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Abstract

Understanding how organisms learn perceptual catsgon the basis of
experience has been an important goal for rese@rainha number of subdisciplines of
psychology, including behavior analysis, experimépsychology, and comparative
cognition. The primary aim of this thesis is teestigate how nonhumans (pigeons) and
humans learn to make visual category judgments 8tienli vary quantitatively along
two dimensions, particularly when accurate respogdeéquires integration of
information from both dimensions. The thesis csissof four chapters and a technical
appendix. Chapter 1 is a literature review whiobvles a broad overview of studies on
categorization by nonhumans and humans, as wepexsfic background for the current
research. Chapters 2 and 3 constitute the emipracdon of this thesis. Four
experiments are described, using a category tastdoan the ‘randomization’ procedure
developed originally by Ashby and Gott (1988) whtlman participants and employed in
subsequent research by Ashby, Maddox and theeaglies (see Ashby & Maddox,
2005; Maddox & Ashby, 2004, for review). Stimulere Gabor patches that varied in
frequency and orientation. Our primary goals werdetermine whether pigeons could
respond accurately in an information integratisktaith dimensionally-separable
stimuli, and to compare performances of pigeonshamdans.

Chapter 2 reports two experiments with pigeonspefxent 1 compared
performance in two conditions which varied in terofisvhether accurate performance
required control by both dimensions (“informationegration; Il) or by a single

dimension (“rule based”; RB). Results showed fhgeons learned both category tasks,
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with an average percentage of correct respons@s.6% and 82% in the 1l and RB
conditions, respectively. Although perfect perfame was possible, responding for all
pigeons fell short of optimality. Model comparisamalyses showed that the General
Linear Classifier (GLC; Ashby, 1992), which has h@eoposed to account for category
learning in similar tasks with humans, providecettdr account of responding in the Il
conditions, but a unidimensional model that assucmedrol only by frequency provided
a better account of results from the RB conditidhus results show that pigeons can
respond accurately in an information integratisktbased on dimensionally-separable
stimuli. However, analysis of residuals showed Hyatematic deviations of GLC
predictions from the obtained data were presehbth Il and RB conditions.
Specifically, accuracy for one category (A) wadrarerted-U shaped function of
orientation, whereas accuracy for the other cate@®y did not vary systematically with
orientation. Results from the RB condition showegttience of an interaction between
frequency and orientation, such that accuracy wgtseh for orientation values that were
relatively low (i.e. close to horizontal) than hi@ife., close to vertical). Experiment 2
compared responding in two RB conditions whichetd#tl in terms of whether frequency
or orientation was the relevant dimension. Pigeagan responded accurately in the
task. Results from the frequency-relevant conditeplicated the interaction obtained in
Experiment 1, whereas results from the orientatedavant condition gave no evidence
of an interaction.

Chapter 3 reports two experiments which compar®paances of pigeons
(Experiment 1) and humans (Experiment 2) in catetgsks using identical stimuli. In

each experiment there were two conditions, botledbas the information-integration
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task in which the range of orientation values wateveor narrow. There were two
primary goals. First, we wanted to test whetheritiverted-U shaped pattern for
Category A accuracy as a function of orientatiomuladde replicated with different
pigeons and stimulus values. Second, we wantedrgpare responding of pigeons and
humans. A secondary aim was to test whether céstriof range would affect control
by orientation. Results from the condition witiviale orientation range were similar to
those from Chapter 2, and showed that the invagtetiaped pattern was replicated for
both pigeons and humans. When the range of otientzalues was narrow, responding
for both pigeons and humans was exclusively cdetidly orientation. Overall, results
for pigeons and humans were similar and suggesatbammon process may underlie
information-integration category learning in bopesies.

Chapter 4 provides a summary of the empirical tedtdm Chapters 2 and 3, and
shows that the inverted-U shaped pattern of acgdmadCategory A as a function of
orientation is unanticipated by current modelsdategory learning, such as the GLC,
prototype theory, and exemplar theory. A new ‘fuprototype’ model is described
which provides a good account of the results aedipts the inverted-U shaped pattern.
According to the new model, subjects associateealisegment in the stimulus space
(‘fuzzy prototype’) with one of the category respea. When a stimulus is presented on
a trial, subjects are assumed to use an ‘A/Not€¥ision rule, with the probability of a
Category A response determined as a function ofminenum distance of the stimulus

from the fuzzy prototype. Possible directionsftdure research are considered.

The thesis concludes with a technical appendix whescribes the experimental

chambers, interface hardware, and computer softdeareloped to conduct the research,
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and a detailed user’s manual for the software. Shiséem allows the same control
procedure for both human and pigeon experimentsshauld be useful for future

research on categorization.
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INTRODUCTION

An article published irsciencen 1964 began a tradition of research on concept
formation and categorization research with nonhuaramals. In a classic study,
Herrnstein and Loveland (1964) trained five pigetandiscriminate between two types
of photographic slides projected in a small cusmreen next to the response key in an
operant chamber. The images differed in termsthddther or not they contained the
image of a person (in various degrees of obscuiRgsponses to the key were reinforced
with access to grain when the photograph includpdraon. Performance showed a high
degree of discriminative control, with high ratésesponding in the presence of the
positive, human-present, stimuli and low ratesmpresence of human-absent stimuli.
The authors concluded that based on the results tes strong “evidence for the
existence of the concept of a person”, and thatvlais supported by evidence that errors
increased as the degree of obscurity increaseghen people-associated objects like
boats, cars, and homes were shown in the picti8mmificantly, the categorization
performance was very good even when the pigeons sfewn novel slides that had
never been seen before in early training.

The goal of the research described in this thedis explore the ability of
nonhumans, specifically pigeons, to solve categtion tasks in which the stimuli vary
parametrically on one or two dimensions, and tomgam their performance with that of
humans. The following literature review will cov@mwide range of research on
categorization by nonhumans, and include descriptad representative studies.

Noticeably various types of stimuli are used inélxperiments summarized, each suited
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to answer a different type of question relatedaiegory learning. Overall, with each
study reviewed, evidence builds in favor of theectst categorization is a fundamental
ability shared by all organisms, and experimergakarch has shown that nonhumans can
perform to a high degree of accuracy in a broadeafi tasks and situations. The
literature review is organized as follows. Firg examine studies which have
investigated the ability of nonhuman animals tgoggl accurately in perceptual,
relational, and associative category learning tadkesxt, relevant human category
research will be covered, with particular attentiom leading research paradigm — the
‘randomization’ procedure developed by Ashby andt Gi®88) and used extensively in
subsequent research by Ashby, Maddox and theeaglies (see Ashby & Maddox,
2005, for review) — which served as the basisHerresearch in this thesis. In the
randomization procedure, stimuli typically vary two different dimensions, for example
the height and width of a rectangle, or the leragttd orientation of a line segment.
Accurate responding can require attention to oot of the dimensions. Results from
this research paradigm have led to the developofehtoretical models for human
category learning, such as COVIS (COmpetition betwderbal and Implicit Systems;
Ashby, Alfonso-Reese, Turken & Waldron, 1998), whassume that humans have at
least two different systems for learning visuakgaties: An implicit or procedural
system, which learns through trial-and-error, amexplicit or rule-governed system,
which learns by formulating and testing explicipbyheses that can often be stated in
terms of verbal rules.

Specifically, research in this thesis will exploesponding of pigeons in the

randomization procedure, with particular attentiomasks in which accurate responding
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requires attention to both stimulus dimensionsis Tilas been termed ‘information
integration’ (e.g., Massaro & Friedman, 1990) beegoresumably subjects must
combine the information from both dimensions pt@making a category decision.

Thus the major questions we began with were, cpigldons respond accurately in an
information integration task using stimuli identita those used in human research
(Gabor patches), and how would their performanecepase to that of humans? We were
also interested in the question of optimality -t isathe degree to which pigeons and
humans would respond at maximal levels of accuratlyese procedures. Here we
provide a brief synopsis of the thesis.

Chapter 1 is a literature review that gives an wesr of research on
categorization by nonhumans. It then describesgcaiization research with humans
which has used the randomization method pioneeyekshby and Gott (1988),
culminating in the multiple systems view (e.g., BghAlfonso-Reese, Turken, &
Waldron, 1998). The theoretical background forrdmedomization method including
signal detection theory and general recognitioomthéAshby & Townshend, 1986) is
briefly discussed. Finally, research on categtionavhich has directly compared
performance of humans and nonhumans on similas iaskescribed.

Chapter 2 presents two experiments that assessngigability to learn categories
based on two-dimensional Gabor stimuli that hadiptesly only been used with human
subjects. Across conditions, the categories ditfen terms of either one or two
dimensions. The data are then compared to resitlidhumans in a similar research
paradigm, and the current leading model of perforcean such tasks, the General Linear

Classifier (GLC), is evaluated with respect to daga.
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Chapter 3 presents two experiments which compaferpgance of pigeons and
humans on the same task using the same stimuldirfgis from Chapter 1 are examined
in more depth, specifically the result that perfamoe was sub-optimal and that there
were systematic deviations in the fits of the GbGhe data. In addition, the effects of
variation in stimulus range are examined. Chaf®exsd 3 are written as stand-alone
manuscripts to be submitted for publication; thhesihtroductions to these chapters
contain some material that overlaps with the li@@review.

Chapter 4 explores the implications of the resaflt€hapters 2 and 3 for
theoretical accounts of category learning, and @sep a nhew ‘fuzzy prototype’ model
which performs better than current ones when apgpbehe data. The question of
optimality for both pigeons and humans is alsogistl more broadly with respect to
previously published studies. Directions for fietuesearch are also considered.

The thesis also includes a technical appendix, wtéscribes the specialized
hardware and software that were developed to cdride@mpirical research reported in
this thesis. Special chambers that allow for mggolution touch sensitive display of
stimuli are described. Also the software develoggetifically to control the customized
chambers and display the stimuli is explained. allytthe software allows the same
control procedure for both human and pigeon expamis) and should be useful in future
comparative research on categorization. A samalgram and example version of the
software is included in CD form as well as instrmgs on how to run the example

program. Also a software users’ manual is includea reference.



Visual Categhdmarning 5

Chapter 1 — Literature Review

In an introduction to a special issue of fleeirnal of the Experimental Analysis of
Behavior Zentall, Galizio and Critchfield (2002) proposedlassification of the
categorization and concept formation literature ithiree different types of studies.
Perceptualtasks are those which involve stimuli with smatgeptual differences
between categories. Often the stimuli may haveynshiared physical features within
each of the categories. For example in the prelyezited study by Herrnstein and
Loveland (1964), pictures were grouped into categarn the basis of presence/absence
of a person. Other examplesparceptualttasks involve representations of real objects
like images of paintings, pictures of objects, ealrobjects themselves. Also included
are representations of moving objects, such a®vimatage or lines in motion presented
on a computer screen. Simple perceptual tasksdaatategorizing simple shapes that
vary in width and height as well. In all of theasks, the stimulus groupings "from a
subject's perspective...bear physical similaritgrie another.” (Zentall et al., 2002, p.
240), regardless of whether the stimuli are pidwienatural objects or lines and shapes.
Examples of these studies are described in degknib

The other types of studies noted by Zentall ea@relational concept studies
which manipulate the specific relations among festufor example same-different
discriminations (Cook, Katz, & Cavoto, 1997), aas$ociativestudies in which
categories are defined in terms of groups of siimblch share common functions

(Sidman, 1994). These types of studies will alsaéscribed in this review.
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Perceptual Categorization

Herrnstein and Loveland’s (1964) original resulerevlater replicated by Malott
and Siddall (1972), and a significant extensiothefresearch was published by
Herrnstein, Loveland and Cable (1976). Their gead to study the development of
‘natural concepts’, that is, categories based darabstimuli. They reported three
experiments. Experiment 1 or T contained a libir§840 stimuli containing pictures
with or without trees. Experiment 2 or W had 17®@ges with or without water and
Experiment 3 or P included images with or withospacific person, who had to be
distinguished from other people and objects ingilceures. In all three experiments
stimuli sets included images that were easy taidisgate with whole or large parts of a
person, tree or water and also more difficult insagéh only small parts or even similar
looking components. For example, one difficult gean the T or tree experiment
contained a stalk of celery, or clear plastic banaags meant to make the W (water)
discrimination task more difficult. Overall perfoance in all of three experiments
showed higher response rates in the presence tdrthet stimuli. For example when the
pigeons were shown stimuli from the T experimeeirtpecking rates increased by 90%
from rates measured with stimuli without trees.e W and P experiments both showed
average increases in response rate of 79% andoaeséstent even when the pigeons
were shown novel pictures that hadn’t been seemréeferrnstein et al. (1976) argued
that because no single feature or set of featurelsl @xplain the pigeons’ performance,
the most reasonable conclusion was that they leaddd the equivalent of a natural

concept.
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Herrnstein’s pioneering work inspired numerous &sidn perceptual
categorization and concept formation with nonhusainjects (see Balsam, 1988; Huber,
2001 for review). For example, several studieS\latanabe and colleagues have been
influential. Watanabe, Sakamoto, and Wakita (198&stigated pigeons’ ability to
discriminate between impressionist or cubist paggi In their experiment, pigeons were
shown various paintings projected onto a 5 cm bynscreen inside an operant
chamber. Stimuli were 10 paintings by Monet andy®icasso. Monet is considered
an Impressionist artist and uses a style that dedudeatures like visible brushstrokes,
light colors, open composition and an emphasisgh.| His paintings are typically of
nature or landscape scenes, with or without peaplarious settings. A representative

painting, Terrace of Saint-Adressis shown below in Figure 1.1.

Figure 1.1Terrace of Saint-Adress®sy Monet

By contrast, Picasso’s style is characterized dsst.uArtists working in this style
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typically analyze natural forms such as peopleandscapes and then reduce their forms
into geometric parts. Their paintings are oftatirBensional and lacking in visual
perspective, and are also typified by a lack ofiradistic color. An example of a Cubist

painting is PicassoGirls in Avignon shown in Figure 1.2 below.

Figure 1.2.Girls in Avignonby Picasso

Ten of the typical paintings from each artist wesed as training stimuli and then three
new paintings from each artist not contained intthming set were used in a
generalization test, after initial training in whiwork of other Cubist and Impressionist
artists were used as stimuli. Results showedpigabns were able to discriminate not
only between the artists’ paintings during trainibgt were able to respond accurately in
the generalization test as well. In other wordseopigeons had received the initial
training to discriminate between Monet and Picads®y were able to generalize to

different artists who worked within the two stylspecifically, the Impressionists
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Cezanne and Renoir, and the Cubists Braque and3tiA curious result was that
generalization even occurred for images of Picassotk displayed upside down, but not
for upside down paintings by Monet. Watanabe foasicued his work along the same
lines in a more recent article (Watanabe 2001) withplication of his 1995 study and
also a comparative experiment with human and pigedjects, which have yielded
similar results.

In addition, Watanabe has investigated pigeoniitiab to distinguish real
objects from their photographs (Watanabe 1993, 1993 conduct these studies, he
developed a system for displaying stimuli on aveait that could be observed behind a
viewing window: Either real objects or photogragbsid thus be presented on the
beltway. Using this apparatus, Watanabe has daert@atest for discriminative ability
and also generalization to novel stimuli, all usaegual versus photographed objects and
images. Accuracy exceeded a 90% discriminatida fat conditions that compared
both objects and pictures of the same objectsf@land pictures of food, even when
novel untrained items and pictures were displayed.

A further demonstration of pigeons' ability to founsual concepts based on
complex images is reported in the work of Jitsunaod her colleagues, who have used
human faces as stimuli. For example, JitsumoriMakino (2004) exposed pigeons to
video images of human faces, and then tested &vrdete if they could effectively
recognize the images when they were shown fronerdifft viewpoints. The authors
stated that " One of the most sophisticated inmagaoperations of the visual system is
the recognition of objects from novel views," ahtexperiment sought to build upon

other work with rotated objects by Cerella (197990), Cook, Katz and Cavoto (1999),



Visual Categdmsarning 10

Wasserman, Gagliardi, Cook, Kirkpatrick-Steger,|é&s& Biederman (1996), and
Spetch, Kelly and Reid (1999, 2000). To accompliss, the authors displayed video
footage of human faces rotated around the y-aigsir€ 1.3 shows some examples from

the stimuli, reproduced in black-and white.

iy > D <
| g & 1
B+22° B+45° B+67° B+90°

Figure 1. Examples of the black-and-white reproductions of the stimuli. On the top row are
the frontal views used for training. The middle and bottom rows are examples of the images
from novel viewpoints.

Figure 1.3. Adapted from Jitsumori 2004

In Experiment 1, static views were used go/no-go procedure in which pigeons
were required to discriminate between positive glifike examples C and D and

negative stimuli in A and B. After acquiring thisctfimination, a generalization test was
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conducted in which nine different depth orientasievere displayed, including the
original O degree baseline stimuli. Overall, thewes a total of 36 different pictures (4
faces x 9 orientations of each face), which wenh gamesented twice per session.
Results showed that pigeons’ responding generafiped the baseline stimuli across to
the novel views of different orientations of thengafaces. Jitsumori and Makino
suggested that the pigeons were using two possitaitegies when responding. The first
possibility was that the pigeons based discrimamegtion the 3-D properties of the
photographs and their depth rotation. The othateyyy, which the authors concluded
was more likely, was that the subjects used melt®D features as discriminative
stimuli when generalizing from the training stimuli

Jitsumori and Makino (2004) reported two additiomgberiments. In one, they
first trained pigeons to discriminate static imagéfaces. Then they tested the pigeons’
ability to generalize from static to dynamicallyating views of the static faces. They
tested this by showing rotating video footage efhlead of the previously trained image.
The results showed that the pigeons failed to gdimerfrom static to dynamic stimuli.
In a second experiment the opposite discriminatran trained. First the pigeons were
required to discriminate video of dynamically ratgtfaces, and then were tested for
generalization to their static image pairs. Sudoégeneralization between the dynamic
and static faces was reported. The authors coedltltht "pigeons lump different views
together on the basis of similarity judgments, eathhan determine whether or not
particular views belong to the same 3D object aspheviously seen from a different
viewpoint."

A recent study by Lazareva, Smirnova and Bagoz{2{)@4) compared levels of
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categorization using photographic stimuli. Thepawacted daily sessions in which
hooded crows were shown various photographs otthjdn half of the sessions
(randomly determined), crows were required eitbenéike a basic level categorization
by pecking the correct response key (out of 4 kdgpending on whether the photograph
showed a car, chair, flower, or a person. Thueetheere four categories. In the other
half of sessions, the crows were required to makeparordinate level categorization
that used only two of the response keys, depermhinghether the image was natural or

artificial. Examples of each of the four basicdewategories are shown in Figure 1.4.

Figure 1. A set of 4 of the 64 stimuli that were chosen from four basic-level categories:
cars, chairs, flowers, and people. The complete collection of training and testing stim-
uli can be seen in color at http://www.psychologyv.uiowa.edu/Faculty/Wasserman/.

Figure 1.4. Lazareva 2004
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The top two images in Figure 1.4 represent aréfior man-made objects in the
superordinate category, and the two bottom rowupést represent natural objects.
Acquisition of the basic level task was faster thrathe superordinate task when viewing
the artificial stimuli, but not for the naturalmiuli. Results showed that after initial
baseline training followed by transfer tests witival stimuli, crows were able to make
both types of category judgments successfully #t tee basic and superordinate

levels. Based on the reliable transfer of therdisination, the authors concluded that

"such discrimination transfer is the hallmark ohceptual behavior."

Herbranson, Fremouw and Shimp (2002) studied pigjeaility to categorize a
moving target stimulus. The rationale behind usingoving target was to provide
stimuli that represented a more complex and nastiatituation compared to static
images. Pioneering work involving moving targesvweonducted by Skinner (1960)
with 'Project Pigeon', and subsequent researchdyitmic/moving video images has
been summarized by Lea and Dittrich (2000). Thesyewed various studies which have
used video images as stimuli, including discrimorabetween still and moving images
of the same objects (Siegel & Honig 1970), categion of moving shapes (Emmerton,
1986), and different types of movement and tragkihtemporarily invisible objects
(Neiworth & Rilling 1987; Neiworth & Wright 1994)The authors conclude that further
investigation with dynamic stimuli is important,chthat researchers need to avoid trying
to address unanswerable questions relating totpreagents, such as identifying whether

or not birds think that video of a conspecifiche same as seeing the subject itself, or
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whether pigeons perceive color in the same wayaghs.

Relational Categorization

A second type of categorization task involves refet between stimuli, such as
whether different elements in an array aresémeor different For example,
Wasserman and colleagues have used 16 element aisays like the ones shown below
in Figure 1.5 (left panel, Wasserman, Hugart & Kadick-Steger, 1995; right panel,

Wasserman, Young & Nolan, 2000).

Randomized Organized
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Figure 1. Examples of the 16-icon arrays that were used in the 12D / 4S

‘Wasserman et al. (1995) study. These arrays consisted of 16 icons

chasen from one of two sets of 16 to create same and different  Figyre 2, Examples of the randomized versus organized 41/128,
arrays with these icons randomiy located in a 4 X 4 grid. 8D/8S, and 12D/4S displays used in Experiments 1 and 2.

Figure 1.5. Wasserman 2000
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In the study illustrated in the left panel, Wassannet al. taught pigeons to discriminate
with high accuracy between same and different array shown in the left and right
panels. Pigeons continued to perform at high @éhccuracy when novel
same/different displays were presented in a trane$t. Based on the pigeons’ ability to
discriminate between familiar and novel icon s#ts,authors concluded that the pigeons
had learned "a general same-different concept” §&fasan et al., p. 133).

Young and Wasserman (1997) systematically manipdléte amount of
variability in stimulus displays comprised of 1®is, and found that pigeons’ ability to
discriminate different from same displays increadieectly with the entropy of the
display, an information-theoretic measure of comipye They concluded that “the more
complex the set, or the more icons contained irsétgethe higher the accuracy found in
the discrimination results” (Young & Wasserman, 299Wasserman, Young and Nolan
(2000) conducted a similar study, but systematiaathnipulated both the variability or
number of identical icons contained within the gri@nd the organization, or location of
the similar icons within the array, as shown intigét panel of Figure 6. The authors
concluded that both variability (in terms of entyppand display organization influenced
responding: Pigeons were more likely to make #ieint’ response when entropy
increased, or when spatial organization decreasedwas more random).

Studies by Cook and colleagues have employed itasimethodology of
same/different arrays, but have examined the effefctlifferent types of displays. For
example, Cook, Katz and Cavoto (1997) used disiylags that utilized texture, feature,

geometric or object stimulus arrays, as shown bétokigure 1.6.
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Figure 1.6. Cook 1997, Stimuli examples of eactheffour classes with ‘same’ and ‘different’ arréys

the left and right columns.

Figure 1.6 shows examples of stimuli used in Celokl.’s Experiments 1 and 2.

The left column shows ‘same’ examples for eachudtisiclass, and the right column

shows ‘different’ examples. In Experiment 1, pigeavere able to discriminate between

same and different stimulus arrays of all classeshigh degree of accuracy. Notably,

levels of performance and rate of acquisition veenalar for each class. Experiment 2

showed that accurate performance transferred telrstivnuli for each of the four
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classes. The authors concluded that the reswtsdaed strong evidence for the use of a
single generalized rule for same/different discniation utilized by the pigeons.

An alternative approach toward studying relatic@icept learning was
developed by Machado and Cevik (1997), who usedralard three-key operant
chamber. They manipulated the relative frequenaié®y light flashes during the
sample phase of a trial. Then during a subseqerite phase, the pigeons were
reinforced for pecking the key associated withkég light which flashed the least out of
the three choices. Overall results indicated timafpigeons were able consistently to
perform the task at levels of accuracy significaathove chance as the temporal
characteristics of the procedure were varied aaosditions. Also of interest was the
fact that in one of the experiments the authorgteahether or not the pigeons could
generalize the relative frequency of each of therahtives to ones that were different
from those presented in the original sample ph&ssults showed that the pigeons were
able to generalize accurately to the new and lavgerall sample sizes during the choice
phase. The authors proposed a model to accoutiidwresults, which assumed that as
time passed since a stimulus was presented iit$ostfectiveness, but that stimuli
presented first in the set lost effectiveness rstoely. These assumptions were termed
a passive decay and a residual salience procegeatesely. Machado and Cevik
showed that the model was able to account for eméncy and primacy effects that

were evident in their data.

Associative Categorization

The third and final type of study we will considetermed Associative
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Categorization. In these tasks, subjects musgoaiz stimuli in terms of their common
consequences or common response requirementsany cases, the stimuli have no
obvious physical similarities or common traits.pdpular example of this type of study
is stimulus equivalence learning. In equivalerleslearning, three criteria must be
satisfied for equivalence to be demonstrated (Sirh890): Reflexivity, symmetry and
transitivity. For example if A>A and B—B relations are trained, then in test trials
emergence of A»A and B—B must be shown (reflexivity). In symmetry after#8,
B—C and G-D relations are trained thenBC, C—B and B-A relations must esrge
in test trials. Transitivity is demonstrated wladter training with A-B and B-D
relations, A-D relations emerge in test trials. If the reflatgiysymmetry and
transitivity conditions hold, then the stimuli ateemed to form an equivalence class.

