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MIMO Channel Estimation and Tracking
Based on Polynomial Prediction With

Application to Equalization
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Abstract—This paper presents a multiple-input–multiple-
output (MIMO) receiver design with integrated channel estima-
tion and tracking for a time-varying frequency-selective Rician
or Rayleigh fading environment. It first extends a polynomial-
predictor-based channel estimation and tracking approach to a
MIMO system. The structure and complexity of the estimator are
similar to that of an optimum estimator using a Kalman filter,
but it does not require a priori knowledge of the channel statis-
tics. It employs a fixed-state transition matrix using precomputed
polynomial coefficients and can be used in a Rician fading envi-
ronment without reconfiguration. It is integrated with a MIMO
minimum-mean-squared-error decision feedback equalizer, and
simulation results show that the system performance using the
estimator can be made comparable to that employing a Kalman
estimator under a broad range of channel conditions.

Index Terms—Equalizers, estimation, fading channels, mo-
bile communication, multiple-input–multiple-output (MIMO)
systems.

I. INTRODUCTION

MULTIPLE-INPUT–multiple-output (MIMO) communi-
cation systems with T transmit and R receive anten-

nas can linearly increase the available system capacity as
min{R, T} [1], [2]. Several MIMO architectures have been
proposed for the flat-fading environment. These include layered
space–time (BLAST) architectures [3], [4] that transmit parallel
streams of independent data to multiple receive antennas (spa-
tial multiplexing) and space–time-coded systems [5], [6] that
are designed to achieve better error rate performance through
diversity and/or coding gain.

To support higher data rates, these architectures need to be
extended to the wideband environment, which usually exhibits
frequency-selective fading. This causes intersymbol interfer-
ence (ISI) that must be compensated or equalized, and this
requires accurate estimates of the channel responses. This
channel estimator must estimate multiple parameters and track
temporal variations of the channel.
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Statistics-based methods such as the Kalman filter, which
assumes a low-order autoregressive (AR) model [7] of the
channel state, produce excellent estimates as they incorporate
a dynamic model of the channel into their operation. A Kalman
filter produces a minimum variance estimate of the parameters
being tracked [7]. However, it requires a priori knowledge
of the channel and noise statistics. Their acquisition usually
requires a long measurement time [8] that adds complexity
to the estimation process. In [9], a Kalman-based channel
estimator is used to estimate and track the frequency-selective
channel responses. The AR parameters needed by the Kalman
filter and the noise statistics are assumed known. Additional
algorithms to obtain the noise statistics can be used [10], where
a noise covariance estimation algorithm and a noise whiteness
test are developed to estimate the noise covariance needed by
the Kalman filter.

It is desirable that an estimator be able to achieve Kalman-
like performance without requiring a priori knowledge of the
channel and noise statistics. Motivated by this, we develop a
MIMO channel estimator that is comparable in complexity and
performance to a Kalman estimator but does not require a priori
knowledge of the channel and noise statistics. Moreover, it can
be used in a Rician fading environment without reconfiguration
of the state transition matrix to accommodate the nonrandom
mean components of the channel responses. The algorithm
is a vector extension of the polynomial-based generalized
recursive least squares (GRLS) algorithm [11]. Due to the
vector received signal, we call the proposed channel estimator a
polynomial-predictor-based vector GRLS (VGRLS) estimator.
We evaluate its steady-state performance with known training
symbols under various system and channel settings. We then
evaluate the performance of an integrated receiver using the
estimator and a MIMO minimum-mean-squared-error (MMSE)
decision feedback equalizer (DFE) similar to that in [9].

We describe the signal model in Section II. In Section III, we
develop the channel estimator, and in Section IV, we describe
the example receiver. Simulation results and discussions are
presented in Section V, and finally, conclusions are presented
in Section VI.

II. SIGNAL AND CHANNEL MODELS

A. General Model

We assume a MIMO system transmitting independent signals
from each of the T antennas to R ≥ T receive antennas. Fig. 1
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Fig. 1. General block diagram of a discrete-time MIMO communication system at time k for T transmit and R receive antennas.

shows a discrete-time model for this (T,R) MIMO system. At
the receiver, each of the R antennas receives a linear combi-
nation of the transmitted signals. The jth symbol-rate-sampled
representation of the complex baseband received signal at time
k may be written as

y
(j)
k =

T∑
i=1

L−1∑
l=0

d
(i)
k−lh

(j,i)
k,l + n

(j)
k , j = 1, 2, . . . , R (1)

where d
(i)
k is the kth transmitted complex baseband M -ary

data symbol from the ith antenna, {h(j,i)
k,l }l=L−1

l=0 is the sam-
pled fading dispersive composite channel impulse response
(convolution of the transmit pulse shape and physical channel
response) between the ith transmit and jth receive antennas
at time k with delay spread of L symbol periods, and n

(j)
k is

the sampled additive white Gaussian noise (AWGN) at the jth
receive antenna with variance σ2

n.
The MIMO received signal of (1) may be expressed in

matrix–vector form [12] as

yk =
L−1∑
l=0

Hk,ldk−l + nk (2)

where we define the vectors
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...
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(3)
and the R × T channel matrix taps

Hk,l =




h
(1,1)
k,l · · · h

(1,T )
k,l

...
. . .

