THE GEOLOGY AND GEOCHEMISTRY

OF

THE NORTH - EASTERN SECTOR OF

LYTTELTON VOLCANO,

BANKS PENINSULA, NEW ZEALAND

1

1 1

A Thesis

submitted in partial fulfilment

of the requirements for the degree

of

Master of Science in Geology

in the

University of Canterbury

by

ELIAS ALTAYE

University of Canterbury

1989

.

Distant view of the study area, looking north from Diamond Harbour. (LH= Lyttelton Harbour, MC= Mt Cavendish , MP= Mt Pleasant and GD= Godley Head). THESIS

1

<u>CONTENTS</u>

PAGE

List of figures and tables

Abstract

CHAPIER	ł
---------	---

1.

2.

INTRODUCTION1					
1 Location of study area1					
1.2 Physiography1					
1.3 Purpose and scope of study3					
1.4 Field work					
1.5 Previous work on Banks Peninsula5					
1.6 Tectonic setting of Banks Peninsula7					
1.7 Geology of Banks Peninsula7					
1.7.1 Geological Setting and volcanic history					
1.7.2 Post volcanic history12					
STRATIGRAPHY AND VOLCANOLOGY14					
2.1 Introduction					
2.2 Stratigraphy16					
2.2.1 Main phase volcanics16					
2.2.2 Late phase volcanics22					
2.2.2.1 The Mt Pleasant sequence					
2.2.2.2 The Tors sequence					
2.2.2.3 The Mt Cavendish sequence					
2.2.2.4 Pyroclastic deposits31					
2.2.2.5 Lahar deposits					
2.2.3 Intrusive rocks35					
2.2.3.1 Dikes					
2.2.3.2 Intrusion and lava plug					
2.2.3.3 sills					
2.3 Volcanology41					
<i>2.3.1</i> Main phase Lyttelton volcanics41					
2.3.2 Late phase Lyttelton volcanics43					
<i>2.3.3</i> Intrusive rocks43					

		2.4 Discussion
		<i>2.4.1</i> General
		2.4.2 Stratigraphic correlation45
× . ,	3.	PETROGRAPHY48
		3.1 Introduction
		3.2 Main phase Lyttelton volcanics48
		<i>3.2.1</i> Mafic rocks48
		3.2.2 Intermediate rocks51
		<i>3.2.3</i> Felsic rocks
		3.3 Late phase Lyttelton volcanics52
		<i>3.3.1</i> Mafic rocks
		3.3.2 Intermediate rocks52
ł.		3.3.3 Felsic rocks54
ł.		3.3.4 Pyroclastic rocks56
		3.4 Intrusives rocks
		3.4.1 Mafic Intrusives56
		3.4.2 Intermediate Intrusives58
		3.4.3 Felsic Intrusives58
		3.5 Summary and discussion59
	4.	GEUCHEMISIRY
		4.1 Introduction
		4.2 Chemical classification and associations
		4.2.1 Nomenclature
		4.2.2 Chemical association
		4.3 Chemical variations
		4.3.1 Major-element variation
		4.3.2 Trace-element variation
		4.3.3 Oxides and trace elements
		4.4 Main and late phase Lytterion vorcantes geochemical difference/4
		4.5 Stratigraphic variation and correlation using geochemical
		75
		70
		4.7.1 Introduction 70
		4.7.2 CIPW normative mineralogy
		4.7.3 Modelling of petrogenetic processes
		4.7.6 Hoder mg of periodenet te processes

•

		4.7.3.1 General
		4.7.3.2 crustal assimilation in modification of
		Lyttelton magmas
		4.7.3.3 Modelling of fractional crystallization
۰.		4.7.4 Tectonic implication87
		4.8 Discussion
		<i>4.8.1</i> General
		<i>4.8.2</i> Isotope geochemistry89
		4.8.3 Comparison of Lyttelton lavas with other Banks
		Peninsula rocks91
		4.8.4 Summary and conclusion92
	5.	GEOLOGICAL HISTORY AND CONCLUSIONS
		5.1 Volcanic and geological history94
		5.2 Petrogenesis
		5.3 Recommendations for further work97
	6.	ACKNOWLEDGEMENTS98
	7.	REFERENCES
		APPENDICES105
		APPENDIX IField methods105[A] Maps and aerial photographs105[B] Mapping and sampling105
		APPENDIX II Sample locations and field descriptions107 2.A - Table of sample location and field descriptions108
		APPENDIX III Petrographic descriptions114III.A - Petrographic and mineralogical descriptions115III.B - Sample description
		APPENDIX IV Analytical methods131
		. ta

.

	APPENDIX V M	jor element	analyses and C.	I.P.W.	norms	132
	V.	1 - Table of	international 1	laborato	ory standards	
	V.	3 - Major-ele	ement chemistry,	, select	ed ratios an	nd
		CIPW norma	ative mineralogy		••••	
·						
		. .				

	·	
APPENDIX VI	Trace element analyses and ratios1	.40
	VI.A - Table of international laboratory standards1	.40
	VI.B - Trace-element analyses and calculated parameters.	41

APPENDIX VII Selected rock and mineral analyses147
VII.A - Selected rocks analyses
VII.B - Some representative mineral analyses
•••

•

, ``

-

•

•

:

LIST OF FIGURES AND TABLES

List of figures

÷

<u>L100</u>		
FIGURE	PAG	ΞE
1.1 1.2 1.3 1.4	Location map of study area Aerial photograph to illustrate the geomorphology of the area Sketch map showing the major tectonic features of New Zealand Sketch map of New Zealand showing the distribution of Late	2
1.5	Sketch map of New Zealand showing the position of volcanic	6
1.6 1.7 1.8 1.9	Regional setting of Banks Peninsula Simplified geological map of Banks Peninsula Sketch map showing geological features of Lyttelton Volcano Geological evolution of Banks Peninsula volcanoes	. 10 . 11 . 11 . 13
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	Distant view of the main phase Lyttelton lava flow sequence Close-up view of the Evans Pass lava flow sequence View looking north-west towards Mt Pleasant from Sumner road Thick succession of lava flows. Rubbly aa lava flow. Distant view of lava flows forming prominent cliff. Simplified geological map and stratigraphy of east of Evans Pass and Taylors Mistake areas. Dike cutting lava flow, west of Corsair Bay. Section around Evans Pass Distant view of Windsor Castle benmore the flow. Eield relations of lava flows and labor at Evans Pass	.15 .15 .18 .18 .18 .18 .18 .19 .21 .21
2.12 2.13	Irregular to knobbly jointed lava flow Simplified geological map and stratigraphy of the Mt. Pleasant area	.21
2.14	Composite stratigraphic columns and correlation of the Mt Pleasant and Evans Pass area	24
2.15 2.16 2.17 2.18 2.19	Typical features of the Lyttelton aa lava flows Dike-like structure (?) or lava neck feeding the overlying lava Trachyte sill Rubbly aa lava flow on the eastern side of McCormacks Bay Close-up view of moderately jointed plagioclase-phyric hawajite	.26 .26 .26 .28
2.20 2.21 2.22	lava Close up view of plagioclase phyric hawaiite Rubbly aa lava flow Simplified geological map and stratigraphy of the Tors-	.28 .28 .28
2.23	Composite stratigraphic columns and correlation of the Tors-	. 29
2.24 2.25 2.26 2.27 2.28 2.29 2.30a	Moderately columnar jointed pattern Jointing in the Mt Pleasant plagioclase phyric lava flow View of the central region of Mt Pleasant View of the Tors, Mt Cavendish and Mt Pleasant area View of southern face of Castle Rock intrusion Red crystal tuff flow [*] . Columnar jointing pattern on the western face of Castle Rock	.30 .32 .32 .32 .34 .34 .34 .34

2 30b 2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40 2.41 2.42 2.43 2.44	Lahar deposit.36Trachytic lava neck exposed south of the Tors.36Trachyte dike intruding lahar.36An example of vertical contact between lava flows.36View of the Tors lava sequence.38Columnar jointed lithic-crystal tuff.38Distant view of the south-eastern slopes of Mt Pleasant38Closer view of lithic-crystal tuff flow.38A view of the southern slopes of Mt Cavendish.40Lava flow overlying the red and red-brown pyroclastic deposit.40Basaltic dike intruding pyroclastic material.40The sequence of lava flows and red ash horizons.40Trachyte flow fed by dike.42Distant view of the Tors-Mt Cavendish and Mt Pleasant lava42
2.45 2.46 2.47 2.48 2.49 2.50 2.51	sequence
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16	Corroded and resorbed olivine phenocrysts
4.1 4.2 4.3 4.4 4.5a 4.5b 4.6a 4.6b 4.7a 4.7b 4.8a 4.8b	Differentiation Index (D.I) versus normative plagioclase diagram63 AFM plot for Lyttelton rocks

4.9 4.10a 4.10b 4.11a 4.11b 4.12 4.13 4.14	Selected major and trace elements versus stratigraphic height77 Normative Di-Ol-Hy-Ne-Qz diagram for Lyttelton basic rocks81 Normative Di-Ol-Hy-Ne-Qz diagram for Banks Peninsula basaltic rocks.81 Tectonic discrimination diagram using Ti, Zr and Y
5.1	Schematic diagram of Lyttelton cone and petrogenetic history of Lyttelton volcano

List of tables

TABLE

PAGE

ABSTRACT

Miocene volcanic activity constructed the Lyttelton composite cone 11-10 Ma ago. The Lyttelton volcano which forms the north western half of Banks Peninsula represents a significant volume of mafic volcanic rocks together with some of felsic and minor intermediate composition. In addition to these, the volcano is characterized by pyroclastic deposits (lahars and lithic-crystal tuffs). Lyttelton lavas are intruded by numerous radial dikes and also by a variety of lava domes, sills and plugs. The volcanism was mainly Hawaiian in style, with some Vulcanian and occasional Strombolian styles of activity.

Within this composite volcano, two major phase of volcanic activity are recognized. These are the main phase (the older) and late phase (younger) Lyttelton volcanics defined on the basis of field relationships, petrography and geochemistry. The late phase volcanics are designated formally as the Mt Pleasant Formation. The main and late phase Lyttelton volcanics range from mafic to felsic rocks compositions. The dikes range from basalt to trachyte and intruded the volcano during the main and late phase of volcanic activity. Sills and intrusions have felsic compositions. The major valleys and the lahar deposits represent periods of degradation of the active cone.

Both the main and late phase (Mt Pleasant Formation) Lyttelton volcanics are alkaline tending transitional in geochemical affinity. The alkaline, sodic series Lyttelton rocks are members of the alkali olivine basalt association and this designation is consistent with mineralogy. Some intermediate and felsic Lyttelton rocks are subalkaline and potassic in composition, but they are classified as alkaline olivine basalt associations on the basis of their mineralogy.

There are geochemical distinctions in major oxides, trace-elements and normative mineralogy between the main and late (Mt Pleasant Formation) Lyttelton rocks. The petrogenesis of the main and late Lyttelton volcanics mafic lavas is best explained by low pressure crystal fractionation of the observed phenocryst phases. The intermediate and felsic rocks are derived by similar processes with minor crustal contamination. Tectonically, Lyttelton volcanics represent "within plate" alkaline mafic volcanism.

CHAPTER 1

INTRODUCTION

Banks Peninsula consists mainly of the eroded remnants of two large stratovolcanoes, Lyttelton and Akaroa. In recent years, the geology of Banks Peninsula has been increasingly studied and discussed. However, studies on the Lyttelton volcanics, have been very limited. For this reason, the present study has been selected with the primary intention of producing detailed geological, volcanological and petrological interpretations and secondly to add to the present understanding of the evolution of Banks Peninsula.

1.1 Location of study area

The north-eastern sector of Lyttelton volcano is located about Long.172 44' and Lat.43 36' in the northern quadrant of Banks Peninsula, on the east coast of the South Island, New Zealand (Fig. 1.1).

The boundary of the area towards the east is the Tors and towards the north Ferrymead, including the Redcliffs and Sumner areas. The southern boundary is Cass Bay and Lyttelton Harbour (Fig. 1.1).

1.2 Physiography

1 /

Lyttelton volcano has undergone extensive erosion to produce the present highly dissected terrain. Points of highest elevation are mostly confined to the central parts of the mapped area (Fig. 1.1). Most of these peaks are made up of successions of lava flows. The highest peaks in the area are Mt. Pleasant (499 metres a.s.l), the Tors (460 metres a.s.l.) and Mt. Cavendish (455 metres a.s.l.). These peaks have an ill-defined east-west alignment, probably related to the Lyttelton crater-rim margin (see later discussion).

In general, the physiography of the area records a juvenile drainage pattern. Numerous valleys radiate from the Summit road in different directions and are incised into rock bodies comprising lava flows and minor intrusives (Fig. 1.2).

Vegetation is dominantly a mixture of grazing land, both grass and tussock, with some native bush in the inaccessible valleys and creeks. Patches of bush occur in some places, such as the Jollies Bush Scenic Reserve (Fig. 1.1).

Access to the mapped area is generally good and gained via the Summit Road (Fig. 1.1) which goes though the central part of area. Numerous tracks and walkways cross the study area.

1.3 Purpose and scope of study

The aim of this study is to describe the stratigraphy, petrology, geochemistry and volcanic geology of the north-eastern sector of Lyttelton volcano (Fig. 1.1).

The primary objectives of the study are three fold:

- [1] Detailed geological mapping and stratigraphy of the area:-
 - (a) The identification of lava flows and their correlation between different outcrops on the basis of field characteristics.
 - (b) The description of vertical variation in lithologies (stratigraphy).
 - (d) To present a detailed geological map
- [2] Petrological and geochemical studies :
 - (a) To present geochemical data, and describe the variation of major and trace element concentrations.
 - (b) To compare the petrology of the volcanic rocks of the study area with other parts of Banks Peninsula.
 - (c) Discuss the petrogenesis of the magmas and magmatic processes involved.
 - (d) To assess the regional tectonic setting based on geochemical data.
- [3] To comment upon the geological history of the area, based on the results obtained from the stratigraphy and geochemistry.

Fig. 1.2 Satellite image of Banks Peninsula and aerial photograph to illustrate th geomorphology of the mapped area.

1.4 Field work

The Way

Field work was undertaken over a period of five months between June and December 1987. Mapping was conducted using aerial photographs and topographic maps. Maps and aerial photographs used during field work are presented in appendix I and sample description and grid references are listed in appendix II.

Rock exposures are mainly confined to valley sections, clifflines and road cuts. Most of the lavas are mantled by loess deposits. 265 samples were collected from different localities for petrographical and geochemical analysis.

1.5 Previous work

Julius Von Haast was the first to work on the geology of Banks Peninsula. In 1859 Haast undertook geological studies on Mt Pleasant. Haast (1864) described two centres of volcanism on Banks Peninsula (Akaroa and Lyttelton volcanic centres), but later (Haast, 1879) modified his ideas and suggested four centres of volcanism (Akaroa, Lyttelton, Little River and Mt Sinclair).

Speight (1908, 1917 and 1924) extended the earlier work of Haast, and in his 1935 publication identified three eruption centres (Akaroa, late Lyttelton and early Lyttelton phases).

Ligget and Gregg (1965) produced the first detail geological map of Banks Peninsula and distinguished the Diamond Harbour volcanics from Lyttelton and Akaroa volcanoes. Stipp and McDougall (1968) established the age of Banks Peninsula volcanics (ranging from 12.0 to 5.8 Ma) using K/Ar dating.

Much of the information on the Banks Peninsula region is drawn from Canterbury University unpublished theses (Dorsey, 1981, Falloon, 1981, Thiele, 1983 and Sewell, 1985). Recent published accounts are those of Weaver (1980) on Lyttelton volcano, Shelley (1985, and 1988) on Lyttelton volcano radial dikes and Sewell (1988) on the geology of the central region of Banks Peninsula. Summaries on the general geology of

Fig. 1.3 Sketch map showing the major tectonic features of New Zealand region, bathymetric contour is 2000m (Cole, 1986).

Fig. 1.4. Sketch map of New Zealand showing the distribution of late Canozoic Volcanism (Cole. 1986).

6

-

Banks Peninsula have been published by Weaver et al (1985) and Weaver and Sewell (1986). Lyttelton geological map 1:50,000 Sewell et al. (1989).

7

1.6 Tectonic setting of Banks Peninsula

Most of the different volcanic provinces in New Zealand are related to Cenozoic tectonic processes (Figs. 1.3, 1.5) involving the convergence of the Pacific and Indo-Australian lithospheric plates (Smith,1986). Cole (1986) has noted that the tectonic setting of most late Cenozoic volcanism in New Zealand can be related to the change in position of the Indian-Pacific plate boundary (Fig. 1.3). The major active tectonic features in New Zealand are a subduction zone dipping westwards (Kermadec trench) under the North Island, a subduction zone dipping eastward (Puysegur trench) under the South Island and the dextral Alpine Fault system between them (Fig. 1.3). At the beginning of Miocene, *Intra-plate* volcanism occurred along the East Coast of South Island (Fig. 1.5).

Late Cenozoic volcanism in New Zealand has occurred in eleven provinces since the beginning of the Miocene (Cole, 1986). The distribution of the volcanics is shown on Figure 1.5. The age, chemical type and tectonic setting of the late Cenozoic volcanism are given in Table 1.1.

1.7. Geology of Banks Peninsula

This section draws heavily from data and results that have been provided by other earth scientists writing about the stratigraphy and geologic history of the Banks Peninsula region. This section provides a summary of previous work which forms a basis for this more detailed study.

1.7.1 Geological setting and volcanic history of Banks Peninsula

Banks Peninsula is on the east coast of the South Island, New Zealand and comprises two dissected strato-volcanoes, Lyttelton in the north-west adjacent to the city of Christchurch, and Akaroa in the south-east (Fig 1.1).

1	2	3	4	5	6	7	8	9
Volcanic Province	No. on Fig. 2	Age	Age of Subduction	Distance to edge of Subduction (km²)	No. of volcanic features	Spreading (km)	Chemical type	Desig- nation
Colville Ridge	1	OI-M	OI-M?	22	2	_	AmK?	A
Havre Trough	2	P-Q	P-Q	2-3	_	>80	BIP	0
Kermadec Ridge	3	P-Q	P-Q	2	5(V)	<u> </u>	BI-AIK	A
Bay of Plenty	4	0	Q	2.5-3	12(1)	?	BI-AmK	O-C
TVZ (arc		ŶQ	Q	2.5	19(1)	—	AmK	Α
(marginal basin	5b	Q	Q	2.5-3	>50(V)	>4.2	Bha/R	С
Mayor Island	6	Q	Q	4	1(V)	_	Rp	2
(Waitakere	7:1	M	OI-M?	22	3(M)	_	BI-AmK	A
NW Volcanics E. Northland-								
Coromandel- Kiwitahi	7Ь	M-P	OI-M?	2?	>50(1')	<5	AmK-R	A-C
Taranaki	8	Q	OI-M?	>3.5?	4(M)	-	AmK	A?
Northland-Auckland-Waikato	9	M-Q	_	>4?	>50(V)	<5?	Bá-Bi-Rp	1
Banks Peninsula-Dunedin	1 ():1	M-Q		2	6(M)	_	Ba-Bt	1
Chatham Rise-Campbell Plateau	1015	E-Q		2	6(M)	_	Ba-Bt	1
Solander Island	11	2	Q	1.7	1(1)		AmK	Λ

Table 1.1 - Data on the volcanic provinces of New Zealand region (Cole, 1986).

Column 1 gives the name of the province, most names being in general use. Column 2 gives the number of the province as shown in Fig 1.5. Column 3 and 4 gives the geological age which may be inferred directly from radiometric dating or (map) distance to the relevant subduction zone. Column 6 shows the number of volcanic features within the province. Column 7 gives the amount of spreading inferred for the province and Column 8 the chemistry of the bulk of the province according to the symbols given below. Column 9 gives the designation of the tectonic enviroment. Symbols are as follows: Age (Columns 3 and 4): Q = Quaternary; P = Pliocene; M = Miocene; Ol = Oligocene; E = Eocene. Volcanic features (Column 6):(V) = Volcano; (M) = volcanic massif. Chemistry (Column 8): Bt = tholeiitic basalt; Ba = alkali basalt (+ differentiates); Bha = high-alumina basalt; AmK = medium-K andesite/decite; AIK = low-K basaltic andesite/ andesite; R = rhyolite; Rp = peralkaline rhyolite. Designation (Column 9): A = arc; O = oceanic marginal basin; C = continental (ensialic) marginal basin; I = "intra-plate".

Fig .1.5 Sketch map of New Zealand showing the position of the volcanic provinces (Cole, 1986). The symbol used for each province indicates the inferred tectonic designation (see table 1.1). Vertical or diagonal lines = arc; horizontal lines = oceanic marginal basin; cross hatching = continental (ensialic) marginal basin; dots = "intra-plate".

The oldest rocks on Banks Peninsula are those which crop out in the Gebbies Pass area, towards the head of Lyttelton Harbour, which are Triassic in age. They belong to the Torlesse Terrane, such as the Southern Alps, the Marlborough Ranges and the main range of the North Island. They are sedimentary rocks originally deposited as sand, silts and muds.

According to Weaver et al (1985) the oldest volcanic rocks occur in Mc Queens Valley and south along Gebbies Pass and were erupted about 90 Ma ago. They belong to the McQueens Volcanics (pyroxene andesite and peraluminous high silica rhyolites) and are a part of an extensive calc-alkaline volcanic field now largely removed by erosion. Volcanic rocks of similar age and type occur at Mt Somers, the Malvern Hills and Rakaia Gorge (Figs.1.4, 1.6).

Banks Peninsula was submerged beneath the sea 65 Ma ago. During this time, sediments were deposited, compacted and consolidated to form Charteris Bay Sandstone. About 15 Ma ago the land had become uplifted, probably as part of the Kaikoura Orogeny. Volcanic activity began at the same time, with the eruption of Governor's Bay volcanics (15.0-12.0 Ma), followed by Lyttelton volcanism about 12 Ma years ago (Table 1.2). Lyttelton lavas are mostly erupted as aa lavas and the activity is dominantly Hawaiian in style with some more explosive strombolian interludes represented by parasitic scoria cones within the main crater and on the outer slopes (Fig.1.8).

To summarize, Lyttelton volcano is constructed on basement rock consisting of Triassic sandstones, mudstones, cherts (Torlesse group), Cretaceous volcanics, (McQueens andesite and rhyolite) early to middle Tertiary sandstones (Charteris Bay sandstone) and middle Miocene Governors Bay Volcanics. During the construction of the Lyttelton cone basaltic to trachytic radial dikes were emplaced. Mount Herbert and Akaroa volcanoes become active and were followed by Church volcanic activity. Then the final phase of activity produced Stoddart volcanics (Fig.1.7 and Table 1.2). Miocene volcanic eruption in Banks Peninsula started about 12 Ma years ago and continued for 6 million years recording a change from transitional tholeiitic to moderately alkaline chemistry. Lyttelton and Akaroa volcanics constitute a mildly alkaline

9

. . .

Fig. 1.6 Regional setting of Banks Peninsula, Mt Somers and Canterbury Volcanic field. The Cretaceous andesites and rhyolites on Banks Peninsula are the same age as the Mt Somers Volcanics (Barley, 1986).

GROUP FORMATION		K/Ar AGE RANGE (Ma)	LITHOLOGY
STODDART	STODDART POINT OLIVINE-BASALTS	7.0 - 5.8	Fresh, columnar-jainted, alvine ¹ discopyratene phyric basanites, alvine – basaits and olivine – havailtes – rare alvine – basait dikes
VOLCANICS	KAIORURU OLIVINE HAWAIITES	6.9 - 6.8	Commonly weathered, veelcular, pole pink, alivine + clinopyraxene - phyric and aphyric alivine - hawalites
CHURCH	CHURCH BAY	7-8 - 7-3	Fresh, columnar-jointed, olivine ± clinopyroxene ± plagloclase – phyric olivine – basolts
VOLCANICS	DARRA BASANITOIDS	8.1 - 7.7	Fresh, columnar-jointed olivine ± clinopyrosene – phyric basanitoids – rare basanitoid dikes
AKAROA . VOLCANICS		9.0 - 8.0	Fresh, medium to fine - grained, olivine - dinopyrazene - plagloclase - phyric and gray, aphyric hawalitee - rare trachyte domes and dikes
	MT HERBERT HAWAIITES	8.5 - 8.0	Grey, columnor-jointed, aphyric and rarely altvine-phyric ativine-howalites
	CHATEAU INTRUSIVES	8.0	Grey, columnar to knabbly - jointed aphyric hawalites
MT HERBERT	PORT LEVY FORMATION	8.9 - 8.5	Grey-black, columnar-jainted, aphyric howal- lites-rare porphyritic basaits and mugearities
VOLCANICS	ORTON - BRADLEY FORMATION	9.5 - 8.6	Black, fresh aphyric, olivine - hawalites & aliv- ine + clinopyrouane + plagloclase - phyric olivine - basatis
	KAITUNA OLIVINE-HAVAJITES	9.7 - 9.5	Cournar-jointed, dark grey-black, fresh, alvine + cinopyroxene-phyric allvine -
LYTTELTON VOLCANICS		11 - 10	Moderately weathered, ploglocase ± olivine ± clinopyrozene - phyric howalites - trachyrie lova flows and domes - numerous inachytic and bosairic dikes
GOVERNORS BAY VOLCANICS		? 12 - 11	Altered plaglaciase + clinopyrasene 2 olivins 2 orthopyrasene - phyric andesite flaves and quorit - alkali feidspar-phyric rhyalite domes

Table 1.2 Stratigraphy of Miocene Volcanics of Banks Peninsula (Weaver and Sewell, 1986)

Fig. 1.7 Simplified geological map of Banks Peninsula (Weaver and Sewell, 1986).

Fig. 1.8 Sketch map showing geological features of Lyttelton volcano (Sewell, 1985).

11

.:

olivine basalt-trachyte suite. The older Governors Bay volcanics include sub-alkaline anorogenic andesites and rhyolite. The younger Church and Stoddart volcanics (Fig 1.7 and Table 1.2) are composed of basaltoid rock ranging from basanites to hawaiites (Weaver and Sewell 1986).

Banks Peninsula remained above sea level throughout the period of Miocene volcanic activity. This is supported by the absence of fossils, pillow lavas and hyaloclastites. Walcott (1984) noted that the region has not been disturbed tectonically during the Miocene. The elevated area of Banks Peninsula is about 1200 square kilometres. 8 Ma years ago the highest peaks of Banks Peninsula were about 1500 metres above the present sea level. Since then, through erosion, the present height of Lyttelton peaks has been reduced to approximately 500 metres. The Lyttelton and Akaroa volcanic peaks have been deeply dissected by erosion and the sea has invaded major drainage channels to form Lyttelton and Akaroa Harbours (Figs 1.7, 1.8). Figure 1.9 summarizes the geological evolution of the Miocene volcanics of Banks Peninsula.

1.7.2 Post volcanic history

New York

Many of the Banks Peninsula valleys are of ancient origin and are related to a drainage system established on the active Lyttelton cone (Weaver et al 1985). Old radial drainage channels developed into Lyttelton and Akaroa Harbours were lengthened and deepened in post volcanic periods (Figs.1.8 and 1.9).

During glacial periods, thick blankets of loess were deposited on Banks Peninsula. The loess originated from the accumulation of wind-blown fine quartz sand and silt, probably coming from the Torlesse rocks of the Southern Alps and picked up from Canterbury plain by north-west winds during glacial periods. About 6000 years ago sea level was a few metres higher than it is now. This is confirmed by the presence of old sea cliffs, caves and stacks at different localities, around the Peninsula such as Redcliffs and Sumner, (Fig 1.1). Recent deposits are represented by alluvium resulting from the weathering and disintegration of volcanic rock and mixture with loess.

Fig. 1.9 Goological evolution of Banks Peninsula Volcanoos (Weaver et al, 1985),.

Numbers refers age in million years.

- Autober's refers age in million years.
 a- Eruption of the Governor's Bay Volcanics from numerous centros at the head of Lyttelton Harbour.
 Construction of the main cone of Lyttelton Volcance.
 Initial eruptions of Mt Herbert Volcanics on to the South eastern flanks of the eroded Lyttelton cone, through a breach in the crater wall.
 d- Deep exacavation of Lyttelton crater by erosion. Formation of lake on the crater floor and eruption of basalt lavas into the lake water.
 e- Further eruptions of Mt Herbert Volcanics from vents close to the crater wall breach and from near Port
 f- Levy. Akaroa volcano became active.
 g- Eruption of Dimond Harbour volcanics from numerous vents on the flanks of the eroded Lyttelton crater. Excavation of Akaroa crater and the main channel along which Lyttelton and Akaroa Harbours developed.
- h. Akaroa Cratter and the finance:
 h. Development by erosion of the present topography of Banks Poninsula. Gravels of the Canterbury Plains joined the Island to Mainland.

CHAPTER 2

STRATIGRAPHY AND VOLCANOLOGY

Field and petrographic work has led to the sub-division of the Lyttelton Volcanic Group into main Lyttelton and late Lyttelton phases. The late phase volcanics are formally designated the "Mt Pleasant Formation" (new name).

2.1 INTRODUCTION

In this chapter, the stratigraphy and volcanology of the north-eastern sector of Lyttelton volcano are described and discussed. Description is based on field relationships, petrography and geochemical data. Field descriptions and the locations of 310 samples are given in appendix II, 184 thin sections examined are listed in appendix III and 64 chemical analyses of selected samples are presented in appendix V and VI.

Exposure over most of the north-eastern sector of Lyttelton volcano is poor due to a thick mantle of Quaternary loess and vegetation cover. However, good exposures occur around the crater walls of the volcano, major valleys and shore platforms. The mapped area consists of approximately 62% lava flows, 12% pyroclastics and lahars and 1% intrusives, with 25% loess cover.

The stratigraphic geology is discussed under separate sub-chapters in terms of main and late phase Lyttelton volcanics. Intrusive rocks are described separately. Most of the discussion is in terms of three areas identified on the basis of geological and geomorphological relationships. These are the Tors-Mt Cavendish area, the Mt Pleasant area and Taylors Mistake and area east of Evans pass. The stratigraphy of each area is presented and composite stratigraphic columns for the whole area have been constructed (Fig 1.51). This is followed by a summary discussion of the entire mapped area.

Fig. 2.1 Distant view of the main phase Lyttelton lava flows sequence exposed between Evans Pass (EV) and Livingstone Bay (LB). 1= Plagioclasephyric benmoreite lava flow, 2= Plagioclase-phyric hawaiite and mugearite lava sequence.

Fig. 2.2 Close-up view of the Evans pass lava flows sequence (2), exposed east of Evans Pass. The red material is ash/lapilli tuff or the pyroclastic layers (A) which occur between most lava flows (F).

2.2 STRATIGRAPHY

2.2.1 Main phase Lyttelton Volcanics

These comprise plagioclase-phyric hawaiite, mugearite and benmoreite lava flows. The hawaiite and benmoreite flows cover mostly the outer and inner slopes of the volcano and are distributed throughout the study area.

Plagioclase-phyric hawaiite lava flows :-

General characteristics:-These are dark-grey, moderately weathered and medium grained. The dominant phenocrysts are olivine, clinopyroxene and plagioclase. Flows are massive and/or have weak columnar jointing in lavas > 8 metres thick. Flows often show rubbly texture and have basal flow breccia and alternate with thin (< 0.5 metres) pyroclastic horizons (red ash and lapilli material). Individual lava flows vary in thickness between 2 and 5 metres. The total thickness of the sequence is about 80 metres.

The hawaiite lava flows are exposed throughout the mapped area (Fig. 2.7, 2.13 and 2.22). They have a typical rubbly appearance (Figs. 2.18, 2.21) and have basal flow breccias (Fig. 2.15) around Mc Cormacks Bay (GR, M36/883390). Around Moncks Bay they are separated by thin (<0.50 metre) pyroclastic layers and show columnar jointing (Fig. 2.19). The total thickness of the flows is more than 50 metres at Moncks Bay (Fig. 2.21 and GR, N36/904374). Cave Rock, Sumner (Fig. 2.5) is a good example of the rubbly nature of the flows. This cave was formed by the removal of rubbly aa lava by marine erosion. South of Sumner, (GR, M36/895352), flows show regular to knobbly jointing (Fig. 2.46). Around Sumner (GR, M36/915373) flows are medium to coarse grained and porphyritic (Fig. 2.20).

Plagioclase-phyric mugearite:-

General characteristics:-This unit is dark-grey in colour and fine-medium grained. The thickness of the unit is variable (5-15 metres). The dominant phenocrysts are plagioclase, olivine and clinopyroxene. This flow is weakly jointed and is separated from the overlying and underlying flows by thin (<0.50 metre) pyroclastic (ash and lapilli) layers. Flow breccia is absent or very poorly developed. This unit is exposed around the Evans Pass area

GROUP	PHASE	FORMATION	EXTRUSIVE ROCKS	INTRUSIVE ROCKS	
JYTTELTON VOLCANICS	LATE	MT PLEASANT	 -Dark-grey moderately tabular to columnar jointed, medium grained, olivine-pytokene-plagicclase-phyric hawaiite of the Tors, Mt Cavendish and Mt Pleasant area. -Medium to fine grained mugearite lava flows of the Tors area and benmoreite lava flow of the Mt Cavendish area. -Columnar, tabular to irregular jointed, weathered, medium-coarse grained, grey yellow pink, plagioclase phyric trachyte flow of the Mt Pleasant area. -Lithic-crystal tuff of the Mt. Pleasant and Mt. Cavendish area and lahar deposits. -Columnar, tabular, knobbly jointed, weathered dark grey yellow-brown plagioclase phyric 	LYTTELTON VOLCANIC GROUP	-Basaltic dikes -Castle rock trachyte intrusion -Basalt to trachyte composition dikes -Trachyte lava plug of the Tors area -Trachyte sills of the Tors and
	WAIN		 dark grey yellow-brown plagioclase phyric benmoreite lava flows. -Dark grey moderately columnar jointed, plagioclase-phyric mugearite lava. -Grey dominantly porphyritic plagioclase- phyric hawaiite lava flows. 	×	-Trachyte sills of the Tors and Mt Pleasant area

Table 2.1 Stratigraphy of the north-easten sector of Lyttelton volcano.

•

• •

17

Fig. 2.3 View looking north-west towards Mt Pleasant from Summer road. Note: (i) a thick deposit of loess (LS), the vertical fluting on the surface of the loess is the result of erosion by surface run-off; (ii) the red crystal tuff (CT) and the underlying lava flow (F).

Fig. 2.4 Thick succession of lava flows exposed on the north-eastern side of Lyttelton Harbour. (BP=Battery Point, GB=Gollar Bay)

Fig. 2.5 Rubbly aa lava flow (GR, N36/906379) Note: coherent lava at top and rubb. at the base of the flow.

Fig. 2.6 Distant view of lava flow forming prominent cliff at Scarborough (TM=Taylors Mistake, BR=Black Rock, GN=Giant's Nose).

Figure 2.7: Simplified geological map and stratigraphy of east of Evans Pass and Taylor's Mistake area

(GR, M36/903348). The unit overlies the plagioclase-phyric hawaiite flow and underlies a plagioclase-phyric benmoreite flow (Figs. 2.1, 2.2).

Plagioclase-phyric benmoreite:-

General characteristics:- A single flow can be distinguished from other units by its well developed columnar and horizontal jointing, tabular jointing and grey-yellow brown colour in the field. The other distinguishing characteristic is the absence of basal flow breccia and unconformable relationship on the plagioclase-phyric hawaiite and mugearite lava flows. The flow is generally weathered, medium-grained and the dominant phenocrysts are plagioclase and clinopyroxene. The thickness of the unit is variable (2-50 metres). The best exposure of this unit is at Windsor Castle (GR, M36/895363 and Figs. 2.13, 2.10). Here the flow strikes NNE and overlies plagioclase-phyric hawaiite (Fig. 2.13). Benmoreites are exposed around the Tors-Mt Cavendish areas, Mt Pleasant and Evans Pass areas (Fig. 2.7, 2.12 and 2.22).

Taylors Mistake and east of Evans Pass area.

General:- This section summarizes the general geology and stratigraphy of the Taylors Mistake east of Evans Pass area (Fig. 2.7). 52 samples were collected and described (appendix IIA), 32 thin sectioned (appendix IIIA) and 13 chemically analysed (appendix V and VI). The exposures in these areas are represented by the main phase Lyttelton Volcanics. North-east of Lyttelton Harbour (GR, M36/903348), good stratigraphic sections of main phase Lyttelton lavas are exposed along the cliffs (Figs. 2.13, 2.14). The cliffs are made up of three major lava flows (plagioclase-phyric hawaiite, mugearite and benmoreite) separated by thin (< 0.50 metre) pyroclastic layers (Figs. 2.1, 2.2). The coherent lava flows and the thin pyroclastic layers are collectively called the Evans Pass lava sequence (Fig. 2.7). Plagioclase-phyric hawaiite flows cover areas around Sumner, Scarborough and Taylors Mistake (Fig. 2.7). Most of the area east of Evans Pass are covered by benmoreite lava flows (Gr, M36/903346). Similar outcrops of benmoreites are exposed north of Breeze Bay (GR, N36/924348). Lahar deposits exposed in this part of the area have similar characteristics to the Mt Pleasant area lahars (later discussion).

Fig. 2.8 Dike cutting lava flow, west of Corsair Bay, (GR, M36/855332)

Fig. 2.10 Distant view of Windsor Castle benmoreite flow (GR, M36/895363).

Fig. 2.12 Irregular to knobbly jointed lava flow (GR, M36/895352). Note, spheroidal weathering of the lava.

Fig. 2.9 Section around Evans Pass showing loess deposit (LS). LR=red lahar and lava flow (F). (GR, M36/90034

Fig. 2.11 Field relations of lava flows and lahar at Evans Pass (GR, M36/897345). Note: vertical contact of, lava flow (1), red lahar (2), yellowish lapilli ash (. and lava flow (4).

2.2.2 Late phase Lyttelton Volcanics :-

Mt Pleasant Formation (new name):-

The late phase Lyttelton volcanics are designated as Mt "Pleasant Formation":- This comprises hawaiite, mugearite, benmoreite and trachyte lava flows of the Mt Pleasant, the Tors and Mt Cavendish sequences. The other members are lithic-crystal tuffs and lahar deposits (Table 2.1). Around Mt Pleasant (M36B876354) the main phase and late phase volcanics are separated by an angular unconformity. The lower (main phase) lava flow dip more steeply than the late phase. The main phase lava sequence dips away from the main Lyttelton centre with varying dip directions. The late phase flows dips towards the north-east.

The Mt Pleasant area.

General:- The sub-areas discussed under this section includes those north-east of Lyttelton Harbour, south of Sumner and west of Evans Pass. The geology of the Mt Pleasant area is shown in figure 2.13. From this area 96 samples were collected (appendix IIA) 66 thin sections (appendix IIIA) were made and 18 samples chemically analysed (appendix IVA and IVB). The major outcrops are lava flows, intrusives (dikes and sill) and pyroclastics (lahar and lithic-crystal tuff). The Mt Pleasant area lava flows include both the main and late phase Lyttelton Volcanics. The main phase Lyttelton Volcanics around Mt Pleasant include plagioclase-phyric hawaiite lavas and benmoreite lava flows.

2.2.2.1 The Mt Pleasant sequence

This includes two distinctive flow units:-plagioclase-phyric trachyte and hawaiite. The other members are lithic-crystal tuffs and lahars.

(i)*Plagioclase-phyric trachyte:*-This flow is distinguished from the other flows by its well developed columnar and horizontal jointing, non-vesicular appearance, abundance of plagioclase phenocrysts, grey to yellow appearance and the absence of flow breccia (Figs. 2.24, 2.25). The flow always forms cliff-like features and rests unconformably upon the main phase plagioclase-phyric hawaiite lavas. Pyroclastic material is absent beneath the

Figure 2.13: Simplified geological map and stratigraphy of the Mt Pleasant area

1 State

Fiq-2.14: Composite stratigraphic columns and correlation of Mt Pleasant and Evans Pass areas

flow. The flow is exposed around the Summit Road (GR, M36/876354) lying unconformably on the main phase Lyttelton plagioclase-phyric hawaiite lavas (Figs. 2.13, 2.26). The dip of the trachyte varies but suggests that the source area is somewhere south of Mt Pleasant peak area. The flow reaches a maximum thickness of 30 metres at Mt Pleasant where it is best exposed (Figs. 2.13, 2.14). The thickness of the trachyte also supports the likely locality of the source sugested above.

(ii)*Plagioclase-phyric hawaiite*:-This unit is best exposed at Mt Pleasant (GR, M36/879354). The unit is made up three lava flows alternating with thin (0.50 metre) pyroclastic (lapilli-ash) layers. Flow breccias are absent and lava flows are dark-grey in colour, nom-vesicular and are moderately fresh. These flows are medium-grained, olivine-clinopyroxene-plagioclase-phyric hawaiite. The total thickness of the three hawaiite flows are about 10 to 30 metres. This flows have poorly developed horizontal and columnar jointing or may be massive. This sequence overlies the Mt Pleasant plagioclase-phyric trachyte (Fig. 2.26) and collectively named the Mt Pleasant plagioclase-phyric hawaiite lava sequence (Fig. 2.13).

The Tors-Mt Cavendish area

General:-This area includes the Major Hornbrook track, Castle Rock, Cass Bay, Corsair Bay and Heathcote (Fig. 2.22). From these localities 155 samples were collected and described (appendix II-A), 85 thin sectioned (appendix III-A) and 34 X-Ray fluorescence analyses obtained (appendix V and VI). A simplified geological map and stratigraphic column for the area is presented in figure 2.22 and 2.23. Both main and late phase volcanics occur in the Tors-Mt Cavendish area. The major outcrops include lava flows, intrusive rocks (basaltic to trachytic dikes, trachyte sills and lava plug) and pyroclastics (lithic crystal tuffs and lahar deposits). The area around Mt Cavendish is characterized by parasitic cones representing strombolian interludes. The Tors area is dominated by intrusive rocks.

2.2.2.2 The Tors sequence

1 1

The Tors sequence is best exposed at the Tors (GR, M36/885351). It consists of dark grey, moderately fresh, fine-medium grained olivine-clinopyroxene -plagioclase-phyric hawaiite and aphyric mugearite lava

Fig. 2.15

Typical features of the Lyttelton aa lava flows (B). The succeeding lava flow is seen at the top of the picture. The rubble grades up into coherent lava at the top. The red ash (A) is within the clinker. (GR, M36/915373). Note: the red tuff (ash) is typical of minor pyroclastic layers which occur between most lava flows.

Fig. 2.16

Dike-like structure (?) or lava neck feeding the overlain lava. Note: the red ash (A) between the flow. (GR, M36/891341)

Fig. 2.17

A trachyte sill (TS) near the view point on the road between Evans Pass and Lyttelton Harbour. The sill is intruded the basaltic flow (BF). The intruded lava has been baked to a darker colour at the contact. The field of view is approximately 20 metres across (GR, M36/884334). The sill extends towards the south-west and intrudes the pyroclastic material. The broken line shows the glossy contact of sill chilled against the contact.
flows. The flows are massive or have weak columnar jointing. Flow breccia is absent or poorly developed.

