regarding the standard process of analytical methodology. In 

conducting microarray analysis, there can be a large number of possible combinations 

involving background correction methods, summarization methods, normalization methods, 

and comparison strategy (e.g., ANOVA, SAM, t-test). All these contribute to variation in the 

process. 
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F. Gene Nomenclature. 

Besides the numerous combinations for microarray analytical methodology, results of any 

microarray study can be reported in different gene nomenclatures, such as that of Genbank 

(Benson et al., 1999), Entrez Gene (Maglott, Ostell, Pruitt, & Tatusova, 2006), The European 

Molecular Biology Laboratory or, EMBL (Stoesser, Tuli, Lopez, & Sterk, 1999), Unigene 

(Pontius, Wagner, & Schuler, 2003), RefSeq (Pruitt, Tatusova, & Maglott, 2006), Online 

Mendelian Inheritance in Man or, OMIM (Hamosh, Scott, Amberger, Bocchini, & McKusick, 

2005) and Affymetrix gene identifiers. Although translation tools such as DAVID (Dennis et 

al., 2003), GoMiner (Zeeberg et al., 2003), RESOURCERER (Tsai et al., 2001), L2L 

(Newman & Weiner, 2005), List of Lists-Annotated, or LOLA (Cahan et al., 2005) are 

available, this disparity may act as associative impediment in microarray technology in 

general.    

G. Varied Repositories.      

Various repositories have been established in the name of sharing microarray data. Many 

journals also require that data be made public in order to be published. Most of the 

repositories focus on either a particular technology or, an organism or, both, and these are 

either commercial or non-commercial. Examples of commercial databases include Merck & 

Co. Inc. (http://www.merck.com/)-subsidiary Rosetta Inpharmatics and Gene Logic 

(http://www.genelogic.com/). A few non-commercial databases of primary importance 

include ArrayExpress (A. Brazma et al., 2003), Gene Expression Omnibus or GEO (Edgar, 

Domrachev, & Lash, 2002), Center for Information Biology gene EXpression database or 

CIBEX (Ikeo, Ishi-i, Tamura, Gojobori, & Tateno, 2003), ExpressDB (Aach, Rindone, & 

Church, 2000) and GeneX (Mangalam et al., 2001). A list of microarray databases is also 

given by Gardiner-Garden & Littlejohn (2001). The overall reliability of data quality, 

however, in these repositories is not secured – some repositories are undoubtedly of high 

quality, but it is doubtful whether the same applies to all available repositories. Therefore, it is 

necessary that one verifies data quality beforehand, if the data come from public repositories, 

so that the output of the analysis gives accurate as well as meaningful results.   

H. Use of Different Splice-Variants as Probes. 

Various tools help in the translation between different nomenclatures. However, different 

microarray platforms use different splice forms of the transcripts. Ideally, we must know all 

the relevant splice forms of transcripts along with quantification of the sensitivity and 

specificity of the probes to different splice variants for effective nomenclature translation 
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between different platforms. In practice, it is so far not completely achieved making these 

irresolvable disparities inescapable; and the effect would pass on to the subsequent results. 

The MicroArray Quality Control (MAQC) project (L. Shi et al., 2006) also shows that it 

could only cross-reference 12,091 transcripts between all of the major platforms, although 

some array platforms interrogate over 54,000 transcripts. 

I. Software Tools 

There are several software tools available for microarray data analysis. Information on various 

software tools is available from sources like SMD
14

, Mark Fontenot's Microarray Software 

List
15

 at Southern Methodist University, Texas, and Dresen et al. (2003). Also, Dudoit et al. 

(2003) reviews three of the most widely used and comprehensive open source systems - the 

statistical analysis tools written in R (Ihaka & Gentleman, 1996) through the Bioconductor 

project (R. C. Gentleman et al., 2004), the TM4 software system (Saeed et al., 2003) available 

from The Institute for Genomic Research (TIGR; Rockville, MD, USA), and the BioArray 

Software Environment (Saal et al., 2002) developed at Lund University, Sweden 

(http://base.thep.lu.se). Overall, there are several options available for a user to investigate 

microarray data. The downside of it, however, is that different software packages or tools may 

generate different results for essentially the same analysis.      

 

2.2 Cancer 

Microarray technology has delivered a compelling approach that allows for simultaneous 

investigations of all cellular processes at once. Being both dreadful and challenging due to its 

polygenic nature, cancer becomes a perfect candidate for evaluation by this process.  

Cancer, or malignant neoplasm, is a disease of cells, and is used to describe about 200 

different diseases affecting organs or systems throughout our bodies. These malignant 

tumours have two features: they can spread into or infiltrate nearby organs or tissues; and 

cancer cells can break off the original tumour, and be carried in the bloodstream or lymphatic 

system (which normally fights infection) to distant sites in the body where they may form 

new tumours called metastases or secondaries. As cancer cells can spread to the vital organs 

and affect their normal function, cancer anywhere in the body is a potentially life-threatening 

disease. According to WHO (World Health Organization), cancer accounts for 7.6 million (or 

13%) of all deaths from a total of 58 million deaths worldwide in 2005; and the main types of 
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   SMD or Stanford Micoarray Database (http://tinyurl.com/24skjy2) 
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cancer leading to overall cancer-mortality (deaths per year) are: lung (1.3 million), stomach (1 

million), liver (662,000), Colon (655,000), breast (502,000).  

In particular to this project, the data has been obtained from childhood leukaemia patients. 

Childhood leukaemia is a type of cancer; however, to understand leukaemia, it helps to know 

about our blood. 

2.2.1 Blood, the Life-sustaining Fluid 

Blood is a specialized form of liquid connective tissue that performs various important 

functions within the body including transportation of oxygen, nutrients and hormones and 

removal of waste products, regulation of body pH
16

 and core body temperature. It is a life-

sustaining fluid for humans, and are composed of cells and cell fragments suspended within a 

liquid, called blood plasma. The cells and the cells types are of seven types:   

 Erythrocytes, or red blood cells (RBCs)  

 Thrombocytes, or platelets   

 5-kinds of leukocytes, or white blood cells (WBCs)   

o Three kinds of granulocytes (granulocytes are a category of white blood cells 

characterised by the presence of granules in their cytoplasm.) 

 Neutrophils  

 Eosinophils  

 Basophils 

o Two kinds of leukocytes without granules in their cytoplasm  

 Lymphocytes  

 Monocytes 

The production of blood cells is called hemopoiesis. Prior to birth, hemopoiesis occurs 

primarily in the liver and spleen, but some cells develop in the thymus, lymph nodes, and red 

bone marrow. After birth, most production is limited to red bone marrow in specific regions, 

but some white blood cells are produced in lymphoid tissue.  

Bone marrow is the soft material in the center of most bones, and it is where new blood cells 

are made. Active bone marrow is found in almost all bones of the infants; however, by the 
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  pH is a measure of the acidity or basicity of a solution, and is defined as the cologarithm of the activity of 

dissolved hydrogen ions (H
+
). 
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teenage years, it is found mainly in the flat bones (skull, shoulder blades, ribs, and pelvis) and 

vertebrae (the bones that make up the spine). The bone marrow is made up of a small number 

of blood stem cells, more mature blood forming cells, fat cells, and supporting cells that help 

cells grow. Blood stem cells, also known as pleuripotential cells or, hemocytoblasts, go 

through a series of changes to make new blood cells. While a stem cell divides, one of the 

daughter-cells remains as a stem cell, and the rest becomes a precursor cell, either a myeloid 

cell or a lymphoid cell. The myeloid and lymphoid cells continue to mature into various blood 

cells. The picture
17

 in Figure 2.11 depicts the process of maturing a stem cell into either a 

myeloid cell or a lymphoid cell, where:  

 The myeloid stem cell matures into a myeloid blast. The blast can form a red blood 

cell, platelets, or one of several types of white blood cells.  

 A lymphoid stem cell matures into a lymphoid blast. The lymphocytes develop from 

these lymphoid blasts to become mature and infection fighting cells. There are mainly 

two main types of lymphocytes: B-lymphocytes (B-cells) and T-lymphocytes (T-

cells). Although both B-cells and T-cells can develop into leukaemia, B-cell leukaemia 

is more common than T-cell leukaemia.   

 

 

Figure 2.11 Stem cell maturing into different blood types 
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  A modified image. Original source: The National Health Service, UK (http://tinyurl.com/2c3xqr6) 
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2.2.2 Leukemia – the Cancer of Blood 

The word, Leukemia or, Leukaemia comes from the Greek word leukos which means ‗white‘ 

and aima which means ‗blood‘. Leukemia is a part of the broad group of diseases, called 

hematological neoplasms, and can develop at any point in cell differentiation. The disease 

represents a number of cancers in the blood cells, usually white blood cells (WBC), and starts 

in the bone marrow, the soft tissue inside most bones where the blood cells are made. As 

mentioned above, bone marrow of a healthy person makes:  

 White blood cells, which mainly help the body fight infection.  

 Red blood cells, which carry oxygen to all parts of the body.  

 Platelets, which help blood clot. 

Leukaemia makes the bone marrow to produce a large number of abnormal white blood cells, 

called leukaemia cells. As these WBCs multiply in an uncontrolled and abnormal way, it 

leaves little room in the bone marrow for the other types of blood cells and for the new blood 

cells to be produced while making it hard for the normal blood cells to do their work. This 

process leads to a shortage of red blood cells (RBC) causing severe bleeding (as regular 

blood-clotting doesn't occur) or serious infection. This can lead to serious problems such as 

anemia, poor blood clotting, infections; in addition to various other health issues including 

nausea, fever, chills, night sweats, flu-like symptoms, headache, tiredness and weight-loss. 

Leukemia cells can also spread to other organs (metastasize) where they can keep other cells 

in the body from functioning normally and causing swelling or pain. Both children and adults 

can develop leukemia, and currently, there is no real means of prevention of the disease. 

Researchers believe that the following are a few likely causes of leukaemia - radiation 

exposure, viruses (HTLV-1 and HIV), certain chemicals like benzene and alkylating 

chemotherapy agents used in previous cancers, use of tobacco, genetic predisposition, 

maternal-fetal transmission.   

Leukaemias are subdivided in two ways – one is based on the rate of progression of the 

disease, and the other is the type of affected blood cell. The former classification gives two 

types, acute and chronic. Acute leukemia crowds out the healthy blood cells more quickly 

than chronic leukemia; and hence, it is a rapidly progressing disease. The classification based 

on affected blood cell subdivides leukaemia into either lymphocytic (or, lymphoblastic), or 

myelogenous (or, myelocytic or, non-lymphocytic) leukemia. As given in Figure 2.11 (on page 

33), if the cancerous transformation occurs in the type of marrow that makes lymphocytes, the 

disease is called lymphocytic leukemia. Again, the disease is called myelogenous leukemia if 
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the cancerous change occurs in the type of marrow cells that go on to produce red blood cells, 

other types of white cells and platelets. Thus, combining the two groups from both type of 

classification, a total of four types of leukaemia are present as shown in Figure 2.12. Both 

ALL (Acute Lymphocytic Leukaemia) and AML (Acute Myelogenous Leukaemia) can further 

be divided into different subtypes. 

 

 

 

 

Figure 2.12 Types of leukaemia 

 

2.2.2.1 Leukaemia in Children 

Leukaemia is the most common cancer in children and adolescents; overall, however, it is a 

rare disease. Childhood leukaemia accounts for 1 out of 3 cancers in children
18

. Any of the 

blood forming or lymphoid cells from the bone marrow can turn into a leukaemia cell. In 

children, acute leukaemia is much more common while chronic leukaemia is common in 

adults. Besides ALL and AML, Juvenile Myelomonocytic Leukaemia (JMML) is a rare type 

of leukaemia that occurs most often in young children under the age of 4 years. This cancer 

begins from myeloid cells, and its progression is unlike the conventional pace of either acute 

or chronic leukaemia. 

According to National Cancer Institute, USA
19

, ALL (Acute Lymphocytic Leukaemia) is 

common in early childhood, between 2 and 4 years of age, and is slightly more common in 

boys of European descent. AML occurs equally among boys and girls of all races; and the 

cases are more spread out across the childhood years, although it is slightly more common 

during the first 2 years in infants and during the teenage years. 
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2.3 Microarrays in Cancer Research 

Rapid advancements in Biotechnology and completion of Human Genome Project (Bentley, 

2000; Venter et al., 2001) has gifted the new technology – DNA microarray technology, 

which has presented us with a compelling approach that allows for simultaneous evaluation of 

all cellular processes at once; and cancer, being one of the most challenging diseases, presents 

itself as a perfect candidate for evaluation by this approach. The ultimate goal of cancer 

research is to improve the diagnosis as well as treatment of cancer through accurate disease 

classification and patient stratification, which allows for the design of therapies that are more 

targeted to specific cancer subtypes and potentially improves the effectiveness of existing 

regimens based on therapeutic response and adverse events. 

Until this century, the study of cancer and its clinical behaviour has been on the basis of 

histopathologic examination using microscopy. The process often cannot reflect the 

complexity of causation or production of tumours (oncogenesis) because of its major 

limitation that it can only predict the general categories of cancer, and is unable to achieve 

high sensitivity and specificity of prediction in clinical practice (Liotta & Petricoin, 2000). As 

histologically similar cancer patients may have a different clinical outcome, there was a 

persistent need to find new tools complementary to the conventional histopathologic 

evaluation for increasing the sensitivity and specificity of cancer diagnosis and prognosis. 

Microarray technology provides a fitting response to this need. Besides being able to analyse 

expression of thousands of genes together, the investigators are now able to relate gene 

expression patterns to clinical phenotypes. The technology offers significant potential to 

identify molecular signatures capable of differentiating cancer from normal tissues, predicting 

and prognosis, detecting recurrence and monitoring response to cancer treatment, besides 

improving our understanding of causes and progression of cancer for the discovery of new 

drug targets. 

In cancer biology, microarrays are used for several applications. The remainder of this section 

provides a glimpse of some of the applications.   

Microarrays have been used for tumour classification, which may have therapeutic 

implementations. Golub et al. (1999), being among the first to demonstrate the use of gene 

expression profiling for cancer diagnosis, were able to identify two genetic profiles that 

distinguished, otherwise histologically similar, acute myeloid (AML) and acute lymphoblastic 

(ALL) leukaemia. Until then, the two types of blood cancers were diagnosed based solely on 
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histopathology, immunotyping and cytogenetic analysis – that were not completely error free. 

Following this work, several groups have used DNA microarrays for classifying tumours.   

Various microarray methods have been used effectively as tools for identifying the 

downstream targets and functions of tumour-suppressor genes. Microarray-based expression 

profiling can be used in identifying target genes for several gene products that directly or 

indirectly regulate transcription. There are reports of identifying targets of tumor suppressor 

genes such as p53 (Fortin et al., 2001; Mori et al., 2002; Zhao et al., 2000), BRCA1 (Harkin et 

al., 1999; MacLachlan et al., 2000), β-catenin and Plakoglobin (Shtutman, Zhurinsky, Oren, 

Levina, & Ben-Ze'ev, 2002), Myc (Coller et al., 2000) etc.       

There is a substantial interest in understanding the association between disease and mutation, 

including single-nucleotide polymorphism (SNP)
20

. For mutation detection, there are several 

conventional methods, like Chemical Mismatch Cleavage or CMC (Cotton, Rodrigues, & 

Campbell, 1988), Denaturing Gradient Gel Electrophoresis or DGGE (Myers, Maniatis, & 

Lerman, 1987), and Single-Strand Conformational Polymorphism or SSCP (Orita, Suzuki, 

Sekiya, & Hayashi, 1989). However, such methods have several disadvantages including their 

time-consuming procedure, less cost-effectiveness. Microarray based approaches have 

reportedly been carried out for mutation studies (Favis & Barany, 2000; Hacia, Brody, Chee, 

Fodor, & Collins, 1996; Wen et al., 2000); and the mutation detection is found to be fast with 

higher accuracy and sensitivity compared to the conventional methods.        

Metastasis, spread of cancer from one organ or tissue to another, is another area where 

microarray-based expression profiling has been used. A few such examples are – studying 

metastasis in osteosarcoma (Khanna et al., 2001), colorectal tumor (Yanagawa et al., 2001) 

and brain metastasis (Nishizuka et al., 2002).   

Use of microarrays is expected to yield insights into the mechanisms of drug resistance and 

suggesting alternative treatment methods. Cancers either remain resistant to chemotherapy or 

after responding initially to chemotherapy, recur later becoming a multi-drug resistant tumour. 

This stubborn drug-resistance is a significant obstacle to treating cancer patients using 

chemotherapy. Several groups, for example  Kudoh et al. (2000) and Sakamoto et al. (2001), 

have demonstrated the feasibility of applying microarrays in identifying this resistance 

mechanism of cancer cells.        
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 SNP is a DNA sequence variation when a single nucleotide (out of A, T, C, and G) in the genome differs 

between members of a species or, between paired chromosomes in an individual. 
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In contrast to the conventional methods, microarray-based methods in drug-discovery process 

have tremendous potential. It would simplify as well as hasten the entire, currently lengthy 

and complicated, process of drug discovery. In their review, Debouck & Goodfellow (1999) 

discussed certain ways in which microarrays would likely to affect the process of drug 

discovery. Further, certain other approaches have also been made towards using microarray-

based methods in the process of drug-discovery (Hughes, Roberts et al., 2000; Ross et al., 

2000; Scherf et al., 2000). 

Overall, microarray-based gene expression profiling is unearthing the concealed information 

in cancer biology. This would hopefully lead further to provide better and refined diagnostic 

methods and therapeutic strategies. 

 



 

 

    Chapter 3  

Microarray Data Integration: A Review 

With the increase of the collection of microarray data, especially in MIAME (Alvis Brazma et 

al., 2001)-compliance public repositories such as ArrayExpress
21

 (A. Brazma et al., 2003), 

Gene Expression Omnibus
22

 or GEO (Edgar et al., 2002), Center for Information Biology 

gene EXpression database
23

 or CIBEX (Ikeo et al., 2003), a growing number of investigators 

are looking at meaningful extraction of information by integration of various microarray 

experiments. As microarray studies tend to explore specific areas of biological function, 

integration of data from multiple microarray experiments is considered to allow construction 

of a more complete as well as a broader biological picture. Integrated microarray data is 

potentially beneficial in several other ways including that it can compensate for the possible 

errors of individual experiments, amplify the sample-size, and may lead to higher accuracy, 

consistency and robust information mining.  