...
h

(R,1)
k,l · · · h

(R,T )
k,l


 , l = 0, 1, 2, . . . , L − 1.

(4)

To derive the VGRLS estimator from the GRLS estimator
in [11], we reformulate (2). We observe that there are L
channel matrix taps. We represent each as a column vector

using the operator vec(Hk,l) and stack the columns of Hk =
[Hk,0, . . . ,Hk,L−1] into a single-length RTL channel vector

hk = vec(Hk)

=
[
h

(1,1)
k,0 · · ·h(R,1)

k,0 · · ·h(1,T )
k,0 · · ·h(R,T )

k,0

. . . , h
(1,1)
k,L−1 · · ·h

(R,1)
k,L−1 · · ·h

(1,T )
k,L−1 · · ·h

(R,T )
k,L−1

]t

(5)

where t denotes matrix transposition. To ensure dimensional
compatibility, we define an R × RTL transmitted data matrix
Dk from (3) as

Dk =
[
d
(1)
k · · · d(T )

k , d
(1)
k−1, . . . , d

(T )
k−1

. . . , d
(1)
k−L+1 · · · d

(T )
k−L+1

]
⊗ IR (6)

where IR is the R × R identity matrix, and ⊗ is the Kronecker
product. We may then write (2) in the form of

yk = Dkhk + nk. (7)

B. Channel Model

The RT MIMO subchannels are each assumed to exhibit
wide sense stationary uncorrelated scattering (WSSUS) [13].
We assume that each of the coefficients h

(j,i)
k,l evolves according

to Clarke’s fading model [14] under common fading condi-
tions. We also assume that each channel coefficient consists
of a nonrandom (specular) component and a random (diffuse)
component as h

(j,i)
k,l = h

(nr),(j,i)
l + h

(r),(j,i)
k,l . The power ratio

between the specular and diffuse components is given by the
Rice K-factor

K =

∣∣h(nr)
∣∣2

E
{∣∣h(r)

∣∣2} (8)

where a K value of 0 corresponds to Rayleigh fading, and a
large K corresponds to Rician fading. In reality, a specular
component can be present in any or all of the paths, and
the value of the K-factor can be the same or different for
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each path. For simplicity, we assume here that all the multi-
path components contain a specular component with the same
value of K.

III. CHANNEL ESTIMATION

A. Statistical State-Space Model

Channel estimators based on the Kalman filter [9], [15]
typically assume that the multipath fading channel response
vector (5) evolves according to an order Pa vector AR (VAR)
process [16], which may be modeled by the state equation

hk+1 = Ahk + vk (9)

where

hk =
[
ht

k,ht
k−1, . . . ,h

t
k−Pa+1

]t
(10)

is the RTLPa × 1 channel state vector at time k consisting of
Pa “time-shifted” vectors of (5), and vk is the kth zero-mean
process noise vector of dimension RTLPa × 1 such that

E
{
vkvH

l

}
=

{
Rv, for k = l
0m,m, for k �= l

(11)

with 0m,m being the (m × m) null matrix, and m = RTLPa.
The superscript H denotes Hermitian transposition, and A is
the RTLPa × RTLPa state transition matrix having the form

A =
(

A1 A2 · · · APa−1 APa

IRTL(Pa−1) 0RTL(Pa−1),RTL

)
(12)

where the matrices {Al}, l = 1, 2, . . . , Pa are the RTL × RTL
matrix coefficients of the VAR process. These and the process
noise autocovariance matrix Rv may be obtained by measuring
the channel statistics and solving the resulting matrix–vector
Yule–Walker equations [16]. The choice of the process order Pa

is a tradeoff between complexity and modeling accuracy [15].
When a high degree of accuracy is needed, a large Pa is selected
such that the variances of the elements of vk are small [11]. We
may express the MIMO received signal of (7) as

yk = dkhk + nk (13)

where the R × RTLPa data matrix dk is defined as

dk =
[

Dk | 0R,RTL(Pa−1)

]
(14)

with Dk given by (6). The state-space model used by the
Kalman estimator [7], [9], [15] is given by (9) and (13). As
structured, it is restricted to Rayleigh fading channels. How-
ever, it may be explicitly modified to model specular compo-
nents [15] by restructuring the state transition matrix A.

B. Polynomial-Based State-Space Model

The state equation of (9) can be interpreted as a one-step
length-Pa vector–matrix predictor of the channel state vector

TABLE I
POLYNOMIAL COEFFICIENTS OF VARIOUS ORDER AND LENGTH

with the VAR matrix coefficients {Al} for l = 1, 2, . . . , Pa

being the one-step prediction coefficients and vk the associated
prediction error.