Plagioclase-phyric hawaiite and mugearite:- This lava sequence overlies the main phase Lyttelton plagioclase hawaiite flows (Figs 2.22 and 2.34). The sequence is 5-8 metres thick and is composed of three flows separated by thin (<.50 metres) pyroclastic material (ash and lapilli). Of the sequence of three flows, the top and bottom lavas are plagioclase-phyric hawaiites and the middle flow is an aphyric mugearite. Individual flows are 1-3 metres thick and are weakly columnar, horizontally jointed and dark grey colour. Mugearite lavas exposed between the Tors and Mt Cavendish area (M36/862349) are flows with clinkery top surfaces, coherent interiors and nearly horizontal sheeted jointing at the base (Figs. 2.46, 2.22). These flows are dark-grey, 1-2 metres thick, and overlie main phase Lyttelton plagioclase-phyric hawaiite (Fig. 2.22).

2.2.2.3 Mt Cavendish sequence

The Mt Cavendish hawaiite and benmoreite is best exposed at Mt Cavendish (GR, M36/871351). This unit consists of a thick succession of lava flows which unconformably overlie the lahar deposits. These in turn rest upon main phase Lyttelton hawaiite lava flows. A thick unit of lithic-crystal tuffs and lahar deposits is included under the Mt Cavendish member.

Plagioclase-phyric hawaiite:- This unit which forms the bulk of Mt Cavendish (Figs. 2.22, 2.23) is a succession of three major plagioclase-phyric hawaiite flows (Figs. 2.38, 2.42) that display weakly developed columnar and horizontal jointing. The thickness of the unit is 30-70 metres. Individual lavas are separated by thin (< 0.50 metres) pyroclastic layers (Fig. 2.42) and flow thickness range from 2-15 metres thick. The hawaiite flows are dark grey, non-vesicular and have plagioclase and olivine phenocrysts.

Benmoreite:-This lava flow overlies the plagioclase-phyric hawaiite flows of Mt Cavendish (Fig.2.22). This flow is grey, yellow-brown in colour and has plagioclase and clinopyroxene phenocrysts. It is about 2 metres thick. The flow displays weakly horizontal jointing and is separated from the underlying flow by a thin (<0.50 metre) pyroclastic unit.

Fig. 2.18 Rubbly aa lava flow on the eastern side of McCormacks Bay (GR, M36/883390). Note: the cave (C) was formed by removal of rubbly aa lava flow by marine erosion. C=Moa Bone Point Cave.

Fig. 2.20 Close up view of plagioclase phyric hawaiite. The flow contains plagioclase crystals (PL) up to 10 mm in diameter. (GR, M36/919354)

Fig. 2.19

Close-up view of moderately jointed plagioclase-phyric hawaiite lava (S) resting upon an oxidized layer of ash (A) exposed east of Moncks Bay. S=Shag Rock (stack). Note: the red material (A) is a lapilli tuff or ash, typical of the minor pyroclastic layers which occur between most lava flows.

Fig. 2.21 Thick, rubbly aa lava flow (B). The succeeding red material is ash (A) or lapilli tuff. (GR, N36/904374). The field of view is approximately 50 metres across.

Figure 2.22 Simplified geological map and stratigraphy of the Tors - Mt Cavendish areas

29

Constant of the

30

2.2.2.4 Pyroclastic deposits

The pyroclastics are classified into minor and major units on the basis of thickness and field characteristics. (i) Minor units occur between lava flows, are less than 0.50 metres thick and are composed of fine lapilli and ash. (ii) Major units are the lithic-crystal tuffs, greater than 0.50 metres in thickness which represent individual pyroclastic centres around Mt Cavendish and Mt Pleasant area. There is no consistent stratigraphic relationship between the minor and major pyroclastics (lithic-crystal tuffs) which are related to strombolian activity from parasitic vents. The minor pyroclastics (< 0.50 metres) exposed between lava flows are related to the changes in the eruptive style of the magma and probably originated from the central main vent of the volcano.

[A] Lithic-crystal tuffs of the Mt Pleasant area:-

Around the Mt Pleasant area, four small centres from which lithic-crystal tuffs were erupted are exposed (Fig. 2.13). These pyroclastic deposits are collectively termed lithic-crystal tuffs of the Mt Pleasant area and overlie the main phase Lyttelton plagioclase-phyric hawaiite. Two centres are around the south western slopes of Mt Pleasant (GR, M36/876352) and the other two centres lie between the Lyttelton Harbour Road and Evans Pass (GR, M36/882334).

The lithic-crystal tuffs are red in colour and composed of plagioclase and clinopyroxene crystals with scoriaceous lithics distributed in a crystal-tuff matrix (mostly ash size particles). The lithic crystal tuff exposed around the south western slope of Mt Pleasant (GR, M36/876352) has a thickness of about 5-15 metres. This deposit is slightly welded, poorly sorted and jointed (Fig. 2.35). The lithic-crystal tuff exposed on the road between Evans Pass and Lyttelton Harbour is about 25 metres thick (GR, M36/882334). This pyroclastic deposit is cut by a dike and a sill towards the north and eastern sides respectively. Another exposure of similar material is found north-east of Battery Point (Fig. 2.13). This is interpreted as a pyroclastic fall deposit because it is characterized by spherical and irregular bombs.

Fig. 2.24 Moderately columnar jointed pattern on the south-western face of Mt Pleasant (MP)1= Mt. Pleasant Peak lava flows, 2= Mt. Pleasant plagioclase phyric trachyte lava flow, 3= Pyroclastics and main phase Lyttelton lava flows.

Fig. 2.25 Weakly columnar to irregular (tabular) sheeting,horizontally jointing in the Mt Pleasant plagioclase phyric lava flow (2) exposed west of Mt Pleasant (GR, M36/876354).

Fig. 2.26 View of the central region of Mt Pleasant, showing the thick succession of lava flows. *I= The Mt Pleasant peak hawaiite lava* flows, *2= Plagioclase phyric trachyte lava*, *3= Pyroclastics*

[B] Lithic crystal tuffs of the Mt Cavendish area:-

The three pyroclastic deposits around Mt Cavendish are grouped as lithic-crystal tuffs of the Mt Cavendish area (Fig. 2.22). Crystal-tuff (GR, M36/870356), about 5 metres thick, is exposed on the northern slope of Mt Cavendish. The crystal-rich tuff is made up of plagioclase and clinopyroxene crystals and scoriaceous lithic and tuffaceous material. The second lithic-crystal tuff deposit is exposed south-west of Mt Cavendish (GR, M36/868351) and is lithologically very similar to the above. Both crystal-tuff dips towards the north suggesting their source vent some where south of the Mt Cavendish area.

South-east of Mt Cavendish peak and a few metres east of Major the Hornbrook track (Gr, M36/873335) there is an eroded scoria tuff cone (Fig. 2.22, 2.38). The deposit which forms the cone suggests strombolian eruptive activity evidenced by large blocks and bombs within the tuff matrix. The bombs were ejected in a semi-molten state and shapes were modified aerodynamically. The cone is made up of tuffaceous rubbly material, scoriaceous, ashy materials, basaltic bombs and broken crystals of plagioclase and clinopyroxene. The scoria cone was built by successive explosive eruptions, which deposited material of varying grain size in regular layers which dip away from the vent. The lithic-crystal tuff has varying dips, suggesting a source vent close to the Major Hornbrook track (Fig. 2.22). An estimate for the original height of the cone from its dip is about 50 metres. Field relationships show that the Mt Cavendish tuffs are at a lower stratigraphic position and therefore older than the Mt Cavendish peak lava sequence (Figs. 2.38, 2.39) and overlie the main Lyttelton phase plagioclase-phyric hawaiite.

2.2.2.5 Lahar deposits

(a) Lahar deposits of Mt Pleasant area :-

Lahar deposits are exposed in different places around the Mt Pleasant area, for example in road side cutting between Sumner and Evans Pass (GR, M36/899352). At this location the lahar is 10 metres thick, clast supported, structureless, poorly sorted and contains boulder size lithics. Around the south and western slope of Mt Pleasant (GR, M36/877352) a 4 metre

Fig. 2.27 View of the Tors (TT), MT Cavendish (MC) and Mt Pleasant (MP) area.

Fig. 2.28 View of southern face of Castle Rock intrusion (GR, M36/856354).

Fig. 2.30a

Columnar jointing pattern on the western face of Castle Rock (GR, M36/856354). Note:the change in orientation of the columnar joints fanning outwards towards the top of the intrusion.

Fig. 2.29

Thick (5m) red crystal tuff flow (cτ) exposed on the south-western slopes of Mt Pleasant. GR, M36/876352 yellow-grey heterolithic lahar is exposed (Fig. 2.13). This unit is similar to the one exposed around the Bridle Path track (Fig. 2.50).

(b) Lahar deposits of the Tors-Mt Cavendish area:-

There are two kinds of lahar deposit in the Tors-Mt Cavendish area:-(i) A weakly bedded and moderately compacted lahar :- This deposit is exposed about 10 metres east of the Bridle Path track and about 30 metres south of the Summit Road (GR, M36/865349). The unit is 1-2 metres thick, yellow to grey in colour, structureless and moderately compacted. Petrographically the unit is a heterolithic tuff breccia (Fig. 2.50). A similar lahar is also exposed south west of Mt Cavendish (Fig. 2.47).

(ii) Blocky lahar :- This deposit covers areas around the south of Mt Cavendish and west of the scoria tuff cone. The unit is structureless, heterolithologic (Fig. 2.38, 2.40) and dominated by large boulders (0.50 metres in diameter). It is therefore, termed blocky lahar. The large clast ' size suggests deposition close to the source.

Thick lahar deposits exposed east of the Tors particularly along and to the south north of the Summit road. The deposit is thick (about 60 metres) and flat lying (Figs. 2.30, 2.32) and covers a considerable area (GR, M36/862347). The deposit is grey or grey-yellow, structureless, matrix-supported, boulder-breccia and conglomerate with coarse sand and pebble-sized lithics. The clasts consist mainly sub-angular and heterolithologic plagioclase phyric and aphyric lavas.

2.2.3 Intrusive Rocks

2.2.3.1 Dikes

1 1

Numerous dikes of the radial swarm are exposed in the Tors-Mt Cavendish area (Figs. 2.22, 2.32). The dikes intrude main phase Lyttelton volcanics and the Tors and Mt Cavendish sequences. Most of the dikes are from 0.50 to 1.50 metres in width and a few rarely exceed more than 5 metres. The dikes range from trachyte to basalt in composition. Basaltic dikes are younger than trachytic dikes in some places. For example the younger Castle rock intrusion and the late phase hawaiites (GR, M36/885352 and GR,

Fig. 2.305Lahar (LR) deposit, thick, structureless (unbedded) matrix supported boulder breccia (b) and conglomerate with coarse sand and pebble size lithics, exposed on the south east side of the Tors (GR, M36/862347).

Fig. 2.32 Trachyte dike (D) intruding lahar (LR). (GR M36/863347).

Fig. 2.31 Trachytic lava neck exposed as topographic knob south of the Tors (GR, M36/857350). Note: the cross-sectional geometry, brecciation (4) and weakly columnar jointed sheets (5).

Fig. 2.33 An example of vertical contact between moderately tabular flow (F1) and plagioclase phyric hawaiite (F2).

M36/878355) are intersected by a basaltic dike.

Exposed dikes extend laterally for a few hundred metres and change their thickness markedly. Most dikes run straight along strike for about 200 metres and sometimes bend or are off-set (Fig. 2.13). Shelley (1988) noted that the likely morphology of a radial dike is a *blade* shape with long axis horizontal and intermediate axis vertical. Around the intersection of the Summit Road and the Bridle Path track a trachyte dike feeds a trachyte flow at the quarry (GR, M36/867352 and Figs. 2.45, 2.43). North of Mt Cavendish (on the Summit road), a near vertical dike has intruded pyroclastic material and fed a plagioclase phyric mugearite lava flow (Figs. 2.39, 2.41). This flow is 1 metre thick and overlain by thick Mt Cavendish plagioclase-phyric hawaiite (GR, M36/870357). The flow fed by the dike is stratigraphicaly older than Mt Cavendish plagioclase-phyric hawaiite lava sequence and extends laterally for a short distance (<50 metres in length) towards the east and west.

Some dikes branch vertically (Fig. 2.49) whereas others branch laterally to feed flows around Mt Cavendish and east of the Bridle path track (Figs 2.22, 2.43 and 2.45). Most dikes feed flows or domes around the Mt Cavendish and Mt Pleasant areas (Figs. 2.41, 2.16) and thicken progressively as they pass into flows or domes. North west of Mt Pleasant (GR, M36/887358), there is thick (about 3 metres) trachyte flow, elongated in a NNE direction. The flow is thicker towards the northern end and forms a dome-like feature (Fig. 2.13). This flow is fed by an ill-defined trachyte dike. There are several examples of trachyte dome-like features (GR, M36/885353) fed by trachyte dikes around Mt Pleasant area. Most feeder dikes when traced along strike, are rarely continuous. Commonly dikes are discontinues and show off-sets. A basaltic dike (GR, M36/891341) feeds a flow on the road between Evans Pass and Lyttelton Harbour (Fig. 2.16). Here the lava flow fed by the dike is separated from the underlying lava by ash material.

Around Evans Pass, Battery Point and Breeze Bay the only intrusives are prominent dikes (Fig. 2.7). The strike of these dikes is NE-SW. This suggests that they are radial dikes fed from the Lyttelton main centre. The plagioclase-pyroxene-phyric benmoreite flow exposure in Evans Pass (GR, N36/901351) is probably fed by a dike judging by flow geometry (Fig. 2.7).

Fig. 2.34 View of the Tors lava sequence exposed on the southern side of the Tors. A, B and C are lava flows

Fig. 2.35 10 m thick, columnar jointed red crystal tuff (pyroclastic flow) exposed on south-western slopes of Mt Pleasant (GR, M36/876352). Note: the columnar jointing of the crystal tuff (CT).

Fig. 2.36 Distant view of the south-eastern slopes of Mt Pleasant (MP).

Fig. 2.37 Closer view of lithic tuff or red lithic crystal tuff (CT) flow exposed on southwestern slopes of Mt. Pleasant. Note: the large plagioclase crystals (C) and scoriaceous lithics (SL). (GR, M36/875350) Lens cap=55 mm. Note: a deposit of fragmented scoria (SL) in fine

This flow is thick (about 3 metres) and contains large clinopyroxene (1 cm) phenocrysts. In general, field relationships suggest dikes were emplaced continuously throughout the history of the volcano and cover the full range of magma compositions seen in the flows.

2.2.3.2 Intrusion and lava plug

Intrusion:-The Castle Rock intrusive dome cuts the Lyttelton main phase plagioclase-phyric hawaiite lavas, and forms a prominent elongated ridge (Figs. 2.22, 2.28). The intrusion is trachytic in composition and elongated in the north-south direction. The geometry of the intrusion is related to the general trend of the radial dikes in the north eastern sector of the 1

Fig. 2.38 A view of the southern slope of Mt Cavendish showing thick blocky lahar flow (key as for Fig. 2.40).

Fig. 2.40 Closer view of the southern slope of Mt Cavendish lava sequence. 1-4= Mt. Cavendish lava sequence, MC= Mt. Cavendish, SC=scoria cone, LR=lahar, 5=layered scoria cone, 6= lava flow.

Fig. 2.42 The sequence of lava flows (F) and red ash horizons (A) are typical characteristics of Lyttelton lava flows, exposed on the western side of Mt Cavendish.

Fig. 2.39

Lava flow (F) overlying the red and red-brown pyroclastic deposit (p) Note: the contact between pyroclastic (P) and lava flow (F). The top flow is fed by a basaltic dike (Fig. 2.41) on the summit road. (GR, M36/870357)

Fig. 2.41

Basaltic dike (left) intruding pyroclastic material (P) of Fig. 2.39. Note: *the dike (D) feeding the basaltic flow (F)*. Summit road north of Mt Cavendish. the main Lyttelton plagioclase-phyric hawaiite lava. The sill displays poor columnar jointing and its margins are chilled against hawaiite lava (country rock). The sill (Fig. 2.17) strikes in a NNE direction parallel to the radial dike trend in the mapped area.

2.3 VOLCANOLOGY

2.3.1 Main phase Lyttelton volcanics

The Lyttelton main phase plagioclase-phyric hawaiite lavas are of aa type and represent Hawaiian style activity. They are rubbly in character and have basal flow breccias and oxidized flow tops. Thin layers of red ash (<0.50 metre) are usually present between flows but these layers are often laterally discontinuous. The presence of thin pyroclastic horizons in most lava successions and coherent lava alternating with the pyroclastics, suggests an eruption cycle involving an initial vent clearing phase followed by lava The plagioclase-pyroxene-phyric benmoreite lava represents effusion. moderately viscous magma and forms cliff-like topography. The absence of pyroclastic material (ash and lapilli) beneath and the coherent nature of this flow suggest the a period of quiet lava effusion. A change in lithology from dominantly hawaiite to benmoreite may indicate a separate phase of eruption, probably following a period of quiescence which permitted magma to differentiate.

Moderately to strongly viscous magma which produced the Lyttelton main phase benmoreite lava flows suggest Vulcanian style of activity. The unusual occurrence of thick felsic lava flows without felsic pyroclastics can be explained by:- (i) the felsic flows represent flank eruptions (ii) the felsic pyroclastics were erupted from the main Lyttelton vent and their distribution was probably governed by prevailing wind and was strongly asymmetric (iii) the felsic pyroclastic materials were completely eroded before the eruption of felsic lava flows.

Individual lava flows vary in thickness and lateral extent. This is probably due to the variation in viscosity of the lavas and irregularities in underlying topography. In general main phase lava flows are originated from the main Lyttelton centre. This was situated around the Charteris

Fig. 2.43 Thick trachyte flow on the north-western slopes of Mt Cavendish fed by dike (MC=Mt Cavendish lava sequence, MP=Mt Pleasant, TF=trachyte flow, S=summit road). Note: (a) lithic-crystal tuff north of Mt Cavendish, and (b) horizontally or laterally branching dike to feed trachyte flow (TF).

Fig. 2.44 Distant view of the Tors (TT) lava sequence, Mt Cavendish (MC) lava sequence and Mt Pleasant (MP). I= the Mt. Pleasant peak hawaiite lava sequence, 2= the Mt Pleasant plagioclase phyric trachyte lava flow, 3=Pyroclastics and the main phase Lyttelton lava flows.

Fig. 2.45

Distant view of the south-eastern slopes of Mt Pleasant and remarkable dike (D) feeding the thick trachyte flow (TF) north of summit road (S).

Fig. 2.46

An example aa lava flow showing clinkery top or forming a mantle of crumble breccia (F=flow, C=clinkery top) GR, M36/862349. Bay area on the basis of geomorphology and the geometry of the eroded Lyttelton volcano, together with the orientations of the radial dikes.

2.3.2 Late phase Lyttelton volcanics:-

Most of the late phase lava flow sequences are confined to the margin of Lyttelton crater. The coherent nature of the Tors, Mt Cavendish and Mt Pleasant hawaiite lava flows suggests an Hawaiian style of activity. The late phase volcanics represented by *Mt Pleasant Formation* are hawaiite to trachyte in composition. The change in lithology suggests a separate phase of eruption. The silicic (more viscous) magma which produced the benmoreite and trachyte lavas suggest Vulcanian style of eruption.

The Mt Cavendish and Mt Pleasant lithic-crystal tuffs which make up the parasitic scoria cones were eruption during Strombolian-style activity. The lahars around Mt Cavendish and the Tors area are characterized by (Figs. 2.30, 2.32) poor sorting, lack of structure and heterogeneous clast composition. These lahars represent volcanic debris flow. The lahars exposed on flat surfaces at present were deposited originally in a steeply incised valley. In general the lahars accumulated in major drainage channels that cut into the older lava sequence. The large clast size suggests a short distance of transport and proximity of the source area. The lahars are heterolithic and volcanoclastic (pyroclastic) in origin. The lahars overlie the main Lyttelton hawaiite lavas and they have the same age (stratigraphic position) in different parts of the mapped area.

2.3.3 Intrusives

Throughout the main and late phase volcanic history of the area, basaltic to trachytic radial dikes, sills and other intrusions were emplaced. In response to rising magma, the central area of the volcano was forced upwards into a dome and fractures developed radiating outwards. These fissures were filled by magma and the resulting radial dike swarm was then exposed by erosion. The width of the dikes is controlled by the size of the fissures.

The minor intrusives (dikes and sills) of the area show chilled (glassy character) margins and hence are fine to medium grained. The grain size variation across dikes and sills may provide information concerning the

Fig. 2.47 3 m thick, brown-yellow low angle structureless heterolithic tuff breccia (HT). The dike (D) intrude the pyroclastic material (GR, M36/868350).

Fig. 2.49 Forked dike intruding the red crystal tuff (P). GR, M36/876355.

Fig. 2.48 Contact between plagioclase phyric basalt flow (F) and pyroclastic (1=red ash, 2=yellowish fine lapilli tuff, 3=red tuff unit). GR, M36/868351.

Fig. 2.50 Thin layer of heterolithic tuff breccia (HT) exposed near Bridle Path track. Note: the typical aa lava flow (F). The top of this flow shows clinker layer. Note: The thin lava flow on the left of the photograph (GR, M36/864348).

cooling of the intrusion, a larger variation in grain size implies emplacement of hotter magma into cooler country rocks. Intrusives with no chilled margins, imply that the dike or sill was emplaced into warm or hot country rocks. Sills may be easily confused with lava flows especially where both occur in the same sequence. However, they may be distinguished from flows, first by the absence of any internal characteristics of lava flows and second by the occurrence of fine grained glassy chilled margins (against the country rocks) at both lower and upper contacts. Compositionally, the dikes range from basalt to trachyte but the sills are solely trachytic in composition.

2.4 DISCUSSION

2.4.1 General

Long-lived Miocene volcanic activity constructed the Lyttelton volcanic cone. Most eruptions were of aa lava and the activity was Hawaiian in style but some felsic lavas suggest Vulcanian style. Occasional more explosive Strombolian eruptions produced scoria cones within the main crater and on the outer slopes. During the construction of the main cone, basalt to trachyte radial dikes and trachyte sills were emplaced. However, from field evidence, it seems likely that the dikes intruded the volcano throughout its volcanic history. The large valleys and the crater areas are the site of most lahar deposits which represent periods of degradation of the active cone.

Lyttelton crater is erosional in origin. The reasons for this conclusion are several: (i) there is no evidence of a caldera structure, (ii) most of the central part of the volcano is made up of relatively softer material, more erodable than the coherent flanks of the volcano, (iii) radial drainage systems cut deeply into the volcanics and dominant streams opened up the central part of the volcano. Lyttelton Harbour and various Bays around the flanks of the volcano are clearly also of erosion origin.

2.4.2 Stratigraphic Correlation

1 1

As shown on figure 2.51, the *Main phase Lyttelton volcanics* are the oldest rocks in the mapped area and show good stratigraphic correlation, except

45

Figure 2.51: Simplified stratigraphic columns and correlation around the north-eastern sector of the Lyttelton volcano

46

•

the plagioclase-phyric mugearite. The plagioclase-phyric hawaiite lava flows have similar characteristics in different areas (Fig. 2.51). The plagioclase -phyric benmoreite lava flows display good correlation with measured sections in different localities whereas the plagioclase-phyric mugearite lava is confined only to the Evans Pass area. There is angular discordance between the main and late phase volcanics, and this is the main reason for division of the Lyttelton volcanics into two distinct phases.

The *late phase volcanics* activity probably started with Strombolian eruptions and the deposition of lithic-crystal tuffs of the scoria cones. These occupy the same stratigraphic position in different areas. The Mt Pleasant plagioclase-phyric trachyte flow is not exposed in the Tors and Mt Cavendish areas . The Mt Pleasant, the Tors and Mt Cavendish plagioclase-phyric hawaiite flows have similar characteristics and may be correlated. The aphyric mugearite and benmoreite flows of the Tors and Mt Cavendish sequence are probably contemporaneous in age (Fig. 2.51). The Tors-Mt Cavendish and Mt Pleasant areas late phase Lyttelton volcanics are not continuous laterally probably as the result of erosion. Thus although there are local variations in the stratigraphy of the different late phase sequences, there is sufficient justification to group them into a single lithostratigraphic unit, distinct from the main phase flows and here designated the "*Mt Pleasant Formation*".

CHAPTER 3

PETROGRAPHY

3.1 INTRODUCTION

In this chapter the petrography of the north-eastern sector of Lyttelton volcano is discussed. The Lyttelton volcanic group has been described and classified in terms of main and late phase Lyttelton volcanics (*Mt Pleasant Formation*) mainly on the basis of field criteria. Both the main and late phase Lyttelton volcanics and the dikes comprise mafic, intermediate and felsic lava compositions. Sills are trachytic in composition. The main phase Lyttelton volcanics consists of approximately 55% hawaiite, 35% benmoreite and 10% mugearite lava flows in the mapped area. The late phase volcanics covers approximately 55% hawaiite, 22% trachyte, 5% mugearite, 3% benmoreite lava flows and 15% pyroclastic deposits. Rock nomenclature used here is based on petrographic and geochemical criteria (Chapter 4). Descriptions of samples are given in appendix II, and all thin sections are briefly described in appendix III a.

3.2 MAIN PHASE LYTTELTON VOLCANICS

This section describes the petrographic feature of extrusive rocks of the main phase Lyttelton volcanics.

3.2.1 Mafic rocks

Hawaiite lava flows:-

The main phase hawaiites have holocrystalline, porphyritic, intergranular and sub-pilotaixtic textures. They contain phenocrysts of plagioclase (andesine), olivine, clinopyroxene and some Fe-oxide. Phenocrysts are dominated by plagioclase (An 60-40) which reaches up to 25 % (of total rock) in abundance. The groundmass contains plagioclase (andesine), olivine, colourless clinopyroxene (augite) and in some rocks pink clinopyroxene (Ti-augite) brown hornblende (kaersutite) and apatite are common. The main groundmass constituent is plagioclase (An 50-35) which is between

45-65 % in abundance.

Some lava flows contain partially corroded euhedral, and others have corroded and resorbed, olivine phenocryst (Fig. 3.1). Generally, olivine phenocrysts vary from partially altered to anhedral and strongly resorbed. In most hawaiites olivines are rarely fresh and show a range of alteration and replacement by the red-brown mineraloid iddingsite (Fig. 3.1) and Fe-oxide from replacement rims to complete pseudomorphs (Fig. 3.1). Pseudomorphs are recognized by combination of shape and other morphological characteristics together with a knowledge of alteration product each mineral, for example in some lavas euhedral to subhedral olivine has been pseudomorphed by iddingsite. Replacement of olivine crystals by Fe-oxide or/and iddingsite clearly starts at crystal margins and along fractures (Fig. 3.1). In some hawaiites olivine is altered to green and brown chloritic and serpentinous products (see section 3.5). Most olivines are altered and it was difficult to estimate the original olivine abundance in the groundmass, in particular. Some of the hawaiites have microphenocrysts of plagioclase and Fe-oxide embedded in olivine phenocrysts (Fig. 3.3), but also olivine crystals sometimes occur as inclusions in Fe-oxide.

Most clinopyroxenes are euhedral, colourless (augite) with thin iddingsite rims (Fig. 3.2) and some are pinkish presumably indicating Ti-augite. Some clinopyroxenes are zoned with darker mantles (Fig. 3.2). Two stages of clinopyroxene (augite) phenocryst growth can be recognized in some hawaiites (Fig. 3.2). The first stage is represented by subhedral to anhedral colourless crystals which have been resorbed and/or altered with the formation of Fe-oxide along cleavage planes and around the rims of the phenocrysts (Fig. 3.2). The second stage clinopyroxene phenocrysts are euhedral relatively fresh and colourless (Fig. 3.2).

Some hawaiites contain brown hornblende and apatite crystals in minor quantities (<3%). The brown hornblende is thought to be kaersutite xenocrysts and it is typically rich in TiO_2 (Sewell, 1985). Calcite rarely occurs as pseudomorphs of clinopyroxene and olivine and as amygdules. In one hawaiite, groundmass minerals have been completely replaced by hydrothermal Fe-oxide (Fig. 3.4). In general, most olivine and clinopyroxene phenocrysts show a range of alteration and replacement by iddingsite and other secondary minerals such as clays and calcite.

Fig. 3.1 Corroded and resorbed offvine (OI) phenocrysts altered to iddingsite along eracks and margins in main phase Lyttelton hawaiite. M36B4902, (c.p.l) scale = 1 mm.

Fig. 3.3 Crystals of carly plagioclase enclosed by prismatic cuhedral olivine (ol) phenocryst in main phase Lyttelton hawaiite. M36B4339 (c.o.l. scale = 1 mm

Fig. 3.2 Euhedral phenocryst of zoned elinopyroxene (cpx) and cuhedral olivine (ol) with reaction rim of Fe-oxide and iddingsite in main phase Lyttelton hawaiite. M36B5853. (c.p.l. scale = 1 mm.

Fig. 3.4 Hydrothermal secondary Fe-oxide surrounding clinopyroxene (epx) and running through groundmass in main phase Lyttelton hawaiite, M36B2659

3.2.2 Intermediate rocks

Mugearite Lava flows:-

Petrographic features:-The textures of mugearites include intersertal, intergranular and aphanitic, but most mugearitic rocks are holocrystalline, porphyritic with sub-trachytoid groundmasses. Plagioclase (An 50-40) olivine, colourless clinopyroxene (augite) and Fe-Ti oxide are the common phenocryst phases. Groundmass minerals comprise plagioclase (An 40-30), augite, rare pale green clinopyroxene (ferroaugite), olivine and Fe-oxide together with glass.

In most mugearites olivine phenocrysts are usually euhedral and subhedral and partly or completely altered to iddingsite, but clinopyroxene phenocrysts are euhedral to subhedral and partly altered. Plagioclase phenocrysts have strong compositional zoning. Some mugearites contain rare brown hornblende and/or apatite. Most mugearites have more felsic groundmasses than those of hawaiites.

3.2.3 Felsic rocks

Benmoreite lava flow

Petrographic features:- The identification of benmoreite is based on chemical criteria (chapter 4). Benmoreite may appear as dark as mugearite or hawaiite in the field, but it has a noticeably lower colour index in thin section. The phenocryst content is more or less similar to mugearite. In some flows the groundmass of benmoreite resembles mugearite but has interstitial alkali feldspar.

Generally the benmoreites have holocrystalline, intergranular and sub-trachytoid texture. Some benmoreite lavas have a hyalopilitic texture in which microlites of feldspar and clinopyroxene float in a matrix of devitrified glass (Fig. 3.6).

Porphyritic benmoreites generally have subhedral plagioclase (albite to andesine) as the dominant phenocryst mineral with subordinate

clinopyroxene (ferroaugite) and Fe-oxide (Fig. 3.7). Groundmass minerals consist of dominantly plagioclase laths, altered or/and pale green clinopyroxene (ferroaugite), and variable amounts of glass. Most groundmasses contain Fe-oxide and altered clinopyroxene (Fig. 3.7). Some benmoreites contain subhedral brown hornblende phenocrysts (Fig. 3.5). In most benmoreite lavas fresh olivine is absent or rarely found. Most clinopyroxene and plagioclase phenocrysts have corroded surfaces (Fig. 3.8). Some benmoreites have microphenocrysts of fayalitic olivine and colourless clinopyroxene (augite) and Fe-oxide embedded in plagioclase phenocrysts (Fig. 3.8).

3.3 LATE PHASE LYTTELTON VOLCANICS

3.3.1 Mafic rocks

The late phase hawaiites include those of the Tors, Mt Cavendish and Mt Pleasant areas.

Hawaiite lava flows:-These are holocrystalline and porphyritic with intergranular textures. The phenocrysts are dominantly subhedral to euhedral plagioclase (An 65-40) with subordinate colourless clinopyroxene (augite), olivine and Fe-Ti oxide. Groundmass minerals comprise plagioclase (An 55-30), olivine, colourless clinopyroxene (augite) and some pinkish clinopyroxene (Ti-augite). In some samples olivine phenocrysts are present as elongate crystals. Some olivine phenocrysts are totally altered to the red-brown mineraloid iddingsite (Fig. 3.9) or display iddingsite rims. Clinopyroxenes are subhedral to euhedral and (Fig. 3.10) have colourless to pink titaniferous compositions. Most of the hawaiites contain partially resorbed kaersutite. Among the accessory minerals, oxides occur both as phenocrysts and in the groundmass in most hawaiites, but apatite is rare as a phenocryst. Secondary minerals such as calcite and clay minerals are common in some hawaiites. In some hawaiite lavas vesicles are filled by deuteric minerals (zeolites).

3.3.2 Intermediate rocks

The late phase mugearites are represented by the Tors area mugearite.

52

Fig. 3.5 Typical example of brown hornblende (Hbd) phenocryst in benmoreite lava flow. M36B5791 (c.p.l) scale = 1 mm.

Fig. 3.7 Euhedral olivinc crystals and anhedral clinopyroxene with magnetite (Mg) microphenocryst in benmoreite lava flow. M36B4613, (c.p.1) scale = 1 mm.

Fig. 3.6 An example of groundmass showing poorly developed feldspar microlites in Benmoreite lava flow. M36B5440 (c.p.l) scale = 1 mm.

Fig. 3.8 An example of partially resorbed

plagioclase phenocryst and complete replacement of clinopyroxene by Fe-oxide (left) in benmorcite lava

Mugearite lava flows:-

The mugearites are hypocrystalline, porphyritic or aphanitic, with intergranular or sub-trachytoid groundmasses. The dominant phenocryst phase is plagioclase (An 50-35) with subordinate clinopyroxene (augite) and olivine. The groundmass consists of plagioclase (An 40-30), colourless clinopyroxene (augite) and pale green clinopyroxene (ferroaugite) with olivine and Fe-oxide.

3.3.3 Felsic rocks

The "Mt Pleasant Formation" felsic rocks include benmoreite and trachyte lavas of the Mt Cavendish and Mt Pleasant area respectively.

[A] Benmoreite lava flows: This flow is holocrystalline and porphyritic. The phenocryst minerals comprise plagioclase (anorthoclase to sodic plagioclase), pale green clinopyroxene (ferroaugite) and some augite and altered olivine. Groundmass phases are dominantly plagioclase with clinopyroxene and Fe-oxide and variable amount of glass. This benmoreite has similar petrographic features to the main Lyttelton benmoreite lava.

[B] Trachyte lava flows:-The lavas are generally holocrystalline, porphyritic with intergranular groundmasses. Most trachyte lavas are characterized by trachytic texture (Fig. 3.16). Euhedral to anhedral sodic plagioclase (albite or anorthoclase) is the dominant phenocryst phase (15-20%) with subordinate altered pale green clinopyroxene (ferroaugite) and rarely fayalitic olivine. The groundmass contains abundant sodic plagioclase, pale green clinopyroxene (ferroaugite) or green clinopyroxene (hedenbergite) and Fe-oxide (Fig. 3.11). Feldspar composition ranges from anorthoclase to andesine in both phenocryst and groundmass minerals. Altered clinopyroxene is the common mafic mineral in the groundmass. Some pale green clinopyroxene (ferroaugite) phenocrysts are anhedral and totally resorbed and/or altered with the formation of secondary minerals such as Fe-oxides. Fresh clinopyroxene phenocrysts are very rare in most trachytic lavas.

Fig. 3.9 Iddingsite (idd) pseudomorph after olivine in the late phase hawaiite. M36B4008. (c.p.l) scale = 1 mm.

1

÷.

2

Fig. 3.11 Subhedral, corroded and resorbed clinopyroxene in crystalline groundmass of trachyte flow. M36B4003. (c.p.1) scale = 1 mm.

Fig. 3.10 Euhedral clinopyroxene (augite) in late phase Lyttelton hawaiite M36B4018, (c.p.l) scale = 1 mm.

Fig. 3.12 An example of pyroclastic material (tuff) showing altered elinopyroxene and vesicular and glassy groundmass. M36B3205, (c.p.l) scale = 1 mm.

3.3.4 Pyroclastic rocks

[A] *Crystal tuffs:*- Generally have vitrophyric texture and are moderately vesicular. Vesicles are usually up to 0.1 mm in diametre. They contain plagioclase, some clourless clinopyroxene (augite) and olivine crystals embedded devitrified glass (Fig. 3.12).

[B] Heterolithic tuff breccia (lahar):- The clasts are angular to sub angular lava lithologies. Individual clasts have mafic and intermediate compositions. The clasts consist of dominantly plagioclase and minor clinopyroxene and olivine crystals. The matrix is made up of plagioclase and glass together with some olivine and clinopyroxene crystals. These crystals (which were phenocryst in undisturbed magma) are themselves clasts.

3.4 INTRUSIVE ROCKS

Most of the mapped dikes were not thin sectioned, even though, based on a limited number of samples (around the Tors and some from Mt Pleasant areas) a general petrographic account of the dikes are presented below. Excepting the dikes, all sills and other intrusives in the mapped area have been thin sectioned.

Field descriptions and location of all dikes exposed in the mapped area and other intrusive rocks are given in appendix II and some of the thin sections examined are listed in appendix III. Chemical analysis of selected intrusives are given in appendix V and VI together with extrusive rocks.

3.4.1 Mafic intrusives

The mafic rocks among the intrusives are the olivine-basalt dikes of the radial swarm that cut the late phase volcanics (Mt Pleasant formation). These dikes are exposed around Mt Pleasant (M36B4016, M36B4034, M36B4036) and the Tors (M36B24) areas.

[a] Olivine-basalt dikes:- The dikes have holocrystalline, aphanitic and porphyritic textures. They contain phenocrysts of olivine and some colourless clinopyroxene (augite). Plagioclase phenocrysts are absent (Fig. 3.15) or less than 2% (Figs. 3.13 and 3.14) and olivine phenocrysts reach up

Fig. 3.13 Strongly embayed olivine phenocryst (ol) adjacent to elinopyroxene phenocryst (cpx) in olivine-bàsalt M36B4036, (c.p.l) scale = 1 mm.

0

Fig. 3.15 Partially resorbed and corroded olivine phenocryst in olivine-båsalt Intergranular olivine also occurs in the groundmass. M36B4034, (c.p.l) scale = 1 mm.

Fig. 3.14 Cumulophyric aggregate of plagioclase (pl), clinopyroxene and magnetite (Mt) in ol-basålt M36B4036, (c.p.l) scale = 1 mm.

Fig. 3.16 An example of trachytic texture

in trachyte dike. Note: Twinned, partly corroded clinopyroxene phenocryst. M36B3580 to 15 % of the total rock. Groundmass minerals are plagioclase (An 60-50), olivine, clinopyroxene (augite) and Fe-oxides. Olivine phenocrysts are subhedral and partially resorbed and corroded with thin rims altered to red/brown iddingsite (Fig. 3.15). Some of the these dikes have euhedral, elongate olivine crystals partially replaced by Fe-oxide. The groundmass is rich in olivine with subordinate plagioclase, clinopyroxene and Fe oxide. Some dikes contain microphenocrysts of red or colourless apatite.

[b] *Hawaiite dikes:*-The dikes are holocrystalline, aphanitic and porphyritic with weakly intergranular textures. These contain phenocrysts of olivine in addition to plagioclase (An 65-40) and colourless clinopyroxene (augite). The groundmass minerals are olivine, plagioclase (An 55-35), clinopyroxene (augite and Ti-augite) and Fe-Ti oxide.

3.4.2 Intermediate intrusives

Mugearite dikes:- Have similar petrographic features to the lava flows, but most dikes show sub-trachytoid texture. The dominant phenocrysts are plagioclase (60-35) with subordinate clinopyroxene, some olivine and Fe-oxides. The groundmass minerals comprise plagioclase (40-10), olivine, clinopyroxene and Fe-Ti oxides.

3.4.3 Felsic intrusives

Trachytic intrusive:- Trachyte dikes, sills and intrusion have very similar petrographic features. The textures in the different intrusives varies, but most of the intrusives generally have holocrystalline, porphyritic and trachytoid textures (Fig. 3.16). Some trachytes are characterized by lath-like plagioclase in parallel alignment due to flow in the molten rock which is known as trachytic texture. This texture is not only confined to trachytes, it is also common in some mugearite and hawaiite lava flows and intrusives.

The phenocrysts are dominantly albite to anorthoclase, pale green clinopyroxene (ferroaugite), rare colourless clinopyroxene (augite) and Fe-oxide. Fresh euhedral clinopyroxenes (ferroaugite) are sometimes found in some dikes (Fig. 3.10). Fayalitic olivine occurs in some trachytic intrusives. The groundmass minerals comprise plagioclase (albite to anorthoclase), pale green clinopyroxene (ferroaugite), rare fayalitic olivine, Fe-oxide together with devitrified glass. Some trachytes have flow textured groundmasses consisting of sodic alkali feldspar (anorthoclase), with subordinate clinopyroxene (augite) and sometimes brown hornblende. The groundmasses of some trachyte intrusives show conversion of anhydrous ferromagnesian silicates into chlorite and serpentine minerals, which gives a greenish colour to most trachytes under p.p.l (plain polarized light) and in the field.

3.5 SUMMARY AND DISCUSSION

It has been suggested by other researchers (Sewell, 1985, 1988 and Weaver and Sewell, 1986) that the Lyttelton rocks are distinguishable from other Banks Peninsula rocks (such as Akaroa, Mt Herbert etc.). The Lyttelton volcanic group consist dominantly of hawaiite to trachyte lava flows (Sewell, 1988). The present study also supports this and shows the Lyttelton rocks consist of dominantly hawaiite, with benmoreite next in abundance together with some trachyte and very minor mugearite lava flows. On the basis of field observations, the Lyttelton rocks have been divided into *Main* and *late* phase rocks (Chapter 2). Each phase is characterized by mafic to felsic lava compositions as discussed in earlier sections of this chapter.

The aims of this sub-chapter are to summarize:- (i) the petrographic aspect of lavas capable of giving information of petrogenetic significance (ii) the petrographic difference between the main and late phase rocks, (iii) the intrusives rocks and their relationship to extrusive rocks and/or comparison of Lyttelton rocks with other Banks Peninsula lavas.

[A] Petrographic observations and the possible petrogenetic significance:-

(i) Primary igneous processes (corrosion and resorption).

Phenocrysts crystallized in the intratelluric environment from liquid represented by their groundmasses after eruption. The petrographic evidence for this is the euhedral form of the crystals. Some of the phenocrysts, however show evidence of *reactions* with the liquid which usually manifests itself in *corroded* form or in the presence of a mantle (so-called reaction rim) of other phases armouring it and separating it from the groundmass. In most Lyttelton lavas, petrographical evidence in the form of corrosion and partial resorption of some plagioclase, clinopyroxene and olivine phenocrysts suggests significant movement of phenocrysts relative to melt in a chemically zoned magma or low pressure disequilibrium between crystals and liquid. The resorbed feature in most olivines suggest reaction relationships with the liquid. *Reaction* can be caused by thermal (compositional) disequilibrium and by equilibrium resorption. It has been assumed that thermal (compositional) disequilibrium is one the most common causes of *resorption*. The other cause of resorptional features is by change of P-T conditions as magma moves towards the surface.