Because an ability to learn equivalence classebéas proposed to underlie the
development of language in humans (Horne & Low®61%idman, 1992), whether
nonhumans are capable of equivalence learningdes én important question.
However, research in this area has been contraersi Sidman and colleagues’
original studies and in much subsequent work, te$uflve failed to show that
nonhumans have this ability (Sidman & Tailby, 198Rjman, Rauzin, Lazar,
Cunningham, Tailby & Carrigan, 1982). Sidman (19f@2ind that only verbally-capable
humans showed evidence for transitivity withoutcspletraining. However, more
recently there have been some successful repoegudfalence-like behavior in
nonhumans.

Another example of successful equivalence leamiitly nonhumans was

reported by Kastak, Schusterman and Kastak, (20@19,studied California sea lions.
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An example of Kastak et al.’s stimuli and procedare displayed in Figure 1.7.

Fiz. 1. The top photograph shows sea liom Rio per-
forming a simple discrimination trial. The rial began
when the sea lion positioned her head at the statoning
bar located in front of the center stimulus box. Following
this stationing response. the sliding doors covering the
side boxes were opened to reveal Comparson Stimuli A
and 3. The sea lon observed the stimuli from her posi-
fion at the sttioning bar until she was signaled by an
acoustic cue o make a response. She responded by monw-
ing from the starioning bar o woach Sthimulus A with her
nose. Her correct response was marked by an acoustic
tone which signaled that a Ash reward would be provid-
ed. The bottom phowgraph shows an example of a con-
cittonal discrimination tral. The trial was similar to 8 sim-
ple discrimination, except that following the stationing
response and prior to the presentation of the two Come-
panson Stimuali E and ¥R Sample Stimulus MY was revealed
in the center box, Rio’s correct selection of Stmulus 7
as the match o the sample was rewarded.

Figure 1.7. Kastak 2001

Experiments were conducted with 2 sea lions nanwkyrand Rio. Shown in Figure

1.7 the stimuli were displayed on cards throughit3oat windows in plywood sheets that
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stood in front of the subjects. The stimuli weoenprised of symbols that had never
been trained previously. The sea lions’ choiceseweade by a nose-pointing response,
and were observed by a research assistant, whoned correct choices with fish.
Results showed that the sea lions were able topetthe task successfully, including
generalization to the test stimuli and relationahsfer between class members. Their
results showed that the learned equivalence rakstips could be transferred among the
three separate experiments that were conductéristtidy. Based on the results the
authors concluded that if sea lions with no vet@afuage abilities could learn
equivalence relations in agreement with Sidmar@®4) definitions then other non
verbal species could possibly learn the same belsagiven the proper training
techniques.

Studies with pigeons provide some evidence of edeince-like performances.
For example, Jitsumori, Siemann, Lehr and Deli@®22 reported evidence for
transitivity in pigeons using abstract light-enmgidiode (LED) patterns as stimuli and a
repeated-reversals procedure. The apparatus iamdistxamples are shown below in

Figure 1.8.
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Fig. 1. Left sketch of the conditioning panels (from Xia, Delius, & Siemann, [996). During the experimental
sessions, they replaced the food troughs of the home cages. Right: the lightemitting diode matrix patterns used as
stimuli.

Figure 1.8. Jitsumori et al. 2002

The left panel of Figure 1.8 shows the apparated usJitsumori et al.’s (2002)
experiments. During sessions, response keys VD &rrays behind each key were
placed on the bottom of the panel where accessot dnd water was normally
provided. Grain dispensers located above the ey &ere then used for reinforcer
delivery. The right panel shows sample stimulidreach of the two sets. The examples
in the figure are represented in 4 rows of A, Bar@ D stimuli with 2 rows of each of the
sets. Jitsumori et al. found that for two of fpugeons, an untrained<AD relation
emerged in transfer tests afte«8 and B—D relations were trained. These pigeons
made an average of 84% correct responses durinfbtesomparison, the two pigeons
that did not successfully demonstrate transitivigde an average of 61% and 64%
correct responses).

Frank and Wasserman (2005) showed that pigeore vegrable of associative
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symmetry after having been trained on a successatehing task (i.e., go/no-go
discrimination). This contrasted with results nfdes using two-alternative symbolic
matching tasks in which the comparison stimuli wanesented simultaneously (e.qg.,
Lionello-DeNolf & Urcuioli, 2002), which had gendisafailed to find evidence for
symmetry in pigeons (see Lionello-DeNolf, 2009, fewiew). Recently Urcuioli (2008)
has proposed a theory of equivalence class formé#tiat predicts why pigeons show
symmetry after successive but not simultaneoushiregdraining. According to this
account, pigeons learn the stimulus-temporal comgsihat are associated with
reinforcement, such that the stimuli together wlikir temporal locations become
members of a class. When different classes sluanenon elements, they tend to merge.
Urcuioli (2008) showed that his theory predicted ¢mergent symmetry in Frank and
Wasserman’s (2005) procedure. In addition, Urcsitheory made a counterintuitive
‘anti-symmetry’ prediction, in which pigeons woulespond more to a non-reinforced
symmetric relation if hue-oddity rather than huetechang had been part of their initial
training. This prediction was confirmed (Urcui@®008, Experiment 5). Urcuioli’'s work
is important because it shows how equivalenceioslaican be the natural result of
reinforcement contingencies, identifies conditiangler which equivalence relations can
be trained in pigeons, and provides a reason &ripus failures. However, it should be
noted that according to Urcuioli’'s account, a regllight that precedes a green keylight is
not the same stimulus as one that follows a greghdht; that is, temporal location is
intrinsically part of the stimulus (cf. Miller & Baet, 1993).

An earlier well-known study on stimulus equivalene pigeons by Vaughan

(1988) should also be noted here. Vaughan (1988) 40 photographic stimuli which
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were randomly divided into two classes of 20 stireakch. Pigeons were then trained on
a go/no-go discrimination in which stimuli from odkass were S+ while those from the
other class were S-. After the discrimination \&equired, the stimulus classes were
reversed (i.e., S- was now S+ and vice versa)erAftany reversals, Vaughan showed
that on the first session following a reversalgcdisinative control for stimuli that had
not yet been presented was higher than chance stiggests that pigeons had learned to
treat the different photographs in each class awalgnt. Although Vaughan (1988)
claimed that his results showed that pigeons wapalde of stimulus equivalence, Hayes
(1989) pointed out that because explicit testsyonmetry, transitivity and reflexivity
were not carried out, the pigeons’ performanceaook be considered as demonstrating
equivalence. In particular, symmetry and transitigre emergent relations because they
can be obtained without explicit training, whereas could argue that Vaughan’s (1988)
results could be traced directly to a history ahfi@cement.

Thus, although there have been many failuresdw ghansitivity and symmetry
in pigeons, studies have shown that given apprtptiaining and testing procedures,
such as in Frank and Wasserman (2005) and Vaud8&8), pigeons are capable of

performances that resemble equivalence learning.

Summary

Overall, research on categorization with nonhunramals has shown that a wide
variety of species can respond accurately acroasge of different tasks, including
perceptual, relational, and associative categaozahsks with both naturalistic and

artificial stimuli. These results suggest thatlationary history may have endowed
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organisms with a common process for category lagrniro better understand that
process, we next turn to research that has inastigoerceptual category learning in
which the stimuli and the difference between thegaries are defined as simply as
possible, in terms of quantitative variation on ondéwo dimensions. From this
perspective, category learning may be viewed amditonal discrimination, in which
the organism learns to make one response in tisempee of a stimulus from one
category, and another response in the presencstohalus from the other category.

The classic example of this situation is the sigleéction paradigm.

Signal Detection Theory

Signal Detection Theory (SDT) provides a usefultstg point for developing a
model that describes the process behind categanyifegy. SDT was first developed by
researchers studying target detection in radays(tdarcum, 1960), and subsequently
the concepts were adapted for use in psychophsesearch (Swets, 1964). Swets
proposed that humans are not just passive infoomg@tiocessors but that information is
judged actively under uncertain and sometimesatifficonditions. In the standard
auditory detection paradigm, either white noiseo{e”) or a tone signal superimposed
on white noise (“signal + noise”) is presented 8ubject on each trial. The subjects’
task is to identify whether the signal or noisewoced on each trial. According to SDT,
the stimuli (noise or signal + noise) are representith variability in the brain, such that
the subjects’ percept can be described in terms@probability distributions. Sample

distributions are shown in Figure 1.9 below. lagh examples, the noise is represented
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by the distribution on the left, and signal + ndigethe distribution on the right. The
subject is assumed to set a criterion, or decisaumdary, such that if the percept
sampled on a given trial is to the right of the ihdary, the subject responds ‘signal’, and
otherwise responds ‘noise’. Specifically, the sgbjs assumed to compute a likelihood
ratio, and respond ‘signal’ if that ratio exceedsiterion (e.g., 1.0). If the distributions
overlap substantially, as in the left pair, accyrigarelatively poor, whereas if the
distributions are more separated, as in the right pccuracy increases. The
standardized distance between the means of thédistins isd’ or discriminability.
According to SDT, every response has four possibteomes; hit, miss, false
alarm and correct rejection. The subject is assumesdt the criterion so as to maximize
the overall accuracy or payoff. Importantly, resgimg can be biased by differential
reinforcement of hits and correct rejections. &mmmple, increasing the payoff for hits
and/or decreasing the penalty for false alarmsingilease the overall probability of a
‘signal’ response, which corresponds in SDT totstgfthe criterion to the left.
Conversely, increasing the payoff for correct regets and/or decreasing the penalty for
misses will increase the probability of a ‘noiseSponse, which is associated with a shift
in the criterion to the right. If the hit rateg(i, p(‘signal’ | signal) and false alarm rate
(i.e., p(‘'signal’ | noise) are plotted for a rargjecriterion values, the Receiver Operating
Characteristic (ROC) curve results, which providesimmary of the subjects’
discrimination performance. The lower panel ofuf&9 shows an example of a ROC
curve (Heeger, 2003). It is also important to ribtt SDT is a normative model for
detection in that it specifies conditions for opimesponding: the ‘ideal observer’ sets

the criterion so as to maximize the overall paydiff.the typical case in which payoffs
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are equal, this translates into maximizing oveaatiuracy.

/NN

d' =1 (lots of overlap) d' = 3 (not much overdap)

ROC curves

(1] 0.5 1.0
Falza alarms

Figure 1.9. Heegar 2003, Signal and ROC curve elesipr various d’ values.

SDT has been one of the most influential theorketrameworks in all of
psychology, and has had far-ranging impact in napplied areas (see MacMillan and
Creelman, 2005, for review). For example, the araer the ROC curve is commonly
used as a measure of discriminative accuracy ihempgecision-making contexts such as
the prediction of recidivism by violent offendeesd., Rice & Harris, 1995). Research
has found that responding of nonhumans in detetdisks is similar to that of humans
(see Alsop, 1998, for review). Research with nontéios has emphasized the
fundamental reinforcement contingencies presetitardetection paradigm. Specifically,

the basic detection task can be viewed as two coeriuschedules, each with a different
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discriminative stimulus: In the presence of ‘sigrtae subject can respond either
‘'signal’ or ‘noise’, and similarly in the presenck‘noise’, can respond ‘signal’ or
‘noise’. This research has led to the developrmébthavioral models for signal
detection (Alsop, 1991; Davison & Tustin, 1978; Bawn & Nevin, 1999; White &

Wixted, 1999).

General Recognition Theory

An important extension of SDT, with direct relevarfor the research reported in
this thesis, is the General Recognition Theory (GROposed by Ashby and Townsend
(1986). GRT is a generalization of SDT to two @rendimensions. Figure 1.10 below
(adapted from Ashby & Gott, 1988) provides a diagd the two-dimensional case.
Stimuli (labeled ‘A’ and ‘B’) are assumed to vany two dimensionsx(andy). On any
given trial, the stimulus presented gives rise peept which can be represented as a
sample from a bivariate normal distribution (uppanel) in a two-dimensional stimulus
space. A pair of equal-likelihood contours is shawthe lower panel. If the variances
are equal and the covariances are zero (i.e.,ithendions are independent), then the
optimal decision bound is the diagonal line showthie lower panel. That is, the subject
can maximize overall accuracy by responding Categowrhen the percept is above the
diagonal line, and Category B when the percepelevb the diagonal line. The shapes of
the equal-likelihood contours depend on the comagaf the two distributions; as the
covariance increases from zero value the shapesrfov@ circular to elliptical. Note

that the decision bound is analogous to the ooitein SDT, and represents how an ideal
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observer should perform in the task.
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Figure 1.10. Ashby & Gott 1988, Contours of equiledlihood with decision bounds.

An important aspect of GRT is that the stimulusehsions are assumed to be
separable and independent. In most typical agmiresiof GRT, categories are defined
in terms of multivariate normal distributions; Ashéind Townsend (1986) noted that
GRT was a prototypical general Gaussian recognitiodel, and directly related to

Thurstone’s (1927) law of categorical judgment.

Ashby and Gott (1988) developed a methodology mapiecally investigating

situations such as those in Figure 11 known afR#rm&omization Technique (see also
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Ashby & Maddox 1992). The technique is typicaltifized in categorization tasks
where multiple stimuli values are associated with of two categories in a ‘many to
one’ categorization task. Each stimulus variesamvalues, for example the height
and width of a rectangle (Ashby & Gott, 1988), thdius and orientation of a circle
segment (Ashby & Maddox, 1990), or the frequenay amentation of a Gabor patch
(Maddox, Ashby & Bohil, 2003). Categories are emmnted in terms of bivariate
normal distributions. If the variances of thetdimitions are unequal the ideal decision
bound shown by the dotted line in Figure 1.10 wdadda quadratic function. For
research described in this thesis, the varianaethéodistributions are equal. When the
variances are equal between the categories, dispaodel based derived from GRT
called the General Linear Classifier (GLC) can beduto examine performance in
detail. The essential feature of the GLC is thatdecision bound is a linear function in

the two-dimensional stimulus space.

GLC Application

The GLC has been used in the majority of categtozavork done by Maddox
and colleagues (Ashby, Alfonso-Reese, Turken, &dial, 1998; Maddox & Ashby,
2004; cf. Massaro & Friedman, 1990). In most réstudies, stimuli have been Gabor
patches, which are sine-wave gratings modifiedutiihoa circular Gaussian filter,
which vary in terms of frequency and orientatiora@y Krolak, & Steele, 1995).

Usually the stimuli are plotted with Frequency be k axis and Orientation on the y
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axis as shown in Figure 1.11. Each stimulus isasgnted as a point in the two-
dimensional space. The different categories atieated by filled and unfilled

symbols.

Orientation

Ohriemtation

Frequency

Figure 2. A: Rule-based category structure from Experiment |. B:
Information-integration category structure from Experiment 1. Each circle
denctes the spatial frequency and spatial orentation of a Gabor pattern
from Category A. Each square denotes the spatial frequency and spatial
orientaticn of a Gabor pattern from Category B. The dotted line in each
panel denotes the location of the optimal decision bound.

Figure 1.11. Maddox, Ashby et al. 2003
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The top panel represents a situation in which categ differ in terms of
frequency X) but not orientation. The vertical line represeamidecision bound, such that
the subject responds Category A if the frequendty the left of the line, and Category B
if it is to the right. This is a single dimensidoa selective attention task, and is also
called a Rule Based (RB) task because accuraterpeiice can be described in terms of
a simple rule. But if the stimuli and decision hdware rotated by 90 degrees, as in the
bottom panel, then accurate performance requitestain to both dimensions. This is a
two-dimensional task and is called an Informatiotegration (ll) task. Sample stimuli

from the Il and RB task are shown in Figure 1.12.
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Figure 1.12. Example Gabor images from both ttentl RB tasks studied by Maddox, Ashby & Bohil.
2003

The typical trial consists of viewing the stimulus-screen and then responding
with the keyboard to indicate a category A or Bomsse. Subjects generally receive
feedback after each trial. It is notable thattoth tasks in Figure 11, perfect
performance is achievable because the categomnbdisbns do not overlap. By contrast,
in the original application of the randomizatiochaique shown in Figure 1.11 (Ashby &
Gott, 1988), the category distributions overlappad so 100% accuracy was impossible.
In some experiments by Maddox and colleaguesegiikréd overlapping category
structures with Gabor stimuli have been used abk R#sults of these studies reviewed
by Maddox and Ashby (2004) have shown that humaijests are able to perform well
in both the Rule Based (RB) and Information Intégra(ll) tasks.

A particular focus of research using RB and 1l tals&s been to determine
whether performance in these tasks can be dissd¢istiggesting that different category
learning systems might be responsible for accyrattormance. For example, Maddox,
Ashby, and Bohil (2003) compared the effects o&get feedback on performance in RB

and Il tasks.



Category Learning 33

5s

750 ms

Correct
or
Error

500 ms

Response
terminated

Immediate
feedback

Delay

Feedback

Mask

Display

500 ms
Correct
or 750 ms
Error
bs

Response

terminated
Delayed
feedback

Figure 1.13. Maddox, Ashby et al. 2003, Proceddiagrams from the immediate and delayed feedback

conditions.

Figure 1.13 shows the basic procedure that Madéisttby and Bohil (2003)

used. In the left of the figure, a trial in thenmadiate feedback condition is outlined. The

stimulus is displayed until the subject responds, then after a 500 ms masking

stimulus, on-screen feedback indicates to the stibjeorrect or incorrect

categorization. The right-hand side of Figure illiiBtrates a trial in the delayed

feedback condition. The major difference is that feedback is delayed by 5 s after the

masking stimulus. Maddox et al. (2003) found #xaturacy was similar for the RB task

regardless of whether feedback was immediate aydd| whereas for the Il condition
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accuracy was reduced in the delayed feedback ¢ondiAlso the authors conducted a
model comparison analysis to determine the typstrafegy used by the subjects. This
analysis suggested that for the Il task in theyssldeedback condition, subjects were
more likely to use a single-dimensional solutiae.(attend to only one dimension),
whereas in the immediate feedback condition theynded to both dimensions.

In other research, Maddox, Ashby and colleagues Baewn that various
manipulations, such as feedback disruption (Madéskpy, Ing & Pickering, 2004),
changes in motor requirements when making respqAsédy, Ell & Waldron, 2003),
and training without feedback (Ashby, Maddox & BipBD02), affected performance on
either RB or Il tasks, but not both. The procedutriézed in these studies was similar to
the one shown in Figure 1.13 (Maddox et al. 200#) small changes. In the study
involving feedback disruption (Maddox et al. 2004igls either included a long or short
feedback processing time allowance. The effectloiving different amounts of time to
process the feedback were different than the résuitd in the Maddox et al. (2003):
Accuracy was reduced in the RB condition when psicey time was short, whereas
there was no difference in accuracy in the Il cbadidepending on whether processing
time was short or long.

Ashby, Ell and Waldron (2003) manipulated the mogguirements during RB
and Il tasks. In their study, subjects were fjisen baseline training in order to learn
category assignments. Then they were requiredhereiross their hands over one
another or given instructions to ‘mentally’ revetse key assignments and then press the
response keys in order to categorize the stimulie result was that accuracy in the I

but not RB task decreased in the ‘mentally’ revétsey condition. There was no
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difference in performance for the Il and RB tagkshie hand-crossing condition.

Ashby, Maddox and Bohil (2002) studied the effexftpresence or absence of
feedback. In the feedback-absent condition, stdbjeere given a category label and
then shown an example from that particular categdtye feedback-present condition
used an indication of correct or incorrect follogitne display and subsequent
categorization response by the subject. Once dlgare were differences in the results
between either the Il or RB tasks. Apart fromalerall increase in accuracy in the
feedback present condition for the both the 1l R&lstimuli there was a significant
interaction between the two conditions, showing tha presence of feedback had a
greater impact on accuracy in the Il condition.

Ashby, Maddox and their colleagues have interprétede findings and others
(e.g., Maddox and Filoteo 2001; Maddox, Ashby e2@D4; Maddox, Filoteo et al.
2004) as evidence that humans have two differestesys for category learning as
proposed by the COVIS model (COmpetition betweerb®leand Implicit Systems;
Ashby, Alfonso-Reese, Turken & Waldron, 1998). éwating to COVIS, one system is
verbal, uses explicit reasoning and is under comsccontrol, and is based neurologically
in the cingulated and pre-frontal cortex, wheréasdther is a nonverbal, implicit system
that depends on reinforcement feedback and is bagskd striatum. According to
COVIS, the explicit system is used by humans teniélae RB task, whereas the implicit

system is used during the Il task.

Nonhuman Research with the Randomization Procedure
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Research investigating performance of pigeons usieg\shby and Gott (1988)
randomization technique has been reported by Hesbrg Fremouw and Shimp (1999).
Herbranson et al. showed that pigeons could suftdlyssategorize rectangles of various
heights and width dimensions that were displayed oamputer screen. The authors
used two overlapping bivariate normal distributiofistimuli with equal zero
covariance, similar to Ashby and Gott (1988). distributions are shown in Figure 1.14

below, which is taken from Herbranson et al. (1999)

Probability

Stimulus Height

Stimulus Width

Figure 1.14. Herbranson, Fremouw & Shimp 1999, déé@ normal stimuli distributions with likelihood
contours in the top panel and decision line inktbgom.
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The two bivariate normal distributions are showthi@ upper panel of Figure

1.14, and the equal-likelihood contours are shawthe lower panel. The optimal

decision bound is linear, as shown in the lowerghan

Herbranson et al. (1999) studied performance afqgng in both Il and RB tasks,

which they described as ‘divided attention’ andéstve attention’ respectively.

Equal-likelihood contours and sample stimuli froottbtasks are shown in Figures

1.15 and 1.16.
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Figure 1.15. Herbranson, Fremouw & Shimp 1999, Slidistributions and rectangle examples for the

Il task.
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Figure 1.16. Herbranson, Fremouw & Shimp 1999, dfidistributions and rectangle examples for the
RB task.

Notably the distributions in Herbranson et al1899) procedure overlap (see
top panels of Figure 1.15 & 1.16), and thus thegaties can be considered ill-defined.
Because of this perfect performance is impossélen if the subject adopts the optimal
decision bound. This type of procedure and stimhigliribution was used by the authors

with the primary goal of examining optimality in dlkdefined categorization situation.
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The results from the divided-attention conditiomwkd that pigeons were able to
perform successfully in the task, and with an aacytevel that was close to optimal.
Estimates of the decision bound were made for iddal pigeons, and these were
generally close to the ideal decision bound inéiddty the diagonal line in the upper
panel of Figure 1.15. Results from the selectitteréion condition were similar, and
showed that pigeons could also respond at a neanagevel, consistent with decision
bounds that were close to those shown in the ymgeel of Figure 1.16. In a second
experiment, Herbranson et al. showed that pigeonklaespond accurately in a
divided-attention condition in which the decisioound had a negative slope, and in a
condition in which the optimal decision bound waslmear. Herbranson et al.
concluded that pigeons could respond at near-optewels in all of the conditions they
examined, and suggested that the randomizatiomitpod could be a useful
methodology for studying naturalistic visual contsalp pigeons. Specifically, the
randomization technique includes a number of fegtusuch as large number of
exemplars per category, and ill-defined or ‘fuzegtegory boundaries. Herbranson et
al. suggested that a theory or model that couldwadcfor pigeons’ performance in the
randomization procedure might therefore yield ihtsgnto how pigeons (and other

avians) learn naturalistic visual concepts.

However, Herbranson et al. (1999) noted one metbgdmal aspect of their
procedure that might have been problematic: tleeofisectangles that varied in terms
of height and width as stimuli. Previous reseavith humans by Krantz and Tversky
(1975) had studied perception of rectangles. Taey17 subjects rate the degree or

similarity or dissimilarity of 92 pairs of rectammy along a scale of 1-20. Results
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suggested that the dimensions of the rectanglgsheight, width, shape and area) were
not independent and separable. Analysis of the statwed that area and shape
dimensions provided a better account for those tthata did width and height. Results
suggested that subjects perceived the rectangldrasy or fat shapes, rather than
rectangles that could be described separatelynmstef width and height. In the
discussion the authors sum the results up welle‘ddta reject the hypothesis that area
and shape contribute independently to the overallagity between rectangles. They
also show that the interaction between the dimess®very orderly and readily
interpretable” (Krantz & Tversky, 1975, p. 31). aftz and Tversky’s results suggest
that height and width are not separable dimensitmshis case, pigeons in Herbranson
et al.’s (1999) study may not have been integratifigrmation in the ‘divided attention’
task, that is, combining values of separate hegltwidth dimensions prior to making
a category decision (Massaro & Friedman, 1990)usThAn important question is
whether pigeons can respond accurately in sucbkanah stimuli that are comprised of

fully-separable dimensions.

The research reported in this thesis attemptsdoead this issue by studying
performance of pigeons in tasks similar to thosslusy Ashby, Maddox and
colleagues and Herbranson et al. (1999), basedabiorGtimuli (Yao, Krolak, &

Steele, 1995). Gabor stimuli can vary in termsaaf separable dimensions, frequency
and orientation. In addition, we used categortrithistions that did not overlap. This
point of difference from Herbranson’s et al.’s (89%ork changes the criteria for
optimal behavior in this type of task. In Herbrant al., pigeons responded at levels

that were close to the optimal decision bound thetcategories overlapped such that
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perfect performance was impossible. Thus we planoeevisit the question of
whether pigeons’ performances approached optimaligytask in which they could

potentially reach 100% accuracy.