If we assume the fading processes to vary smoothly, we may
model the time evolution of each of their samples as polynomial
sequences of order N [11] based on truncated Taylor series
(polynomial) expansions of the fading process [13] in the time
domain1 over a sufficiently small window. From the theory of
polynomial prediction [17], a one-step predictor of length P
with coefficients {ap} for p = 1, 2, . . . , P may be derived for
each polynomial sequence. Following [17]–[19], for the µth
scalar channel sample in (5) for µ = 1, 2, . . . , RTL, we may
write a one-step N th-order polynomial prediction equation at
time k as

hk,µ =
P∑

p=1

aphk−p,µ + ek,µ(N,P ) (15)

where P is the length of the polynomial predictor assuming
that each of the channel coefficient is modeled as a truncated t
power series [13] of order N and that the series converges over
a window of size P + 1 [20].

The polynomial predictor coefficients {ap} for p =
1, 2, . . . , P are dependent only on the values of N and P , where
P ≥ N + 1, and may be computed using a Lagrange multiplier
technique [18] or a standard least-square optimization approach
[11]. Note that the computation does not require any channel
statistics. The polynomial coefficients for various orders N and
lengths P are given in Table I, as calculated in [11]. We note
that the norm of the coefficients gets larger as N and P increase,
and this tends to degrade the performance of the estimator at
low SNR, as will be shown later.

The prediction error arising from the truncation of the
series to the first N terms ek,µ(N,P ) is dependent on the
order of the polynomial series and the predictor length, where
ek,µ(N,P ) → 0 as N → ∞ [11]. It will be small if the window
of expansion (i.e., the predictor length, P ) is small, thereby
allowing the use of a small value of N . As will be shown later,
a larger value of P is only required in very fast fading. Using
(15), a VAR-like model of the channel vector in (5) may be
formulated as

hk =
P∑

p=1

Uphk−p + ek(N,P ) (16)

1In [13], these are known as t-power series expansions.
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where the RTL × RTL polynomial predictor matrices are
given by Up = apIRTL for p = 1, 2, . . . , P . The model is only
VAR like because the error vector

ek(N,P ) =
[
e
(1,1)
k,0 · · · e(R,1)

k,0 · · · e(1,T )
k,0 · · · e(R,T )

k,0 · · · e(1,1)
k,L−1

· · · e(R,1)
k,L−1 · · · e

(1,T )
k,L−1 · · · e

(R,T )
k,L−1

]t

(17)

is not necessarily zero mean or white [11], as required by a VAR
process. In general, the elements of the covariance of ek(N,P )
will be small over a suitably small window of expansion around
each sampling instant. As a result, if ek(N,P ) is assumed to
be zero, a state-space model similar in form to (9) but with
unforced dynamics may be approximately formulated from
(16) as

hk+1 = Uhk (18)

where

hk =
[
ht

k, ht
k−1, . . . , h

t
k−P+1

]t
(19)

is the RTLP × 1 channel state vector at time k, and the
associated state transition matrix is given by

U =
(

U1 U2 · · · UP−1 UP

IRTL(P−1) 0RTL(P−1),RTL

)
.

(20)

This matrix is similar in form to (12) with Pa replaced
by P and the matrices Al replaced by the matrices Up. The
observation equation associated with (18) is similar to (13),
except that Pa becomes P .

Equations (13) and (18) define a nonstatistical polynomial-
based state-space model with unforced dynamics. It does not
require channel statistics in the derivation of the state transition
matrix coefficients and can be used with both Rayleigh and
Rician fading channels with no explicit reconfiguration of the
state transition matrix U.

C. Channel Estimator

In [21], an estimator using the Kalman recursive least squares
(RLS) algorithm that incorporates a state-space model in the
process was developed. The conventional RLS algorithm is a
special case of this GRLS algorithm. It models each of the sam-
ple of the channel responses as a two-term t-power series [13].
Instead of estimating the channel response coefficients, the
time-invariant coefficients of the t-power series are estimated.
As a two-term t-power series is only suitable for linearly time-
varying channels [18], the resulting state-space model is limited
to channels that linearly vary with time.

Here, we employ the state-space model of (18) in a vector-
based GRLS algorithm to directly estimate the channel tap or
state vector hk. The coefficients of the state transition matrix
(20) are predetermined (cf. Table I) for a given predictor length
P and polynomial order N .

Assuming that ĥk/k−1 and Pk/k−1 are known, the update
equations for the VGRLS algorithm may be written following
[11] as

Kk =Pk/k−1dH
k

(
IR + dkPk/k−1dH

k

)−1
(21)

Pk/k = (IRTLP − Kkdk)Pk/k−1 (22)

ĥk/k = ĥk/k−1 + Kk(yk − dkĥk/k−1). (23)

The prediction equations may then be written as

ĥk+1/k =Uĥk/k (24)

Pk+1/k =λ−1UPk/kUH (25)

where ĥk/k−1 is the estimate of the channel state vector at time
k based on (k − 1) prior received samples, λ is the RLS “forget
factor,” Kk is analogous to the Kalman gain vector [7], and
Pk/k is the so-called “intermediate” matrix.2 To initialize the

algorithm, we set the estimated channel state vector ĥ1/0 to the
null vector and let P1/0 = δ−1ILP , where δ is a small positive
real constant. Note that when P = 1 and N = 0, the VGRLS al-
gorithm reduces to a conventional vector RLS estimation algo-
rithm [11] whose tracking performance can be estimated [22].