It seems likely that the brown hornblende which is thought to be kaersutite (Sewell, 1985) crystallized at relatively high pressure under hydrous conditions, and under low pressure conditions broke down to be resorbed and replaced by a magnetite - clinopyroxene assemblage. In general, resorption of phenocrysts in some lavas and the presence of kaersutite indicate *polybaric* fractionation and movement of phenocrysts relative to melt. Partially resorbed kaersutite megacrysts are common in younger Lyttelton mafic flows (Weaver et al. 1989 in prep.). Kaersutite megacrysts are not only found in younger (late phase) rocks, they are common in the older (main phase) felsic and mafic rocks as well.

(ii) Secondary Igneous Process (alteration):-

Some Lyttelton rocks are far from pristine (fresh), this is either because they are weathered or have undergone *late* or *post* magmatic alteration. Alteration minerals often pseudomorphed by low-temperature phases (such as chlorite, serpentine and opaques) or by high-temperature phases such as iddingsite. Most Lyttelton rocks (the main and late phase mafic and intermediate rocks) show marginal iddingsitisation of olivine phenocrysts accompanied by complete replacement of groundmass olivine. As discussed in several sections of this chapter, olivines shows characteristic shapes and are susceptible to marginal alteration. Of the common alteration products of olivine, apart from opaques (oxide), the red-brown mineraloid iddigsite is a ubiquitous product of high - temperature (magmatic) alteration. Olivine is often pseudomorphed by Fe-oxide and iddingsite and its presence is mainly inferred from euhedral olivine 'shapes of the pseudomorphs. The replacement of olivine phenocrysts and to a lesser extent clinopyroxene with iddingsite

60

rims probably indicates late stage magmatic oxidation (Weaver, pers. comm.). The occurrence of sparse subhedral red-brown apatite microphenocrysts in the lavas could be explained as the remains of high pressure crystallization or polybaric fractionation.

[B] Petrographic differences between the main and late phase rocks:-

The main and late phase (Mt Pleasant formation) rocks do not show major differences in petrography. Both are characterized by mafic to felsic lava compositions, but the main phase Lyttelton hawaiite lavas can be distinguished from late phase hawaiite by differences in the modal population of minerals. The main Lyttelton hawaiites are more porphyritic in texture and have higher modal plagioclase phenocrysts (25%) than late phase hawaiites. Amphibole is far more common in the late phase hawaiites than in the main phase hawaiites. There is no observable petrographic difference between the main and late phase mugearites and benmoreites. There is no trachyte lava flow in the main phase Lyttelton volcanics.

[C] Intrusives and their relationship to extrusives and other Banks Peninsula rocks:-

Among the intrusives, the olivine-basalt dikes are distinguished from the late and main hawaiite flows by their high contents of olivine phenocrysts (typically 10-15%) and absence of plagioclase phenocrysts. These dikes intersect the late phase rocks and they are younger than the other dikes (intermediate and felsic dikes) and late phase lava flows. The olivine-basalt dike which cuts the Castle rock trachyte is correlated with the younger Church volcanics (Weaver and Sewell, 1986). Based on this fact, together with petrographic and field relationships, the olivine-basalts in the mapped area probably all belong to the Church volcanics (8.1-7.3 Ma). In general, the dikes range from mafic to felsic rocks as is the case of the lava flows. The sills and other intrusions are trachyte in composition.

CHAPTER 4

GEOCHEMISTRY

4.1 INTRODUCTION

This chapter discusses the geochemistry of extrusive and intrusive rocks of the north-eastern sector of Lyttelton volcano. The objective of this chapter is:- (i) to classify and describe the rocks on the basis of the their chemistry (ii) to determine the stratigraphic variation in major and trace elements and to assess chemical variation between the main and late phase (Mt Pleasant Formation) Lyttelton volcanics, (iii) to correlate lava flows and other units from different outcrops (iv) to make inferences concerning the petrogenesis of the Lyttelton volcanic group, (v) to asses the tectonic significance of the Lyttelton lavas by means of geochemical discrimination diagrams

The chapter discusses the main and late phase Lyttelton volcanics (Mt Pleasant Formation) under different headings. The first two sections deal with major and trace element classification and variations. These are followed by stratigraphic variation using geochemical parameters. The last section deals with petrogenesis of the lavas and their tectonic setting, together with a summary discussion on isotope geochemistry and comparison of Lyttelton rocks with other parts of Banks Peninsula.

Whole rock major element analyses and CIPW normative mineralogy for extrusive and intrusives are presented in appendix Vb. Trace element analyses and ratios are given in appendix VIb and other description of samples are found in appendix II.

4.2 CHEMICAL CLASSIFICATION AND ASSOCIATIONS

4.2.1 Nomenclature

-0

Extrusive and intrusive rocks of the mapped area range in composition from ol-basalt to qz-trachyte and have silica abundances ranging from 47 to 67 Wt. %. Lyttelton volcanic rocks are here classified according to the scheme of Coombs and Wilkinson (1969). This classification is based on Differentiation Index versus normative plagioclase composition (Fig. 4.1).

Fig. 4.1 Differentiation Index (D.I) versus normative plagioclase diagram, for classifying the rocks.

Fig. 4.2 AFM plot for Lyttelton rocks, solid line divides alkaline and subalkaline fields (After MacDonald and Katsura, 1964).

KEY for Lyttelton rocks :-

Gradient Solid circles = Intrusive rocks.
A ≠ Closed triangles = Late phase Lyttelton volcanics Lava flows.
O ≠ Open circle = Main phase Lyttelton volcanics Lava flows.

Lyttelton rocks are classified accordingly as shown on figure 4.1 and rock names are prefixed by the normative minerals (*ne*, hy or qz); this indicates the degree of silica saturation (see section 4.7.2 and appendix Vb).

Some Lyttelton rocks are weathered, oxidized or altered, involving replacement by secondary minerals and mineraloids (see chapter 3). Such alteration directly affects the chemical classification of samples if the primary chemistry has changed. Most alteration involves oxidation and the conversion of iron from ferrous (Fe^{2+}) to the ferric (Fe^{3+}) state. In the CIPW norm such a change results in the formation of hematite at the expense of magnetite and under estimation of Fe silicates (olivine and pyroxenes). In effect SiO₂ is "liberated" and normative qz and may be generated or normative qz and hy may be increased. To minimize this effect, normal practice, even when separate ferrous and ferric iron concentrations are available, is to calculate norms for a suite of rocks at a constant iron oxidation state. Here a ratio of Fe₂O₃ / FeO = 0.3 is assumed (Weaver pers. comm.).

The degree of hydration of samples can be judged from the magnitude of the determined LOI. The norm calculation is of course independent of this variation. Other changes in primary chemistry can not be compensated for except that in field sampling, only the freshest rocks were chosen. The variable oxidation and hydration that has affected the Lyttelton rock is typically of pre-Quaternary volcanics and should not have biassed the geochemical discussion presented here.

4.2.2 Chemical associations

The Lyttelton volcanics plot on both sides of the boundary line (Fig. 4.3) separating alkaline and subalkaline compositions (Irvine and Barager, 1971). Likewise on the AFM plot, (Fig. 4.2), Lyttelton rocks straddle the division between alkaline and sub alkaline compositions (Macdonald and Katsura, 1964). Thus in general the Lyttelton suite is *transitional* in geochemical affinity.

Several felsic Lyttelton rocks (benmoreites and trachytes) plot in the subalkaline field (Figs. 4.3, 4.4): On the alkali silica plot, most mafic rocks (basalts and hawaiites) plot on the *alkaline* field and therefore appear to be

KEY for Lyttelton rocks :-Solid circles = Intrusive rocks. Closed triangles = Late phase Lyttelton volcanics Lava flows. Open circle = Main phase Lyttelton volcanics Lava flows.

:

Alkali - Silica plot for fractionated Banks Peninsula suites. Solid circles - Akaroa flow rocks; open circles -Akaroa intrusive rocks; closed triangles - Lyttelton flow rocks; open triangles - Lyttelton; t- Governors Bay Volcanlcs; X - Smoky Rhyolites. Dotted lines show main trends for Akaroa, Lyttelton and Governors Bay Volcanics. Thick solid line divides alkaline and subalkaline fields (Irvine & Barager 1971). Lines 1-3 separate ne from hy normative samples for Akaroa, Lyttelton and Skye (Thompson et al 1972) respectively. Nomenclature for alkaline (alkali basalt to trachyte) and. subalkaline (basaltic andesite to rhyolite) associations is indicated.

ł

Fig. 4.4 Alkali - Silica plot for Banks Peninsula suites. From Weaver and Sewell, 1986.

members of the alkali olivine basalt - hawaiite - mugcarite - benmoreite -trachyte associations as defined by Coombs and Wilkinson (1969). This designation is consistent with the mineralogy of the rocks, that is the presence of a single Ca-rich clinopyroxene and abundant olivine and the absence of orthopyroxene and pigeonite. In addition to these features the Lyttelton rocks do not show any trends of Fe-enrichment characteristic of a *tholeiitic* suite (Fig. 4.2).

The intermediate and felsic Lyttelton rocks that plot in the subalkaline field (Fig. 4.3) are not related to the Governors Bay series as described by Weaver and Sewell, 1986 (Fig. 4.4). This study classified the Lyttelton rocks as benmoreite and trachyte (alkaline suite, sodic series) rather than dacite (subalkaline suite, potassic series). The reasons for this designation are:- (i) these rocks have typical *alkaline suite mineralogy* (as described above / see chapter 3). (ii) Some samples may plot in subalkaline field due to *alkali loss*.

As shown in figure 4.4 the Governors Bay Volcanic are a subalkaline potassic series Icelandate, K-dacite to peraluminous K-rhyolite (Weaver et al. in press.). Akaroa volcanics are on alkaline, sodic series, alkali basalt to trachyte association (Fig. 4.4). In general the subalkaline potassic trend of the Governors Bay volcanics and the alkaline, sodic trends of Lyttelton and Akaroa volcanics are distinct on Figure 4.4. The presence of high silica felsic lava flows in Lyttelton is clearly distinguishes the Lyttelton volcanics from Akaroa volcanics (Figs. 4.3, 4.4).

4.3 CHEMICAL VARIATIONS

This section discusses major and trace element variation in Lyttelton volcanics. For this purpose, the discussion is based on two plots :- the first variation diagram is for extrusive and intrusive rocks and the second diagram covers extrusive rocks only. Both plots are presented side by side.

The reasons for selection of extrusive and intrusive plots together (i.e Figure numbers suffixed by letter "a") are :- (i) to show chemical variations or trends for the whole Lyttelton suite, (ii) to show relationships between the chemistry of the two groups of extrusive rocks and intrusive rocks, (iii) to show chemical variation within the intrusive rocks themselves. The reason for plotting extrusive rocks separately (i.e Figure numbers suffixed by letter "b") is simply to assess clear chemical differences between the main and late phase Lyttelton volcanics (Mt Pleasant Formation) which have been separated on the basis of field relationships (see chapter 2).

4.3.1 Major-element variation

Major element are plotted against SiO_2 as an index of differentiation. Firstly the major element variation of the whole Lyttelton suite is discussed below based on Figure 4.5a that covers both extrusive and intrusive rocks.

Silica versus oxides variation:

Major elements abundances plotted against Wt. % SiO₂ show a wide range in abundances and display fractionation trends. The large scatter of points shown by main and late phase volcanics may be partly a consequence of the porphyritic nature of the samples. This problem is difficult to overcome because of the general highly porphyritic nature of most of the main phase Lyttelton lava flows. However despite the scatter of points on the variation diagrams fractionation trends are still apparent.

(i) SiO₂ versus MgO and Fe₂O₃:-

MgO decreases with increasing SiO₂ (Fig. 4.5a), reflecting fractionation of Mg-rich phases (olivine and clinopyroxene). The low MgO content and low Mg numbers are indicative of *fractionated rocks*. Even most Lyttelton basic rocks are highly fractionated relative to mantle-derived primary magmas. Like MgO, total Fe_2O_3 decreases with increasing degree of differentiation (Fig. 4.5a), suggesting Fe_2O_3 is controlled by fractionation of olivine, clinopyroxene and Ti-magnetite.

(ii) SiO2 versus TiO2 and CaO:-

A decrease in TiO_2 with increasing degree of differentiation (Fig. 4.5a) reflects fractionation of Ti-magnetite and to lesser extent titaniferous clinopyroxene. *CaO* shows a decrease with increasing degree of differentiation (Fig. 4.5a) reflecting the fact that CaO is removed by crystallization of clinopyroxene and calcic plagioclase.

Fig. 4.5a SiO2 versus Wt. % oxides for extrusive and intrusive rocks. Key to symbols as for Fig. 4.3.

(iii) SiO₂ versus K₂0 and Na₂O:-

The enrichment in K_2O with increasing SiO₂ (Fig. 4.5a) indicates the absence of a fractionating K-rich mineral and that K_2O is acting as an incompatible element throughout the range of magma compositions studied here. The behaviour of Na_2O is more complex. In basic magma compositions it behaves incompatibly like K_2O and is strongly enriched. However, Na₂O peaks in abundance in intermediate rocks, and is relatively depleted in lavas of the most evolved composition (trachytes). This reflects the fractionation of intermediate and sodic plagioclase. Clearly the composition of fractionating plagioclase is the main control on the Na₂O/K₂O ratio of the lavas which is relatively constant in mafic rocks but drastically reduced as plagioclase become more sodic.

(iv) SiO₂ versus Al₂O₃ and P₂O₅:-

1 1

 P_2O_5 and Al_2O_3 show dispersed trends (Fig. 4.5a). Initially an increase in abundance is followed by decrease at higher levels of fractionation. Al_2O_3 shows dispersed enrichment with increase in SiO₂, reflecting a lack of plagioclase fractionation in basic rocks but increasingly significant fractionation in intermediate and felsic rocks. The concentration of Al_2O_3 is highly sensitive to the abundance of plagioclase phenocrysts, therefore, the scatter in basic rocks could be partly due to this variable.

As shown on the variation diagram, P_2O_5 initially increases then decreases (Fig. 4.5a). The peak clearly corresponds to the incoming of apatite as a fractionating phase, although trace apatite has been detected in some mafic rocks (chapter 3).

In conclusion, the general trend through the fractionation series is the increase in K_2O and Na_2O , and a decrease MgO, Fe_2O_3 , TiO_2 , CaO and P_2O_5 (Fig. 4.5a). This suggests that the main process controlling the variation in the magma chemistry is *fractional crystallization* of phenocryst phases, namely of olivine, clinopyroxene and plagioclase together with Ti-magnetite (the common phenocrysts in most rocks). Thus most of the *chemical variations* in Lyttelton lavas can be ascribed to *low pressure fractionation*, presumably in a crustal magma chamber, rather than mantle

processes involving different degree of partial melting.

4.3.2 Trace-element variation

Trace-elements are plotted against Zirconium to asses? chemical variations within Lyttelton volcanics. Trace element data and selected trace element ratio are presented in appendix VIb.

(i) Zirconium versus trace elements.

Zirconium is chosen as an index of fractionation because: (a) it shows wide variation in these lavas and may be determined with high precision (b) because of its low bulk distribution coefficient in basaltic suites, it behaves as an incompatible element with low crystal-melt partition coefficients in most igneous minerals (c) The concentration of Zr is very sensitive to partial meting and/or differentiation and it is insensitive to alteration (Tarney et al.1977).

Zr versus Sr:- Strontium abundance increases slightly, but becomes depleted in more evolved (felsic) rocks as zirconium increases (Fig. 4.6a). This suggests that Sr was concentrated in the early stages of fractionation by crystallization and removal of olivine and clinopyroxene, but in later stages was removed by plagioclase. The dispersion of points partly reflects the porphyritic nature of some samples rich in plagioclase phenocrysts.

Zr versus Ni, Cr and V:- The behavior of the compatible trace-elements Ni, Cr and V supports the crystal fractionation of olivine, clinopyroxene and magnetite. For example, Ni decreases with increasing differentiation (Fig 4.6a), this suggests fractionation of olivine. Cr also decreases with increasing Zr, suggesting mainly clinopyroxene fractionation. The decrease in V with increasing Zr (Fig. 4.6a) suggests fractionation of magnetite.

Zr versus Rb, Nb, Ce and Ba These elements behave incompatibly and are enriched with differentiation. Rb, Nb, Ce and Ba increase with increasing Zr content (Fig. 4.6a). A flattening out of the trends for Rb, Ba and Ce is apparent for the most evolved (high Zr) compositions. This suggests that in felsic compositions, these elements are less incompatible than Zr and that partition coefficients are increasing. This may reflect the crystallization of O Main phone. A Life phone.

71

Fig. 4.6b Zr versus trace elements for extrusive rocks (main and late phase Lyttelton volcanics). Key as for Fig. 4.3 sodic plagioclase and ternary feldspars which can incorporates Ba and Rb, and probably apatite which incorporates Ce.

Zr versus Y:- The behavior of Y is very erratic. There is an initial tendency to increase, but Y concentrations in felsic rocks are very variable. Further work including the analysis of full Rare Earth Element patterns is necessary to investigate this behavior.

4.3.3 Oxides and trace-element variations

(a) Zirconium versus major elements

MgO, CaO, TiO_2 decrease with increasing in Zr, but K_2O and Na_2O increase linearly with Zr (Fig 4.7a). K_2O versus Zr suggests that K is acting as a strongly incompatible element. The dispersion in Na_2O relative to K_2O indicates that Na is behaving less incompatibly than K (Fig. 4.7a). The observed trend of MgO versus Zr (Figs. 4.7a) suggests that the fractionation is probably caused by olivine removal, but the scatter probably reflects variation in the degree of olivine fractionation or the existence of a number of subsidiary trends (different lines of liquid descent). The trend shown by Zr versus CaO and TiO_2 suggest crystal fractionations. P_2O_5 initially increases and then decreases with increasing Zr (Fig. 4.7a) suggesting that Pis controlled by the removal of apatite in the middle stages of the fractionating sequence.

(b) Silica versus trace-element variation.

Zr, Ba and Rb increase with increasing SiO_2 whereas Sr decreases with increasing silica (Fig. 4.8a). The behaviour shown by Sr suggests that plagioclase crystallization is the controlling factor. Nb initially increases but then decreases at higher levels of differentiation. On Figure 4.8a and 4.8b it is apparent that a group of felsic main phase rocks have particularly low Nb contents. These rocks also have low Sr and in these respects there is a similarity to felsic rocks of the Governors Bay Volcanic Group. Thus these rocks may represent a subsidiary or separate geochemical trend. Clearly further more detailed investigation is needed to clarify this issue.

Fig. 4.7a Zr versus Wt. % oxides for extrusive and intrusive rocks. Key as for Fig. 4.3.

Fig. 4.7b Zr versus Wt. % oxides for extrusive rocks (main and late phase Lyttelton volcanics). Key as for Fig. 4.3.

4.4 MAIN AND LATE PHASE (MT PLEASANT FORMATION) ROCKS GEOCHEMICAL DIFFERENCES

Some of the major and trace-element variation plots demonstrate two separate fractionation trends. These are the main phase trend and late phase (Mt Pleasant Formation) fractionation trend.

(i) Major elements:- Two fractionation trends are apparent in Lyttelton rocks as shown by CaO and K_2O versus SiO_2 (Fig. 4.5b). Most of main phase Lyttelton volcanics have slightly higher CaO:SiO₂ ratios and lower $K_2O:SiO_2$ ratios at a given level of differentiation (Fig. 4.5ba), also main phase mafic rocks have lower Na₂O:SiO₂ ratios compared with late phase rocks (Mt Pleasant Formation).

(ii) *Trace elements:*- Two trends are observed in Lyttelton rocks on a plot of Rb versus Zr (Fig. 4.6b). Most of the main phase volcanics have relatively higher Rb:Zr ratios compared with late phase rocks. Most of the main phase rocks have relatively lower Sr:Zr and Ce:Zr ratios and higher Ba:Zr ratios (Figs. 4.6b) than late phase (Mt Pleasant Formation) rocks.

(iii) Subsidiary fractionation trends identified in the Lyttelton volcanics:-

The K_2O versus Zr, plot shows 3 weakly defined trends not seen on other plots (Figs 4.7b). This suggests different subsidiary trends with different K_2O :Zr ratios. Clearly the main phase has higher K_2O :Zr than the late phase but there is a transition from one to the other. This variation strongly suggests that K_2O :Zr of parental magmas changed through time. Either the mantle source is heterogenous with respect to K_2O :Zr or, if late stage volcanics represent slightly smaller percentages of partial melting, a mantle K-phase (phlogopite) becomes increasingly refractory holding back K and decreasing the K_2O :Zr ratio (Weaver pers. comm.).

The range of silica contents of late phase Lyttelton volcanics is larger (48 to 66 Wt. %), than the main phase rocks (48-64 Wt. %). Major oxides and trace-elments are fractionated within both phases at a given level of differentiation, there are identifiable separate trends for the main and late phase volcanics as discussed previously.

1

Fig. 4.8b SiO2 versus trace elements for extrusive rocks (main and late phase Lyttelton volcanics). key as for Fig. 4.3.

4.5 STRATIGRAPHIC VARIATION AND CORRELATION USING GEOCHEMICAL PARAMETERS

By correlating stratigraphy and major element geochemistry a chemical variation with time is observed. The measured stratigraphic section is from chapter 2. Selected oxides, elements and samples are plotted to assess the variation (Fig. 4.9). SiO_2 , K_2O , CaO, Rb and Zr were chosen for this purpose. Descriptions of the samples are listed in appendix IIa and appendix IIIb, and chemical data are in appendix Vb and VIb.

In Figure 4.9 the Wt. % of selected oxides and trace-elements in ppm have been plotted against elevation in metres. The plot can be compared directly with those of the mineral abundances in chapter 3. The chemical data show an overall stratigraphic change in composition. As shown in figure 4.9, the late phase mafic rocks have higher K_2O and low CaO than the main phase. The main phase (Mt Pleasant Formation) mafic rocks have lower Rb and Zr than late phase roks (Fig. 4.9). This conclusion is also supported by chemical variation plots of major oxides and trace-elements (see section 4.3 and 4.4).

This variation in composition is directly related to magmatic processes and variation in mineral abundances. These overall trends reflect cyclic differentiation within the Lyttelton volcanics. The term cyclic differentiation describes the progressive change from basic to felsic composition. The return to a basic composition marks the beginning of a new cycle. Thus 2 major cycles are recognized and these correspond to the main and late phase Lyttelton volcanics. In terms of the range of compositions they are more or less similar with only slight variation in chemistry and mineralogy.

4.6 INTRUSIVE ROCKS

As for the extrusives, the intrusives are subdivided in to main and late phase intrusives on the basis of chemical criteria. The assessment and/or designation of main and late phases for intrusives are mainly done by correlating the chemical trend of the late phase (younger) and the main phase (older) volcanics with the trends of intrusive rocks. For example, intrusives that fall on the late phase fractionation trends are assumed to be

Fig. 4.9 Selected major and trace elements versus stratigraphic height.

Contraction of the second s

0

late phase intrusives and vise versa. The age and classification of the intrusives is based on limited chemical and petrographic data together with their field relationships with extrusive rocks. Shelley (1988) concluded that Lyttelton dikes are derived from two centres of different age mainly on the basis of study of dike orientations. The two centres of dikes with different age probably correspond to main and late phase intrusives. Since most intrusives are not chemically studied more chemical date on intrusives together with dikes orientations conform the above conclusions.

(i) Major and trace element.

The chemical trends of the intrusive rocks are similar to the main and late phase trends for Lyttelton lavas and can be explained in terms of crystal fractionation. Generally, the compositional range and major element variation of the intrusive rocks are similar to the extrusive rocks. The intrusives cover a wide compositional range from nepheline normative to quartz normative (Fig. 4.3a). The most evolved intrusives (sills and some dikes) have lower TiO2:SiO2 and MgO:SiO2 ratios but higher K2O:SiO2 ratios consistent with their trachytic composition (Fig. 4.5a). These chemical trends indicate that the most evolved intrusive fractionation series have undergone considerable degrees of crystal fractionation by removal of olivine and clinopyroxene. Some dikes are enriched in MgO, this suggests these dikes are less evolved than the other rocks. The MgO-rich dikes (mafic dikes) are chemically distinct from mafic Lyttelton rocks. The petrography of these dikes support the conclusion that they are representative of the "Church volcanics" (Sewell, 1985).

(ii) Main phase intrusives

As shown on Figures 4.5a, 4.6a, 4.7a and 4.8a, variation diagrams of major and trace elements for extrusive and intrusive rocks enable classifications as younger (late) and older (main) intrusives to be made. Some intrusives have similar compositions to the main phase extrusives and are classified as older intrusives (main phase intrusives), on the basis of their chemistry. Trachyte dikes (samples M36B60 and M36B53) and sills (M36B56 and M36B5563) are examples of main phase (older) intrusives (Fig. 4.5a; SiO2 versus CaO or K2O, Fig. 4.6a; Zr versus Nb, Fig. 4.7a, Zr versus TiO₂ or K₂O, Fig. 4.8a; SiO₂ versus Zr). Field relations (that is older intrusives intrude the

older extrusives) and petrography support this conclusion

(iii) Late phase intrusives

Intrusives that have similar chemistry to late phase extrusives are classified as late phase intrusives. Castle Rock trachyte intrusion (M36B6a), lava plug (M36B2151) and basaltic dikes (M36B24) are examples of younger intrusives (Fig. 4.5a; SiO₂ versus K_2O or CaO, Fig. 4.6a; Zr versus Nb, Fig. 4.7a, Zr versus TiO₂ or K_2O Fig. 4.8a; SiO₂ versus Zr).

(iv) Summary

Based on field relations, limited geochemical data and petrography the following conclusions concerning the intrusives can be drawn :-(a) Dikes intruded the late and main phase extrusives throughout the history of the volcano. Based on the field relationships the sills could be main phase or late phase. (b) Dikes are related to the main and late phase extrusives and can be classified as younger and older dikes. (c) Most basaltic dikes are younger than intermediate dikes/felsic dikes. Examples of late phase basalt dikes which can be correlated with "Church volcanics" are M36B24, M36B4016, M36B4034 and M36B4036 which have similar petrographic characteristics (Chapter 3). (d) Intermediate and felsic dikes are mostly related to the main phase volcanics.

4.7 PETROGENESIS

4.7.1 General

This sub-chapter mainly assesses the petrogenetic processes which have produced the suite of Lyttelton rocks. The first part deals with the degree of silica saturations of mafic rocks expressed in terms of their normative mineralogy. This is followed by attempts to model petrogenetic processes. The last section in this chapter assesses the tectonic significance of Lyttelton lavas by means of geochemical discrimination diagrams.

4.7.2 CIPW normative mineralogy

The CIPW mineralogy demonstrate the degree of *silica-saturation* in rocks. Representative analyses of samples having differentiation index (D.I) < 50% (basic rocks) and those that are considered to be fresh are plotted in Figure 4.10a. Figure 4.10b from Weaver and Sewell (1986) is presented to compare other Banks Peninsula rocks with the present results (Fig. 4.10a). The Figure has cotectic curves for 1 atmosphere and 9 kb (Thompson, 1982). The arrows show the directions of falling temperature on these cotectics (cotectics are for plagioclase, olivine, clinopyroxene and basic liquid).

Basic rocks of the main and late phase extrusive and intrusive rocks have compositions closer to the 1 atm. cotectic and equilibria at low pressure (Figs. 4.10a, 4.10b). On the CIPW normative diagram the other volcanic groups such as the Akaroa Group indicate deep crustal equilibration plotting closer to the 9 kb cotectic, whereas the Lyttelton lavas plot nearer the 1 atmosphere cotectic reflecting shallower crustal equilibration. Furthermore, the normative composition of Akaroa lava contrasts with those of Lyttelton in being mostly nepheline normative. The majority of Lyttelton mafic lavas are hypersthene normative, where as a few are quartz normative (Fig. 4.10b). The Lyttelton group hawaiites plot nearer the 1 atmosphere cotectic curve determined experimentally for basic liquids (Thomson et al 1983) than the hawaiites of the other volcanic groups (Fig 4.10b). The trend shown by Lyttelton lava suggests the magmas have equilibrated at a low pressure of 5 As shown on figure 4.10b the Lyttelton volcanics are chemically Kb. distinguishable from other volcanic groups on Banks Peninsula.

As shown on Fig. 4.10a Lyttelton mafic rocks are scattered between the Di-Ol and the Di - Hy joins. The majority of main phase samples plot close to the Di - Hy join. The composition of the Lyttelton rocks suggest they range from alkali to tholeiitic basalt. Mt Herbert and Akaroa samples are dominantly alkali basalt (Fig. 4.10b). Church and Stoddart samples are mostly basanite and have higher diopside/olivine ratio than other Banks Peninsula rocks (Fig 1. 10b).

The normative compositions of the main phase Lyttelton volcanics show slight contrast with those of the late phase in being mostly quartz and hypersthene normative, whereas the late phase volcanics are olivine or weakly nepheline

Fig. 4.10a Normative, Diopside - Olivine - Hypersthene - Nepheline - Quartz diagram for Lyttelton basic rocks. Key as for Fig. 4.3

Fig. 4.10b Normative, Diopside - Olivine - Hypersthene - Nepheline - Quartz in Banks Peninsula basaltic rocks. Norm calculated with standard values of Fe₂O₃ according to the scheme of Thompson et al (1972). Sample having Differentiation Index <50% have been used to define the fields for different volcanic groups:-L=Lyttelton, A= Akaroa, MH=Mount Herbert, C=Church and S=Stoddart. The loci of initial melts from fertile, anhydrous lherzolite and form depleted, MORB - source mantle are shown, together with the I atmosphere and 9 kb cotectic curves for basaltic liquids in equilibrium with olivine + plagioclase + clinopyroxene (Thompson et al 1983). Source of figure and data for other volcanic groups from Weaver and Sewell, 1986. Number I represents Lyttelton volcanic group boundary (Weaver and Sewell, 1986).

1 1

normative (see appendix V b). Thus, there appears to be a trend from transitional to more alkaline (undersaturated) composition with time.

4.7.3 Modeling of petrogenetic processes

4.7.3.1 General.

1 1

The objective of this section is to assess the major petrogenetic processes (such as crystal fractionation or crustal contamination) that produced the range of mafic to felsic compositions of the main and late phase (Mt Pleasant Formation) volcanics.

Any assessment of the composition of mantle parental magmas is difficult due to the absence of Mg-rich basic rocks in Lyttelton volcano. Major and trace element variations in Lyttelton rocks have been evaluated and interpreted in terms of crystal fractionation as the dominant influence on magmatic differentiation (see section 4.3).

4.7.3.2 Crustal assimilation in modification of Lyttelton magmas

Chemical parameters known to be indicative of crustal contamination are high initial strontium isotopic ratios which usually correlate with high SiO_2 , K/Na and low Nb/Th and Nd isotopic ratios. According to Weaver et al. (in press.) Sr isotopic ratios for most Lyttelton rocks are low (range 0.7030 -0.7035). Only in evolved rocks such as trachytes which have low Sr and are susceptible to crustal contamination are Sr ratios elevated above 0.7035 (Fig. 4.12). Many intermediate and evolved rocks have Sr ratios <0.7035 (see section 4.8.1 and Fig. 4.12). Isotopic data on Lyttelton lavas by Weaver et al. (in press.) suggest negligible or minor crustal contamination.

No isotopic data are available for Lyttelton lavas sampled in this study. Other authors have calculated that the main petrogenetic process in the Lyttelton magmas is crystal fractionation. This will be evaluated in the next section.

4.7.3.3 Modelling of fractional crystallization:

The major element composition of proposed parent and daughter magmas and the composition of co-existing mineral phases was used to assess least squares models of crystal fractionation. The models are acceptable if the sum of the squares of the residuals is less than 2. It should be noted that such mass balance calculations are general only approximations. Their applicability may also be judged by checking whether the calculated proportions of mineral phases involved resemble those observed petrographically (chapter, 3).

Six models were used to assess the petrogenetic relationships within SiO_2 range (49-66 wt. %) and the MgO range (0.1-5.0 wt%) for main and late phase Lyttelton samples. Of these, three models used for main phase and the other three were for late phase modelling. These models test the hypothesis that chemical variation in the lavas can be explained by crystal fractionation of the observed phenocryst phases.

Mineral chemistry (microprobe analyses) data were taken from Sewell (1985) and Deer et al. (1966). The minerals were selected on the basis of close petographic and chemical similarity of rock types. Selected analyses of main and late phase rocks are given in appendix 7a and representative mineral analyses are presented in appendix 7b.

(a) Least squares models of crystal fractionation for main phase rocks:

- Model 1 :- Relates a main phase Mg-rich hawaiite (M36B4301) to a low-MgO evolved hawaiite (N36A5826). This model show sum of squares of residuals (R) of 0.09 and involves crystal fractionation of olivine, clinopyroxene and plagioclase (Table 4.1).
- Model 2 :- Assesses the relationship of the evolved hawaiite (N36A5826) to the mugearite (N36A5824). This model has sum of squares of residuals of 0.45. This model indicates the importance of plagioclase and clinopyroxene fractionation in the evolution of mugearite.
- Model 3 :- Demonstrates the relationship of mugearite (N36A5824) to benmoreite (N36A5822). This model shows an R value of 1.52 (Table 4.1). The largest residual error is P₂O₅ and

Table 4.1 Results of least squares models of crystal fractionation for main phase Lyttelton rocks.

Model-1	Model-2	Model - 3	
WEIGHTED INPUT DATA:	WEIGHTED INPUT DATA:	WEIGHTED IMPUT DATA:	
PARENT CPI.2 01.3 P1.2 11.2 DAUGHTER SI02 49.52 51.05 36.74 62.63 0.51 50.09 TI02 2.74 1.28 0.07 0.05 50.48 2.78 AL203 16.57 3.14 0.25 22.67 0.00 18.19 FED 11.20 5.98 31.65 0.27 46.37 10.20 NEO 0.17 0.19 0.88 0.69 1.45 0.18 NEO 5.45 15.44 29.88 0.01 0.46 3.61 CAO 8.98 22.59 0.39 5.11 0.72 9.47 RAO 3.53 0.33 0.04 8.40 0.00 3.73 K20 1.26 0.01 0.10 0.86 0.00 1.19 P205 0.59 0.00 0.00 0.00 0.57	PARENT CPI.1 01.1 P1.1 I1.1 DAUGHTER SI02 50.09 48.88 39.26 50.01 0.10 54.78 TI02 2.78 1.74 0.02 0.09 26.40 1.98 AL203 18.19 4.16 0.06 30.28 1.51 16.36 FD0 10.20 7.62 14.86 0.48 68.50 9.89 MHO 0.18 0.10 0.19 0.00 0.75 0.15 NGO 3.61 14.58 45.37 0.11 2.57 2.59 Ch0 9.47 22.49 0.23 14.70 0.05 6.18 NL20 3.73 0.44 0.00 4.18 0.11 4.77 K20 1.19 0.00 0.81 0.15 0.00 2.48 P205 0.57 0.60 9.00 0.00 0.81	PARENT CPI.4 01.3 P1.4 11.1 DAUGHTER S102 54.78 47.00 36.74 57.95 0.10 62.26 T102 1.98 1.19 0.07 0.00 26.40 1.03 AL203 16.36 3.50 0.25 26.37 1.51 16.01 FE0 9.89 21.16 31.65 0.28 68.50 6.12 MMD 0.15 1.12 0.88 0.00 0.75 0.14 NG0 2.59 7.33 29.68 0.03 2.57 1.38 CA0 6.18 17.38 0.39 7.81 0.05 3.87 NA20 4.77 1.05 0.04 6.46 0.11 4.72 K20 2.48 0.27 0.10 1.10 0.00 3.67 P205 0.81 0.00 0.00 0.00 0.60 0.60 0.60	
(PARENT-MINERALS-DAUGHTER)	(PARENT-NINERALS=DAUGHTER)	(PARENT-MINERALS=DAUGHTER)	
PARENT: 4301 Diventer: 5826	PARENT: 5826 DAUGHTER: 5824	PARENT: 5824 DAUGHTER: 5822	
SOL'N % CUMULATE	SOL'H % CUMULATE	SOL'N I CUMBLATE	
4301 1.000 CPI.2 -0.031 20.842 01.3 -0.065 42.960 P1.2 -0.048 31.914 11.2 -0.006 4.284 5826 0.849	5826 1.000 CPI.1 -0.084 19.708 01.1 -0.016 3.613 P1.1 -0.276 64.429 I1.1 -0.052 12.050 5824 0.572	5824 1.000 CPK.4 -0.104 21.849 01.3 -0.030 6.350 P1.4 -0.289 60.925 I1.1 -0.052 10.876 5822 0.525	
R SQUARED = 0.093	R SQUARED = 0.453	R SQUARED = 1.516	
PARENT DAUGHTER DAUGHTER WEIGHTED AMALVISIS MALVISIS CALC RESID S102 49 52 50 09 50.13 -0.04	PARENT DAUGHTER DAUGHTER WEIGHTED AMALYSIS AMALYSIS CALC RESID	PARENT DAUGHTER DAUGHTER WEIGHTED ANALYSIS ANALYSIS CALC RESID	Model - 1: Main phase Mg rich hawaiite to low-
TIO2 2.74 2.78 2.79 -0.01 AL203 16.57 18.19 18.11 0.06 FED 11.20 10.20 10.19 0.01 MHO 0.17 0.18 0.11 0.67	TIO2 2.78 1.98 2.16 -0.18 AL203 18.19 16.36 16.36 -0.00 PED 10.28 9.89 9.82 0.07 MRD 0.18 0.15 0.23 -0.08	S102 S4.78 S2.26 S2.11 C.14 T102 1.98 1.03 0.98 0.05 AL203 16.36 16.01 16.11 -0.10 FED 9.89 6.12 6.13 -0.01 MMD 0.15 0.14 -0.05 0.19	hawaiite. Model - 2: Main phase evolved hawaiite to mugea

Mg (evolv

arite

clearly this would be significantly reduced if apatite were included in the model (see table 4.1 model -3).

Generally all main phase models have sum of squares of residuals less that 1.52 and give petrographically acceptable results. Therefore, the following *conclusions* are particularly important regarding magmatic differentiation by modelling crystal fractionation:- (i) The major element modelling demonstrates the importance of olivine, clinopyroxene and plagioclase crystallization in the fractionation of the Lyttelton magmas. (ii) The calculated proportions of mineral phases involved are in good agreement with petographic observations (chapter, 3). Thus, the likely petrogenetic process which accounts for the range of compositions in the main phase Lyttelton rocks is *crystal fractionation*.

- (b) Least squares models of crystal fractionation for late phase rocks (Mt Pleasant Formation):-
- Model 1 :- Relates a late phase hawaiite (M36B4021) to mugearite (N36B2164B). This model has the sum of squares of residuals of 0.70 (Table 4.2), and indicates plagioclase, clinopyroxene and olivine fractionation in the production of the mugearite.
- Model 2 :- Assesses the relationship of the late phase mugearite (M36B2164B) to a low-silica trachyte dike (M36B53). This low-silica trachyte dike was chosen due to the absence of a suitable low-silica trachyte flow within the Late phase volcanics. The model gave a sum of squares of residuals of 2.28.
- Model 3 :- Demonstrates the relationship of the low-silica trachyte dike (M36B53) to a silica-rich trachyte lava flow (M36B4003). The sum of squares of residuals for this model is 1.88.

Generally most of the Late phase volcanics have sums of squares of residuals less than 2, except model 2. The highest residuals in model-2 are for the alkalies and P_2O_5 . The inclusion of apatite in the modelling would certainly reduce the R value. Alkali loss or migration may be responsible for the relatively poor fit.

Table 4.2 Results of least squares models of crystal fractionation for late phase Lyttelton rocks.

Model - 1 Model - 2 Model-3 WEIGHTED INPUT DATA: WEIGHTED INPUT DATA: WEIGHTED INPUT DATA: PARENT CPI.3 01.2 P1.3 11.1 DAUGHTER PARENT CPX.4 01.4 P1.4 I1.1 DAUGHTER 50.62 50.13 37.18 54.07 0.10 54.97 SI02 54.97 47.00 34.43 57.95 0.10 61.71 S102 PARENT CPX.4 P1.4 11.2 DAUGHTER T102 2.76 1.07 0.04 0.11 26.40 1.64 1102 1.64 1.19 0.43 0.00 26.40 1.15 61.71 47.00 57.95 0.51 67.19 \$102 2.91 0.06 28.20 1.51 18.39 AL203 18.39 3.50 0.92 26.37 1.51 AL203 16.31 1B.2B T102 1.15 1.19 0.00 50.4B 0.49 FED 11.93 9.93 28.82 0.54 68.50 8.21 FEO 8.21 21.16 42.16 0.28 68.50 4.11 AL203 18.28 3.50 26.37 0.00 17.04 MNO 0.15 1.12 0.69 0.00 0.75 MMO 0.22 0.46 0.48 0.00 0.75 0.15 0.08 FFO 4.11 21.16 0.28 46.37 3.70 MGO 2.22 7.33 20.55 0.03 2.57 NGO 3.40 12.32 33.16 0.03 2.57 2.22 0.77 0.08 1.12 0.00 1.45 0.03 MNO CAD 7.77 22.35 0.23 11.85 0.05 5.45 CAD 5.45 17.38 0.82 7.81 0.05 4.04 MSD 0.77 7.33 0.03 0.46 0.11 NA20 4.49 0.79 0.02 4.91 0.11 5.71 NA20 5.71 1.05 0.00 6.46 0.11 5.68 CAD 4.04 17.38 7.81 0.72 1.69 K20 1.68 0.00 0.00 0.27 0.00 2.69 K20 2.69 0.27 0.00 1.10 0.00 3.85 NAZO 5.68 1.05 6.46 0.00 5.25 0.57 0.00 0.00 0.00 0.00 P205 0.80 0.00 0.00 0.00 0.00 0.57 P205 0.37 K20 3.85 0.27 1.10 0.00 4.37 P205 0.32 0.00 0.00 0.00 0.12 (PARENT-NINERALS=DAUGHTER) (PARENT-HINERALS=DAUGHTER) (PARENT-NINERALS=DAUGHTER) PARENT: 4021 PARENT: 21640 DAUGHTER: 53 DAUGHTER: 2164B PARENT: 53 DAUGHTER: 4003 SOL'N I CUMULATE BOL'N % CUMULATE SOL'N I CUMULATE 1.000 2164B 4021 1.000 CPI.3 -0.120 40.462 CPI.4 -0.033 7.425 1.000 53 01.2 -0.008 01.4 -0.063 13.887 2.831 CPI.4 -0.045 14.374 P1.3 -0.103 34.491 P1.4 -0.317 70.178 P1.4 -0.254 80.996 I1.1 -0.038 8.510 11.1 -0.066 22.216 11.2 -0.015 4.630 2164B 0.702 53 0.549 4003 0.686 R SQUARED = 2.276 R SQUARED = 0.702 R SQUARED = 1.876 PARENT DAUGHTER DAUGHTER WEIGHTED PARENT DAUGHTER DAUGHTER WEIGHTED PARENT DAUGHTER WEIGHTED DAUGHTER ANALYSIS ANALYSIS CALC RESID AMALYSIS ANALYS15 CALC RESID AMALYSIS ANAL YSIS CALC 8102 54.97 61.71 61.48 0.23 5102 50.62 54.97 54.97 -0.00 5102 67.19 67.02 0.17 61.71 T102 **TI02** 2.76 1.64 1.23 0.41 1.64 1.15 1.07 0.07 T102 1.15 0.49 0.55 -0.06 AL203 18.39 18.28 18.39 AL203 16.31 18.39 18.41 -0.02 -0.11 AL203 18.28 17.04 17.13 -0.09 FEO FED 11.93 8.21 8.37 -0.16 8.21 4.11 4.13 -0.01 FEO 4.11 3.70 3.63 0.07 MND 0.22 0.15 0.16 -0.01 MNO 0.15 0.08 0.08 -0.00 MNO 0.08 0.03 0.01 0.02 860 160 2.22 1.12 3.40 2.22 2.08 0.14 0.77 -0.35 160 0.77 0.11 0.65 -0.53 CAD 7.77 5.45 5.47 -0.03 CAO 5.45 4.04 4.42 -0.38 CAD 4.04 1.69 1.94 -0.25 MA20 4.49 5.71 5.52 0.19 MAZD 5.71 5.68 6.77 -1.09 NAZO 5.68 5.25 5.96 -0.72 K20 K20 1.68 2.69 2.35 0.34 2.69 3.85 4.32 -0.48 K20 3.85 4.37 5.29 -0.92 P205 0.80 0.57 1.14 -0.58 P205 0.57 0.32 1.05 -0.73 P205 0.32 0.12 0.48 -0.36

Model-1 Late phase hawaiite to mugearite.