Goals of the Present Research

Our first major question was to explore whethgepns were capable of
responding accurately in the RB (selective attentand Il (divided attention) tasks
when stimuli were dimensionally-separable Gaboclpegt. We were particularly
interested in the Il task, because accurate pedoncawith Gabor stimuli would
indicate that pigeons were capable of informatmdrgration — that is, combining
information from more than one dimension when mgldrcategory response (Massaro
& Friedman, 1990). Model comparison analyses basetthe GLC were planned to
determine whether responding of pigeons reflectedrol by multiple or single

dimensions. Experiments reported in Chapterdzess these questions.

In addition, we wanted to compare performanceunhdéns and pigeons in this
categorization paradigm. There have been relgtiesy comparative studies of
category learning by humans and non-humans tha&t iised identical stimuli and
procedures (for an exception, see Smith et al. 4200 contrast to previous studies
with humans by Maddox, Ashby and colleagues, whizve generally used between-
subjects designs in which participants completedettperiment in a single session, we
planned to conduct our human research using arwshibjects design where the
subjects each patrticipated in all the conditionghefexperiments in counterbalanced

controlled order, conducted over multiple sessidasperiments reported in Chapter 3
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compare performance of pigeons and humans in tiasKl

Optimality was also the focus of our investigatiomecause Herbranson et al.
reported optimal or near-optimal performance witfepns using the same
randomization technique with overlapping categasyributions, we sought to
determine whether performance would reach optimadls when perfect accuracy was
possible. We also examined the issue of optimaligur human vs. pigeon

comparisons in order to look for species specifiiecences in performance.

Previous research has generally compared thalbaecuracy of different
groups or participants (or examined which of seveiadels fit the data better). Thus in
our study we planned to investigate responding ralm®ely, particularly asymptotic
performances after responding had been stabiligad. major question here was to
explore whether the GLC provided an adequate a¢aduesponding by pigeons and
humans in the Il tasks. To anticipate, becausé&th@ was found not to provide an
adequate account of the data, a new model for agtégarning is proposed in Chapter

4.
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Chapter 2 - Categorization of Multidimensional Stimuli bygeions.

The goal of the experiments reported in Chaptertd investigate pigeons’ performance
in a two-dimensional category learning task basedshby and Gott’s (1988)
randomization procedure with dimensionally-separatimuli. In contrast to previous
research with pigeons which has used rectanglésdhniad in height and width
(Herbranson, Fremouw & Shimp, 1999) the stimulidusere were Gabor patches that
varied in frequency and orientation. Experimeosbfnpared performance in two
conditions which varied in terms of whether acceiarformance required control by
both dimensions (“information integration; 1) oy b single dimension (“rule based”;
RB). Experiment 2 compared performance in two-h#lsed tasks in which either
frequency or orientation was the relevant dimensibhe major question was whether
pigeons would be able to respond accurately in tasgks. If so, we planned to examine
asymptotic performance closely to determine if@&ie&C provided a satisfactory account

of the results.
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INTRODUCTION

The ability to categorize stimuli in the naturaleonment is essential for
survival. For example, a thirsty gazelle must c®oa drinking area in a river that is
free from crocodiles. Migratory birds must propezl/aluate a wide variety of stimuli,
including the pattern of the sun’s travel in thg,sarth’s magnetic fields, visual
landmarks and olfactory information, to navigatecassfully to a warmer climate
(Walraff, 2005). The skipper of a fishing boatle Bering sea must determine if the
weather is safe based on detailed satellite imafjeloud, temperature and atmospheric
pressure. As these examples show, categorizatiawital skill for any organism to

have.

A binary categorization task may be regarded amditional discrimination in
which one of two responses is reinforced dependmghether a prior stimulus is a
member of one class or another (Zentall, Galizig;&chfield, 2002). The study of
categorization in nonhumans has typically usedriginategorization tasks and adopted
one of two strategies. One approach has beeratoiag the ability of subjects to
categorize stimuli that are comparable in termsoohplexity to those that might be
encountered in the natural environment. For exampla pioneering study, Herrnstein
and Loveland (1964) showed that pigeons were ablespond differentially depending
on whether or not a photograph project onto thetfpanel of an operant chamber

contained people or not. Herrnstein, Loveland @able (1976) trained pigeons to
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discriminate pictures with or without trees, watard a specific person. In all three
experiments stimuli sets included images that wesy to discriminate with whole or
large parts of a person, tree or water and alse@ mifficult images with only small
parts or even similar-looking components. Resltsved that pigeons were able to
classify novel exemplars from each category caedierrnstein et al. concluded that
it was unlikely the pigeons used a feature-basedesty to discriminate among the
naturalistic categories, and illustrated their pbiy noting the difficulty of describing
features that would reliably discriminate betweetypes of a celery stalk and a tree
(see Herrnstein et al., 1976, Figure 3). Othetistiinvolving complex stimuli have
shown that apes can distinguish real objects fiweir photographs (Davenport &
Rogers, 1971), pigeons can distinguish betweenasgonist or cubist paintings,
(Watanabe, Sakamoto, & Wakita, 1995) and Califo8ea lions have the ability to
form equivalence classes with arbitrary non-natfigaires (Kastak, Schusterman, &

Kastak, 2001).

The second approach has examined organisms'yatoildategorize stimuli that
vary quantitatively along a single dimension. Thstudies arrange conditional
discriminations in which the subject must make oh&vo responses depending on the
value of a stimulus on a particular dimension. &ample, a pigeons’ response to the
left key might be reinforced after a bright liglashbeen presented on a center key,
whereas a response to the right key might be neiatbafter a dim light (e.g., Davison
& McCarthy, 1989). Much of this research has attedo test predictions of signal
detection theory and related models for discrimama¢Davison & Tustin, 1978;

Davison & Nevin, 1999; White & Wixted, 1999; sees8p, 2004 for review). These
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models provide an excellent account of results fexperiments in which category

structure is defined by a stimulus value on a simfjinension.

Overall, the majority of research on categorizabgmonhumans has used
stimuli that are either highly complex, with categetructures that may be impossible
to distinguish in terms of specific features or dimsions, or else used stimuli that have
varied along a single dimension. By contrast,ales been a relative lack of research
in which categories are defined in terms of quatitié variation along more than one
dimension. Such research would fill an importaag,doecause it would allow for the
development of more complex and potentially moediséc models for category
learning based on multidimensional stimuli. Thalgaf the present research is to
investigate how pigeons categorize stimuli thay\carantitatively along two
dimensions. In particular, we wanted to test whegiigeons were able to learn a
category task that required a comparison of stiswblues from different dimensions —
that is, whether pigeons are capable of informatibegration (Massaro & Friedman,

1990).

Research on category learning by humans has uskeslitawhich stimuli vary
along multiple dimensions. For example, Ashby &uwdt (1988) had participants
categorize L-shaped line segments that differadrims of the heights of the vertical
and horizontal lines. To generate stimuli, Ashhg &ott used a randomization
procedure in which categories were defined in tesfrigso bivariate normal
distributions. The category dimensions were twuoatisional (height and width), and
the distributions that formed the categories oygréal such that perfect performance

was impossible, but an optimal decision bound waséd by a diagonal line, with a
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slope of 1, that ran down the middle of each ofthe distributions. Results showed
that performance of the three subjects was closgtimal with an average accuracy of
83%. The authors described their results in texfisshby and Townsend’s (1986)
General Linear Classifier (GLC), which is effectiva generalization of signal
detection theory. According to the GLC, subjepis‘formance in a two-dimensional
categorization task is based on learning a declstamd which can be represented as a
linear function in a two-dimensional stimulus spa&imuli that lie above the decision
bound are assigned to one category, whereas stinatliie below it are assigned to the
other. The probability of an accurate decisiogiven by the distance of the stimulus
from the decision bound. The GLC provides an irtgggdrmodel for information
integration — how subjects combine stimulus vafoes multiple dimensions in order
to make a decision (Ashby, Alfonso-Reese, Turkehy&ldron, 1998; Maddox &

Ashby, 2004; (Massaro & Friedman, 1990).

Herbranson, Fremouw and Shimp (1999) studied pmedoce of pigeons in a
task similar to that used by Ashby and Gott (198B)ey trained pigeons to categorize
rectangles displayed on a computer screen thatdsariterms of height and width and
were generated using two bivariate normal distrdmg that overlapped. In the
‘divided attention’ condition, accurate performamspended on both dimensions:
Rectangles for which the height was greater thamwtldth were likely to belong to
Category A, whereas rectangles for which the widtis greater than the height were
likely to belong to Category B. In a second cormditi‘'Selective Attention’, accurate
performance depended on only one dimension. Fample wide rectangles might

belong to one category and narrow to the otherthi®iheight of the rectangles was
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irrelevant. Results showed that the pigeons’ parémces in the tasks were close to
optimal in both tasks. These results suggestigaions are capable of integrating

information on the bases of 2 relevant dimensions.

Although Herbranson et al.’s (1999) results sugtfestpigeons are capable of
learning category structures that require values fdifferent dimensions to be
compared — that is, information integration (Mass&r~riedman, 1991) — such a
conclusion requires the assumption that the heigttwidth of the rectangles are fully
separable dimensions. But as Herbranson et adnttis assumption may be
problematic. In a study with humans, Krantz anérsiy (1975) found that similarity
ratings for rectangular stimuli did not suggest theight and width were fully
separable, and that subjects instead may haveipedatifferences between rectangles
in terms of area and shape. In other words, rgt#arwhich are taller than wide may
have been perceived as ‘skinny’, whereas rectanghésh are wider than tall may have
been perceived as ‘fat’. The implication is thatw@ate performance in Herbranson et
al.” s Divided Attention condition may not requiteat the height and width of the
rectangles be separately perceived, and thusrémitts do not constitute a strong test

of information integration.

Subsequent research with humans has avoided tbtepn by using stimuli
that have reliably separable and independent diimesis For example, studies have
used Gabor stimuli, which are computer-generateassidal wave gratings that vary in
terms of frequency and orientation modulated biyautar Gaussian filter (Yao,
Krolak, & Steele, 1995). Using category structwsmsilar to those employed by

Herbranson et al. (1999) and Ashby and Gott (19@8garch has shown that humans
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are capable of responding accurately in informainbegration tasks based on Gabor

stimuli (Maddox, Ashby, & Bohil, 2003).

We describe two experiments which investigate wérgigeons can respond
accurately in a two-dimensional categorization taskg Gabor stimuli that varied in
orientation and frequency. In Experiment 1, welevqu performance in both an
information integration task in which both oriematand frequency were relevant for
discriminating the categories, and a rule-basdditag/hich only frequency was
relevant. In Experiment 2, we compared performandeo rule-based conditions in
which either frequency or orientation was relevadtth experiments used stimuli that
were similar to previous research with humans (Madet al., 2003). Our primary
goals were to determine whether pigeons were capdhhformation integration when
the stimulus dimensions were fully separable, tatvdegree their performance was

optimal, and whether the GLC could provide an adégaccount of the results.

EXPERIMENT 1

In Experiment 1 we used stimuli and category stmad that were based on
previous research by Maddox and colleagues (Madéisixby, & Bohil, 2003), and
tested pigeons’ performance in both a ‘dividedrdite’ or ‘information integration
(1) condition and a ‘selective attention’ or rdbased (RB) condition. In both
conditions, Gabor stimuli varied in orientation dnefjuency. In the Il condition,

accurate performance required attention to botredsions, whereas in the RB
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condition, categories were distinguished in terffseguency but not orientation.

Unlike Herbranson et al.’s study, perfect perforoeawas possible in both conditions
because the stimuli from the categories did notlape To test whether pigeons were
capable of information integration, we comparesl it the GLC against

unidimensional models to test whether performahosved control by one or two
dimensions. Finally, we wanted to assess whelleeGILC was an adequate model for
performance in this task and thus planned regnessialyses to test whether systematic

deviations in the fits of the GLC to the data otwai.

METHOD

Subjects

Six pigeons, designated H2, H3, H4, H5, H7, andp48ticipated as subjects
and were maintained at 85% of free-feeding weighb4 by post-session feedings.
They were housed individually and allowed free asde water and grit, in a vivarium
with a 12:12 hr light/dark cycle (lights on at 7:@0n.). All had no prior experimental

histories.

Apparatus
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Four operant chambers, 350 mm deep by 360 mmbyid50 mm high, were
used. One wall contained an aluminum responsd pandich a VGA 6.4” (130 mm
wide x 97 mm tall) LCD display set to 640 x 480alesion was mounted The LCD
display was located 165 mm from the side edge &dd@n from the bottom floor to
center of the screen. Overlaying the LCD screesm avglass panel mounted resistive
touch screen of identical size to the screen witb@6 x 4096 point array resolution.
Screen responses were measured via a USB toucfagg€Elo TouchSystems Inc).
The displays with touch panels were purchased ffooch Screens Inc, part number
MTF064D. There were two vertically-aligned respetkeys on each side of the
screen, midway between the edge of the screerhanchaamber wall. The keys were
25 mm in diameter, and could be illuminated wittobor LED arrays. A force of
approximately 0.10 N was necessary to operate lkeaghand produced an audible
feedback click. Centered below the screen wasia gnagazine with an aperture (60
mm by 50 mm) 40 mm above the floor. The magazias Wuminated when wheat
was made available by a white LED. A houseligh$ wantered above the LCD screen
10 mm from the top of the panel. Chambers weréoead in a sound-attenuating box,
and ventilation and white noise were provided bytiached fan. Event scheduling,
data recording, and screen image display was dedraith an IBM®-compatible
microcomputer. Chamber keys, grain magazine drattedr hardware inputs and
outputs were interfaced via a USB module with 24 bf digital 1/O purchased from

Measurement Computing (part # USB-1024LS).

Stimuli



Category Learning 52

The stimuli for the categorization tasks were Ggimiches. Gabor patches are
sine wave gratings modulated by a circular Gauddian, and vary in terms of

frequency and orientation. Sample Gabor patchestaswn in Figure 1&2.

Two sets of Gabor stimuli were produced to yield tifferent types of
categorization tasks (Maddox, Ashby, & Bohil, 2008gach of the two stimuli sets can
be represented in a 2 dimensional space with atienton the X axis and frequency on
the Y axis. For the RB condition, the optimalidem bound was a horizontal line
drawn through the scatter plot (shown in Figufg,2epresenting a criterial value,
such that stimuli with frequencies less than thieigon were assigned to one category,
while stimuli with frequencies greater than theéeston were assigned to the other
category. The stimuli for the Il condition weretained by rotating the stimuli from the
RB condition 45 degrees to the right. The decigionnd, scatterplot and 11 Gabor
patches from each of the two categories are shovgures 2.1& 2.2. Sample Gabor
patches are also displayed in figures, which aestale sized images from the actual
images used in the sessions. The examples inthedextreme values for each
category (i.e., the stimuli in the lower left angper right of the scatterplot) and also
nine stimuli in between, spaced approximately dgualhe example stimuli that are

pictured correlate to the filled symbols in thetpltor each category.
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Figure 2.1. The Rule Based (RB) stimuli distribatas well as sample gabor images of each of theedad stimuli. The X axis
shows the orientation and the y axis the frequefidye solid line represents the optimal decisiouariab
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Figure 2.2. Set up the same as Figure 1 but disphkeyInformation Integration (Il) set of stimwixamples and decision bound.
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Means and standard deviations, as well as maxinmshmanimum values for the

stimuli in each category for both the RB and Il diion are shown in Table 2.1.

Stimuli were generated as follows: First, for R stimuli, random numbers
were sampled from a bivariate normal distributiondach of the categories, A and B.
Forty number pairs were sampled for each categiafyning 40 stimuli in terms of
frequency and orientation. The distribution partargefor each category were the same
as Maddox et al. (2003), and ensured that the ritegunency values (Means = 260,
340, SDs = 11, 8.66, for category A and B respebt)were different for the
categories whereas the mean orientation valuesr(Md25, SD = 94.8) were the
same. The Il stimuli were generated by rotatirggRB stimuli by 45 degrees. After
rotation, the stimuli were subjected to a lineansformation (5.98 was added to each
frequency value and 245.81 added to each orienjatmthat the grand means for
frequency and orientation (i.e., the averages adroth categories) were the same in

the Il and RB condition.
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Rule Based (RB) Information Integration (II)
Category A Category B Category A Category B
Orient Freq Orient Freq Orient Freq Orient Freq
Min -26.67 0.0200 -6.96 0.0273 5.15 0.0116 -2.43 0.0195
Max 119.26 0.0234 109.36 0.0302 107.35 0.0348 80.09 0.0377

Difference 145.93 0.0034 116.32 0.0029 102.20 0.0232 82.52 0.0182

SD 33.86 0.0008 29.65 0.0005 23.65 0.0055 21.13 0.0047

Mean 41.91 0.0218 41.38 0.0282 52.08 0.0227 31.21 0.0272

Table 2.1. The distribution parameters for eackgaty in each conditiarOrientation (Orient) values are
in degrees and frequency values are in cyclesiget.p

For display on the LCD screens (640 x 480 resatytithe values were
converted to cycles per pixel with the followinguatjon where x equals the randomly
generated frequency values: (X/50+.25)/250. Thelregas a frequency value in cycles
per pixel that was maximized for display on a 648K screen. For the orientation
dimension, numbers were converted to degrees fiamdntal by first multiplying by
7/500, then to degrees from horizontal by multiptythe radian value by 180 then

dividing by .

Gabor stimuli were generated in real-time usingamssoftware written at the
University of Canterbury. The algorithm used wasdd on the Gabor Filter, (Yao,
Krolak, & Steele, 1995), and was integrated int©+a program that displayed the
images based on a pre-determined CSV file listinfgeguency (cycles per pixel) and

orientation (degrees).
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Procedure

Because subjects were experimentally naive, theg first shaped to peck
yellow circles displayed in the center of the togcheen. They were then trained to
peck the two lower right and left side keys usingadified autoshaping procedure.
When subjects responded consistently both to tikehtecreen and keys, training began
in the first condition. Sessions occurred dailg ahthe same time (1100h) with few
exceptions. All sessions consisted of 90 triats sessions were run until stability was

achieved in each phase of each condition.

The sequence of events on experimental trialsasdsllows. After a 9-s inter-
trial interval (ITI) during which the chamber waarll, the houselight was illuminated.
One second later, the trial began with the dispfasy Gabor image on the touch screen.
The image was maximum possible size that coulchbess (640 x 480 pixels) and
measured approximately 95 cm high by 125 cm widliter pigeons had made five
responses to the image the screen was darkendteatwlo lower keys were
illuminated (e.q., left key red, right key greesignaling the choice phase. A single
response to the correct key produced 3-s accegsaite During reinforcement, all
illumination in the chamber was extinguished exdepthe feeder light. If the
response was incorrect, the houselight flashedradfon for 10 s (1 s off, 1 s on), and
the trial was repeated with the same Gabor stimuliter five responses had been
made to the screen, only the correct side key ivasd a single response produced 1.5-

S access to grain.
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Pigeons were exposed to the RB and Il conditioreounterbalanced order,
followed by a replication of the 1l condition. Theplication was completed after the
pigeons had participated in an unrelated experinmsotving different Gabor stimuli.
Training continued in each condition until a visatbility criterion was reached. In
the first condition, extended training was givecdiese we wanted to assess the long-

term stability of responding given the novel natof¢he procedure.

RB & Il Condition Order Il Replication Condition
Pigeon Stim Cat A Key # Stimu Cat A Key # Stimu Cat A #
uli Sessions li Sessions li Key Sessions

H2 RB Left Red 89 I Left Red 43 Il Left Red 34

H3 RB Left Red 94 I Right 33 I Left Red 35
Green

H4 RB Left Red 65 I Left Red 67 I Left Red 34

H5 Il Left Red 70 RB Right 35 Il Left Red 32
Green

H7 Il Left Red 59 RB Left Red 41 Il Left Red 32

H8 Il Left Red 69 RB Right 35 Il Left Red 31
Green

Table 2.2. The condition order for each of the pige The stimuli, key counter balancing and number
of sessions are also displayed.

The keys assigned to the categories, correct letitm and color were
counterbalanced across birds and are listed ineTARB| along with the order of

conditions and number of sessions of training.
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RESULTS

Figure 2.3 shows the percentage of correct chespanses for all subjects
across the three conditions (Il, RB, and Il reglma) in the experiment. The dashed
line indicates chance 50% responding. We contittoedn the sessions in the first
condition well beyond asymptotic performance baik tb the novelty of the
procedure, and our desire to insure that we hagkithdeached a stable level of
performance. All pigeons acquired each of thegasiccessfully, in terms of
responding at greater than chance accuracy, althdiffgrences between the birds’
performances are evident. Accuracy was relatilelyfor Pigeon H3 in the 1l and RB
conditions, but increased in the Il replication dition. For the other pigeons, accuracy
tended to stabilize at levels between 75% and 8béach of the conditions. Because
perfect performance was possible, this indicatasah of the pigeons’ performances

fell short of optimality.

Average accuracies from the last 10 sessions ¢f eaadition are reported in
Table 3 for each pigeon, as well an overall averaljee averages were 83% (SD =
.037), 82% (SD = .049) and 88% (SD = .032) corfexcthe I, RB, and Il replication
conditions, respectively. A repeated-measuresyaisabf variance (ANOVA) found

that the effect of condition was not significaR{2,10) = 2.19p > .15.
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This suggests that there were no systematic difte®in asymptotic accuracy between

the conditions.

To investigate whether different amounts of tragnivere necessary for the
pigeons to acquire the 1l and RB tasks, we defa@dst-hoc acquisition criterion of an
average of 75% accuracy across the last threenssssind then determined how many
sessions were required to reach this criteriongémh pigeon and condition. Table 2.3
shows the results. Pigeon H3 never reached thecréfia in the first two conditions,
but did so after 11 sessions in the Il Replicationdition, which was below the
average for the rest of the pigeons. Averagedsagr@eons (omitting H3’s data from
the first two conditions), 14.40, 22.20 and 12.&3ssons were required to reach 75%
accuracy in the I, RB, and Il replication conditg) respectively. To compare sessions
to criterion across conditions, we conducted aatgge measures ANOVA (omitting
the data from H3). The effect of condition was sighificant,F(2,8) = 0.78p > .40.

This indicates that there were no systematic diffees in rate of acquisition across

conditions.
Il RB Il Replication
% Sessions to % % Sessions to

Pigeon Accuracy 75% Accuracy Sessions to 75% Accuracy 75%

H2 0.83 9 0.80 59 0.80 26

H3 0.64 - 0.69 - 0.86 11

H4 0.86 12 0.90 14 0.91 9

H5 0.87 19 0.84 10 0.88 6

H7 0.92 20 0.88 4 0.90 11

H8 0.88 12 0.78 24 0.91 10
Overall 0.83 14.40 0.82 22.20 0.88 12.17

Table 2.3. Mean accuracy for each pigeon’s conulidind the number of sessions to the stability rizsite
Note that pigeon H3 never reached stability inltleer RB condition.
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Model Analyses

In order to determine whether pigeons’ respondintpe RB and Il conditions
indicated control by a single stimulus dimensiomymultiple dimensions, we
conducted a series of modeling analyses. In thrab/ses, we compared fits of
unidimensional and multidimensional models of catgdearning (Ashby, 1992) to
individual-subject data from the last 10 sessi@@(trials) of each condition. We first

provide a brief description of each of the models.

Multidimensional model (General Linear Classifier)

According to the General Linear Classifier (GL@}ich is one of a family of
models known as General Recognition Theory (GRTib%s1989; Ashby & Gott,
1988; Ashby & Townshend, 1986), stimuli are repnéseé in a two-dimensional
perceptual space, similar to Figures 1 and 2. shigect learns to associate different
regions of the perceptual space with differentoasps. The two regions in the
perceptual space are defined by a linear ‘decisamd’. When a stimulus is
presented on a given trial, the distance of thaidtis from the decision bound
determines the probability of a choice responggechically, the decision bound is

defined as:

X+)+e=0 (2)
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WhereX andY are orientation and frequency, respectively, 4ngl ande are constants.
When a stimulu¥, Yo is presented on a trial, the distance of the dtimfrom the

decision bound is given by:

_HKgtppte

2)
52+ 2

h(Xo.Yo)

Forh = 0, the probability of responding categoryp@) = 0.50. Foih > 0,p(A) >
0.50 and foh < 0,p(A) < 0.50. Specificallyp(A) is given as the cumulative normal

distribution function @) evaluated alti(Xo, Yo):

()

The denominator of Equation 3 represents the raigeror variance in the model, and
includes terms for both perceptuaty) and criterial variancedt?). Although other
models within GRT can distinguish between percd@nod criterial variance (see
Ashby, 1992), for the GLC only a single parameteiis estimated which represents
combined perceptual and criterial variance. Effety, the GLC represents a
generalization of signal detection theory to the-thimensional case (Ashby &

Townshend, 1986).

In applying the GLC to data from the present expent, three parameters must
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be estimated: the slope and intercept of the mect®und, and the noise parameter,

Note that the slope and intercept are defineddgand -€/ y; respectively.

