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ABSTRACT: Recent analytical and experimental research has demonstrated the 

potential of semi-active resettable devices for controlling the response of structures 

subjected to earthquake excitation. Resettable devices manipulate the stiffness 

characteristics of the structure and are capable of producing large resisting forces. The 

devices also offer great reliability due to their reliance on standard hydraulic or pneumatic 

concepts and employ relatively simple mechanisms and control logic. This paper presents 

an investigation on the use of semi-active resettable devices to reduce the seismic 

response of multi-storey buildings. Analytical studies are conducted to investigate the 

performance of a twelve-storey reinforced concrete structure subjected to earthquake 

ground motion and controlled by resettable devices. Computer simulations are carried out 

to determine the optimal utilisation of the devices and to evaluate the performance of 

different control laws used to control the operation of the resettable devices. The effect of 

the location, number and arrangement of the devices on the seismic response of the 

structure is discussed. 

1 INTRODUCTION 

The suppression of excessive vibration in a multi-storey building can be managed, with limited 

success, in a variety of ways. Additional stiffness can be provided to reduce the vibration period of the 

building to a less sensitive range. Changes in the mass of the building can be effective in reducing 

seismic loads and excessive wind-induced excitations. Aerodynamic modifications to the shape of the 

building can result in reduced vibrations caused by wind. However, these traditional methods can be 

implemented only up to a point, beyond which the solution may become unworkable because of other 

design constraints, such as cost, space, or aesthetics (Taranath 2005). Therefore, to achieve reduction 

in response, a practical solution is to install energy dissipation devices at discrete locations in the 

building to supplement its natural energy dissipation and/or absorption capability. 

 

Semi-active resettable devices are an emerging technology that effectively improves the seismic 

response of structures (Jabbari & Bobrow 2002, Mulligan et al. 2009a). The primary use of resettable 

energy dissipation devices is to reduce the earthquake-induced displacements of the structure. These 

devices behave as nonlinear springs with adjustable mechanical characteristics. Resettable devices 

manipulate the stiffness properties of the structure and are able to develop large resisting forces. The 

basic design of the resettable device is feasible for pneumatic and hydraulic implementations, and 

employs relatively simple mechanisms and control logic. The device offers great reliability due to its 

reliance on standard hydraulic or pneumatic concepts, particularly when compared with semi-active 

devices that employ more mechanically and dynamically complicated smart materials such as electro-

rheological and magneto-rheological fluids. Resettable devices rely on very low power consumption 

and are subjected to a set of decentralised control logic (Jabbari & Bobrow 2002, Barroso et al. 2003, 

Chase et al. 2006). The devices mitigate the earthquake excitation of the structure that would 

otherwise cause higher levels of response and damage to structural components. 
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An experimentally validated resettable device (Franco-Anaya et al. 2007, Mulligan et al. 2009a, 

2009b) is proposed in this research to reduce the seismic response of a twelve-storey reinforced 

concrete structure. A photograph of a one-fifth scale prototype of the resettable device is shown in 

Figure 1a. This device has a novel two-chambered design that allows the use of each side of the device 

piston independently. This approach treats each piston side as an independent chamber with its own 

valve and control. Each device valve can be operated independently allowing independent control of 

the pressure on each piston side. Therefore, the two-chambered design enables a wider variety of 

control laws to be implemented. Figure 1b shows a schematic of the two-chambered design of the 

device. The device also has the ability to sculpt or re-shape structural hysteretic behaviour, because of 

the possibility to control the device valve and reset times actively (Chase et al. 2006, Rodgers et al. 

2007, Mulligan et al. 2009b). In addition, this specific resettable device utilises air as the working fluid 

for simplicity and can thus make use of the surrounding atmosphere as the fluid reservoir. 

 

                   

                         (a) Prototype device                                                     (b) Two-chambered design 

Figure 1. Semi-active resettable device. 

2 IMPLEMENTATION OF THE CONTROL SYSTEM 

The reinforced concrete building shown schematically in Figure 2a is used to analyse the seismic 

performance of the semi-active resettable devices. The building has twelve storeys and two horizontal 

bays. The moment-resisting frame structure was designed to examine the seismic load demands on 

columns of reinforced concrete multi-storey frames (Jury 1978). The building was designed in 

accordance with the provisions of the New Zealand Loadings Standards NZS 4203 and NZS 3101. 

The frame is considered to be a typical two-bay interior frame of a building of twelve floors. It is 

assumed that the frame is required to resist the component of the earthquake ground motion in the 

plane of the frame only. The component in the perpendicular direction is assumed to be taken by other 

resisting systems (e.g. shear walls). Torsional effects for the building are not considered. 

 

                            

                        (a) Building model                                                    (b) System implementation 

Figure 2. Implementation of the control system. 
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The control system proposed herein utilises rigid rods attached to the two ends of the device piston. 

The rigid rods transfer the control forces produced by the device to a tendon system. The tendon 

system consists of pre-stressed tendons that transfer the control forces to the structure at different floor 

levels. The pre-stressed tendons span the two horizontal bays of the structure. Figure 2b shows a 

schematic of the system implementation. The control forces developed by the resettable device are 

based on feedback from sensors that measure the excitation and/or the response of the structure. 