RESID

Model-2 Late phase mugearite to low-silica trachyte.

Model-3 low-Silica trachyte to silica-rich trachyte. 00 Ó

(c) Summary and conclusion

Least Squares modelling of crystal fractionation successfully accounts for the chemical variations in both the main and late phases of Lyttelton volcanics.

The main phase models give better results (lower R values) than the late phase models (Mt Pleasant Formation). Mass balance calculations for some models gave relatively higher R values particularly for the intermediate and felsic rocks of late phase models. This is probably caused by one of the following reasons: (a) The mineral analyses used are not from Lyttelton rocks, all mineral microprobe analyses were obtained from other sources (Sewell, 1985 and Dear et al. 1966), because no mineral data on Lyttelton rocks were available. (b) The effect of weathering and alteration in rocks can also affect the modelling. (c) Largest errors are observed mostly for alkalis, (Tables 4.1, 4.2), and this may be due to losses in alkalis. (d) Apatite is not included in the models. Nevertheless, most models of both phases suggest crystal fractionation of the observed phenocryst phases and are petrographically acceptable. In conclusion the major petrogenetic process, that produced the range of mafic to felsic compositions of the late and main phase volcanics is crystal fractionation rather than crustal contamination or crustal fusion (see later discussion).

4.7.4 Tectonic implications

Discrimination diagrams based upon incompatible and geochemically immobile elements have been used to determine the tectonomagmatic environment of basaltic rocks. Zr, Ti, Y and Nb contents in mafic rocks from different tectonic setting have been used to construct ternary plots (Figs. 4.11a, 4.11b) in which tectonic environments can be identified. Lyttelton basic rocks are classified using one of the Zr - Ti/100 - 3*Y ternary plot (Fig. 4.11a) developed by Pearce and Cann (1973) and the new discrimination diagram, the Zr/4 - 2 Nb - Y ternary plot (Fig. 4.11b) of Meschede (1986).

Pearce and Cann (1973) tectonic discrimination diagram (Fig. 4.11a) assigns Lyttelton mafic rocks to the field of *within plate magma type* (i,e Ocean Island or continental basalt). But this classification does not discriminate between Oceanic Island or continental basalt type. According to the Meschede (1986) classification scheme, the mafic Lyttelton volcanics are

Fig. 4.11a Tectonic discrimination diagram using Ti, Zr and Y for Lyttelton basic rocks. After Pearce and Cann, 1973.

Fig. 4.11b Tectonic discrimination diagram using Nb, Zr and Y for Lyttelton basic rocks. After Meschede, 1986.

1 1

within plate alkali basalt (Fig. 4.11b). Both methods are effective in determining the tectonic setting of Lyttelton basic rocks.

In *conclusion*, the Meschede (1986) classification is a better discriminator for Lyttelton rocks than the Pearce and Cann (1973) diagram, and the basic Lyttelton rocks are of *within plate continental alkali basalts* affinity.

4.8 DISCUSSION

4.8.1 General

The discussion below summarizes isotope geochemistry which supports conclusions made in earlier sections of this chapter and compares Lyttelton rocks with other Banks Peninsula rocks. The last part of this section is summary and conclusion of the Lyttelton volcanics.

4.8.2 Isotope Geochemistry

All Banks Peninsula rocks have initial ⁸⁷Sr/Sr⁸⁶ Sr values greater than 0.7029 (Weaver et al in press. and Fig. 3.13). The mafic rocks of Lyttelton volcano have similar isotopic ratios (0.7029-0.7032) to Diamond Harbour and Mt Herbert rocks (range up to 0.7038). Felsic rocks (trachyte) of Lyttelton volcano have higher average ⁸⁷Sr/⁸⁶Sr ratios (up to 0.7052) compared with intermediate and mafic rocks (initial ⁸⁷Sr/⁸⁶ Sr value less then 0.7032). This suggests most mafic rocks are mantle-derived magmas which have not been contaminated significantly by continental crust. The higher initial ⁸⁷Sr/⁸⁶Sr values in felsic rocks reflects the susceptibility of low-Sr magmas to upper-crustal contamination (Weaver et al. in press.).

As discussed in earlier sections (see section 4.2.2) the relationship between the subalkaline Governors Bay volcanics and transitional Lyttelton mafic rock is still uncertain. Weaver et al. in press. suggest that the transitional Lyttelton mafic magmas become contaminated on their way through continental crust. Lyttelton felsic rocks are derived by crystal fractionation from their intermediate and mafic members based on XRF chemical data, but the isotopic data suggest significant *crustal contamination* in the genesis of the felsic Lyttelton rocks. As shown on Figure 4.13 the felsic rocks of Lyttelton with

Histograms of initial 87 Sr/86 Sr values for Banks Peninsula. Fig. 4.12 Data source from (Weaver et al. in press.).

Diamond Harbour Dunedin basanile ¢ Pigroot malic phonolite Mi Heiben Banks Auckland Islands ALBIOS Y Peninsula Chatham Islands <u>∴</u> ▲ Lynehon Antipodes Island · Governors Bey Nonhland

~

Nd- (\mathcal{E}_{Nd} units) and initial Sr-isotopic relation-Fig. 4.13 ships for New Zealand intraplate volcanic rocks. Closed symbols represent mafic rocks and open symbols intermediate to felsic ones. The boundaries of the mantle fan are taken from Hawkesworth et al. (1987). Data sources are Coombs et al., (1986), McDonough et al. (1986), and Weaver, Pankhurst, Gamble, and Smith (unpublished data). Felsic rocks of the Governors Bay and Lyttelton groups extend outside the array, and are indicative of significant interaction with continental crust (solid field boundary). Samples of the Auckland Islands extend to even more extreme compositions (dashed field boundary). Data from (Weaver et al. in press.).

Fig. 4.14 Generalised Nd- and Sr-isotopic compositional fields for New Zealand intraplate and other volcanic areas. New Zealand data sources are Coombs et al. (1986), Cooper (1986). Barreiro & Cooper (1987), and Smith and Weaver (unpublished data). Other data sources are: Western Antarctica - Fula & LeMasurier (1983); St Helena - White & Hofmann (1982), Cohen & O'Nions (1982a); southeastern Australia - McDonough et al. (1985); Hawaii and MORB - Hawkesworth et al. (1987). Data from (Weaver et al. in press.).

continental crust.

Combined assimilation fractional - crystallisation (AFC) is the more acceptable petrogenetic process for all mafic to felsic suites (Fig. 4.13). The \leq ND - $^{87}Sr/^{86}Sr$ covariation (Fig. 4.13) demonstrates that all felsic rocks (Lyttelton and Akaroa trachytes and Governors Bay rhyolites) trend away from the mantle fan in a direction consistent with crustal contamination. The basic rocks in figure 4.13 have positive \leq ND values and initial $^{87}Sr/^{86}Sr$ values less than that of bulk earth. This indicates a mantle source that has time-integrated depletion in large - Ion - Lithophile elements and light REE (Weaver et al. in press.).

As shown on Figure 4.14 mafic volcanic rocks in New Zealand have time -integrated light-REE depleted and low Rb/Sr mantle source characteristics. The light-REE enriched composition of mafic magmas and their depleted isotopic data correspond to mantle source region that has undergone relatively recent episodes of metasomatism and incompatible - element enrichment (Weaver et al. in press.). Furthermore differences in isotopic composition as shown in Fig. 4.14 are evidence for some mantle heterogeneity beneath the New Zealand region (Weaver et al. in press.).

4.8.3 Comparison of Lyttelton lavas with other Banks Peninsula lavas

The main lineage of Lyttelton rocks is a sodic series from alkali and transitional basalt to high silica trachyte lava flows. The presence of high silica trachytes (part of the late phase) is one of the features which distinguishes the Lyttelton suite from the Akaroa suite. These silica rich (66 Wt. %) trachyte flows have higher silica than the dikes. However, the majority of mafic and intermediate Lyttelton rocks are chemically and mineralogically similar to Akaroa. Both are different from Diamond Harbour rocks, which consist mainly of basanites and represent the youngest rocks on Banks Peninsula (Weaver et al. in press.).

The Lyttelton Volcanics Group is chemically distinguished from other volcanic groups in Banks Peninsula (Akaroa and Mt Herbert) in having (i) a high range in abundance of SiO_2 (46-66 wt. %) and (ii) high abundances of incompatible trace element in felsic rocks. These characteristics indicate that the Lyttelton Volcanic Group is more strongly differentiated than the other

groups on Banks Peninsula. (iii) Lyttelton mafic rocks are transitional in geochemical affinity and they straddle alkaline and transitional tholeiite rock compositions.

4.8.4 Summary and conclusion

The Lyttelton rocks are alkaline and subalkaline compositions and transitional in geochemical affinity. Most mafic Lyttelton rocks are alkaline rocks of a sodic series and members of the alkali olivine basalt - hawaiite - mugearite -benmoreite - trachyte association and this designation is consistent with mineralogy. For example, petrographically, the main and late phase volcanics contain clinopyroxene (titaniferous clinopyroxene) and olivine phenocrysts. In addition, Lyttelton rocks show no trend of Fe - enrichment, characteristic of true tholeiitic suites. Some Lyttelton intermediate and felsic rocks are related to a subalkaline potassic series (for example, trachyandesite, dacite compositions of the Governors Bay series) and they could be called dacite, but they are classified as trachyte in this study. The reason for this is their mineralogy such as the presence of clinopyroxene and abundance of olivine, and absence of orthopyroxne and pigeonite.

Lyttelton volcanics are characterized by mafic to felsic lavas and sub volcanic intrusions of mildly under saturated to transitional compositions. Hawaiite lava flows predominate in the main and late phase Lyttelton lava successions. Benmoreite is the second most abundant rock type in main phase lava flows but high silica trachyte lava flow are second in abundance in the late phase volcanics after hawaiite. Mugearite lava compositions are the least abundant in both phases.

The predominance of hawaiite in both phases suggests fractionation of more primitive mantle-derived basaltic magma during the rise through continental crust and within the crustal magma chamber. In addition, the absence of mantle derived xenoliths from the Banks Peninsula volcances and their restriction to small monogenetic vents of strongly alkaline composition (Weaver et al. in press.) are supportive evidence for the above conclusion.

The distinguishing features between the main and late phase Lyttelton volcanics on the basis of geochemistry are:- (i) Most late phase (Mt Pleasant Formation) rocks have lower Rb:Zr ratios and slightly higher Nb:Zr ratios. (ii) Late phase volcanics (Mt Pleasant Formation) have slightly higher $K_2O:Zr$ ratios than the main phase. (iii) The less evolved late phase volcanics have higher Zr:SiO₂ ratios than the main phase. (iv) The late phase volcanics have slightly lower CaO:SiO₂ ratios and higher $K_2O:SiO_2$ ratios. The distinguishing features in terms of normative mineralogy between the main and late phase Lyttelton volcances are:- (i) the main phase mafic rocks are mostly quartz and hypersthene normative and rarely olivine normative, but the late phase (Mt Pleasant Formation) mafic lava flows are weakly nepheline and olivine normative. (ii) The intermediate and felsic rocks of the main Lyttelton phase are hypersthene and quartz normative, but the late phase intermediate rocks are olivine normative. There are no nepheline normative trachyte and benmoreite lava flows in either phase however, intrusions such as Castle Rock trachyte are nepheline normative. Felsic lava flows and intrusive (dike and sills) are quartz or hypersthene normative. Some mafic dikes are olivine normative.

The geochemistry of the late and main phase *mafic to intermediate rocks* are successfully reproduced by of crystal fractionation modelling (see section 4.7.3.3) and confirm that the main petrogenetic process in the evolution of Lyttelton rocks is *fractionation* of the observed phenocryst phases. The *isotopic* and *trace element* compositions of Lyttelton mafic rocks suggest that *crustal contamination has been minimal*.

Chemical variation in the *intermediate and felsic rocks* again suggests that the main petrogenetic process is *crystal fractionation*. However, the fact that felsic and intermediate rocks have slightly higher initial $^{87}Sr/^{86}Sr$ values (Weaver et. al in press.) suggests that a limited amount of crustal contamination is involved and that combined assimilation-crystal-fractionation models are the most realistic.

Mafic volcanic rocks of the North - Eastern sector of Lyttelton volcano are "within plate" alkali basalt, judged by trace-element discrimination diagrams. This is consistent with position of Banks Peninsula situated on continental crust at the western end of the Chatham Rise and distant from geologically active or recently active plate boundaries.

CHAPTER 5

GEOLOGICAL HISTORY AND CONCLUSIONS

In this chapter the geologic history of the Lyttelton volcano is summarized and the results of this study are presented as a number of conclusions.

5.1 VOLCANIC AND GEOLOGICAL HISTORY

Lyttelton volcano is constructed on basement rock, consisting of Triassic sandtones, mudstones and cherts (Torlesse Group), Cretaceous Volcanics (McQueens andesite and rhyolite), early to middle Tertiary sandstones (Charteris Bay sandstone) and middle Miocene Governors Bay Volcanics (see section 1.7.1)

The Lyttelton volcano was active between 11-10 Ma (Stipp and McDouggal, 1968). Over a period of about 2 million years, Lyttelton lavas built up the symmetrical cone which probably reached a height of about 1500 metres a.s.l. Then the Lyttelton cone was deeply dissected by erosion. The lava cone was breached by erosion along radial stream channels in the three places. Gebbies Pass where basement is exposed, Mt Herbert-Mt Bradley sector which is now filled by Mt Herbert Group lavas, and along the line of the Present Lyttelton Harbour. Erosion exposed lava necks and intrusives (dike and sills) down to the present height which is approximately 500 metres a.s.l. It is known that volcanoes may go through a number of geomorphological stages during the course of erosion and weathering:- These are, (i) gullied stage, (ii) residual stage (volcano dissected by large valleys) and (iii) skeletal stage (many intrusives bodies exposed as a result of deep erosion). Thus at present, the morphology and surface expression of the Lyttelton volcano is approaching the "skeleton stage".

The Lyttelton volcano is largely made up of the products of Hawaiian style activity (i.e represented by mafic flows erupted in the aa condition), with some Vulcanian style activity that is represented by felsic lava flows. In addition, Strombolian style activity, produced the lithic-crystal tuffs at local centres. Within the Lyttelton volcanic group two stratigraphically and petrologically distinct phases of volcanism are recognized. There is an angular discordance between these phases and this is the main reason for division of the volcanics into two distinct phases, and here designated as the main and late phase (Mt Pleasant Formation) volcanics.

The main phase rocks flows are laterally persistent and may be correlate between different localities however, there is some local variation in the stratigraphy. The late phase volcanics are not laterally continuous largely as a result of erosion. Thus, although there are local variations in the stratigraphy of the different late phase lava sequences, there is sufficient justification to group them into single lithostratigraphic unit distinct from the main phase Lyttelton lava flows and here designated the *Mt Pleasant Formation*. The main phase Lyttelton volcanics consist of hawaiite, mugearite and benmoreite lava flows. The late phase Lyttelton volcanics (Mt Pleasant Formation) comprises, hawaiite, mugearite, benmoreite and trachyte and including pyroclastic rocks (lithic-crystal tuffs).

The main phase Lyttelton activity started with the extrusion of mafic lavas of basalt-hawaiite composition. Following this, crystal fractionation within the magma chamber produced the more evolved intermediate rocks (mugearite). The magma evolved further by crystal fractionation and felsic rocks benmoreite were produced. It is thought the magma was extruded from an upper crustal reservoir in which most of the crystal fractionation occurred.

The late phase (Mt Pleasant Formation) volcanism probably started after erosion and lahar deposition and Strombolian eruptions from local centres. The magma which produced the main phase benmoreite, probably evolved further and eventually the chamber emptied by the extrusion of the late phase high-silica trachyte flow. Later, the magma chamber was replenished from the upper mantle and the next period of activity started with the eruption of hawaiite, followed by mugearite and benmoreite flows. The late phase activity terminated by extruding hawaiite lava flows.

Both phases represent successive eruptions and they range from mafic to felsic composition. The late phase (Mt Pleasant Formation) covers the same compositional range and is characterized by high silica trachyte. A change in lithology from dominantly mafic to felsic rocks may indicate a period of quiescence which permitted magma to differentiate.

1 1

يسارد الارتدامي در دمان داده فرار ا

During and after the construction of the Lyttelton volcanic cone, basalt to trachyte radial dikes and trachyte sills were emplaced.

5.2 PETROGENESIS

The Lyttelton volcanics were probably derived from partial melting of a mantle source, which produced an alkaline basaltic magma. This magma rose into the upper crust beneath Lyttelton volcano where it underwent differentiation. Subsequent fractionation of the magma was dominated by low pressure crystal fractionation of olivine, clinopyroxene, plagioclase and some Ti-magnetite in upper crustal reservoir.

Generally, major element compositions reflect shallow crustal evolution by fractional crystallization form the basalt-trachyte suite (see chapter 4). There is isotopic evidence of minor but measurable crustal contamination in felsic Lyttelton rocks. The petrogenetic scheme described above is summarized in Figure 5.1

The predominance of hawaiite in the Lyttelton volcano suggests fractionation of more primitive basaltic magma during its rise through continental crust.

5.3 RECOMMENDATIONS FOR FURTHER WORK.

This study provides a geological map of the area at a 1:10,000 scale and on this basis further work can be initiated in adjacent sector of the Lyttelton volcano. At present the absolute age differences between of the main and late phase volcanics are not known and geochronological data to establish absolute ages and to conform the stratigraphic groupings proposed here.

Isotopic and REE data together with mineral analyses are necessary in any detailed quantitative modelling of petrological evolution of the Lyttelton volcanics.

6. **ACKNOWLEDGEMENTS**

1 1

This work was financed by Geothermal Exploration Project, Ethiopian Institute of Geological Survey.

I would especially like to thank my principal supervisor Dr. S.D Weaver for initiating this project, for his continued encouragement and fruitful discussion. My thanks to my second advisor Prof. J.W Cole, Head of Geology Dept. for his helpful assistance throughout the course of my study. I would also like to thank Dr. D. Shelly for his useful discussion, especially in petrography, and Dr. R.J. Sewell and G.F Coates (New Zealand Geological Survey) for their valuable help and interest.

My gratitude goes to the staff of Geology Department for their collaboration and generous assistance. Special thanks are due to the technical staff of the Geology Department, University of Canterbury, for their valuable help and support during this study. Finally I wish to extend my sincere thanks to all people, who contributed their help towards this study.
- ABBEY, S. 1978: Calibration Standards III. Studies in Standard Samples; for use in the general analysis of silicate rocks and minerals. X-ray Spectrometry 7:99-121
- ADAMS, C. J. 1981: Migration of Late Cenozoic volcanism in the South Island of New Zealand and the Campbell Plateau. *Nature 294:153-155*
- ADAMS, C. J. and OLIVER, P.J. 1979: Potassium-argon dating of Mt Somers Volcanics, South Island, N.Z, Limitations in dating Mesozoic volcanic rocks. N.Z Jour. Geol. Geophys. 22:455-63
- BARLEY, M. E. 1986: Orgin and evolution of Mid Cretaceous garnet bearing, intermediate and silicic volcanics from Canterbury, New Zealand. Journal of Volcanology and Geothermal Research 33: 247-267.
- BUDDINGTON, A. F. and LINDSLEY, D. H. 1964: Iron-titanium oxide minerals and synthetic equivalents. J.Petrol. 5:310-357.
- CARMICHAEL, I. S. E. 1967: The iron-titanium oxides of salic volcanic rocks and associated ferromagnesian silicates. *Contr. Mineral. Petrol.* 14:36-64.
- CAVE, M. and FIELD, B.1980: Lyttelton volcano-B Excursion in S.D Weaver, D.W. Lewis (eds.) Geological Society of New Zealand, Christchurch Conference Field Trip Guides, H10-H15.
- COLE, J. W., 1986: Distribution and tectonic setting of late Cenozoic volcanism in New Zealand, *The Royal Society of New Zealand* 23:7-20.
- COOMBS, D. S. and WILKINSON, J. F. G. 1969: Lineages and fractionation trends in undersaturated volcanic rocks from the East Otago volcanic province (N.Z.) and related rocks. *J.Petrol.* 10:440-501.
- COX, K.G BELL, J.D and PANKHURST, R.J. 1979: The interpretation of igneous rocks. George Allen and Unwin; 450p.
- DEER, W. A., HOWIE, R. A., and ZUSSMAN J., 1966: An introduction to the rock forming minerals. London: Longman; 528p.

- DEER, W. A., HOWIE, R. A., and ZUSSMAN J., 1978: Rock forming minerals vol. 2A single - chain silicates, 2nd ed; 668p.
- DEER, W. A, HOWIE R. A., and ZUSSMAN J., 1978: Rock forming minerals vol. 2B double - chain silicates 2nd ed. London; Longman, 672p.
- DE PAOLO, D. J. 1981: Trace element and isotopic effects of combined wallrock assimilation and fractional crystallisation. *Earth Planet. Sci. Lett.* 53:189-202.
- DORSEY, C.J 1981: The stratigraphy, petrography, and geochemistry of the Diamond Harbour Groups, Banks Peninsula. Unpublished B.Sc (Hons) Thesis, University of Canterbury
- DORSEY, C.J, in preparation: The geology and geochemistry of Akaroa Volcano, Banks Peninsula, New Zealand unpublished Ph D thesis, University of Canterbury.
- FALLOON, T. J. 1982: The geology of the Onawe-French Farm Wainui area, Akaroa Volcano, Banks Peninsula. Unpublished B.Sc (Hons) Thesis, University of Canterbury
- FERRAR, E. and DIXON, J. M. 1984: Overriding of the Indian-Antarctic ridge: origin of Emerald Basin and migration of Late Cenozoic volcanism in southern N.Z and Campbell Plateau. *Tecton.* 104:243-256.
- FISHER, R. V. 1979: Models for pyroclastic surges and pyroclastic flows. J. Volcan. Geotherm. Res 6:305-318.

FISHER, R.V. and SCHMINKE, H.U. 1984: Pyroclastic Rocks. Springer, 472p.

- FODOR, R. V., KEIL, K. and BUNCH, T. E. 1976: Contributions to the mineral chemistry of Hawaiian rocks: III Pyroxenes in rocks from Haleakala and West Maui Volcanoes, Hawaii. Contrib. Mineral. Petrol. 50:173-195.
- GAST, P. W. 1968: Trace element fractionation and the origin of tholeiitic and alkaline magma types. *Geochim. Cosmochim. Acta 32:1057-1068.*

- GREEN, D. H., EDGAR, A. D., BEASLEY, P., KISS, E., and WARE, N. G. 1974: Upper mantle source for some hawaiites, mugearites and benmoreites. Contrib. Mineral. Petrol. 48:33-43.
- GREEN, D. H. and RINGWOOD, A. E. 1967: The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15:103-190.
- HUPPERT, H. E. and SFARKS, R. S. J. 1985: Cooling and contamination of mafic and ultramafic magmas during ascent through the crust. *Earth Planet. Sci. Lett.* 74:371-386.
- IRVINE, T.N. and BARAGER, W.R.A. 1971: A guide to the classification of the common volcanic rocks. Can. J. Earth Sci. 8:523-548.
- IRVING, A. J. 1978: A review of experimental studies of crystal/liquid trace element partitioning. Geochim. Cosmochim. Acta 42:743-770.
- KAMP. P. J. J. 1984: Neogene and Quarternary extent and geometry of the subducted Pacific Plate beneath the North Island. N.Z. Implications for Kaikoura tectonics. *Tecton*, 108:241-246.
- KNUTSON, J., and GREEN, T. H. 1975: Experimental duplication of a high-pressure megacryst/cumulate assemblage in a near-saturated hawaiite. Contrib. Mineral. Petrol. 41:205-215.
- KUNO, H. 1965: Fractionation trends of basalt magmas in lava flows. J.Petrol 6:302-321.
- KUSHIRO, I. 1980: Viscosity, density, and structure of silicate melts at high pressures, and their petrological applications. In Physics of Magmatic Processes R.B. Hargreaves (ed.) Princeton Uni. Press, N.J., 93p.
- LIGGET, K. A. and GREGG, D. R. 1965: Geology of Banks Peninsula Inf. ser. D.S.I.R 51: 9-25.
- MACDONALD, G.A. and KATSURA, T. 1964: Chemical composition of Hawaiian lavas. J.Petrol. 5:82-133.

- MESCHEDE, M., 1986: A method of discriminating between different types of mid ocean ridge basalts and continental tholiites with Nb-Sr-y diagrams. Chem. Geol. 56 : 207-218.
- MUIR, I.D.and TILLEY, C.E 1961: Mugearites and their place in alkali igneous rock series. J.Geol 69:186-203.
- MORRIS, P.A. 1984: Petrology of the Campbell Island Volcanics, southwest Pacific Ocean. J. Volcanol. Geotherm. Res 21:119-148.
- MYSEN, B. O. and KUSHIRO, I. 1977: Compositional variations of coexisting phases with degree of melting of peridotite in the upper mantle. Am. Mineral. 62:843-856.
- NORRISH, K. and HUTTON, J.T. 1969: An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. *Geochim. Cosmochim. Acta 33:431-453.*
- PEARCE, J.A. and CANN, J. R. 1973: Tectonic setting of basic volcanic rocks determined using trace element analyses. *Earth Planet. Sci Lett* 19:290-300.
- PRICE, R. C. and CHAPPELL, B. W. 1975: Fractional crystallisation and the petrology of Dunedin volcano. *Contrib. Mineral. Petrol.* 53:157-182.
- PRICE, R.C. and TAYLOR, S. R. 1980: Petrology and geochemistry of Banks Peninsula volcanoes. Contrib. Mineral. Petrol. 72:1-18.
- SCHMID, R. 1981: Descriptive nomenclature and classification of pyroclastic rocks and fragments; Geol. 9:41-43.
- SEWELL, R.J. 1985: The volcanic geology and geochemistry of central Banks Peninsula and relationships to the Lyttelton and Akaroa volcanoes, New Zealand, unpublished PhD thesis, University of Canterbury.
- SEWELL, R.J. 1988: Late Miocene volcanic stratigraphy of central Banks Peninsula, Canterbury, New Zealand. NZ.J.Geol. Geophys. 31:41-64.
- SEWELL, R.J. WEAVER S.D., THIELE, B.W. 1988: Sheet M36BD Lyttelton, 1: 50,000. Wellington, New Zealand. DSIR.

- SHEARER, J.C. 1986: The geology of the Governors Bay Road Dyers Pass Road area. Lyttelton volcano, Banks Peninsula unpublished B.SC. Hons. Thesis. University of Canterbury.
- SHELLEY, D. 1985: Determining paleo flow directions from groundmass fabrics in the Lyttelton radial dykes, New Zealand. J.Volcanol. Geotherm. Res.25:69-79.
- SHELLEY, D. 1987: Lyttelton 1, Lyttelton 2 the two centres of the Lyttelton volcano. NZ J.Geol geophys. 30:159-166.
- SHELLY, D. 1988: Radial dikes of Lyttelton volcano, their structure, form and petrography. NZ J.Geol. geophys 31:65-75.
- SPARKS, R. S. J. and WALKER, G. P. L. 1973: The ground surge deposit: a third type of pyroclastic rock. *Nature 241:62-64*.
- SPEIGHT, R. 1935: The geology of Gebbies Pass, Banks Peninsula. Trans. Roy. Soc. N.Z. 65:305-328.
- SPEIGHT, R. 1938: The dykes of the Summit Road, Lyttelton. Trans. Roy. Soc. N.Z. 68:82-99.
- STIPP, J. J. and McDOUGALL, I. 1968: Geochronology of the Banks Peninsula Volcanoes. N.Z. Jour. Geol. Geophys. 11:1239-1260.
- TERRY, R.D. and CHILINGAR, G. V. 1955: Comparison charts for visual estimation of percentage composition. J.Petrol. 25:229-234.
- THIELE, B. 1983: Basement geology to the Lyttelton Volcano Unpublished MSc Thesis, University of Canterbury, 196p.
- THOMPSON, R.N. ESSON, J. DUNHAM, A.C 1972: Major element variation in the Eocene lavas of the Isle of Skye, Scotland. J.Petrol. 13:219-253.
- THOMPSON R.N., MORRISON, A., DICKIN, S.P. HENDRY, G.L. 1983: Continental flood basalts: Arachnids rule ok ? in C.J Hawkesworth and M.J Norry (eds) Continental basalts and mantle Xenoliths. Shiva Publishing Ltd. Nantwhich. pp.158-185.

- WALCOTT, R. I., 1984: Reconstruction of New Zealand region for the Neogene. Palaeogeog., palaeclimatol., palaeoecol. 46 : 217-231.
- WATSON, E. B. 1982: Basalt contamination by continental crust: Some experiments and models. *Contrib. Mineral. Petrol.* 80:73-87.
- WEAVER, S. D. 1980: An introduction to the geology of Lyttelton volcano In Weaver, S. D. and Lewis, D. W. (Eds) Geol. Soc. N.Z. Conf. Field Excursions Guide-book.
- WEAVER, S. D., SCEAL, J. S. C. and GIBSON, I. L. 1972: Trace element data relevant to the origin of trachytic and pantelleritic lavas in the East African rift system. *Contrib. Mineral. Petrol.* 36:181-194.
- WEAVER, S. D., SEWELL, R. J. and DORSEY, C. J. 1985: Extinct Volcanoes: A Geological Guide to Banks Peninsula. Geol. NZ Guide book Series,7.
- WEAVER, S.D. SEWELL, R.J 1986: Cenozoic volcanic geology of Banks Peninsula. In: Houghton, B.F., Weaver, S.D. (eds). South Island igneous rocks. NZ, Geol. Survey Record 13:39-64.
- WEAVER, S.D, SMITH, I.E.M. and others in press, 1989: New Zealand Intraplate Volcanism, In R.W Johnson and S.R, Taylor (editors). Cenozoic Intraplate Volcanism in Australia, Australian Academy of Science and Cambridge University Press.
- WOHLETZ, K. H. AND SHERIDAN, M. F. 1979: A model of pyroclastic surge. Geol. Soc. Amer. Sp. Paper 180:177-194.
- YODER, H. S. and TILLEY, C. E. 1962: Origin of basaltic magmas: An experimental study of natural and synthetic rock systems. J. Petrol. 3:342-532.

APPENDIX I

FIELD METHODS

[A] MAPS AND AERIAL PHOTOGRAPHS

Mapping was carried out using enlarged topographic maps and aerial photographs at a scale of 1:10,000. Published topographic maps of the study area include:-

1:50,000 NZMS 270 (sheet M36B and N36A). 1:25,000 NZMS 270 (sheet M36B).

Compilation of the base map was from the 1:10,000 field sheets, M36B6, M36B12 and N36A10. Aerial photographs used during field work are: Run SN2634: M/46-38, N/41-38, O/14-8, P/6-1, Q/5-1, R/3-1.

[B] MAPPING AND SAMPLING

Mapping was carried out during the winter and spring of 1987. The area was mapped and sampled by dividing it into four blocks (Fig.1). Block A consists of volcanics exposed around the Tors area, block B includes the Mt Cavendish area, Block C comprises the largest portion of the field area and occupies an area around Mt.P easant, and Block D includes a number of scattered localities (Sumner, Taylors Mistake and the area east of Lyttelton Harbour).

Sampling of individual lava flows, intrusive and pyroclastic rocks was designed to recover the freshest possible specimens. Sampling was done at regular stratigraphic intervals. About 300 samples were collected for petrographic and chemical analysis. 200 samples were selected for thin section study, 75 for X-Ray fluorescence analysis. An Additional 29 thin sections and 15 X-Ray Fluorescence data were studied around The Tors and Castle Rock areas.

SAMPLE LOCATIONS AND FIELD DESCRIPTIONS

This appendix contains the general information concerning the rock samples used in this thesis and the description of samples based on field observations.

Sample numbers are ordered numerically and are prefixed by 1:50,000 New Zealand Map Series (NZMS) 260 reference code for Banks Peninsula. The mapped area is on sheets M36B and N36A.

e.g sample number M36B2255

M36B = Reference code (sheet) B = Quadrant 2255 = Sample number

Grid references are prefixed by the same code (M36 or N36).

Sample numbers between 2000-2999 refer to the Tors area (Block A), 3000-3999 refer to Mt Cavendish area (Block B), 4000-4999 refer to the Mt Pleasant area (Block C) and 5000-5999 refer to scattered localities (Block D and Fig.1).

Table II-A listing type of analyses preformed on each sample, field descriptions and locations of sample.

Abbreviations used for table II-A:-

HTB	=	Heterolithic tuff breccia	XRF	=	= X-Ray Fluorescence
INT	H	Intrusion	MP	=	= Microprobe analyses
LP	=	Lava plug (neck)	+	=	= Data from S D Weaver
TS	=	Thin section	()	=	= S D Weaver sample number

Numbers :- 1=Sample, 2=Rock type, 3=Analysis, 4=exposure / Field description, 5=Locality, 6=Grid reference APPENDEX 11 A

TABLE OF SAMPLE LOCATION AND FIELD DESCRIPTIONS

SAMPLE TY	PE AN	ALYSIS	EXPOSURE/DESCRIPTION	LOCALITY GR	1D REFERENCE
1	2	3	4	5	6
M36B2046A (M36B6a)	INT	TS TS, XRF +	25 M THICK, COLUMNAR JOINTED, GREY GREEN, FRESH, FINE-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	CASTLE ROCK	M36/856354
M36620468 (M36662b)	INT	TS,	AS FOR M36B2046A	CASTLE ROCK	M36/856354
(M36624)	INT	TS, XRF +	SAMPLE FROM TOP RIDGE	CASTLE ROCK	M36/856354
M36B2047	DIKE	TS	1.00 M WIDE, PLAGIOCLASE-PHYRIC LAVA	THE TORS	M36/856353
(M36B29)	DIKE	TS, XRF +	1.00 M WIDE, PYROXENE-PLAGIOCLASE-PHYRIC BASALT	CASTEL ROCK	M36/853353
M36B2048 (M36B29)	FLOW FLOW	TS XRF +	DARK GREY, MODERATELY WEATHERED, FINE-GRAINED, PLAGIOCLASE-PHYRIC BASALT	THE TORS	M36/855351
M36B2049	LAHAR		1 M THICK, YELLOW-BROWN, STRUCTURELESS, CLAST- SUPPORTED POLYMICT BOULDER, BRECCIA AND CONGLOMERATE	THE TORS	M36/855352
M36B2051	FLOW	TS	DARK RED BROWN, WEATHERED, VESICULAR, MEDIUM- GRAINED, PLAGIOCLASE-PHYRIC BASALT	THE TORS	M36/856354
M3682052 (M36850)	DIKE	TS TS, XRF +	8 M WIDE, DARK GREEN-GREY, WEATHERED, VESICULAR, MEDIUM-GRAINED, PLAGIOCLASE-PYROXENE-PHYRIC BASA	THE TORS	M36/857351
M36B2054	DIKE	TS	2 M WIDE, DARK GREEN-GREY, WEATHERED, FINE- GRAINED, VESICULATED, PLAGIOCLASE-PHYRIC BASALT	THE TORS	M36/857351
M3682055	FLOW	TS	DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE PYROXENE-OLIVINE-PHYRIC BASALT	BRIDLE PATH TRACK	M36/864349
M36B2056	FLOW	TS	DARK RED, FRESH, MEDIUM-GRAINED, PLAGIOCLASE- PYROXENE-OLIVINE-PHYRIC BASALT	BRIDLE PATH TRACK	M36/864348
M36B2059	FLOW	TS	DARK, FRESH, FINE-GRAINED, PLAGIOCLASE-PHYRIC BASALT	EAST OF THE TORS	M36/863348
M36B2060	DIKE	TS	1 M WIDE, GREY GREEN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PYROXENE-OLIVINE PHYRIC BASALT	EAST OF THE TORS	M36/864348
M36B2061	DIKE	TS	1 M WIDE, GREY GREEN, FINE-GRAINED, PLAGIOCLASE PHYRIC TRACHYTE	EAST OF THE TORS	M36/863347
M36B2062	LAHAR		3 M THICK, ORANGE YELLOW-BROWN RED, STRUCTURELES (UNBEDDED) MATRIX SUPPORTED BOULDER BRECCIA AND CONGLOMERATE WITH COARSE SAND AND PEBBLE SIZE LITHICS	S EAST OF THE TORS	M36/862347
M36B2063 (M36B37)	DIKE	TS TS, XRF +	0.50 M WIDE, DARK GREY WEATHERED, MEDIUM-GRAINED PLAGIOCLASE- PYROXENE-OLIVINE-PHYRIC BASALT	EAST OF THE TORS	M36/862347
M36B2066	DIKE	TS	AS FOR M3682052	THE TORS	M36/856351
M36B2067	DIKE	TS	AS FOR M3652052	THE TORS	M36/856350
M3662068	FLOW	TS	WEATHERED, DARK, MEDIUM-GRAINED, VESICULAR, PLAGIOCLASE-PHYRIC BASALT	THE TORS	M36/855351
M36B2069	FLOW	TS	DARK GREY, FRESH, FINE-GRAINED, APHYRIC BASALT	THE TORS	M36/854349
M36B2071	FLOW	TS	DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	THE TORS	M36/854350
M3662072	FLOW ?	TS, XRF	DARK, FRESH, FINE-GRAINED, PLAGIOCLASE-PHYRIC	THE TORS	M36/852351

	1	2	З			4	5	6
()	136833)	FLOW	TS,	XRF	+	BASALT	-	Ŭ
M3	36B2073	FLOW	TS			DARK, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE- PHYRIC BASALT	THE TORS	M36/853352
M3	36B2074	FLOW	TS			AS FOR M3682073	THE TORS	M36/858351
M3 (M	3682076 136856)	SILL	TS,	XRF	+	15 M THICK, GREY GREEN, WEATHERED, FINE-GRAINED PLAGIDCLASE-PHYRIC TRACHYTE	THE TORS	M36/858353
MB	682078	SILL	TS			5-8 M THICK, GREY GREEN, WEATHERED, MEDIUM-GRAINED PLAGIOCLASE-PHYRIC TRACHYTE	THE TORS	M36/857350
M3 (M	36820788 436852)	DIKE	TS,	XRF	+	5 M WIDE, GREY-GREEN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	THE TORS	M36/858350
M3 (M	3682082 136853)	DIKE	TS, TS,	XRF	+	2.50 M WIDE, GREY GREEN, WEATHERED, MEDIUM-GRAINED PLAGIOCLASE-PYROXENE-PHYRIC BASALT	THE TORS	M36/859349
M3	6B2083	FLOW	75			DARK, FRESH, FINE-GRAINED, PLAGIOCLASE-APHYRIC BASALT	THE TORS	M36/862348
M3	3662085	DIKE				0.50 M WIDE, DARK GREY, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	THE TORS	M36/855351
M3 (M	662087 (36831)	FLOW	TS TS,	XRF	+	GREY RED-BROWN, VESICULAR, WEATHERED COARSE-GRAINED, PLAGIOCLASE-PHYRIC BASALT	THE TORS	M36/853352
M3	682088	FLOW	TS			AS FOR M36B2087	THE TORS	M36/852351
M3	682089	FLOW	TS			DARK GREY, MODERATELY WEATHERED, COLUMNAR TO IREGULAR JOINTED, PLAGIOCLASE-PHYRIC BASALT	THE TORS	M36/864355
M3	662091	FLOW	TS,	XRF		DARK RED-BROWN, MODERATELY WEATHERED, MEDIUM- GRAINED, PLAGIOCLASE-PHYRIC BASALT	GRIDLE PATH TRACK	M36/862352
мЗ	62094	FLOW	TS			AS FOR M3682091	BRIDLE PATH TRACK	M36/862350
M3	682096	DIKE	TS			0.80 M WIDE, DARK GREY, MODERATELY WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PYROXENE-OLIVINE- PHYRIC BASALT	EAST OF THE TORS	M36/862350
мЗ	662099	DIKE				1.20 M WIDE, DARK GREY GREEN, FRESH, MEDIUM- GRAINED PLAGIOCLASE-PYROXENE-OLIVINE-PHYRIC BASALT	BRIDLE PATH TRACK	M36/863349
M3	6821008	FLOW	TS			DARK GREY, MODERATELY WEATHERED, FINE-GRAINED, APHYRIC BASALT	EAST OF THE TORS	M36/864349
M3	682101	КТВ	TS			1.00 M THICK, BROWN-YELLOW, STRUCTURELESS, UNSORTED, MODERATELY WELDED AND COMPACTED, HETEROLITIC-TUFF-BRECCIA	EAST OF THE TORS	M36/865349
M3	682102	FLOW	TS			DARK BROWN, MODERATELY WEATHERED, FINE-MEDIUM GRAINED, PLAGIOCLASE-OLIVINE-PHYRIC BASALT	EAST OF THE TORS	M36/863348
M3	6B2103A	FLOW	TS			AS FOR M3682102	THE TORS	M36/864349
М3	6B2103B	FLOW	TS			AS FOR M3682091	THE TORS	M36/864349
M3	6B2104	DIKE				1 M WIDE, GREY-GREEN, WEATHERED, PLAGIOCLASE- PHYRIC TRACHYTE	EAST OF THE TORS	M36/857350
M3	6B2105A	FLOW	TS,			DARK, FRESH, COLUMNAR TO TABULAR JOINTED, FINE- GRAINED, PLAGIOCLASE-PHYRIC BASALT	EAST OF THE TORS	M36/862349
M3	6B2105B	FLOW	TS			AS FOR M36B2105A		M36/862349
M3	682107	DIKE				AS FOR M3682061	THE TORS	M36/862348
M30	6B2108	DIKE				AS FOR M3682104	THE TORS	M36/861350
M30	6B2115	DIKE				AS FOR M3682082	THE TORS	M36/860350
M30	6B2117A	FLOW	TS, X	RF		2-10 M THICK, GREY DARK, COLUMNAR TO TABULAR	EAST OF	M36/861350