Unidimensional models

Two unidimensional models were also consideredcofding to the UNI-O
model, subjects respond on the basis of orientationvariation in frequency has no
effect. The UNI-F model is similar except thatideans are based entirely on
frequency. These models could be considered asaspases of the GLC in which the
decision bound is represented as a straight hdekbne (UNI-F) or straight vertical
line (UNI-O) in Figures 2.1 and 2.2. Both modebvé two parameters: a critical value
on the particular dimensioX¢rit) and a noise parameter, For stimulusX presented

on a given trial, the probability of respondingeziry A is defined as

p(A) = q:(ﬂj 3)
g

Parameter estimation

Maximum likelihood estimation was used to obtairgpaeters for the GLC and
unidimensional models for individual-subject da&pecifically, parameter values that
minimized the negative log-likelihood function wexetained through a two-step
process. First, a simulated annealing algorithioffig Ferrier, & Rogers, 1994) was
used to estimate a local minimum, and then pararmestenates were refined using the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method {@y2003). Initial parameter



Category Learning 65

values were randomly determined. Model predict@amd optimization procedures
were implemented in a computer program using restin the open-source TPMATH
library and compiled with Free Pascal version 2(€efrieved on 27 August 2006 from

http://www.unilim.fr/pages perso/jean.debord/tpimimath. htmand

http://www.freepascal.orgespectively). Repeated simulations showedpheameter

estimates were stable for all subjects and conditand did not depend on initial

values.

Model Comparison

Model fits for all subjects and conditions wereleated using the Akaike
Information Criterion (AIC; Akaike, 1974). The AliS a model comparison statistic

and defined as

AIC =-2InL +2v, 4)

whereL is the likelihood function andis the number of parameters estimated. AIC
can be used to compare the adequacy of fits féerdiit models applied to the same
data: The model with the lowest AIC value hashigst fit. For each data set, Table 4
indicates the best-fitting model by displaying tbeest AIC value in boldface. Table

4 also shows the variance accounted for (VAC) lmhenodel.

Results in Table 4 show that for both the origihaind replication conditions,
the GLC model had the lowest AIC value in 11 oul®fcases (the exception being H3,

original Il condition, for which the UNI-O model ddhe lowest AIC, suggesting that
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responding was controlled exclusively by orientaioAveraged across subjects, the
variance accounted for by the GLC in the originarid replication conditions was
0.89 and 0.88 respectively. This confirms thaepits’ choice responding was

determined by
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GLC UniF UniO

AlC VAC AIC VAC AlC VAC
H2ClI 73.67 0.89 942.99 1.45 110.92 0.07
H2CRB 81.28 0.83 77.34 0.82 112.00 0.00
H2ClI 84.46 0.79 107.94 0.08 102.82 0.21
H3CII 84.08 0.83 104.73 0.24 80.33 0.83
H3CRB 105.15 0.58 101.94 0.55 114.18 0.03
H3CII 78.45 0.87 112.17 0.03 99.00 0.34
HACII 66.62 0.87 110.06 0.09 101.45 0.25
H4CRB 55.90 0.95 51.91 0.95 114.25 0.00
HACII 64.74 0.90 105.07 0.18 106.71 0.15
H5CII 66.18 0.92 108.58 0.12 103.35 0.22
H5CRB 76.13 0.90 72.17 0.90 114.76 0.00
H5CII 61.55 0.90 106.09 0.15 104.33 0.18
H7CII 54.55 0.96 2283.31 1.29 101.09 0.23
H7CRB 51.96 0.96 47.98 0.96 113.13 0.00
H7CII 56.27 0.90 109.79 0.08 97.99 0.27
H8CII 60.86 0.85 109.53 0.06 97.10 0.25
H8CRB 80.46 0.88 83.94 0.71 107.09 0.14
H8CII 56.28 0.93 107.15 0.13 101.74 0.22

Table 2.4. Akaike information criteria (AIC) andriance accounted for (VAC) values are displayed for
each of the pigeons in each condition for eaceft models tested. General linear classifier (GLC,
unidimensional frequency (UniF) and unidimensiaoéntation (UniO) models were tested.



Category Learning

GLC UniF UnioO

Slope Intercept Noise Mean Sigma Mean Sigma
H2ClI 0.011 0.016 0.004 -0.024 0.010 0.962 1.713
H2CRB 0.000 0.024 0.004 0.024 0.003 91.207 371.505
H2ClI 0.014 0.017 0.006 0.031 0.022 0.418 0.984
H3CII 0.139 -0.073 0.054 0.025 0.011 0.702 0.413
H3CRB 0.002 0.024 0.006 0.025 0.006 0.525 4.857
H3CII 0.017 0.014 0.005 0.030 0.031 0.590 0.716
HA4CII 0.015 0.014 0.004 0.024 0.018 0.772 0.779
H4CRB 0.000 0.024 0.002 0.024 0.002 96.755 784.682
H4ClI 0.012 0.016 0.004 0.026 0.012 0.668 1.027
H5CII 0.014 0.015 0.004 0.026 0.015 0.693 0.833
H5CRB 0.000 0.025 0.003 0.025 0.003 0.029 17.092
H5CII 0.013 0.015 0.004 0.024 0.013 0.816 0.906
H7CII 0.014 0.015 0.003 0.727 0.085 0.669 0.757
H7CRB 0.000 0.024 0.002 0.024 0.002 91.954 476.486
H7CII 0.015 0.014 0.004 0.026 0.017 0.671 0.668
H8CII 0.015 0.015 0.004 0.028 0.019 0.583 0.656
H8CRB 0.003 0.026 0.004 0.024 0.004 0.375 1.565
H8CII 0.014 0.014 0.004 0.024 0.014 0.794 0.790

Table 2.5. Model parameters for each of the maesked indicated by slope, intercept and noise.

68
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both stimulus orientation and frequency valuedialt task (Figure 2.2). This suggests
that the pigeons were able successfully to integrdbrmation from two stimulus

dimensions in a category-learning task with Galiomgi.

Table 4 also shows that for the RB condition,WiNd-F model had the lowest
AIC value for all subjects. Across subjects, thierage variance accounted for by the
UNI-F model was 0.81. This shows that when fregyemas the only relevant

dimension, it acquired primary control over chaiesponding.

Parameter values for each model are listed in Table Overall, GLC
parameter values were reasonably consistent asubgscts and replications of the |l
condition. Estimates of noise parameters werestadar across replications of the Il

condition, and in the RB condition.

Detailed Analyses of Asymptotic Performance

For a more detailed investigation of how asymptpadormance was related to
stimulus characteristics, we plotted the probabdita choice response for category A
as a function of orientation for all subjects aodditions. Figures 2.4 through 2.6
show the resulting scatterplots for the Il, RB, dneplication conditions, respectively.
Category A stimuli are indicated by unfilled trideg, and Category B stimuli are
indicated by filled squares. The overall accurgmrcentage correct) is also displayed
in the upper right corner of each panel. Note tbatilts are shown as a function of
orientation only in these figures for sake of eaogo Because orientation and

frequency were positively correlated in the Il citioths, results would look similar if
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plotted as a function of frequency. For the RBdibon, frequency was the relevant
dimension and its control has already been eshkadithrough the model fits; because
orientation was irrelevant, plotting the data dsrection of orientation should reveal no

systematic pattern.

For the original Il and replication conditions (Eigs 2.4 and 2.6), a systematic
pattern of responding was found for category A.thwhe exception of H3, original Il
condition,p(A) for category A stimuli was an inverted-U shagedction of orientation
for all subjects. Because results for H3, origihabndition were also exceptional in
that the UNI-O model provided the best fit, thisame that the inverted U-shaped
pattern was obtained in every case for which th€ @tovided the best account of the
data. The implication is that for category A, aemy was greater for stimuli that were
in the middle of the range of orientations, comgaucestimuli with orientations that
were near the ends of the range. More variabldteewere obtained for Category B
stimuli. In the majority of cases, there was nstegatic relationship between choice
responding and orientation. However, for H2 in dhiginal Il condition, and H4 and
H5 in the replicationp(A) tended to increase with increases in orientatid similar
pattern was obtained for H3, original Il conditi@monsistent with the control by

orientation obtained in the model fits (Table 2.4).

Figure 5 shows the results for the RB conditioor ¢ategory A stimuli, a
similar inverted-U shaped pattern was obtaine@{8) as a function of orientation for
H2, H3, H4 and H7, although this pattern was lesseme than in the Il conditions.
For category B stimuli, results were variable: Eheas some indication of an

inverted-U shaped pattern for H2 and H3, p(A) increased with orientation for H8.
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Results for the other pigeons showed no clear trend
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Overall, results in Figures 2.4 through 2.6 shoat fferformance varied
systematically as a function of orientation in bbtAnd RB conditions. Results were
most consistent across subjects for category Aoredipg in the Il conditions, for
which in every case that accuracy levels were sulisi overall (>75%) and the GLC
was the best-fitting model, indicating that resgogdvas controlled by both
dimensions, accuracy was highest for orientatiarteé middle of the range (~45
degrees) and decreased as orientation tendedh&y eiktreme (0 or 90 degrees). Itis
important to note that the systematic patternswieae observed were all non-optimal,
in the sense that optimal responding would havevehw within-category trend as a
function of orientation, and the observed pattevase associated with decreased

accuracy.

The systematic patterns in Figures 2.4 through-286pecially the inverted-U
shaped functions in the Il conditions — represgmbssible difficulty for the GLC as a
model of category learning. Because the stimulhall condition were approximately
equidistant from the optimal linear decision bogsee Figure 2.3), there would appear
to be no way that the GLC could predict that penfance should vary systematically as
a function of orientation. Thus, to assess theaaey of the GLC, we compared
predicted and obtained values for GLC fits to indiinal data, and obtained

standardized residuals for these fits.

Regression analyses
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In order to test whether there were systematicadievis in the GLC residuals
that might correspond to the patterns noted aboWegures 2.4 through 2.6, we
conducted a series of polynomial regressions. ifgadty, we used the orientation and
the square of the orientation in a multiple regms$o predict the standardized
residuals. The orientation values were centeraxt iy squaring to avoid problems
with multicollinearity. This analysis allows ustst the significance of both linear and
quadratic relationships in the residuals. Regoesswere performed for individual data

for all conditions, as well as for the group meatad
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Category A Category B
Il B Linear B Quadratic R2 B Linear B Quadratic R2
H2 0.09 -0.85 *** 0.69 *** 0.34 0.08 0.07
H3 0.4 0.02 0 -0.21 0.4 ** 0.19 *
H4 -0.14 -0.77 *** 0.67 *** 0.35* 0.30* 0.24 **
H5 -0.14 -0.57 *** 0.39 *** 0.27 -0.36 * 0.17 *
H7 -0.23 -0.60 *** 0.49 *** 0.36 * 0.27 0.23 **
H8 0.11 -0.88 *** 0.73 *** 0.26 -0.46 ** 0.24 **
Mean -0.07 -0.92 *** 0.89 *** 0.48 ** 0.22 0.31**
RB
H2 0.3 -0.24 0.13* -0.16 -0.55 *** 0.38 ***
H3 0.57 *** -0.44 *** 0.46 *** -0.62 *** -0.24 * 0.51 ***
H4 0.15 0.16 0.05 -0.18 -0.49 ** 0.31 **
H5 0.3 0.03 0.1 -0.46 ** 0.35* 0.25 **
H7 0.29 -0.28 0.15* -0.47 ** -0.26 0.36 ***
H8 0.09 0.67 *** 0.48 *** -0.23 0.03 0.05
Mean 0.51 ** 0.26 0.26 ** -0.65 *** -0.34 ** 0.65 ***
Il Rep
H2 0.2 -0.84 *** 0.64 *** 0.06 0.09 0.01
H3 -0.1 -0.73 *** 0.58 *** 0.31 -0.07 0.1
H4 -0.04 -0.84 *** 0.72 *** 0.39 ** 0.21 0.22 **
H5 -0.30 * -0.56 *** 0.50 *** 0.49 ** 0.12 0.27 **
H7 -0.15 -0.83 *** 0.78 *** 0.52 *** -0.13 0.26 **
H8 -0.12 -0.75 *** 0.62 *** 0.34* -0.03 0.11
Mean -0.09 -0.90 *** 0.89 *** 0.58 *** 0.05 0.34 ***

Table 2.6. The left most column shows the labekfach pigeon followed by the mean and the bold text

divides the conditions, I, RB and Il Replicatio@ategory A is on the right set of results colurand
category B on the left. Each category reportBée Weightsf) for the linear coefficient} for the
quadratic coefficients and the R2 values. Sigaiftoegression results frLinear orfy Quadratic are
indicated with an asterisk (*) for 0.1, 0.05, 0Ofdnificance levels using *, ** and *** respectiyel
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Results of the polynomial regressions are showialnle 2.6. For both the I
and Il replication conditions, the quadratic caaéint for Category A residuals was
negative and statistically significant for eachjsaband the group mean data with the
exception of H3, original Il condition. This meahsit a significant negative quadratic
trend was obtained in the GLC residuals for easle @awhich the GLC provided the
best fit to the data. This confirms that the GL@rsble to account for the inverted-U
shaped pattern evident in Figures 4 and 6. Faedoay B residuals in the Il
conditions, linear coefficients were positive frsabjects with the exception of H3,
original Il condition. The positive linear coefient was significant for H4 and H7 and
the group mean data for the original Il conditiand for H4, H5, H7, H8, and the
group mean data in the Il replication conditiorhisTsuggests that GLC predictions for
Category B also showed systematic deviations frbtained values, with residuals

tended to increase linearly with predicted values.

For results from the RB category, linear coeffitsefor Category A residuals
were positive in all cases, and significant for &l the group mean data. For
Category B residuals, linear coefficients were tiggan all cases, and were significant
for H3, H5, H7 and the group mean data. This sstgghat the predictions of the GLC

for the RB condition also showed systematic deeregifrom the data.

Figure 2.7 provides a summary of the residual aeslypased on the group-
mean data. The left panels show the obtainedfdat@ategory A and B (unfilled
triangles and filled squares, respectively) and @i€tictions (x's and +’s,
respectively), whereas the right panels show thedstrdized residuals for Category A

and B (unfilled triangles and filled squares, retjppely). Results for the 1l, RB and Il
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replication conditions are shown in the upper, naddnd lower row, respectively.

Figure 2.7 clarifies how the GLC has failed toa#d®e systematic features in the
current data. The inverted-U shaped pattern ghavident for Category A in the I
conditions produces a sharp decreag®A) for high values of orientation, to levels

below 0.50.
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Standardized Residuals
1l

Figure 2.7. Obtained probability of responding gatg a (P(A) plotted against orientation. The left
column shows the obtained data in the unfillechgles and filled squares for category a and b
respectively. Also plotted are the values predidig the GLC with crosses and x symbols. The right
hand column shows the standardized residuals fittmgfthe GLC.
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For the GLC to predict this decrease in accuracytegory A, the slope of the
decision bound must increase, so that the uppé&optre line in Figure 2.2 tilts toward
the Category A stimuli. But this change in slopeams that the decision bound will tilt
towards the Category B stimuli for low levels ofemtation. This will produce weaker
predictions for Category B for low orientation r@fa to high orientation, which will
result in an increase in the residuals for Cate@oag orientation increases. Thus the
significant positive linear coefficients for Categd® residuals can be understood, at
least in part, as a side effect of the GLC tryingapture the decreasing limb of the

inverted-U pattern.

For the RB condition, the GLC is unable to desctit®opposing trends evident
in the obtained datep(A) decreases with increases in orientation foeGaty A, but
increases with orientation for Category B. Thisutesuggests a perceptual interaction,
in which sensitivity of choice responding to difaces in frequency in greater at
relatively low levels of orientation (near horizahtthan at relatively high levels of

orientation (near vertical).

The reason that the GLC is unable to describe dttenqms observed in both the
Il and RB conditions is because it predicts thatlarear trend in Category A and B
predictions must be correlated. This is becausk aurend can only be produced by
varying the slope of the decision bound. For eXafipthe slope in Figure 2.2
decreases, such that predicp¢d) for Category A increases as a function of ciagion
(i.e., strength of prediction for Category A incses), then predictq@A) for Category
B must also increase (i.e., strength of predictoyrCategory B decreases). By

contrast, if the slope of the decision bound desgeathen predictga{A) for Category
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A will decrease with orientation, and predici#@) for Category B must also decrease.
Thus the fundamental failure of the GLC appliedhi® present data is that it is unable
to predict trends ip(A) for Categories A and B as a function of origiota that are not

correlated.

DISCUSSION

In Experiment 1 we examined pigeons’ performanca two-dimensional
category learning task in which stimuli were dimenally-separable Gabor patches
that varied in terms of their frequency and origotg similar to those that have been
used in research on human category learning (Madtlak, 2003). We studied two
conditions, which differed in terms of whether aeta performance required control
by both dimensions (‘information integration’; by a single dimension (‘rule based’;
RB). Results showed that pigeons learned bottstagkh an average percentage of
correct responses of 85.5% and 82% in the Il anc&Rlitions, respectively.
Although perfect performance was possible, respanit all conditions fell short of
optimality. Model comparison analyses showed tihatGeneral Linear Classifier
(GLC; Ashby, 1992), which has been proposed to @ucfor category learning
research with humans, provided a better accourgspionding in the Il conditions, but
a unidimensional model that assumed control onlfréguency provided a better
account of results from the RB condition. Resultgrf the 11 condition confirm that

pigeons can pass an empirical test for informaitibegration based on dimensionally-



Category Learning 83

separable stimuli.

Overall we found no difference in accuracy betwtenll and RB conditions.
This was surprising because the RB task in sonpeots seems intuitively easier —
after all, only one dimension is relevant. Thigding of near-equivalent performance
in the RB and Il conditions contrasts with resoltsimilar experiments with humans.
For example Maddox and colleagues have found aggragormance to be 68% for Il
performance, versus 91% for RB performance (Madéskpy, & Bohil, 2003).
However, Ashby, Maddox and colleagues have proptisgchumans use two different
category learning systems for Il and RB tasks. difference in accuracy for humans
under Il and RB conditions, relative to the laclddference with pigeons obtained

here, may suggest that pigeons only have a sirgégory learning system.

An unexpected finding was that although the GLGrled a good account of
the data overall, with averages of 88% and 85%awag accounted for in the Il and RB
conditions, respectively, the data deviated systieally from the GLC’s predictions.
Specifically, we found that the probability of at€gory A responsg(A)) was an
inverted-U shaped function of orientation for CatggA stimuli in the 1l tasks (see
Figures 4 and 6). Polynomial regressions on redsdeonfirmed that these deviations
from GLC predictions were systematic (see Tablea2d Figure 2.7). This suggests
that the GLC is an inadequate model for pigeon®Eg@y learning in the Il condition.
An important goal for future research will be tdetenine whether similar deviations
are obtained with humans responding on |l catetgagning tasks. We report an
experiment which tests whether this result is otgdiwith humans in Chapter 2, as

well as a replication with pigeons. If this regslteliable, then a new model for
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information integration category learning may benaated.

Systematic deviations from the GLC predictionsenaso obtained for the RB
condition. Performance was better overall at lewels of orientation (close to
horizontal) than at high levels of orientation g#do vertical). This result is what
would be expected if there were a perceptual iotEna between orientation and
frequency, such that discriminability of differesde frequency was easier for lines
that were near horizontal than for lines that wesar vertical. Such an interaction
might pose a challenge to the assumption that &éecyand orientation are fully
separable and independent dimensions. The ini@naaiso might help to explain why
pigeons’ performance fell short of optimality iretRB condition. Thus in Experiment
2 we attempted to replicate this result with aad#ht set of pigeons, as well as
comparing performance in a rule-based conditiowhich orientation was the relevant

dimension.

EXPERIMENT 2

In Experiment 2 we compared performance in two-halsed conditions, in
which either frequency or orientation served agétevant dimension. There were two
major goals: First to assess the adequacy of tite &d determine whether the
systematic deviations obtained in Experiment 1 wdod replicated, and whether
similar results would be found with orientationths relevant dimension. More

broadly, we were interested in comparing perforreandhe two RB tasks, and to
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assess pigeons’ performance in terms of optimatiynilar to Experiment 1, we
conducted model comparison analyses for each ¢ondda test whether the GLC or

unidimensional models provided a better accouth@fata.

METHOD

Subjects

Three pigeons, designated H5, H6, and H8, padieghas subjects and were
maintained at 85% of free-feeding weighl5 g by post-session feedings. They were
housed individually and allowed free access to mate grit, in a vivarium with a
12:12 hr light/dark cycle (lights on at 7:00 a.mk)5 and H8 had previously served in
Experiment 1 and subsequently in an unreportedrawpat (with H6) using similar

apparatus and stimuli, prior to Experiment 2.

Apparatus

Apparatus were identical to Experiment 1.

Stimuli
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Two sets of Rule Based (RB) stimuli were produdddddox, Ashby & Bohil,
2003). Each of the two stimuli sets can be reprteskin a 2 dimensional space with
orientation on the axis and frequency on tlyeaxis. For the RB Frequency condition,
the optimal decision bound was a horizontal lireendr through the scatter plot (shown
in Figure 3.1), representing a criterial value rstiat stimuli with frequencies less than
the criterion were assigned to one category, wdtitauli with frequencies greater than

the criterion were assigned to the other category.

RB O
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Figure 3.1. Plot based on orientation and frequemcthe x and y axis. The optimal decision linthis
solid vertical middle line and indicates that otation is the relevant dimension. Unfilled squaskew
the distribution of category A and unfilled triarglshow category B.
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The stimuli for the RB Orientation condition weretained in the same way as
the previous condition except that the criterionisien bound was a vertical line
(shown in Figure 3.2) thus making orientation thlevant dimension for successful

categorization.

Means and standard deviations, as well as maximmechmanimum values for

the stimuli in each category for both the RB andolhdition are shown in Table 3.1.

RB F RB O

Cat A CatB Cat A CatB

Orient Freq Orient Freq Orient Freq Orient Freq

Min 2.33 0.0270 0.96 0.0207 29.42 0.0112 49.54 0.0107

Max 90.00 0.0297 89.55 0.0229 37.37 0.0408 56.03 0.0406

Diff 87.67 0.0027 88.59 0.0022 7.94 0.0296 6.49 0.0299

Mean 4491 0.0282 41.61 0.0218 33.89 0.0256 52.63 0.0244

SD 20.51 0.0007 21.88 0.0006 2.04 0.0069 1.64 0.0074

Table 3.1. The characteristics of the stimuli disttions for each category in each condition. The
frequency and orientation relevant tasks are inditay RB F, and RB O, respectively. The left cafu
indicates the characteristic, minimum and maximuiantation and frequency values are in degree and
cycles per pixel units. Also shown are the diffexes between the maximum and minimum values as
well as the means and standard deviations.

To generate the RB frequency and orientation candgtimuli, random

numbers were sampled from a bivariate normal tistion for each of the categories,
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A and B. Forty five number pairs were sampleddach category, defining 45 stimuli
in terms of frequency and orientation. For displaythe LCD screens (640 x 480
resolution), the values were converted to cycleppel with the following equation
where x equals the randomly generated frequenayesal(X/50+.25)/250. The result
was a frequency value in cycles per pixel that magimized for display on a 640 x
480 screen. For the orientation dimension, numere converted to degrees from
horizontal by first multiplying byt/500, then to degrees from horizontal by multipgyin

the radian value by 180 then dividing iy

Gabor stimuli were generated in real-time usingamssoftware written at the
University of Canterbury. The algorithm used waséddl on the Gabor Filter, (Yao,
Krolak, & Steele, 1995), and was integrated int©+& program that displayed the
images based on a pre-determined CSV file listinfgeguency (cycles per pixel) and

orientation (degrees).
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Procedure
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Figure 3.2. The optimal decision line is the sdladizontal middle line and indicates that frequeiscy
the relevant dimension.

All pigeons had previous experience pecking tlhetoscreen and side response
keys in other categorization procedures, and soitigtbegan immediately on the final

procedure, which was the same as that used in Exgetr 1.
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Condition Order
H5 Frequency Orientation
H6 Frequency Orientation
H8 Orientation Frequency

Table 3.2. The order of conditions for each bireliadicated by the relevant dimension.

Pigeons were exposed to the RB frequency and atientconditions in
counterbalanced order. Training continued in ezcidition until all birds had reached
a visual stability criterion. The keys assignedhte categories, correct key location and
color were counterbalanced across birds and desllis Table 3.2, along with the order

of conditions used in training.

RESULTS

Figure 3.3 displays the percentage of correctaesgs across all sessions in the
experiment and Table 3.3 contains the mean andatdwleviations for each bird in
each condition. All subjects achieved high degdexccuracy in both conditions.
Subjects H5 and H6 had the highest overall perfoo@an both conditions, with
accuracy levels that approached optimality forRiBfrequency condition (0.96 and
0.95, respectively). Mean and standard deviatiwpércentage correct responses are

listed for all subjects and conditions in Table. 3@verall, accuracy levels were not
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significantly different in the frequency and oriation conditionsM’s = 0.92 and 0.89,

respectivelyi(2) = 1.02ns

Frequency Orientation
Mean SD Mean SD
H5 0.96 0.020 0.89 0.037
H6 0.95 0.020 0.92 0.091
H8 0.84 0.091 0.86 0.034
Overall 0.92 0.044 0.89 0.054

Table 3.3. Mean and standard deviations for eactishperformance in each condition as well as the

overall average displayed in the bottom line.
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Figure 3.3. Accuracy plots for each bird and eamidiion. Frequency relevant and orientation ratdv
performance are plotted from left to right. Sessiomber is displayed on the x axis and percemecor
is on the y axis.
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Model Comparison

The GLC and two unidimensional models (UNI-F andItqN were fitted to the
individual data from both conditions using the samaximum-likelihood estimation
procedure as in Experiment 1, and compared usm@lf. Table 3.4 shows the AIC
and variance accounted for (VAC) for each subjadt@ndition. The best-fitting

model is indicated by the lowest AIC for each dsf displayed in boldface.