Integration of microarray investigations can include integration of studies that are based on 

the same technological platform. Researchers around the world also combine data from 

different array platforms based on their needs. However, integration of data from different 

microarray studies still remains a challenging problem as microarray datasets do not become 

readily comparable due to factors that can be attributed to biological and technical causes 

associated with the generation of these data (R. A. Irizarry et al., 2005; W. P. Kuo, Jenssen, 

Butte, Ohno-Machado, & Kohane, 2002). Nevertheless, with the accumulating amount of 

important microarray data generated from various microarray experiments, many 

investigators have taken up the challenging task of meaningful integration of microarray data 

as well as overcoming the barriers of microarray platform-dependency, in order to improve 

our understanding of biological processes, medical conditions, and diseases. Here, some of 

these efforts of microarray data integration are reviewed.  

3.1 Data Integration in Microarrays 

Microarray technology has become an indispensable tool for monitoring genome wide 

expression levels of genes in a given organism. From the Patric Brown‘s lab, the technology 

has evolved representing both a technological and a conceptual advancement of the field, and 
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has expanded worldwide, where many laboratories are now making their own arrays, in 

addition to the availability of commercial vendors. With the increasing number and 

availability of gene expression studies of various organisms, there has been a pressing need to 

develop approaches for integrating results across multiple studies.    

In a cross-study analysis, the data, relevant results and statistics of several studies are 

combined. There are different practical advantages in such studies. Cross-study analysis has 

the potential to strengthen and extend the results gathered from the individual studies. This 

can turn an investigation towards higher accuracy and consistency, and thus, help in robust 

information mining. Moreover, output of such a study can provide a broader picture of gene-

expression as the final ‗integrated‘-result emerges based on a set of individual studies. Cross-

study analysis can also compensate for the possible data-errors in individual studies. The cost 

of such a study can be kept low by using the exiting studies, as otherwise the setting up of 

each microarray investigation is not inexpensive. However, while attempting to actualize 

integration of microarray studies, there are much higher challenges and difficulties as genetic 

expressions of different studies are neither readily comparable nor can directly be combined. 

There are several approaches to cross-study analysis, and they somewhat broadly fall into two 

categories – A. studies where integration occurs at the interpretative level, B. studies where 

integration takes place with rescaling of the expression values. 

3.1.1 Integration at the Interpretative Level 

Meta-analysis is emerging as a standard way for the comparison of microarray studies at 

interpretative level. It involves comprehensive reanalysis of the primary data by merging data 

from multiple studies. Certain general reviews on meta-analysis include Hedges & Olkin 

(1985), Cook et al. (1995), Normand (1999), Ghosh et al. (2003) and Moreau et al. (2003). As 

broadly defined by Normand (1999), meta-analysis is the quantitative review and synthesis of 

the results of related but independent studies. Despite having certain demerits of merged 

primary dataset as reviewed by Larsson et al. (2006), the method is becoming useful in 

microarray studies with the expansion of the sheer volume of microarray data. The success of 

meta-analysis is dependent on the quality of the underlying data. When accuracy of one or 

more concerned microarray platforms is questionable, the outcome may become influenced. 

Nevertheless, browsing through the various studies, where the observation on accuracy, 

reliability and reproducibility of microarray platforms clearly ranges from relatively 

discouraging (Severgnini et al., 2006; Tan et al., 2003) through cautiously optimistic (R. A. 

Irizarry et al., 2005; Larkin, Frank, Gavras, Sultana, & Quackenbush, 2005) to impressive 
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(Canales et al., 2006; Leming Shi et al., 2006), the overall assessment of the usefulness of 

meta-analysis of similar microarray studies is cautious optimism. Moreover, the major 

sources that contribute to the discordance in this regard are mainly – random noise, biological 

and experimental variations in the samples being analysed, and the variation due to the 

technical methodology used in the platforms. It is possible to overcome the discordance to a 

greater extent with judicious and robust application of relevant statistical methods, standard 

reporting methods, as well as careful application of meta-analysis techniques.   

The core objectives of meta-analysis are to increase efficiency in detecting an overall 

treatment effect, to estimate degree of benefit associated with a particular study, and to assess 

the amount of variability between studies etc. In the recent past, several statistical methods 

aiming at detecting differentially expressed genes among multiple conditions have been 

proposed in individual experiments (Breitling, Armengaud, Amtmann, & Herzyk, 2004; 

Efron, Tibshirani, Storey, & Tusher, 2001; Newton, Noueiry, Sarkar, & Ahlquist, 2004; 

Tusher, Tibshirani, & Chu, 2001). Pan (2002) has published a comparative review on these 

statistical methods in replicated microarray experiments. However, most standard meta-

analysis methods cannot be applied directly to microarray experiments as microarray 

technology is unique with its slew of issues, including its diverse experimental platforms, 

complicated data structures, presence of duplicate spots as well as often having a large 

number of genes tested for differential expression.   

In 1925, a simple application of meta-analysis was implemented as Fisher‘s Inverse 2 test 

(Fisher, 1925). The method computes a combined statistic from the P-values obtained from 

the analysis of the individual datasets, S = -2 log(Πi Pi). Here, S follows a Chi-square 

distribution with 2l degrees of freedom under the joint null-hypothesis. The approach does not 

require additional analysis, and is easy to use; however, it cannot estimate the average 

magnitude of differential expression in microarrays just by working with the p-values. The 

approach also remains highly dependent on the method used in the individual analysis.  

Meta-analysis based on the t-statistic was reviewed by Normand (1999) in the context of 

biostatistical applications. Choi et al. (2003) adopted the classic biostatistical meta-analysis 

framework for microarray analysis, and implemented their methods as a Bioconductor (R. C. 

Gentleman et al., 2004)-package, GeneMeta
24

. The approach of Choi et al. (2003) was a 

model-based systematic integration of microarray datasets, where a hierarchical modeling 

approach to assess intra- and inter-study variation was used. The method estimated an overall 
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effect size as the measure of differential expression for each gene through parameter 

estimation and model fitting. The effect size was a t-like statistic, which was the summary 

statistic for each gene from each individual dataset, and was defined to be a standardized 

mean difference between cancer and normal samples in a microarray data set. Integration of 

data using this meta-analysis method promoted the discovery of small but consistent 

expression changes and increased the sensitivity and reliability of analysis. Later, Hong and 

Breitling (2008) found that this t-based meta-analysis method greatly improved over the 

individual analysis, however it suffered from potentially large amount of false positives when 

P-values served as threshold.  

Based on the traditional effect size model (Choi et al., 2003), Hu et al. (2005) proposed a 

model for implementing an efficient methodology for identifying genes that are differentially 

expressed between lung adenocarcinoma samples and normal samples by modeling the effect 

size and integrating information from two Affymetrix oligonucleotide studies. In this study, 

they presented a measure to quantify Affymetrix gene chip data quality for each gene in each 

study where the quality index measured the performance of each probeset in detecting its 

intended target. They extended the traditional effect size model by using the quality index as a 

weight for combining information from different Affymetrix chip types, and incorporating 

this weight into a random-effects meta-analysis model.  

Rhodes et al. (2002) proposed a statistical model for performing meta-analysis in their four 

prostate cancer microarray datasets, two of which were cDNA (also known as, spotted arrays) 

data and the remainder Affymetrix microarray data. The model was based on the statistical 

confidence measure rather than the expression levels, while avoiding direct comparisons of 

data sets and related cross-platform normalization issues. Each gene in each study was treated 

as an independent hypothesis, and significance was assigned based on random permutations. 

Then a meta-analysis model was implemented to assess the similarity of the findings between 

studies based on multiple inference statistical test for each possible combination of studies. 

This ultimately identified statistically reliable sets of over- and under-expressed genes in 

prostate cancer. A cohort of genes were found to be consistently and significantly 

dysregulated in prostate cancer. The approach of Rhodes et al. is highly conservative because 

of the choice of null hypothesis; and therefore, the approach may not be recommendable. The 

data used by Rhodes et al. (2002) were later used by Choi et al. (2003), and they demonstrated 

that their method could lead to the discovery of small but consistent expression changes with 

increased sensitivity and reliability.  
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A Bayesian mixture model transformation of microarray data was proposed by Parmigiani et 

al. (2002). The modeling framework was used for molecular classification, and it provided 

both a statistical definition of differential expression and a precise, experiment-independent, 

definition of a molecular profile. It also generated natural similarity measures for traditional 

clustering and gave probabilistic statements about the assignment of tumors to molecular 

profiles.  

The rank product is a non-parametric statistic, and was first proposed to detect differentially 

expressed genes in a single dataset (Breitling et al., 2004). To integrate multiple microarray 

studies from different platforms and/or different laboratories, a rank product meta-analysis 

algorithm was implemented as a Bioconductor package, RankProd (F. Hong et al., 2006). The 

algorithm computed pairwise fold change (FC) with replicates for each gene between 

treatment and control in both directions, respectively. Then, it transformed FC into rank 

among all genes under study, searched for genes that were consistently top ranked across 

replicates, and finally generated a single significance measurement for each gene in the 

combined study. In this approach, converting FC into ranks increased robustness against noise 

and heterogeneity across studies.  

Grutzmann et al. (2005) performed a meta-analysis of four independent studies that applied 

high-density arrays for expression profiling of pancreatic cancer. They used a consensus set of 

UniGene clusters measured in all four studies, and applied a random effect model described 

by Whitehead & Whitehead (1991), whereby expected values of individual study effects were 

assumed to be normally distributed. With the random effect model, an unbiased estimator for 

the PDAC (Pancreatic ductal adenocarcinoma) effect across all studies was measured, and 

was used to measure joint differential expression of a gene across all studies. 

With three publically available breast cancer datasets having information on lymph node 

status, Garrett-Mayer et al. (2008) compared the strength of evidence of gene–phenotype 

associations as well as combined effects across studies. For this, the three studies were first 

analyzed for reliability, and then, the comparability of results with regards to the genes 

associated with lymph node status was assessed. Instead of actually combining the data across 

studies, they mainly performed a comparative analysis making inferences based on the genes 

consistently measured in all studies, and finally estimated combined inferential statistics. 

Their proposed methods were implemented in the R (Ihaka & Gentleman, 1996)-library, 

MergeMaid
25

 (Cope, Zhong, Garrett, & Parmigiani, 2004). The novel addition in this work 
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was the use of a reliability measure, which was extended to be applied for more than two 

studies. 

Meta-analyses methods are useful; however, as Eysenck (1995) mentioned, they require 

careful selection of inclusion criteria for participating studies and sound statistical models to 

avoid misleading conclusions. To date, broader comparisons across various integration 

approaches have not been conducted. However, Hong and Breitling (2008) compared 

performance of three widely used methods - Fisher‘s inverse Chi-square approach, t-like 

statistic of Choi et al. (2003) and rank product method (Breitling et al., 2004; F. Hong et al., 

2006), and found that among the three methods, the non-parametric rank-product method 

outperformed in terms of sensitivity and specificity.     

In general, the overall framework used in all the above studies, where data integration occurs 

at the interpretative level can be outlined as shown in Figure 3.1.  

 

 

 

Figure 3.1 Microarray data integration at interpretative level 
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3.1.2 Integration with Rescaling of the Expression Values 

Contrary to the meta-analysis approaches, where the results of the individual studies are 

combined at an interpretative level, there are published researches where microarray 

expression data from various studies are integrated after transforming the expression values to 

numerically comparable measures. This is attained by deriving the genetic expression values 

from the individual platforms, and then, applying specific data transformation and 

normalization methods. The derived data from the individual studies are subsequently 

combined, which enlarges the sample size. Any further analysis, as required, is carried out on 

the new merged dataset. The cross-referencing of the genes between the platforms is usually 

achieved using UniGene database (Wheeler et al., 2000).  

Ramaswamy et al. (2003) reported rescaling of gene-expression values of a common set of 

genes. The set of the common genes were from five microarray datasets generated by 

individual labs on different microarray platforms. The rescaled common genes were 

combined to produce a larger set of data. From the combined dataset, a gene expression 

signature was identified, which distinguished primary from metastatic tumors.  

A standard normalization scheme can be used to combining cDNA and Affymetrix data. 

Hwang et al. (2004) normalized the expression values of each gene across the samples for 

each platform so that the mean of each gene equals to zero and the standard deviation equals 

to unity, respectively. The normalized data were, then, combined to form a large dataset. 

Earlier, Cheadle et al. (2003) proposed normalization and standardization of cDNA 

microarray intensity values within datasets using a Z-score transformation method. The 

method converted the raw intensity data from each experiment into log10, and then, Z-scores 

were calculated by the classical method, i.e., by subtracting the overall average gene intensity 

(within a single experiment) from the raw intensity data for each gene, and dividing that result 

by the standard deviation of all of the measured intensities. The application of this classical 

method in microarray normalization provided a way of standardizing data across a wide range 

of experiments, while allowing comparison of microarray data independent of the original 

hybridization intensities.  

Based on the distance weighted discrimination (DWD) method of Marron & Todd (2002), 

Benito et al. (2004) integrated cDNA data with Agilent oligonucleotide data. DWD, which 

was basically an improvement method for Support Vector Machines in HDLSS (High 

Dimension, Low Sample Size) contexts, was used as an approach for removing systematic bias 

effects and then, merging the different data sets.  
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A gene-specific scaling factor was calculated in Bloom et al. (2004), and was used to integrate 

microarray data from Affymetrix and cDNA platforms. Here, for each gene common to both 

platforms, expression levels for a reference RNA sample on the spotted arrays was averaged 

and compared to expression measured for the reference RNA sample on the appropriate 

Affymetrix GeneChip to calculate the scaling factor. This scaling factor was used to adjust the 

remaining data towards integrating the platforms.   

Shen et al. (2004) used a two-stage Bayesian mixture modeling strategy based method 

proposed by Parmigiani et al. (2002). This model was to integrate multiple independent 

studies addressing similar questions while considering different platforms – Affymetrix and 

inkjet oligonucleotides. The mixture modeling approach reportedly unified disparate gene 

expression data based on a probability scale of differential expression, the poe-scale 

(Parmigiani et al., 2002), and derived an inter-study validated 90-gene ‗meta-signature‘ that 

predicted relapse-free survival in breast cancer patients. 

In addition to common data transformation and normalization procedures, Jiang et al. (2004) 

added a distribution transformation (disTran) step in their study. The method transformed two 

microarray datasets belonging to two Affymetrix chip types so that the empirical distributions 

of two lung cancer datasets could become identical and be combined. The disTran method 

reportedly provided improved consistency in the expression patterns of the multiple datasets.  

Two data integration methods, namely quantile discretization (QD) and median rank scores 

(MRS) were used in Warnat et al. (2005) for direct integration of raw microarray data from 

six publicly available cancer microarray gene expression studies conducted by means of 

cDNA and oligonucleotide microarrays. In this study, comparable measures of gene 

expression from the independent data sets of the varied microarray platforms were 

numerically derived such that the different microarray data adhere to a common numerical 

range. These derived data were then integrated, and used to build SVM (support vector 

machine) classifiers for cancer classification. Similar to disTran, the quantile normalization 

technique, i.e., MRS, and QD of Warnat et al. (2005) were used to transform the microarray 

data from diverse platforms so that their empirical distributions are identical. The approaches 

(disTran, MRS and QD) can significantly improve the comparability of cross-platform 

microarray data. These methods work well for classification tasks, but can suffer from 

information reduction, limiting their applicabilities other than classification.       

Stafford & Brun (2007) presented a calibration process for cross-laboratory and cross-

platform microarray expression data. Using Agilent and Affymetrix expression platforms, 
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they employed precision and sensitivity measurements along with biological interpretation for 

better selection of genes with respect to a particular outcome. Precision and sensitivity 

measurements were useful in finding the minimal detectable fold-change and raw 

performance values for a microarray platform. Gene Ontology and pathway analyses were 

considered in the study as a valuable way of examining and comparing the actual biological 

interpretation.  

Xu et al. (2008) used four independent breast cancer datasets, and identified a structured 

prognostic signature consisting of 112 genes organized into 80 pair-wise expression 

comparisons. They extended a previously proposed method (Geman, d'Avignon, Naiman, & 

Winslow, 2004), validated on a prostate cancer study, to predict distant metastases in breast 

cancer. The method of integration was based on the ranks of the expression values within 

each sample. Since the ranks of the features were invariant to all types of within-array 

preprocessing, there was no need to prepare the data for integration, in particular there was no 

need for data normalization. 

XPN (Shabalin, Tjelmeland, Fan, Perou, & Nobel, 2008) is another method that deals with the 

problem of cross-study normalization: how to combine microarray datasets in order to 

produce a single, unified dataset to which standard statistical procedures can be applied. The 

method was based on a block linear model, and used three existing breast cancer datasets 

from Agilent oligonucleotide platform and Affymetrix GeneChip. The model assumed that 

the samples of each available study fell roughly into one of the statistically homogenous 

sample groups identified, and that each group was defined by an associated gene profile that 

was constant within each of the estimated gene groups. The proposed method applied sample 

standardization and gene median centering before combining the data from the studies. To 

identify blocks (or, clusters) in the data, k-means clustering was applied independently to 

genes and samples of the combined data. Each gene expression value subsequently became a 

scaled and shifted block mean plus noise. XPN was reportedly preserved biological 

information according to ER (error rate) prediction error rates while removing systematic 

differences between platforms.  

NLT or Normalized Linear Transform (Xiong, Zhang, Chen, & Yu, 2010) is a method in 

which the samples of two microarray platform were linearly mapped such that the numerical 

range of the expression values of each gene became identical. The mapped data were, then, 

combined and normalized across samples to zero mean and unity standard deviation. 

Apparently, the approach avoids information reduction as it preserves the relative ranking 

order of the expression values for each gene.     
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The methods highlighted above pose important examples of integration of microarray datasets 

with rescaling of the gene expression values. Each of the approaches is unique; however, the 

overall organization of the methods follows a general framework, which is outlined in Figure 

3.2.    