108

1	2	3	4 JOINTED VESICULAR, MODERATELY WEATHERED, MEDIUM- GRAINED PLAGIOCLASE-PHYRIC BASALT	5 THE TORS	6	1	2	3.	4. FRESH, DARK GREY, FINE-GRAINED, APHYRIC BASALT (AS FOR M3682069)	5	6
M36821178	FLOW	TS	AS FOR M3682117A	THE TORS	M36B/861350	M36B2165C	FLOW	TS	AS FOR M3682071	THE TORS	M36/854349
M36B2118	DIKE		3-5 M WIDE, GREY GREEN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	EAST OF THE TORS	M36/861350	M36B2166	FLOW	TS	10 M THICK, MODERATELY COLUMNAR TO TABULAR JOINTED, DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE-	, THE TORS	M36/852346
M36B2124	DIKE		AS FOR M36B2060	THE TORS	M36/863347	M3682648	FLOW		CPEY DAPK-PROUN VECTORIAN NEDTING COLUMN		
M36B2126	DIKE		AS FOR M3682118	THE TORS	M36/863346	1.5052040	1 LON		PLAGIOCLASE-PHYRIC BASALT	THE TORS	M36/861342
M36B2133	DIKE		AS FOR M3682082	THE TORS	M36/860347	M36B2652	FLOW	TS, XRF	MODERATELY TABULAR TO KNOBBLY JOINTED, DARK	N-W OF	M36/862341
M3682139	FLOW	TS	3 M THICK, MASSIVE, DARK, FRESH, MEDIUM-GRAINED, Plagioclase-pyroxene-olivine-phyric basalt	THE TORS	M36/859343				TELLOW-BROWN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	LYTTELTON HARBOUR	
M3682148	DIKE		0.50 M WIDE, TRACHYTE DIKE	THE TORS	M36/857350	M3082658	DIKE		3 M WIDE, GREY GREEN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	NORTH OF	M36/862341
M36B2149	DIKE		1 M WIDE, DARK GREY-GREEN, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	THE TORS	M36/857350	M36B2659	FLOW	TS, XRF	DARK RED-BROWN, MODERATELY WEATHERED, MEDIUM- GRAINED, PLAGIOCLASE-PHYRIC BASALT	N-W OF LYTTELTON	M36/862388
M36B215DA	DIKE		AS FOR M3662149	THE TORS	M36/857350	M36B2671	DIKE		1 M WIDE, GREY GREEN, WEATHERED, PLAGIOCLASE-	NORTH OF	M36/863338
M36B2150B	DIKE		AS FOR M3682149	THE TORS	M36/857350	N3603677	EL OU		PRTRIC TRACHTTE	LYTTELTON	
M36B2151 (M36B46a)	LP	XRF TS, XRF +	ABOUT 12 M LONG,10 M WIDE DARK FRESH, FINE-GRAINED, PLAGIOCLASE-APHYRIC BASALT	THE TORS	M36/857350	13082072	FLOW		AS FOR M36B2659	NORTH OF	M36/868342
M36B2152	DIKE		1.50 M WIDE, DARK-GREY, FINE-GRAINED APHYRIC TRACHYTE	THE TORS	M36/857350	M36B2714	FLOW	TS	DARK GREY-RED, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	HEATHCOTE VALLEY	M36/861364
M36B2153	LAHAR		DARK YELLOW-RED, STRUCTURELESS, MATRIX-SUPPORTED TO CLAST-SUPPORTED WITH COARSE SANDS	THE TORS	M36/856350	M36B2732	FLOW	TS	DARK GREY, WEATHERED, FINE-MEDIUM GRAINED, PLAGIOCLASE-PHYRIC BASALT	CORSAIR BAY	M36/855333
M36B2154	LAHAR		AS FOR M3682153	THE TORS	M36/857349	M36B2744	LAHAR		AS FOR M3682153	LYTTELTON HARBOUR	M36/866366
M36B2155	FLOW	TS	DARK, GREY, MODERATELY WEATHERED, MEDIUM GRAINED, PLAGIOCLASE-PHYRIC BASALT	THE TORS	M36/858348	M36B2745	FLOW	TS	DARK BROWN, MODERATELY WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	LYTTEL TON HARBOUR	M368/865335
M36B2156A	FLOW	TS	5 M THICK, MODERATELY COLUMNAR TO TABULAR JOINTED, DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE- OLIVINE PHYRIC BASALT	THE TORS	M36/857347	M36B3143	DIKE		7 M WIDE, GREY GREEN, WEATHERED, PLAGIOCLASE-	MT CAVENDISH	M36/865349
M36B2156B	FLOW	TS	AS FOR M3682155	THE TORS	M36/857347	(M36861a)	DIKE	TS, XRF +	PHYRIC TRACHYTE		
M36B2157	FLOW	TS	AS FOR M36B2156	THE TORS	M36/855347	M36B3145	DIKE		1 M WIDE, GREY GREEN, WEATHERED, PLAGIOCLASE- PHYRIC TRACHYTE	MT CAVENDISH	M36/867349
M362158A	FLOW	TS	DARK BROWN-RED, VESICULAR, MODERATELY WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	THE TORS	M36/854348	M36B3174	DIKE		6 M WIDE, MODERATELY WEATHERED, GREY GREEN, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	WEST OF MT CAVENDISH	M36/865348
M36B2158B	FLOW	TS	AS FOR M3682156A	THE TORS	M36/854348	M36B3179	DIKE		2 M WIDE, GREY GREEN, MODERATELY WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	WEST OF MT CAVENDISH	M36/866348
M36B2162	FLOW	TS, XRF	3 M THICK, MODERATELY TABULAR TO COLUMNAR JOINTED,	THE TORS	M36/853348	M36B3180	DIKE		AS FOR M36B3145	WEST OF	M36/867347
			BASALT			M36B3184	DIKE		AS FOR M36B3145	WEST OF	M36/867346
M36B2163	FLOW	TS, XRF	2 M THICK, MODERATELY TABULAR TO COLUMNAR JOINTED, DARK GREY, FRESH, MEDIUM-GRAINED, PLAGIOCLASE- PHYRI BASALT (AS FOR M36B2162)	THE TORS	M36/852347	M36B3192	FLOW	TS	1.50 M WIDE, MODERATELY TABULAR JOINTED, FRESH, DARK, MEDIUM-GRAINED, PLAGIOCLASE-PYROXENE-	MT CAVENDISH	M36/868347
M36B2164A	FLOW	TS, XRF	2-4 M THICK, MODERATELY COLUMNAR TO TABULAR	THE TORS	M36/855351				OLIVINE-PHYRIC BASALT	HI CAVERDISH	
(M36B49)	FLOW	TS, XRF +	JOINTED, DARK, FRESH, MEDIUM-GRAINED, PLAGIDCLASE- PHYRIC BASALT			M36B3193	FLOW		AS FOR M3683192	WEST OF MT CAVENDISH	M36/868349
M36B2164B (M36B48a)	FLOW	TS, XRF TS, XRF +	3 M THICK, MODERATELY COLUMNAR TO TABULAR JOINTED, FRESH, DARK GREY, FINE-GRAINED BASALT (AS FOR M36B2060)	THE TORS	M36/857350	M36B3195	FLOW		DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	WEST OF MT CAVENDISH	M36/868349
M36B2164C	FLOW	TS, XRF	AS FOR M3662071	THE TORS	M36/853350	M36B3198	нтв		AS FOR M3682101	WEST OF MT	M36/868350
M36B2165A	FLOW	TS	AS FOR M36B2164A	THE TORS	M36/854349	M36B3199	DIKE		2 M WIDE, GREY, MODERATELY WEATHERED, MEDIUM-	WEST OF	N36 /867750
M36B2165B	FLOW	TS	2 M THICK, MODERATELY COLUMNAR TO TABULAR JOINTED,	THE TORS	M36/854349				GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	MT CAVENDISH	000/00/00/00/00/00/00/00/00/00/00/00/00

1	2	3	4	5	6		l	2	з	4	5	6
M36B3201	TUFF		RED CRYSTAL TUFF	MT CAVENDISH	M36/868350		M36B3251	FLOW		GREY DARK, WEATHERED, FINE-MEDIUM GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT CAVENDISH	M36/871352
M36B3202	FLOW		AS FOR M3683195	WEST OF MT	M36/868351		M36B3252	DIKE		1 M WIDE, DARK, WEATHERED, MEDIUM-GRAINED,	MT CAVENDISH	M36/872352
M36B3205	TUFF	TS	RED, WEATHERED, CRYSTAL TUFF	WEST OF MT	M36/868352					PLAGIOCLASE-OLIVINE-PHYRIC BASALT		
M36B3208	DIKE		4 M WIDE, GREY GREEN, MODERATELY WEATHERED, PLAGIOCLASE-PHYRIC TRACHYTE	WEST OF MT CAVENDISH	M36/868351		M36B3253	LAHAR		AS FOR M3683247	MT CAVENDISH	M36/871352
M36B3211	LAHAR		RED-BROWN YELLOW-BROWN, STRUCTURELESS TO WEAKLY	MT CAVENDISH	M36/870352		M36B3254	DIKE		DARK GREY, FRESH, FINE-GRAINED, PLAGIOCLASE- PHYRIC BASALT	MT CAVENDISH	M36/872351
			BEDDED, MATRIX-SUPPORTED TO CLAST-SUPPORTED, Polymict pebble breccia and conglomerate			-	M36B3256	FLOW		DARK GREY, MODERATELY WEATHERED, MEDIUM-GRAINED, OLIVINE-PHYRIC BASALT	MT CAVENDISH	M36/872351
M36B3213	LAHAR		AS FOR M36B3211	MT CAVENDISH	M36/870354		M36B3257	LAHAR		AS FOR M36B3229	MT CAVENDISH	M36/870350
M36B3214E	DIKE		0.50 M WIDE, GREY GREEN, MODERATELY WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	MT CAVENDISH	M36/870355		M36B3261	FLOW		MODERATELY COLUMNAR JOINTED, DARK, FRESH, FINE-	MT CAVENDISH	M36/870350
M36B3215	DIKE		4 M WIDE, GREY GREEN, MODERATELY WEATHERED, MEDIUM-GRAIINED, PLAGIOCLASE-PHYRIC TRACHYTE	MT CAVENDISH	M36/870356		M36B3262	LAHAR		AS FOR M36B3229	MT CAVENDISH	M36/871351
M3683216	TUFF		AS FOR M3683205	MT CAVENDISH	M36/870357	1	M36B3263	FLOW		DARK BROWN, WEATHERED MEDIUM, GRAINED,	MT CAVENDISH	M36/870349
M36B3218	FLOW		MODERATELY KNOBBLY JOINTED, WEATHERED, DARK,	MT CAVENDISH	M36/870356		M3683264	FLOU		PLAGIOCLASE-PHTRIC BASALT		117 (1070750
M7407225	51.011		CREW DINK SPECK COURCE-CRAINED DIACIOCIACE	MT CANENDICH	N74 /071757	1	M3683266	FLOW		AS FOR M3603263 ,	MT CAVENDISH	M36/8/2350
13083223	FLOW		PHYRIC BASALT	HI LAVENDISH	66611000		M36B3267	LAHAR		AS FOR M3683229	MT CAVENDISH	M36/872352
M36B3228	DIKE		AS FOR M3683215	MT CAVENDISH	M36/871351		M3683268	LAHAR		AS FOR M3683229	MT CAVENDISH	M36/072322
M36B3229	LAHAR	14	RED BROWN-YELLOW, UNSORTED, STRUCTURELESS,	MT CAVENDISH	M36/870351		M36B3270	FLOW		5 M THICK, MODERATELY COLUMNAR JOINTED DARK	MT CAVENDISH	N36/872353
			CONGLOMERATE			1				GREY, FRESH, MEDIUM-GRAINED, PLAGIOCLASE-PYROXENE- OLIVINE-PHYRIC BASALT	HI GAVENDISH	130/072333
M36B3230	FLOW		AS FOR M3683225	MT CAVENDISH	M36/869351		M36B3271	FLOW	TS, XRF	2 M THICK, DARK BROWN, FRESH, MEDIUM-GRAINED.	MT CAVENDISH	M36/873354
M36B3231	LAHAR		AS FOR M3683229	MT CAVENDISH	M36/870350					PLAGIOCLASE-PHYRIC BASALT		
M36B3232	LAHAR		AS FOR M3683229	MT CAVENDISH	M36/871353		M36B3272	FLOW	TS, XRF	3 M THICK, MODERATELY WEATHERED, MEDIUM-GRÁINED, PLAGIOCLASE-PYROXENE-OLIVINE-PHYRIC BASALT	MT CAVENDISH	M36/872353
M36B3233	FLOW		MODERATELY TABULAR JOINTED, DARK, FRESH, FINE- GRAINED, PLAGIOCLASE-PHYRIC BASALT	WEST OF MT CAVENDISH	M36/869350	1	M36B3273	FLOW		DARK GREY, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-OLIVINE-PHYRIC BASALT	MT CAVENDISH	M36/874354
M36B3237	FLOW		DARK GREY, WEATHERED MEDIUM-GRAINED, Plagioclase-phyric basalt	MT CAVENDISH	M36/870353		M36B3276	FLOW		AS FOR M36B3273	MT CAVENDISH	M36/875354
M36B3239	DIKE		4 M WIDE, GREY GREEN, WEATHERED, MEDIUM-	WEST OF	M36/875355	1	M36B3277	TUFF		RED CRYSTAL TUFF/SCORIA	MT CAVENDISH	M36/873353
			GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	MT CAVENDISH		1	M36B3279	TUFF		RED, MONOLITHIC CRYSTAL TUFF	MT CAVENDISH	M36/873352
M36B3241	DIKE		AS FOR M36B3148	MT CAVENDISH	M36/872355		M36B3280	FLOW	TS	DARK GREY BROWN, WEATHERED, VESICULAR, Plagioclase-phyric basalt	MT CAVENDISH	M36/874351
M36B3242	FLOW		DARK GREY, FRESH, VESICULAR, MEDIUM-GRAINED Plagioclase-olivine-phyric basalt	MT CAVENDISH	M36/872355		M3683281	FLOW	XRF	MODERATELY TABULAR JOINTED, GREY RED-DARK,	MT PLEASANT	M36/873351
M36B3244	FLOW		DARK, FRESH, FINE GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT CAVENDISH	M36/871354					BASALT		
M36B3245	DIKE		AS FOR M36B3241	MT CAVENDISH	M36/871355		M36B3282	LAHAR		AS FOR M36B3229	MT CAVENDISH	M36/874352
M36B3247	LAHAR		RED, STRUCTURELESS UNSORTED POLYMICT PEBBLE	MT CAVENDISH	M36/870355		M36B3283	FLOW		AS FOR M3683263	MT CAVENDISH	M36/874352
			BRECCIA				M36B3284	FLOW		DARK GREY, FRESH, MEDIUM-COARSE GRAINED, PLAGIOCLASE-PYROXENE-OLIVINE-PHYRIC BASALT	MT CAVENDISH	M36/875352
M3683248	FLOW		DARK GREY, MODERATELY WEATHERED, FRESH, MEDIUM- COARSE GRAINED, PLAGIOCLASE-PYROXENE-OLIVINE	MT CAVENDISH	M36/873353		M36B3285	LAHAR		AS FOR M36B3229	MT CAVENDISH	M36/875350
M36B3249	FLOW		DARK, FRESH, MEDIUM-COARSE GRAINED, PLAGIOCLASE	MT CAVENDISH	M36/872353		M36B3286	FLOW	TS, XRF	MODERATELY COLUMNAR TO TABULAR JOINTED DARK GREY, FRESH, PLAGIOCLASE-PHYRIC BASALT	SOUTH OF MT CAVENDISH	M36/876350
			PHYRIC BASALT				M36B3572	FLOW	XRF	5 M THICK, MODERATELY COLUMNAR JOINTED, DARK	WEST OF	M36/867352
M36B3250	FLOW	TS, XRF	1 M THICK, MODERATELY TABULAR JOINTED, DARK GREY BROWN, MODERATELY WEATHERED, MEDJUM-GRAINED,	MT CAVENDISH	M36/871353					GREY-GREEN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC-TRACHYTE	MT CAVENDISH	
			PLAGIOULASE-OLIVINE-PHYRIC BASALT			1	(M36B60)	DIKE	TS, XRF +	TRACHYTE DIKE AT QUARRY FACE	WEST OF	M36/867352

1.2

-	1	2	3	4	5	6
-	M36B3580	FLOW	TS	AS FOR M36B3572	MT CAVENDISH MT CAVENDISH	M36/866352
	M36B3581	DIKE		1 M WIDE, MODERATELY WEATHERED, GREY GREEN, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	MT CAVENDISH	M36/867355
	M36B3582	FLOW	TS	DARK GREY, FRESH, MEDIUM-GRAINED, PLAGIOCLASE- PYROXENE-OLIVINE-PHYRIC BASALT	MT CAVENDISH	M36/867355
	M36B3594	DIKE		2 M WIDE, GREY GREEN, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	MT CAVENDISH	M36/866353
	M36B3677	FLOW	TS, XRF	DARK, MODERATELY WEATHERED, FINE-GRAINED, PLAGIOCLASE-PHYRIC BASALT	SOUTH OF MT CAVENDISH	M36/872348
	M36B3678	FLOW	TS, XRF	DARK GREY, VESICULAR PLAGIOCLASE-PHYRIC BASALT	SOUTH OF CAVENDISH	M36/872347
	M3684001	FLOW	TS	DARK, HODERATELY WEATHERED, MEDIUM-GRAINED PLAGIOCLASE-OLIVINE-PHYRIC BASALT	MT PLEASANT	M36/876355
	M36B4002	FLOW	TS	DARK, FRESH, FINE-GRAINED, PLAGIOCLASE-PHYRIC- BASALT	MT PLEASANT	M36/875354
	M36B4003	FLOW	TS, XRF	3.5 M THICK, COLUMNAR TO TABULAR JOINTED, MODERATELY WEATHERED, GREY RED-BROWN (YELLOW- BROWN), MEDIUM-COARSE-GRAINED, PLAGIOCLASE- PHYRIC BASALT, TRACHYTE	MT PLEASANT	M36/876354
	M36B4004	FLOW	TS	AS FOR M3684003	MT PLEASANT	M36/876356
	M36B4005	FLOW	TS	DARK GREY, FRESH, MEDIUM-GRAINED, PLAGIOCLASE- PHYRIC BASALT	MT PLEASANT	M36/877355
	M3684006	FLOW	TS	AS FOR M3684005	MT PLEASANT	M36/878355
	M36B4007	FLOW	TS	DARK GREY, MODERATELY WEATHERED, MEDIUM-GRAINED PLAGIOCLASE-PHYRIC BASALT	MT PLEASANT	M36/877355
	M36B4008	FLOW	TS	AS FOR M3684007	MT PLEASANT	M36/878355
	M36B4009	FLOW	TS, XRF	AS FOR M3684005	MT PLEASANT	M36/878355
	M36B4012	FLOW	TS, XRF	AS FOR M3684005	MT PLEASANT	M36/877355
	M3684013	FLOW	TS	DARK GREY, FRESH, MEDIUM-COARSE GRAINED, PLAGIOCLASE-PYROXENE-OLIVINE-PHYRIC BASALT	MT PLEASANT	M36/878355
	M36B4014	FLOW	TS	AS FOR M3684007	MT PLEASANT	M36/878355
	M3684015	FLOW	TS	GREY, FINE-MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT PLEASANT	M36/878355
	M36B4016	DIKE	τs	1.50 M WIDE, GREY, MODERATELY WEATHERED, FINE- Medium grained, olivine-pyroxene-plagioclase- Phyric basalt	MT PLEASANT	M36/878355
	M36B4017	FLOW	TS	AS FOR M3684015	MT PLEASANT	M36/878355
	M36B4018	FLOW	TS	AS FOR M3684013	MT PLEASANT	M36/879353
	M36B4019	FLOW	TS	AS FOR M3684013	MT PLEASANT	M36/879353
	M36B4020	FLOW	TS, XRF	DARK GREY, FRESH, MEDIUM-COARSE GRAINED, PLAGIOCLASE-PYROXENE-OLIVINE-PHYRIC BASALT	MT PLEASANT	M36/879354
	M3684021	FLOW	TS, XRF	AS FOR M3684013	MT PLEASANT	M36/879352
	M36B4023	FLOW	TS	AS FOR M3684020	MT PLEASANT	M36/881354
	M36B4024	FLOW	TS, XRF	DARK GREY, MODERATELY WEATHERED, MEDIUM-COARSE GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT PLEASANT	M36/881353

1 M36B4025	2 FLOW	3 TS	4_ AS FOR M36B4020	мт	5 PLEASANT	б м36/881353
M3684026	FLOW	TS	GREY, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT	PLEASANT	M36/8822354
M36B4027	FLOW	TS	AS FOR M3684024	MT	PLEASANT	M36/882353
M36B4028	FLOW	TS	AS FOR M3684003	MT	PLEASANT	M36/82352
M36B4029	FLOW	ŤS	AS FOR M3684020	MT	PLEASANT	M36/881354
M36B4030	FLOW	TS	DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	МТ	PLEASANT	M36/883355
M36B4031	FLOW	TS	AS FOR M3684030	MT	PLEASANT	M36/885355
M3684032	FLOW	TS	DARK GREY RED-BROWN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT	PLEASANT	M36/884354
M36B4033	DOME	TS	GREY, MODERATELY WEATHERED, FINE-MEDIUM GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT	PLEASANT	M36/885353
M36B4034	DIKE	TS	1 M WIDE, MODERATELY WEATHERED, GREY, FINE- MEDIUM-GRAINED, OLIVINE-PHYRIC BASALT	MT	PLEASANT	M36/885352
M3684035	FLOW	TS	DARK GREY, FRESH, MEDIUM-GRAINED, PLAGIOCLASE PHYRIC BASALT	MT	PLEASANT	M36/885352
M36B4036	DIKE	TS	5 M WIDE, DARK, MEDIUM-GRAINED, PLAGIOCLASE- OLIVINE-PHYRIC BASALT	MT	PLEASANT	M36/885353
M36B4037	FLOW	TS	AS FOR M3684035	MT	PLEASANT	M36/881355
M36B4038	FLOW	TS	AS FOR M3684032	MT	PLEASANT	M36B/881354
M36B4039	FLOW	TS	AS FOR M3684035	МТ	PLEASANT	M36/882355
M36B4040	FLOW	TS	AS FOR M3684035	МТ	PLEASANT .	M36/881355
M36B4041	FLOW	TS	GREY, MODERATELY WEATHERED AFCIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	МТ	PLEASANT	M36/881354
M36B4042	FLOW	TS	GREY, MODERATELY WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PYROXENE-OLIVINE-PHYRIC BASALT	MT	PLEASANT	M36/881355
M36B4043	FLOW	TS	1.50 M WIDE, GREY BROWN, WEATHERED VESICULAR, MEDIUM-GRAINED, PLAGIOCLASE-OLIVINE-APHYRIC BASALT	MT	PLEASANT	M36/881358
M36B4044	FLOW	TS	GREY, MODERATELY WEATHERED, MEDIUM-GRAINED, LAGIOCLASE-OLIVINE-PHYRIC BASALT	MT	PLEASANT	M36/882355
M36B4045	FLOW	TS	DARK GREY, WEATHERED, MEDIUM-COARSE GRAINED, PLAGJOCLASE-PYROXENE-OLIVINE BASALT	MT	PLEASANT	M36/885356
M36B4287	TUFF		RED, CRYSTAL TUFF	MT	PLEASANT	M36/875350
M36B4292	FLOW		AS FOR M3683263	MT	PLEASANT	M36/876351
M3684296	FLOW		DARK, FRESH, FINE-GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT	PLEASANT	M36/876351
M36B4297	TUFF		AS FOR M36B4287	MT	PLEASANT	M36/876352
M36B4300	FLOW	TS	DARK, FRESH, MEDIUM-COARSE GRAINED, PLAGIOCLASE- PHYRIC BASALT	MT	PLEASANT	M36/877350
M36B4301	FLOW	TS, XRF	DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE- PYROXENE-OLIVINE-PHYRIC BASALT	MT	PLEASANT	M36/877351
M36B4303	FLOW	TS	AS FOR M3684292	MT	PLEASANT	M36/879350
M36B4315	FLOW		8-12 M THICK, COLUMNAR TABULAR JOINTED, DARK GREY YELLOW-BROWN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT	PLEASANT	M36/878354

1	2	з	4	5	6							
M36B4318	FLOW		AS FOR M3684315	MT PLEASANT	M36/877353	1	1	2	3	4	5	6
M36B4319	FLOW		AS FOR M3684030	MT PLEASANT	M36/886353	i	M36B4378	FLOW		DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE- PHYRIC BASALT	MT PLEASANT	M36/886344
M36B4320	DIKE		5 M WIDE, DARK, FRESH, MEDIUM-GRAINED,	MT PLEASANT	M36/885354	1.	M36B4402	FLOW		AS FOR M3684339	MT PLEASANT	M36/888361
			FERBIOLERSE-FRITTIC BASKET (AS TOK HOUSE)			1	M36B4406	FLOW		AS FOR M3684339	MT PLEASANT	M36/886360
M36B4321	DOME	TS	10 M THICK, GREY GREEN, MODERATELY WEATHERED, FINE-GRAINED, TRACHYTE	MT PLEASANT	M36/887358	1	M36B4407	FLOW		AS FOR M3684360	MT PLEASANT	M36/885360
M36B4323	DIKE		1 M WIDE, DARK, WEATHERED, FINE-GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT PLEASANT	M36/888358	1	M36B4408	FLOW	TS	AS FOR M3684360	MT PLEASANT	M36/887366
M36B4325	LAHAR		AS FOR M3683211	MT PLEASANT	M36/889359		M36B4410	FLOW	TS, XRF	DARK GREY, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT PLEASANT	M36/886365
M36B4333	FLOW		MASSIVE, 5-1 M THICK, MODERATELY COLUMNAR TO	MT PLEASANT	M36/884352	1	M36B4595	FLOW		AS FOR M3684003	MT PLEASANT	M36/876357
			TABULAR JOINTED, DARK GREY, FRESH, MEDIUN- GAINED, PLAGIOCLASE-PYROXENE-OLIVINE-PHYRIC BASALT				M36B4596	FLOW	TS, XRF	DARK GREY YELLOW-BROWN, WEATHERED, VESICULAR, MEDIUM-GRAINED, PLAGIOCLASE-OLIVINE-PHYRIC BASALT	MT PLEASANT	M36/875357
M3684334	DIKE		3 M WIDE, DARK GREY, FRESH, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT PLEASANT	M36/884351		M36B4613	FLOW	TS, XRF	MODERATELY TABULAR JOINTED, GREY YELLOW-GREEN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	WINDSOR	M36/895363
M36B4335	FLOW		10 M THICK, COLUMNAR TO TABULAR JOINTED, DARK PINK YELLOW-BROWN, WEATHERED, PLAGIOCLASE-PHYRIC LAVA FLOW (AS FOR M3684003)	MT PLEASANT	м36/885350		M3684619	FLOW	TS, XRF	DARK GREY, FRESH, MEDIUM-GRAINED, PLAGIOCLASE- OLIVINE-PHYRIC BASALT	WINDSOR	M36/895365
M36B4336	FLOW		AS FOR M3684433	MT PLEASANT	M36/885350	1	M36B4634	FLOW	TS, XRF	DARK GRAY, PLAGIOCLASE-PHYRIC BASALT	NORTH OF	M36/895365
M36B4337	FLOW		3-5 M THICK, MODERATELY COLUMNAR TO TABULAR	MT PLEASANT	M36/885351	1	M3684866	FLOW	TS	45 FOR M3684619	MONCKS BAY	M36/888378
			PLAGIOCLASE-PHYRIC BASALT				M368/801	FLOU	TS		MT DI FACAUT	WZ 6 / P773 6 9
M36B433B	FLOW	.17	GREY, MODERATELY WEATHERED, FINE-GRAINED, PLAGIDCLASE-PHYRIC BASALT	MT PLEASANT	M36/886352		M3684991	FLOW	TS	AS FOR M3684410	McCORMACKS	M36/882388
M36B4339	FLOW	TS	DARK GREY, MODERATELY WEATHERED, MEDIUM-COARSE	MT PLEASANT	M36/886353						BAY	
W7/D/7/0	51.00		GRAINED, PLAGIOCLASE-PHYRIC BASALT	NT DI CACANT	N74 /884350 '	1	M36B4905	FLOW	TS	DARK GREY, FRESH, MEDIUM-COARSE GRAINED, PLAGIOCLASE-PYROXENE-OLIVINE-PHYRIC BASALT	VALLEY	M36/B65379
M3084340	FLOW		GRAINED, PLAGIOCLASE-OLIVINE-PHYRIC BASALT	HI FLEASANI	m307000332	1.1	M36B4906	FLOW	XRF	AS FOR M3684619	FERRYMEAD	M36/865385
M36B4341	FLOW	TS	AS FOR M3684333	MT PLEASANT	M36/888348		M36B4907	FLOW		DARK GREY, WEATHERED, MEDIUM-COARSE GRAINED, PLAGIOCLASE-PYROXENE-OLIVINE-PHYRIC BASALT	MT PLEASANT	M36/881365
M36B4342	FLOW	TS	AS FOR M3684335	MT PLEASANT	M36/888347	1	M36B4908	FLOW	TS	AS FOR M3684907	MT PLEASANT	M36/881362
M36B4343	FLOW		AS FOR M3684339	MT PLEASANT	M36/887349		M3684909	FLOW	XRF	AS FOR M3684907	MT PLEASANT	M36/881350
M36B4344	FLOW		DARK, FRESH, MEDIUM-COARSE GRAINED, PLAGIOCLASE- OLIVINE-PHYRIC BASALT	MT PLEASANT	M36/888350		M3684911	FLOW		AS FOR M3684907	MT PLEASANT	M36/884356
M36B4349	FLOW		AS FOR M3684340	MT PLEASANT	M36/884346		M3684912	FLOW		AS FOR M36B4907	MT PLEASANT	M36/885358
M36B4352	FLOW	TS, XRF	AS FOR M3684301	MT PLEASANT	M36/885346		M3684913	FLOW		AS FOR M36B4907	MT PLEASANT	M36/888354
M36B4353	DIKE		3 M WIDE, GREY GREEN, WEATHERED, MEDIUM-GRAINED,	MT PLEASANT	M36/884346		M3684914	FLOW	TS	AS FOR M3684907	MT PLEASANT	M36/889356
N740/755	51.011			NT DI CACANT	N74 /0007/0		M36B4915	FLOW	TS,	AS FOR M3684619	MT PLEASANT	M36/893353
M3084333	FLOW		AS FUR MOOB4000	MI PLEASANI	M36/885348		M36B4916	FLOW	TS	AS FOR M3684619	MT PLEASANT	M36/892349
M36B4356	FLOW	TS, XRF	DARK, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE- PHYRIC BASALT	MT PLEASANT	M36/886346							•••••
M36B4357	DIKE		4 M WIDE, DARK GREY, MODERATELY WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	MT PLEASANT	M36/885346		M3665376	FLOW	TS	10 M THICK, MASSIVE MODERATELY COLUMNAR TO TABULAR JOINTED, DARK, FRESH, MEDIUM-COARSE GRAINED, PLAGIOCLASE-PHYRIC BASALT	N-E OF LYTTELTON HARBOUR	M36/889343
M36B4358	FLOW	XRF	DARK RED-BROWN, MEDIUM-GRAINED, PLAGIOCLASE- PHYRIC BASALT	MT PLEASANT	M36/884346		M36B5383	DIKE		3 M WIDE, GREY GREEN, WEATHERED, PLAGIOCLASE-	N-E OF	M36/895346
M3684359	FLOW		AS FOR M3684340	MT PLEASANT	M36/884346					PATRIC IRACHTIE	LITTELTON	
M36B4360	FLOW	TS	DARK GREY, FRESH, MEDIUM-GRAINED, PLAGIOCLASE- OLIVINE-PHYRIC BASALT	MT PLEASANT	M36/887346		M3685385A	DIKE		1 M WIDE, GREY GREEN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	EVANS PASS	M36/897348
M3684364	LAHAR		AS FOR M3683211	MT PLEASANT	M36/887346	1	M36853858	LAHAR		AS FOR M36B3427	EVANS PASS	M36/897348

1	2	3	4	5	6	1	2	3	4	=	<i>,</i>
M3685396	DIKE		4 M WIDE, GREY GREEN, WEATHERED, MEDIUM-GRAINED PLAGIOCLASE-PHYRIC TRACHYTE	N-E OF LYTTELTON	M36/893347	M3685758	FLOW	TS	DARK GREY-BROWN, WEATHERED, FINE-MEDIUM GRAINED, PLAGIOCLASE-PHYRIC BASALT	N-E OF	0 M36/891341
M3685429	FLOW	TS	GREY YELLOW-BROWN, WEATHERED, MEDIUM-COARSE GRAINED, PLAGIOCLASE-PHYRIC BASALT	WEST OF EVANS PASS	M36/894354	M36B5759	FLOW	TS	DARK, FRESH, MEDIUM-GRGAINED, PLAGIOCLASE- PHYRIC BASALT	N-E OF	M36/892341
M36B5431	LAHAR		3 M THICK, RED BROWN, STRUCTURELESS MATRIX SUPPORIED TO CLAST-SUPPORTED, POLYMICT BOULDER BRECCIA AND CONGLOMERATE	EVANS PASS	M36/899352	M36B5766	FLOW	TS	PLAGIOCLASE-PHYRIC BASALT	N-E OF	M36/892341
M3685440	FLOW	TS, XRF	DARK GRAY, PLAGIOCLASE-PHYRIC BASALT	W-OF EVANS PASS	M36/895353	M36B5768	FLOW	TS, XRF	AS FOR M3665759	N-E OF LYTTELTON	M36/894343
МЗ6В5441	FLOW	TS	MODERATELY KNOBBLY TO COLUMNAR JOINTED, DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE-PYROXENE- DLIVINE-PHYRIC BASALT	WEST OF EVANS PASS	M36/895352	M36B5772	FLOW	TS, XRF	AS FOR M3685768	LYTTELTON HARBOUR	M36/896346
M36B5443	FLOW	TS, XRF	DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC- BASALT	EVANS PASS	M36/896350	M36B5781	FLOW	TS	AS FOR M3665759	SOUTH OF	N36/902355
N36A5478	FLOW	TS	5 M THICK, COLUMNAR TO TABULAR JOINTED, DARK GREY YELLOW-BROWN, WEATHERED, MEDIUM-COARSE-GRAINED, DIACIOCIASE-DWYDIC BASAIT	BREEZE BAY	N36/924348	M3685791	FLOW	TS, XRF	DARK GREY-GREEN, MODERATELY WEATHERED, MEDIUM- GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	N-E OF LYTTELTON HARBOUR	N36/901351
N36A5482	FLOW	ĭS	AS FOR N3645478	TAYLORS MISTAKE	N36/919354	M3685792	FLOW	TS, XRF	5-10 M THICK, COLUMNAR TO TABULAR JOINTED, DARK GREY-YELLOW-BROWN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT (AS FOR N36A5507)	N-E OF LYTTELTON HARBOUR	M36/899349
N36A5508	FLOW	TS, XRF	AS FOR M3685478	LIVINGSTONE	N36/915348	M3685797	FB		AS FOR M3684349	EVANS PASS	M36/899349
				BAY		M3685804	FLOW		AS FOR M3685768	EVANS PASS	M36/899352
N36A55U7	FLOW	.~	AS FOR N36A5478	BAY	N36/915347	M3685805	FLOW	XRF	DARK GREY, MODERATELY WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-OLIVINE-PHYRIC BASALT	EVANS PASS	M36/900354
N36A5509	FLOW	TS, XRF	COULMNAR TO TABULAR JOINTED, DARK, FRESH, MEDIUM-COARSE GRAINED, PLAGIOCLASE-PYROXENE- OLIVINE-PHYRIC BASALT	LIVINGSTONE BAY	N36/914348	N36A5811	FLOW	TS	AS FOR M3685805	SUMMER	N36/901356
N3645518	FLOW	IS	DARK CREY FRESH MEDIUM-COARSE GRAINED	SIIMNER	N36/008358	N36A5822	FLOW	TS, XRF	AS FOR M3685768	LYTTELTON	N36/904349
130,5500			PLAGIOCLASE-PHYRIC BASALT	John LK		N36A5824	FLOW	TS, XRF,	AS FOR M3685768	N-E OF LYTTELTON	N36/903348
N36A3320	FLOW	15	GRAINED, PLAGIOCLASE-PHYRIC BASALT	MISTAKE	N30/921359	N36A5825	FLOW	TS	DARK GREY, FRESH, MEDIUM-GRAINED, PLAGIOCLASE- PHYRIC BASALT	N-E OF LYTTELTON	N36/902348
N36A5531	FLOW	TS	MODERATELY COLUMNAR TO TABULAR JOINTED, GREY YELLOW-BROWN, MEDIUM-GRAINED, PLAGIOCLASE- PYROXENE-OLIVINE-PHYRIC BASALT	TAYLORS MISTAKE	N36/916359	N36A5826	FLOW	TS, XRF	DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE- PYROXENE-OLIVINE-PHYRIC BASALT	N-E OF LYTTELTON	N36/902347
M36B5557	FLOW		AS FOR M3684902	SCARBOROUGH	M36/915373	M36B5828	DIKE		5 M WIDE, GREY GREEN, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	N-E OF	N36/901348
M36B5560	FLOW		AS FOR M3685443	LYTTELTON	M36/882334	M3685830	FLOW	TS	DARK, FRESH, MEDIUM-GRAINED, PLAGIOCLASE-	N-E OF	M36/897346
M36B5563	SILL	TS, XRF	10-15 M THICK, MASSIVE TABULAR JOINTED, YELLOW-	EAST OF	M36/884334				PHYRIC BASALT	LYTTELTON	
			RED, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE- PHYRIC TRACHYTE	HARBOUR		M36B5846	TUFF		RED, CRYSTAL TUFF	N-E OF	M36/890339
M3685568	FLOW	TS	AS FOR M3685443	NORTH EAST OF LYTTELTON	M36/887341	M3685849	FLOW		DARK-YELLOW, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC BASALT	LYTTELTON	M36/882333
M3685732	DIKE		0.50 M WIDE, GREY, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	CORSAIR BAY	M36/855332	M36B5852	FLOW	TS	AS FOR M36A5826	LYTTELTON	M36/879333
M36B5751A	TUFF	TS	CRYSTAL TUFF	LYTTELTON	M36/882334	N36A5853	FLOW	TS	AS FOR M3644007	CAVE DOCK	17/ 100/770
M36857518	DIKE		2 M WIDE, GREY, WEATHERED, MEDIUM-GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	N-E OF	M36/882334	N36A5854	FLOW	TS	AS FOR M3685853	SUMNER	N36/90/37/
M3685752	TUFF		RED, WEATHERED CRYSTAL-TUFF	N-E OF	M36/882334	N36A5918	DIKE		AS FOR M3685757	LIVINGSTONE	N36/909346
M36B5756	DIKE		AS FOR M36857518	N-E OF	M36/883334	N36A5919	DIKE		PLAGIOCLASE-PHYRIC LAVA	LIVINGSTONE	N36/915348
м3685757	DIKE		3 M WIDE, GREY GREEN, WEATHERED, MEDIUM- GRAINED, PLAGIOCLASE-PHYRIC TRACHYTE	N-E OF	M36/892337	l					

APPENDIX III PETROGRAPHIC AND MINERALOGICAL DESCRIPTIONS

This appendix contains general information concerning thin section studies. 183 thin sections are described : 153 of lava flows, 28 of dikes, sills, and other intrusive bodies and 2 from pyroclastic units. Detailed field descriptions and locations of thin sectioned samples are listed in appendix II.

The mineral abundances listed are visual estimates. Rock names are assigned according to *average plagioclase composition* as indicated in table below. Plagioclase compositions were estimated by measurement of the extinction angle by the Michel-Levy method to determine anorthite (An) content.

[1] PLAGIOCLAS	SE COMPOSITION	:-			
<u>An mol.% 0 - 10</u>) 10 -30	30 - 50	50 - 70	70 - 90	90 -100
<u>Plag.</u> albite	oligoclase	andesine	labradorite	bytownite	<u>e anorthite</u>
[2] ALKALINE I	BASALT ASSOCIAT	ION : -			
Rock name	Basalt	Hawaiite	Mugear	rite	Trachyte
Anorthite	> 50	50 - 30	10-30		< 10
Plagioclase	Labradorite	andesi	ne oligoci	ase	albite or
					anorthoclase

For *petrographic* rock classification purposes an average plagioclase composition of phenocrysts and groundmass was estimated. Key for Table III-A:-

(i) Olivine:- (a) Includes fresh olivine

1 1

(b) olivine * :- Indicates olivine + secondary mineral

or mineraloid (iddingsite) considered to be pseudomorphic after olivine

(ii) Clinopyroxene:-Includes augite in basic rocks, and green clinopyroxene (ferroaugite to hedenbergite to aegirine-augite)

in intermediate and felsic rocks.