3 CONTROL LAWS, SYSTEMS AND EARTHQUAKE RECORD 

The independent control of the device valves enables the re-shaping of hysteretic behaviour by using 

different control laws. The control laws are based on the four quadrants defined by a sine-wave motion 

cycle. The laws are termed according to the quadrant of the force-displacement graph in which the 

device provides resisting forces (Chase et al. 2006, Rodgers et al. 2007, Mulligan et al. 2009b). Figure 

3 shows the control laws studied here. The 1-2-3-4 control law provides resisting forces in all four 

quadrants of the force-displacement curve (Fig. 3a). The 1-3 control law provides resisting forces only 

in the first and third quadrants of the force-displacement graph (Fig. 3b). The 2-4 control law provides 

resisting forces only in the second and fourth quadrants of the force-displacement curve (Fig. 3c). 
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             (a) 1-2-3-4 control law                          (b) 1-3 control law                               (c) 2-4 control law 

Figure 3. Control laws. 

 

                                                         

       System A                      System A1                    System A2                    System A3                   System A4 

                                                         

    System A2_B                 System A1-12              System A1_2                System A2_1               System A2_3 

Figure 4. Systems under investigation. 

Figure 4 shows the systems used to examine the effectiveness of the semi-active resettable devices in 

reducing the seismic response of the twelve-storey reinforced concrete structure. Two-dimensional 

nonlinear time-history analyses are performed using the computer program RUAUMOKO (Carr 
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2006). The north-south component of the 1940 El Centro earthquake is adopted as the input ground 

motion in the computer analyses. The seismic performance of the structure is evaluated in terms of 

reductions in relative displacements, absolute accelerations, inter-storey drift ratios and total base 

shear, which includes the contribution of the pre-stressed tendons to the seismic response. The results 

are presented for comparison with the multi-storey structure without resettable devices referred to as 

the uncontrolled structure or system A. 

4 EFFECT OF THE DEVICE DISTRIBUTION AND CONTROL LAW 

The adequate distribution of energy dissipation devices in tall buildings is essential, since a poor 

placement of the devices can be detrimental to the dynamic response by changing the balance of 

structural modes in the response (Barroso et al. 2003). Four different arrangements are used here to 

assess the effect of the device distribution on the seismic response of the building. Computer 

simulations are carried out to investigate the effect of 1 to 4 resettable devices distributed through the 

height of the building. The systems A1, A2, A3 and A4 of Figure 4 are considered in this study. 

 

The overall benefits of the different device distributions in reducing the earthquake response of the 

twelve-storey reinforced concrete building are shown in Figure 5a. The 1-2-3-4 control law is adopted 

to simulate the hysteretic behaviour of the resettable device. Maximum response envelopes indicate 

that the seismic response is reduced by all of the systems. The systems A1 and A2 show a very similar 

performance in reducing the maximum relative displacements and inter-storey drift ratios. The 

maximum absolute accelerations in some levels are slightly reduced by all of the systems. All of the 

systems increase the maximum total base shear slightly. Figure 5a shows that increasing the number of 

devices does not improve the seismic performance of the structure. For instance, the response 

reductions achieved by the system A4 with four devices installed are less significant than those 

obtained by the system A1 that only uses one resettable device. This effect is due to actuator-actuator 

interaction. It reflects the influence of higher modes on the seismic response and requires adjustment 

of how the control laws are designed and implemented for tall structures (Barroso et al. 2003). 

 

The system A2 is now selected to analyse the performance of the different control laws under seismic 

excitation. Figure 5b shows maximum response profiles for the control laws and the uncontrolled 

structure. All control laws reduce the maximum relative displacements and inter-storey drift ratios 

efficiently. The maximum absolute accelerations are reduced in some levels of the structure by all of 

the control laws. However, the maximum total base shear is increased by all control laws slightly. The 

simulation results show that the response reductions achieved by each of the control laws are very 

similar. The differences in the response reduction delivered by all three control laws are not 

significant. This result complicates the selection of an appropriate control law to reduce the seismic 

response of this structure. It was observed that the effect of the control laws was only noticeable by 

increasing the number of resettable devices or by unrealistically increasing the stiffness of the device. 

5 EFFECT OF THE TENDON CONFIGURATION 

The systems A1-12, A1_2, A2_1 and A2_3 shown in Figure 4 are adopted to assess the effect of the 

tendon configuration on the seismic response of the twelve-storey building. The system A1-12 has one 

resettable device installed on the ground level and the control forces are applied by the pre-stressed 

tendons at each level of the structure. The system A1_2 utilises one resettable device installed on the 

ground floor and has two pre-stressed tendons attached that span between the ground and level 12 of 

the building. The system A1_2 also utilises two pre-stressed bracing systems to minimise the effects of 

the upper storey whipping (Pekcan 1998). One bracing system is installed on the lower half and the 

other bracing system is placed on the upper half of the building. The bracing systems are placed along 

the two bays of the twelve-storey reinforced concrete structure. 
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                 (a) Effect of the device distribution                                        (b) Effect of the control law 