 

 

Figure 3.2 Microarray data integration with rescaling of expression values 

 

Note :  

 Aspects of this chapter have been published: 

Sarmah, C. K., & Samarasinghe, S. (2010) Microarray data integration: frameworks and a list 

of underlying issues. Current Bioinformatics, 5(4), 280-289. 

 



 

 

    Chapter 4  

Data Assessment and Normalization 

4.1 Data Collection  

Affymetrix GeneChip
® 

and GenePix
®
 cDNA data were obtained from the Tumour Bank, The 

Children‘s Hospital at Westmead, Australia. The data belonged to childhood leukemia 

patients. Seven of these children were analysed both on Affymetrix (HGU-133A chip) as well 

as on cDNA platforms. Additionally, there are ten Affymetrix HGU-133A chips obtained 

from 10 healthy children. This research project is based on these datasets, while emphasising 

on the important consideration that these data were generated from an ideal experimental 

setup.  

Certain data-quality  assessments, followed by data normalization process are carried out with 

the help of open-source statistical software, R (Ihaka & Gentleman, 1996) and Bioconductor 

(R. C. Gentleman et al., 2004). Assessing the quality of data is given its due importance as it 

ensures that the homogeneity of the data remains, and that the data adhere to the minimal data 

quality standards, although it may not conclusively indicate flawlessness in the original 

microarray data generation pipeline.     

Unless stated otherwise, the sources used here to help illustrate the processes and their 

outcomes are: Gentleman et al. (2005), Hahne et al. (2008), Kauffmann et al. (2009), Wilson 

& Miller (2005).    

4.2 Affymetrix Data  

Assessing the quality of data is critical prior to carrying out any analytical investigations. A 

list of assessments is made using the available dataset. Subsequently, normalization is carried 

out, which is followed by assessing the quality of the normalized arrays.   

4.2.1 Assessment of Raw Affymetrix Data 

4.2.1.1 Inspection for Hybridization Artefacts 

A simple look at the images of the scanned arrays can pick up hybridisation artefacts arising 

from factors including scratches, air bubbles, and problems with staining, mixing or washing. 

Appendix A.1 displays pseudo-images of the intensities from all features on each array on the 

basis of how they are physically arranged on the arrays. It does not indicate detection of any 

notable artefact. 
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4.2.1.2 MA Plots  

Appendix A.2 presents MA plots for each array against a pseudo-array, which contains the 

median values of all the arrays. Accordingly, M and A is defined as: 

where, I1 is the intensity of the array studied, and I2 is the intensity of the pseudo-array. 

Typically, the mass of the distribution in an MA plot should be about the M = 0 axis, without 

having any trend in the mean of M as a function of A. A trend, shown as a horizontal red line 

in a plot, in the lower range of A usually indicates that the arrays have different background 

intensities, whereas that in the upper range of A refers to saturation of the measurements. 

However, both of these can be addressed to a certain extent by background correction and 

non-linear normalization (e.g., quantile normalization), respectively. 

4.2.1.3 Array Intensity Distributions 

Systematic bias and related anomalies across the arrays can be identified by plotting the array 

intensity distributions. Figure 4.1 gives the distribution of the raw, log2-transformed probe 

intensities across all 17-GeneChip arrays, which include 7 sick and 10 healthy children. A box 

in the boxplots or a line in the plot of smoothed histograms corresponds to one array. Ideally, 

one expects the boxes to have similar size (IQR) and y-position (median); and similar shapes 

and ranges in the smoothed histograms. With regards to the distribution of the untreated 

arrays in the figure, it does not highlight any alarming variations.  

  

M = log2(I1) - log2(I2) 

A = 
2

1
[log2(I1)+log2(I2)] 

( 9 ) 
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Figure 4.1 Intensity distributions of raw, log2-transformed Affymetrix arrays 

 

4.2.1.4 Between-Array Comparison 

A heatmap serves to assess whether one or more arrays are different from the rest; and 

thereby, detect the outlier arrays. It is also at times used to check whether arrays cluster 

according to certain biological meaning. A heatmap is, thus, a representation of distances 

between the arrays, where the median of the absolute values of the difference between each 

array-pair is considered as a measure of distance. It is shown in equation 10, where Mxi and 

Myi represents the M-value of the i
th

 probe on the x and y array. Mxi (similarly, Myi) can be 

decomposed as : Mxi = zi + βxi + εxi, where zi is the probe effect for probe i (the same across 

all arrays), εxi are independent and identically distributed (i.i.d.) random variables with mean 

zero, and βxi represents differential expression effects and is such that for any array x, the 

majority of values βxi are negligibly small, i.e., close to zero.  

Arrays whose distance matrix entries, i.e., dxy values, are way different should bring reason 

for suspicion. Figure 4.2 is a false colour heatmap of between-array distances, computed as 

the median absolute difference (L1-distance) of the M-values for each pair of arrays on every 

probes without any filtering. The colour scale is chosen to cover the range of L1-distances 

encountered in the dataset. Using the principles of Kauffmann et al. (2009), arrays for which 

dxy = median |Mxi-Myi| 
( 10 ) 
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the sum of the distances to the others is much different from the others, can be considered as 

outlier arrays. In expectation, all values of dxy are the same, namely 2-times the standard 

deviation of εxi. Arrays whose distance matrix entries are way different from the rest remain 

spaced apart in the accompanying tree-diagram (in the upper side) of a heatmap. Accordingly, 

in Figure 4.2, none of the arrays seem to lie as outlier.     

 

 

Figure 4.2 Heatmap for between-array distances for raw Affymetrix arrays 

4.2.1.5 GeneChip-Specific Assessments 

4.2.1.5.1 Average Background 

Signal-to-noise ratio can be affected by background intensity of Affymetrix arrays. The 

typical average background values range from 20 to 100 for arrays scanned with the 

GeneChip
®
 Scanner (Affymetrix, 2008). Extreme background intensity values of arrays 

outside of this range may be indicative of problems. There is only one array, Healthy4, which 

is found to be not extreme but falls just outside of this range, as shown in the snapshot below. 

The average background array intensities are also listed to left of Figure 4.3 (on page 55) and 

Figure 4.4 (on page 56). (More details on these figures will be provided in section 4.2.1.5.5: 

GAPDH and β-actin ratios).  
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4.2.1.5.2 Scale Factors 

Scaling, the simplest type of normalization, makes the assumption that the distribution of 

signal intensities on an array is normal (or, Gaussian); and it merely shifts the distribution to 

be centred to a particular point. Affymetrix‘s MAS 5.0 expression summary algorithm scales 

the mean of the signals to a certain value, the default being 500, while discarding the top and 

bottom 2% of an array as outliers. To determine whether an array is of poor quality, 

Affymetrix suggests that the scale factors should be similar among samples and not vary more 

than about 2 to 3-fold from each other.  

Scale factors using MAS 5 algorithm can be viewed in Figure 4.3 and Figure 4.4 where the 

blue stripe in the image represents the range where scale factors are within 3-fold of the mean 

for all chips. The scale factors are plotted as a horizontal line from the centre line of the 

image. A horizontal line to the left from the centre line corresponds to a down-scaling, and to 

the right represents an up-scaling. Scale factors that fall within this 3-fold region are coloured 

blue, while the rest remaining outside this area are coloured red. Among the untreated 

Affymetrix arrays, Healthy10 is just falling outside the area, as shown below in the box.  

 

 

4.2.1.5.3 Detection Calls 

Detection calls provide an overall measure of quality. They are used for flagging genes as 

having been reliably detected, and are given by ‗% Present‘-call that represents the percentage 

of probesets called ‗present‘ on an array (B. M. Bolstad et al., 2005). Probesets are flagged 

Marginal, or Absent when the PM values for that probeset are not considered to be 

significantly above the MM values for the same probeset.  

High variations in present calls between similar samples give cause for suspicion as it means 

varying amounts of labelled RNA have been successfully hybridized to the chips because of 

certain noise or interference in the array processing pipeline. However, the % present-scores 

vary considerably with tissue type, and the type of experiment condition under study; and 

consequently, no absolute quality cut-offs is recommended. Percent present scores are listed 

to the left of Figure 4.3 and Figure 4.4, and also are presented below.  
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4.2.1.5.4 Hybridisation Controls 

Into the hybridisation cocktail just prior to it being placed on a GeneChip, a number of control 

oligonucleotides are added to subsequently verify the efficiency of hybridization performance. 

These additional, labelled cRNAs (BioB, BioC, BioD and CreX) are also known as Spike-in 

probesets, and are derived from Bacillus subtiliis, a bacterium commonly found in soil. The 

intensity of these transcripts is examined later, along with the consideration of the fact that 

nothing should bind to their probesets.  

BioB should ideally be called present on every array. Another acceptable level for it to be 

called ‗present‘ is their presence in 70% of the chips in an experiment. If BioB is routinely 

absent, it indicates that the assay is performing with suboptimal sensitivity. Results for the 17 

chips are listed below, which indicate that all the chips have performed well in this respect. 

 

 

4.2.1.5.5 GAPDH and β-actin Ratios 

Affymetrix probesets are designed to hybridize to either end of certain quality control genes, 

most notably GAPDH and β-actin. GAPDH and β-actin are relatively long genes, and most 

cell types ubiquitously express them. Majority of Affymetrix chips contain separate probesets 

targeting the 5′, mid and 3′ regions of these genes.  

Typically, transcription starts from the 3′ end of a gene. Therefore, a measure of the quality of 

the RNA hybridised to a chip is possible to obtain by comparing the signal from the 3′ 

probeset to either the mid or 5′ probesets. A high 3′ : 5′ signal ratio indicates the presence of 

truncated transcripts, which may be either due to the under-performance in the in vitro 

transcription stage or because there is a general degradation of the RNA.  

Often RNA to be hybridized to a chip is also prepared using the Affymetrix small-sample 

protocol, instead of the Affymetrix standard protocol. The former uses an extra amplification 

step that may increase the frequency of short transcripts in solution, and unavoidably 

introduce some 3′ bias into the population of labelled transcripts. In such cases, 3′ to mid 

ratios is recommended for quality measurement (Affymetrix, 2008).  

In Figure 4.3 and Figure 4.4, GAPDH and β-actin ratios for 3′:5′ and 3′: mid are shown 

respectively. GAPDH ratios are plotted as circles, and β-actin ratios are as triangles. GAPDH 

values that are considered potential outliers (ratio > 1.25) are coloured red, otherwise they are 

 



Chapter 4 – Data Assessment and Normalization 

 55 

blue. On the other hand, β-actins are longer genes, and the recommended value for the ratio is 

below 3. The 3′:5′ plot of Figure 4.3 presents the measures of GAPDH and β-actin in 

Healthy6 and ALL29 outside of the recommended value. However, only the GAPDH measure 

of Healthy6 is found higher than the recommended value in 3′: mid plot of Figure 4.4.  

 

 

Figure 4.3 β-Actin and GAPDH (3′:5′ ratios) 
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Figure 4.4 β-Actin and GAPDH (3′: mid-ratios) 

 

4.2.1.5.6 RNA Degradation 

For assessing chip-quality, a more global indicator is often desirable than using the expression 

measures of only a few control genes such as β-Actin and GAPDH. Analysis of RNA 

degradation compensates this requirement.   

As Gautier et al. (2004) explains, RNA molecules are unstable, and subject to degradation that 

characteristically starts from the 5′ end of each transcript. This also causes the intensities of 

the probes at the 3′ end of a probeset to remain systematically higher than those at the 5′ end. 

Individual probes in each probeset are numbered from the 5′ end of the transcript, so relative 

position within the transcript is known. The mean expression of the individual probes as a 

function of their relative positions is represented in a RNA degradation plot, which detects 

poor quality RNA. An array is represented by a single line in such plots, and an array with a 

slope very different from the rest indicates that RNA used for that array has potentially been 

handled quite differently from other arrays. Again, high slopes refer to degradation; however 

it is more important to have agreement between the arrays. 

The degradation plot shown in Figure 4.5 is based on ordering the probes within a probeset 

according to their 3′ position, and then combining the signal from similarly located probes 
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across the array. Each line represents one of 17 HG-U133A chips, and plotted on the Y-axis is 

the mean intensity by probe position.   

There is no standard value that tells about how large a slope must be to consider the array to 

have too much degradation. Different chip-types have different characteristic slopes due to the 

differences in probeset architecture. According to Bomstad et al. (2005), a slope of 1.7 is 

typical for HG-U133A chips, and the slopes that exceed it by a factor of 2 or more might 

indicate degradation.  

 

 

 

The retrieved degradation summary for the arrays is presented in the box above. For high 

quality RNA, a slope of 1.7 is typical for HG-U133A chips; and the slopes that are 2 fold or 

higher than this number may indicate RNA degradation (B. M. Bolstad et al., 2005). 

However, in general, agreement between the chips is more important than the actual value. 

None of the HG-U133A chips currently being assessed is found to have a slope outside this 

recommended value. The RNA degradation plot in Figure 4.5 does not indicate any 

disagreement between the chips either. 

 

 

Figure 4.5 RNA degradation plot 
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4.2.1.5.7 Relative Log Expression (RLE) Plot 

Relative expression can be defined as the difference between the log scale estimates of 

expression gi̂
 
(for each gene, g on each array, i) and the median value across arrays for each 

gene, mg. This can be expressed as in equation 11.  

In a RLE plot, problematic arrays are indicated by larger spread, or by a center location 

different from relative expression, y=0, or both. This means that ideally, the boxes of RLE 

plot would have small spread, and be centred at y=0. The RLE plot constructed for the 17 

HG-U133A chips is given on Figure 4.6, and shows that the ideal spread and y=0 axis is 

absent in many of these untreated arrays.  

Figure 4.6 RLE (Relative Log Expression) plot 

4.2.2 Affymetrix Data Normalization  

The general purpose of normalization is to make the results from each of the arrays 

comparable with the rest. There are various ways as well as combinations proposed for 

normalization.  

There are numerous approaches for normalizing Affymetrix arrays, more than 30 methods 

have been identified as of 2006 (Rafael A. Irizarry et al., 2006). However, none of the 

methods is clearly the best (Qin et al., 2006) - each having own trade-offs and making 

Mgi = gi̂ - mg 
( 11 ) 
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different assumptions about the data. Nevertheless, based on the overall favourable comments 

and performance in various studies including Bolstad et al. (2003), Grewal et al. (2007), Mar 

et al. (2009) and web-information
26

, quantile normalization method using Robust Multichip 

Average (RMA) algorithm is accepted for normalizing the group of 17 Affymetrix (HG-

U133A) chips.    

The Robust Multi-array (or Multi-chip) Average or RMA (R. A. Irizarry et al., 2003) uses 

quantile normalization, and is used here for normalizing the chips. RMA is largely the work 

of Terry Speed‘s group at University of California at Berkeley, and only uses PM probes as 

the method assumes that including the MM probes introduces more variability than the 

correction is worth. In RMA, the expression measure is obtained using three steps : 

convolution background correction, quantile normalization, and a summarization method 

based on a multi-array model fit that uses the median polish algorithm (Tukey, 1977). Starting 

with the raw probe-level data from a set of GeneChips, the perfect-match (PM) values are 

background-corrected, quantile normalized, and then finally the linear model is fit to the 

normalized data to obtain an expression measure for each probe set on each array.  

Background correction used in RMA is aimed at correcting only PM values, and is a non-

linear correction using a probabilistic model, done on a per-chip basis. It involves a 

convolution of an exponentially distributed (with mean, α) signal, X and normally distributed 

(with mean, μ and standard deviation, σ) noise, Y caused by optical noise and non-specific 

binding. Therefore, the observed PM intensity, S = X + Y. Under this model, the background 

corrected model is given by E(X|S=s). Benjamin Milo Bolstad (2004) presents the 

background correction in equation 12, where a=s-μ-σ
2
α, b=σ, Φ represents the standard 

normal distribution function, φ is the density function of the normal distribution.  

 

Quantile normalization (B. M. Bolstad et al., 2003), also introduced by Terry Speed‘s group 

at University of California at Berkeley, is a robust, routinely used and fast normalization 

method, which aims to make the distribution of probe intensities the same for every 

Affymetrix chip. For this, the arrays of signal intensities are sorted in a way that the highest 

                                                 
26
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signal from each array is replaced by the average of all of the highest signals, and the second 

highest on each array is replaced by the average of all the second highest, and so on. The 

resultant data do not heavily skew, and the variability of expression measures across chips 

reduced.  

Quantile normalization method forces the values of the quantiles to be equal, and projecting 

each point of the two vectors‘ quantiles onto a 45
0
 diagonal line produces a transformation 

that gives the same distribution to both the vectors. Transformation of an intensity is done, as 

given in equation 13 (Benjamin M. Bolstad, 2006), where xij is intensity i of a probeset on 

array j; Gj is the distribution function for the j
th

 array and is estimated in practice using the 

empirical distribution function; F is the empirical distribution of the averaged sample 

quantiles across all arrays; and, x
*

ij is the normalized intensity.      

 

Expression summarization is the final component of RMA normalization. From a set of 

background-corrected and quantile-normalized PM probe intensities for each probeset, the 

process computes a single number to represent the expression level of the targeted gene. The 

summarization method for RMA is median polish algorithm (Tukey, 1977), which is a robust 

method that iteratively fits the linear model of equation 14 with constraints median 

(θj)=median (αi)=0 and mediani (εij)=0. In the equation, the superscript (n) represents the n
th

 

probe set on array j, yij refers to the observed intensity of the i
th

 probe, αi represents a probe 

effect, θj is an array effect, and εij is measurement error. The log2 expression values are given 

by 
( ) ( ) ( )ˆ ˆˆn n n

j j    .   

The median polish fits the model iteratively, successively removing row and column medians, 

and accumulating the terms, until the process stabilizes. The residuals obtained at the end give 

rise to the summarized value for each probe set. 

x
*

ij = F
-1 

(Gj (xij)) 
( 13 ) 

 

 

 ( ) ( ) ( ) ( ) ( )

2 ijlog y n n n n n

i i ij        ( 14 ) 
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4.2.3 Post-Normalization Assessment 

To evaluate the effect of normalization on the Affymetrix arrays, an assessment is carried out 

of which a few important results are reported here. 