We note that the VGRLS algorithm of (21)–(25) is similar
in structure to a Kalman filter as both consist of time-update
and prediction equations. Due to the Riccatti recursion in (22),
the complexity of VGRLS in the highest term is O((RTLP )3),
which is similar to that of the Kalman filter. Thus, the “baseline”
complexity of the two algorithms is similar. However, the
VGRLS does not require any channel statistics to derive the
coefficients of the state transition matrix.

IV. VECTOR DFE RECEIVER

As an example of the application of the VGRLS estimator,
we integrate it into a receiver that employs a vector DFE
structure3 similar to those in [9] and [23]. For the ISI-corrupted
received signals, maximum likelihood sequence estimation is
the optimum equalization method [24], [25]. However, for a
given modulation size, its complexity exponentially increases
with the channel delay spread L and the number of transmit
antennas T . Furthermore, its decision delay is significant
(typically about 5L) [24]. We have therefore employed an
MMSE DFE [23] structure.

The resulting receiver structure is shown in Fig. 2, where the
channel estimator provides vector estimates {ĥ(j,i)

k,l }l=L−1
l=0 of

the channel responses {h(j,i)
k,l }l=L−1

l=0 for the adaptive equaliza-
tion of the received signal streams {y(j)

k } for j = 1, 2, . . . , R
and i = 1, 2, . . . , T . Initially, the receiver operates in training
mode, where only the estimator is operating, and a training
sequence is used to obtain an initial channel estimate. Following
this, the receiver operates in a decision-directed mode, where
the estimator and equalizer work in tandem.

2Pk/k is the inverse input autocorrelation matrix in a conventional RLS
algorithm.

3For the vector DFE in this paper, the channel estimate is directly used to
calculate the equalizer tap coefficients.
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Fig. 2. Overall receiver structure in a decision-directed mode, where the
vector DFE and VGRLS estimator work in tandem. Note initially that when in
training mode, the estimator operates alone using the known training symbols
instead of the output symbols from the DFE.

Fig. 3. Vector MMSE DFE.

We assume that the DFE contains Nf feedforward filter
matrix taps (Fk) and Nb feedback filter matrix taps (Bk),
as shown in Fig. 3. These matrix tap coefficients are jointly
optimized based on the MMSE performance criterion. The
design of the optimum MMSE vector DFE is described in
detail in [23].

At each time k, the feedforward filter processes a block of
Nf received signal vectors yk of (2), which can be written in
matrix form in (26), shown at the bottom of the next page.

This may be expressed in compact form as

yk+Nf−1:k = Cdk+Nf−1:k−L+1 + nk+Nf−1:k (27)

where C is the convolution matrix given in (28), shown at the
bottom of the next page.

Corresponding to this is the block of (Nf + L − 1) in-
put symbol vectors dk+Nf−1:k−L+1 consisting of (L − 1)
past symbol vectors dk−1:k−L+1 and (Nf − 1) future symbol
vectors dk+Nf−1:k+1 that have yet to be detected. The feedback
filter utilizes a subset dk−1:k−Nb

of previously detected symbol
vectors to cancel their interfering effect on the current symbol
vector dk.

We define the T (Nf + L − 1) × T (Nf + L − 1) input auto-
correlation matrix

Rdd = E
{

dk+Nf−1:k−L+1d
H
k+Nf−1:k−L+1

}
(29)

and the (RNf ) × (RNf ) noise autocorrelation matrix

Rnn = E
{
nk+Nf−1:knH

k+Nf−1:k

}
. (30)

The input–output cross correlation and output autocorre-
lation matrices then follow as

Rdy =E
{

dk+Nf−1:k−L+1yH
k+Nf−1:k

}
= RddCH (31)

Ryy =E
{
yk+Nf−1:kyH

k+Nf−1:k

}
=CRddCH + Rnn. (32)

The vector DFE consists of a feedforward filter matrix

FH
k =

[
FH

k,0 FH
k,1 · · · FH

k,Nf−1

]
(33)

and a feedback filter matrix

BH
k = [BH

k,1 · · · BH
k,Nb

] . (34)

For analytical convenience, we define an extended
T×T (Nf +L−1) matrix B̃H

k = [0T,T� IT BH
k ] that cor-

responds to the symbol vectors dk+Nf−1:k−L+1 in (27). Note
that � is a decision delay that satisfies the condition (� +
Nb + 1) = (Nf + L − 1). In general, for ISI cancellation, we
require Nb ≥ L − 1. For the purpose of modeling, we assume
here that Nb = L − 1 so that � = Nf − 1 [23].

The vector DFE’s error vector at time k, assuming correct
past decisions, is given by

Ek = dk+Nf−1−� − d̃k+Nf−1−�

= dk+Nf−1−� −
Nf−1∑
f=0

FH
k,fyk+Nf−1−f

+
Nb∑
b=1

BH
k,bdk+Nf−1−�−b (putting � = Nf − 1)

= [0T,T� IT,T BH
k,1 · · · BH

k,Nb
] dk+Nf−1:k−L+1

−
[
FH

k,0 · · · FH
k,Nf−1

]
yk+Nf−1:k

= B̃H
k dk+Nf−1:k−L+1 − FH

k yk+Nf−1:k. (35)

The error autocorrelation matrix may then be written as

Ree = E
[
EH

k Ek

]
= B̃H

k R−1B̃k (36)

where

R = R−1
dd + CHR−1

nnC. (37)

To calculate the feedback taps, we partition R into the
submatrix form [23]

R =
(

R11 R12

RH
12 R22

)
(38)

Authorized licensed use limited to: University of Canterbury. Downloaded on June 14,2010 at 04:17:49 UTC from IEEE Xplore.  Restrictions apply. 