GLC UniF UnioO

VAC AlIC VAC AlC VAC AlC

H5 Freq 0.98 38.06 0.98 34.10 0.01 127.96

H5 Orient 0.93 66.25 0.00 128.42 0.93 62.41

H6 Freq 0.96 41.33 0.96 37.36 0.01 127.76

H6 Orient 0.95 59.25 0.01 127.78 0.95 55.38

H8 Freq 0.87 81.28 0.87 77.32 0.01 126.13

H8 Orient 0.91 77.24 0.05 125.87 0.89 74.81

Table 3.4. Akaike Information Criterion (AIC) valsias well as variance accounted for (VAC) results f
each subject and each condition.

In the frequency condition, the UNI-F model had lidheest AIC value for all
subjects. Conversely, the UNI-O model had the BiwdC value for all subjects in the
orientation condition. This shows that respondirag controlled by the single relevant
dimension in both conditions. Note that the GL&bgbrovided a good fit in terms of

variance accounted for; this is not surprising beeahe UNI-F and UNI-O models
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represent a special case of the GLC, which can orilme unidimensional decision

bounds associated with both models.

GLC UNI-F UNI-O

Slope Intercept Noise Mean Sigma Mean Sigma
H5 Freq 0.0000 0.0249 0.0017 0.0247 0.0017 37.6629 182.4940
H5 Orient -0.0144 0.6569 0.1034 0.0206 0.1078 43.9697 7.2336
H6 Freq 0.0000 0.0242 0.0017 0.0244 0.0017 26.9371 200.3907
H6 Orient 0.0157 -0.6495 0.1046 0.0259 0.0541 43.0476 6.6755
H8 Freq 0.0000 0.0262 0.0029 0.0260 0.0029 83.0354 207.4903
H8 Orient 0.0040 -0.1526 0.0333 0.0220 0.0336 44.5999 8.4266

Table 3.5. Model parameters for the general limtsssifier (GLC) and each of the unidimensional
models (Uni-F and Uni-O) for each bird in each dtad.

Table 3.5 shows the estimated parameters for @atle three models.

Parameter values for the best-fitting models irheamdition were consistent across

subjects and indicated that subjects set the&raoit values at optimal or near optimal

values. For example in the UNI-F condition, therage estimated mean was .0250,

which was equal to the average of the frequenayesalor all stimuli across both

categories, indicating that subjects placed thiierton at the midpoint of the stimulus

range. Similarly, the average estimated mean fo-OQ model in the orientation
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condition was 43.87, which was close to the aveoagstation value across categories

(43.26).

Detailed Analyses of Asymptotic Performance

Next we examined asymptotic performance in gredeéail by plotting the
probability of responding Category A (P(A)) for atimuli as a function of the
category-irrelevant dimension in each conditiotot$?were made against orientation in
the frequency condition, and vice versa, to examihether there was any control over

responding by the irrelevant dimension.

Results for the frequency condition are shown guFe 3.4. The left column
plots P(A) as a function of orientation. Althoutliere was variability across subjects,
there was some evidence of an interaction for Pigét6 and H8, similar to that
obtained in Experiment 1. For these subjects, Eé&yeased for Category A stimuli as
orientation increased, whereas P(A) increased &e@obry B stimuli. This suggests
that accuracy decreased overall for high levelsri@ntation (i.e., near-vertical grating).

By contrast, results for H5 showed no such
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pattern — accuracy levels were consistently highsscthe range of orientation
values for both categories. The right hand colwiRigure 3.4 shows the same
obtained P(A) plots as the left column but alsoentine predicted values of the GLC
shown as well. Note that the GLC predictions alsvagproximate two horizontal lines.
The lines are parallel, suggesting that the GLGioapredict the interaction in the data

for H6 and H8.

Figure 3.5 shows P(A) for the orientation conditmotted as a function of
frequency values. Contrary to results from theudency condition, there was no clear
evidence of an interaction in the data: For dljscts, there was no apparent trend in
accuracy as a function of orientation. The obt@iR@A) and predicted plots shown in
the right column once again show that the GLC mtedi parallel linear functions for

each category.

Average data for the frequency condition are digpdl in Figure 3.6. The upper
panel shows P(A) as a function of orientation, pretlictions of the GLC are added in
the middle panel. The lower panel shows the stalwkzd residuals from the GLC fit.
The interaction evident in the results for H5 arlislapparent in the average data:
Accuracy of responding is lower for stimuli withghi orientation values, and this effect
cannot be accounted for by the GLC. Figure 7 shesgisnilar summary of results from
the orientation condition. By contrast, there wasvidence of an interaction, and no

systematic pattern in the GLC residuals.

Regression Analyses
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As in Experiment 1, we conducted a series of resgpasanalyses on the
residuals from the GLC fits to determine whether dleviations from the model’s fits
were systematic. Table 3.6 displays the resultkede analyses for both RB-
orientation and RB-frequency conditions. The thoelemns on the left show results
for Category A, the three columns on the right slesults for Category B. Beta
weights () for both linear and quadratic components anddR3es are displayed.

Table 6 shows that for the RB-frequency conditlovgar coefficients were always
negative for Category A and positive for CategoryaBd reached significance for two
individual pigeons (Category B), as well as for gneup mean data. This pattern is
consistent with results from the RB-frequency ctindiin Experiment 1. There was
also a significant positive quadratic componentd6rand H8 for Category B (as well
as for the mean data), and a significant negatingatic component for the mean data
for Category A. The negative quadratic for Catggbiis also similar to Experiment 1,
and suggests that accuracy for Category A (theruppein the figures) tended to show

an inverted-U shaped pattern.

By contrast, few coefficients were significant fbe RB-orientation condition.
The only significant result was a positive quadrabefficient for H6 for Category B,
which also was obtained in the mean data. Thispom@nt suggests there was some
tendency for accuracy for Category B (the lower ionthe figures) to show a U-shaped
pattern. Although this result was not obtainedsistently across pigeons, it was
qualitatively similar to results from the RB-frequoy condition in that it suggested that

performance declined at the extreme levels ofriteéeivant variable (in this case,
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frequency).
Category A Category B
Bird, Cond B Linear B Quadratic R2 B Linear B Quadratic R2
H5, Freq -0.12 0.08 0.01 0.04 -0.29 0.08
H6, Freq -0.26 -0.34 0.21 0.25* 0.60 *** 0.48 **
H8, Freq -0.41 -0.37 0.34 ** 0.26 * 0.60 *** 0.48 **
Mean, Freq -0.42 *** -0.40 ** 0.38 ** 0.25* 0.48 ** 0.34*
H5, Orient -0.09 0.22 0.05 -0.21 0.10 0.05
H6, Orient 0.24 -0.24 0.09 -0.22 0.55 *** 0.31
H8, Orient -0.14 0.08 0.02 -0.18 0.11 0.04
Mean, Orient -0.01 0.03 0.00 -0.27 0.36 * 0.18

Table 3.6. Regression analysis results for categagd B stimuli. Mean values are shown on the
bottom line. Each category reports the Beta Weifljtfor the linear coefficient for the quadratic
coefficients and the R2 values. Significant regi@s results fof Linear orp Quadratic are indicated
with an asterisk (*) for 0.1, 0.05, 0.01 significanevels using *, ** and *** respectively.
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DISCUSSION

Experiment 2 compared performance in two rule-b@saditions in which
either orientation or frequency was the relevantafision. Results showed that all
pigeons learned both discriminations to a high de@f accuracy, although
performance did not reach 100% accuracy. Of pdaidnterest was whether the
interaction obtained in Experiment 1, in which peniance in the RB-frequency task
was more accurate at orientation levels close tztatal rather than vertical, would be
replicated, and whether it would also be obtainbeémorientation was the relevant
dimension. We found that for two pigeons, residdisdm fits of the GLC showed
systematic deviations similar to those obtaineBxperiment 1. For the RB-orientation
task, the evidence for an interaction was notrasgt the linear trend in the residuals
was not significant, although there was some irdingor at least one pigeon (H6),

that accuracy for Category B was less at extreveldeof frequency.

Interestingly, the pigeon that showed no intecactn the RB-frequency
condition, H5, also had the highest performanckieatg near-optimal levels of
accuracy (0.96). This makes sense because bytaefjroptimal responding would
imply that performance was constant regardlessiehtation. Thus we obtained a
similar interaction in the RB-frequency conditianBxperiment 1, when accuracy
levels were less than optimal. Results for thed®iBntation condition were less clear,
although for one pigeon performance was signifigametter for mid-range frequency

values. The significant quadratic components akthin the RB-frequency condition
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here and in Experiment 1 were also consistent thizhgeneral view that performance
was less affected by the irrelevant dimension wreues on that dimension were

towards the middle of the range.

Accuracy levels were also overall higher thandbmparable condition of
Experiment 1. Pigeons H5 and H8 had previouslyeztin Experiment 1, where their
accuracy for the RB-frequency condition was 0.84 @78, which compares with 0.96
and 0.84, respectively, in Experiment 2. Althougbponding appeared to be stable in
both experiments, it is possible that improved genfince occurs when pigeons are

given long-term exposure to the procedure.

GENERAL DISCUSSION

The primary goal of this study was to examine panmnce of pigeons in a two-
dimensional visual category learning task derivedif Ashby and Gott’s (1988)
randomization procedure. Previous research byrdeson et al. (1999) showed that
pigeons could respond at near-optimal levels iegm@ty tasks that required attention to
two dimensions (‘information integration’) or attem to a single dimension. However,
unlike Herbranson et al.’s (1999) study, which ussdangles that varied in height and
width as stimuli, we used Gabor stimuli. The adage of Gabor stimuli is that their
component dimensions, frequency and orientatianfudly separable. One potential
problem with Herbranson et al.’s study was thaalise height and width are measured

in the same units and thus not fully separablegqaig might have been able to respond
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accurately in the information integration conditioypcomparing whether the height
was greater than the length, or vice versa. Tiffiswty is avoided with Gabor stimuli,
and thus the present study represented a morergatige test of pigeons’ capacity for
information integration. Another difference betwemir study and Herbranson et al. is
that we used non-overlapping category distributisash that perfect performance was
possible. Because this raises the level of pedioca that subjects could attain, it

arguably provides a stronger test of optimality.

In Experiment 1 we examined pigeons’ respondinigatih an information
integration condition and a selective attentiofrae based’ condition for which
frequency was the only relevant dimension. Reshitsved that pigeons could respond
accurately in both conditions, although performafetleshort of optimality. Model
comparison analyses confirmed that the GeneralaciG¢assifier (Ashby, 1992), a
decision bound model for information integratiompypded a better account of
performance than unidimensional models that assuegbnding was controlled by
either frequency or orientation. This confirmstthgeons can pass an empirical test
for information integration with fully-separablemstli: Their category decisions were

accurate and depended on both frequency and di@nta

Our failure to find optimal performance contrasithwesults of Herbranson,
Fremouw and Shimp (1999). Herbranson et al. fabhadtheir pigeons performed
nearly optimally when categorizing rectangular sfiinthat varied in terms of height
and width. In their procedure, stimulus categowese overlapping bivariate normal
distributions and perfect performance was impossilNevertheless, Herbranson et al.

found that performance was close to that predibtedn optimal linear decision bound.
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There were several procedural differences betweshrinson et al.’s study and the
present experiment that might account for the dbfferesults. Two have already been
mentioned — the use of rectangular stimuli and lapping category distributions in
Herbranson et al.’s study, compared to Gabor stiand non-overlapping category
distributions used here. However, there is no eppaeason why either of these
factors would affect the overall degree of perfongg& Another possibility is that our
task may have been more difficult than Herbrandal.'s because stimuli from the
two categories were closer together, relative ¢éovidriability within- and between
categories. To investigate this possibility, wkakated effect sizes for the distance
between category centroids for the Il conditiofath Herbranson et al. and our
Experiment 1. Specifically, effect size was defiras the Euclidean distance between
the centroids of Category A and B, divided by tbelpd standard deviation. For
Herbranson et al., the effect size was 3.29, wisdierathe present study the effect size
was 1.33. This means that the categories in odystalthough not overlapping, were
on average closer together than those in Herbragisaln, relative to the stimulus
variability. The implication is that our categdasks may have been more difficult

than Herbranson et al., which would account forghigoptimal performance.

However, closer inspection showed that the datéatkxy systematically from
the predictions of the GLC. Specifically, accuréayCategory A stimuli (i.e., the
upper category in Figure 2.2)) was an inverted-&psia function of orientation (see
Figure 7). Polynomial regressions confirmed thét pattern was significant. By
contrast, accuracy for Category B stimuli (i.ee tbwer category in Figure 2.2) did not

vary systematically with orientation. These reswere also obtained when the
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information integration condition was replicated.

The inverted-U shaped pattern for Category A stimialy be related to the
pigeons’ suboptimal performance, because it wasceged with decreased accuracy
for orientations that were outside the middle raage were close to horizontal or
vertical. Exactly why this pattern was obtainednglear. However, the fact that it
was found with six pigeons and replicated suggéstisit is reliable. It may represent a
kind of ‘footprint’ for how pigeons learn the infmation-integration task. An
important question is whether human performanceusunilar conditions would show
the same result. If so, then a new model for @aielparning may be warranted.

Testing this possibility was the major goal of teeearch reported in Chapter 3.
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Chapter 3 — Comparing information-integration category leagniby pigeons and

humans

Results from Chapter 2 suggested that performaofgeigeons in the
information-integration task deviated from optinhaknd the predictions of the GLC in
a systematic way. The experiments reported in @n&ohad two primary goals. First,
we wanted to see if the systematic deviations {(ngerted-U shaped accuracy pattern
for Category A responding) would be obtained witiféerent set of pigeons and
arrangement of stimulus values. The experimemtsrted in Chapter 2 used bivariate
distributions from Maddox et al. (2003) to generstienuli. The orientation values were
approximately distributed around 45 degrees (tlezages for Category A and B were
52 and 31 degrees, respectively), but there wéres &xemplars which had negative
orientation values. To ensure that results wetafiected by having some stimuli with
near-zero (i.e., horizontal) or negative (i.e.efirgoing down from left to right)
orientations, in the experiments reported in Chaptie stimuli were centered on 45
degrees and varied within an 80 degree rangef(oen, 5 degrees to 85 degrees). Our
second major goal was to test whether a simildepabf deviations from GLC
predictions would be obtained with humans. Thuapér 3 includes two experiments
which directly compare pigeons’ (Experiment 1) dwdnans’ (Experiment 2)
performance in the information-integration taskseécondary aim was to test for
stimulus range effects in the information-integrattask, specifically whether limiting

the range of orientation values would affect cdnbsothat dimension.
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INTRODUCTION

Categorization is an essential ability for thevatal of any organism. Animals
as well as people make many category judgmenty@agrin many cases with great
accuracy. Consider a dogsled racing team, whitypisally composed of 16 dogs and
1 human musher. The team must be continually wegadnd evaluating the terrain
and the climate while traveling. Dogs communiaagit® the musher using body
language and different barks or yelps. This ersatiiem to warn the musher of hazards
on the trail ahead, changes in terrain or probleitts their health. The musher in turn
must learn to interpret the signals the dogs gieeaso evaluate the conditions for
themselves. All of this information that is prosed by both the dogs and also the
musher must be categorized correctly in orderHertéam to function effectively in a
dogsled race (Sherwonit & Schultz 1991). Becaasegorization is such a
fundamental skill in all organisms, understandiogvhthis is accomplished is an
important task. Given the evidence that many phera in conditioning and learning
have generality across species, the question asseswhether a common set of
underlying mechanisms can account for categorizgg@formance in both humans and
nonhumans. The current research sets out to igaésthat question through
comparative study, and aims to identify possiblegmn processes that might have

evolved for category learning.

Studies that have compared human and nonhumaosriperfice on identical

category learning tasks have been relatively raraotable recent study was conducted
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by Smith, Minda, and Washburn (2004), who compaesdormances of humans and
rhesus monkeydalacca mulattqin the categorization tasks that were used issita

research by Shepard, Hovland and Jenkins (1961).

In Shepard et al.’s study, humans categorized $tiimat varied on three binary
dimensions: shape (triangle vs square), sizedlargmall), and color (black or white).
Thus there was a total of eight different stimwiich were divided into two categories
with four stimuli each. Shepard et al. arrangedigiferent groupings of the stimuli,
yielding six categorization tasks. The tasks wdrecriterial attribute (in which color
was the single diagnostic dimension); II: exclesor (XOR) or correlated features, in
which for example black triangles and white squavere in Category A, while black
squares and white triangles were in Category Estdsand V were ‘rule plus
exception’, in which for example, black stimuli wealways in Category A and white
stimuli in Category B, except for the small whitiahgle and small black square; task
IV was a family-resemblance or prototype task whigs similar to the rule-plus-
exception tasks in that stimuli within a categamar®d values on two of the three
dimensions; and task VI was a polymorphous tasihich no features were diagnostic.
The critical question posed by Shepard et al. wastlker performances could be
explained in terms of the basic behavioral proces$eonditioning and generalization,
which predicted that difficulty should vary acrdkse tasks depending on the degree of
perceptual similarity of the stimuli between-catege. According to this view, the
easiest tasks should be those with high withingmatesimilarity and low between-
category similarity. However, Shepard et al. fotimak results did not support the view

that humans learned the category tasks throughadugl conditioning process. Instead,
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humans performed much better on the Type Il (X@Rktand in general, responding
showed abrupt shifts in accuracy. Shepard ebakladed that humans were solving
the problems through testing of explicit rules &ygotheses, rather than a gradual

conditioning process.

Smith et al. (2004) attempted to replicate Shepéaal.’s tasks with both humans
and rhesus monkeys. They found that performanceookeys, contrary to the
humans, was consistent with basic conditioning @sses: Task difficulty varied
directly with the perceptual similarity of the stith The most striking difference
between humans and monkeys was obtained with the M{XOR) task, which
monkeys found very difficult, but humans were abléearn very quickly. Smith et al.
concluded that their results were consistent withgeneral view that humans could
learn categories via explicit hypothesis testinghoough a gradual conditioning
process (Ashby et al., 1998), whereas monkeys apgéa be limited to the latter
system. When the problem could not be statedrmg®f a simple rule (i.e., Task VI),
humans learned only gradually. Thus Smith et eéssilts suggested that humans

could use an explicit, rule-based system or a reybal information integration system.

Cook and Smith (2006) compared performance ofgrigend humans on a ‘rule
plus exception’ task, similar to Smith and MindQ@948). In this task, subjects
categorized circles comprised of six wedges, e&gfhach can be one of two colors.
The task is structured so that each category amtaprototype (most typical member),
three exemplars which are similar to the prototypediffer in terms of one of the
colors, and an exception which is more similat® dther category. The critical result

reported by Smith and Minda (1998) was that earlyaining, humans would
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categorize the exception as belonging to the athegory. However, given sufficient
training, they would learn to respond correctlyite exception. They concluded that
humans used an abstraction process (similar tofyy theory) to learn the task, but
later switched to an exemplar-based memorizationgss. Cook and Smith (2006)

found that pigeons showed exactly the same pattenesults.

In Shepard et al.’s (1961) influential study angicimsubsequent research on
categorization, the stimuli were multidimensiorialt only a limited number of values
were used on each dimension. However, a paradeyelaped by Ashby and Gott
(1988) allows for a potentially infinite number stfmuli to be used that vary
parametrically on two dimensions. Specifically Bgtand Gott (1988) had participants
categorize L-shaped line segments that differadrims of the heights of the vertical
and horizontal lines. To generate stimuli, Ashhg &ott used a randomization
procedure in which categories were defined in tesfrig/o bivariate normal
distributions. The category dimensions were twuoatisional (height and width), and
the distributions that formed the categories oygréal such that perfect performance
was impossible, but an optimal decision bound wasé&d by a diagonal line running
through the stimulus space with a slope of appratéhy 1. Results showed that
performance of the three subjects was close tongptvith an average accuracy of
83%. The authors described their results in texfsshby and Townsend's (1986)
General Linear Classifier (GLC), which is effectiva generalization of signal

detection theory.

Herbranson, Fremouw and Shimp (1999) examined wehgilyeons could also

respond optimally in the randomization task introeti by Ashby and Gott (1988).
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They trained pigeons to categorize rectangles alysjol on a computer screen that
varied in terms of height and width and were geteerasing two bivariate normal
distributions that overlapped. In the ‘dividedeation’ condition, accurate
performance depended on both dimensions: Rectfmievhich the height was
greater than the width were likely to belong toagairy A, whereas rectangles for
which the width was greater than the height wekayito belong to Category B. In a
second condition, ‘Selective Attention’, accuraggfprmance depended on only one
dimension. For example wide rectangles might bgglorone category and narrow to
the other, but the height of the rectangles wadawant. Results showed that the
pigeons’ performances in the tasks were close tionapin both tasks. These results
suggest that pigeons are capable of integratiraynmdtion from two relevant
dimensions and respond optimally in a two-dimeraiamformation integration task,

similar to humans.

Thus previous research has demonstrated that perfmes of humans and
nonhumans are similar when the categories cannleigoeed in terms of verbal rules,
and that both humans and pigeons can respond digtiomaAshby and Gott's (1988)
information-integration task. However, our resuit&€hapter 2 pose some questions.
We found that pigeons’ performances in the inforamaintegration task were not only
suboptimal, but also deviated from optimality inystematic way that could not be
explained by the GLC. The first question is whethese results were reliable, or
might have been due to idiosyncratic features ofresearch design. We used stimuli
that were modeled after Maddox, Ashby and BohiD@0in which the range of

orientation values was greater than 90 degreess $tme stimuli had orientations that
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were less then 0 degrees (meaning subhorizontalg sdme were greater than 90
degrees (meaning subvertical). Because therdysl80 degrees of range in Gabor
stimuli (i.e. 0 degrees = 180 degrees), stimulhwitientations less than 0 or greater
than 90 degrees may be more perceptually simitar gtimuli with orientations equal

to 0 and 90 degrees. Thus, we wanted to attempplicate the results from Chapter 2,

except using stimuli that varied within an 80 degrange, centered on 45 degrees.

Second, we wanted to compare performance of pggand humans on the
information-integration task. If the pattern obsptimal results was replicated for
pigeons with the 80 degree range, then we wantkddw whether similar results
would be obtained with humans. As noted abovesipus research has generally
found that performances of humans and nonhumarsraikar for category learning
tasks that cannot be described in terms of verthasr If we find that the results from
Chapter 2 are replicated here with humans as thelh that could have major
implications for our understanding of category teag. For example, it would suggest
that the GLC is inadequate as a descriptive matgddérformance in the information-

integration task, and that a new model may be wtech

Finally, as a secondary aim, we planned to exathi@effects of stimulus range
in categorization tasks. In human subjects pastaieh on stimulus range has
formulated the Range-Frequency Theory (Parducci&d®ll, 1986). This theory
specifies a ‘range principle’ which essentiallytetathat as the range of stimulus values
on a particular dimension increases, the sensitisichanges along that dimension
decreases, and vice versa. Research into rareseffas found similar results, namely

that as a stimulus range narrows sensitivity witherange increases and the
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categorization task becomes easier (Hinson & Loa@&h#986; Lockhead, 2004).
Notably these range effects have been found usitegorization tasks that involve
single dimensional tasks. Our research sets destavhether the ‘range principle’

applies in the case of a two-dimensional task ds we

Thus we report two experiments which investigatégomance in the
information integration task with Gabor stimuli pigeons (Experiment 1) and humans
(Experiment 2). In both experiments, subjects veaqgosed to two conditions in which

the overall range of orientation values was Wided8grees) or Narrow (10 degrees).

EXPERIMENT 1

METHOD

Subjects

Three pigeons, designated G6, G7 and G8, partedpss subjects and were
maintained at 85% of free-feeding weight5 g by post-session feedings. They were
housed individually and allowed free access to mate grit, in a vivarium with a
12:12 hr light/dark cycle (lights on at 7:00 a.mAll were experimentally naive with

Nno previous experience.
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Apparatus

Three operant chambers, 350 mm deep by 360 mmlwyi@0 mm high, were
used. One wall contained an aluminum responsd pandich a VGA 6.4” (130 mm
wide x 97 mm tall) LCD display set to 640 x 480alesion was mounted The LCD
display was located 165 mm from the side edge &d@m from the bottom floor to
center of the screen. Overlaying the LCD screes avglass panel mounted resistive
touch screen of identical size to the screen witb26 x 4096 point array resolution.
Screen responses were measured via a USB toucfacgg€Elo TouchSystems Inc).
The displays with touch panels were purchased ffoocth Screens Inc, part number
MTF064D. There were two vertically-aligned respekeys on each side of the
screen, midway between the edge of the screerhanchamber wall. The keys were
25 mm in diameter, and could be illuminated wittobor LED arrays. A force of
approximately 0.10 N was necessary to operate leachand produced an audible
feedback click. Centered below the screen wasia gnagazine with an aperture (60
mm by 50 mm) 40 mm above the floor. The magazias Wuminated when wheat
was made available by a white LED. A houselighs wantered above the LCD screen
10 mm from the top of the panel. Chambers weréoead in a sound-attenuating box,
and ventilation and white noise were provided bytiached fan. Event scheduling,
data recording, and screen image display was dedreith an IBM®-compatible
microcomputer. Chamber keys, grain magazine dratler hardware inputs and

outputs were interfaced via a USB module with 24 bf digital I/O purchased from
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Measurement Computing (part # USB-1024LS).