4.2.3.1 MA Plots 

MA plots for the 17 post-normalized Affymetrix-arrays are given in Appendix A.3. Unlike 

the earlier MA plots of the raw Affymetrix arrays, these plots show that the mass of the 

distribution remains about the M = 0 axis, besides having no serious trend in the mean of M 

as a function of A. The issues present in the untreated arrays have apparently been addressed 

by the normalization process. 

4.2.3.2 Array Intensity Distributions 

RMA-normalized Affymetrix chips are shown in Figure 4.7. Comparing the intensity 

distributions of the raw Affymetrix chips (Figure 4.1, page 51), it appears that normalization 

has been able to bring about homogeneity in the array intensity distributions.  

 

Figure 4.7 Boxplots and smoothed histograms of RMA normalized intensities 

4.2.3.3 Normalized Unscaled Standard Error (NUSE) Plot 

NUSE values are useful for comparing arrays within one dataset, although their magnitudes 

are not comparable across different datasets. NUSE plot allows identification of arrays where 

the standard errors for the gene expression estimates are generally larger relative to the other 

arrays. The low-quality arrays in a NUSE plot are those that are significantly elevated or more 
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spread out than others. The NUSE plot represents standard error estimates from the PLM 

(probe-level model) fit. 

PLM is a model that is fit to probe-intensity data. Specifically, a PLM provides parameter 

estimates for probe sets and arrays on a probe-set by probe-set (i.e. gene by gene) basis. It is a 

model of the form:  ( ) ( ) ( )k k k

ij ij ijy f X   , where ( )k

ijX are measured factors, for example 

probe-effects and treatment specific effects, and covariates for a particular probe and f is an 

arbitrary function. The indices i, j, and k refer to probe array and probeset respectively. A type 

of PLM is a linear array effect model, which has a parameter for each array. For each probeset 

k = 1, 2, ...., K with i = 1, 2, ..., Ik probes each on j = 1, 2, ..., J arrays, the model (also used by 

RMA-method), ( ) ( ) ( ) ( )

ijy k k k k

i j ij    
 

is fit, where ( )

ijy k

 
are pre-processed log2 PM 

intensities, ( )k

i are probe effects and ( )k

j are array effects (log2 expression values). Also, it is 

assumed that  ( ) 0k

ijE   ,  ( ) 0k

ijVar  
 
and ( )

1 0.kI k

i i  If ̂
 
is the estimated residual 

standard deviation of a probeset in PLM model and 
i j ijW w  

is the total probe weight of 

the probeset in chip i, the expression value estimate ˆ( )i  
for the fixed probeset on chip i, and 

its standard error (SE) are given by:   

Replacing ̂
 
by 1 gives Unscaled Standard Error (USE) of the expression estimate, and to 

compensate for heterogeneity caused by probes with high variability, low affinity, or a 

tendency to cross-hybridize, the USE is divided by its median over all chips. This measure is 

called as Normalized Unscaled Standard Error (NUSE), and is given by equation 16.  

Typically, the arrays should centre around the median NUSE=1, with approximately equal 

box sizes (i.e. IQRs). Figure 4.8 gives a NUSE plot. The distribution of the chips in the plot is 

ˆ
ˆ ˆ. and ( )

ij

i ij i

j i i

w
y SE

W W


    ( 16 ) 
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acceptable (though it appears otherwise because of the use of a ‗zoom-in‘ scale ranging from 

0.95 to 1.15), and the arrays do not appear to present any quality control problems.   

 

Figure 4.8 NUSE (Normalized Unscaled Standard Error) plot 

In the overall assessment of the Affymetrix arrays above, it may be argued that one or two 

specific arrays tend to give reason for suspicion about quality in certain occasions. However, 

nothing has unanimously revealed; and thus, it is still premature to decide on either inclusion 

or exclusion of any array from the downstream analysis pipeline unless normalization is 

conducted, and post-normalization quality check is done on the arrays.   

4.2.3.4 Between-Array Comparison 

A heatmap plot is rendered in Figure 4.9, which records post-normalization between-array 

distances measured by their absolute median difference. In comparison to the earlier between-

array test, this heatmap provides a re-organization of the arrays based on between-array 

distances computed through the arrays‘ median absolute difference after the process of RMA 

normalization. The figure does not reflect any potential issue with the normalized arrays.    
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Figure 4.9 Heatmap of normalized Affymetrix data 

Based on the overall post-normalization assessments carried out above, all the Affymetrix 

chips are found to be usable in the downstream analysis.  

4.3 cDNA Data 

Similar to Affymetrix data, exploratory data-quality analysis is also conducted on cDNA data 

at both pre- and post-normalization stage. Through this, anomalous array(s) would be 

identified while assessing the raw arrays; and later, after normalization, the array(s) that 

continues to behave as outliers would be dropped from the downstream analysis.  

4.3.1 Assessment of Raw cDNA Data 

4.3.1.1 MA Plots 

To examine the imbalance between the red and green intensities in the data, a scatter plot of 

M and A values can be used. Such MA plot displays the log-ratio of red intensities, R, and 

green intensities, G, on the y-axis versus the overall intensity of each spot on the x-axis. The 

log-ratio, M is: 

 

M = log2 R - log2 G 

                                            = log2 (R/G) 

( 17 ) 
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The average intensity, A, is measured by - 

The MA plot amounts to a 45
o
 rotation of the (log2G, log2R) coordinate system followed by 

scaling of the coordinates. Therefore, it is a representation of (log2G, log2R) data in terms of 

the log ratio, M. As any regression performed on the log-ratio (M) against average intensity 

(A) treats the two dyes equally, such regressions are more robust than regressions of logR on 

logG or logG on logR. MA plots also reveal more than normal scatter plots in identifying 

whether the red and green dyes respond differentially, and in a linear or non-linear fashion; 

and, based on that, a normalization method can be selected.  

The two dyes ideally should behave in a similar fashion where the spots are symmetrically 

scattered about a horizontal line through zero, i.e., M=0; and in that case, no normalization is 

required. If the line is shifted up or down away from 0, a linear normalization by an amount 

equal to the shift away from the line, M=0, is required. Presence of a trend in the lower range 

of A usually indicates that the arrays have different background intensities, which may be 

addressed by background correction. A trend in the upper range of A usually comes from a 

systematic difference arising in the process of the microarray experiment. An overall non-

linear scatter of data in an MA plot is often dealt with intensity dependent, non-linear 

normalization methods, such as the much advocated and Cleveland (1979)-proposed robust 

locally weighted regression.  

Appendix B.1 shows the MA plots obtained from the cDNA arrays. The arrays are clearly not 

ideally scattered.  

4.3.1.2 Array Intensity Distributions 

A simple summary of the distribution of the probe intensities across all cDNA arrays is shown 

in Figure 4.10. Note here that a few of the arrays are repeats (non dye-swaps), and a patient's 

subsequent gene expression level would be an average of that patient‘s available repeats. The 

in Figure 4.10 shows boxplot-distribution of green and red channel, along with their 

combined ratio-measures on log2-scale. Typically, one expects the boxes to have similar IQR 

(size) and median (y-position). The existing variations are expected to be minimised once the 

process of normalization completes.  
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Figure 4.10 Untreated expression measures of green and red channels 

 

4.3.1.3 Between-Array Comparison 

Figure 4.11 presents a false colour heatmap of between-array distances of the raw, cDNA 

data. Table 4.1 provides the array-names corresponding to the array-numbers shown in the 

figure.  

 

Figure 4.11 Heatmap of distances between the raw cDNA arrays 
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The heatmap is computed as the median absolute difference of the vector of M-values. The 

figure helps in deducing through visualizing that none of the arrays is an obvious outlier. 

Table 4.1 cDNA array-numbers corresponding to the names 

 

 

4.3.2 cDNA Data Normalization 

Prior to the normalization method, an adaptive background correction, Normexp+offset is 

used for the current GenePix-generated arrays, as recommended by Ritchie et al. (2007). It is 

an usual assumption in background correction of cDNA arrays that given the observed 

foreground intensities, Rf and Gf, background correction for two-colour microarray data 

allows the true signal to be estimated by subtracting the background from the foreground 

values, such that R = Rf - Rb and G = Gf – Gb. The corrected intensities are then used to form 

the log-ratio of each dye‘s intensity, M = log2 (R/G), and average log intensity, A = ½ (log2 R 

+ log2 G) = ½ (log2 RG), for each spot. The normexp+offset method of background correction 

is based on the normal and exponential convolution model previously used to background 

correct Affymetrix data as part of the RMA algorithm (R. A. Irizarry et al., 2003; McGee & 

Chen, 2006). Using this method, a convolution of normal and exponential distributions is 

fitted to the foreground intensities using the background intensities as a covariate, and the 

expected signal given the observed foreground becomes the corrected intensity. The corrected 

intensities, thus obtained, are positive, but may be close to zero. Therefore, a small positive 

offset is added to effectively move the corrected intensities away from zero. This should also 

reduce the variation of the low intensity M-values since log2 [(R+offset)/(G+offset)] will be 

close to 0 for R and G, both small relative to the offset. Based on the findings of Ritchie et al. 

(2007), an offset value of 50 is used here for background correction. The effect of 

background-correction for the cDNA arrays are shown in Figure 4.12. Comparing the two 

plots of the figure, the horizontal fanning-out of the red and green channels appears to have 

reduced by the background correction, besides shifting the corrected intensities away from 

zero.   
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Figure 4.12 Effect of background-correction on red and green channels 

As illustrated by Smyth and Speed (2003), there is a range of normalization methods for 

spotted microarrays, and these methods may be broadly classified into within-array 

normalization and between-array normalization. The former group includes those methods 

that normalize the M-values for each array separately, while the latter normalizes the 

intensities or log-ratios to be comparable across arrays.  

Between-array normalization is only done when there are substantial differences between the 

cDNA arrays, giving them different spreads of M-values, usually for reasons including 

differences in print quality, differences in ambient conditions when the plates were processed 

or simply from changes in the scanner settings (Gordon K. Smyth & Speed, 2003). This 

method of normalization is usually, but not necessarily, applied after normalization within-

arrays (Gordon K. Smyth, 2005). As it is not routinely done for two-colour microarray data, it 

will also not be attempted in this analysis unless there is good evidence of its requirement 

after within-array normalization.     

A variety of methods have been developed for the normalization of two colour array data 

(Baird, Johnstone, & Wilson, 2004; Dabney & Storey, 2007; Tseng et al., 2001; D. L. Wilson, 

Buckley, Helliwell, & Wilson, 2003; Wit & McClure, 2004). The methods assume that the 

population to be normalized are roughly equally distributed, the number of genes 

differentially expressed is small, and the direction of expression is symmetric. The most 

popular method is lowess, aka loess, normalization utilizing local regression to fit each 

population (Seidel, 2008), and it has been found to be robust in simulated experiments even 
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when 20% of the genes show differential expression in just one direction (Oshlack, Emslie, 

Corcoran, & Smyth, 2007). Printtiploess (Cleveland, 1979; Y. H. Yang, Dudoit et al., 2002) 

is a loess normalization method, and is reportedly found to perform best in studies such as 

(Hua, Tu, Tang, Li, & Xiao, 2008). This method is also regarded as an effective method 

because of its ability to adjust for systematic differences between different print-tips (T. Park 

et al., 2003; Tseng et al., 2001). Printtiploess normalization is selected here for normalizing 

the cDNA arrays. 

Printtiploess is an average intensity, A [i.e., combined intensity of each dye, A = ½ (log2 R + 

log2 G)]-dependent normalization, which is applied to the individual subgrids, the area of the 

cDNA array where all the spots were deposited by a single spotting-pin. It is regarded as an 

effective method for its ability to adjust for systematic differences between different print-tips 

(Insuk, Sujong, Changha, & Jae Won, 2008; T. Park et al., 2003; Tseng et al., 2001). It 

assumes that the printtip groups have the same distributions on each of the arrays, the red and 

green intensities are related by a constant factor, i.e. R = kG, and the center of the distribution 

of log ratios is shifted to zero. It is given in equation 19, where c = log2k is the median or 

mean of M (i.e., log-ratio of R and G) for a gene set. 

   

 

As discussed by Yang et al. (2002), the lowess scatter plot smoother performs robust locally 

linear fits to the MA plots for the subgrids. This can be represented by equation 20, where 

ci(A) is the lowess fit to the MA-plot for the ith grid (i.e. for the ith print tip group), i = 1, ..., 

I, and I denotes the number of print tips. 

 

 

The state of the arrays before and after printtiploess normalization (with background 

correction) is shown in Figure 4.13, where the plot with Normalization: None indicates that 

normalization as well as background correction is yet to be conducted.     
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Figure 4.13 Printtiploess normalization on cDNA arrays 

4.3.3 Between-Array Normalization 

The intensity distributions across arrays are assumed to be the same, which is not always true. 

For the arrays to be comparable, the intensity distributions need to be similar. Printtiploess 

normalization conducted above does not affect the A values, and it normalizes the M-values 

for each array. This makes the red and green distributions essentially the same for each array. 

The next question is whether normalization is required between the arrays because there may 

still be considerable variation between the arrays. For this, Figure 4.14 is generated, which 

provides the distributions of the normalized M-values of the arrays. The figure indicates that 

between-array normalization may be required as different arrays are showing different spreads 

of M-values rather than an expected similar spread. 
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Figure 4.14 M-value distribution before between-array normalization 

There are several between-array normalization methods including scale, quantile and vsn. The 

scale normalization method, proposed by (Y. H. Yang, Dudoit et al., 2002; Y. H. Yang, 

Dudoit, Luu, & Speed, 2001), and further explained by Smyth and Speed (2003), has rendered 

better result producing similar spread of the M-values across the cDNA arrays, as shown in 

Figure 4.15. The basic idea here in this normalization is to simply scale the log-ratios to have 

the same median-absolute-deviation (MAD) across arrays. 

 

Figure 4.15 M-value distribution after between-array normalization 
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4.3.4 Post-Normalization Assessment 

The overall effects of normalization on the spotted arrays have been assessed, and a few 

important ones are reported below.  

4.3.4.1 MA Plots 

Contrary to the MA plots of the raw cDNA data in Appendix B.1, MA plots of normalized 

arrays render better plots in Appendix B.2, where the mass of the data are desirably seen to be 

about the M=0 axis.  

4.3.4.2 Array Intensity Distributions 

Figure 4.16 reports post-normalization smoothed histograms of the spotted arrays. Comparing 

the arrays in the earlier states, the arrays tend to lack varying distributions with lesser fanning-

out of the red and green channels.  

 

 

Figure 4.16 Post-normalization density estimates of cDNA arrays 

 

4.3.4.3 Between-Array Comparison 

Figure 4.17 gives a heatmap of between-array distances. The distances between the arrays are 

found to have reduced in this plot, besides there seems to have no outlier array as none of the 

arrays has an exceedingly large distance from the rest. 
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Figure 4.17 Post-normalization heatmap of cDNA arrays 

Overall, it is seen from this investigation relating to Affymetrix and cDNA data that there are 

arrays that tend to behave undesirably at the pre-normalization stage. However, the respective 

normalization method has removed the bias making the concerned arrays homogeneous.        

 

 



 

 

    Chapter 5  

Transformation of Expression Data 

5.1 Finding Differentially Expressed Genes   

Genes that show little variation between samples are very unlikely to hold useful information. 

The differentially regulated genes tend to vary between the conditions specified, and are 

considered important towards revealing information. The specified conditions with regards to 

this project are the children with leukaemia and the healthy children as the reference 

condition.  

Ideally, the set of differentially expressed (DE) genes should remain the same for 

investigations conducted in multiple microarray platforms. However, this does not happen in 

practice as the intensity values are generally affected by various sources of noise and 

fluctuations. In cDNA platform, the problem of noise is higher than the platforms like 

Affymetrix because the former has more scope for noise to be introduced from the stage of 

array-construction upto scanning of the images. It is also reported by Lee et al. (2000) that in 

cDNA, the probability that a single spot will display as a signal even if the mRNA is not 

present is as large as 10%, whereas non-displaying of a signal while a spot does contain 

complementary DNA remains at a non-negligible probability of about 5%. Moreover, in 

comparison to the oligonucleotide libraries, there are concerns involving the probe contents of 

cDNA libraries about annotation, clone identity, and probe performance (Woo et al., 2004). 

However, this does not mean that Affymetrix platform is free from flaws. It too has issues 

such as non-specific hybridization and less than optimal choice of the oligonucleotide 

sequences representative of a gene. Nevertheless, the concerns with cDNA arrays often come 

up more predominantly contributing to the fact that they have issues with reliability and that 

the DE genes do not necessarily match in identical microarray investigations.        

In this context, it is decided to rely more on the normalized Affymetrix arrays to select the list 

of differentially expressed genes. The same set of genes from the cDNA platform will then be 

extracted, and be considered as the genes of interest for this platform.  

The normalized gene expression data from Chapter 4 are used in the current process of 

retrieving the DE genes.  

With 17 Affymetrix chips (of 7 leukemic and 10 healthy children), the number of available 

genes found is 22,283.  
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Like most other array manufacturers, Affymetrix includes a number of control probes on their 

arrays. A set of 68 such control probes is removed reducing the total number of available 

genes to 22,215. From these genes, differently expressed genes are to be retrieved. 

There is a plethora of approaches for finding DE genes. Fold change method is one of the 

simple and intuitive methods, where at least two- to three-fold difference between the 

conditions - control and experiment, is considered significant (J. DeRisi et al., 1996; J. L. 

DeRisi et al., 1997; C. H. Jiang, Tsien, Schultz, & Hu, 2001; Wellmann et al., 2000). 

However, this highly used method has serious drawbacks, including the fact that the 

arbitrarily-chosen fold-threshold can often be inappropriate. Further, applying constant 

threshold for the fold change of all genes, false-positives are generated at low-intensities 

reducing the specificity while sensitivity is reduced at high intensities by missing the true 

positives.      

Alternatively, the second widely used method, called unusual ratios, considers the 

distribution of measurements within the data. Used in many studies such as Schena et al. 

(1995), Schena et al. (1996), Tao et al. (1999), this method involves selecting those genes 

with experiment-to-control ratios at a specified distance, usually ±2 standard deviations away 

from the mean experiment-to-control ratio. The intrinsic drawback of this method is that it 

always reports a fixed proportion threshold, i.e., 4.6% of the genes as differentially expressed 

even if the set actually contains a greater or lesser proportion of truly-regulated genes (S. 