1590 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 57, NO. 3, MAY 2008

where R11 is the T (� + 1) × T (� + 1) upper left submatrix.
We further define a matrix

Gt = [0T,T� IT ] (39)

and from (38) and (39), we obtain

B̃k =
[

IT (�+1)

RH
12R

−1
11

]
G =


0T,T�

IT

Bk


 (40)

where B̃k is the extended feedback matrix containing Bk as
the optimal feedback matrix tap coefficients. The error autocor-
relation matrix of (36) can then be calculated and the optimal
� determined such that the trace of Ree is minimized [23].
As we have assumed that the number of feedback matrix taps
is Nb = L − 1, the delay � is fixed at Nf − 1, which is found
to be optimal for most practical channels [23]. The MMSE
feedforward matrix tap coefficients are calculated as

FH
k = B̃H

k RdyR−1
yy . (41)

At each time instant k where we formulate the RNf ×
T (Nf + L − 1) block prewindowed channel convolution
matrix Ĉ, the estimates of (28), where Ĥb,m for b = {k +
Nf − 1, . . . , k} and m = {0, 1, . . . , L − 1}, are the estimates
of the (R × T ) channel matrices Hk,l of (4). Using the estimate
Ĉ in place of C, the matrix tap coefficients of the DFE are then
estimated following the steps described above [23].

The receiver operates in two modes.

A. Training Mode

In this mode, only the VGRLS estimator is operating using a
training sequence of length Lt according to the following.

Step 1) Initiate the VGRLS algorithm with an all-zero es-
timated channel vector ĥ1/0 and an “intermediate”
matrix P1/0 = δ−1IRTLP , where δ is a small posi-
tive real constant, and IRTLP is an identity matrix
with dimension of RTLP × RTLP . Using the ob-
servation vector yk, compute the Kalman gain (21),

update the “intermediate” matrix (22), and update
the estimated channel vector (23).

Step 2) Compute the one-step predicted channel vector
(24) and the one-step predicted “intermediate”
matrix (25).

Step 3) With every subsequent received observation vector
yk, k ≥ 2, repeat Steps 2) and 3) until the end of the
training sequence.

B. Decision-Directed Mode

In this mode, the VGRLS estimator and the DFE operate
together. Due to the equalizer decision delay of � = Nf − 1
symbols with reference to the equalizer input, a time lag is
introduced, where at time k − 1, the output symbols from the
DFE are delayed by � symbol periods. Thus, the output of
the decision device is the estimated symbol vector 4 d̂k−�−1 =
{d̂(1)

k−�−1, d̂
(2)
k−�−1, . . . , d̂

(T )
k−�−1}t. This is fed to the VGRLS

estimator in place of the training symbols to provide the next
channel estimate vector at time k. Using the DFE decision vec-
tors d̂k−�−1, . . . , d̂k−�−L, the received vector yk−�−1, and the
P previously estimated channel vectors, the VGRLS produces
ĥk−�.5 To calculate the vector DFE at time k, the Nf most
recent estimated channel vectors are needed. Up to time k −�,
the channel estimates are available from the VGRLS estimator,
and the last � channel vectors need to be predicted. A simple
method is to assume that the channel remains constant over �
time symbols so that ĥk = ĥk−1 = · · · = ĥk−�, where ĥk−�
is available from the estimator. However, this applies only to a
very slowly fading channel.

As an alternative, we employ a polynomial prediction mod-
ule similar to that of [18] for predicting the � channel vectors.
Since the underlying structure of the VGRLS estimator uses a
t-power series expansion [13] for modeling the channel fading
process as an N th-order polynomial series, the polynomial-
based state transition matrix of (20) is already available.

4For convenience of illustration, we shift the time index of the DFE in this
section from k + Nf − 1 : k to k : k − Nf + 1 so that the output of the
decision device at time k is indexed as d̂k−� instead of d̂k+Nf−1−�.

5For brevity, we simplify the notation ĥk−�/k−�−1 to ĥk−�.




yk+Nf−1

yk+Nf−2

...
yk


=




Hk+Nf−1,0 · · · Hk+Nf−1,L−1 0 · · · 0
0 Hk+Nf−2,0 · · · Hk+Nf−2,L−1 0 · · ·
...

...
0 · · · 0 Hk,0 · · · Hk,L−1







dk+Nf−1

dk+Nf−2

...
dk−L+1


+




nk+Nf−1

nk+Nf−2

...
nk




(26)

C =




Hk+Nf−1,0 · · · Hk+Nf−1,L−1 0 · · · 0
0 Hk+Nf−2,0 · · · Hk+Nf−2,L−1 0 · · ·
...