Figure 5. Maximum response envelopes for the twelve-storey building. 
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The system A2_1 employs two resettable devices to control the seismic response of the moment-

resisting frame structure. One of the devices is installed on the ground with pre-stressed tendons 

attached to the level 6. The other device is located on the level 6 and has pre-stressed tendons attached 

to the top of the building. In addition, a large pre-stressed bracing system is installed between the 

ground floor and the top of the building. The system A2_3 has similar device distribution and tendon 

configuration to the system A2_1. However, the system A2_3 has three bracing systems distributed 

along the height of the building. A main bracing system is placed between level 3 and level 9; and two 

secondary bracing systems are located between the ground and level 3, and between level 9 and level 

12, respectively. 

 

In the systems A1-12 and A1_2, the reduction of the control forces due to the angle of the tendon is 

minimised by installing the tendons along the two bays of the structure. Both systems eliminate the 

possibility of actuator-actuator interaction, since all response measurements and reaction forces are 

relative to the ground floor. In the systems A2_1 and A2_3, the bracing systems and pre-stressed 

tendons span through the entire width of the building. The two systems avoid the use of a huge device 

needed to provide large control forces by having two smaller devices evenly distributed through the 

height of the structure instead. 

 

Figure 6a shows maximum response envelopes for the tendon systems obtained from the computer 

simulations. The hysteretic behaviour of the resettable device follows the 1-2-3-4 control law. It can 

be seen that all of the systems considered reduce the seismic response of the twelve-storey frame 

structure. System A1-12 shows the best performance in reducing the maximum relative displacements 

and inter-storey drift ratios. A very similar performance is shown by systems A1_2 and A2_1 in 

reducing the maximum relative displacements and inter-storey drift ratios. All of the systems reduce 

the maximum absolute accelerations in some levels of the structure. Systems A1-12, A1_2 and A2_1 

increase the maximum total base shear. System A2_3 slightly reduces the maximum total base shear. 

It should be noted that although the response reductions achieved by the system A1-12 are very 

significant, the additional stiffness provided by the pre-stressed tendons greatly contributes to the 

improvement of the seismic response. 

 

Since the pre-stressed tendons and the bracing systems provide additional stiffness and damping to the 

system, it is of interest to investigate their overall contribution to the seismic response reduction of the 

twelve-storey reinforced concrete structure. The system A2_B shown in Figure 4 is used to evaluate 

the contribution of the pre-stressed tendons and the bracing systems to the reduction of the earthquake 

response. The arrangement of the pre-stressed tendons and the bracing systems used by system A2_B 

is similar to that of the system A2_3. However, system A2_B has neither resettable devices nor rigid 

rods installed. 

 

Maximum response envelopes of the systems A, A2_3 and A2_B are compared in Figure 6b for the 1-

2-3-4 control law. The comparisons show that the average contributions of the pre-stressed tendons 

and bracing systems to the reduction of the maximum relative displacements and inter-storey drift 

ratios are 43% and 61%, respectively. However, the maximum absolute accelerations are increased by 

up to 4% on average and the maximum total base shear is increased by up to 2%. These results show 

the significant contribution of the pre-stressed tendons and bracing systems to the reduction of the 

seismic response, especially to the reduction of the inter-storey drifts. However, the use of the pre-

stressed tendons and bracing systems without resettable devices increases the accelerations and the 

total base shear. In contrast, the system A2_3 with two resettable devices installed not only reduces the 

displacements and inter-storey drifts but also the accelerations and the total base shear. 
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                 (a) Effect of the tendon configuration                          (b) Contribution to the seismic response 

Figure 6. Maximum response envelopes for the twelve-storey building. 
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6 CONCLUSIONS 

In this paper, a novel semi-active resettable device was proposed to reduce the seismic response of a 

twelve-storey reinforced concrete building. The analytical results showed that increasing the number 

of resettable devices in the structure did not reduce the seismic response. On the contrary, the response 

of the structure was slightly amplified. This effect is caused by actuator-actuator interaction and 

reflects the influence of higher modes on the seismic response of tall structures. The reduction of the 

seismic response achieved by the 1-2-3-4, 1-3 and 2-4 control laws was very similar. Besides, the 

difference in response reduction delivered by the three control laws was not significant. However, all 

control laws effectively reduced the seismic response of the structure. The use of pre-stressed tendons 

and bracings without resettable devices increased the floor accelerations and the total base shear of the 

structure. In contrast, the use of resettable devices combined with pre-stressed tendons and bracings 

reduced the floor displacements and inter-storey drifts, but without increasing the floor accelerations 

and the base shear demand significantly. 

 

The paper highlighted a few issues that may become important for the implementation of semi-active 

resettable devices in multi-storey structures. However, eventual implementation of resettable devices 

must also take into account other issues such as technological considerations, software and hardware 

developments, structural integration, etc. Above all, the cost-effectiveness of resettable devices must 

be carefully assessed especially when compared with conventional energy dissipation devices. 
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