(iii) Orthopyroxene: - Is represented by hyperstinine

(iv) Brown hornblende:-Is represented by kaersutite

(v) Oxides:- Represents mainly Fe-Ti oxide (ilmenite) and rarely magnetite *Trachytoid texture* is used for all trachytic and pilotaxitic texture

APPENDIX III A

I = J

PETROGRAPHIC AND MINERALOGICAL DESCRIPTIONS

SAMPLE	TEXTURE	PHENOCRYSTS	GROUNDMASS	ROCK NAME	CHEMICAL NAME
M36B2O46A (M36B6a)	FRESH, APHANITIC, TRACHYTOID, HAYPOCRYSTALLINE	5% PLAGIOCLASE < 1% CLINOPYROXENE	65% PLAGIOCLASE 10% CLINOPYROXENE TRACE OLIVINE 5% OXIDE 15% GLASS	TRACHYTE	Ne-TRACHYTE
M36B2046B (M36B62b)	FRESH, APHANITIC, HYPOCRYSTALLINE	2% PLAGIOCLASE < 1% CLINOPROXENE	65% PLAGIOCLASE , 18% CLINOPYROXENE 15% GLASS	TRACHYTE	N . A
(M36B23)	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	8% PLAGIOCLASE 2% CLINOPYROXENE < 1% OLIVINE < 1% OXIDE	50% PLAGIOCLASE 20% CLINOPYROXENE 10% OLIVINE 9% OXIDE	MUGEARITE	N.A
M36B2047	MODERATELY WEATHERED, VESICULAR, TRACHYTOID HYPOCRYSTALLINE	3% PLAGIOCLASE < 1% OLIVINE	67% PLAGIOCLASE 15% CLINOPYROXINE 15% GLASS	TRACHYTE	Ne-TRACHYTE
M36B2048	MODERATELY WEATHERED, INTERGRANULAR, APHANITIC HYPOCRYSTALLINE	5% PLAGIOCLASE 2% OLIVINE 1% CLINOPYROXENE	58% PLAGIOCLASE 14% CLINOPYROXENE 14% OLIVINE 6% OXIDE	HAWAI I TE	N.A
м36в2051	WEATHERED, VESICULAR, PORPHYRITIC, HYPOCRYSTALLINE	12% PLAGIOCLASE 1% CLINOPYROXENE 1% OLIVINE	52% PLAGIOCLASE 13% CLINOPYROXENE 12% OLIVINE 10% GLASS	HAWAIJTE	N.A
(M36B24)	FRESH, VESICULAR PORPHYRITIC HOLOCRYSTALLINE	15% OLIVINE 2% CLINOPYROXENE	40% PLAGIOCLASE 28% OLIVINE 10% CLINOFYROXENE 5% OXIDE	OLIVINE- BASALT	Ol-HAWAIITE
M36B2052	MODERATELY WEATHERED, HYPOCRYSTALLINE, APHANITIC	3% PLAGIOCLASE <1% CLINOPYROXENE	67% PLAGIOCLASE 15% CLINOPYROXENE 15% GLASS	TRACHYTE	N.A
M36B2054	FRESH, VESICULAR, SUB- TRACHYTOID, APHANITIC		65% PLAGIOCLASE 20% CLINOPYROXENE 15% GLASS	TRACHYTE	N . A
M36B2055	FRESH, PORPHYRITIC, INTERGRANULAR, HYPOCRYSTALLINE,	15% PLAGIOCLASE 2% CLINOPYROXENE 2% OLIVINE	51% PLAGIOCLASE 20% CLINOPYROXENE 3% OXIDE 7% GLASS	HAWAIITE	N.A
M36B2056	MODERATELY WEATHERED,	5% PLAGIOCLASE 1% CLINOPYROXENE TRACE OLIVINE	54% PLAGIOCLASE 15% CLINOPYROXENE 5% OXIDE 20% GLASS	MUGEARITE	N.A
M36B2059	MODERATELY WEATHERED APHANITIC, SUB TRACHYTOID HYPOCRYSTALLINE	1% PLAGIOCLASE	49% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE 10% OXIDE	MUGEARITE	N.A
M36B2060	MODERATELY WEATHERED VESICULAR, HOLOCRYSTALLINE INTERGRANULAR	12% PLAGIOCLASE 4% OLIVINE 2% CLINOPYROXENE	50% PLAGIOCLASE 15% CLINOPYROXENE 15% OLIVINE 5% OXIDE	HAWAIITE	N.A
M36B2061	MODERATELY FRESH, VESICULAR, TRACHYTOID HYPOCRYSTALLINE	6% PLAGIOCLASE 1% CLINOPYROXENE	63% PLAGIOCLASE 10% CLINOPYROXENE 20% GLASS	TRACHYTE	N.A

- -

M36B2063 (M36B37)	FRESH, VESICULAR, HOLOCRYSTALLINE PORPHYRITIC, SUB-TRACHYTOID	7% PLAGIOCLASE 2% OLIVINE * 2% CLINOPYROXENE	50% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE 9% OXIDE	MUGEARITE	Ol-MUGEARITE
M36B2066	MODERATELY FRESH, PORPHYRITIC HOLOCRYSTALLINE	C 8% PLAGIOCLASE 2% OLIVINE	50% PLAGIOCLASE 15% CLINOPYROXENE 10% OLIVINE 5% OXIDE 10% GLASS	MUGEARITE	N.A
M36B2067	MODERATELY FRESH, HYPOCRYSTALLINE TRACHYTOID	10% PLAGIOCLASE < 1% CLINOPYROXENE < 1% OLIVINE	53% PLAGIOCLASE 20% CLINOPYROXENE 7% OLIVINE 8% OXIDE	TRACHYTE	N.A
M36B2068	MODERATELY WEATHERED HYPOCRYSTALLINE	5% PLAGIOCLASE 1% CLINOPYROXENE 1% OLIVINE	63% PLAGIOCLASE 15% CLINOPYROXENE 10% OLIVINE TRACE APATITE 5% GLASS	HAWAIITE	N.A
M36B2069	MODERATELY FRESH, VESICULAR, HYPOCRYSTALLINE SUB-TRACHYTOID, APHANITIC		60% PLAGIOCLASE 10% OLIVINE 10% CLINOPYROXENE 20% GLASS	MUGEARITE	N.A
M36B2071	FRESH, HYPOCRYSTALLINE APHANITIC, SUB-TRACHYTOID	5% PLAGIOCLASE 3% OLIVINE *	57% PLAGIOCLASE 15% CLINOPYROXENE 15% OLIVINE 5% OXIDE	HAWAIITE	N.A
M36B2072	MODERATELY WEATHERED HYPOCRYSTALLINE,APHANITIC SUB-TRACHYTOID	3% PLAGIOCLASE 1% OLIVINE	46% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE 5% APATITE 10% OXIDE 5% GLASS	HAWAIITE	Ol-MUGEARITE
(M36B33)	MODERATELY WEATHERED PORPHYRITIC HOLOCRYSTALLINE	10% PLAGIOCLASE 2% OLIVINE < 1% OXIDE	50% PLAGIOCLASE 20% OLIVINE 12% CLINOPYROXENE TRACE APATITE 5% OXIDE	HAWAIITE	Ol-HAWAIITE
M36B2073	MODERATELY WEATHERED, VESICULAR, HYPOCRYSTALLINE SUB-TRACHYTOID, APHANITIC		50% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE 5% OXIDE 15% GLASS	MUGEARITE	N.A
M36B2074	MODERATELY FRESH, VESICULAR HYPOCRYSTALLINE, APHANITIC	3% PLAGIOCLASE 1% OLIVINE TRACE CLINOPYROXENE	56% PLAGIOCLASE 17% OLIVINE 10% CLINOPYROXENE 3% OXIDE 10% GLASS	MUGEARITE .	N.A
M36B2076 (M36B56)	MODERATELY FRESH, HYPOCRYSTALLINE, APHANITIC SUB-TRACHYTOID	3% PLAGIOCLASE	57% PLAGIOCLASE 15% CLINOPYROXENE 5% OLIVINE 7% OXIDE 13% GLASS	TRACHYTE	Oz-TRACHYTE
M36B2078	MODERATELY FRESH, VESICULAR, HYPOCRYSTALLINE APHANITIC, SUB-TRACHYTOID	3% PLAGIOCLASE	67% PLAGIOCLASE 10% CLINOPYROXENE 20% GLASS	TRACHYTE	N.A
M36B2082	MODERATELY FRESH, VESICULAR, HYPOCRYSTALLINE APHANITIC, TRACHYTOID	5% PLAGIOCLASE 2% CLINOPYROXENE 1% KAERSUTITE	57% PLAGIOCLASE 15% CLINOPYROXENE 5% OXIDE 15% GLASS	TRACHYTE	N.A
M36B2083	MODERATELY WEATHERED HYPOCRYSTALLINE APHANITIC, SUB-TRACHYTOID	2% PLAGIOCLASE 1% OLIVINE	52% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE	MUGEARITE	N.A

M36B2087	MODERATELY FRESH, PORPHYRITIC, HOLOCRYSTALLINE	15% < 1% < 1%	PLAGIOCLASE CLINOPYROXENE OLIVINE	53% 14% 12% 6%	PLAGIOCLASE CLINOPYROXENE OLIVINE OXIDE	HAWAIITE	Hy-HAWAIITE
(M36B31)	MODERATELY WEATHERED PORPHYRITIC HYPOCRYSTALLINE	12% < 1% < 1%	PLAGIOCLASE OLIVINE CLINOPYROXENE	53% 17% 16%	PLAGIOCLASE CLINOPYROXENE OLIVINE	HAWAIITE	Hy-HAWAIITE
M36B2088	MODERATELY FRESH, HOLOCRYSTALLINE PORPHYRITIC	20% 4%	PLAGIOCLASE OLIVINE	51% 10% 10% 5%	PLAGIOCLASE CLINOPYROXENE OLIVINE OXIDE	HAWAIITE	N.A
M36B2089	FRESH, APHANITIC HYPOCRYSTALLINE	3% 1%	PLAGIOCLASE OLIVINE	60% 16% 15% 5%	PLAGIOCLASE CLINOPYROXENE OLIVINE OXIDE	MUGEARITE	N.A
M36B2091	MODERATELY WEATHERED PORPHYRITIC, HOLOCRYSTALLINE	11% 3% < 1%	PLAGIOCLASE OLIVINE CLINOPYROXENE	55% 13% 12% 5%	PLAGIOCLASE CLINOPYROXENE OLIVINE OXIDE	HAWAIITE	BASALT
M36B2094	AS FOR M36B2091	10% 3%	PLAGIOCLASE OLIVINE	55% 15% 10% 7%	PLAGIOCLASE CLINOPYROXENE OLIVINE OXIDE	HAWAIITE	N.A
M36B2096	FRESH, VESICULAR, TRACHYTOID, PORPHYRITIC HOLOCRYSTALLINE	6% 3%	PLAGIOCLASE CLINOPYROXENE	61% 25% 5%	PLAGIOCLASE CLINOPYROXENE OXIDE	TRACHYTE	N.A
M36B2100B	FRESH, HYPOCRYSTALLINE APHANITIC, SUB-TRACHYTOID			65% 5% 5% 20%	PLAGIOCLASE OLIVINE CLINOPYROXENE OXIDE GLASS	MUGEARITE	N.A
M36B2101	HETROLITHIC TUFF BRECCIA:- CC INDIVIDUAL CLAST HAVE PHENOCI CLINOPYROXENE PHENOCRYST, BUT MOST CLASTS ARE APHANATIC. TH PLAGIOCLASE AND MINOR OLIVING	DNSIS RYSTS F THE HE FR E AND	TS OF LAVA LITHOLO AND GROUNDMASSES. ABUNDANCE OF PHEN AGMENTAL MATRICX I CLINOPYROXENE	GIC SO OCRY S DO	CLAST AND FRAGMENTA ME CLAST CONSIST OF ST MINERALS IS VARI. MINANTLY GLASS AND	L MATRIX, PLAGIOCLASE, RA ABLE IN DIFFEREN LARGE CRYSTALS	RE OLIVINE AND T CLASTS. OF
M36B2102	FRESH, HYPOCRYSTALLINE, SUB-TRACHYTOID HYPOCRYSTALLINE	6% 2% 2%	PLAGIOCLASE CLINOPYROXENE OLIVINE	50% 10% 10% 5% 15%	PLAGIOCLASE OLIVINE CLINOPYROXENE OXIDE GLASS	MUGEARITE	N.A
M36B2103A	FRESH, HOLOCRYSTALLINE, PORPHYRITIC, INTERGRANULAR	13% 4% 4%	PLAGIOCLASE CLINOPYROXENE OLIVINE	50% 14% 10% 5%	PLAGIOCLASE CLINOPYROXENE OLIVINE OXIDE	HAWAIITE	N.A
M36B2103B	FRESH, HYPOCRYSTALLINE APHANITIC,SUB-TRACHYTOID	9% 2%	PLAGIOCLASE CLINOPYROXENE	40% 12%	PLAGIOCLASE CLINOPYROXENE	HAWAIITE	N.A

15% GLASS

M36B2105A MODERATELY FRESH, HYPOCRYSTALLINE, SUB-TRACHYTOID APHANITIC

M36B2105B FRESH, HYPOCRYSTALLINE

1 1

60% PLAGIOCLASE 15% CLINOPYROXENE 5% OXIDE 20% GLASS

10% OLIVINE 5% OXIDE 20% GLASS

55% PLAGIOCLASE

15% CLINOPYROXENE 5% OLIVINE 5% OXIDE 20% GLASS MUGEARITE

MUGEARITE

N.A

N.A

2% OLIVINE

M36B2117A	MODERATELY FRESH, VESICULAR, PORPHYRITIC HOLOCRYSTALLINE	13% PLAGIOCLASE 4% OLIVINE	55% PLAGIOCLASE 12% CLINOPYROXENE 11% OLIVINE 5% OXIDE	HAWAIITE	BASALTE
M36B2117B	FRESH, PORPHYRITIC HOLOCRYSTALLINE	13% PLAGIOCLASE 4% OLIVINE	45% PLAGIOCLASE 20% ALTERED OLIVINE 10% CLINOPYROXENE TRACE APATITE 8% OXIDE	HAWAIITE	N.A
M36B2139	FRESH, PORPHYRITIC HOLOCRYSTALLINE	16% PLAGIOCLASE 4% OLIVINE	50% PLAGIOCLASE 15% OLIVINE 10% CLINOPYROXENE 5% OXIDE	HAWAIITE	N.A
M36B2151	FRESH, APHANITIC, TRACHYTOID, HYPOCRYSTALLINE		60% PLAGIOCLASE 25% CLINOPYROXENE 10% GLASS 5% OXIDE	TRACHYTE	Ne-TRACHYTE
M36B2155	FRESH, APHANITIC SUB-TRACHYTOID HYPOCRYSTALLINE	5% PLAGIOCLASE 2% OLIVINE <1% CLINOPYROXENE	50% PLAGIOCLASE 10% CLINOPYROXENE 10% OLIVINE TRACE APATITE 8% OXIDE 15% GLASS	HAWAIITE	N.A
M36B2156A	MODERATELY WEATHERED VESICULAR, PORPHYRITIC HYPOCRYSTALLINE	8% PLAGIOCLASE 2% OLIVINE	60% PLAGIOCLASE 15% OLIVINE 5% CLINOPYROXENE 10% OXIDE	HAWAIITE	N.A
M36B2156B	MODERATELY ERESH VESICULAR, SUB-TRACHYTOID HYPOCRYSTALLINE APHANITIC		58% PLAGIOCLASE 8% OLIVINE 7% CLINOPYROXENE 2% OXIDE 25% GLASS	HAWAIITE	N.A
M36B2157	MODERATELY FRESH PORPHYRITIC HOLOCRYSTALLINE	16% PLAGIOCLASE 2% OLIVINE	50% PLAGIOCLASE 15% OLIVINE * 12% CLINOPYROXENE TRACE APATITE 5% OXIDE	HAWAIITE	N.A
M36B2158A	FRESH, VESICULAR, PORPHYRITIC HOLOCRYSTALLINE	13% PLAGIOCLASE 2% OLIVINE * < 1% CLINOPYROXENE	60% PLAGIOCLASE 15% OLIVINE * 5% CLINOPYROXENE 5% OXIDE	HAWAIITE	Ν.Α
M36B2158B	FRESH, PORPHYRITIC HOLOCRYSTALLINE	17% PLAGIOCLASE 3% OLIVINE * 2% CLINOPYROXENE	50% PLAGIOCLASE 15% OLIVINE 10% CLINOPYROXENE 3% OXIDE	HAWAIITE	N.A
M36B2162	FRESH, PORPHYRITIC, HOLOCRYSTALLINE	7% PLAGIOCLASE 2% CLINOPYROXENE 1% OLIVINE < 1% ORTHOPYROXENE	50% PLAGIOCLASE 16% OLIVINE 15% CLINOPYROXENE 8% OXIDE TRACE APATITE	HAWAIITE	Oz-HAWAIITE
M36B2163	MODERATELY FRESH VESICULAR, HOLOCRYSTALLINE PORPHYRITIC, INTERGRANULAR	11% PLAGIOCLASE 3% OLIVINE * 2% CLINOPYROXENE	54% PLAGIOCLASE 15% ALTERD OLIVINE 15% CLINOPYROXENE	HAWAIITE	BASALT
M36B2164A (M36B49)	FRESH, HYPOCRYSTALLINE PORPHYRITIC	8% PLAGIOCLASE 4% OLIVINE	50% PLAGIOCLASE 17% CLINOPYROXENE 15% OLIVINE 6% OXIDE	HAWAIITE	Ol-HAWAIITE
M36B2164B (M36B48)	FRESH, PORPHYRITIC HOLOCRYSTALLINE SUB-TRACHYTOID	5% PLAGIOCLASE 2% OLIVINE 1% CLINOPYROXENE	50% PLAGIOCLASE 20% OLIVINE 17% CLINOPYROXENE 5% OXIDE	MUGEARITE	Ol-MUGEARITE

	M36B2164C	MODERATELY FRESH, VESICULAR, HYPOCRYSTALLINE APHANITIC	3% PLAGIOCLASE	60% PLAGIOCLASE 9% ALTERED OLIVINE 8% CLINOPYROXENE 20% GLASS	HAWAIITE	Ol-HAWAIITE
	M36B2165A	MODERATELY WEATHERED HYPOCRYSTALLINE	5% PLAGIOCLASE 2% OLIVINE 2% CLINOPYROXENE	55% PLAGIOCLASE 13% CLINOPYROXENE 7% ALTERED OLIVINE 8% OXIDE 8% GLASS	HAWAIITE	N.A
	M36B2165B	MODERATELY WEATHERED HYPOCRYSTALLINE APHANITIC		59% PLAGIOCLASE 13% OLIVINE 12% CLINOPYROXENE 1% OXIDE 15% GLASS	MUGEARITE	N.A
	M36B2165C	FRESH, HYPOCRYSTALLINE APHANITIC		45% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE 5% OXIDE 20% GLASS	HAWAIITE	N . A
	M36B2166	MODERATELY FRESH, VESICULAR, HOLOCRYSTALLINE PORPHYRITIC	13% PLAGIOCLASE 3% OLIVINE	50% PLAGIOCLASE 15% OLIVINE 14% CLINOPYROXENE 5% GLASS	HAWAIITE	N.A
	M36B2652	MODERATELY WEATHERED, INTERGRANULAR PORPHYRITIC	8% PLAGIOCLASE 3% CLINOPYROXENE 1% OXIDE	55% PLAGIOCLASE 15% CLINOPYROXENE 14% OLIVINE TRACE APATITE 4% OXIDE	TRACHYTE	Ν.Α
V	M36B2659	MODERATELY FRESH,	8% PLAGIOCLASE	31% PLAGIOCLASE	HAWAIITE	Fe-ALTERED ROC
ĸ		VESICULAR, PORPHYRITIC INTERGRANULAR, HOLOCRYSTALLINE	2% CLINOPYROXENE 1% OLIVINE	10% CLINOPYROXENE 8% OLIVINE 30% Fe OXIDE 10% GLASS		e K
	M36B2714	MODERATELY FRESH HOLOCRYSTALLINE SUB-TRACHYTOID	10% PLAGIOCLASE	60% PLAGIOCLASE 10% OLIVINE 10% CLINOPYROXENE 10% GLASS	HAWAIITE	N.A
	M36B2732	FRESH, HYPOCRYSTALLINE APHANITIC	5% PLAGIOCLASE 1% ORTHOPYROXENE	60% PLAGIOCLASE 10% ORTHOPYROXENE 5% OXIDE 19% GLASS	ANDESITE	N.A
	M36B2745	MODERATELY WEATHERED HOLOCRYSTALLINE PORPHYRITIC	10% PLAGIOCLASE 2% OLIVINE 2% CLINOPYROXENE 1% IDDINGSITE	50% PLAGIOCLASE 15% OLIVINE * 10% CLINOPYROXENE 10% Fe OXIDE	HAWAIITE .	N.A
	•••••					
	M36B3192	FRESH, HOLOCRYSTALLINE INTERGRANULAR, PORPHYRITIC	9% OLIVINE 3% CLINOPYROXENE 3% PLAGIOCLASE	50% PLAGIOCLÁSE 15% OLIVINE 15% CLINOPYROXENE 5% OXIDE	HAWAIITE	N.A
	(M36B61a)	MODERATELY WEATHERED HYPOCRYSTALLLINE TRACHYTOID	5% PLAGIOCLASE 1% CLINOPYROXENE < 1% OXIDE TRACE KAERSUTITE	63% PLAGIOCLASE 15% CLINOPYROXENE 15% GLASS	TRACHYTE	TRAAHYTE
	(M36B60)	MODERATELY WEATHERED TRACHYTOID	3% PLAGIOCLASE	54% PLAGIOCLASE 16% CLINOPYROXENE 15% OXIDE 12% GLASS	TRACHYTE	Qz-TRACHYTE
	M36B3205	CRYSTAL TUFF:- TEXTURE = VES	AGIOCLASE WITH SOME OF	IVENE AND CLINOPYROXEN	CRYSTALS EMBEDED	ED GLASS MATRICS
•	((A h	EUREPEN	

M36B3250	MODERATELY FRESH, HOLOCRYSTALLINE, INTERGRANULAR, PORPHYRITIC	5% PLAGIOCLASE 5% CLINOPYROXENE < 1% OLIVINE	60% PLAGIOCLASE 15% CLINOPYROXENE 11% OLIVINE 4% OXIDE	MUGEARITE	Oz-BENMOREITE
M36B3271	MODERATELY FRESH VESICULAR, HOLOCRYSTALLINE INTERGRANULAR PORPHYRITIC	9% PLAGIOCLASE 2% CLINOPYROXENE 2% OLIVINE	50% PLAGIOCLASE 16% CLINOPYROXENE 16% OLIVINE TRACE ORTHOPYROXENE 5% OXIDE	HAWAIITE	Ol-HAWAIITE
M36B3272	MODERATELY FRESH, HYPOCRYSTALLINE, APHANITIC SUB-TRACHYTOID	5% PLAGIOCLASE 2% CLINOPYROXENE 2% OLIVINE	50% PLAGIOCLASE 15% CLINOPYROXENE 15% OLIVINE TRACE APATITE 10% OXIDE	HAWAIITE	Ol-HAWAIITE
M36B3280	MODERATELY WEATHERED VESICULAR, PORPHYRITIC HYPOCRYSTALLINE, INTERGRANULAR	10% PLAGIOCLASE	55% PLAGIOCLASE 10% OLIVINE 10% CLINOPYROXENE 8% OXIDE 7% GLASS	HAWAIITE	N . A
M36B3286	MODERATELY WEATHERED HYPOCRYSTALLINE MICRO-PORPHYRITIC	9% PLAGIOCLASE 2% CLINOPYROXENE 1% OLIVINE	55% PLAGIOCLASE 15% CLINOPYROXENE 10% OLIVINE 10% OXIDE	HAWAIITE	Hy-HAWAIITE
M36B3580	FRESH, HOLOCRYSTALLINE SUB-TRACHYTOID	15% PLAGIOCLASE 2% CLINOPYROXENE < 1% OLIVINE	58% PLAGIOCLASE 20% CLINOPYROXENE 5% OXIDE	TRACHYTE	N.A
M36B3582	MODERATELY FRESH, HYPOCRYSTALLINE, APHANITIC	1% PLAGIOCLASE	54% PLAGIOCLASE 15% CLINOPYROXENE 10% OLIVINE 10% OXIDE 10% GLASS	HAWAIITE	N.A
M36B3677	MODERATELY FRESH HYPOCRYSTALLINE APHANITIC		60% PLAGIOCLASE 15% CLINOPYROXENE 5% OXIDE 20% GLASS	TRACHYTE	Qz-TRACHYTE
M36B3678	MODERATELY FRESH HOLOCRYSTALLINE	16% PLAGIOCLASE 2% CLINOPYROXENE 2% OLIVINE	50% PLAGIOCLASE 13% CLINOPYROXENE 12% OLIVINE 5% OXIDE	HAWAIITE	Hy-HAWAIITE
M36B4001	MODERATELY FRESH HYPOCRYSTALLINE APHANITIC	5% PLAGIOCLASE < 1% OLIVINE < 1% CLINOPYROXENE	55% PLAGIOCLASE 13% OLIVINE 12% CLINOPYROXENE 5% OXIDE 10 % GLASS	HAWAIITE	N.A
M36B4002	FRESH, APHANITIC HYPOCRYSTALLINE INTERSERTAL		46% PLAGIOCLASE 12% OLIVINE 12% CLINOPYRPOXENE 30% GLASS	HAWAIITE	N.A
M36B4003	MODERATELY WEATHERED VESICULAR, HOLOCRYSTALLINE PORPHYRITIC	25% PLAGIOCLASE 1% ALTERED OLIVINE 1% ALTERED CLINOPYROXENE	50% PLAGIOCLASE 10% OLIVINE 10% CLINOPYROXENE 3% OXIDE	TRACHYTE	Qz-TRACHYTE
M36B4004	MODERATELY WEATHERED HOLOCRYSTALLINE PORPHYRITIC	25% PLAGIOCLASE 2% OLTERED OLIVINE < 1% OLTERED CLINOPYROXENE	50% PLAGIOCLASE 10% OLIVINE 9% CLINOPYROXENE 3% OXIDE	TRACHYTE	т.а
M36B4005	FRESH, PORPHYRITIC HOLOCRYSTALLINE	8% PLAGIOCLAASE 2% OLIVINE 1% CLINOPYROXENE	50% PLAGIOCLASE 24% OLIVINE 10% CLINOPYROXENE 5% OXIDE	HAWAIITE	N.A

M36B4006	FRESH, PORPHYRITIC INTERGRANULAR HOLOCRYSTALLINE	8% PLAGIOCLASE 3% OLIVINE < 1% CLINOPYROXENE	50% PLAGIOCLASE 20% OLIVINE 13% CLINOPYROXENE TRACE APATITE TRACE ZEOLITE 7% OXIDE	HAWAIITE	N.A
M36B4007	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	9% PLAGIOCLASE 2% OLIVINE 1% CLINOPYROXENE 1% IDDINGSITE	50% PLAGIOCLASE 20% OLIVINE * 12% CLINOPYROXENE 5% OXIDE	HAWAIITE	N.A
M36B4008	FRESH, PORPHYRITIC HOLOCRYSYALLINE INTERGRANULAR	15% PLAGIOCLASE 2% OLIVINE 1% CLINOPYROXENE 1% IDDIGSITE	50% PLAGIOCLASE 15% CLINOPYROXENE 10% OLIVINE 6% OXIDE	HAWAJITE	N.A
M36B4009	FRESH, APHANITIC HYPOCRYSTALLINE VESICULAR	5% PLAGIOCLASE 3% OLIVINE 1% CLINOPYROXENE	50% PLAGIOCLASE 20% OLIVINE 16% CLINOPYROXENE TRACE APATITE 6% OXIDE	HAWAIITE	Ol-HAWAIITE
M36B4012	FRESH, VESICULAR APHANITIC, HYPOCRYSTALLINE	2% PLAGIOCLASE 1% OLIVINE	55% PLAGIOCLASE 25% OLIVINE 12% CLINOPYROXENE TRACE KAERSUTIOTE 5% OXIDE	HAWAIITE	Ol-HAWAIITE
M36B4013	FRESH, APHANITIC HYPOCRYSTALLINE	6% PLAGIOCLASE 1% OLIVINE 1% CLINOPYROXENE	52% PLAGIOPCLASE 20% OLIVINE 15% CLINOPYROXENE TRACE KAERSUTITE 5% OXIDE	HAWAIITE	N.A
M36B4014	FRESH, VESICULAR PORPHYRITIC, HOLOCRYSTALLINE INTERGRANULAR	10% PLAGIOCLASE 1% CLINOPYROXENE 1% OLIVINE *	50% PLAGIOCLASE 17% CLINOPYROXENE 16% OLIVINE * 5% OXIDE	HAWAIITE	N.A
M36B4015	FRESH, HYPOCRYSTALLINE SUB-TRACHYTOID, APHANITIC INTERGRANULAR	12% PLAGIOCLASE 2% CLINOPYROXENE 2% OLIVINE	50% PLAGIOCLASE 13% CLINOPYROXENE 12% OLIVINE 9% OXIDE	HAWAIITE	N . A
M36B4016	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	15% PLAGIOCLASE 2% CLINOPYROXENE	43% PLAGIOCLASE 20% OLIVINE 15% CLINOPYROXENE TRACE APATITE 5% OXIDE	BASALT	N.A
M36B4017	FRESH, APHANITIC HYPOCRYSTALLINE SUB-TRACHYTOID		53% PLAGIOCLASE 17% CLINOPYROXENE 12% OLIVINE 5% OXIDE 13% GLASS	HAWAIITE .	N.A
M36B4018	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	12% PLAGIOCLASE 3% OLIVINE 2% CLINOPYROXENE	50% PLAGIOCLASE 15% CLINOPYROXENE 13% OLIVINE 5% OXIDE	HAWAIITE	N.A
M36B4019	FRESH, PORPHYRITIC HOLOCRYSTALLINE	11% PLAGIOCLASE 4% OLIVINE 2% CLINOPYROXENE <1% OXIDE	47% PLAGIOCLASE 15% CLINOPYROXENE 15% OLIVINE 5% OXIDE	HAWAIITE	N.A
M36B4020	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	8% PLAGIOCLASE 3% OLIVINE 3% CLINOPYROXENE	48% PLAGIOCLASE 20% OLIVINE 10% CLINOPYROXENE 4% CALCITE TRACE APATITE TRACE HYPERSTINE 4% OXIDE	HAWAIITE	Ne-NAWA11TE

M36B4021	FRESH, VESICULAR, HOLOCRYSTALLINE, PORPHYRITIC INTERGRANULAR	8% PLAGIOCLASE 3% OLIVINE 1% CLINOPYROXENE	52% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE 7% OXIDE	HAWAIITE	Ol-HAWAIITE
M36B4023	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	11% PLAGIOCLASE 3% OLIVINE 2% CLINOPYROXENE	48% PLAGIOCLASE 16% CLINOPYROXENE 15% OLIVINE TRACE APATITE 5% OXIDE	HAWAIITE	N.A
M36B4024	FRESH, PORPHYRITIC HOLOCRYSTALLINE	8% PLAGIOCLASE 2% OLIVINE * 1% CLINOPYROXENE	48% PLAGIOCLASE 21% OLIVINE * 10% CLINOPYROXENE TRACE APATITE 10% OXIDE	HAWAIITE	Ol-HAWAIITE
M36B4025	FRESH, PORPHYRITIC HOLOCRYSTALLINE	7% PLAGIOCLASE 3% OLIVINE 1% CLINOPYROXENE < 1% OXIDE	48% PLAGIOCLASE 19% OLIVINE 15% CLINOPYROXENE 7% OXIDE	HAWAIITE	N.A
M36B4026	FRESH, HYPOCRYSTALLINE APHANITIC, SUB-TRACHYTOID	8% PLAGIOCLASE 3% OLIVINE 1% CLINOPYROXENE	52% PLAGIOCLASE 18% CLINOPYROXENE 12% OLIVINE 6% OXIDE	HAWAIITE	N.A
M36B4027	FRESH, PORPHYRITIC HYPOCRYSTALLINE INTERGRANULAR	12% PLAGIOCLASE 4% OLIVINE 2% CLINOPYROXENE	50% PLAGIOCLASE 15% OLIVINE 10% CLINOPYROXENE TRACE APATITE 7% OXIDE	HAWAIITE	N.A
M36B4028	MODERATELY WEATHERED VESICULAR, HOLOCRYSTALLINE	25% PLAGIOCLASE 2% ALTERED OLIVINE < 1% ALTERED CLINOPYROXENE	43% PLAGIOCLASE 15% OLIVINE 10% CLINOPYROXENE 5% OXIDE	TRACHYTE	N.A
M36B4029	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	15% PLAGIOCLASE 5% OLIVINE 2% CLINOPYROXENE	45% PLAGIOCLASE 13% OLIVINE 12% CLINOPYROXENE 8% OXIDE	HAWAIITE	N . A
M36B4030	FRESH, APHANITIC HYPOCRYSTALLINE	4% PLAGIOCLASE 1% OLIVINE <1% CLINOPYROXENE TRACE APATITE	60% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE 5% OXIDE	HAWAIITE	N.A
M36B4031	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	15% PLAGIOCLASE 3% OLIVINE * 1% CLINOPYROXENE	45% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE 6% OXIDE	HAWAIITE	N.A
M36B4032	FRESH, PORPHYRITIC HOLOCRYSTALLINE	13% PLAGIOCLASE 3% OLIVINE * 1% CLINOPYROXENE < 1% OXIDE	42% PLAGIOCLASE 20% CLINOPYROXENE 15% OLIVINE TRACE APATITE 6% OXIDE	HAWA]ITE	N.A
M36B4033	FRESH, HOLOCRYSTALLINE MICRO-PORPHYRITIC SUB-TRACHYTOID	8% PLAGIOCLASE 1% CLINOPYROXENE 1% OLIVINE	50% PLAGIOCLASE 18% OLIVINE 14% CLINOPYROXENE 8% OXIDE	TRACHYTE	N.A
M36B4034	FRESH, PORPHYRITIC MICRO-VESICULAR HOLOCRYSTALLINE INTERGRANULAR	15% OLIVINE 2% CLINOPYROXENE < 1% PLAGIOCLASE	48% PLAGIOCLASE 25% OLIVINE 15% CLINOPYROXENE TRACE APATITE 5% OXIDE	OLIVINE- BASALT	N.A
M36B4035	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	11% PLAĢIOCLASE 2% OLIVINE 1% CLINOPYROXENE	50% PLAGIOCLASE 17% OLIVINE 10% CLINOPYROXENE 9% OXIDE	HAWAIITE	N.A

M36B4036	FRESH, HYPOCRYSTALLINE MICRO-PORPHYRITIC	9% OLIVINE 2% PLAGIOCLASE 1% CLINOPYROXENE	45% PLAGIOCLASE 20% OLIVINE 14% CLINOPYROXENE 3% APATITE 7% OXIDE	OLIVINE- BASALT	N.A
M36B4037	FRESH, PORPHYRITIC HOLOCRYSTALLINE VESICULAR	11% PLAGIOCLASE 2% CLINOPYROXENE 2% OLIVINE *	51% PLAGIOCLASE 15% CLINOPYROXENE 14% OLIVINE 5% OXIDE	HAWAIITE	N.A
M36B4038	FRESH, PORPHYRITIC HOLOCRYSTALLINE	9% PLAGIOCLASE 3% OLIVINE *	47% PLAGIOCLASE 15% OLIVINE 12% CLINOPYROXENE 5% OXIDE 8% GLASS	HAWAIITE	N.A
M36B4039	FRESH, PORPHYRITIC HOLOCRYSTALLINE	6% PLAGIOCLASE 2% OLIVINE * 1% CLINOPYROXENE	56% PLAGIOCLASE 15% OLIVINE 10% CLINOPYROXENE 10% OXIDE	HAWAIITE	N.A
M36B4040	FRESH, PORPHYRITIC HOLOCRYSTALLINE SUB-TRACHYTOID	9% PLAGIOCLASE 2% OLIVINE * 2% CLINOPYROXENE	50% PLAGIOCLASE 17% OLIVINE 15% CLINOPYROXENE 5% OXIDE	HAWAIITE	N.A
M36B4041	FRESH, PORPHYRITIC HOLOCRYSTALLINE	12% PLAGIOCLASE 3% OLIVINE 3% CLINOPYROXENE	46% PLAGIOCLASE 16% CLINOPYROXENE 15% OLIVINE 5% OXIDE	HAWAIITE	N.A
M36B4042	FRESH, PORPHYRITIC HOLOCRYSTALLINE VESICULAR	6% PLAGIOCLASE 1% CLINOPYROXENE < 1% OLIVINE *	53% PLAGIOCLASE 15% CLINOPYROXENE 10% OLIVINE 5% OXIDE 10% GLASS	HAWAIITE	N.A
M36B4043	FRESH, VESICULAR PORPHYRITIC SUB-TRACHYTOID	7% PLAGIOCLASE 1% OLIVINE *	52% PLAGIOCLASE 10% CLINOPYROXENE 10% OLIVINE 5% OXIDE 15% GLASS	HAWAIITE	N.A
M36B4044	FRESH, VESICULAR PORPHYRITIC HYPOCRYSTALLINE	7% PLAGIOCLASE 1% OLIVINE * 1% CLINOPYROXENE	44% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE 7% OXIDE 10% GLASS	HAWAIITE	N.A
M36B4045	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	13% PLAGIOCLASE 3% OLIVINE * 1% CLINOPYROXENE TRACE KAERSUTITE TRACE APATAITE	48% PLAGIOCLASE 15% OLIVINE 10% CLINOPYROXENE 10% OXIDE	HAWAIITE .	N.A
M36B4300	MODERATELY FRESH HOLOCRYSTALLINE PORPHYRITIC	12% PLAGIOCLASE 3% ALTERED OLIVINE	55% PLAGIOCLASE 20% OLIVINE 10% CLINOPYROXENE	HAWAIITE	N.A
M36B4301	MODERATELY FRESH HOLOCRYSTALLINE PORPHYRITIC	10% PLAGIOCLASE 3% OLIVINE * 2% CLINOPYROXENE	50% PLAGIOCLASE 17% OLIVINE 13% CLINOPYROXENE 5% OXIDE	HAWAIITE	Ol-HAWAIITE
M36B4303	MODERATELY FRESH HOLOCRYSTALLINE PORPHYRITIC	8% PLAGIOCLASE 4% OLIVINE *	53% PLAGIOCLASE 18% OLIVINE 12% CLINOPYROXENE 5% OXIDE	HAWAIITE	N . A
M36B4321	MODERATELY FRESH VESICULAR SUB-TRACHYTOID	3% PLAGIOCLASE	65% PLAGIOCLASE 20% CLINOPYROXENE 7% OLIVINE 5% OXIDE	TRACHYTE	N. A

M364339	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	10% PLAGIOCLASE 2% IDDINGSITE 1% OLIVINE 1% CLINOPYROXENE	54% PLAGIOCLASE 14% OLIVINE 10% CLINOPYROXENE TRACE ORTHOPYROXENE TRACE APATITE 8% OXIDE	HAWAIITE	N.A
M36B4341	FRESH, PORPHYRITIC HOLOCRYSTALLINE	9% PLAGIOCLASE 2% IDDINGSITE 2% OLIVINE < 1% CLINOPYROXENE	52% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE 5% OXIDE	HAWAIITE	N.A
M36B4342	MODERATELY FRESH PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	12% PLAGIOCLASE 2% OLIVINE 2% CLINOPYROXENE	46% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE 8% OXIDE	HAWAIITE	N.A
M36B4352	MODERATELY WEATHERED PORPHYRITIC HOLOCRYSTALLINE	12% PLAGIOCLASE 3% ALTERED OLIVINE 1% CLINOPYROXENE	49% PLAGIOCLASE 15% OLIVINE 10% CLINOPYROXENE 5% CALCITE 5% OXIDE	HAWAIITE	BASALT
M36B4356	MODERATELY WEATHERED HOLOCRYSTALLINE SUB-TRACHYTOID PORPHYRITIC	7% PLAGIOCLASE 2% OLIVINE 1% IDDINGSITE < 1% CLINOPYROXENE	55% PLAGIOCLASE 17% OLIVINE 10% CLINOPYROXENE 5% OXIDE 4% CALCITE	HAWAIITE	Hy-HAWAIITE
M36B436D	FRESH, PORPHYRITIC HOLOCRYSTALLINE	16% PLAGIOCLASE 2% OLIVINE 2% CLINOPYROXENE	50% PLAGIOCLASE 15% OLIVINE 10% CLINOPYROXENE 5% OXIDE	HAWAIITE	N.A
M36B4408	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	12% PLAGIOCLASE 4% OLIVINE * 1% CLINOPYROXENE	45% PLAGIOCLASE 16% CLINOPYROXENE 14% OLIVINE 8% OXIDE	HAWAIITE	N. A
M36B4410	MODERATELY FRESH HYPOCRYSTALLINE	10% PLAGIOCLASE 1% CLINOPYROXENE < 1% OLIVINE	56% PLAGIOCLASE 20% CLINOPYROXENE 8% OLIVINE 5% OXIDE	TRACHYTE	QZ-TRACHYTE
M36B4596	FRESH, HOLOCRYSTALLINE PORPHYRITIC INTERGRANULAR	9% PLAGIOCLASE 3% OLIVINE 1% IDDINGSITE	51% PLAGIOCLASE 20% OLIVINE 10% CLINOPYROXENE TRACE APATITE 6% OXIDE	HAWAIITE	Hy-HAWAIITE
M36B4613	FRESH, PORPHYRITIC HYPOCRYSTALLINE SUB-TRACHYTOID	12% PLAGIOCLASE 3% CLINOPYROXENE	51% PLAGIOCLASE 20% CLINOPYROXENE 8% OLIVINE TRACE ORTHOPROXENE 6% OXIDE	TRACHYTE	QZ-BENMOREITE
M36B4619	MODERATELY FRESH HOLOCRYSTALLINE PORPHYRITIC	9% PLAGIOCLASE 3% OLIVINE	54% PLAGIOCLASE 15% OLIVINE 15% CLINOPYROXENE TRACE APATITE 4% OXIDE	HAWAIITE	Ol-HAWAIITE
M36B4634	FRESH, PORPHYRITIC SUB-TRACHYTOID	12% PLAGIOCLASE 2% CLINOPYROXENE	46% PLAGIOCLASE 22% CLINOPYROXENE 10% OLIVINE 8% OXIDE	TRACHYTE	Hy-BENMOREITE
M36B4866	FRESH, VESICULAR HYPOCRYSTALLINE SUB-TRACHYTOID	12% PLAGIOCLASE 3% OLIVINE * 1% CLINOPYROXENE	50% PLAGIOCLASE 15% CLINOPYROXENE 14% OLIVINE TRACE ORTHOPYROXENE 5% OXIDE	HAWAJITE	Ν.Α
M36B4891	MODERATELY FRESH	11% PLAGIOCLASE	50% PLAGIOCLASE	HAWAIITE	N.A