...
0 · · · 0 Hk,0 · · · Hk,L−1


 (28)
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It is therefore straightforward to compute the predicted channel
vectors as

ĥk−�+1 =Uĥk−�

ĥk−�+2 =Uĥk−�+1

... =
...

ĥk =Uĥk−1. (42)

This method of channel vector prediction (42) is similar in
form to that used in [9].

The channel estimates provided by the VGRLS estimator
and the channel prediction module are used to compute the
feedforward and feedback tap coefficients of the DFE. The
received signal vectors are equalized by the DFE, and a detected
signal vector is produced at the output of the decision device.
These are used at the input of the VGRLS estimator in decision-
directed operation. The operations during decision-directed
mode may be summarized as follows.

Step 1) With ĥk−�−1 available at time k − 1, operate the
VGRLS estimator to produce ĥk−� at time k
using the DFE decisions d̂k−�−1, . . . , d̂k−�−L, the
received vector yk−�−1, and the P previously esti-
mated channel vectors.

Step 2) Predict the next � channel vectors, as in (42).
Step 3) Formulate Ĉ, i.e., the estimated convolution matrix

of (28).
Step 4) Calculate the optimum coefficients of the DFE

matrix tap vectors Bk and Fk of (40) and (41).
Step 5) Equalize the received vectors, and obtain d̂k−�.
Step 6) At the next time instance, repeat Steps 1)–6).

V. SIMULATION RESULTS AND DISCUSSION

We now evaluate the performance of the VGRLS channel
estimator and the integrated estimator and vector DFE. We as-
sume throughout an uncoded VBLAST-type [4] MIMO system.
Independent QPSK signal streams are transmitted from each
transmit antenna. Each transmitted frame consists of Lt = 26
training symbols and Ld = 116 data symbols, unless stated oth-
erwise. We assume independent WSSUS subchannels each with
similar fading conditions. The fading processes are assumed to
follow Clarke’s model [14] and are simulated according to [26].
Each subchannel is assumed to have a delay spread of L = 3
symbols and to have a uniform power delay profile with three
rays. Each of the multipath rays may contain both a specular
and a random component. The Rice K-factor in (8) defines the
power ratio between the specular and random components.

We evaluate the performance of the VGRLS estimator in
terms of the “mean square deviation” (MSD), which is the
squared norm difference between the actual and estimated
channel responses. The estimator is operated alone and con-
stantly updates the estimated channel responses using knowl-
edge of the transmitted signals. It is assumed to operate in
transient mode during the Lt symbol training sequence, after
which, it is assumed to operate in steady-state mode. The MSD
measures this steady-state performance of the estimator, where

Fig. 4. MSD of the VGRLS estimator and that of a Kalman filter for a
(2, 2) MIMO system in a Rayleigh fading channel with a normalized fade rate
fDT of 0.002. VGRLS with N = 0 corresponds to a conventional vector RLS
algorithm. With sufficient training sequence length, the MSD of VGRLS with
N = 2 approaches that of a Kalman filter’s.

the first Lt symbols of each frame are not included in the MSD
calculation. At the beginning of a new frame, the estimator
reinitializes and starts the channel acquisition again. The MSD
performance versus the SNR of the estimator with a fixed
predictor length of P = 3 and 4, and various polynomial orders
N = 0, 1, 2, 3 is evaluated. The steady-state MSD in a given
αth frame is estimated as

σ2
MSD(α) =

〈
‖hk − ĥk/k−1‖2

〉
(43)

where 〈‖ · ‖〉 denotes the time average of the Euclidean norm
operator. The MSD for each subchannel is accumulated and
averaged for 10 000 frames. The overall MSD is then averaged
across the RT subchannels.

The SNR is defined per received antenna. Given that σ2
n is the

AWGN variance at the input of each receiver, then with both
the QPSK signals and the overall random components of the
multipath rays normalized to unit energy, we have

SNR = 10 log
(

(1 + K)
σ2

n

)
. (44)

Unless stated otherwise, we assume that the total transmitted
power is restricted to unit power and equally allocated between
the T antennas.

Fig. 4 shows the MSD behaviors of a VGRLS estimator and
a Kalman filter6 at a normalized fade rate of fDT = 0.002,
where fD is the maximum Doppler frequency. We observe how
the polynomial order N , system SNR, and training sequence
length Lt affect the MSD. At low SNR, where noise dominates,
an estimator with order N = 0 has a slightly better MSD than
the others since the algorithm then primarily acts as a noise
averaging filter [11]. This is also attributed to a smaller norm
of the polynomial coefficients for N = 0 because a larger norm

6We assume Pa = 3 for the Kalman filter, i.e., the same as the predictor
length P in the simulations.
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Fig. 5. MSD of the VGRLS estimator for a (2, 2) MIMO system in a Rayleigh
fading channel with a normalized fade rate fDT of 0.0001.

“magnifies” the noise. At moderate SNR, an order of N = 1
performs not only linear interpolation but also noise averaging
and has the lowest MSD. At high SNR, where the effect of mod-
eling error dominates, an order of N = 2 has the lowest MSD.
These behaviors are consistent with those reported in [11].