Draghici, 2002; Sorin Draghici, 2005; Zhang, 2006).  

To estimate variability of the normalized dataset of this project, a sample-to-sample 

comparison is considered a relatively unbiased method. Again, instead of simple standard 

deviation across all samples, which can potentially introduce intensity-dependent bias, 

relative standard deviation (also, known as the coefficient of variability) is accepted here as a 

better option. Along with this, a statistical false-discovery rate-component is also integrated, 

which will be subsequently followed through in the succeeding description.  

The coefficient of variability, CV-filter measures the variability of a gene across all 

experiments. It is calculated as the gene‘s standard deviation across all samples divided by the 

 



Chapter 5 – Transformation of Expression Data 

 76 

mean. High CV-value reflects high variability of genes among the samples and between the 

conditions - control and experiment. 

To filter out the least variable genes out of the remaining genes that are free of control probes, 

90
th

 percentile of the distribution of CV-values are selected. Figure 5.1 shows the chosen cut-

off that picked the highest ranked 10% of CV-values.  

 

 

 

Figure 5.1 CV as a function of average gene expression across Affymetrix arrays 

A histogram is used in Figure 5.2 to show the distribution of the overall data prior to filtering 

of the least variable genes. It indicates a highly skewed distribution, which is adjusted upon 

log-transformation, with the cut-off clearly separating the bulk from the highest CV-values. 

Judging by the relatively even distribution of high CV-values across the expression range, 

there should not be any significant bias introduced by the filtering. 
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Figure 5.2 Linear and logarithmic CV-values with filtering cut-off 

 

Finally, the filtering out of the uninteresting genes reduced the total number of highly variable 

genes to 2,222.  

To the shortened list of genes belonging to the two experimental conditions (healthy and 

leukemic), an empirical Bayes method (G. K. Smyth, 2004) is applied. This is an adaptive 

strategy towards increasing statistical power, and simultaneously reducing the risk of false 

positives. The method stabilizes the variance estimates in such a way that if the estimated 

sample variances are not very different, the empirical Bayesian (EB) model arrives at 

essentially a pooled estimate; and if the variances are very different, the model shrinks the 

dispersions to a lesser amount. As Robinson & Smyth (2007) describes, the EB rule works 

well in practice and renders increased precision in estimating dispersion, which leads to gain 

in power for testing between experimental conditions. For the microarray dataset of this 

project, the EB method is expected to improve on the accuracy of estimating variability for 

individual genes through shrinking of the standard deviation by including genes expressed at 

similar levels of expression in both patients and controls. The p-values, subsequently 

obtained, need to be adjusted to account for the multiple testing (or, multiple comparisons) 

problem.  

As Miller (1981) illustrates, multiple testing problems bring in error in inferences when a set 

of statistical inferences are considered simultaneously; and, loss of statistical power in 

inference imposed by the multiple testing is common during simultaneous analysis of 

thousands of genes. The popular method of Benjamini & Hochberg (1995) is used here that 

adjusts p-values for multiple comparisons; however, there are other methods on offer 
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including Hommel (1988), Holm (1979), Hochberg (1988) and Benjamini & Yekutieli (2001). 

Benjamini & Hochberg (1995) method controls the false discovery rate (FDR), the expected 

proportion of the significant results that are in fact type I errors (‗false discoveries‘) amongst 

the rejected hypotheses in multiple comparisons. The false discovery rate is a relaxed 

condition; and the Benjamini & Hochberg‘s method is a better compromise between 

sensitivity and specificity as it controls the proportion of false significant results instead of 

controlling the chance of making even a single type I error. For the current data set, FDR 

control is set to a conservative value of 0.05.  

Figure 5.3 presents a histogram of the raw, unadjusted p-values, and compares the distribution 

to that observed after adjustment to account for multiple testing correction. It also shows how 

the distribution would be if there were no experiment effect (i.e., a uniform distribution), 

besides indicating the cut-off for the statistical significance, i.e., FDR control=0.05. The clear 

deviation from the uniform distribution indicates that there is indeed a strong experiment 

effect, and that the p-values of the genes vary. Although adjusting for multiple testing 

substantially shifts the lowest p-values to less significant levels, there are still a sizeable 

proportion of p-values that fall below the significance cut-off of 0.05. 

 

 

 
 

Figure 5.3 Distribution of raw and adjusted p-values 

[The horizontal and the vertical line is the theoretical uniform  

distribution and the false discovery rate cut-off at 0.05, respectively] 

 

 

In Figure 5.4, an MA-plot displays the log fold change between leukemic and normal samples 

as a function of the average expression level across all samples, where the two-fold limits are 
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indicated by horizontal lines. Similar information is also displayed using a Volcano plot in 

Figure 5.5, which is constructed by plotting the negative logarithm of the p-values as a 

function of the base 2 log-transformed fold changes. Here, the statistically significant genes 

are highlighted with sharp blue circles and 2-fold limits are symbolized by vertical lines. The 

statistical significance cut-off (0.05) is overlaid as a horizontal line. 

 

 

Figure 5.4 MA-plot comparing healthy and leukaemic samples 

 

 

Figure 5.5 Volcano-plot of the comparison between healthy and diseased samples 
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Finally, it is found that the overall procedure on Affymetrix chips has picked a total of 822 

genes as differentially expressed. These genes belonging to the 7-patients are overlaid, and 

shown as a scatter plot in Figure 5.6. 

 

 

Figure 5.6 Scatterplot of significant genes from 7-patients 

 

5.2 Ratio-Transformation 

UniGene database (Wheeler et al., 2000) is used to annotate the retrieved 822 differentially 

expressed genes.  

Affymetrix data contain relatively lesser noise than cDNA, and various issues affecting the 

cDNA platform have been discussed earlier. Considering this fact, the same set of 822 genes 

from our cDNA data is also retrieved to use in the downstream analysis. It is assumed here 

that as the arrays in both platforms belonged to the same 7-childhood leukaemia patients, the 

same set of genes would ideally be expressed differentially in either platform. 

A known fact for Affymetrix and cDNA data is that they invariably do not hold any 

relationship between them at all. This once again proves to be true with regards to the original 

microarray datasets of these 7-childhood leukaemia patients. The data obtained for these 

patients from Affymetrix and cDNA platform bears absolutely no relationship.     

Once the DE genes are obtained, the correlation (Pearson product-moment correlation 

coefficient, r) between the data from both platforms is again tested, and the result is found to 
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be 0.13. This indicates that there is still no relation between them; however, this value shows 

certain improvement over the result obtained in the earlier test with regards to the whole 

dataset of both platforms.   

Fundamentally, Affymetrix and cDNA data have difference in their data structure. cDNA 

gene expression data is represented using a measure of relative expression, which is expressed 

in terms of expression ratio. As shown in Equation 1 of Chapter 2, it is a ratio between the 

expression intensity metric for any tumour sample to the respective healthy sample. However, 

the value that is usually taken as representative for the expression level of a gene in 

Affymetrix platform is the average difference between all the PM and MM probes (Equation 

3, Chapter 2). This apparently differentiates the nature of the generated data from the two 

platforms in the sense that - while cDNA produces expression ratios for its genes, Affymetrix 

renders actual expression measures of the genes. This basic difference in the nature of the 

generated data is neither new nor has this been unknown to the users since the launching of 

these two platforms. However, hardly any information could be gathered from the literature to 

suggest either exploration has been carried out based on this primary difference in the nature 

of the data or any attempt has been made to check whether investigating on this difference 

could lead to addressing the relationship between the two platforms. Adhering to this lack of 

information as a motivation in the backdrop, the task aimed ahead is to mitigate the difference 

between the 7-lieukaemic patients‘ data obtained from the cDNA and Affymetrix platform 

and to examine whether it brings any improvement. To do this along these lines, the datasets 

from the diverse platforms must be transformed in some way so that both find a common and 

comparable ground.     

As cDNA and Affymetrix data are expression ratios and actual expression measures 

respectively, the rational way of transformation would be either to convert the cDNA dataset 

to actual expression measures similar to Affymetrix data, or ratio-convert the Affymetrix 

dataset.   

As mentioned earlier, there are 10 Affymetrix arrays available, which belong to the same 

number of healthy children. The set of 822 DE genes found in the leukemic children are also 

identified in each of these healthy arrays. Previously in section 4.2.2: Affymetrix Data 

Normalization, the RMA normalization produced log2 expression measures for all Affymetrix 

arrays, i.e., for both healthy and leukemic patients. The log2 expression values of 822 DE 

genes belonging to the healthy Affymetrix arrays are now converted to their respective anti-

logs, and each gene‘s expression value is averaged across these 10 healthy arrays. It gives rise 

to a single, averaged and log-free expression value for each of the 822 genes. Simultaneously, 
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the expression antilogs of each of the 7-leaukaemic patients‘ DE genes are calculated. Then, 

the Affyratio for a gene of a patient can be found by dividing the calculated expression value by 

the corresponding gene‘s average antilog value from the healthy Affymetrix arrays, and 

subsequent log2-conversion of the obtained value, as shown earlier in equation (1). This 

assures that similar to cDNA, where the expression level of a gene remains in the form of a 

tumour-to-healthy ratio, this transformation converts the Affymetrix expression data into 

tumour-to-healthy ratios.  

The overall formulation of Affyratio can be presented by equation (21) if expression level of a 

gene, x from one of the diseased Affymetrix chips is D and the average of this gene‘s 

expression from the set of 10 healthy Affymetrix chips is H.   

 
 

 

With this changeover implemented, both cDNA and Affyratio data can be, in theory, considered 

to have reached a mutually comparable level. However, it is necessary to check what practical 

impact this has caused on the overall relationship with regards to the pair of datasets (i.e., 

Affymetrix and cDNA-pair) before and after the transformation.   

It is already known that both datasets initially had no correlation between them; and with DE 

genes, it increased to 0.13. Therefore, keeping 0.13 as a benchmark to evaluate whether the 

process has caused any change in the relationship between the datasets, the correlation 

between Affyratio and cDNA is tested. In results, it is found that the correlation between the 

Affyratio and cDNA has increased considerably to 0.6, which is, in effect, an approximately 6-

fold improvement from the previous result. So, from the viewpoint of correlation, this change 

is substantially positive as it has catalysed the earlier relation to attain a six-fold increment. 

However, important questions are simultaneously raised such as how the overall distribution 

of the data is affected by the process, and whether the induced transformation has caused any 

unwanted alterations within the dataset.   

Towards answering the questions, distribution of the original Affymetrix (contains the prefix, 

ALL) and cDNA (with the prefix, cDNA) data, along with the Affyratio data for the seven 

different leukemic children are plotted, as shown in Figure 5.7. In comparison to the original 
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Affymetrix (Affyoriginal) data, the plot indicates that the transformed Affymetrix data (Affyratio) 

align more closely with the cDNA than the Affyoriginal.  

 

 

Figure 5.7 Array distribution before and after ratio-transformation 

At this stage, it is intuitive to ponder on whether the changes introduced into the original 

microarray data have brought in any unwanted alteration to the overall state of the dataset. 

Further to that, if the integrity of the data is found to be unviolated, then the next important 

query that comes up is where this current approach stands in the midst of other microarray 

data merging methods. To examine these aspects, it becomes necessary now to carry out 

certain validation as well as evaluation tests.    

5.3 Method Validation and Evaluation  

Hierarchical clustering (S. C. Johnson, 1967) is useful to find the closest associations among 

gene profiles under evaluation where it seeks unsupervisedly to build a hierarchy of clusters 

based on relatedness. Whether any unwanted change has been caused to the microarray data 

through the process of ratio-transformation can be evaluated through hierarchical clustering. 

The method when applied to the pre- and post- transformed microarray data would highlight 

if any change has occurred to the overall state of the data.  

With Euclidean distance and Ward's agglomerative procedure (Joe H. Ward, 1963), a divisive 

hierarchical clustering is conducted on the Affymetrix genes before transformation and 
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another on the transformed data. The result is unable to present any unwanted variation as 

shown in Figure 5.8.    

 

 

Figure 5.8 Hierarchical gene clustering of Affyoriginal (left) and Affyratio (right) 

A similar hierarchical clustering is also applied to the patients to check whether the method 

has caused any change in the relationship among the patients. The outcome of this test also 

fails to substantiate that the change caused to the data has altered any relative relationship 

between the patients. Divisive hierarchical clustering of the patients is shown in Figure 5.9.        

 

 

      

 

 

Figure 5.9 Hierarchical patient clustering of Affyoriginal (left) and Affyratio (right) 

Both gene- and patient-clustering conducted above can be used to confirm that the overall 

relationship in the microarray data has not been violated due to the transformation method.  

Next, as the consistency of the data is found to be unviolated, it becomes intriguing to 

evaluate where the current approach stands in the midst of other microarray data merging 

methods. The process of sample standardization and gene centering is an approach which in 
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practice reportedly performs as well as a data merging approach (W.P. Kuo et al., 2009; 

Shabalin et al., 2008; Simon et al., 2004). The ability of the data-transformation method can 

be evaluated with this approach.  

Using the method, each microarray sample is first standardized; and, if there is variation in the 

range of data between the samples from both the platforms, then gene-centred. However, it is 

difficult to judge how much variation is considered appropriate; and therefore, gene-centering 

is done once with sample standardization, and once without it.    

In classical statistics, one of the fundamental distributions is the normal distribution or the 

Gaussian distribution. The probability density function for the normal distribution having 

mean, μ and standard deviation, σ is given by equation 22. 

 

Each microarray samples from either platform can be standardized by making μ = 0, and σ = 1 

in the probability density function. This gives the probability density function for the standard 

normal distribution as shown in the equation 23.  

 

Once the samples are standardized, each gene belonging to each study is centred. As the genes 

are arranged in the rows of the dataset while the columns contain the various samples, the 

gene centering is done by subtracting the row-wise mean from the values in each row of data, 

so that the mean value of each row becomes zero. The samples from multiple platforms can 

subsequently be merged as sample standardization followed by centering of each gene in each 

study is done.  

The method is applied to the normalized Affymetrix and cDNA data. The Pearson correlation 

coefficient is found to be -0.02615, which explains that the method does not improve the 

correlation between the two datasets.  

Further, only gene centering is applied to the dataset of each platform. This time, however, the 

correlation coefficient is found to have increased to 0.46. This implies that for the microarray 
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data, the sample standardization is not required, instead only gene centering improves the 

relation. However, the value of this correlation still remains below the result obtained from 

the ratio-transformation method.  

Distance Weighted Discrimination or DWD (Marron, Todd, & Ahn, 2007) is a method, which 

is used by Benito et al. (2004) for batch correction and adjustments in biases including across 

microarray platform effects.  It is based on modern statistical discrimination methods and has 

reportedly been effective in removing biases present in a breast tumour microarray data set. 

The method progresses by finding a direction, DWD direction, in which the sample-vectors 

from two studies are well-separated. It then translates the samples from each study along that 

direction until their respective families of vectors have significant overlap. This shifting each 

study‘s samples in DWD direction helps to remove the biases. To evaluate the relative 

standing of ratio-transformation method, the DWD statistical correction algorithm is applied 

to the normalized datasets of Affymetrix (HG-U133) and cDNA belonging to the seven 

leukemic patients. The resultant data is found to have a correlation of 0.77. The post-ratio 

transformed microarray data gave a correlation of 0.6. Although, unlike ratio-transformation, 

DWD method uses distance measures, there is an improvement in the latter method of 

merging the two sets of microarray data.   

To compare further with other methods, approaches including XPN (Shabalin et al., 2008) and 

Probability of Expression method (Parmigiani et al., 2002; Shen et al., 2004) have been 

explored. However, it is experienced that such methods are not suitable for relatively smaller 

sample size. In a personal communication, Andrey Shabalin confirms in this regard that his 

team‘s XPN method does not work for smaller sample size. This issue may again be 

considered as a negative aspect for such methods that they can only consider data with large 

sample size. 

With regards to the gene-centering and DWD methods, the method of ratio-transformation 

can be ranked in between DWD and gene centering method.  

In summary, the ratio-transformation process highlights that its usage can address the issue of 

incomparability of expression data from Affymetrix and cDNA platform. The outcome of the 

above method is encouraging considering the fact that Affymetrix and cDNA expression data 

otherwise always remain incomparable. The encouraging outcome inspires to focus attention 

towards examining further in the direction of possible association between the two platforms. 

With this motivation, downstream analyses are taken up that are described as well as probed 

into in the following chapter.  



Chapter 5 – Transformation of Expression Data 

 87 

Note :  

 Aspects of this chapter have been oral-presented and published - 

Sarmah, C. K., Samarasinghe, S., Kulasiri, D., & Catchpoole, D. (2010). A simple 

Affymetrix ratio-transformation method yields comparable expression level 

quantifications with cDNA data, in: C. Ardil (Ed.) International Conference on 

Bioinformatics and Bioengineering, World Academy of Science, Engineering and 

Technology, Cape Town, South Africa, vol 61, pp. 78-83. 

 

 

 



 

 

    Chapter 6  

Formation of a Crossover 

While studying microarray literature, it is often observed that a study of merging cross-platform 

data excludes the scope of exploring how various statistical and/or machine learning 

approaches would tend to contribute in defining the relationship of the data of the diverse 

platforms. Introducing an approach to merge Affymetrix and cDNA data in Chapter 5, here the 

aspect of using and comparing a wide range of statistical as well as machine learning methods 

are attempted in this direction. The succeeding sections would focus on examining these 

attempts and their relative effectiveness in the hope that it also would overall contribute 

subsequently to broadening the usual scope of such cross platform studies.     

Each of the seven leukemic patients‘ data from either platform is examined here to be modelled 

and tested for their ability in predicting the outcome for the remaining patients. These entire 

data are also concatenated in two variables, viz. Affyratio and cDNA, each having 5754 genes 

(i.e., a patient‘s 822 DE genes × 7 patients). Out of 5754 DE gene expression data, a set of 

4504 genes‘ expressions are randomly picked, which would be applied as a separate training 

dataset to be used by each of the methods. The remaining 1000 DE (i.e., 5754 – 4504 = 1000) 

gene expression data would be used for testing a trained framework, wherever possible.  