	HOLOCRYSTALLINE PORPHYRITIC	3% OLIVINE 1% IDDINGSITE 1% CLINOPYROXENE	15% CLINOPYROXENE 10% OLIVINE 9% OXIDE		
M36B4902	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	10% PLAGIOCLASE 4% OLIVINE 1% IDDINGSITE 1% OXIDE	40% PLAGIOCLASE 20% OLIVINE 17% CLINOPYROXENE 7% OXIDE	HAWAIITE	N.A
M36B4905	FRESH, PORPHYRITIC HOLOCRYSTALLINE	8% PLAGIOCLASE 1% CLINOPYROXENE 1% IDDINGSITE	45% PLAGIOCLASE 20% OLIVINE 15% CLINOPYROXENE 10% OXIDE	HAWAIITE	N.A
M36B4908	FRESH, PORPHYRITIC HOLOCRYSTALLINE INTERGRANULAR	10% PLAGIOCLASE 2% OLIVINE 1% IDDINGSITE 3% CLINOPYROXENE 1% OXIDE	47% PLAGIOCLASE 13% OLIVINE 13% CLINOPYROXENE 10% OXIDE	HAWAIITE	N.A
M36B4914	FRESH, PORPHYRITIC HYPOCRYSTALLINE	10% PLAGIOCLASE 2% CLINOPYROXENE 2% OLIVINE 1% OXIDE	50% PLAGIOCLASE 12% CLINOPYR 13% OLIVINE 10% OXIDE	HAWAIITE	N.A
M36B4915	MODERATELY WEATHERED HYPOCRYSTALLINE PORPHYRITIC	10% PLAGIOCLASE 3% ALTERED OLIVINE	54% PLAGIOCLASE 13% CLINOPYROXENE 12% ALTERED OLIVINE 8% OXIDE	HAWAIITE	N.A
M36B4916	MODERATELY WEATHERED HYPOCRYSTALLINE	8% PLAGIOCLASE 2% OLIVINE	50% PLAGIOCLASE 12% CLINOPYROXENE 12% OLIVINE 6% OXIDE 10% GLASS	HAWAIITE	N.A
M36B5376	MODERATELY WEATHERED HOLOCRYSTALLINE PORPHYRITIC	11% PLAGIOCLASE 5% OLIVINE < 1% CLINOPYROXENE	46% PLAGIOCLAASE 15% CLINOPYROXENE 10% OLIVINE 4% CALCITE 8% OXIDE	MUGEARITE	N.A
M36B5429	MODERATELY WEATHERED HYPOCRYSTALLINE PORPHYRITIC	10% PLAGIOCLASE 2% CLINOPYROXENE 1% OLIVINE	54% PLAGIOCLASE 18% CLINOPYROXENE 5% OXIDE 10% GLASS	TRACHYTE	N.A
M36B5440	MODERATELY WEATHERED PORPHYRITIC	8% PLAGIOCLASE 3% CLINOPYROXENE 1% OLIVINE	50% PLAGIOCLASE 18% CLINOPYROXENE TRACE APATITE TRACE QUARTZ 10% OXIDE	TRACHYTE	QZ - BENMORE I TE
			10% GLASS		
M36B5441	MODERATELY FRESH HOLOCRYSTALLINE PORPHYRITIC	11% PLAGIOCLASE 3% OLIVINE 1% CLINOPYROXENE	45% PLAGIOCLASE 20% OLIVINE 15% CLINOPYROXENE 5% OXIDE	HAWAIITE	N.A
M36B5443	MODERATELY FRESH HOLOCRYSTALLINE PORPHYRITIC	14% PLAGIOCLASE 4% OLIVINE 2% ALTERED CLINOPYROXENE	45% PLAGIOCLASE 18% OLIVINE 12% CLINOPYROXENE TRACE APATITE 5% OXIDE	HAWAIITE	Ol-HAWAIITE
N36A5478	MODERATELY WEATHERED PORPHYRITIC	15% PLAGIOCLASE 4% CLINOPYROXENE < 1% OLIVINE	44% PLAGIOCLASE 16% CLINOPYROXENE 10% OXIDE 10% GLASS	TRACHYTE	N.A
N36A5482	MODERATELY WEATHERED HOLOCRYSTALLINE	15% PLAGIOCLASE 4% CLINOPYROXENE < 1% OLIVINE	44% PLAGIOCLASE 20% CLINOPYROXENE 7% OXIDE	TRACHYTE	Ν.Α

			10% GLASS		
N36A5508	MODERATELY FRESH HOLOCRYSTALLINE PORPHYRITIC INTERGRANULAR	13% PLAGIOCLASE 2% CLINOPYROXENE 2% OLIVINE 1% IDDINGSITE 1% OXIDE	45% PLAGIOCLASE 12% OLIVINE 10% CLINOPYROXENE TRACE APATITE 8% OXIDE 6% GLASS	HAWAJITE	Qz-HAWAIITE
N36A5509	MODERATELY FRESH HOLOCRYSTALLINE PORPHYRITIC INTERGRANULAR	12% PLAGIOCLASE 4% OLIVINE 1% CLINOPYROXENE < 1% OXIDE	45% PLAGIOCLASE 20% OLIVINE 10% CLINOPYROXENE 7% OXIDE	HAWAIITE	Qz-HAWAIITE
N36A5518	FRESH, HOLOCRYSTALLINE PORPHYRITIC INTERGRANULAR	10% PLAGIOCLASE 5% OLIVINE 1% CLINOPYROXENE < 1% OXIDE	53% PLAGIOCLASE 14% CLINOPYROXENE 12% OLIVINE <1% ORTHOPYROXENE 5% OXIDE	HAWAIITE	N.A
N36A5520	FRESH, HOLOCRYSTALLINE PORPHYRITIC INTERGRANULAR	12% PLAGIOCLASE 3% OLIVINE * 2% CLINOPYROXENE < 1% OXIDE	42% PLAGIOCLASE 18% OLIVINE 15% CLINOPYROXENE 7% OXIDE	HAWAIITE	N.A
N36A5531	FRESH, HOLOCRYSTALLINE INTERGRANULAR	11% PLAGIOCLASE 2% OLIVINE * 2% CLINOPYROXENE	55% PLAGIOCLASE 15% OLIVINE 10% CLINOPYROXENE 1% ORTHOPYROXENE 5% OXIDE	HAWA I I TE	N.A
N36A5563	FRESH, HYPOCRYSTALLINE PORPHYRITIC	13% PLAGIOCLASE < 1% CLINIPYROXENE	55% PLAGIOCLASE 17% CLINOPYROXENE 15% GLASS	TRACHYTE	Qz-TRACHYTE
N36A5568	FRESH, HYPOCRYSTALLINE APHANITIC	< 1% PLAGIOCLASE < 1% CLINOPYROXENE	62% PLAGIOCLASE 15% CLINOPYROXENE 23% GLASS	TRACHYTE	N.A
M36B5751A	CRYSTAL TUFF AS FOR M36B	3205			
M36B5758	MODERATELY FRESH HYPOCRYSTALLINE SUB-TRACHYTOID	8% PLAGIOCLASE 1% CLINOPYROXENE < 1% OLIVINE	63% PLAGIOCLASE 11% CLINOPYROXENE 8% OXIDE 10% GLASS	TRACHYTE	N.A
M36B5759	MODERATELY FRESH HOLOCRYSTALLINE PORPHYRITIC	10% PLAGIOCLASE 2% CLINOPYROXENE < 1% OLIVINE	60% PLAGIOCLASE 19% CLINOPYROXENE 8% OXIDE	TRACHTYE	N.A
M36B5766	FRESH, PORPHYRITIC HOLOCRYSTALLINE	15% PLAGIOCLASE 2% OLIVINE 1% CLINOPYROXENE	46% PLAGIOCLASE 14% CLINOPYROXENE 12% OLIVINE 10% OXIDE TRACE APATITE	HAWAIITE	Qz-HAWAIITE
M36B5768	FRESH, HOLOCRYSTALLINE PORPHYRITIC, INTERGRANULAR	13% PLAGIOCLASE 3% OLIVINE 2% CLINOPYROXENE	53% PLAGIOCLASE 13% OLIVINE 12% CLINOPYROXENE TRACE APATITE 5% OXIDE	HAWAIITE	Ol-HAWAIITE
M36B5772	FRESH, HOLOCRYSTALLINE PORPHYRITIC	15% PLAGIOCLASE 3% OLIVINE 1% CLINOPYROXENE	46% PLAGIOCLASE 20% OLIVINE 10% CLINOPYROXENE TRACE APATITE TRACE CALCITE 6% OXIDE	HAWA I I TE	Ol-HAWAIITE
N36A5781	FRESH, HYPOCRYSTALLINE PORPHYRITIC, SUB-TRACHYTOID	12% PLAĞIOCLASE 2% OLIVINE 1% CLIŅOPYROXENE	50% PLAGIOCLASE 15% CLINOPYROXENE 15% OLIVINE 5% OXIDE	HAWAIITE	N.A
N36A5791	FRESH, HOLOCRYSTALLINE	12% PLAGIOCLASE	46% PLAGIOCLASE	MUGEARITE	Hy-BENMOREITE

	PORPHYRITIC SUB-TRACHYTOID	2% CLINOPYROXENE 2% OLIVINE 2% IDDINGSITE 1% KAERSUTITE	20% OLIVINE 10% CLINOPYROXENE 6% OXIDE		
M36B5792	MODERATELY WEATHERED PORPHYRITIC	14% PLAGIOCLASE 3% CLINOPYROXENE 1% OLIVINE	45% PLAGIOCLASE 15% CLINOPYROXENE 10% OLIVINE 2% ORTHOPYROXENE 10% OXIDE	MUGEARITE	QZ-BENMOREITE
N36A5811	FRESH, HOLOCRYSTALLINE PORPHYRITIC	12% PLAGIOCLASE 2% CLINOPYROXENE 1% OLIVINE	50% PLAGIOCLASE 15% CLINOPYROXENE 15% OLIVINE 5% OXIDE	MUGEAR I TE	N.A
N36A5822	MODERATELY FRESH HOLOCRYSTALLINE PORPHYRITIC INTERGRANULAR	12% PLAGIOCLASE 3% CLINOPYROXENE 2% OLIVINE	50% PLAGIOCLASE 14% OLIVINE 13% CLINOPYROXENE TRACE KAERSUTITE 6% OXIDE	MUGEARITE	Qz-BENMOREITE
N36A5824	FRESH, HYPOCRYSTALLINE SUB-TRACHYTOID	11% PLAGIOCLASE 2% CLINOPYROXENE 2% OLIVINE	53% PLAGIOCLASE 13% CLINOPYROXENE 12% OLIVINE 7% OXIDE	MUGEARITE	MUGEARITE
N36A5825	FRESH, HOLOCRYSTALLINE PORPHYRITIC	15% PLAGIOCLASE 5% OLIVINE * 2% CLINOPYROXENE	50% PLAGIOCLASE 12% CLINOPYROXENE 11% OLIVINE TRACE APATITE 5% OXIDE	MUGEARITE	N.A
N36A5826	MODERATELY WEATHERED HOLOCRYSTALLINE PORPHYRITIC	11% PLAGIOCLASE 4% OLIVINE 2% CLIONOPYROXENE	50% PLAGIOCLASE 14% CLINOPYROXENE 14% OLIVINE 5% OXIDE	HAWAIITE	Hy-HAWA]]TE
M36B5830	MODERATELY FRESH HOLOCRYSTALLINE PORPHYRITIC	15% PLAGIOCLASE 4% OLIVINE 1% CLINOPYROXENE	45% PLAGIOCLASE 20% OLIVINE 10% CLINOPYROXENE 5% OXIDE	HAWAIITE	N.A
M36B5852	MODERATELY WEATHERED HOLOCRYSTALLINE PORPHYRITIC SUB-TRACHYTOID	12% PLAGIOCLASE 3% CLINOPYROXENE 3% OLIVINE	47% PLAGIOCLASE 15% CLINOPYROXENE 15% OLIVINE TRACE APATITE 5% OXIDE	HAWAIITE	N.A
N36A5853	FRESH, HOLOCRYSTALLINE PORPHYRITIC	15% PLAGIOCLASE 6% OLIVINE 3% CLINOPYROXENE	42% PLAGIOCLASE 12% CLINOPYROXENE 12% OLIVINE 10% OXIDE	HAWAIITE	N.A
N36A5854	FRESH, HOLOCRYSTALLINE PORPHYRITIC SUB-TRACHYTOID	12% PLAGIOCLASE 4% OLIVINE 2% CLINOPYROXENE	46% PLAGIOCLASE 15% CLINOPYROXENE 15% OLIVINE 5% OXIDE	HAWAIITE	N.A

NOTE:-N.A = NOT ANALYZED

. 1 1

						M36B2076	SILL	TRACHYTE	MAIN	LYTTELTON		
						(M36B56)	SILL	Qz-TRACHYTE	MAIN	LYTTELTON		
						M36B2078	SILL	TRACHYTE	MAIN	LYTTELTON		
APPENDIX	III B					M36B2082	DIKE	TRACHYTE	MAIN	LYTTELTON		
						(M36B53)	DIKE	TRACHYTE	MAIN	LYTTELTON		
SAMPLE DE	SCRIPTIONS					M36B2083	FLOW	MUGEARITE	MAIN	LYTTELTON		
						M36B2087	FLOW	Hy-HAWAIITE	MAIN	LYTTELTON		
						(M36B31)	FLOW	Hy-HAWAIITE	MAIN	LYTTELTON		
						M36B2088	FLOW	HAWAIITE	MAIN	LYTTELTON		
SAMPL F	ROCK TYPE	NAME	VOLCANIC DUACE	CROUD	FORMATA	M36B2089	FLOW	MUGEARITE	MAIN	LYTTELTON		
		NAME	VOLCANIC PHASE	GROUP	FURMATION	M36B2091	FLOW	BASALT	MAIN	LYTTELTON		
						M36B2094	FLOW	HAWAIITE	MAIN	LYTTELTON		
M36B2046A	INT	TRACHYTE	LATE	LYTTELTON	MT PLEASANT	M36B2096	DIKE	HAWAIITE	MAIN	LYTTELTON		
(M36B6a)	INT	Ne-TRACHYTE	LATE	LYTTELTON	MT PLEASANT	M6B62100B	FLOW	MUGEARITE	MAIN	LYTTELTON		
M36B2046B	INT	TRACHYTE	MAIN	LYTTELTON		M36B2101	LAHAR	HTB	LATE	LYTTELTON	MT PLEASANT	
M36B2047	DIKE	HAWAIITE	LATE	LYTTELTON	MT PLEASANT	M362102	FLOW	MUGEARITE	MAIN	LYTTELTON		
(M36B24)	DIKE	01-HAWAIITE	LATE	LYTTELTON		M36B2103A	FLOW	HAWAIITE	MAIN	LYTTELTON		
M36B2048	FLOW	HAWAIITE	MAIN	LYTTELTON		M36B2103B	FLOW	HAWAIITE	MAIN	LYTTELTON		
(M36B29)	FLOW	01-HAWAIITE	MAIN	LYTTELTON		M36B2105A	FLOW	MUGEARITE	LATE	LYTTELTON	MT PLEASANT	
M36B2051	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT	M36B2105B	FLOW	MUGEARITE	LATE	LYTTELTON	MT PLEASANT	
M36B2052	DIKE	TRACHYTE	MAIN	LYTTELTON		M36B2117A	FLOW	BASALT	MAIN	LYTTELTON		
(M36B50d)	DIKE	TRACHYTE	MAIN	LYTTELTON		M36B2117B	FLOW	HAWAIITE	MAIN	LYTTELTON		
M36B2054	DIKE	TRACHYTE	MAIN	LYTTELTON								
M36B2055	FLOW	HAWAIITE	MAIN	LYTTELTON		M36B2139	FLOW	HAWAIITE	MAIN	LYTTELTON		
M36B2056	FLOW	MUGEARITE	MAIN	LYTTELTON		M36B2151	PLUG	Ne-TRACHYTE	MAIN	LYTTELTON		
						M36B2155	FLOW	HAWAIITE	MAIN	LYTTELTON		
M36B2059	FLOW	MUGERAITE	MAIN	LYTTELTON		M36B2156A	FLOW	HAWAIITE	MAIN	LYTTELTON		
M36B2060	DIKE	HAWAIITE	MAIN	LYTTELTON		M36B2156B	FLOW	HAWAIITE	MAIN	LYTTELTON		
M36B2061	DIKE	TRACHYTE	MAIN	LYTTELTON		M36B2157	FLOW	HAWAIITE	MAIN	LYTTELTON		
M36B2063	DIKE	01-MUGEARITE	MAIN	LYTTELTON		M36B2158A	FLOW	HAWAIITE	MAIN	LYTTELTON		
(M36B37)	DIKE	01-MUGEARITE	MAIN	LYTTELTON		M36B2158B	FLOW	HAWAIITE	MAIN	LYTTELTON		
M36B2066	DIKE	MUGEARITE	LATE	LYTTELTON	MT PLEASANT	M36B2162	FLOW	Qz-HAWAIITE	MAIN	LYTTELTON		
M36B2067	DIKE	TRACHYTE	MAIN	LYTTELTON								
M36B2068	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT	M36B2163	FLOW	BASALT	MAIN	LYTTELTON		
M36B2069	FLOW	MUGEARITE	LATE	LYTTELTON	MT PLEASANT	M36B2164A	FLOW	01-HAWAIITE	LATE	LYTTELTON	MT PLEASANT	~
M36B2071	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT	(M36B49)	FLOW	01-HAWAIITE	LATE	LYTTELTON	MT PLEASANT	25
M36B2072	FLOW	01-MUGEARITE	MAIN	LYTTELTON		M36B2164B	FLOW	01-MUGEARITE	LATE	LYTTELTON	MT PLEASANT	Û
(M36B33)	FLOW	01-HAWAIITE	MAIN	LYTTELTON		M36B2164C	FLOW	01-HAWAIITE	LATE	LYTTELTON	MT PLEASANT	
M36B2073	FLOW	MUGEARITE	MAIN	LYTTELTON		M36B2165A	FLOW	01-HAWAIITE	LATE	LYTTELTON	MT PLEASANT	
M36B2074	FLOW	MUGEARITE	MAIN	LYTTELTON								

M36B2165B	FLOW	01-MUGEARITE	LATE	LYTTELTON	MT PLEASANT	MACDAOLA	FLOU		LATE	INTELTON	MT DI FACANT
M36B2165C	FLOW	01-MUGEARITE	LATE	LYTTELTON	MT PLEASANT	M36B4014	FLOW	HAWAIITE	LATE	LYTTELION	MT PLEASANT
M36B2166	FLOW	HAWAIITE	MAIN	LYTTELTON		M3684015	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B2652	FLOW	Qz-BENMOREITE	MAIN	LYTTELTON		M3684016	DIKE	ULIVINE-BASALI	LATE	LYTTELION	MI PLEASANI
M36B2659	FLOW	Fe-ALTERED	MAIN	LYTTELTON							
M36B2714	FLOW	HAWAIITE	MAIN	LYTTELTON		M36B4017	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B2732	FLOW	ANDESITE	MAIN	LYTTELTON		M36B4018	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B2745	FLOW	HAWAIITE	MAIN	LYTTEL TON		M36B4019	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
						M36B4020	FLOW	Ne-HAWAIITE	LATE	LYTTELTON	MT PLEASANT
						M36B4021	FLOW	01-HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M3683192	FLOW	HAWAIITE	MATN	I VITELTON		M36B4023	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B3205	THEE	CRYSTAL -THEE	LATE			M36B4024	FLOW	01-HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B3250	FLOW	OF RENMODETTE	LATE		MT DI EASANT	M36B4025	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M2603230	FLOW		LATE		MT PLEASANT	M36B4026	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36D3271	FLOW	OT-HAWAIITE	LATE		MT PLEASANT	M36B4027	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M3603272	FLOW	UNUATITE	LAIL	LITTELION	MT PLEASANT						
M3003200	FLOW		MAIN	LATELTON	MT PLEASANI	M36B4028	FLOW	TRACHYTE	LATE	LYTTELTON	MT PLEASANT
M30B3281	FLOW	UZ-TRACHYTE	MAIN	LYTTELION		M36B4029	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
	51 011					M36B4030	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B3286	FLOW	Hy-HAWAIIIE	MAIN	LYTTELTON		M36B4031	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B35/2	FLOW	QZ-TRACHYTE	MAIN	LYTTELTON		M36B4032	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
(M36B60)	FLOW	Qz-TRACHYTE	MAIN	LYTTELTON		M36B4033	DOME	TRACHYTE	LATE	LYTTELTON	MT PLEASANT
M36B3580	FLOW.	TRACHYTE	MAIN	LYTTELTON		M36B4034	DIKE	OLIVINE-BASALT	LATE	LYTTELTON	MT PLEASANT
M36B3582	FLOW	HAWAIITE	MAIN	LYTTELTON		M36B4035	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B3677	FLOW	Qz-TRACHYTE	MAIN	LYTTELTON		M36B4036	DIKE	OLIVINE-BASALT	LATE	LYTTELTON	MT PLEASANT
M36B3678	FLOW	Hy-HAWAIITE	MAIN	LYTTELTON		M36B4037	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
						M36B4038	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
						M36B4039	FLOW	HAWALITE	LATE	LYTTELTON	MT PLEASANT
M36B4001	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT	M36B4040	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B4002	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT	M36B4041	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B4003	FLOW	07-TRACHYTE	LATE	LYTTELTON	MT PLEASANT	M36B4042	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B4004	FLOW	TRACHYTE	LATE		MT PLEASANT	M36B4043	FLOW	HAWAIITE	LATE	LYTTEL TON	MT PLEASANT
10001001	12011	HUNGHTTE	CATE /	LITTLETON	HT FEEASAN	M36B4044	FLOW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT
M36B4005	FLOW	HAWAIITE	LATE	1 YTTEL TON	MT DIFACANT	M36B4045	FLOW	HAWAIITE	LATE	LYTTELTON	MT PIFASANT
M36B4006	FLOW	HAWATITE	LATE		MT DIEACANT	M3684300	FLOW	HAWAIITE	MATN	I YTTEL TON	TT TELASANT
M36B4007	FLOW	HAWATTE	LATE	LYTTELTON	MT DIEASANT	M3584301	FLOW	01-HAWAITTE	MATN		
M3684007	FLOW	UNUATTE	LATE		MT PLEASANT	. 113054301	LOW	OTENAWATITE	MAIN	LTITELIUN	
M3684000	FLOW		LATE		MT PLEASANT	M36R4303	FLOW	HAWATITE	MATH		
M3684012	FLOW	OT-HAWAIITE	LATE	LTITELIUN	MT PLEASANT	M3684303	DOME	TDACUYTE	MATH		
M3604012	FLOW		LATE	LYTTELION	MI PLEASANT	M36D4321	FLOW		MATN	LITTELION	
13084013	FLUW	HAWAIITE	LATE	LYTTELTON	MT PLEASANT	113684339	FLUW	HAWAIIIE	MAIN	LYTTELION	

M36B4341	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B4342	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B4352	FLOW	BASALT	MAIN	LYTTELTON
M36B4356	FLOW	Hy-HAWAIITE	MAIN	LYTTELTON
M36B4358	FLOW	Hy-HAWAIITE	MAIN	LYTTELTON
M36B4360	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B4408	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B4410	FLOW	Qz-TRACHYTE	MAIN	LYTTELTON
M36B4596	FLOW	Hy-HAWAIITE	MAIN	LYTTELTON
M36B4613	FLOW	Qz-BENMOREITE	MAIN	LYTTELTON
M36B4619	FLOW	01-HAWAIITE	MAIN	LYTTELTON
M36B4634	FLOW	Hy-BENMOREITE	MAIN	LYTTELTON
M36B4866	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B4891	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B4902	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B4905	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B4906	FLOW	01-HAWAIITE	MAIN	LYTTELTON
M36B4908	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B4909	FLOW	Hy-BENMOREITE	MAIN	LYTTELTON
M36B4914	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B4915	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B4916	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B5376	FLOW	MUGEARITE	MAIN	LYTTELTON
M36B5429	FLOW	TRACHYTE	MAIN	LYTTELTON
M36B5440	FLOW	Qz-BENMOREITE	MAIN	LYTTELTON
M36B5441	FLOW	HAWAIITE	MAIN	LYTTELTON
M36B5443	FLOW	01-HAWAIITE	MAIN	LYTTELTON
N36A5478	FLOW	TRACHYTE	MAIN	LYTTELTON
			(
N36A5482	FLOW	TRACHYTE	MAIN	LYTTELTON
N36A5508	FLOW	Qz-HAWAIITE	MAIN	LYTTELTON
N36A5509	FLOW	Qz-HAWAIITE	MAIN	LYTTELTON
N36A5518	FLOW	HAWAIITE	MAIN	LYTTELTON
N36A5520	FLOW	HAWAIITE	MAIN	LYTTELTON
N36A5531	FLOW	HAWAIITE	MAIN	LYTTELTON

Qz-TRACHYTE

MAIN

LYTTELTON

M36B5563 SILL

M3685568	FLOW	TRACHYTE	MAIN	LYTTELTON
M2685751A	THEE	CRYSTAL TUFF	MAIN	LYTTELTON
112021 JIK	1011			
M3685758	FLOW	TRACHYTE	MAIN	LYTTELTON
M36B5759	FLOW	TRACHYTE	MAIN	LYTTELTON
M3685766	FLOW	Oz-HAWAIITE	MAIN	LYTTELTON
M3685768	FLOW	01-HAWAIITE	MAIN	LYTTELTON
M3685772	FLOW	01-HAWAIITE	MAIN	LYTTELTON
N3645781	FLOW	HAWAIITE	MAIN	LYTTELTON
N3645791	FLOW	Hy-BENMOREITE	MAIN	LYTTELTON
M36R5792	FLOW	0z-BENMOREITE	MAIN	LYTTELTON
M3685805	FLOW	01-HAWAIITE	MAIN	LYTTELTON
N3645811	FLOW	MUGEARITE	MAIN	LYTTELTON
NJONJOIII	1201			
N36A5822	FLOW	Qz-BENMOREITE	MAIN	LYTTELTON
N36A5824	FLOW	MUGEARITE	MAIN	LYTTELTON
N36A5825	FL OW	MUGEARITE	MAIN	LYTTELTON
N36A5826	FLOW	Hy-HAWAIITE	MAIN	LYTTELTON
M36B5830	FLOW	HAWAIITE	MAIN	LYTTELTON
M3685852	FLOW	HAWAIITE	MAIN	LYTTELTON
N3645853	FLOW	HAWAIITE	MAIN	LYTTELTON
N3645854	FLOW	HAWAIITE	MAIN	LYTTELTON

1

NOTE HTB = HETEROLITHIC TUFF BRECCIA INT = INTRUSION

130

APPENDIX IV ANALYTICAL METHODS

X-RAY FLUORESCENCE

All *major* element and *trace* element analyses were obtained using a Philips PW 1400 X-Ray Spectrometer coupled to a Hewlett-packard 300 computer using calibrations set up by S.A Brown and S.D Weaver in the Department of Geology University of Canterbury. Comparisons of results for international laboratory standards presented as a measure of accuracy of major and trace element determinations are presented in tables 5-A and 6-A respectively.

Samples were prepared for *major* element analyses using the method outlined by Norrish and Hutton (1969) with modifications after Harvey et al (1973) and Schroeder et al (1980). Glass beads were irradiated using a 3 kw Cr-tube operating at 50 kv and 50 ma. Loss on ignition was determined at 1000°C and may be positive (high H_2O , CO_2 etc.) or negative (high FeO, low H_2O etc.).

Trace element analyses were obtained on 50 mm pressed-powder pellets prepared from powdered rock bonded with 7% aqueous solution of polyvinyl alcohol. Pellets were analyzed for Zr, Nb, Ba, Ni, Cr, V, Nd, Ce, La, and Zn using a 3 kw Au tube, and for Y, Rb, Sr, Ga, Pb and Th using a 3 kw Mo tube. Both tubes operated at 90 kv and 30 ma. Mass absorption corrections were applied using Compton tube lines and coefficients calculated from major element analyses.

APPENDIX V MAIOR ELEMENT ANALYSIS AND C.I.P.W. NORMS

[1] <u>General</u>

Total Fe was determined by XRF and expressed as total Fe_2O_3 . For the purposes of CIPW norm calculations Fe_2O_3 and FeO were calculated assuming $Fe_2O_3/FeO=0.3$ The CIPW Norm calculation was carried out using the GPP computer program. All major elements analyses and C.I.P.W Norms are in Wt.%.

```
[2] <u>Normative minerals:</u>-
```

Q	=	Quartz	Di =	Diopside	01	=	Olivine
Or	=	Orthoclase	Wo =	Wollastonite	Fo	=	Forsterite
Ab	=	Albite	Hy =	Hypersthene	Fa	=	Fayalite
An	=	Anorthite	En =	Enstatite	Mt	=	Magnetite
Ne	=	Nepheline	Fs =	Ferrosilite	11	=	Ilmenite
Lc	=	Leucite			Ap	=	Apatite

C = Corundum

[3] Definitions for abbreviations

D.I = Differentiation Index = Q + Or + Ab + Ne + Ks + Lc P.R = Plagioclase Ratio = (100 An) / (An + Ab) $Mafics = 100 (Fe0 + Fe_2O_3) / (Fe_2O_3 + FeO + MgO)$ $Kunos = (100 \text{ Mgo}) / (MgO + FeO + Fe_2O_3 + Na_2O + K_2O)$ Fe as $2 + = (Fe_2O_3 / 1.111) + Fe_2O_3 + MnO$ $Alkali = Na_20 + K_20$ Fe2 / Mg2 = 100 Mg / (Mg + Fe2+)Fe3+ Fe2+ Ratio = Fe_2O_3 / Fe0 Na / K Ratio = Na_20 / K_20 Felsic = 100 (Na + K) / (Na + K + Ca)P1aq = An + Ab01 = Fa + FoColour = 01 + Di + Hy + Mt + I1 + HmDi = Wo + En + Fs (Di) Hy = En + Fs (Hy) Pyx = PyroxenePlag= Plagioclase

This appendix contains two tables. Table 5A shows International standard results and table 5B gives major element analyses, C.I.P.W. normative mineralogy, selected ratios, and chemical data of samples from Lyttelton volcano.

	C	11	NII	M-G	C	A	G-2	2	GSI	P-1	NI	M-S	S	Y-2	AC	V-1
	Rec	Anal	Rec	Anal	Rec	Anal	Rec	Anal	Rec	Anal	Rec	Anal	Rec	Anal	Rec	Anal
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	75.85 .08 12.51 1.34 .05 .03 .69 3.85 4.76 .01	75.24 08 12.49 1.36 06 73 3.86 4.75 01 47	75.72 .09 12.09 2.02 .04 .78 3.30 5.00 .02	75.94 .10 12.18 2.00 .01 .09 .79 3.34 5.06 .02 .11	69.96 .38 14.51 2.83 .09 .95 2.45 3.55 4.03 0.12	70.01 .36 14.69 2.73 .08 .95 2.45 3.52 4.06 .13 .82	69.19 0.50 15.35 2.62 .04 .77 1.98 4.06 4.52 0.14	69.35 .48 15.28 2.66 .03 .75 1.94 4.10 4.49 .14 .38	67.31 .66 15.19 4.34 .04 .96 2.02 2.80 5.53 .28	$\begin{array}{r} 68.10 \\ .66 \\ 15.22 \\ 4.32 \\ .01 \\ .99 \\ 2.02 \\ 2.85 \\ 5.58 \\ .29 \\ .63 \end{array}$	63.65 .04 17.37 1.40 .01 .46 .66 .42 15.38 .12	64.24 .05 17.36 1.44 .01 .45 .70 .37 15.15 .11 .63	60.09 .15 12.15 6.29 .32 2.69 8.00 4.35 4.51 .44	59.70 .14 12.02 6.27 .32 2.70 8.01 4.25 4.44 .42 .77	59.72 1.05 17.22 6.88 .10 1.55 5.00 4.31 2.93 .50	59.57 1.05 17.08 6.81 .09 1.53 5.00 4.12 2.90 .50 .74
TOTAL	-	99.11	-	99.63	-	99.80	-	99.61	-]	00.68	-	100.50	-	99.03	-	99.39
	W -	-1	NIM	1-N	NI	M-L	PCC	2-1	DTS	5-1	MR	G-1	NIM	- D	BI	R
	Rec	Anal	Rec	Anal	Rec	Anal	Rec	Anal	Rec	Anal	Rec	Anal	Rec	Anal	Rec	Anal
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ LOI	52.72 1.07 14.87 11.10 .17 6.63 10.98 2.15 .64 .14	52.73 1.07 15.13 11.15 .20 6.66 10.98 2.15 .63 .13 .38	52.56 20 16.54 8.87 .18 7.48 11.46 2.46 .25 .03	52.66 .20 16.63 8.95 .18 7.46 11.57 2.47 .24 .03 .15	52.45 .49 13.59 9.94 .76 .28 3.24 8.30 5.46 .06	52.41 .49 13.54 9.98 .79 .33 3.14 8.45 5.43 .06 2.59	42.15 .01 .73 8.24 .12 43.63 .53 .01 .00 .00	41.81 .02 .72 8.22 .12 42.31 .55 .03 .00 .01 4.01	40.68 .01 .29 8.61 .11 49.83 .15 .01 .00 .00	40.45 .01 .29 8.68 .12 48.58 .15 .03 .00 .01 .22	39.24 3.75 8.56 17.79 .17 13.51 14.72 .71 .18 .07	39.08 3.72 8.44 17.83 .15 13.49 14.72 .58 .18 .07 .84	38.88 .02 .32 16.97 .22 43.56 .28 .05 .01 .02	38.49 .03 .39 16.86 .23 42.26 .29 .05 .00 .02 .78	38.39 2.61 10.25 12.94 .20 13.35 13.87 3.07 1.41 1.05	38.76 2.65 10.13 12.92 .20 13.24 13.84 2.90 1.37 1.07 2.40
TOTAL	- 1	00.46	- 1	00.24	-	97.19	-	97.73	-	98.05	-	99.10	-	97.83	-	99.49
Table	5.A	'fable	of In	terna	tional	labra	tory s	standa	rd res	ults	to den	nonstra	ate ac	curacy	•	

Rec = Recommended value (Abbey, 1983) Anal = Analysed value, Department of Geology, University of Canterbury.

.

.

APPENDIX 58 MAJOR ELEMENT CHEMISTRY, SELECTED CHEMICAL PARAMETERS AND C.I.P.W NORMATIVE MINERALOGY.

AMPLE/DATA	M36B2072	M36B2091	M36B2117A	М36В2151	M36B2162	M36B2163	M36B2164A	M36B2164B	M36B2164C	M36B265
si02	50,76	48.52	48.21	59.71	51.05	49.50	49.66	54.19	50.82	59.47
TiO2	2.20	2.97	2.38	0.88	2.76	2.62	3.08	1.62	2.55	1.20
AL203	16.16	18.90	19.69	18.29	16.15	18.66	16.06	18.13	15.86	18.24
tFe203	12.22	11.88	9.93	6.56	11.91	11.39	12.76	8.99	12.94	5.9
Fe203	2.60	2.52	2.11	1.74	2.53	2.42	2.71	1.91	2.75	1.5
FeO	8.66	8.42	7.04	4.34	8.44	8.07	9.04	6.37	9.17	3.9
MnO	0.20	0.13	0.12	0.16	0.12	0.10	0.20	0.15	0.28	0.1
MgO	2.98	2.76	2.38	0.93	4.08	3.10	3.50	2.19	2.79	0.4
CaO	6.80	8.61	9.61	2.83	8.16	10.02	8.40	5.37	7.06	3.2
Na20	4.91	3.32	3.51	7.01	3.40	3.43	4.18	5.63	4.57	5.54
K20	1.94	1.06	0.96	3.72	1.49	0.80	1.43	2.65	1.76	3.60
P205	0.86	0.47	0.43	0.25	0.53	0.35	0.71	0.56	0.91	0.37
LOI	-0.66	0.79	2.25	0.34	0.41	1.49	1.08	0.49	1.71	2.53
TOTAL	98.37	99.42	99.45	100.67	100.05	101.46	101.06	99.98	100.70	100.78
Alkali	6.85	4.38	4.47	10.73	4.89	4.23	5.61	8.28	6.33	9.20
Na/K	2.53	3.13	3.66	1.88	2.28	4.28	2.92	2.12	2.60	1.5
Felsic	50.18	33.72	32.80	79.13	37.47	29.68	38.19	60.66	47.27	73.78
Mafic	79.07	79.51	79.34	68.24	72.89	77.19	77.05	79.08	81.03	92.47
Kunos	14.13	14.94	14.88	4.76	20.77	17.40	16.79	11.68	13.26	2.90
Q	-	1.85	0.25	-	2.67	1.03	-	-	-	4.62
or	11.76	6.45	6.03	22.08 -	8.97	4.80	8.59	15.92	10.62	22.17
ab	41.66	28.92	30.93	55.02	29.31	29.45	35.96	46.00	39.51	48.08
an	16.75	34.53	36.53	7.49	24.87	33.65	21.19	16.65	17.95	14.43
ne	. 0.53	-	-	2.48	-	-	-	1.33	-	-
С	-	-	-	-	-	-		-	-	0.0
di	10.08	5.21	8.46	4.24	10.54	11.96	13.60	5.60	9.84	-
hy	-	12.25	8.79	-	13.22	9.59	4.24	-	7.55	5.63
ol	8.97	-	-	4.35	-	-	4.73	7.19	3.29	-
nt	4.00	3.90	3.32	2.10	3.87	3.69	4.14	2.92	4.22	1.95
il	4.30	5.82	4.72	1.68	5.35	5.06	5.96	3.14	4.96	2.36
ap	1.94	1.06	0.98	0.55	1.19	0.78	1.59	1.25	2.05	0.74
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
D.I	53.95	37.22	37.21	79.58	40.95	35.28	44.55	63.25	50.13	74.87
Colour	27.35	27.18	26.27	12.37	32.98	30.30	32.67	18.85	29.86	9.94
Pyx.	10.08	17.46	17.25	4.24	23.76	21.55	17.84	5.60	17.39	5.63
Plag.	58.41	63.45	67.46	62.51	54.18	63.10	57.15	62.65	57.46	62.51
P.R	28.68	54.42	54.14	11.98	45.90	53.33	37.08	26.58	31.24	23.08
	OL-MU	Ra	Ba	No-Tr	07-89	Ra	01-82	01-Mu	01-44	07-80

KEY:- Ba = BASALT Ha = HAWAIITE Be = BENMOREITE Mu = MUGEARITE TR = TRACHYTE
	M36B2659	M36B6a	M36B24	M36B29	M36B31	M36B33	M36B37	M 36 B46a	M36B48a	M36B49	M36B50d	M36B53	M36B56
Si02	38.68	61.18	47.13	48.46	49.26	51.09	51.79	56.87	51.54	49.02	60.71	61.40	66.79
TiO2	1.99	0.28	2.11	3.18	3.03	2.13	2.38	1.61	2.29	3.14	0.56	1.14	0.46
A1203	15.35	18.06	13.49	16.54	17.41	16.10	15.94	15.85	15.44	15.71	18.09	18.19	15.70
tFe203	28.26	5.04	13.00	12.41	12.20	11.76	11.34	9.90	12.35	13.23	5.69	4.55	3.77
Fe203	6.00	1.35	2.76	2.64	2.59	2.50	2.41	2.62	2.63	2.81	1.59	1.20	1.00
FeU	20.02	0 13	9.21	8.80	0.05	0.33	8.34	0.55	8.75	9.38	3.77	3.01	2.50
Mao	1 18	0.13	0.10	6.16	2.04	2.08	3 26	1 12	2 20	1. 27	0.00	0.00	0.02
CaO	5.78	1.13	8.80	8.94	9 50	6 72	7 11	4 04	6 50	8 71	1 52	4 02	1 10
Na20	2.78	7.41	2.69	3.71	3.74	4.53	4.81	4.80	4.61	3 98	6 13	5 65	5.24
K20 ·	0.62	5.29	1.11	1.21	1.24	2.09	2.02	2.90	1.98	1.33	4.76	3.83	4.68
P205	0.40	0.06	0.42	0.59	0.55	0.83	0.91	0.55	0.99	0.64	0.15	0.32	0.08
LOI	4.97	0.66	0.80	1.03	1.16	1.10	-0.36	2.20	0.76	1.36	1.16	0.90	0.90
TOTAL	100.34	99.59	99.62	100.42	101.20	99.53	99.49	99.98	99.58	101.58	99.31	99.04	99.10
Alkali	3.40	12.70	3.80	4.92	4.98	6.62	6.83	7.70	6.59	5.31	10.89	9.48	9.92
Na/k	4.48	1.40	2.42	3.06	3.01	2.16	2.38	1.65	2.32	2.99	1.28	1.47	1.11
Felsic	37.04	91.85	30.16	35.50	34.39	49.63	49.00	65.59	50.34	31.81	87.75	70.22	89.29
Kupos	3 86	1 08	34.10	73.33	15 31	16.42	15 64	69.12	11 20	10 41	2 77	5 72	72.37
Kunos	5.00	1.90	50.54	20.25	15.54	14.57	13.04	0.24	11.50	19.01	2.11	5.52	2.12
Q	· .	-	-	-		-	-	6.48	-	-	1.03	4.77	14.55
10	3.98	31.79	6.75	7.31	7.44	12.74	12.13	17.75	12.03	7.97	28.86	22.47	28.28
ab	25.58	52.04	23.43	32.09	32.13	.39.55	41.37	42.07	40.12	34.10	53.23	48.11	45.35
an	28.34	0.40	22.09	25.46	27.47	17.98	16.20	13.61	16.04	21.44	6.73	13.04	5.50
ne		6.36	-	-	-	-	-	-	-	-		-	-
c	0.60	1 27	-	17 04	17 07	- 01		-		-	0.46	- 17	0.04
	0.27	4.21	10-12	15.06	13.87	9.01	11.20	2.93	8.74	14.95	-	4-13	7.07
ny	17 38	2 83	14 00	5.90	1 28	6.10	2.09	9.45	1 15	6 00	0.39	2.82	5.97
mt	9.81	1 64	4 27	4.01	3 95	3 87	3 68	3 27	4 05	6 20	1 86	1 46	1 23
il	4.12	0.54	4.14	6.19	5.86	4.18	4.61	3.18	4.48	6.07	1.09	2.18	0.90
ар	0.96	0.13	0.95	1.33	1.23	1.88	2.04	1.25	2.24	1.43	0.34	0.71	0.18
Total	. 100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	20.54	00.10	70.40	70.15	70 57	F				/			
U.I	29.56	90.19	30.18	39.40	39.57	52.29	53.50	66.30	52.15	42.07	83.12	15.65	88.18
COLOUR	40.54	4.20	40./0	33.81	31.75	27.84	17 75	10.85	29.56	35.07	19.34	10.59	6.10
Plag	53 02	52 44	45 52	57 55	50 60	57 57	57 57	55 68	56 16	55 56	50 06	61 15	50.85
P.R	52.56	0.76	48.53	44.74	46.09	31.25	28-14	24.44	28,56	38.60	11.22	21.32	10.81
							20114	21177	20.00	50.00		21.32	10.01
Name	Fe-ALTERD	Ne-Tr	==== ===== Оl-На	оl-На	======== Ну-На	Ol-Ha	ol-Mu	Qz-Be	Mu	Ol-Ha	======== Tr	Tr	Oz-Tr

	M36B60	M36B61a	M36B3250	M36B3271	M36B3272	M36B3281	M36B3286	M36B3572	M36B3677	M36B3678	M36B4003
Si02	66.54	62.66	59.78	48.33	49.55	64.31	51.17	67.02	62.50	50.39	65.80
TiO2	0.47	0.38	1.26	3.05	3.08	0.87	2.33	0.46	1.05	2.90	0.48
A1203	15.47	18.33	16.84	17.43	15.64	16.37	16.25	16.12	16.18	18.58	16.69
tFeO3	4.87	4.62	7.86	12.26	13.56	5.66	12.02	3.63	6.48	10.40	4.03
Fe203	1.29	1.22	2.08	2.61	2.88	1.50	2.00	0.96	1.72	2.21	2.47
FeU	5.22	3.00	0.05	0.09	9.01	5.75	0.02	2.39	4.29	0.16	2.07
MaQ	0.18	0.05	0.85	3 43	3 63	0.05	3.03	0.03	0.65	2.56	0.11
CaO	1.13	0.83	3.72	9.01	8.09	2.77	7.37	0.87	2.58	9.00	1.66
Na20	5.38	6.57	4.58	3.80	4.02	4.20	4.39	5.62	4.81	3.99	5.14
K20	4.69	5.25	3.12	1.17	1.50	3.95	1.73	4.65	3.55	1.37	4.28
P205	0.08	0.08	0.45	0.52	0.73	0.22	0.95	0.08	0.31	0.61	0.12
LOI	1.16	0.33	1.06	0.46	0.45	1.51	0.59	1.79	1.13	0.28	0.57
TOTAL	100.07	99.33	99.58	99.64	100.43	100.30	100.00	100.50	99.06	100.25	98.90
	10.07			<i>i</i>				10.07	0.74	/	0 (7
Alkalı	10.07	11.82	1.70	4.91	5.52	8.15	6.12	10.27	8.36	5.36	9.42
Na/K	80 01	03 //	67 /3	3.24	40.56	74 63	45 37	02 10	76 / 2	37 33	85 01
Mafic	96.84	95.11	89.54	76.71	77.48	93.08	78.53	93.84	93.32	78.81	97.14
Kunos	1.14	1.35	5.37	17.41	16.77	2.83	14.98	1.59	2.91	14.68	0.83
Q	13.26	0.56	10.73	-	-	17.17		13.44	13.78	0.31	14.92
OF	28.18	31.51	18.90	7.08	9.02	23.79	10.44	27.95	21.59	8.21	25.84
ab	46.30	56.49	39.74	32.93	34.62	36.23	37.96	48.39	41.91	34.23	44.45
an	4.28	3.65	15.91	27.70	20.56	12.54	19.95	3.86	11.09	29.14	1. 2
ne	-	0.57	0.25	-	-	-	-		0 49	-	0.80
di	0.78	0.55	0.25	12 04	12.77	0.09	9.20	-	-	9.98	-
hv	4.53	4.85	8-42	4.22	7.70	5.56	10.97	3.64	6.24	7.80	3.77
ol	-	-	-	4.90	3.31	-	0.88	-	-	-	-
mt	1.58	1.50	2.57	4.01	4.40	1.84	3.92	1.18	2.13	3.37	1.31
il	0.91	0.74	2.46	5.95	5.97	1.69	4.53	0.89	2.06	5.60	0.93
ар	0.18	0.18	1.02	1.17	1.63	0.49	2.14	0.18	0.70	1.36	0.27
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
	'07 TI		10.77	10.04	17	77 10	10.10	00 70	77 20	10 75	05 01
D.I	81.14	88.56	69.37	40.01	43.64	0.00	48.40	5 71	10.43	42-15	6 01
Colour	7.80	1.09	8 / 2	16 26	20 47	9.09	29.50	3.64	6 24	17 78	3 77
Plan	50.58	60.14	55.65	60.63	55.18	48.77	57.91	52.25	53.00	63.37	52.07
P.R	8.46	6.07	28.59	45.69	37.26	25.71	34.45	7.39	20.92	45.98	14.63
Name	Qz-Tr	Tr	Qz-Be	Ol-Ha	Ol-Ha	Qz-Tr	Ну-На	Qz-Tr	Qz-Tr	Ну-На	0z-Tr

· ·

.