It is interesting to note that the estimator MSD exhibits a
floor at sufficiently high SNR, regardless of the value of N .
This was initially thought to be due to the nonconvergence of
the estimator due to an insufficient number of training symbols.
However, when the number of training symbols is increased
to Lt = 78,7 the floor for N = 2 is still visible at very high
SNR, although the effect is slight within the observed SNR
range. This is unlike the scalar case in [11], where the use of
Lt = 52 effectively removes the error floor for N = 2 at high
SNR. As will be shown later, this is actually due to the fading-
related error that cannot be reduced by increasing the SNR
or the polynomial order N . We also note that increasing the
length of the training sequence improves the steady-state MSD
performance of the estimator across the SNR region for all the
estimator orders.

Fig. 5 shows the MSD of the VGRLS at a slower normalized
fade rate of 0.0001, and Fig. 6 shows the MSD at a faster
normalized fade rate of 0.01. The results show a similar trend
in MSD performance, i.e., at low SNR, there is not much
difference between the various orders, but at high SNR, N = 2
offers a significantly lower MSD. They show that the VGRLS
is able to operate in both slow- and fast-fading environments
because it converges in both scenarios.

These figures also reveal the effect of fade rate on the
estimator. A faster fading channel is more difficult to track;
hence, it introduces a fade-rate-related error. Furthermore, due
to the truncation effect of the Taylor series expansion, more
terms in the series (hence a higher polynomial order and
predictor length) are required to support a higher fade rate [19].
This is shown in Fig. 7, where a VGRLS with P = 4 and
N = 3 produces a lower MSD at a fade rate of 0.01 when

7Data length Ld is still 116 symbols.

Fig. 6. MSD of the VGRLS estimator for a (2, 2) MIMO system in a Rayleigh
fading channel with a normalized fade rate fDT of 0.01.

Fig. 7. MSD of the VGRLS estimator for a (2, 2) MIMO system in a Rayleigh
fading channel with a normalized fade rate fDT of 0.01. The VGRLS has a
predictor length of P = 4 and various order N as shown. (Note that the curves
for N = 0 and N = 1 overlap each other).

compared to Fig. 6. However, we note that in slower fading,
a higher polynomial order and predictor length does not offer
any advantage. As shown in Fig. 8 for a fade rate of 0.002, a
VGRLS with P = 4 and N = 3 has the same MSD at high SNR
as that of P = 3 and N = 2. We deduce from these results that
the “floor” at high SNR is attributed to fade-rate-related error
that cannot be lowered by using higher values of P and N . We
note that the Kalman filter produces a slightly lower MSD than
the VGRLS at these fade rates.

We have assumed a uniform power delay profile in our
simulations for simplicity. However, in reality, the power delay
profile may not be uniform. We have investigated the MSD
performance of VGRLS at a normalized fade rate of 0.002
for a (2, 2) Rayleigh fading with a nonuniform power delay
profile modeled according to the SUI-4 channel model [27].
This is a three-ray model with a power profile of 0, −4, and
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Fig. 8. MSD of the VGRLS estimator for a (2, 2) MIMO system in a Rayleigh
fading channel with a normalized fade rate fDT of 0.002. The VGRLS has a
predictor length of P = 3, N = 2 and P = 4, N = 3, with various training
symbol length.

Fig. 9. MSD of the VGRLS estimator for a (2, 2) MIMO system in a Rayleigh
fading channel with a normalized fade rate fDT of 0.002. The VGRLS has a
predictor length of P = 3 and various N with various training symbol length,
as shown. The power delay profile is nonuniform with a power profile of 0, −4,
and −8 dB.

−8 dB. The result is shown in Fig. 9. Compared to Fig. 4 for
a uniform power delay profile, we note that there is negligible
difference in performance. A uniform profile is considered as
one of the more severe profiles as all the multipath rays have
equal power. It is also used as a test profile for the purpose of
GSM’s equalizer testing [28]. In the following, a uniform delay
profile is used, unless stated otherwise.

Figs. 10 and 11 show the MSD performance of the estimator
for a (4, 4) MIMO system at normalized fade rates of 0.002
and 0.0001, respectively. In general, the MSD performance is
worse than that of a (2, 2) system, although it is improved with
a longer training sequence length Lt. We note the irreducible
MSD floor for N = 2 with Lt = 26. This appears to be due
to the failure of the estimator to converge within 26 symbol
periods.

Fig. 10. MSD of the VGRLS estimator and a Kalman filter for a (4, 4) MIMO
system in a Rayleigh fading channel with a normalized fade rate fDT of 0.002.

Fig. 11. MSD of the VGRLS estimator for a (4, 4) MIMO system in a
Rayleigh fading channel with a normalized fade rate fDT of 0.0001.

We now consider the error rate performance of an integrated
receiver consisting of the VGRLS estimator and a vector DFE
[23] operating in a decision-directed mode following training.
The estimated channel responses from the VGRLS estimator
are used to calculate the tap coefficients of the DFE, and the
outputs of the DFE are used by the estimator to update the
estimated channel responses. The simulation at each SNR point
is carried out until 200 symbol errors are encountered, and the
symbol error rate (SER) is averaged across the T transmitted
signal streams. The simulation for the Kalman-filter-based re-
ceiver follows the same approach.