Stimuli

The stimuli for the categorization tasks were Ggiiches. Gabor patches are
sine wave gratings modulated by a circular Gauddian, and vary in terms of
frequency and orientation. Sample Gabor patcheskaywn in Figures 4.1 and 4.2.
Two sets of Gabor stimuli were produced to yield tlifferent experimental conditions
(Maddox, Ashby, & Bohil, 2003). Each of the twanailli sets can be represented in a
two-dimensional space with orientation on the Xsaad frequency on the Y axis.

The Wide 80° condition had orientation values vattange of 80° centered around 45°
from horizontal (5° to 85°) while the Narrow 10°nghtion had a range of 10° also
centered around 45° (40° to 50°). Pilot testingvetd that the differences between the
40° and 50° stimuli in the Narrow condition weresigadiscriminable to a human

observer.
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Figure 4.1. The stimuli distribution of the Widentlition, X axis orientation values are in degreésuand y axis frequency values are
in cycles-per-pixel units. The unfilled squareswltategory A stimuli and the unfilled triangleoshcategory b. Filled squares and

triangles show the location on the distributiorttaf example pictures of the Gabor images.



Category Learning 119

0.045 -

0.04 -

Frequency

33 a7
Orientation

Figure 4.2. The stimuli distribution for the Narr@endition. Format and units are the same as €itjur
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For both conditions the optimal decision bound waagonal line drawn
through the center of the scatter plot, such ttiaiusi with frequencies and orientations
on one side of the criterion were assigned to ategory, while stimuli on the other
side of the criterion were assigned to the othtrgmay. We adopted an arbitrary
convention that the stimuli above and below thagi@ce bound were designated as
‘category A’ and ‘category B’, respectively. Alomgth the decision bound, the
scatterplot and 12 Gabor patches from each ofbectitegories are shown in Figures
4.1 and 4.2. Sample Gabor patches are 1/6 seaie snages from the actual images
used in the sessions. The samples include theregtvalues for each category (i.e.,
the stimuli in the lower left and upper right oéthcatterplot) and also ten stimuli in
between, spaced approximately equally. The sastlaili that are pictured correlate
to the filled symbols in the plots for each catggoMeans and standard deviations, as
well as maximum and minimum values for the stinmukach category for both of the

conditions are shown in Table 4.1.

Stimuli were generated as follows: First, randammhbers were sampled from a
bivariate normal distribution for each of the categs, A and B. Forty-five number
pairs were sampled for each category, and useedrtergte the frequency and
orientation values for the stimuli. The distritautiparameters for each category were
the same as Maddox et al. (2003), and ensuredhthabean frequency values were
different for the categories whereas the mean taimm values were the same. The
stimuli were then rotated by 45°. After the ratatithe stimuli went through a linear

transformation (5.98 was added to each frequenime\and 245.81 added to each
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orientation) so that the mean and standard dewuiédioeach of the categories matched
those used by Maddox et al (2003). We refer ®tiype of task and stimuli as an
Information Integration (ll) task in keeping withet terminology that Maddox and

colleagues used. The distribution parametersdir bonditions are listed in Table 4.1.

Condition
80°Wide 10°Narrow
Freq Orient Freq Orient
Min 7.2559 | 0.0125 | 40.2820 | 0.0125
Max 87.2559 0.0389 50.2820 0.0389
SD 16.9401 | 0.0058 2.1175 | 0.0058
Mean 45.0000 0.0251 45.0000 0.0251

Table 4.1. Minimum, maximum, standard deviation em&hn values of the stimuli distributions for
frequency and orientation of both the Wide and blarconditions.

For display on the LCD screens (640 x 480 resatytithe values were
converted to cycles per pixel with the followinguatjon, wherex equals the randomly
generated frequency valueg/50+.25)/250. The result was a frequency valueyoles
per pixel that was maximized for display on a 64488 screen. For the orientation
dimension, numbers were converted to degrees famdntal by first multiplying by
7/500, then to degrees from horizontal by multiptythe radian value by 180 then

dividing by .

Gabor stimuli were generated in real-time usingamssoftware written at the

University of Canterbury. The algorithm used wasdd on the Gabor Filter, (Yao,
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Krolak, & Steele, 1995) and was integrated intota @rogram that displayed the
images based on a pre-determined CSV file listinfgeguency (cycles per pixel) and

orientation (degrees).

Procedure

Because subjects were experimentally naive, theg first shaped to peck
yellow circles displayed in the center of the toscheen. They were then trained to
peck the two lower right and left side keys using@dified autoshaping procedure.
When subjects responded consistently both to tikehtscreen and keys, training began
in the first condition. Sessions occurred dailg ahthe same time (1100h) with few
exceptions. All sessions consisted of 90 triats sessions were run until stability was

achieved in each phase of each condition.

The sequence of events on experimental trialsasdsllows. After a 9-s inter-
trial interval (ITI) during which the chamber waarll, the houselight was illuminated.
One second later, the trial began with the dispfeay Gabor image on the touch screen.
The image was maximum possible size that coulchbess (640 x 480 pixels) and
measured approximately 95 cm high by 125 cm widliter pigeons had made five

responses to the image the screen was darkendteatwlo lower keys were
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illuminated (e.qg., left key red, right key greesignaling the choice phase. A single
response to the correct key produced 3-s accegsaite During reinforcement, all
illumination in the chamber was extinguished exdepthe feeder light. A correction
procedure was used such that if the response wag@tt, the houselight flashed off
and on for 10 s (1 s off, 1 s on), and the trias wgpeated with the same Gabor
stimulus. After five responses had been madedatheen, only the correct side key

was lit and a single response produced 1.5-s ataegain.

Pigeons were exposed to the Wide 80° and NarrévedQditions in
counterbalanced order, followed by a replicatiothef initial condition. Training
continued in each condition until a visual stapitititerion was reached. In the first
condition, extended training was given because aet@d to assess the long-term
stability of responding given the novel naturelsd procedure. The order of conditions

for each pigeon is shown in Table 4.2.

Stimuli
Condition Condition Condition
Subject 1 2 3
G6 Narrow Wide Narrow
G7 Wide Narrow Wide
G8 Wide Narrow Wide

Table 4.2. Order of the conditions for each ofpilgeons. Wide represents the 80° condition and

Narrow® the 10° condition.
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RESULTS

The percentage of correct responses was calcuwasrdhe last 10 sessions in
each condition. Average accuracy and standarchtiens for each pigeon in both

conditions are reported in Table 4.3.

Condition
Subject Wide StDev Narrow StDev Wide 2 StDev Narrow 2 StDev
G6 0.90 0.029 0.64 0.048 - - 0.66 0.024
G7 0.93 0.028 0.64 0.047 0.89 0.039 - -
G8 0.85 0.042 0.65 0.057 0.90 0.080 - -
Overall 0.89 0.033 0.64 0.051 0.89 0.059 0.66 0.024

Table 4.3. Overall means and standard deviatiodligptayed for each subject and each condition.

In the Wide condition, accuracy was high overatldth birds (M = 89%). By contrast,
accuracy was lower in the Narrow condition (M = §4% each pigeon. The
difference was statistically significan¢2) = 9.45p < .01. Table 2 also shows that

results were similar in the replication condition.

To show acquisition of performance, accuracy vafaesll subjects and sessions

are plotted in Figure 4.3.
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Figure 4.3. Accuracy for each session for the Winkryow and Wide replication condition are reported
The session number and percent correct are showhreonand y axis.
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The upper panel shows results for G6. In the éiosidition (Narrow), accuracy
remained approximately stable at 60% despite thenebed training. When switched to
the Wide condition, accuracy jumped to over 80%d&w from the very first session,
and with little change over the rest of the cowdliti When G6 was returned to the
Narrow condition, accuracy dropped to 70% and desgé somewhat over successive
sessions to approximately the level from the fistdition. The middle panel shows
results for G7, and notably includes the only sessaiith perfect performance (100%
accuracy) in the Wide condition (session #45). W$witched to the Narrow
discrimination, accuracy dropped to 65% and didamainge systematically across the
condition. On return to the Wide condition, acoyrancreased gradually to
approximately the same level achieved in the @ostdition. Results for G8 (bottom
panel) show a similar pattern as G7, but with sohawnore variability in the Wide
condition. It is notable that for all three pigepaccuracy changed abruptly at the start

of the second condition and did not change sysieallgtwith continued training.

Model Analysis

In order to determine whether pigeons’ respondminé Wide and Narrow
conditions indicated control by a single stimulusehsion or by multiple dimensions,
we conducted a series of modeling analyses. kethealyses, we compared fits of
unidimensional and multidimensional models of catgdearning (Ashby, 1992) to
individual-subject data from the last 10 sessi@@(trials) of each condition. We first

provide a brief description of each of the models.
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Multidimensional model (General Linear Classifier)

According to the General Linear Classifier (GL@}ich is one of a family of
models known as General Recognition Theory (GRBh@Y & Waldron, 1999);
(Ashby, 1988); (Ashby & Townsend, 1986)), stimuk aepresented in a two-
dimensional perceptual space, similar to Figuraed.2. The subject learns to
associate different regions of the perceptual spaitedifferent responses. The two
regions in the perceptual space are defined hyeali‘decision bound’. When a
stimulus is presented on a given trial, the disasfcdhe stimulus from the decision
bound determines the probability of a choice resporSpecifically, the decision bound

is defined as:

X+ +e=0 1)

whereX andY are orientation and frequency, respectively, 8rngl ande are constants.
When a stimulu¥o, Yo is presented on a trial, the distance of the dtimfrom the

decision bound is given by:

_HKgtpPpte

h(Xo.Yo)
52+ )2

(2)
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Forh = 0, the probability of responding category/?XA) = 0.50. Foh > 0,P(A) >
0.50 and foh < 0,P(A) < 0.50. SpecificallyP(A)is defined as the cumulative normal

distribution function @) evaluated alt(Xo,Yo):
P(A)= q{MJ _ A3)

The denominator of Equation 3 represents the rwigeror variance in the model, and
includes terms for both perceptuat?) and criterial varianced?). Although other
models within the GRT family can distinguish betweerceptual and criterial variance
(see Ashby, 1992), for the GLC only a single ngaemeterg; is estimated which
represents combined perceptual and criterial vegarffectively, the GLC represents
a generalization of signal detection theory totthe-dimensional case (Ashby &

Townsend, 1986).

Thus in applying the GLC to data from the pregxpteriment, three parameters
must be estimated: the slope and intercept ofi¢eesion bound, and the noise
parameterg. Note that the slope and intercept are defineedgsand €/,

respectively, by Equation 1.

Unidimensional models

Two unidimensional models were also consideredcofding to the UNI-O
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model, subjects respond on the basis of orientationvariation in frequency has no
effect. The UNI-F model is similar except thatideans are based entirely on
frequency. Both models have two parameters: tea&rivalue on the particular
dimension Xcrit) and a noise parameter, For stimulusX presented on a given trial,

the probability of responding category A is defirasd

P(A) — CD( X _;_(Critj (3)

Parameter estimation

Maximum likelihood estimation was used to obtairgpaeters for the GLC and
unidimensional models for individual-subject da&pecifically, parameter values that
minimized the negative log-likelihood function wexetained through a two-step
process. First, a simulated annealing algorithioffg Ferrier, & Rogers, 1994) was
used to estimate a local minimum, and then pararestenates were refined using the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method {@yR2003). Initial parameter
values were randomly determined. Model predict@amd optimization procedures
were implemented in a computer program using restin the open-source TPMATH
library and compiled with Free Pascal version 2(€efrieved on 27 August 2006 from

http://www.unilim.fr/pages perso/jean.debord/tpmigtmath.htmand

http://www.freepascal.orgespectively). Repeated simulations showedgheimeter

estimates were stable for all subjects and conditand did not depend on initial
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values.

Model Results

Table 4 contains the VAC and AIC results for epfeon and condition for each
of the three models. Overall, the GLC providedadyquantitative description of the
data, accounting for an average of 93% and 84%eo¥ariance in the Wide and
Narrow conditions, respectively. The lowest AlQGues are shown in bold. For each
pigeon, the GLC was the best fitting model (i.ewést AIC) in the Wide condition.
This result was also obtained in the replicationd®2) conditions. By contrast, the
UniF model was the best fitting model for all pigesan the Narrow condition. These
results suggest that pigeons’ responding was dtedrby both stimulus dimensions in
the Wide condition, but only by frequency in theriéav condition. That is, when the
range of orientation values was restricted in tlaerdv condition, responding was

controlled exclusively by frequency.
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GLC UniF UniO
VAC AlC VAC AIC VAC AIC

G6 Narrow 0.87 84.33 0.86 80.36 0.31 106.80
G6 Wide 0.94 64.51 -1.46 2704.01 0.00 128.76
G6 Narrow 2 0.89 78.86 0.89 75.36 0.28 112.51
G7 Wide 0.97 48.71 -1.08 2463.51 -0.01 128.77
G7 Narrow 0.90 73.73 0.90 69.86 0.25 107.51
G7 Wide 2 0.95 47.23 -1.08 2512.44 -0.01 128.77
G8 Wide 0.88 77.90 -1.26 2268.13 -0.05 128.77
G8 Narrow 0.71 94.60 0.68 91.80 0.18 108.97
G8 Wide 2 0.92 71.34 -1.43 2572.30 0.00 128.76

Table 4.4. Akaike information criteria (AIC) andriance accounted for (VAC) values are displayed for
each of the pigeons in each condition for eacheft models tested. General linear classifier (GLC,
unidimensional frequency (UniF) and unidimensiamrantation (UniO) models were tested.

GLC UNI-F UNI-O
Slope Intercept | Noise Mean Sigma Mean Sigma
G6 Narrow 0.0001 0.0238 0.0049 0.0277 0.0050 | 46.4475 | 3.6685
G6 Wide 0.0004 0.0080 0.0037 0.0326 0.0151 | 44.9419 | 32.9194
G6 Narrow 2 0.0003 0.0144 0.0037 0.0326 0.0040 | 45.7039 | 3.8074
G7 Wide 0.0004 0.0100 0.0029 0.0326 0.0118 | 40.6836 | 33.3726
G7 Narrow 0.0001 0.0167 0.0037 0.0230 0.0038 | 43.6687 | 3.4951
G7 Wide 2 0.0004 0.0097 0.0029 0.0326 0.0118 | 41.5674 | 33.1554
G8 Wide 0.0003 0.0122 0.0040 0.0326 | -0.0458 | 34.3295 | 49.5633
G8 Narrow 0.0006 0.0008 0.0062 0.0301 0.0075 | 48.6232 | 6.6040
G8 Wide 2 0.0003 0.0119 0.0036 0.0326 0.0107 | 41.7212 | 52.5061

Table 4.5. Model parameters for each of the maesked indicated by slope, intercept and
noise.

Parameter values for each model are listed in Té4ble Overall, GLC

parameter values were reasonably consistent asubgscts for each of the conditions.
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Estimates of noise parameters were also similathiWide and Narrow conditions.

Asymptotic Performance, Wide Condition

To examine asymptotic performance more closelythacffectiveness of the GLC
in describing the data more closely, we plotted)R#&a function of the orientation
values, and also included the predictions of th€GIhese are displayed in Figure

4.4,

The left column of Figure 4 shows the plots for G&,and G8 with category A on
top represented by the filled squares and cate§dry the unfilled triangles. For all
subjects, a distinct inverted U shape patternfas@ion of orientation was apparent in
responding to Category A stimuli. SpecificallyAp{alues were highest for
orientation values in the middle of the range, dadreased for orientations at both the
low and high end of the range. By contrast, naesyatic trend was evident for

responding to category B stimuli.

The right column of Figure 4 displays the same iokthvalues but also includes
the P(A) values predicted by the GLC for each aatggThese are represented by x's
for predicted category A values and +'’s for catgddr Here we see that the GLC does
not predict well the inverted-U pattern in the ofbéa results. In contrast, the GLC
predictions can be described as two approximaiigliel linear functions, and thus do

not vary systematically with orientation.

To examine deviations from the GLC predictions ndosely, standardized

residuals were computed. Figure 4.5 shows thelatdized residuals as a function of
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orientation for individual pigeons for the Wide ctition. For all pigeons, an inverted-
U shaped pattern was obtained for category A redsd{illed squares), whereas no
systematic trend was apparent for category B ressdunfilled triangles). There was
an increasing linear trend in the category B reagltor G6, but not the other pigeons.
This trend resulted because the GLC predicted gedsing linear trend for category B
for this pigeon (parallel with the category A predins), but performance did not vary

systematically with orientation.
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Figure 4.4. Probability of a category A respons@\jfn the y axis plotted against orientation i th
axis. The wide condition obtained data is displaigedll 4 subjects in the left column and the tigh
contains obtained and predicted values for compari€ategory is A represented by the filled squares
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Figure 4.6 provides a summary of the GLC fits ® Wide condition data based on
the average results. The top panel of Figure dmdirens the inverted U shape for
category A stimuli, whereas accuracy is approxitgatenstant across the range of
orientations for category B stimuli. The secondldgte) panel plots the same average
obtained P(A) data as the top panel with the anldibf values predicted by the GLC.
The middle and bottom panels show the predictedoatained values, and the
standardized residuals, respectively. The stamdatdesiduals for Category A show
an inverted U shaped pattern, confirming that th€ @& unable to account for the
Category A results in the top panel. However résduals for Category B show a
slight increasing linear trend. Although P(A) fdategory B in the upper panel did not
show such a trend, the GLC predictions for the tategories are constrained to have
the same slope for orientation (middle panel). tThiebecause predicted P(A)
decreases as a function of orientation for Catedorfikely caused by the greater
decrease in obtained P(A) for the stimuli with l@gbrientation values — predicted
values for Category B also decrease. These dectdmsause the only way for the
GLC to predict that accuracy decreases more fdr bigentation Category A stimuli is
by rotating the decision bound (in this case, talsdhe high orientation Category A
stimuli). As a result, the decision bound moveshier away from the high orientation

Category B stimuli, resulting in increased accurg@oy lower P(A) values).
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Asymptotic Performance, Narrow Condition

Comparable asymptotic results for the Narrow cooidiare shown in Figure 4.7,
which shows the P(A) values as a function of oa#ah (left column) and with the
predictions of the GLC when fitted to the individldata (right column). For all
subjects, P(A) increased with orientation for bodkegories. However, recall that the
model fits (Table 4.3) showed that responding wagrolled by frequency but not
orientation, so this increase can be attributetiedact that orientation and frequency
were positively correlated (Figure 4.2). GLC potidins are added in the right-hand
column, and show that the model provided a goodwatdoof the results, with no

systematic deviations apparent.

Standardized residuals from GLC fits to the Narommdition data are shown in
Figure 4.8. Across subjects, there was no evideheesystematic pattern in the
residuals. Together with the reasonably high peegge of variance accounted for by
the model (84% on average), suggests that the Ga@ded a good account of
responding in the Narrow condition. Figure 4.9qdes a summary of the obtained
data from the Narrow condition (upper panel), are&LC predictions (middle panel)

and residuals (lower panel) in terms of the averagalts.
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Figure 4.8. Standardized residuals from the GLEféit each subject.
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Finally, we conducted a series of polynomial regi@s analyses to determine
whether any systematic trends in the residuals wergent for both Wide and Narrow
conditions. For these analyses, the standardesdual values were regressed on the
orientation (centered) and orientation squaredesfar individual as well as average

data. In this way, both linear and quadratic teecauld be identified.

Pigeons Category A Category B
Wide B Linear B Quadratic R2 B Linear B Quadratic R2
G6 0.25 -0.43 ** 0.19 * 0.61 ** -0.12 0.37 ***
G7 -0.02 -0.62 *** 0.39 *** 0.31* -0.25 0.14*
G8 -0.03 -0.45 ** 0.21 ** 0.24 -0.05 0.06
Mean 0.07 -0.59 *** 0.33 ** 0.51 *** -0.17 0.26 **
Narrow
G6 0.13 -0.20 0.04 -0.05 0.56 *** 0.31 ***
G7 -0.12 -0.10 0.03 0.19 -0.09 0.04
G8 -0.17 -0.44 0.26 ** 0.36 * 0.13 0.16 *
Mean -0.09 -0.45 ** 0.23 ** 0.30* 0.31* 0.21 **

Table 4.6. The left most column shows the labekfach pigeon followed by the mean and the bold text
divides the conditions, wide and narrow. Categ®iyg on the left set of results columns and catedpr
on the right. Each category reports the Beta Wsi(ff) for the linear coefficient} for the quadratic
coefficients and the R2 values. Significant regi@s results fof Linear orp Quadratic are indicated

with an asterisk (*) for 0.1, 0.05, 0.01 significanevels using *, ** and *** respectively.

Results are shown in Table 4.6. The left columowshthe pigeon name and
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condition label (top half = wide condition, bottdralf = narrow condition) and the left
three columns of data correspond to category Athedight side category B data. The
data reported are beta weighf} for the linear and quadratic functions as welbasrall
R2 values. In category A, wide condition, the gaid function is negative and
significant for all three subjects as well as tlierage. This result confirms the
inverted-U pattern that was identified in the earplots. The R2 values were also
significant indicating an overall significant regséon result for all three subjects. For
Category B, a significant positive linear compon&as obtained for two of three
pigeons, as well as for the average data, confgrthie trend noted in Figure 4.6. By
contrast, results for the Narrow condition showsgstematic trend across subjects.
Although several components were significant, thvesee isolated and not obtained for
more than one subject. Thus, results indicatethi®atesiduals from the GLC fits to the
Wide condition showed a systematic pattern acrolgsts, whereas those from the

Narrow condition did not.

EXPERIMENT 2

METHOD

Subjects

Four humans (2 females, 2 males), designated G &hd T participated as
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subjects and were compensated for their time wittolate. Subjects were chosen
from the local community on a volunteer basis aaded in age from 21 to 35 years
old. All subjects had 20/20 vision or wore glasttes corrected their vision to 20/20.
Subjects were randomly assigned to the conditioniseé experiment. All were

experimentally naive with no previous experienca psychological study.

Apparatus

Experimental sessions were conducted in a quiatydit room. A laptop was
used to control the experiment, display the stirantl record the responses. The LCD
screen on the laptop was an 8.9" 1024x600 Activiikedisplay but resolution during
the experiment was set to 640 x 480 so as to ntagctesolution of Experiment 2. The
A and L keys of a standard QWERTY style keyboardenesed as response keys for
categorization of the on-screen images. The spacwas used to indicate readiness to

begin the experiment.

Stimuli

The stimuli used in experiment two were identicaiitose used in experiment
one. Table 1 shows the parameters of the stinmtliloution and Figures 1 & 2 show
stimuli examples and distributions for each oftthie conditions (Wide 80° and

Narrow 10°).
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Procedure

Subjects were seated in a quiet, dimly lit roord Bnstructed that the session
could last up to one hour, and that accuracy ne¢dpvas the important factor in the

experiment. The subjects were then asked to reatbtlowing on-screen text:

“Thank you for your participation in this experintem visual perception. Press

the space bar to view the instructions and begin.”

Upon pressing the space bar on the keyboard thesnesen read:

“This experiment will last approximately 50 minutesth 3 brief rest periods.
When you begin an image will be displayed on scre&fter viewing it you will
be asked to categorize the image in either catebbmypressing the A key, or 2
by pressing the L key. Both categories of imagesdaplayed randomly and are
equally likely to be displayed. Do your best tarleabout the categories as
perfect performance in possible. Speed in not imapb only accuracy so
categorize the images as accurately as you cagprizA will be awarded to the
person with the best performance. You will nowgbeen 20 practice trials.

Press the space bar when you are ready to begin.”
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Subjects were then given 20 practice trials. Thewi displayed during the
practice trials were prototype stimuli for eachlod two categories. The two
prototypes were displayed in random order, oneéah of the categories, and were
based on the mean frequency and orientation védwesch category. All trials were
response terminated and subjects were alloweceto thie stimuli for as long as they
wished. After completion of the practice trialsbgcts were asked if they had any
questions about the experiment (none of the fobjests had any questions), and the
experimenter left the room. When the subject m@$lse space bar, the regular session
began with four blocks of 90 trials and rest pesiotdbetween each block. Stimuli
were independently randomized for each block amwden each of the two sessions in
each condition. Subjects were given feedback oeescafter pressing the A or L
categorization keys which indicated whether theoase was “Correct” or “Incorrect”.
The order of conditions, Wide (80°) and Narrow (1&id response key assignments

were counterbalanced across subjects as showrbla 7.