The expression levels of the individual patients are considered for modelling only to represent 

each patient‘s ability to predict for others had there been no other patient‘s data available to 

form either the large ‗global‘ set or the random set. It is expected that this, in a way, would help 

to judge the impact of each patient‘s contribution towards the model building from the larger 

set.    

As performance indicators of the retrieved models, mean square error (MSE) and Pearson 

product-moment correlation coefficient (simply abbreviated as corr. coef.), symbolised by r, 

would be used. They are expanded in equation 24, where x, y, ŷ and n represent the 

independent variable, dependent variable, predicted variable and the total number of data, 

respectively. In the results, it is desirable to have lower MSE-values. Corr. coef. represents the 

strength of the linear relationship between the variables, and the value of r is such that -1 ≤ r ≤ 

+1. In case of a strong positive correlation, r remains close to +1, whereas r-value close to -1 

represents strong negative correlation. An r-value of zero means there is random, non-linear 
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relationship, while r= ±1 means that all the data points lie exactly on a straight line with either 

positive or negative slope.  

  

 

 

6.1 Modelling the data 

6.1.1 Linear model 

6.1.1.1 Linear regression 

To begin with, bivariate linear regression is decided to apply to test the strength and 

predictability of the linear model(s). In Figure 5.1, distributions of each patient‘s data in the 

form of scatter plots are presented along with regression equation, coefficient of determination 

(r
2
) and 95% prediction confidence interval (CI). In all these figures, Affyratio and cDNA data 

are considered predictor and response variable, respectively. The figures indicate that two 

patients, viz., patients 75 and 78, apparently have relatively low r
2
-value. Further, all the linear 

fits are shown overlaid in a separate plot in Figure 6.2, which shows that the fits do not vary 

much from each other.  
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Figure 6.1 Scatterplot of individual patient‘s data 

[95% prediction CI, regression equation and r2 value are overlaid] 

 

 

 

 

 

Figure 6.2 Overlaying of linear fits for each patient 

 

Table 6.1 gives the model outputs of – (i) the whole dataset, (ii) individual patient tested 

against the remaining patients, and (iii) the random data. It presents regressional output with 

MSE and r-values. The tilde sign (~) between two variables indicates that the variable 

succeeding this sign is independent, and is a function of the first variable. Coefficient of 

Variation (CV) is also computed, and is the ratio of the standard deviation (σ) to the mean (μ) 

expressed in percentage, i.e., σ×100/μ. CV it is a useful statistic for comparison as it reveals the 

degree of variation from one data series to another. 



Chapter 6 – Formation of a Crossover 

 91 

Table 6.1 Linear regression 

 
Equation 
(y=mx+c) 

Model used to 
test against 

Corr. Coef. 
(r) 

MSE 
(Mean Sq. Error) 

CV of r Data 

 

Whole dataset 
(cDNA ~ Affyratio) 

0.373x + 0.075 Itself 0.5886 0.6013066 - 

cDNA3 ~ Affyratio3 

0.417x + 0.044 

Itself 0.6423 0.6399171 - 

 

13 0.5728 0.5287462 

16.48 

29 0.5959 0.5828090 

75 0.4386 0.4279020 

76 0.5956 0.7987785 

78 0.4351 0.8017380 

79 0.6526 0.5060829 

cDNA13 ~ Affyratio13 

0.353x + 0.081 

Itself 0.5962 0.5071630 - 

 

3 0.6264 0.6617987 

10.88 

29 0.5821 0.5975301 

75 0.4921 0.4015075 

76 0.5992 0.7933181 

78 0.5029 0.7389151 

79 0.6393 0.5211792 

cDNA29 ~ AffyRatio29 

0.408x + 0.037 

Itself 0.5960 0.5826557 - 

 

3 0.6421 0.6401278 

16.69 

13 0.5763 0.5255871 

75 0.4443 0.4252660 

76 0.5967 0.7971025 

78 0.4444 0.7936326 

79 0.6521 0.5067014 

cDNA75 ~ AffyRatio75 

0.319x + 0.075 

Itself 0.4966 0.3991997 - 

 

3 0.6100 0.6839783 

6.68 

13 0.5921 0.5109993 

29 0.5674 0.6128594 

76 0.5886 0.8090309 

78 0.5131 0.7285678 

79 0.6230 0.5393163 

cDNA76 ~ AffyRatio76 

0.402x + 0.132 

Itself 0.6039 0.7863858 - 

 

3 0.6100 0.6839783 

9.16 

13 0.5921 0.5109993 

29 0.5674 0.6128594 

75 0.4966 0.3991997 

78 0.5131 0.7285678 

79 0.6231 0.5393163 
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Equation 
(y=mx+c) 

Model used to 
test against 

Corr. Coef. 
(r) 

MSE 
(Mean Sq. Error) 

CV of r Data 

 

cDNA78 ~ AffyRatio78 

0.298x + 0.054 

Itself 0.5145 0.7272214 - 

 

3 0.6008 0.6960965 

7.34 

13 0.5874 0.5153991 

29 0.5598 0.6204843 

75 0.4955 0.3997533 

76 0.5804 0.8208011 

79 0.6134 0.5498618 

cDNA79 ~ AffyRatio79 

0.435x + 0.102 

Itself 0.6545 0.5038388 - 

 

3 0.6406 0.6422600 

15.87 

13 0.5738 0.5278420 

29 0.5933 0.5856468 

75 0.4464 0.4242430 

76 0.5981 0.7951187 

78 0.4315 0.8048679 

Training set: 4504 data 
0.380x + 0.081 

Itself 0.5892 0.6172286 - 

 1000 test data 0.5771 0.5298651 - 

It is an impediment that there is no information found in the literature that can prescribe 

benchmark-values for such type of investigations. Thus, it is not pragmatic to comment at this 

stage on how good or bad the obtained linear models are, unless some other methods are tested 

and the results are compared. Moreover, it is important to note that such bivariate linear 

regression cannot address potential non-linear hidden patterns in a seemingly linear data. 

Therefore, adequate consideration for applying non-linear models is required.    

6.1.2 Consideration for non-linear models 

Attempting to use non-linear models on the microarray dataset is futile if just a linear model 

can adequately represent the data. Therefore, it is necessary to check the need for non-linear 

methods. However, it is often difficult to determine such necessity just based on simple 

visualization as even an apparently linear-looking data can contain underlying non-linear 

patterns undetectable to the eyes. As a way out to find an answer, two statistical tests are 

conducted in which a linear and a cubic polynomial model are used where the latter would 

query based on the non-linearity of the data.  

6.1.2.1 F-test using ANOVA 

This test is also called extra sum-of-squares test, and is based on statistical hypothesis testing 

and ANOVA (analysis of variance).  
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The idea here is that once the data are fit to the two models, goodness-of-fit is quantified as the 

sum of squares of deviations of the data points from the model. Then, the complexity of the 

models is measured with the degrees of freedom (df), which equal the number of data points 

minus the number of parameters fit by regression. If the simpler model (the null hypothesis) is 

correct, the relative increase in the sum of squares approximately equals the relative increase in 

degrees of freedom. If the more complicated (alternative hypothesis) model is correct, then the 

relative increase in sum-of-squares (going from complicated to simple model) becomes greater 

than the relative increase in degrees of freedom. The F-ratio equals the relative difference in 

sum-of-squares divided by the relative difference in degrees of freedom. The equation along 

with its common form is shown in equation 25. 

 

F-ratios are always associated with degrees of freedom for the numerator and that for the 

denominator. The F-ratio in the equation has dfalt degrees of freedom for the denominator, and 

dfnull – dfalt degrees of freedom for the numerator. ANOVA computes an F-ratio from which it 

calculates a probability (P)-value. If the obtained P-value is less than the set statistical 

significance level, usually α = 0.05, the alternative (complicated) model fits the data better than 

the null hypothesis (simpler) model. Otherwise, there is no compelling evidence supporting the 

alternative model, and so the simpler null model can be accepted.  

The extra sum-of-squares test is computed for the 5754 DE microarray genes. As the snapshot 

below shows, the output renders a probability less than 2.2e
-16

.  This suggests that the 

probability of obtaining a calculated F-value of 84.258 by chance is 2.2e
-16 

or smaller. This is 

highly unlikely; and hence, it is likely that the nonlinear model would provide improvement 

over the linear model.  
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6.1.2.2 Akaike’s Information Criterion 

As an alternative approach to F-test and choosing a model with the use of statistical hypothesis 

testing, Hirotugu Akaike developed an approach for comparing models based on information 

theory. This method is called Akaike’s information criterion or AIC (Akaike, 1974), which 

does not rely on P-values or the concept of statistical significance. Unlike the F test, which can 

only be used to compare nested
27

 models, Akaike‘s method can be used to compare both nested 

and non-nested models. Moreover, as AIC is a different as well as a distinctly independent 

approach than the F-test, it is decided to test this method with the microarray dataset.  

AIC method combines maximum likelihood theory, information theory, and the concept of the 

entropy of information (Burnham & Anderson, 2002). It is known in statistics as a penalized 

log-likelihood, and can be written as shown in equation 26.    

 

In the equation, p is the estimated coefficients in the model, and 1 is added here for the 

estimated variance. Log-likelihood, a measure of comparing the fit of two models, is denoted 

by l, and the value of which gets higher with better model. A somewhat similar structure of 

equation as given above is used by several statistical software. However, in simple terms, AIC 

can be defined as a method of comparing alternative specifications by adjusting the error sum 

of squares for the sample size and the number of coefficients in the model (p), i.e., AIC = 

log(SSE) + 2(p).  

While using for comparison, AIC can be computed exactly as ANOVA to determine how well 

the data supports each model. The model with the lowest AIC score is most likely to be a better 

fit. When applied to the 5754 DE microarray genes, polynomial is found to have the lower AIC 

as shown in the box below, and therefore, can be preferred over linear regression. 

 

              

                                                 
27

  When a model is a simpler case of the other, the models are said to be nested. 

2

2
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Both the statistical tests above present an indication that non-linear methods may potentially 

bring improved outcomes with regards to the microarray data. This confers a trust upon 

exploring the non-linear methods further.    

6.1.3 Non-linear models 

6.1.3.1 Polynomial regression  

Polynomial models are useful to investigate the presence of possible curvilinear effects in the 

response function. Such regression fits a nonlinear relationship to the data where the dependent 

variable is modelled as an n
th

 order function of the dependent variable. Every polynomial 

corresponds to a polynomial function, and can be represented as shown in equation 27, where n 

is a non-negative integer and a0, a1, a2, .... an are constant coefficients.     

 

 

The results of polynomial regression applied to the microarray datasets are given in Table 6.2. 

For comparison of these results with the linear regression of Table 6.1, the MSE values can be 

used such that relative decrease of MSE along with no change or an increase of correlation 

(positive or negative), r is an indication of better representation of the relationship by a model. 

The obtained polynomial results are found to be relatively improved compared to the values of 

linear regression. This has also been already confirmed when statistical tests were carried out to 

probe the presence of non-linearity in the data. 

Table 6.2 Cubic polynomial 

Data 
Equation Model used to 

test against 
Corr. coef. 

(r) 
MSE CV of r 

y = b1x
3 + b2x

2 + b3x + C 

Whole dataset:  
(cDNA ~ Affyratio) 

y = 0.0084x3 - 0.0058x2 + 
0.2669x + 0.0494 

Itself 0.6042 0.58419 - 

cDNA3~Affyratio3 

y = 0.0058x3 - 0.0323x2 + 
0.2938x + 0.0848 

Itself 0.6629 0.61054 - 

  

13 0.5771 0.52488 

17.22 

29 0.6044 0.57357 

75 0.4854 0.40499 

76 0.6197 0.76247 

78 0.4021 0.82914 

79 0.6593 0.49827 

 
     

 

f(x) = anx
n
 + an-1x

n-1
 + .... + a2x

2
 + a1x + a0     ( 27 ) 
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Data 
Equation Model used to 

test against 
Corr. coef. 

(r) 
MSE CV of r 

y = b1x
3 + b2x

2 + b3x + C 

cDNA13 ~ Affyratio13 

y = 0.011x3 + 0.0098x2 + 
0.2526x + 0.0241 

Itself 0.6107 0.49340 - 

  

3 0.6388 0.64475 

11.30 

29 0.5768 0.60313 

75 0.5166 0.38841 

76 0.6431 0.72593 

78 0.5001 0.74164 

79 0.6465 0.51307 

cDNA29 ~ Affyratio29 

y = 0.0081x3 - 0.024x2 + 
0.3138x + 0.0566 

Itself 0.5638 0.61651 - 

  

3 0.6170 0.67459 

10.39 

13 0.6022 0.50151 

75 0.5083 0.39296 

76 0.6226 0.75797 

78 0.5009 0.74085 

79 0.6362 0.52475 

cDNA75 ~ Affyratio75 

y = 0.0264x3 + 0.0339x2 + 
0.2008x - 0.0007                  

Itself 0.5266 0.38289 - 

  

3 0.6365 0.64802 

21.19 

13 0.5773 0.52462 

29 0.5529 0.62745 

76 0.6116 0.77480 

78 0.3270 0.88322 

79 0.6423 0.51787 

cDNA76 ~ Affyratio76 

y = 0.0151x3 + 0.0115x2 + 
0.2105x + 0.0294                   

Itself 0.6470 0.71971 - 

  

3 0.6360 0.64866 

10.96 

13 0.6077 0.49630 

29 0.5646 0.61561 

75 0.5193 0.38698 

78 0.4877 0.75375 

79 0.6407 0.51964 

cDNA78 ~ Affyratio78 

y = 0.006x3 - 0.0003x2 + 
0.221x + 0.0231    

Itself 0.5241 0.71736 - 

  

3 0.6074 0.68737 

7.93 

13 0.5963 0.50710 

29 0.5502 0.63021 

75 0.5017 0.39646 

76 0.6177 0.76562 

79 0.6144 0.54869 

cDNA79 ~ Affyratio79 

y = 0.008x3 - 0.0041x2 + 
0.3431x + 0.0807               

Itself 0.6638 0.49304 - 

  

3 0.6570 0.61902 

16.20 

13 0.5865 0.51622 

29 0.6016 0.57667 

75 0.4885 0.40342 

76 0.6256 0.75336 

78 0.4174 0.81668 

Training set: 4504 data y = 0.009x3 - 0.0049x2 + 
0.2672x + 0.0495 

Itself 0.6064 0.59786 - 

  1000 test data 0.5835 0.51400 - 
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6.1.3.2 Locally weighted regression  

In the methodology of time series, there is an old idea deeply buried where the data measured at 

equally spaced points in time were smoothed by local fitting of polynomials (Macaulay, 1931). 

Then, the era of contributions came where chronologically Watson (1964), Stone (1977), 

Cleveland (1979), Hastie & Tibshirani (1986) and Cleveland & Devlin (1988) introduced as 

well as streamlined the local fitting methods into the more general case of regression analysis. 

Professor William S. Cleveland (1979) proposed and further developed by him and Susan 

Devlin (1988), it is the specific local fitting method, locally weighted regression, which is the 

subject of this section.  

The curve fitting regression technique introduced by William S. Cleveland is called LOWESS, 

which stands for locally weighted regression scatter plot smoothing. Its derivative, LOESS 

stands more generally for a local regression, and differs from LOWESS based on the model 

used in the regression: LOWESS uses a linear polynomial whereas LOESS uses a quadratic 

polynomial (Saeed et al., 2006). Many researchers consider LOWESS and LOESS as 

synonyms.  

More descriptively, the method of locally weighted regression or Loess (aka Lowess) can be 

considered as locally weighted polynomial regression. The method combines much of the 

simplicity of linear least square regression with the flexibility of nonlinear regression. To 

achieve this, it uses a nearest neighbour algorithm and determines localized subsets of data. 

Local polynomials of usually first or second degree are fit to these subsets of data using 

weighted least squares. A user specified smoothing parameter (f) gives the flexibility to the 

Loess function, and it is approximately the fraction of points to be used in the computation of 

each fitted values. There is no single correct value of f, and the values can range from 0 to 1. 

However, different f values give different summaries. As Chambers et al. explains (1983), a 

small value of f gives a very local summary of the middle of the distribution of y in the 

neighbourhood of x. Such value tends to force the function to excessively conform to the data, 

and only points whose abscissas are relatively close to xi determine yi. This produces high 

resolution, but a lot of noise. For large values of f, the summary is much less local. In this case, 

there is low resolution with less noise. With respect to the smoother-line in the scatter plot, the 

larger the f-value gets, the lesser becomes the wiggle in response to the fluctuations in the data, 

or vice versa.      

The subset of data used in each weighted least squares fit is comprised of the data whose 

explanatory variables are closest to the point at which the response is being estimated. Based on 

the weight function, closer a data remains to the point of estimation, higher the weight it 
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attains. Therefore, a local model can be considered to have the most influence by the nearby 

data than the points that are further apart. Any weight function can be used in this purpose as 

long as it satisfies the properties listed in Cleveland (1979).    

Application of loess method to the DE genes of the microarray data is quite possible. However, 

on the basis of the principles involved in loess, it is found that any attempt of finding goodness 

of its fit through measures such as r and MSE is rather practically meaningless. The reason lies 

in the explanation of the loess method given above. In loess, a locally weighted estimate of a 

specified degree over a given fraction of the data is computed, where the region over which the 

fit is performed slides to the right in each iteration. The combination of all these individual 

results produces the final fit. Again, this makes little practical sense to determine the form of 

the loess model; and because of that, measures such as r and MSE is rather pointless for loess 

models. It may be possible to estimate some r- like measures for the loess model by carefully 

deriving from its definition, and MSE-like estimate by extension, but it may not actually be 

meaningful as unlike regression, which produces pre-specified, parametric model for which the 

parameters are calculated from the data, loess lacks any such analogue, and the entire loess fit 

is estimated solely from the data without producing a single coherent model: with the change of 

either the span of the data or the degree of the local fit or both, there would be change in the r- 

and MSE-like estimates.     