Figs. 12–14 show the average SER performance of inde-
pendently transmitted QPSK signal streams in (2, 2) Rayleigh
fading, (4, 4) Rayleigh fading, and (2, 2) Rician fading MIMO
systems. A MIMO MMSE-DFE with Nf = 4 feedforward filter
taps, Nb = 2 feedback filter taps, and a decision delay of � = 3
is used. The taps are symbol spaced, and frames with a training
sequence of Lt = 78 symbols and a data frame of Ld = 1160
symbols are used. The result shows that the receiver is able

Authorized licensed use limited to: University of Canterbury. Downloaded on June 14,2010 at 04:17:49 UTC from IEEE Xplore.  Restrictions apply. 



1594 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 57, NO. 3, MAY 2008

Fig. 12. Average SER performance of the VGRLS estimator and a Kalman
filter for a (2, 2) MIMO VBLAST-type system in a Rayleigh fading channel
with a normalized fade rate fDT of 0.002 using a MIMO MMSE DFE.

Fig. 13. Average SER performance of the VGRLS estimator and a Kalman
filter for a (4, 4) MIMO VBLAST-type system in a Rayleigh fading channel
with a normalized fade rate fDT of 0.002 using a MIMO MMSE DFE.

to track the channel over a reasonably long data frame before
the next training phase in the subsequent frame. For N = 2,
we have also simulated a more frequent periodic retraining
using Lt = 78 symbols in the first frame and Lt = 26 in all
the subsequent frames with Ld = 116 in all the frames. The
results show that a more frequent periodic retraining offers
only marginal improvement in error rate performance for the
scenarios considered, although the improvement appears to be
slightly greater for the (4, 4) case.

The Rayleigh simulations each have a total of unit transmit
power equally shared among the transmitters with K = 0 and
a normalized fade rate of 0.002. From Figs. 12 and 13, we
observe that at low to moderate SNR, all the channel estima-
tors lead to comparable SER performance, regardless of the
polynomial order used. However, at high SNR, N = 2 performs
somewhat better and is comparable to that of the Kalman-filter-
based receiver, which also starts to exhibit an error floor that

Fig. 14. Average SER performance of the VGRLS estimator and a Kalman
filter for a (2, 2) MIMO VBLAST-type system in a Rician fading channel with
a normalized fade rate fDT of 0.007 and K = 10. The Kalman filter result in
[9] is also plotted for reference.

is not much different from that seen when using the VGRLS-
based receiver. We note that at a SER of 10−3, there is a 5-dB
difference in the Kalman filter’s performance between a (2, 2)
and (4, 4) system. Results with perfect decision feedback (i.e.,
using known transmitted symbols) to the estimator and perfect
channel information for the DFE tap calculation when using the
VGRLS estimator are also included and show that the N = 2
case suffers only modest losses.

We follow the approach in [9] for the simulation of the
(2, 2) Rician fading. We allocate a unit transmit power to each
of the transmitters, so the resulting graph has a log10(T ) =
3 dB increase in the SNR per antenna compared to when
the total transmit power is limited to a unit energy. A Rician
K-factor of 10 and a normalized fade rate of 0.007 are used.
We also assume the specular components of the fading channel
responses to be known when simulating the Kalman filter. This
simplifies the simulation by not requiring the state transition
matrix to be restructured [15]. However, we have used three
instead of two multipath rays in each subchannel, and this
affects the vector DFE’s design. We note that the resulting
Kalman filter’s curve is reasonably close to that in [9].

For the VGRLS estimator, the specular components of the
fading channel responses are not known and are estimated, to-
gether with the diffuse components. From Fig. 14, we note that
at a SER of 10−3, the VGRLS/DFE combination with N = 2
is only 1 dB from the Kalman/DFE receiver. Results using
perfect decision feedback to the estimators and perfect channel
information for the DFE tap calculations are also included.
They indicate almost a 9-dB loss with respect to the perfect
channel information case at a SER of 10−3 but only very modest
losses with respect to a Kalman estimator using perfect decision
feedback.

VI. CONCLUSION

We have developed a symbol-by-symbol-based MIMO re-
ceiver design with integrated channel estimation and tracking.
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In particular, we have developed and used a MIMO channel
estimator employing a VGRLS algorithm that is capable of
tracking time-varying frequency-selective channel responses in
both Rician and Rayleigh fading environments. The estimator
does not require channel and noise statistics to operate and
does not require specific modeling of the specular component
to operate in a Rician fading channel. It has been shown to
be robust and can operate in both fast- and slow-fading envi-
ronments. An MMSE DFE, whose matrix tap coefficients are
derived using the channel estimates from the VGRLS estimator,
is used as an equalizer. A simple polynomial-based channel
prediction module is used to compensate the time lag due to
the decision delay of the equalizer. The resulting symbol error
performance in Rician and Rayleigh fading channels is shown
to be within 1–3 dB of that obtained using an optimum Kalman-
based estimator.
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