Condition & Key Order
Cat A Cat A
Subject Stimuli Key Stimuli Key
C Wide A Narrow L
M Wide L Narrow A
S Narrow A Wide L
T Narrow L Wide A

Table 4.7. Condition and key order for each ofgtbjects.
used for the category A assignment.

Capital A or L represents the keyboette
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Subjects always received 20 practice trials wittdfeack at the start of each of
the four sessions followed by the 4 blocks of $8ldr The four sessions consisted of
two sessions in each condition, either narrow alewiSessions were conducted in the
evenings on convenient days for the subjects asklapproximately two weeks for
each subject to complete. Chocolate was givenastive to participate in the
sessions and after all of the sessions were coetpthe subject with the highest overall

accuracy average received a large 500 gram chedodat

RESULTS

Figure 10 shows the percentage of correct resgdoséndividual subjects
across the four blocks of the last session in eathe two conditions. Each block
contained 90 stimulus presentations. Resultsubjests C, M, T and S are shown in
individual panels as noted, and the X axis labedécate whether they were in the Wide
80° or Narrow 10° conditions as outlined in Tablé.40verall, accuracy appeared to
be higher in the Wide 80° condition regardlessarfdition order. The percentage of
correct responses is listed for each subject anditton in Table 4.8. Averaged across
subjects, response accuracy was significantly hightine 80° condition compared to

the 10° condition, M’s = 80% and 66%, respectivély,,3) = 23.84p< 0.02.
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Block Block Block Block

Condition Subject 1 2 3 4 Average StDev
Narrow C 0.46 0.54 0.64 0.59 0.56 0.080
M 0.66 0.66 0.88 0.66 0.71 0.111

S 0.64 0.74 0.68 0.73 0.70 0.047

T 0.70 0.69 0.67 0.63 0.67 0.029

Wide C 0.60 0.77 0.77 0.77 0.73 0.083
M 0.81 0.89 0.88 0.92 0.88 0.047

S 0.72 0.90 0.94 0.89 0.86 0.097

T 0.69 0.78 0.71 0.72 0.73 0.038

Significant for Condition: F(1,3) = 23.84,p<0.02

Table 4.8. Accuracy for each subject and conditimded into 4 blocks. The overall averages and
standard deviations are shown in the right handrook. Results from a repeated measures ANOVA are
displayed in the bottom cell.

Model Analyses

The GLC, UniO and UniF models were fitted to théadand compared using
the same procedure as Experiment 1. For eaclsdit@able 4.8 indicates the best-
fitting model by displaying the lowest AIC valueholdface. The variance accounted
for (VAC) by each model is also listed. Table gt@ws that for the Wide 80° range
conditions, the GLC had the lowest AIC values flbsabjects. By contrast, for the
Narrow condition the UniF model had the lowest AdC all subjects. This indicates
that in the Wide condition, where accuracy wasifigantly higher, the GLC was the
best fitting model. By contrast, in the Narrow ddron, in which accuracy was lower,

the UniF model fit the data best. These resuéssanilar to those obtained with
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pigeons in Experiment 1 and show that in the Wigleddtion, responding was
controlled by both orientation and frequency, whsria the Narrow condition
responding was controlled solely by frequency. sThiggests that when the range of

stimulus orientation values was restricted, corttsobrientation decreased.

GLC UniF Unio
Narrow VAC AlIC VAC AlIC VAC AlIC
Cc 0.54 112.69 0.47 111.20 0.06 126.41
M 0.77 87.09 0.76 83.37 0.25 114.65
S 0.67 96.44 0.64 95.56 0.12 123.03
T 0.59 106.71 0.54 105.44 0.08 124.25
Wide
c 0.66 97.89 0.43 104.27 0.00 124.03
M 0.83 65.74 0.36 103.57 0.02 127.02
S 0.76 75.80 0.13 119.69 0.13 119.70
T 0.56 100.02 0.01 128.05 0.42 106.62

Table 4.9. VAC and AIC values for each subjectaokecondition for each of the 3 models tested.
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GLC UNI-F UNI-O
Slope Intercept Noise Mean Sigma Mean Sigma
C Wide 0.0002 0.0189 0.0051 0.0281 0.0084 101.0000 162.0000
C Narrow 0.0010 -0.0187 0.0071 0.0248 0.0094 44.6565 10.3648
M Wide 0.0002 0.0149 0.0030 0.0259 0.0076 36.7136 105.9640
M Narrow 0.0002 0.0160 0.0044 0.0261 0.0046 45.5734 4.0511
S Narrow 0.0008 -0.0090 0.0048 0.0253 0.0061 45.0908 6.4798
S Wide 0.0003 0.0087 0.0040 0.0238 0.0142 48.9113 41.8874
T Narrow 0.0009 -0.0142 0.0062 0.0265 0.0081 46.2934 8.6180
T Wide 0.0006 -0.0034 0.0094 0.0224 0.0562 43.0996 24.4935

Table 4.10. Model parameters for each subject aoH eondition for each of the three models tested.

Parameter values for each model fit to individusthdare listed in Table 4.10.

Overall, GLC parameter values were reasonably sterdi across subjects for each of

the conditions. Estimates of noise parameters @aleesimilar for the Wide 80° and

Narrow 10° conditions.

Analyses of Asymptotic Performance

To examine the model and asymptotic performanecedre detail we generated

plots of the orientation values and obtained prdibalof Category A response for each

of the subjects in the last session of each ofwtleeconditions. The plots are displayed
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in the left columns of Figure 4.11. In the follogianalyses, we first examine visually
whether there was any systematic pattern in thaidd data. Because perfectly
accurate responding was possible, any such pattigynt indicate how performance
deviated from optimality. Next we compared GLCdictons with the obtained data
and noted whether there appeared to be any systasheatations. Finally, we report
results of polynomial regression analyses whictetewhether the GLC residuals for

individual-subject fits showed significant trends.

Asymptotic Performance — Wide Condition

The plots show the obtained probabilities of a Gaitg A response (P(A))
separately for Category A and B stimuli, as a fiorcof orientation. Category A
stimuli are represented by the filled squares arfdled triangles represent the
Category B stimuli. Data for individual subjeatsthe Wide condition are shown in
separate scatterplots in the left column of Figud. For Category A stimuli, the
scatterplots generally show an inverted U shapeighzest exemplified by subject M.
The highest accuracy is achieved in the middidefdarientation range, and decreases
for relatively low and high orientation values. e€lpattern is also visually evident in
subject S’s plot and, to a somewhat lesser exsebject T. Subject C does not display
the same pattern, but note that C’s performancealgasatypical in that their

responding was overall less accurate than the sthgects.

In the right hand column of Figure 4.11, scatteipkhow both the obtained

values and those predicted by the GLC based ofit tieethe individual data. This
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allows direct comparison between the obtained aedigted values and may reveal
systematic deficiencies of the GLC when used tdipt@éesponding in this type of task.
The deficiencies are especially evident in plotssidhjects M and S. For both
categories, the model’'s predictions can be deatribeghly in terms of two parallel

lines, and are unable to account for the invertghttern for category A.
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axis. The wide condition obtained data is displaigedill 4 subjects in the left column and the tigh
contains obtained and predicted values for compari€ategory is A represented by the filled squares
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Figure 4.12. Standardized residuals from the Git€téi the Wide condition data for each subject.
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To assess the adequacy of the GLC fits to the ichd@ data more
systematically, standardized residuals by subtrgdtie predicted from obtained P(A)
values, and dividing by the standard deviatiorhefabtained values. Standardized
residuals for the Wide condition are shown for uidlial subjects in Figure 4.12,

plotted as a function of stimulus orientation.

Once again we can see from the Wide condition phatsCategory A
responding in subjects M and S, and to a lessengxubject T, show evidence of an
inverted U shape pattern as a function of orieatatiResults for Subject C do not show
any identifiable pattern, and this may be relatetheir lower accuracy in this

condition.

To provide a summary of participants’ respondim¢ghie Wide condition, Figure
6 shows the results averaged across subjectsupgpger panel shows the obtained P(A)
plotted against orientation, in which the invertédhape for Category A is clearly
apparent. Accuracy is highest in the middle ramigend tapers off at the extreme
orientation values of the category. For CategaryeBults are less clear but may show
a modest increase as a function of orientationpamddaps an increasing linear trend.
The linear trend implies that accuracy decreasesi@station increases. The middle
panel of Figure 4.13 compares the same averageva(#ds as the top panel with the
addition of the GLC predictions for each categofis figure shows that the GLC
predicts two approximately parallel linear funcgpmhich do not correspond to the
obtained data. The standardized residuals arershothe bottom panel, which show

an inverted U shape for Category A, and an incnggisend for Category B.
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C Narrow Obtained v Predicted
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Figure 4.14. Probability of a category A respori3@\j in the y axis plotted against orientationtie
axis. The narrow condition obtained data is disptbfpr all 4 subjects in the left column and thghti
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C Standardized Residuals Narrow
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Asymptotic Performance, Narrow Condition

Figure 4.14 shows the obtained P(A) as a functistimulus orientation for
individual subjects (left column), and with the giations of the GLC (right column).
The scatterplots in the right column of Figure 4shéw the obtained values as a
function of the GLC predictions based on the fitite individual data. The GLC was
able to capture the overall trend in the datan@&iedized residuals for the Narrow
condition are shown for individual subjects in Fig4.15, plotted as a function of

stimulus orientation. No systematic deviationsenapparent.
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Figure 4.16. For the Narrow condition the top patews the overall average obtained values. The
middle panel shows the average obtained vs. pestliclues and the bottom panel displays the average
standardized residuals from the GLC model fits.
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In order to test whether systematic trends wersgmiein the residuals from the
GLC fits to the data from the Wide and Narrow cdiogis we conducted a series of

polynomial regressions. Results are shown in Taldlg.

Humans Category A Category B
B B
Wide Linear B Quadratic R2 Linear B Quadratic R2
C -0.12 0.06 0.01 0.09 0.06 0.01
M 0.07 -0.34 * 0.11* 0.08 -0.27 0.05
S 0.02 -0.63 *** 0.39 *** 0.12 -0.01 0.01
T -0.24 -0.23 0.14 * 0.27 -0.36 * 0.18 *
Mean -0.13 -0.50 *** 0.31 *** 0.28 -0.29 * 0.14*
Narrow
C -0.16 0.08 0.03 0.09 0.10 0.02
M -0.15 -0.02 0.03 -0.01 0.12 0.01
S -0.14 0.22 0.06 0.02 0.21 0.05
T 0.10 -0.16 0.03 -0.05 -0.01 0.00
Mean -0.18 0.09 0.04 0.09 0.13 0.03

Table 4.11. The left most column shows the labekfch pigeon followed by the mean and the boltl tex
divides the conditions, wide and narrow. Categ®iyg on the left set of results columns and catedpr

on the right. Each category reports the Beta Wi for the linear coefficient} for the quadratic
coefficients and the R2 values. Significant regi@s results fof Linear orp Quadratic are indicated

with an asterisk (*) for 0.1, 0.05, 0.01 significanevels using *, ** and *** respectively.

The left-most column of Table 4.11 indicates thieject and condition (Wide
80°, Narrow 10°). The left and right sides of thble show beta weightg)(for both
linear and quadratic components and R2 valuesC&egory A and B stimuli,

respectively. For the Wide condition, the resatiafirm the significant inverted U
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pattern for Category A in terms of a negative qatdrcoefficient for subjects M and S,
as well as for the average data. It is notablettiese subjects had higher accuracy
levels M = 87%) than the other®i(= 73%; see Table 7). The quadratic coefficient fo
subject T was also negative, and approached signidep = 0.12, while the overall
regression was significant. This suggests thaisacsubjects, there was a systematic
deviation of the obtained Category A data frompghedictions of the GLC that could

be described approximately as an inverted U pattBiotably this inverted U pattern is
consistent with that obtained with pigeons in Expent 1 (see Figure 4.6). For
Category B, there were no systematic results agusiects. The quadratic component
was negative and significant for subject T andntigan data. However, this trend is
hard to discern in the scatterplots (Figures 4ri®413). Results for the Narrow
condition confirm the visual inspection of Figu#45 and 4.16. There were no
significant components in the individual or meatadaOverall, these analyses suggest
that results for humans were similar to those oleiwith pigeons in Experiment 1:
There was an inverted-U shape pattern of accuraeyfanction of orientation for
Category A in the Wide condition, and results fritra Narrow condition showed

unidimensional control by frequency and no systendsviations from the GLC.

EXPERIMENT 1 AND 2 COMBINED RESULTS

Because one of the primary aims of these expetsneas to compare the results

of humans and pigeons in the same two-dimensiof@mation-integration task, the
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following section compares the data from the twecsgs directly.

First overall accuracy was averaged across swogent shown in Figure 4.17.

The shaded bars correspond to the human data enchfiied bars the pigeon data.
The wide condition is on the left and the narrowtlmaright. Bars for each group of
subjects and conditions are mean data and stardarbars are included. Overall
accuracy was higher for pigeons than for humarkerVide conditionM’s = 89% and
80%, respectively, resulting in a significarstatistic,t(178) = 4.09, p<0.05. However,
it is notable that accuracy was higher and comparaldevels obtained with pigeons
for the two humans (M and S) whose data showeditmeficant inverted-U pattern for
Category A responding. A likely explanation foethbverall increased accuracy of the
pigeons was the substantially greater number alstrpigeons completed an average of
6480 trials compared to 720 trials for the humaBg.contrast, in the narrow condition
there was no systematic difference in accuracy éetvgpecies: human subjects were
slightly more accurate with 66% correct and theepitgs at 64% correct, despite the
difference in amount of training. Additionally ghdifference did not result in a

significantt statistic, t(178) = -0.49, p<0.05.

For a more detailed comparison, we examinedpagnces of humans and
pigeons separately for each category. Figure ghb8vsp(A) for humans plotted
againstp(A) for pigeons in the Wide condition, separataly €ategory A (filled
squares) and Category B (unfilled triangles). €ategory A, the points fall
unsystematically around the major diagonal (iiee bf equality), suggesting that there
was no overall difference in performance for pigeand humans. Consistent with this,

the average accuracy for Category A was 81% and 7&@8pectively, for pigeons and
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humans. By contrast, Figure 4.18 shows that huhpemformance was overall less
accurate than pigeons for Category B. The poaitgénerally above the major
diagonal, and average accuracies for Category B @4% and 83%, respectively, for
pigeons and humans. Thus, accuracies for Catégetynuli were similar, whereas
humans were generally less accurate for Categorig@&asons for this difference are

unclear.

Similar scatterplots are provided for the Nar@wdition in Figure 4.19. For
both Category A and B, responding of both specias similar and highly correlated,
as evidenced by the points falling unsystematicaibund the major diagonal in each
case. The average accuracies for Category A fmopis and humans were 61% and

65%, respectively, and for Category B were 71% &0b.

Figure 4.20 shows average performance for humaahpigeons in the Wide
condition, withp(A) plotted as a function of orientation for bottegories. The
inverted-U shaped pattern for Category A respondirgpparent for both humans and
pigeons. The lower accurate performance of hurf@rSategory B stimuli is evident
in thatp(A) values for humans (unfilled triangles) generéit above corresponding

values for pigeons (crosses).

Overall, these results suggest that performancesmins and pigeons were
remarkably similar. The only substantive differemeas that humans were overall less
accurate in the Wide condition, which could beedhto their performance with
Category B stimuli, but not Category A stimuli. $pending to Category A stimuli for
both species showed an inverted-U shaped pattexacofacy as a function of

orientation.
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Figure 4.17. Overall accuracy in both the wide aadow conditions for both the humans and pigeons
with standard error bars.
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Figure 4.18. Average P(A) in the Wide condition fimmans and pigeons plotted against each other on
the x and y axis respectively. The optimal decigiound is the solid line along the major diagonal.
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Figure 4.19. Average P(A) in the Narrow condition fiumans and pigeons plotted against each other on
the x and y axis respectively. The optimal decisdound is the solid line along the major diagonal.
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Average Human Obtained v Pigeon Obtained
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GENERAL DISCUSSION

The primary goal of these experiments was to coemparformance of humans
and pigeons on the information integration taskettgyed by Ashby and Gott (1988).
In research on human categorization, this taské@m®sented a paradigmatic example
of procedural learning, in which subjects mustrezategories through trial-and-error
rather than the application of explicit rules (AghBlfonso-Reese, Turken & Waldron,
1998). Thus the present research provided an appty to test whether humans and
pigeons learn visual categories through a similal-&nd-error process. In Experiment
1, pigeons responded in the information-integratask with Gabor stimuli, in which
the range of orientation values was either wideasrow. In Experiment 2, humans
responded on the same tasks using exactly the stamdi. Results showed that
performances of pigeons and humans were overallsierilar. For both species,
accuracy was greater in the Wide than Narrow cardiand model comparison
analyses showed that the GLC provided a bettés fite data than unidimensional
models for the Wide but not the Narrow conditiondt pigeons and humans. In the
Narrow condition, the unidimensional frequency nqaevided a better account of the
data, again for all pigeons and humans. This omsfthat both species were
responding on the basis of both dimensions in tideWondition, but only frequency

in the Narrow condition.

Closer examination of the data showed that the geatiern of systematic

deviations from GLC predictions — an inverted-Usthpattern for Category A
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responding — was evident for both species. Intamgialthough accuracy was overall
greater for pigeons in the Wide condition, thiget#nce was attributable to Category B
responding, where accuracy was lower for humargerd'was no systematic difference
in accuracy for Category A. Although perfect aemyrwas possible, performance of
both humans and pigeons was less than optimaltmdmmditions. Whereas the lower
accuracy in the Narrow condition can be attributethe increased difficulty of the

task, the suboptimal performance in the Wide caorliivas a necessary consequence
of the inverted-U shaped pattern of Category Aoesing. In addition to this pattern,
humans also showed overall less accuracy for Catdgystimuli, although it is

possible that their performance would have increéastney had an equivalent amount

of training as the pigeons.

To examine the question of optimality in the imf@tion-integration task more
generally, we compiled a list of all experimentsaoeld find which have used tasks
based on Ashby and Gott’s (1988) procedure, in vthie stimuli are based on
bivariate normal distributions with zero covariascand have reported accuracy data.
In this case, the optimal decision bound is lineemjlar to the experiments reported
here. These studies are displayed in Table 4.a@&hwshows for each the number of
participants, number of trials, the average peroéobrrect responses, as well as an
effect size measure. The effect size was calalilagehe Euclidean distance between
the centroids for each category divided by the @dstandard deviation, and was
intended as a rough measure of the overall ditfyood the category discrimination in
terms of the stimulus parameters. For those exyastis that used overlapping category

structures in which perfect accuracy was imposgilde some stimuli were closer to
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the other category centroid), accuracy was defineédrms of the percentage of

responses that were consistent with the optimahlinlecision bound.

As Table 4.12 shows, optimality was rarely achiev&he only study for which
performance was nearly optimal was Ashby and A&88), who used line segments
that varied in terms of width and height. As dssed in Chapter 1, these stimuli are
problematic because the component dimensions arfelhoseparable, and both width
and height are measured in the same units. Thyjeds may have learned to use a
rule such as: Respond Category A if the heiggtester than the width, otherwise
respond Category B. Use of such a rule may haétesl in higher levels of accuracy.
Interestingly, accuracy for Herbranson et al.’sepigs never reached the same levels as
humans in Ashby and Gott’s (1988) study, despieefdict that they used similar stimuli
(rectangles) and the pigeons received far moreitrg The most reasonable
conclusion is that pigeons were unable to leaneaand their asymptotic accuracy was
lower. With humans, accuracy levels were lower msigmuli with separable
dimensions were used. Ashby and Maddox (1990)wcted an experiment similar to
Ashby and Gott (1988) except with semicircles thaated in terms of size and the
orientation of a radial spoke as stimuli (i.e., sl circles; Shepard, 1964). Overall
accuracy levels were much lower in their study ly 81% of responses consistent with
the optimal linear decision bound — compared tobfsimd Gott (1988). Because the
most salient difference between these experimeasstiae nature of the stimuli, it
suggests that when humans are prevented from aswulg, their performance in the

information integration task also falls short otiopality.
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To investigate whether our effect size measuréntpgedict performance in the
Il task, we examined whether accuracy levels wereetated with effect size for
studies that used non-overlapping categories.di&wvith overlapping categories were
excluded because some used non-separable stinshlb(A& Gott, 1988). Across
studies, there was a small positive correlation,¥8, which failed to reach
significance. Although this provides no evideritat performance varied with the
difficulty of the task (as measured by the efféze} given the relatively small number
of studies, and the other potential confounds ,(pigeons vs humans), the question of
how the difficulty of the Il task may vary depengdian category distributions requires

further study.
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# # % Effect

Source Experiment Participants Trials Correct Stimuli Size

Ashby & Gott 1988 Expl 3 300 96* Line length & width 1.68
Ashby & Gott 1988 Exp 3 3 300 91* Line length & width 0.87
Ashby & Maddox 1990 Exp 3 5 300 81* Semi circles and radial line 1.68
Herbranson, Fremouw & Shimp 1999 Expl/1 4 5400 88* Rectangles width & height 3.29
Maddox, Ashby & Gottlob 1998 LI 42 100 87 Circle diameter and radial line 3.35
Ashby, Queller & Berretty 1999 Exp la 5 800 67 Line length & orientation 2.39
Maddox, Ashby & Bohil 2003 Exp 1 10 320 68 Gabor patch O & F 1.17
Our CH 1 Il Condition 6 1260 83 Gabor patch O & F 1.33

Our CH 2 Exp 1 Pigeon W 3 6480 89 Gabor patch O & F 1.52

Our CH 2 Exp 2 Human W 4 720 80 Gabor patch O & F 1.52

Table 4.12. For each of the sources displayed etefty Experiment, number of participants anddripercent correct, stimuli and calculated effézt is
displayed. Percent correct values marked withséerigk indicate that category distributions ovepked making perfect performance impossible. Is¢he
cases the value indicates the percent of resp@ossistent with the optimal linear decision bound.
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Comparison of the Narrow and Wide conditions shotixd control by orientation (and
accuracy) decreased when the range of orientatibres was reduced from 8 10.
This contrasts with research with unidimensioniahsli which has shown that
restrictions in stimulus range produce an incréasensitivity in successive
discriminations (Hinson & Lockhead, 1986). In ghsy/chophysics literature, these
have been known aange effectsand have sometimes been interpreted in terms of
limitations in working memory capacity (Gravetterl&ckhead, 1973; Miller, 1956).
By contrast, in the Narrow condition when the ranferientation values was restricted
there was a reduction in control by that dimensi®his suggests that different
dimensions may compete for attentional resourcéisarl task. If differences along
one dimension are more salient than the otherait atquire exclusive control over

responding. This may have occurred for frequendipé Narrow condition.

An interesting result was that although pigeons$goered overall better in the
Wide condition than humans, accuracy levels foepigg and humans were comparable
in the Narrow condition. This shows that humaesrhing was more efficient in the
Narrow condition because they received far fewaaning trials than the pigeons did.
Because model comparison analyses showed thatn@isgdor both species was
controlled solely by frequency in the Narrow coradit a possible reason for the
humans’ greater efficiency was that they were usimgle-based strategy. This result
would be consistent with Smith, Minda and Washi@604), who found that humans

could learn categories that could be describedrimg of verbal rules faster.

An important difference between the present reseand previous studies is

that we examined asymptotic performance in detpégifically in terms of whether
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accuracy varied systematically as a function ohghis characteristics. We plotted
accuracy as a function of orientation, althoughcaeld have just as well examined
performance as a function of frequency becausdithensions were strongly

correlated.

Overall, the present results provide additionatiemce that performance of
humans and nonhumans is comparable when learniegarges that cannot be
described in terms of verbal rules. The similaotyhe data for pigeons and humans
suggests an intriguing possibility: Organisms relagre a system for learning visual
categories on the basis of experience that evohiins of years ago, prior to the
divergence of avians and mammals. However, thearéaof the GLC to account for the
data suggests that our results may pose a chalfengedels of category learning.
Whether other theoretical accounts, such as exerapthprototype theory, can predict

these results is considered in the next chapter.
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Chapter 4 - General Discussion: The Fuzzy Prototype (FP)&lo

The purpose of this chapter is to consider therdtecal implications of the
empirical work in Chapters 2 and 3 for our underdiag of category learning and
serve as a General Discussion for the thesis. UBecane of the major questions at the
outset was whether organisms are capable of infiemantegration in tasks using
stimuli with fully-separable dimensions, we beginrbviewing Massaro and
Friedman’s (1990) definition of information integjom. We then summarize the key
empirical results from previous experiments in thissis, and ask whether they are
consistent with current models for category leagnikVe will consider the General
Linear Classifier and decision-bound models (Ash®82; Ashby & Alfonso-Reese,
1995); prototype models (Posner & Keele, 1968)ngplar models (Nosofsky, 1984,
1986); and the striatal pattern classifier (Ashbé&ldron, 1999). As we will show,
our results are not predicted by current modeld,samwe propose a new model, which
we call the ‘fuzzy prototype’ model. We show thi@s model is able to account for the
major patterns in the data reported in this thesid, holds promise as an account of

category learning in both humans and non-humans.