	M364009	M364012	M36B4020	M36B4021	M36B4024	M36B4301	M36B4352	M36B4356	M36B4358	M36B4410
Si02	50.64	50.42	52.02	49.69	53.17	47.95	48.32	52.55	50.85	64.45
TiO2	2.46	2.76	1.99	2.71	1.89	2.65	2.90	2.41	2.52	0.53
A1203	16.63	15.98	17.46	16.01	17.82	16.04	17.65	16.41	17.60	16.72
tFe203	11.89	13.13	10.30	13.01	9.75	12.05	11.74	11.89	12.95	5.73
Fel	8 43	0 31	7 30	0 22	2.07	2.50	8 32	2.00	2.75	3 70
MnO	0.17	0.19	0.17	0.22	0.19	0.16	0.15	0.10	0.15	0.04
MgO	2.87	3.38	3.42	3.34	1.99	5.28	4.11	3.05	1.73	0.34
CaO	6.81	7.29	6.75	7.63	5.77	8.69	9.59	7.40	6.24	1.86
Na20	4.72	4.24	5.19	4.41	5.18	3.42	3.34	4.00	3.84	5.14
K20	1.94	1.71	2.29	1.65	2.26	1.22	1.06	1-94	1.98	4.16
P205	0.87	0.81	0.59	0.79	0.68	0.57	0.47	0.77	0.72	0.14
	0.07	-0.25	0.38	0.44	0.88	1.55	0.24	0.01	1.19	0.06
TOTAL	99.07	99.69	100.55	99.91	99.59	99.57	99.57	100.53	99.75	99.17
A11-12	1.11	E OF	7 (0	(0(7.77			5.04	F 00	0.70
ALKALI	2 43	2.92	6.63	0.00	7.44	4.64	4.40	5.94	5.82	9.50
Felsic	49.44	44.94	72 14	44 26	56 32	34.81	31 45	44 53	48 26	83 33
Mafic	79.25	78.17	73.43	78.21	81.78	67.77	72.47	78.23	87.34	93.98
Kunos	14.01	15.77	11.25	15.61	10.81	25.12	21.26	15.29	8.88	2.27
0		_	-					2 10	3 10	12 /3
	11 76	10.28	13 69	9 97	13 70	7 47	6 40	11 58	12 07	24 97
ab	40.98	36.52	38.43	38.16	44.98	29.99	28.88	34.19	33.52	44.19
an	18.94	19.87	17.79	19.45	19.19	25.72	30.70	21.31	25.73	8.45
ne	-	-	3.25	-	-	-	-	-	-	-
c	- 0.07		-	-			-			0.73
	0.25	9.59	10.04	1.84	4.72	12.30	12.10	8.88	1.15	-
ol	7.09	2.71	8.34	7.68	3.39	5.92	2 32	-	-	0.04
mt	3.89	4.27	3.33	4.25	3.19	3.99	3.83	3.83	4.26	1.86
il	4.81	5.35	3.83	5.28	3.69	5.23	5.64	4.64	4.95	1.03
ар	1.96	1.81	1.31	1.78	1.54	1.30	1.06	1.71	1.63	0.31
Total	.100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
D 1	50 7/	// 80	FF 77	/0.17	50 (0	77 //	75 00	17 07	(0. (0	01 50
Colour	26.14	40.80	25.51	48.13	20.50	51.40	32.28	4/.8/	48.69	81.59
Pvx	10.57	19,18	10.04	13.45	10.32	20.38	21.17	20.65	14 74	6 04
Plag.	59.92	56.39	56.22	57.61	64.17	55.71	59.58	55.50	59.25	52.64
P.R	31.61	35.23	31.64	33.76	30.00	46.17	51.53	38.40	43.43	16.05
Name	ог-на	ог-на	Ne-на	ос-на	от-на	Ol-Ha	ва	Ну-ћа	Ну-На	Qz-Ir

×

									• • • • • • • • • • • • • • • • • •	
М	I36B4596	M36B4613	M36B4619	M36B4634	м36в4906	M36B4909	M36B5440	M36B5443	N36A5508	N36A5509
102	52 00	61 17	40 65	56 05	51 12	57 52	60 41	48 40	58 44	50 80
102	2 61	1 02	2 67	1 27	2.47	1.16	1 04	2 80	1.40	1.43
1203	16 10	16 94	16 30	17 63	16 65	17 25	16 39	16.97	15.81	15.94
Fe203	13 59	6 32	12 42	8.56	12 14	8 11	6.30	11.93	8.58	8.56
e203	2 89	1.67	2 64	1.82	2 58	2 15	1.67	2.54	2.27	2.27
e0	9.63	4.18	8.80	6.07	8.60	5.38	4.17	8.45	5.68	5.67
n0	0 14	0 12	0 21	0 12	0.17	0 14	0.05	0.19	0.07	0.08
0	2 91	1.33	3 27	0.94	2 86	1 32	1.17	4 23	2 01	2.68
90 a0	6.99	3.49	7.9	3.30	6.89	3.83	3.75	9.04	4 44	4.90
a20	4 20	5 38	4 17	5.98	4.80	5.90	3 59	3 66	3 78	3.92
20	2.02	3.78	1 70	3 21	1 99	3 33	3 65	1 19	2 95	3 01
205 -	0.87	0.25	0.87	0.42	0.86	0 38	0.32	0.57	0.38	0 43
	0.38	0 34	0.31	2 64	-0.04	2.87	1 34	1 89	0.69	1 15
				2.04						
DTAL	101.88	100.14	100.05	100.13	99.91	101.80	98.00	100.88	98.55	101.98
lkali	6.22	9.16	5.87	9.19	6.79	9.23	7.24	4.85	6.73	6.93
a/K	2.07	1.42	2.45	1.86	2.41	1_77	0.98	3.07	1.28	1.30
elsic	47.08	72.41	42.51	73.58	49.63	70.67	65.88	34.92	60.25	58.58
afic	81.04	81.48	75.46	89.35	76.63	85.01	83.31	72.21	79.82	74.76
unos	13.44	8.14	17.70	5.22	13.73	7.30	8.21	21.07	12.04	15.27
	0 (0	E /E		×			15 11		11 57	10.20
	0.00	22.42	10 27	10 17	11.05	20 00	15.11	7.04	11.55	10.29
	11.90	22.00	10.25	19.67	11.95	20.09	22.49	7.21	18.01	17.82
2	33.02	45.90	33.90	52.49	41.28	50.99	51.00	31.70	33.05	32.23
1	19.16	11.02	21.38	12.22	18.51	10.98	17.22	27.05	18.04	17.05
2	-	-	-	-		-	0 50	-	-	-
	0 70	-	10 70	1 4/	P 07	/ 00	0.50	12 / 1	1 00	7 73
	17 04	4.04	7 41	1.04	0.95	4.99	- 10	12.41	1.00	3.12
/	13.00	0.40	5.01	4.29	7.05	2.02	0.10	5.40	11.15	11.45
	/ 75	2.05	0.93	2.20	7.05	1.55	2 10	7.01	2 97	2 7/
•	4.35	2.05	4.04	2.03	5.94	2.04	2.10	5.91	2.03	2.14
	4.90	1.90	1 05	2.51	4.70	2.20	2.07	2.47	2.75	2.75
	1.92	0.55	1.95	0.96	1.92	0.85	0.73	1.29	0.86	0.95
tal	100.00 ·	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
I	48.26	73.98	46.19	72.16	53.23	71.08	69.28	38.99	62.59	61.36
lour	30.67	14.45	30.48	14.65	26.53	17.27	12.17	32.68	18.51	20.64
roxene	21.34	10.44	14.31	5.93	9.98	10.84	8.10	17.81	12.93	15.17
ag.	54.78	57.00	57.34	64.71	59.59	61.98	48.90	58.83	51.09	50.30
R	34.98	19.33	37.29	18.18	30.73	17.72	35.21	45.98	35.31	33.90
me	Ну-На	Qz-Be	==================================	Hy-Be	= Ol - Ha	Hy-Be	Qz-Be	Ol-Ha	Qz-Ha	Qz-Ha

The second descent second and the second second

. 1

•

-												
			M36B5563	M36B5766	м36в5768	м36в5772	M36B5791	M36B5792	M36B5805	N36A5822	N36A5824	N36A5826
		Si02	66.99	56.87	50.31	48.69	56.35	63.80	48.84	61.65	53.60	49.58
		TiO2	0.38	1.17	2.76	2.71	1.24	0.85	2.89	1.02	1.94	2.75
		Ai203	14.89	16.38	15.78	16.70	17.97	16.29	17.23	15.89	16.01	18.01
		tFe20.	5 5.12	9.42	12.21	11.86	7.69	5.84	12.04	0.74	10.75	11.22
		Fe2US	3 30	6 23	2.00	2.52 8.60	5.04	3.86	8 53	6.46	7 62	7 05
		Mpo	0.05	0.13	0.17	0.17	0.12	0.06	0.15	0.14	0.15	0.18
		MgO	<0.05	2.53	3.40	4.47	1.75	0.83	3.79	1.37	2.53	3.57
		CaO	1.07	5.77	7.68	9.36	4.51	3.14	9.17	3.83	6.05	9.37
		Na20	4.75	3.99	4.37	3.78	5.39	4.49	3.67	4.35	4.67	3.69
		K20	4.71	2.56	1.72	1.22	3.21	3.74	1.13	3.39	2.43	1.18
		P205	0.10	0.48	0.62	0.57	0.45	0.27	0.53	0.34	0.79	0.56
		LOI	1.64	0.37	0.79	0.43	1.65	1.40	1.10	0.73	0.29	0.00
		TOTAL	99.69	100.23	99.81	99.96	100.35	100.70	100.55	99.45	99.22	100.09
	• 24	Alkali	9.46	6.55	6.09	5.00	8.60	8.23	4.80	8.74	7.10	4.87
		Na/K	1.00	1.55	2.54	3.09	1.67	1.20	3.24	1.28	1.92	3.12
,		Felsic	08 04	23.17 77.51	44.23	34.82	65.60	(1.57	34.30	69.55	54.00	34.20
		Kupos	90.90	1/ 21	16.19	70.90	10 01	5 7/	10 26	8 78	17.00	10 01
		Kunos	0.35	14.21	10.45	21.92	10.01	5.14	19.20	0.50	12.75	19.01
		Q	17.50	7.31	-	-	-	14.36	-	12.49	0.96	-
		OF	28.56	15.33	10.43	7.35	19.41	22.41	6.82	20.46	14.72	7.06
		ab	41.25	34.22	37.94	32.63	46.69	38.54	31.71	37.61	40.52	31.64
		an	4.78	19.49	18.84	25.51	15.67	13.44	27.78	14.12	15.94	29.48
		ne		-	-	-	-	-	-	-	-	-
		c	0.28	5 37	17 70	1/ 79	7 5/	0.40	17 //	2 5/	7 04	- 11 / 7
		hv	4 99	10.96	3 37	1 27	8 25	6 63	7 62	7 87	10 81	g 55
		ol		-	5.33	8.05	0.50	-	2.88	-	-	1.65
		mt	1.68	3.05	4.00	3.86	2.51	1.89	3.92	2.20	3.52	3.63
		il	0.74	3.30	5.39	5.26	2.42	1.64	5.62	1.98	3.79	5.31
		ар	0.23	1.07	1.40	1.28	1.01	0.60	1.19	0.76	1.78	1.25
		Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
		D.I	87.31	56.86	48.37	39.98	66.10	74.31	38.53	70.56	56.20	38.70
		Colour	7.41	22.58	31.39	33.32	17.21	10.65	32.49	14.55	26.08	30.57
		Pyx	4.99	16.23	16.67	16.05	11.79	7.12	20.07	10.37	18.77	19.98
		Plag.	46.03	53.71	56.78	58.14	62.69	51.98	59.49	51.73	56.46	61.12
		P.K ======	10.38	30.29 ==========	33.18	43.88	23.00	23.86	46./0	27.3U	28.23	48.23
		Name	Qz-Tr	Qz-Ha	Ol-Ha	Ol-Ha	Hy-Be	Qz-Be	Ol-Ha	Qz-Be	Mu	Ну-На

APPENDIX VI TRACE ELEMENT ANALYSES AND RATIOS

All trace elements analyses are in ppm. The following chemical parameters are calculated :-

Ca/Al = CaO/Al2O3 Ce_n/Y_n = Chondrite normalized Ce/Y ratio using values of Thompson et al, 1984. Ce = .868 ppm, Y =2 ppm

Co-ordinates for tectonic discrimination diagrams of:-Pearce and Cann (1973) using Ti/100, 3*Y and Zr and Meshede (1986) using 2Nb, Y and Zr/4 are calculated for basic rocks.

Table 6A Trace element data for international laboratory standard.

	A	GV		G2		Wl
	Rec	Anal	Rec	Anal	Rec	Anal
۷	123	116	36	34	260	277
Cr	12	11	9	11	120	125
Ni	17	16	5	3	75	72
Zn	88	84	85	87	84	90
Zr	230	246	313	322	105	93
Nb	14	15	12	14	9	9
Ba	1221	1205	1880	1926	162	116
La	38	40	86	103	11	<5
Ce	66	65	159	177	23	23
Nd	34	34	53	54	15	26
GA	21	18	23	22	16	18
Pb	33	40	30	33	7.	8 11
Rb	67	68	170	170	21	21
Sr	660	663	480	481	190	191
Th	6.	4 6	25	30	2.	4 3
Y	19	21	11	14	25	21

APPENDIX 68 TRACE ELEMENT ANALYSES AND CALCULATED PARAMETERS.

• • • •

	M36B2072	M36B2091	M36B2117A	M36B2151	M36B2162	M36B2163	M36B2164A	M36B2164B	M36B2164C	M36B2652
V	32	180	149	< 3	208	236	155	23	69	51
Cr	13	43	13	3	64	50	38	7	10	26
Ni	8	27	18	4	40	42	25	12	8	7
Zn	122	94	103	81	123	98	126	92	135	89
Ga	22	23	21	30	20	22	22	29	22	31
Rb	41	21	16	87	48	18	31	62	40	109
Sr	610	613	679	296	503	551	557	763	512	453
Y	53	34	27	36	33	28	46	36	53	40
Zr	328	214	179	516	218	156	270	434	326	494
ND	67	42	34	101	38	32	54	87	62	75
Ba	449	116	111	1411	200	88	179	641	303	701
Pb	4	5	5	11	6	5	5	6	5	13
La	61	27	28	16	57	22	46	82	54	13
Ce	110	60	48	131	(3	41	88	134	107	124
NC	45	52	36	40	37	28	33	40	40	52
in 	10	5	4	5	7	2	4	14	0	21
Zr/Nb	4.896	5.095	5.265	5.109	5.737	4.875	5.000	4.989	5.258	6.761
Zr/Y	6.187	6.294	6.630	14.333	6.606	5.574	5.870	12.056	6.151	12.350
Zr/Rb	8.000	10.190	11.188	5.931	4.542	8.667	8.710	7.000	8.150	4.532
Zr/Ti	0.245	0.012	0.013	0.098	0.013	0.010	0.015	0.045	0.021	0.069
NP/A	1.264	1.235	1.259	2.806	1.152	1.143	1.174	2.417	1.170	1.825
Ti/Y	248.852	523.688	528.456	146.546	501.407	560.967	401.410	269.779	288.443	179.853
K/Ba	35.869	75.860	71.780	21.890	61.847	75.469	46.386	34.320	48.221	43.344
K/Rb	392.808	419.034	498.097	354.965	257.696	368.961	267.840	354.827	365.271	278.751
Rb/Sr	0.067	0.342	0.024	0.294	0.095	0.033	0.057	0.081	0.078	0.241
Nb/Th	6.700	8.400	8.500	6.733	5.429	6.400	13.500	6.214	7.750	3.476
Cen/Yn	4.798	4.082	4.110	8.412	5.115	3.386	4.423	8.606	4.668	7.168
*Ca/Al	0.421	0.456	0.488	0.155	0.505	0.537	0.523	0.296	0.445	0.179
Ti/100	131.892	178.054	142.683		165.464	157.072	184.645		152.875	
3*Y	159.000	102.000	81.000		99.000	84.000	138.000		159.000	
Zr	328.000	214.000	179.000		218.000	156.000	270.000		326.000	
Ti/100	21.311	36.039	35.433		34.296	39.557	31.157		23.966	
541	25.691	20.645	20.115		20.512	21.155	23.285		24.921	
ζΓ ,	52.997	43.315	44.452		45.185	39.288	45.558		51.107	
2NB	49.8	48.9	48.6		46.4	48.8	48.7		47.9	
Zr/4	30.4	31.1	32.0		33.3	29.7	30.4		31.5	
Y	19.7	19.8	19.3		20.1	21.3	20.7		20.5	

•

.

٣	36B2659	M36B6a	M36B24	M36B29	M36B31	м36в33	м36в37	M36B46a	M36B48a	м36в49	M36B50d	M36B53	M36B56
v	181	2	190	165	187	33	41	7	35	155	-1	34	-1
Cr	69	9	267	21	10	15	35	8	7	57	9	28	11
Ni	60	10	242	20	26	12	19	5	3	26	20	16	10
Zn	201	144	123	112	114	123	148	174	142	123	118	86	137
Ga	21	35	20	24	24	25	26	30	26	24	31	21	29
RD	501	157	522	28	50	49	50	82	40	28	107	116	1/9
Sr	201	51	36	34	301	601	605	50	51	320	77	32	140
7	180	1032	18/	222	200	307	330	4.27	332	2/1	711	500	730
Nh	30	107	42	51	46	74	76	82	70	50	149	78	95
Ra	120	121	207	203	235	533	403	723	302	253	718	683	761
Ph	4	18	0	7	7	0	7	10	372	7	13	12	21
la	28	128	47	31	37	62	71	87	65	44	98	69	89
Ce	68	212	83	71	82	115	130	164	127	98	151	132	121
Nd	22	94	45	34	37	64	74	84	65	41	74	66	84
Th	4	30	5	5	7	9	11	14	8	7	19	19	22
Zr/Nb	6.000	5,239	4,381	4.353	4.543	4.147	4.342	5.207	4.743	4.085	4.772	6.412	7.601
Zr/Y	4.286	20.235	5.111	6.529	5.971	6.977	6.735	8.540	6.510	6.342	21.545	15.625	20.857
Zr/Rb	30.000	6.573	8.364	7.929	6.967	6.265	9.167	5.207	7.377	8.607	6.645	4.310	4.771
Zr/Ti	0.015		0.015	0.012	0.012	0.024	0.023	0.044	0.024	0.013	0.212	0.073	0.265
Nb/Y	0.714	3.863	1.167	1.500	1.314	1.682	1.551	1.640	1.373	1.553	4.515	2.436	2.714
Ti/Y	284.053	32.914	351.380	560.717	519.003	290.217	219.190	193.042	269.191	495.383	101.735	213.575	78.792
K/Ba	39.900	362.938	31.026	49.483	43.804	32.552	34.015	33.298	41.932	43.640	55.036	46.552	51.053
K/Rb	857.833	297.718	418.854	358.748	343.133	354.089	465.813	293.594	365.271	394.327	369.305	274.096	253.932
Rb/Sr	0.012	4.361	0.041	0.054	0.053	0.082	0.060	0.198	0.087	0.050	0.947	0.264	1.034
Nb/Th	7.500	6.567	8.400	10.200	6.574	8.222	6.909	5.857	8.750	8.429	7.842	4.105	4.318
Cen/Y	n 3.743	9.611	5.331	7.168	5.417	6.043	6.132	7.676	5.758	5.963	10.580	9.536	7.993
*Ca/A	1 0.377	0.063	0.652	0.541	0.546	0.417	0.446	0.255	0.421	0.544	0.484	0.221	0.076
Ti/10	0 119.302		126.496	190.644	181.651	127.695				188.247			
3*Y Zr	126.000 180.000		108.000 184.000	102.000 222.000	105.000 209.000	132.000 307.000				144.000 241.000			
Ti/10	26.380		30,226	37.044	36.649	22.533				34.652			
3*Y	29.626	, ,	25.807	19.820	21.184	23.293				20.985			
Ζr	42.323	;	43.967	43.137	42.167	54.174				44.356			
2NB	40.8	and the second	50.6	53.2	51.3	55.0				54.5			
Zr/4	30.6		27.7	28.9	29.1	28.5				27.8			
Y	28.5		21.6	17.7	19.5	16.3				17.5			

	М36В60	M36B61a	M36b3250	M36B3271	M36B3272	м36в3281	M36B3286	M36B3572	M36B3677	M36B3678	M36B4003
v	2	0	22	186	150	37	87	< 3	< 3	185	5
Cr	10	10	6	16	26	3	7	< 3	< 3	42	3
Ni	10	11	3	20	17	4	8	< 3	3	26	< 3
Zn	112	104	101	106	124	80	118	109	131	132	83
Ga	28	31	31	23	26	26	24	32	29	22	31
Rb	155	157	106	26	71	142	40	147	123	30	134
Sr	150	38	384	637	563	308	529	141	338	613	252
Y	55	26	57	38	46	26	50	52	42	35	56
Zr	692	867	418	218	280	424	302	713	476	239	575
NP	96	127	53	44	58	40	53	92	62	48	62
Ba	757	384	635	174	283	757	310	808	662	173	790
Pb	15	19	14	5	4	35	7	27	15	5	19
La	87	104	112	34	50	55	53	100	76	45	90
Ce	162	149	144	69	91	99	105	163	118	12	141
Nd	83	61	80	32	59	52	42	70	54	41	00
in 	25	32	16	2	0	20	0	23	17	6	21
Zr/Nb	7.208	6.82	7 7.88	7 4.95	5 4.8	28 10.6	5.69	7.75	50 7.67	4.9	9.27
Zr/Y	12.582	33.34	6 7.33	3 5.73	7 6.0	87 16.3	308 6.04	0 13.7	12 11.33	6.8	10.26
Zr/Rb	4.465	5.52	2 3.94	3 8.38	5 3.94	43 2.9	7.55	4.85	3.87	70 7.9	67 4.29
Zr/Ti	0.246	0.38	1 0.05	5 0.01	2 0.0	15 0.0	0.02	2 0.25	0.07	76 0.0	0.20
Nb/Y	1.745	4.88	4 0.93	0 1.15	8 1.20	61 1.5	538 1.06	1.76	59 1.47	76 1.3	1.10
Ti/Y	51.231	87.62	0 132.52	481.18	4 401.4	10 200.6	279.37	1 53.03	149.87	496.7	36 513.864
K/Ba	51.433	113.49	8 40.78	9 55.82	1 44.0	01 43.3	46.32	47.77	44.51	65.7	41 44.97
K/Rb	251.191	277.60	2 244.349	9 373.57	3 175.3	86 230.9	359.04	4 262.60	239.59	379.1	07 265.150
Rb/Sr	1.033	4.13	2 0.27	5 0.04	1 .0.13	26 0.4	61 0.07	6 1.04	0.36	64 0.0	0.53
Nb/Th	4.174	3.96	9 3.31	3 8.80	9.60	57 2.0	000 8.83	4.00	3.64	7 8.0	2.95
Cen/Yn	6.810	13.25	0 5.84	4.19	4.5	74 8.8	304 4.85	5 7.24	6.49	4.7	56 5.82
*Ca/Al	0.073	0.04	5 0.22	1 0.51	7 0.4	17 0.1	169 0.45	4 0.05	54 0.15	59 0.4	85 0.099
Ti/100				182.85	0 184.6	50	139.68	15		173.8	57
3*Y				144.00	0 138.00	00	150.00	0		105.0	00
Zr				218.00	0 280.00	00	302.00	0		239.0	000
Ti/100				35.51	5 30.64	40	23.60	8		33.5	72
3*Y .				22.14	2 22.90	00	25.35	1		20.2	.76
Zr	r			42.34	2 46.40	52	51.04	1		46.1	52
2118	a.			48 7	50 0		45 7			50 3	
70/4				30.1	30 1		32 6			31 3	
Y Y				21 0	19.8		21.5			18.3	

		M36B4009	M36B4012	M36B4020	M36B4021	M36B4024	M36B4301	M36B4352	M36B4356	M36B4358	M36B4410
			105		447		4/0	100	447	400	
	V	70	105	73	113	35	148	190	113	100	11
	Cr	11	12	51	16	1	99	37	5	6	< 3
	NI	14	18	34	18	8	75	30	9	12	< 3
	Zn	118	126	96	126	106	103	85	116	122	68
	Ga	25	24	26	26	30	20	28	24	32	26
	Rb	40	36	59	38	54	27	26	48	48	133
	Sr	626	579	738	597	591	524	564	506	486	276
	Y	55	60	39	63	50	39	31	44	40	35
	Zr	345	302	372	304	389	237	203	296	313	556
	Nb	69	62	68	62	74	45	40	52	57	59
	Ra	305	325	569	322	522	150	114	337	353	757
	Ph	0	525	507	522	1.	3	2	551	0	23
	FD	70	41	40	40	80	74	27	51	E/	77
	Ld	107	01	121	107	107	30	21		10/	177
	Le	102	94	121	102	127	77	59	99	104	155
	Nd	57	40	41	53	57	38	28	50	44	56
	 Th	13	10	13	1	13	5	6	8	8	19
							and the second				
、	Zr/Nb	5.000	4.871	5.471	4.903	5.257	5.267	5.075	5.962	5.491	9.424
	Zr/Y	6.273	5.033	9.538	4.825	7.780	6.077	6.548	6.727	7.825	15.886
	Zr/Rb	8.625	8.389	6.305	8.000	7.204	8.778	7.808	6.167	6.521	4.180
	Zr/Ti	0.023	0.018	0.031	0.019	0.034	0.015	0.012	0.020	0.021	0.175
	Nb/Y	1.255	1.033	1.744	0.984	1.480	1.154	1.290	1.182	1.425	1.684
	Ti/Y	268.144	275.774	305.903	257.884	226.614	407.358	560.830	328.367	377.690	90.783
	K/Ba	40.772	43.679	33.411	42.539	35.945	63.698	77.190	47.790	46.564	45.624
	K/Rb	402.628	394.327	322.215	360.465	347.439	375.110	338.450	335.523	513.662	259.659
	Rb/SR	0.064	0.062	0.080	0.064	0.091	0.052	0.926	0.095	0.098	0.482
	Nb/Th	5.308	6.200	5,231	8.857	5.692	9.000	6.667	6.500	7,125	3,105
	Cen/Yn	4 288	3 622	7 174	3 743	5 873	4 565	4 401	5 202	6 012	8,786
	*Ca/Al	0.410	0.456	0.387	0.477	0.324	0.542	0.543	0.451	0.355	0.111
			and the second second			the second s					
	Ti/100	147.480	165.464	119.302	162.467	113.307	158.870	173.857	144.482	151.076	
	3*Y	165.000	180.000	117.000	189.000	150.000	117.000	93.000	132.000	120.000	
	Zr	345.000	302.000	372.000	304.000	389.000	237.000	203.000	296.000	313.000	
	Ti/100	22 431	25 556	19 612	24 786	17 370	30 977	37.002	25.238	25 866	
	3*Y	25 006	27 801	10 234	28 834	22 005	22 813	10 703	23 058	20 545	
	70	52 473	46 643	61 154	46 380	50 634	46 211	43 205	51 705	53 590	
		52.475	40.045	01.104	40.000	57.034	-0.211	-5.205	51.105	55.570	
	2NB	49 4	47 7	50.7	47 1	50 1	47 8	40 4	46.8	49 0	
	70//-	30.8	20 0	34 7	28 8	32 0	31 4	31 3	33 3	33 6	
	21/4 Y	10 6	23 0	14 5	23 0	16 0	20 7	19 1	19 8	17 2	
		17.0	20.0	14.5	23.7	10.7	20.1	17.1	17.0	11.2	

	M36B4596	м36в4613	M36B4619	M36B4634	M36B4906	M36B4909	M36B5440	M36B5443	N36A5508	N36A5509
V	111	39	98	21	63	12	64	166	87	92
Cr	32	26	20	6	8	6	8	50	65	37
Ni	25	23	21	7	13	7	9	39	25	27
Zn	146	75	117	112	113	99	85	106	89	89
Ga	25	28	19	29	24	33	27	24	34	27
Rb	54	118	35	85	41	92	113	25	103	103
Sr	508	377	659	452	619	423	358	577	412	385
ř Z-	59	42	208	33	52	57	39	55	39	33
	520	495	298	495	304	509	405	251	511	510
RO	670	67/	786	687	37/	470	42	140	427	504
Ph	670	22	500	13	5/4	16	20	149	14	18
la	76	67	56	75	62	69	66	30	62	51
Ce	106	116	105	136	111	121	115	66	87	95
Nd	58	54	51	51	50	47	56	40	54	48
Th	8	21	7	15	10	20	18	5	16	16
7r/Nb	5,828	7,279	4.515	6.086	4 986	5 784	9 595	5 386	8,886	9.023
Zr/Y	5.729	11.786	5.843	14.939	6.808	13.757	10.333	6.771	7.974	9.576
Zr/Rb	6.259	4.195	8.514	5.800	8.634	5.533	3.566	9.480	3.019	3.068
Zr/Ti	0.022	0.081	0.019	0.065	0.024	0.073	0.065	0.041	0.037	0.037
Nb/Y	0.983	1.619	1.294	2.455	1.365	2.378	1.077	1.257	0.897	1.061
Ti/Y	265.206	145.595	313.860	230.720	284.766	187.954	159.869	479.607	215.208	259.787
K/Ba	25.029	46.558	36.562	39.075	44.172	40.713	40.455	66.301	39.057	41.926
K/Rb	310.542	265.933	403.221	313.508	402.932	300.482	268.149	395.157	237.765	242.600
RB/Sr	0.106	0.313	0.053	0.188	0.662	0.217	0.316	0.043	0.250	0.268
Nb/Th	7.250	3.238	9-429	5.400	7.100	4.400	2.333	8.800	2.186	2.186
Cen/Yn *Ca/Al	4.154	6.386	4.760	9.529	4.936	7.561 0.222	6.818	4.360	5.158	6.656
	0.434	0.200	0.402	0.10/	0.414	0.222	0.227	0.955	0.201	
Ti/100	156.472		160.069		148.079	69.543		167.862		
3*Y	177.000		153.000		156.000	111.000		105.000		
Zr	333.000		298.000		354.000	509.000		237.000		
Ti/100	23.303		26.195		22.502	10.085		32.923		
3*Y	26.360		25.038		23.705	16.100		20.600		
Zr	50.337		48.767		53.800	73.820		46.483		
2NB	44.7		51.2		50.2	51.7		48.2		
Zr/4	32.5		28.9		31.3	37.3		32.5		
Y	22.7		19.8		18.4	10.8		19.2		

.

•

-		M36B5563	M36B5766	M36B5768	м36в5772	M36B5791	M36B5792	M36B5805	N36A5822	N36A5824	N36A5826
	V Cr Ni Zn Ga Rb Sr Y Zr Nb Ba Pb La Ce Nd Th	4 <3 4 82 29 160 138 53 461 54 728 22 77 133 56 25	117 17 15 105 29 84 451 36 301 40 498 19 46 89 41 12	138 20 21 128 22 48 488 45 328 63 254 5 55 98 48 7	158 67 47 110 24 25 584 36 236 49 163 2 37 75 33 4	31 5 11 89 26 115 695 22 557 89 589 10 71 125 49 17	31 6 5 81 23 132 316 38 420 40 712 14 60 111 47 20	177 1 44 106 23 24 585 34 227 44 136 1 31 67 33 5	39 10 8 77 28 121 344 39 384 38 658 15 55 114 47 15	38 < 3 4 128 33 58 451 58 388 67 490 10 73 128 55 12	143 24 28 82 26 24 643 34 225 45 189 2 44 76 36 6
• **	Zr/Nb Zr/Y Zr/Rb Zr/Ti Nb/Y Ti/Y K/Ba K/Rb Rb/Sr Nb/Th Cen/Yn *Ca/Al	8.533 8.689 2.888 0.202 1.019 42.984 53.710 244.379 1.159 2.160 5.802 0.072	7.525 8.361 3.583 0.043 1.111 194.840 42.675 253.001 0.186 3.333 5.716 0.352	5.206 7.289 6.833 0.031 1.400 234.365 56.216 297.474 0.098 9.000 5.035 0.487	6.258 6.556 9.440 0.015 1.361 451.300 62.135 405.119 0.043 12.250 4.817 0.560	6.258 25.318 4.843 0.075 4.045 337.905 45.243 231.723 0.165 5.235 13.137 0.251	10.500 11.053 3.182 0.082 1.052 143.101 43.608 235.213 0.428 2.000 6.754 0.193	5.159 6.676 9.458 0.013 1.294 509.582 68.977 390.866 0.041 8.800 4.556 0.532	10.105 9.846 3.174 0.062 0.974 156.800 42.770 232.582 0.352 2.533 6.759 0.241	5.791 6.690 0.033 1.155 200.525 41.170 347.809 0.127 5.583 5.103 0.378	5.000 6.620 9.380 0.014 1.324 484.900 51.830 408.163 0.037 7.500 5.168 0.520
	3*Y Zr Ti/100				108.000 236.000 32.078			102.000 227.000 34.496			102.000 225.000 33.518
	3*Y Zr				21.324 46.597		a Allana	20.308		() ()	20.737
	2NB Zr/4 Y				50.7 30.5 18.6			49.2 31.7 19.0			49.9 31.2 18.8

SELECTED ROCK AND MINERAL ANALYSES

Total Fe calculate	was d d usi (1) F (2) T	eterm ng th e203 otal	ined e fol / FeC Fe2O3	by XF lowir) = 0. } (XRF	F, an ng rel 3 F ana	nd th Lation Lysis	ne al nship:) = 1	oundanc 5. .111 Fe	e of O + Fe	Fe203	and	FeO	were
- (1) F - (2) F - Minera	eO* is or min [tot 1 ana	s calo heral tal Fo lyses	anal e203 are	ed from ysis (MP in Wt	n roc :- Fe analy . %.	k ana O* is sis)	lysis calc X 0.9	using ulated) + FeC	GPP p using) = Fe	rogram. O*		ż	
APPEN	DIX	VII A	A <u>Sei</u>	ECTE) ROC	k a na	LYSES						
	4021 M	2154B	5 <u>3</u> M	4003 M	4301	5526	5824	5822 M					
S102	49.69	54.19	61.40	65.80	47.95	49.58	53.60	61.65					
T102	2.71	1.62	1.14	0.48	2.65	2.75	1.94	1.02					
AL203	16.01	18.13	18.19	16.69	16.04	18.01	16.01	15.89					
+ FE203	13.01	8.99	4.55	4.03	12.05	11.22	10.75	6.74					
FED													
MND	0.22	0.15	0.09	0.03	0.16	0.18	0.15	0.14					
MGD	3.34	2.19	0.77	0.11	5.28	3.57	2.53	1.37					
CAD	7.63	5.37	4.02	1.66	B.69	9.37	6.05	3.83					
NA20	4.41	5.63	5.65	5.14	3.42	3:69	4.67	4.35					
K20	1.65	2.65	3.83	4.28	1.22	1.18	2.43	3.39					
H20+	0.44	0.49	0.90	0.57	1.53		0.29	0.73					
H2D-													
F205	0.79	0.56	0.32	0.12	0.57	0.56	0.79	0.34					
TOTAL	99.90	99.97	100.85	98.91	99.56	100.11	99.21	99.45					
FEDI	11.71	B.09	4.09	3.63	10.84	1 10.11	9.67	6.06					
4021 - 21668 -	M36E	94021 LF	ATE PHAS	E HAWAI	ITE LAV	A FLO⊮ AVA FLO	W						

	CPX.1	CPX.2	CPX.3	CPX.4	01.1	01.2	01.3	01.4	P1.1	P1.2	P1.3	P1.4	11.1	11.
S102	49.16	51.56	49.91	46.61	38.95	37.02	36.50	34.04	48.59	63.02	52.97	58.10	0.10	0.51

APPENDIX VII B SOME REPRESENTATIVE MINERAL ANALYSES

01200														
FeD *	. 06000	.58000	.01000	20.99	.07000	.03000		41.68	. 60000	.01000	. 07000	.18000		45.95
TOTAL	100.57	100.99	99.56	99.73	99.22	99.57	99.34	99.93	97.17	100.62	97.96	100.26	99.46	99.81
P205							· · · ·							
H20-				0.04								0.06		
H2D+				0.42				0.91				0.03		0.30
K20		0.01		0.27	0.01		0.10		0.15	0.E7	0.28	1.10		
NA2D	0.44	0.33	0.79	1.04		0.02	0.04		4.06	8.45	4.81	6.48	0.11	
CAD	22.62	22.81	22.25	17.24	0.23	0.23	0.39	0.B1	14.28	5.14	11.61	7.83	0.05	0.71
MGD	14.66	15.59	12.27	7.27	45.02	33.02	29.68	20.32	0.11	0.01	0.03	0.03	2.56	0.46
MND	0.10	0.19	0.46	1.11	0.19	0.4B	0.67	0.68					0.75	1.44
FED *	7.66	6.04	9.89	20.15	14.74	28.70	31.44	40.37	× 0.47	0.27	0.53	0.15	6E.13	42.16
FE203				0.90				1.46				0.04		4.19
AL203	4.18	3.17	2.90	3.47	0.06	0.06	0.25	0.91	29.42	22.81	27.62	26.44	1.50	nd
T102	1.75	1.29	1.09	1.18	0.02	0.04	0.07	0.43	0.09	0.05	0.11		26.26	50.02

X = FeD

CP1.1 - + CLINDFYRDIENE (.31) PHEN-CORE-M36B1038 CPX.2 - + CLINDPYROXENE (.51) PHEN-CORE-M36D2147 CPX.3 - + CLINDPYRDXENE (.81) PHEN-CORE-M36D2187 CPX.4 - . FERROAUGITE(TABLE 13, 7) 01.1 - + DLIVINE (.11) PHEN-CORE-M36B1174 01.2 - → DLIVINE (.11) PHEN-CORE-M36D21B7 01.3 - + DLIVINE (.11) PHEN-CORE-M36B1067 01.4 - • DLIVINE (TABLE 1, 3) HORT O NOLITE (50-70 Fa) P1.1 - + PLAGIDCLASE (.51) PHEN-CORE-M36B1174

P1.2 - + PLAGIDCLASE (.B1) PHEN-CORE-M36D2110

P1.3 - + PLAGIDCLASE (.31) PHEN-CORE-M36D2194 P1.4 - . PLAGIOCLASE (TABLE 31, 4) ANDESINE 11.1 - + ILMENITE PHEN-CORE-M36E1067 11.2 - • ILMENITE (TABLE 14, 1)

P1.4 11.1 11.2

- Analyses taken from Deer et al. (1986), numbers in parenthesis refer to their tables and analysis numbers.
- + Analyses taken from Sewell, 1985. Parentheses refer to mineral analysis number and the prefix M36 refers to rock sample number.

M - - Samples prefixed by M36E

M36B53 TRACHYTE DIKE

4003 - LATE PHASE SILICA RICH TRACHYTE LAVA FLOW 4301 - MAIN PHASE MG RICH HAWAITE LAVA FLOW 5626 - MAIN PHASE MG LOW HAWAIITE LAVA FLOW

5824 - N36A5824 MAIN PHASE MUGEARITE LAVA FLOW

5622 - N3685822 MAIN PHASE SILICA RICH BENMOREITE LAVA FLOW

53 -

N - Samples prefixed by N36A