Loess has been considered critically for applying in the DE genes of the microarray data. It is, 

however, subsequently avoided being used to its full potential because of its data-driven 

attribute - as none of the outcomes can be considered to be in line with the results of the 

investigations using the other methods. Nevertheless, to examine how the method contributes 

varying from the linear and polynomial distribution, the algorithm given in the box below is 

used for the 5504 DE genes, and the output is graphically presented in Figure 6.3 using ggplot2 

(Wickham, 2009), an implementation based on the Grammar of Graphics (Wilkinson, 2005). In 

applying the algorithm, the smoothing parameter and the degree of the local polynomial used is 

0.75 and 2, respectively. The comparative graphics shows that the loess and the polynomial fits 

are close to each other and are relatively better fits than the linear model.  
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LOESS algorithm:  

 The data has n data points, (xi, yi), i = 1, 2, 3, ...., n.  

 User supplies the smoothing parameter (f), the fraction of points to be used in the 

computation of each fitted vales. Let q be fn rounded to the nearest neighbour.  

 Computation of neighbourhood weight function:      

 Let T(u) be a tricube weight function:   

 
3 3(1 | | ) | | 1

T
0 | | 1

u for u
u

u

  
 


 

 Weight given to point, (xk, yk) while computing a smoothed value at xi is:  

( )
( ) i k

i k

i

x x
t x T

d

 
  

 
 

[di is the distance from xi to its q
th

 nearest neighbour along the x-axis. xi is 

counted as a neighbour of itself.] 

 Neighbourhood weights are obtained for all neighbourhood points. 

 A line is fitted to a strip of the scatter plot that has the points, (xi, yi) using weighted 

least squares with weights, ti(xi). That is, values of a (intercept) and b (slope) are 

found, which minimize 
2

1

( ) ( ) .
n

i k k k

k

t x y a bx


    

 Further, to prevent distortion by a small fraction of outlying points, an additional 

stage of robustness procedure can be used:  

 Find residuals (r) for all the fitted values and m, the median of the absolute 

values of the residuals: ˆ ,i i ir y y  and m = median|rk|. 

 Based on the sizes of the residuals, define a set of robustness weights. The 

robustness weight for the point (xk, yk) is: ( ) ( / 6 )k kw x B r m . It uses 

bisquare weight function, B(u), which is -  

 
2 2(1 ) | | 1

B
0 | | 1

u for u
u

u

  
 


 

 The robustness weight for the point (xk, yk) is: ( ) ( / 6 )k kw x B r m  

 To re-fit a line to the strip's each point in the scatter plot, the new smoothed 

value at xi is calculated using the original neighbourhood weight multiplied 

by the robustness weight for that point. 
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Figure 6.3 Microarray data with linear, polynomial and loess fit 

 

6.1.3.3 Bootstrap Aggregating  

Bootstrap aggregating is a method useful for avoiding model overfitting to data with variance 

reduction. It has been in use for a varied range of microarray studies (Sandrine Dudoit & 

Fridlyand, 2003; Lu, Devos, Suykens, Arus, & Huffel, 2007; Politis, 2008), and is known to 

provide stability and accuracy to a model. It comes from the concept of bootstrapping. The 

method of bootstrapping is briefly introduced here prior to addressing bootstrap aggregating.      

Bradley Efron invented the concept, bootstrapping, in 1979 through his paper - Efron (1979). 

The word, bootstrapping refers to a group of metaphors that generally mean: a self-sustaining 

process that proceeds unaided. The term is believed to have originated from the German 

scientist and librarian, Rudolf Erich Raspe‘s classic collection of tall stories published in 1785, 

The Surprising Adventures of Baron Munchausen, where the main character escapes from a 

swamp by pulling himself up by his bootstraps. Bootstrapping is a well-known method for 

estimating standard errors, bias, and constructing confidence intervals for the parameters, and 

has been popularised from 1980s due to the introduction of computers in statistical practice.  

Bootstrap is the most recently developed, computer-intensive approach to retrieve statistical 

inference. In traditional statistical techniques, it is reasonably a common practice to consider 

the distribution of a dataset based on certain assumptions. For example, assuming that a dataset 

is normally distributed is quite acceptable. However, this clearly cannot be true always; 

besides, there is decidedly no consensus on what distribution would be believable.  In such 
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cases, bootstrapping can be used to go around, and let the data reveal its true self. This is 

achieved by sampling from the empirical distribution of the data without replacing or adding to 

the data.         

Usually, a statistic is computed on a dataset and the investigator knows that one statistic while 

being unable to see the possible variability present in that statistic. Bootstrap draws a large 

number of samples using random sampling with replacement from the dataset that the 

investigator is working with, and computes the statistic on each of these samples. Just like 

multiple samples give sampling distribution, bootstrap samples provide bootstrap distribution, 

and thereby presents a way to explore variability as well as to estimate standard errors, bias and 

constructing confidence intervals for the parameters. A schematic of bootstrapping is given in 

Figure 6.4, where the bootstrap statistics are used to evaluate the original sample statistics.    

 

 
 

Figure 6.4 A schematic of bootstrapping process 

The computational algorithm involved in bootstrapping is probed into and presented in the box 

below. The assumptions on which the overall approach is based on are: a) the sample from 

where the bootstrapping is carried out is a valid representation of the population; b) the sub-

samples obtained from bootstrapping come from the same distribution of the population; and c) 

each of the sub-samples is drawn independently from the rest.  
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Bootstrap aggregating, or bagging is a machine learning meta-algorithm introduced by Leo 

Breiman (1996); and it is used here to investigate the microarray data. Bagging is an ensemble 

method, i.e., a method of combining multiple predictors. To apply bagging to the microarray 

data, a computational algorithm is constructed and is given in the following box.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results of implementing the algorithm to the microarray data are provided in Table 6.3. The 

table shows that although the obtained r-values are relatively comparable to the earlier results 

Bootstrap algorithm:     

 Let the original sample be L = (x1, x2, ..... , xn), where xi is drawn from an 

empirical population distribution, ˆ .F   

 Repeat B times :  

 Generate a sample Lk of size n from L by sampling with replacement.  

 Compute *̂  for x
*
  

 The corresponding bootstrap values are :  * * * *

1 2
ˆ ˆ ˆ ˆ, ,......., B     

 Use the values of *̂ to calculate the parameters of interest.  

  

Notations:  

 = Parameter; * = Data generated from bootstrapping;        ^ = An estimate   

 

Bagging algorithm:     

 Let the original sample be L = (x1, x2, ..... , xn) where xi is drawn from an 

empirical population distribution, ˆ .F   

 Repeat B times :  

 Generate sample, Lk of size n n   from L by sampling from L randomly 

and with replacement. If n' = n, then 63.2% of unique values of L is 

expected to remain in Lk, the rest being duplicates, i.e., 36.8% of the data 

that is not used.   

 Develop k-models by fitting samples of Lk.  

 Combine the predictors of the models by either averaging the output for 

regression (or, voting for classification).   
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of linear and polynomial regression, the values of MSE are found to be much higher, with low 

standard deviation. This may be an indication that even though the method of bootstrap 

aggregating is a useful method in a number of published microarray studies, it may not be 

suitable for applying in the current context.  
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Table 6.3 Bootstrap aggregating 

Data 
Coefficients Corr. coef. 

(r) 
MSE 

(Mean Sq. Error) 
Standard deviation 

CV of r 
Intercept x x2 x3 x4 r MSE 

Whole dataset:  (cDNA ~ Affyratio) -0.82944 1.02726 0.03492 -0.00201 0.00071 0.5938 1.48701 0.10663 0.03994 - 

Arrays: cDNA3 ~ Affyratio3 -0.62953 1.08522 -0.08158 -0.03548 0.00064 0.6496 1.55120 0.16793 0.11713 

9.45 

  cDNA13 ~ Affyratio13 -0.89934 0.92715 0.09243 0.09037 0.01867 0.6073 1.48132 0.17450 0.12871 

  cDNA29 ~ Affyratio29 -0.64357 0.90678 0.00929 -0.00172 0.00203 0.5998 1.30646 0.16882 0.10989 

  cDNA75 ~ Affyratio75 -0.79819 0.75063 -0.03018 0.05600 0.02537 0.5084 1.55282 0.17496 0.97268 

  cDNA76 ~ Affyratio76 -0.98388 1.13081 0.04338 0.00292 0.00165 0.6253 1.76413 0.17607 0.13322 

  cDNA78 ~ Affyratio78 -1.11651 1.13272 0.05289 -0.02176 -0.00084 0.5345 2.20767 0.16959 0.16094 

  cDNA79 ~ Affyratio79 -0.68878 1.02781 0.01207 0.00858 0.00419 0.6577 1.21044 0.17928 0.12432 

Training set (with 4504 data) -0.84227 1.02154 0.04031 -0.00127 0.00062 0.5956 1.48062 0.11380 0.04681 - 

Test set (1000 data) -0.80233 1.05375 0.03864 0.00694 0.00258 0.5872 1.55877 0.17094 0.11155 - 
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6.1.3.4 Self-Organizing Maps   

Machine learning approaches, such as Artificial Neural Networks (ANN) are considered to be 

effective computational methods that enable efficient capture of the trends potentially 

available in the data.  

Pioneered by Rosenblatt (1962), Widrow & Hoff (1960) and Widrow & Stearns  (1985), 

ANN represent a computational tool, based on the properties of biological neural systems. 

These neural networks are useful in the sense that they incrementally learn from their data-

environment, and efficiently reveal the inherent complexity present in the data. This helps in 

providing reliable predictions for new situations containing noisy and partial information. 

ANN are especially powerful while fitting arbitrarily complex non-linear models to data. This 

task is carried out by the neurons, which are units that locally process data with nonlinear data 

processing capabilities similar to the concept of learning in the brain. Neurons possess 

dynamic weights that remain as free parameters in the architecture making the entire network 

flexible. This flexibility in the network enables ANN to freely follow the pattern in the input 

data to map with the output, and to solve a variety of problems. A simple neural model and its 

components are elaborated below under the section: 6.1.3.5 Feedforward Neural Network.  

Self-organizing map (SOM) is the most widely used unsupervised neural networks. 

Introduced by Teuvo Kohonen (1982a, 1982b, 1998), it uses only the input data and projects 

it onto one- or two-dimensional grid for meaningful interpretation of its inherent structure and 

patterns as well as for visual validation (Kohonen, 2001). As Figure 6.5 shows, the input layer 

of a SOM represents the input variables, while the output layer consists of either a one-

dimensional (1D) or a two-dimensional (2D) layer of neurons. The weights are free 

parameters that link the input data to the output neurons, and own the same dimension as the 

inputs.    
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Figure 6.5 Self Organizing Map (1D and 2D) 

Adhering to the characteristic attributes of ANN, the neurons in SOM learn unsupervisedly 

through a competitive learning scheme to specialize in responding to a specific set of inputs. 

As the weights evolve through such learning, each weight finally assumes the centre position 

of a cluster. Each neuron with its final weight becomes the winner for inputs from its cluster. 

The final weight vector becomes the representative of the cluster, and the corresponding 

inputs remain closer to this weight vector than to the rest. Thus, the competitive learning 

plays a vital role by facilitating evolution of weights and their movements to respective 

cluster centres.  

As an input is presented to the SOM network, the process of competitive learning starts, and 

the winner is selected based on either neuron activation or distance to the input vector. In 

neuron activation, each neuron calculates its weighted sum of inputs, i.e., 
1

n

ij i

i

w x


 , where xi is 

the i
th

 input variable and wij is the weight of input xi to j
th

 output neuron. A neuron drops out if 

this neuron activation value is below a threshold (or, zero). Finally, one neuron emerges as 

winner which has the highest activation, and it represents the input vector. This winner 

selection can also be done using the distance between an input and a weight vector, and can 

be explained using equation 28, which is a representation of neuron activation.    

 
1

|| || || || cos
n

ij i i ij

j

w x x w 


   ( 28 ) 
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In the equation, relative lengths of input and output neuron‘s weight vector are represented as 

||x|| and ||w|| respectively, and θ is the angle between the input vector, x and the weight vector, 

w. A smaller angle results in higher value of cosθ, producing a higher net input. Therefore, a 

weight closer to an input vector causes a larger activation. The closeness of a weight to an 

input vector can be found using various distance measures, including Euclidian, correlation, 

direction cosine, and city block distance. As the distance is obtained between an input vector 

and the weight vectors of all the output neurons, the neuron with the smallest distance 

becomes the winner. Using equation 29, these weights are updated so that it moves closer to 

the input vector, while all the other weights remain unchanged. The β shown in the equation is 

called learning rate (or, step length), which indicates proportion of movement the winning 

weight vectors make towards the input vector.    

 

Peltarion Synapse
®

, v1.3.6 (Peltarion Corporation, Stockholm, Sweden) is used to generate 

Figure 6.6, which presents a set of adaptive self-organizing maps that uses the DE genes of 

Affyratio and cDNA from the entire 5754 DE microarray genes. In the background, it is made 

possible by the neighbourhood feature in SOM. 

Topology preservation is a unique characteristic of human brain, whereby it organizes the 

tasks of similar nature, such as vision and speech, to be controlled by regions having spatial 

proximity to each other (Samarasinghe, 2007). It was incorporated into SOMs as 

neighbourhood feature, which helps to preserve topological characteristics of inputs. The 

inputs spatially closer together must be represented in close proximity in the output layer or 

map of a network. Therefore, besides the winner, the neighbouring neurons also adjust their 

weights during the process of learning. For an n-dimensional input vector x with components 

{x1, x2, ..., xn}, the weights of the winner and neighbours are adjusted to w′j as given in 

equation 30, where β is the learning rate and NS is the neighbourhood strength. 

Neighbourhood strength determines how the weight adjustment decays with distance from the 

winner, and its commonly used functions are linear, Gaussian, and exponential. 

 

w′j  = wj + β NS [x - wj]  ( 30 ) 

                       

( )j j jw d x w     ( 29 ) 

                       



Chapter 6 – Formation of a crossover 

108 

In a maplet of Peltarion Synapse, each hexagonal cell represents the processing elements, 

neurons or nodes. Each neuron represents none or many input data points to which it is closest 

to in the feature space (or, the value range). Onto the same node or to the neighbouring nodes 

of the map, similar data are mapped. This grouping leads to spatial clustering of similar input 

patterns of the microarray data in neighbouring parts of the SOM, and the clusters appearing 

on the map become organized themselves unsupervisedly. The final arrangement of the 

clusters on the map tends to reveal the relationships of the variables of the input space. In the 

figure, the number of DE genes associated with a node is shown as a black dot in the hexagon. 

The size of the dot is approximately proportional to the number of genes associated with the 

node in question. The maplets have the same topological mapping, so a node (and, implicitly 

a group of genes) in one maplet has the same position in the other. The maplets in the figure 

indicate that there is more or less a proportional variation in the expression levels of Affyratios 

and cDNAs in the feature space. 

 

 

 

 

 

Figure 6.6 Self-organizing map 

SOMs are considered highly efficient techniques for exploratory data analysis. This 

exploratory technique is explored here further to investigate whether it can be used for 

defining relation between microarray data from Affymetrix and cDNA platform. It is an 

attempt based solely on the principles of SOM as well as on its inherent properties to broaden 

its usage towards employing it as a prediction tool. 

Each neuron of a trained SOM includes a specific set of datapoints. In a 2D space, such a 

neuron holds a final weight and the weight bears two components, one in x- and the other in y-

direction. With this as a preface, a computational algorithm is constructed for SOM, and is 

given below in the box. 
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Matlab
®
, 2010a (The MathWorks Inc., Massachusetts, USA) is used to implement the 

algorithm. An instance of implementation is given in Figure 6.7 where the final positions of 

the neurons are shown when SOM-training is completed. The training and test data used 

belong to the random drawn 4504 and 1000 datasets respectively. In the figure, the neuron 

positions are demarcated by rectangles while the positions of the training and test data are 

shown as dots (.) and crosses (×), respectively.  

 
 

Figure 6.7 Final neuron-positions along with training- and test-data 

Algorithm used for SOM:     

 Let the training dataset for microarray be L = (x1y1, x2y2, ..... , xnyn) where xi and 

yi is Affyratio and cDNA respectively.  

 Train the data using the regular SOM algorithm (Kohonen, 1982a, 1982b, 1998, 

2001).  

 Use the test dataset, T = (a1b1, a2b2, ..... , anbn) where ai and bi is test data from 

Affyratio and cDNA respectively.   

 For each ai  : 

 Advance in x-direction by the value, ai  

 in y-space, search for the closest neuron, Nc 

 Average the cluster of yi -values that come under Nc. This iy  represents 

the corresponding SOM-output of the ai value. 
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The obtained outputs are given in Table 6.4. It is evident from the table that the results are 

better than that of bootstrap aggregating. However, they are not as good as those of either the 

linear or polynomial regression.               

Table 6.4 Output of self-organizing maps 

 

Data Used to test against 
Corr. Coef. 

(r)  
MSE 

(Mean Sq. Error) CV of R 

Whole dataset (cDNA ~ Affyratio) Itself 0.4650 0.8994 - 

cDNA3 ~ Affyratio3 Itself 0.5329 0.9495 - 

 
13 0.4414 0.9082 

16.39 

  29 0.4188 0.9070 

  75 0.3029 0.7486 

  76 0.4948 1.1448 

  78 0.4090 1.2287 

  79 0.4883 0.8315 

cDNA13 ~ Affyratio13 Itself 0.4854 0.7155 - 

 
3 0.4868 0.9132 

18.34 

  29 0.4059 0.8321 

  75 0.3015 0.6214 

  76 0.4988 1.0069 

  78 0.3749 1.0906 

  79 0.4789 0.7396 

cDNA29 ~ Affyratio29 Itself 0.4326 0.9234 - 

 
3 0.5284 0.9589 

11.01 

  13 0.4496 0.9063 

  75 0.3897 0.6843 

  76 0.5002 1.1481 

  78 0.4402 1.1990 

  79 0.5055 0.8035 

cDNA75 ~ Affyratio75 Itself 0.3270 0.6556 - 

 
3 0.5015 0.9019 

9.92 

  13 0.4406 0.7832 

  29 0.4322 0.8292 

  76 0.4911 1.0460 

  78 0.4003 1.0847 

  79 0.5171 0.7019 

cDNA76 ~ Affyratio76 Itself 0.5382 1.0810 - 

 
3 0.4981 0.9606 

15.43 

  13 0.4422 0.7935 

  29 0.3700 0.8891 

  75 0.3254 0.5908 

  78 0.3760 1.1938 

  79 0.4456 0.8758 
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Data Used to test against 
Corr. Coef. 

(r)  
MSE 

(Mean Sq. Error) CV of R 

cDNA78 ~ Affyratio78 Itself 0.2178 1.1450 - 

 
3 0.3044 1.1472 

17.06 

  13 0.2346 0.9310 

  29 0.2477 1.0101 

  75 0.1760 0.7333 

  76 0.2589 1.3010 

  79 0.2640 0.9712 

cDNA79 ~ Affyratio79 Itself 0.5462 0.7085 - 

 
3 0.5380 0.9215 

15.24 

  13 0.4799 0.8240 

  29 0.4256 0.8526 

  75 0.3455 0.6373 

  76 0.5025 1.1024 

  78 0.4209 1.2065 

Training set (with 4504 data) Itself 0.4643 0.9316 - 

Test set (using training set of 1000 data) 0.4405 0.8586 - 

 

 

 

6.1.3.5 Feedforward Neural Network   

Supervised neural networks are the mainstream of neural network development, and the 

feedforward neural networks fall in the category of supervised networks. The concept of these 

networks starts with the idea of a simple neuron model. The first and the simplest type of it, 

called perceptron model was invented by Frank Rosenblatt (1962). The perceptron model is 

rarely used now-a-days, and its significance is only left with its historical contribution to 

neural networks.  

In a simple neuron model (without feedback or competition), the neuron receives inputs (x1, 

x2 ..... xn) from multiple sources. Each input has an associated weight, which is initialised with 

random value. Both inputs and weights can typically be real values, i.e., positives or 

negatives. Bias is an additional input supplied to the neuron, and it incorporates the effects 

that are not accounted for by the inputs. This overall architecture is called neuron model, 

which learns until it properly performs the task of mapping a given input dataset to output 

through iterative modification of the initial random weights. 
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Figure 6.8 A model of a neuron 

Figure 6.8 depicts a regular neuron model that consists of the weights, bias, summation 

processor, and a transfer function. The summation processor sums all the weighted inputs, 

and modifies the signals through the transfer (or, activation) function. The transfer function is 

usually non-linear, and it transforms the weighted input non-linearly to an output. The transfer 

function can be a threshold function allowing only those signals that reach a certain threshold 

level, or is a continuous function of the combined input. The final output of a neuron model 

can be presented as in equation 31.    

  

In the equation, σ represents a non-linear function, and wj is the weight associated with the j
th

 

xj, while b is the bias weight. There is a wide range of options for non-linear functions, 

including Sigmoid, Gaussian, sine, arc tangent, and their different variants.  

Using a linear function, a neuron model becomes analogous to a multiple linear regression 

model in statistics where the bias, b0 becomes the intercept of statistical terminology. As in 

statistics, here too the intercept represents the factors that are not accounted for by the inputs. 

The output of a linear neuron model is given in equation 32.  
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A neural network often used in practical applications can consist of an input layer, a single- or 

multi-layer of neurons, and an output layer. Accordingly, the terms, hidden layers and hidden 

neurons are used to indicate respectively the layers and the neurons between the input and the 

output layer. This is depicted through Figure 6.9, which presents a framework of a 

feedforward network. In feedforward networks, all the connections remain unidirectional 

from input to output layers.  

 

Figure 6.9 A feedforward neural network 

In multi-layer feedforward networks, it is said that high number of neurons with multiple 

layers often tends to create undesirable complexity. The same is empirically experienced here 

too while working with our microarray data. Therefore, a simple feedforward network is 

finally preferred, which consists of one neuron in the middle layer, besides the input- and the 

output-layer. Again, Matlab
®
 is used to do the required computations. Various parameters 

used in these calculations are given below:  

i) Training function: Levenberg-Marquardt method (More, 1977) is used here as a 

learning method. It is a second-order method, and relies on both first and second 

derivative of error (slope and curvature) while searching for the optimum weights. 

The method is considered as a hybrid algorithm as it combines the advantages of 

steepest descent and Gauss-Newton methods. Levenberg-Marquardt algorithm is a 

fast method, and it primarily makes use of the Gauss-Newton method; but 

encountering situations where the 2nd derivative is negative, it reverts to the 

steepest descent method, and uses only the first derivative.  

ii) Transfer function: Transfer functions calculate a neural layer's output from its net 

input. Here, hyperbolic tangent sigmoid function (Vogl, Mangis, Rigler, Zink, & 
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Alkon, 1988) is used. It can be mathematically represented as given in equation 33 

where la stands for linear activation of a neuron as shown earlier in equation 32.   

 

The final outputs obtained from the feedforward network are given in Table 6.5. These results 

are indeed better than all the other approaches examined so far.  

Table 6.5 Results from feedforward network 

Data Used to test against Corr. coef. (r) 
Best validation 
performance at 

(MSE) 
CV of r 

Whole dataset (cDNA ~ 
Affyratio) 

- 0.6253 
(TO, i.e., Training output) 

0.5187 - 

  
cDNA3 ~ Affyratio3 
  
  
  
  

- 0.6632 (TO) 0.4728 - 

13 0.5801 0.5114 

16.45 

29 0.6156 0.5693 

75 0.4891 0.3943 

76 0.6229 0.7576 

78 0.4188 0.8155 

79 0.6646 0.4829 

  
cDNA13 ~ Affyratio13 
  
  
  
  

- 0.6287 (TO) 0.4854 - 

3 0.6410 0.6383 

10.77 

29 0.5783 0.5970 

75 0.5200 0.3793 

76 0.6506 0.7136 

78 0.5157 0.7260 

79 0.6497 0.5056 

  
cDNA29 ~ Affyratio29 
  
  
  
  

- 0.5884 (TO) 0.4694 - 

3 0.6579 0.6179 

11.61 

13 0.6130 0.4974 

75 0.5106 0.3797 

76 0.6294 0.7411 

78 0.5081 0.7359 

79 0.6567 0.5014 

 
  
cDNA75 ~ Affyratio75  
  
  
  

- 0.5407 (TO) 0.3672 - 

3 0.6421 0.6403 

10.12 

13 0.5823 0.5156 

29 0.5530 0.6122 

76 0.6274 0.7626 

78 0.4943 0.7303 

79 0.6467 0.5120 

2

2
tanh ( ) 1

1 la
la

e 
 


 ( 33 ) 
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Data Used to test against Corr. coef. (r) 
Best validation 
performance at 

(MSE) 
CV of r 

  
cDNA76 ~ Affyratio76 
  
  
  
  

- 0.6510 (TO)  0.4259 - 

3 0.6421 0.6402 

10.18 

13 0.6091 0.4917 

29 0.5751 0.6049 

75 0.5266 0.3793 

78 0.5013 0.7405 

79 0.6421 0.5181 

  
  
  
cDNA78 ~ Affyratio78 
  
  

- 0.5431 (TO) 0.6561 - 

3 0.6138 0.6821 

7.69 

13 0.6020 0.4958 

29 0.5547 0.6257 

75 0.5101 0.3890 

76 0.6222 0.7532 

79 0.6193 0.5459 

 
cDNA79 ~ Affyratio79  
  
  
  
  

- 0.6721 (TO) 0.45201 - 

3 0.6596 0.6078 

15.47 

13 0.5909 0.5161 

29 0.6122 0.5673 

75 0.4969 0.3954 

76 0.6341 0.7505 

78 0.4311 0.7702 

Training set (with 4504 data) - 0.6267 (TO) 0.5400 - 

 
Test set: 1000 data 0.6042 0.4962 - 

 

6.2 Summary of results 

All the various types of statistical and machine learning approaches have been rigorously 

applied above. The idea behind  is based on exploring whether and how useful the methods 

would be when applied to microarray data in a situation when they come from two separate 

platforms, and when they have passed through a data transformation phase.  

Broadly, the available results provided in Table 6.1 to Table 6.5 can be studied by comparing 

the model outputs concerning the whole and the random dataset. Table 6.6 summarises these 

results. With the simple neural architecture, the feedforward network is able to present the 

best results, while cubic-polynomial delivers the next best set of results. The summary table 

also shows that despite its enormous potential, bootstrap aggregating method has failed to 

deliver a comparable outcome than the rest of the methods. The self-organizing maps (SOM) 

are used by various researchers to constitute a very powerful and unsupervised data 

visualization technique. This technique has been probed into and redesigned to make it 
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operational to address the current task, which otherwise falls outside of its usual application 

environment. This redesigning of SOM‘s application makes it capable of bringing better 

outcomes than the bagging method, but comes out to be relatively less effective than the 

remaining approaches.  

Table 6.6 Summary of results 

Model 

Whole dataset 

Random dataset 

Training set Test set
 

MSE r
 

MSE r
 

MSE r
 

Linear 0.6013 0.5886 0.6172 0.5892 0.5299 0.5771 

Polynomial (cubic) 0.5842 0.6042 0.5979 0.6064 0.5140 0.5835 

Bootstrap aggregating (bagging) 1.4870 0.5938 1.4806 0.5956 1.5588 0.5872 

Self Organizing Maps (SOMs) 0.8994 0.4650 0.9316 0.4643 0.8586 0.4405 

Feedforward network 0.5187 0.6253 0.5400 0.6267 0.4962 0.6042 

 

A look at the tables in Table 6.1 to Table 6.5 also suggests that at the level of individual 

patients, the predictive gene expression of atleast one patient, viz., patient number 78, 

produces at times results that tend to exceed the range of the outputs obtained by the others. 

However, it is difficult to question its data quality as while carrying out the elaborate data 

quality assessment in Chapter 3, no indication could be deduced regarding the presence of any 

serious faults in any of these arrays. The predicted results of the remaining patients are found 

to be more or less similar.  

Further, in the final segment ahead, Chapter 7 delivers the closing remarks.    

 

Note :   

 "Writing Scholarship, 2010" awarded on merit by Lincoln University, Christchurch, 

New Zealand based on a proposal for a research article from aspects of this chapter. 



 

 

    Chapter 7   

Closing Remarks 

7.1 Summary 

DNA is the magic molecule that encodes all the information required for the development and 

functioning of an organism; and microarrays are a tool used to reveal an unprecedented view 

into the biology of DNA. With the advent of individual experiments generating thousands of 

data or observations, a hypothesis-driven endeavour has turned into hypothesis-generating 

endeavour that flashes light across an entire terrain of gene expressions. Joining what used to 

be primarily wet science, information science moulded it skilfully into an ever rejuvenating 

branch of science while incessantly contributing to further streamlining the processes 

involved.  

Microarrays afford the luxury that gene expressions can be measured in any of its multiple 

platforms. The impediment, however, appears as user tries to jointly study multiple platforms. 

Various comparison studies have been published presenting completely contradictory results - 

some have observed agreement in results obtained with different platforms (Barczak et al., 

2003; Carter et al., 2003; Hughes et al., 2001; Kane et al., 2000; H. Y. Wang et al., 2003; 

Yuen, Wurmbach, Pfeffer, Ebersole, & Sealfon, 2002), others have not at all (Kothapalli, 

Yoder, Mane, & Loughran, 2002; W. P. Kuo et al., 2002; J. Li, Pankratz, & Johnson, 2002; 

Tan et al., 2003). A review on various notable works in the direction of cross-platform 

integration of microarray data is presented in Chapter 3. However, all these published 

methods have their own advantages as well as disadvantages. 

In the midst of the relentless chase to find remedies for the issues of microarray data 

integration, is there a chance that an answer is lying underneath the nature of the microarray 

data itself ? This was the question set for answering while commencing the attempt of cross-

platform integration of data from Affymetrix and cDNA microarray platforms. Data provided 

by The Children's Hospital at Westmead, Australia contained the much-needed cancer 

patients‘ data, where the patients were reportedly tested on both the platforms.        

Keeping in mind the nature of the resultant microarray data from these platforms, a new ratio-

transformation method has been proposed and applied to the data. It subsequently highlights 

that its application can address the issue of incomparability of the expression measures of 
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Affymetrix and cDNA platforms. The method is later tested against two established 

approaches, and is found to produce comparative results.    

The encouraging outcome from the above method led to focus attention on examining further 

in the direction of defining the association between the two platforms. With this motivation, a 

wide range of statistical as well as machine learning approaches is applied to the microarray 

data. Finally, the existing relationship between the data from the two platforms is found to be 

nonlinear, which can be well-delineated by feedforward network with relatively more 

precision than the rest of the methods tested.    

7.2 Conclusions 

The focus of the work carried out in this research remains in the gene expression levels of two 

specific platforms, Affymetrix and cDNA. Summarily, the work presents a novel as well as an 

alternative way of integrating expression levels from these two platforms. The approach is 

relatively uncomplicated compared to its counterparts; and while taking a different standpoint 

to the problem of data integration across microarray platforms, it delivers better results 

compared to the conventional ways of integration of gene expression levels. It also produces 

close results when tested with a popular method, DWD (Benito et al., 2004; Marron et al., 

2007). Further, another major highlight of this work is its distinctively extensive exploration 

implementing a wide range of statistical as well as machine learning approaches towards 

drawing the closest association between the two platforms. The resultant output from this 

segment of the study suggests that the relation between the two microarray platforms is non-

linear; and given a gene‘s expression level in one platform, there is a possibility that a 

feedforward neural network would provide more accurate expression value of the gene in the 

other platform compared to the rest of the approaches trialled.             

7.3 Advantages and Limitations 

There are methods available for microarray data integration for large sample data, such as the 

Probability of Expression method (Parmigiani et al., 2002; Shen et al., 2004) and XPN 

(Shabalin et al., 2008). However, these methods are many times found to be unusable for set 

ups involving small microarray sample size. Besides being a non-complex exploit, the ratio-

transformation approach can be applied to both small and large sample data. Further, it works 

on the true expression measures unlike several other methods, where the core component in 

the data integration methodology involves transforming the data using measures, such as 

distance (Benito et al., 2004; Marron & Todd, 2002), probability scale (Parmigiani et al., 

2002; Shen et al., 2004), ranking of fold change (Breitling et al., 2004; F. Hong et al., 2006) 
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etc. as discussed in Chapter 3. While comparing the ratio-transformation approach with gene-

centering and DWD-method in Chapter 5, DWD provided a slight improvement over ratio-

transformation method. However, there are a few virtues of the ratio-transformation method 

that deserve highlighting.       

The ratio-transformation method is an attempt to view the problem of cross platform data-

integration from a different perspective of concentrating the focus of investigation on the 

nature of the generated data from the platforms. The approach is crafted based on the 

fundamental characteristics of the two platforms as well as on the prominent distinguishing 

features of their relationship; and therefore, has evolved from a sound base providing the 

required rigor. It also furnishes greater transparency as well as simpler applicability enabling 

a prospective user to relate to it depending on the basic knowledge about microarray 

technology in general while attaining similar or higher level of accuracy delivered by a 

variety of available complex statistical and machine learning approaches. From this view 

point, this approach can counterbalance any apparent advantages of other available methods, 

specifically DWD. DWD method finds a separating hyperplane between the two microarray 

batches, and adjusts the data by projecting the different batches on the DWD plane, finds the 

batch mean, and then subtracting out the DWD plane multiplied by this mean. With regards to 

the DWD-approach, Johnson & Li (2007) confirms that researchers face difficulties while 

trying to implement this method, and a few of the difficulties include that the method is 

―fairly complicated‖, and can be applied to only two batches at a time. In an example of 

DWD, a stepwise approach is used by Benito et al. (2004) - first adjusting the two most 

similar batches, and then comparing the third against the previous (adjusted) two. This 

stepwise method provides reasonable results in their three-batch case, but this could 

potentially break down in cases where there are many more batches or when batches are not 

very similar.  Further, the DWD approach may also be considered as a black-box method, 

which tends to fall short of providing much insight into the process underneath.   

Further, given an expression level of a differentially expressed gene of one platform, the 

investigations on between-platform association intends to provide a framework which 

presents an estimate of the possible expression value in the other platform. However, it is 

possible to critique this attempt to be a prototypical rather than a method of global 

generalization as it has been conducted on a relatively small sample space. However, it is 

unlikely that investigating with a larger set of data would present a greatly exceeding outcome 

because the current sample space can also be assumed as a random sample from a larger 
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dataset. Thus, the overall output of the large hypothetical dataset can be expected to follow a 

trend similar to that of the current output.         

7.4 The Road Ahead 

Microarray platform integration study conducted here can be considered as a foundation in an 

attempt of exploration based on the nature of the resulting data of Affymetrix and cDNA 

platforms. Further consolidation of information on the basis of various aspects on the 

background of the data, gene-wise information and relevant key facts are expected to provide 

finer predictions with higher accuracy. This is a promising road of investigations ahead, 

although without contesting the fact that the task would involve substantial information 

warehousing, increased computing power as well as high-end computational skills. However, 

this line of interrogations can potentially contribute towards bringing down the curtain on the 

differences between the Affymetrix and cDNA platforms.    

7.5 Final Remarks    

Microarray technology has strongly emerged due to the fact that it can provide a rapid 

snapshot of gene expression pattern of a tissue. It also helps in our understanding of global 

networks of bio-molecular interactions. Scientific areas including diagnosis, drug 

development, functional genomics, and comparative genomics are stimulated with the 

development of this high throughput technique resulting in avalanche of data from 

innumerable number of experiments.  

With the emergence of microarray technology from the shadows of being ‗cautionary tale‘ 

(Sherlock, 2005), the steps towards the growth in the area of microarray data integration have 

already been initiated. This thesis is a further exploration in this direction, however, viewing 

the domain as well as the question from a distinctly separate perspective. The conducted work 

maintains the highest housekeeping standards, besides carrying out a series of trials and 

testings with the use of a wide range of applications, methods and algorithms. Subsequently, 

the process is believed to have put its own contribution in the parade of unlocking the hidden 

treasures of biological knowledge. 
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        Appendix A  

Assessment of Affymetrix Arrays 

A.1 Reconstruction of Original Scanner Image 
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A.2 MA Plots of Raw Affymetrix Arrays 
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A.3 MA Plots of Normalized Affymetrix Arrays 
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        Appendix B  

Assessment of cDNA Arrays 

B.1 MA Plots of Untreated cDNA arrays 
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B.2 Post-normalization MA plots of cDNA arrays 
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