Information integration

Massaro and Friedman (1990) provided a definitibimf@rmation integration
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in the context of a General Stage Theory for comaii discrimination. According to
their view, accurate performance requires thregesta Evaluation, Integration, and
Decision. In the Evaluation stage, physical stiratg translated into their equivalent
psychological representations. During the Integrestage, some combination of
representations is effected. Finally, in the Eatibin stage some decision rule is

implemented and the subject makes a response.

Based on this general framework, Massaro and Faedif©90) defined
integration modelgs those which assumed that some combinatiorpofsentations
from different dimensions occurred during the Imé&ign stage. By contrast, iman-
integration modelthe output of the Evaluation stage is assuméeeda directly to the

Decision stage.

Summary of key empirical results

The ‘information integration’ task developed byhhy and Gott (1988) and used
extensively in subsequent research by Ashby, Maa@aaoixcolleagues (e.g., Maddox &
Ashby, 2004) was employed in experiments reporedhapters 2 and 3. In Chapter 2,
pigeons responded in an information integratiok tish stimuli modelled closely on
those used by Maddox et al. (2003); in Chapteo#) bigeons and humans were
exposed to an information integration task in wittod range of orientation values was
either wide or narrow across different conditioimuli used in the task for
Experiment 2 (wide condition) are shown in Figurk. 4The task is described as

‘information integration’ because correct respogdiaquires attention to both
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orientation and frequency. The key result, obthimeChapter 2 (and replicated within
the experiment) for pigeons, and in Chapter 3 hlpigeons and humans, is that the
probability of a correct response for Category Adidnated as the stimuli with overall
higher orientation values in Figure 4.1) was areited-U shaped function of

orientation, whereas accuracy of responding foe@aty B did not vary systematically

with orientation.

For the RB task, there was evidence of an intenadtetween orientation and
frequency in Chapter 2. Specifically, accuracy Wwgher in the frequency-relevant RB
task when the orientation was relatively low (ireear horizontal lines), compared to

when it was relatively high (i.e., near vertical).

Assessment of Current Models for Category Learning

As we now show, results from both the informatiategration and rule-based
tasks pose a challenge to current models for catdgarning. We first consider the
General Linear Classifier (GLC). As noted in Cleapt2 and 3, the systematic pattern
in the residuals confirms that the GLC is unabladoount for the inverted-U shape in
the information-integration task. However, thessuits are problematic for any
decision-bound model. The basic assumption ofdlaiss of models is that organisms
learn a ‘boundary’ in the internally-representathstus space, such that stimuli are
classified as one category or the other dependingloch side of the boundary that a
stimulus presented on a trial lies. The probabditresponding to a category depends

on its distance from the boundary. Particularhblesome for decision-bound models
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is the asymmetry of our results: The inverted-dpghwas obtained for Category A,
but not Category B. Note that by itself, the inedrU shape could be accommodated
by a decision-bound model — for example, the Gegnadratic Classifier, which
allows for a non-linear (i.e., curved) decision bdary. To account for the inverted-U
pattern, the boundary would need to be shapedlikescent such that mid-range
Category A stimuli lie above the boundary, whergasuli on either end were closer to
the boundary. However, the problem is that acguf@cCategory B would then need
to be higher for stimuli with relatively low or Higorientation values. In general, any
decision bound will require that accuracy vary syatnoally, because as the boundary
moves closer to stimuli in one category, it necelysaoves away from the other.
Thus, the asymmetry in our results poses a probbemlecision-bound models in

general.

According to prototype models (e.g., Posner & Ke&B78), subjects learn to
associate a most typical or representative exenfplatotype’) with each category
response. When a stimulus is presented on adtibjects compute the similarity of
the stimulus to each prototype, and the probakldlitiesponding is then determined by
the ratio of the similarities. Prototype models anable to account for several features
of our data. First, if the prototype is assumetdadhe centroid of each category,
prototype models would predict that accuracy shadeicrease within each category as
the orientation value moves away from the centrdibat is, there should be a peak in
accuracy near the centroid (prototype), and a syimcaédecline on either side.
However, the inverted-U shape pattern that we elesenad a plateau, not a well-

defined peak. The prototype model is also unabbetount for the relatively constant
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accuracy for Category B. Thus the prototype mdalitd to provide a full explanation

of our results.

In exemplar models, subjects store a number gésgmtative stimuli
(‘exemplars’) from each category in memory (Brodk878; Nosofsky, 1986). When a
stimulus is presented on a trial, the similaritywesen the stimulus and each exemplar
is computed for both categories. The similaritgres are averaged within categories,
and the probability of responding is determinedh®yrelative average similarity.
Ashby and Alfonso-Reese (1995) showed that exenmpdatels were similar to
decision-bound models such as the GLC, in that baitiels were equivalent to a
process in which the observer estimated the likelihthat the stimulus presented on a
trial was sampled from each category distributiBlowever, Ashby and Alfonso-Reese
(1995) distinguished between parametric and noapatric classifiers. A parametric
classifier assumes that subjects must estimatengdess (i.e., means, variances,
covariances) of the stimulus distributions assedatith each category. For example,
the GLC is a parametric classifier, because thgstils taken to assume that the
stimulus distributions are multivariate normal,lwtero covariance. Under these
conditions, the optimal decision bound is lineastify & Gott, 1988). Thus because
the subject must estimate the parameters of thebdisons in order to compute the
optimal decision bound, the GLC is a parametrissifeer. By contrast, Ashby and
Alfonso-Reese (1995) noted that exemplar modelg wen-parametric classifiers,
because subjects were not assumed to estimatbuiiginal parameters. However,
Ashby and Alfonso-Reese showed that exemplar madsis equivalent to a process in

which subjects estimated the likelihood that a ghira was drawn from the
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distributions for each category essentially by gsrrelative-frequency histogram

(specifically, a Parzen kernel estimator).

Applied to the information integration task in &ig 4, exemplar models make
equivalent predictions as the GLC because theyrassioat subjects should learn the
stimuli in each category, and eventually reachrogltiperformance. Exemplar models
have naa priori basis to predict that suboptimal performance sheaty
systematically with orientation; specifically tithe inverted-U shape pattern should be
obtained for Category A, but not the correspongtiatiern for Category B. Thus our

results also pose a challenge for exemplar models.

The final model to consider is the striatal pattelassifier (SPC; Ashby &
Waldron, 1999), which has been used as the ‘proeétiarning’ component in
multiple systems neurobiological theories propdsgéshby and colleagues, including
COVIS (Ashby, Alfonso-Reese, Turken, & Waldron, 89and SPEED (Ashby, Ennis,
& Spiering, 2007). According to the SPC, stimark represented in a perceptual
space, which corresponds to a region in the striatBecause there are many
projections from visual cortex that converge ongtratum (Saint-Cyr, Ungerleider, &
Desimone, 1990), Ashby and Waldron (1999) proptksatithe striatum provides a
low-resolution representation of the perceptuatepal he model assumes that different
cells (and hence regions of the perceptual spasm)rbe associated with different
category responses through reinforcement learniitpough the SPC provides a
neurobiologically-plausible account of categoryrihéag, similar to exemplar theory it
provides no rationale for predicting the inverteghhaped pattern that we observed.

The model cannot explain why the accuracy shoubtirdeat either extreme of the
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orientation dimension, and why a corresponding ghan accuracy does not also occur

for Category B.

The other result that is problematic for currewidels of category learning was
obtained in the rule-based (RB) task. In the RBdtion in Experiment 1 and 2 of
Chapter 2, an interaction was obtained betweemuéecy and orientation, such that
sensitivity to frequency (and accuracy) was greatern the orientation value was
relatively low (i.e., lines close to horizontalpthwhen it was relatively high (i.e., lines
close to vertical). Apart from making post-hocuamptions, none of the models for
category learning described above — the GLC, pyp®iodel, exemplar model, and
SPC — can predict this result. Next we consideztiver other models might be able to

provide a more satisfactory account of our data.

Associative Model

First we pursued alternative models which we hapéaght yield a ‘non-
integration’ model, in Massaro and Friedman’s ()380ms, which could successfully
account for performance in the information-integnatask. The most promising
approach was to assume that subjects learneddoiaigsextreme values on a
particular category with a specific response. Kéyefeature of the model was that
critical values on different dimensions were asstecl with the different category
responses. For example, a relatively high frequeatue might be associated with the
Category A response, whereas a relatively higmtaten value might be associated

with the Category B response. We then assumedhbaimilarity of the percept’s
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orientation and frequency to these extreme dimessimuld determine the probability
of a Category A response. In Massaro and Friedsrtanns, this would be a non-
integration model because the different respons#etecies were competing with each
other. When the frequency was high and the oriiemavas low (i.e., the upper left
corner of Figure 5.5), the probability of a CatggArresponse would be maximal;
whereas when the frequency was low and the orientatas high (i.e., lower right

corner of Figure 5.5), the probability of a Catggarresponse would be minimal.

As it turned out, this model yielded a descriptadrthe data that for all practical
purposes was equivalent to the GLC. To see haswotgurred, imagine points on the
major diagonal in Figure 5 (i.e., decision line @itC). For these points, the
orientation and frequency are equally close tortheireme values (i.e., values
associated with the prototypes), and so the subjemild be indifferent between
category A and B. However, if the point moves @ithorizontally or vertically — so
that it becomes closer to one extreme value buth@obther — then the subject will be
more likely to choose one of the categories. kan®le, if the point moves towards
the right, the orientation becomes closer to theeexe value associated with Category

B, and hence choice for Category A decreases.

At first we thought that this model might providenare parsimonious account
of performance than the GLC because it was a ni@gtiation model. However,
because its predictions were virtually identicalltose of the GLC when fitted to the
data, it had exactly the same failure in termsesfig unable to account for the
inverted-U shaped pattern in the Category A responénd the interaction in the RB

condition. Also like the GLC, it predicted thatcacacy for the two categories would
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show corresponding changes, and thus could nouatéor the asymmetry in the

results (i.e., the lack of systematic change inueary for Category B).
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Summary

Given that existing models for category learnmgwell as the associative
model, are unable to account for these findingsgtirestion becomes whether an
alternative model might be more successful. Ini@aar, from a comparative
perspective the present results suggest that geedeqategory learning in humans and
pigeons may be based on a similar process, atftgatbte information integration task.

The question we address now is how that procestrib@gcharacterized.

Fuzzy Prototype Model

Similar to previous models, we assume that stimpé&rsepts in the Gabor task
can be represented in a two-dimensional stimulasespsuch as that in Figure 5.5.
This figure shows the stimulus categories fromiti@ mation integration task used in
earlier chapters in this thesis. The basic idega®@hew model is very simple: Through
a process of trial-and-error reinforcement learnaagontiguous region of the
perceptual space becomes gradually associatecndtiof the categories. Note that
this assumption is similar to the SPC (Ashby & Waid 1999); below we consider
differences between the FP model and other modelsategory learning. This region
which we will represent for sake of simplicity aree segment in the stimulus space is
referred to as a ‘fuzzy prototype’. Importantlyplyone such prototype is assumed to
be learned, and is associated with only one ofwloecategories. In what follows, we
will assume that the prototype is associated wate@ory A, although there is no

reason that it could not be Category B insteade ilfportant point is that the subject
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learns to associate one prototype with a partia@lsponse, and that prototype is a
linear segment (i.e., fuzzy) of the stimulus spadéhen a stimulus is presented on a
trial, the probability that the subject respondat&yory A’ is determined by the
similarity of the percept with the fuzzy prototyp8imilarity is calculated as a function
of the minimum distance between the percept anfuit®y prototype. Specifically, the
model computes the minimum Euclidean distance fifmgrpoint which represents the
percept to the line segment. The probability spanding ‘Category A’ is then a

decreasing function of the distance.

Several additional assumptions are required fontbdel to make quantitative
predictions. First, because orientation and fraguerre measured in different physical
units, values for both dimensions were standardfzedZ scores). Note that an
alternative might be to use scale factors for elctension, but because of the added
complexity we did not pursue this approach hereco8d, the coordinates for the end
points of the line segment defining the fuzzy ptygpe were assumed to be parameters
in the model; once these were defined, five eqesdlgced interior points were
computed. Thus the fuzzy prototype was represdmntetico-linear points in the
stimulus space. Note that the number of inter@n{s is arbitrary, and the fuzzy
prototype could be defined analytically in termsadinear equation. However, we
believe that a finite number of points provides@eavrealistic model of how the
prototype might be represented in visual corteke minimum distance is then
computed as the minimum of the distances betweeasttimulus presented on a given
trial, and the 7 points comprising the prototypénally, the probability of responding

‘Category A’ is calculated as a decreasing powaction of the minimum distance.
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Specifically, the odds ratio for responding Catgglris a negative power function of

the minimum distance:

_ L D4
=D~ Y, which implies thatp(A) =

Application of the Fuzzy Prototype Model to thedat

Next we apply the fuzzy prototype (FP) model te data from the empirical
chapters of this thesis. The major question istiadrethe FP model can provide an
adequate account of the data, unlike current mddelsategory learning. The FP
model contains five fitted parameters: The origateand frequency coordinates
(standardized) for the two endpoints of the lingnsent, and the power function
exponentg. The FP model was applied to group-mean data thenfiollowing
conditions: Chapter 2: Experiment 1: 1l conditi®B condition (frequency-relevant),
Il replication condition; Experiment 2: RB frequegnelevant; RB orientation-relevant.
Chapter 3: Humans, ll-wide condition; Pigeonsyidie condition. In all cases,
parameters were obtained using maximum likelihcgohation. A nonlinear
optimization program (Microsoft Excel Solver) wased to obtain the parameter

estimates.
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Chapter 3 — Experiment 1

Standardized Residuals
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Figure 5.1. Obtained probability of responding gatg a (P(A) plotted against orientation. The left
column shows the obtained data in the unfillechgglas and filled squares for category a and b
respectively. Also plotted are the values predidtig the FP with crosses and x symbols. The tigihtd
column shows the standardized residuals from gjttire FP.
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Figure 5.2. The left panels show the average obthus. predicted values for Pigeons (top) and Hsnflaottom) and the right panels display the average

standardized residuals from the FP model fits.
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Chapter 2 - Experiment 2
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Figure 5.3. The left column shows the obtained a@bdltiy of responding category a (P(A) plotted angaiorientation for the Orientation (top) and Freagy
(bottom) conditions. Obtained data is shown inthglled triangles and filled squares for categargnd b respectively. Also plotted are the vareslicted
by the FP with crosses and x symbols. The rightdr@lumn shows the standardized residuals fraindithe FP.
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ChlExp1l Ch2 Chl Exp 2
Il RB Il Rep Pigeon Human RB F RB O
FP VAC 0.98 0.95 0.98 0.94 0.88 0.97 0.96

AIC 77.13 83.46 69.39 68.84 91.87 56.58 70.17

GLC VAC 0.89 0.85 0.88 0.93 0.70 0.94 0.93

AlC 67.66 75.15 66.96 63.71 84.86 53.56 67.58

Table 5.1. VAC and AIC values for the FP and GL(deis, fitted to data from each experiment.

Category A Category B
FP B Linear B Quadratic R2 B Linear B Quadratic R?
I CH1 Exp 1 -0.23 0.70 *** 0.49 *** 0.03 -0.15 0.02
RB CH1 Exp 1 0.12 -0.21 0.05 -0.21 0.2 0.06
Il Rep CH1
Exp 1 -0.05 -0.26 0.08 0.38 ** 0.40 ** 0.34 ***
Human CH2 -0.1 0.15 0.24 0.26 0.05 0.08
Pigeon CH2 0.02 -0.15 0.02 0.28 -0.06 0.08
RB O CH1
Exp 2 0.03 -0.15 0.02 0.28 -0.06 0.08
RB F CH1 Exp
2 -0.24 -0.01 0.06 0.53 *** 0.25* 0.38 ***

Table 5.2. Regression results for the FP modeaah @f the experiments. Asterisks indicate
significance levels. Significant regression restdr Linear,p Quadratic and Rvalues are indicated
with an asterisk (*) for 0.1, 0.05, 0.01 significanevels using *, ** and *** respectively.
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Orient Orient
FP 1 Freq 1 7 Freq 7 QExp
Il CH1 Exp 1 2.26 0.02 48.11 0.04 3.08
RB CH1 Exp 1 -54.51 0.03 110.45 0.03 1.99
Il Rep CH1 Exp
1 1.24 0.02 49.15 0.04 3.65
Human CH2 17.87 0.02 67.09 0.04 2.82
Pigeon CH2 9.33 0.02 82.51 0.05 4.63
RB O CH1 Exp
2 29.87 0.02 34.51 0.05 2.33
RB F CH1 Exp
2 29.87 0.02 34.51 0.05 2.33

Table 5.3. Model fit parameters, Orient 1 and Frege coordinates of one endpoint of the model;
whereas orient7 and freq7 are the coordinatedéoother. QEXxp is the exponent in the power famncti
in Equation 1.

Scatterplots of obtained versus predicted datastartiardized residuals, are
shown for FP model fits to data from Chapter 2 pétknent 1, Chapter 3 and Chapter
2 — Experiment 2, respectively, in Figures 1 thto@g Parameter estimates and

variance accounted for, and likelihood statisties@ovided in Table 5.1.

First we will consider the FP fits to the infornaatiintegration condition data,
specifically Chapters 2 — Il condition and replioat and Chapter 3, humans and
pigeons. As Figures 5.1 and 5.2 show, in eachexd data sets, the inverted-U shaped
pattern for response accuracy for Category A siimat accurately predicted by the

FP model. Also, the model predicted that accufacfategory B stimuli was
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approximately constant across the range of oriemaalues. The ability of the FP
model to capture the patterns in the data is cowfir by the goodness-of-fit statistics.
The percentage of variance accounted for by theméékel was higher than that
achieved by the GLC in each case: In both conubtiof Chapter 2, the FP model
accounted for 98% of the variance, and in Chapecdunted for 94% and 88%,
respectively, of the pigeon and human data. Thesdts provide evidence that the FP
model is able to account for the major featuregesformance in the information-

integration conditions.

To provide a more detailed examination of the FRl@héits, we performed a
series of polynomial regressions in which the statided residuals were regressed on
the orientation values. As in the previous chaptire orientation values were centred
prior to the regressions. Those regressions shthetdhe residuals from the GLC
predictions deviated systematically as a functiboreentation: For the average data,
the Category A residuals showed a significant negafuadratic component (resulting
from the GLC’s inability to predict the invertedghaped pattern) and a significant
positive linear component (resulting from the GL@ability to predict that accuracy
was approximately constant for Category B). Threselts were obtained for both the
Il and replication conditions of Chapter 2, andfoth humans and pigeons in the wide

condition in Chapter 3.

By contrast, regressions of the standardized ralsdtom FP model fits on
orientation values revealed no systematic deviamnss conditions. These results are
shown in Table 5.2. There was a significant pesitjuadratic component for Category

A in the 1l condition of Chapter 2, but not in treplication condition and in neither of
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the conditions from Chapter 3. For Category B lifear and quadratic components
were significant in the Il replication condition{@pter 2), but not in the Il condition or
in the Chapter 3 conditions. Because of the lilad of Type | error due to the
number of statistical tests, and the failure tdicege any significant component — in
contrast to the GLC results — we conclude thatall;e¢he predictions of the FP model
did not deviate systematically from the predictaties. This result, in combination
with the excellent goodness-of-fit statistics asdaibility to capture the qualitative
patterns in the data, suggests that the FP modeidas a superior account of

responding in the information-integration task canga with other current models.

Next we consider the fits of the FP model to theandiem the RB conditions.
As shown in Chapter 2, accuracy in the RB — freqyealevant task was greater when
the orientation was relatively low (i.e., closehtarizontal) than when it was relatively
high (i.e., close to vertical), suggesting an iatéion between frequency and
orientation. As Figure 5.1 shows, the FP model alds to predict this interaction, in
both experiments of Chapter 2. The variance adeduior by the FP model was 95%
and 97%, respectively, in these conditions, confignthat the model was able to
capture the major features of the data. Polynoregtessions on the standardized
residuals found that no components were signifigatite RB — frequency relevant
condition from Experiment 1 for either categoryheTinear and quadratic components
were positive and significant for Category B foe tRB — frequency-relevant condition
in Experiment 2. This pattern can be observetienawer right panel of Figure 5.3:
For Category B stimuli, the standardized residghtsved a U-shaped pattern (positive

quadratic). Although reasons why this pattern alatgained are unclear, it was not
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observed in Experiment 1 and thus may have beetodtigance.

By contrast, the GLC was unable to account forkeraction in the RB —
frequency-relevant data. For both RB frequencguaht conditions, the regression
analyses revealed significant positive linear congpds for Category A, and negative
linear components for Category B (see Figures ZXperiment 1, and Figure 3.5 —
Experiment 2, in Chapter 2). Thus, the deviatiornthe GLC predictions were

systematic, whereas those for the FP model were not

Somewhat surprisingly, no similar interaction wasained in the RB —
orientation relevant condition. Accuracy was apprately constant for both
categories as a function of frequency (see FigLBe 5The FP model accounted for a
high proportion of the variance (96%), and regi@ssion the standardized residuals
found no systematic deviations. Although reasehg the interaction between
frequency and orientation was obtained in the feagy-relevant but not orientation-
relevant condition are unclear, the FP model predid good account of performance in

both RB conditions.
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Chapter 2 - Experiment 1

Il Fuzzy Prototype Plot
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Figure 5.4. Stimuli plots (orientation x, frequencgxis) for the 1l, RB and Il replication conditis, FP

model predictions are displayed by connected ‘rilggls.
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Chapter 3
Pigeon Fuzzy Prototype Plot
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Chapter 2 - Experiment 2
Orientation Relevant Fuzzy Prototype Plot
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Some insight into how the FP model was able to @ucfor the data from the
present experiments can be gained from Figurethfodigh 5.6, which show the
category stimuli from each condition plotted imatdimensional stimulus space. For
each condition, the fuzzy prototype associated thighmodel fit — the line segment in
the stimulus space — is also shown. First weidenperformance in the information-

integration tasks.

By convention, the category with the overall higfreguency values was
designated as Category A in the information integnaconditions. In each case, the
fuzzy prototype was associated with (i.e., closgiQategory A. The reason for this, in
terms of the model fits, is straightforward: THe iodel will predict the inverted-U
shape for the category associated with the pro&tigpthe extent that the prototype
does not extend over the full range of the categtnyuli. Because the inverted-U
shape was always obtained for pigeons and humar@ategory A but not Category B,
the fuzzy prototype was always associated with geateA. However, just why this
occurred is unclear. In terms of the model, therea priori reason to expect that the
fuzzy prototype would not be associated with Cate@ Thus, an important question
for future research will be to explore conditionsahich prototypes might be learned to
specific categories. For example, subjects coaldiben pre-training with one of the
categories but not the other, and later exposéuketéull information-integration task.
Presumably, subjects pre-trained with CategorytBerahan Category A would be

predisposed to associate the fuzzy prototype wategdbry B (and vice versa).
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Another salient aspect of the FP fits to the infation-integration conditions is
that the fuzzy prototype did not superimpose onGagegory A stimuli, but rather was
somewhat above and to the left (see Figures 5.46d&)d Thus, none of the actual
stimuli were equivalent to the prototype. Whetthes is a realistic assumption — in the
sense that the estimated prototype correspondsbfects’ learning, or in more
cognitivist terms, to how the prototype is représdnn the brain — is an open question.
However, the prototype’s displacement ensuredthi@at was at least some distance
between the Category A stimuli and the prototylf¢he prototype had overlapped the
stimuli, then the distances for some of the stimuuld have been close to zero,
implying near-perfect accuracy. Yet results shotted accuracy, though high, fell
short of optimality: The average accuracy for @atg A stimuli in the peak

performance range (i.e., the top of the inverteshdpe) was approximately 90%.

A future study could use a transfer design in wisithnuli that are calculated to
lie on the fuzzy prototype, based on fits of thedeldo baseline data, could be
presented in test trials. If the fuzzy prototypaumn accurate representation of learning
in the task, then performance on these test slatsild be superior to that on baseline

trials (assuming that comparable levels of subogitaccuracy were obtained as here).

If the displacement of the fuzzy prototype awayfrihe Category A stimuli is
due to the need for the model to accommodate ntmalperformance, another way
to achieve this might be to include terms to repnéslifferent sources of variance that
might affect the decision process, such as peraépticriterial variance. In functional
terms, including one of more of these sources ohwae means that it is never (or

rarely) possible to have a stimulus that has adest of zero from the fuzzy prototype.
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Perceptual and criterial variance have been indwadepart of General Recognition
Theory (GRT), which is the family of models thatluides the GLC (Ashby &
Townshend, 1986). However, Ashby has noted thatiéry difficult to distinguish
between perceptual and criterial variance empigicahd in most applications, they
have been subsumed into a single parameter. Anggiterm corresponds to the
assumption that the stimulus, as represented auggsed by the organism, likely
differs from that presented by the experimentes;uliriance quantifies the degree of
uncertainty and is usually modelled as a Gaussiadam variate. With respect to the
fuzzy prototype model, there are three likely searof variance: Variance might affect
the prototype (so that the effective prototype oy @iven trial was not constant, but
could be characterized as a random variable wéheaified distribution), the stimulus
percept, or the perceived distance between theiktsand the prototype. Variance in
the distance would presumably reflect the sum ofgtype and stimulus variance, as
well as any variance unique to the computationistadce, and so would likely be the
largest source of variance in the system. Inclydiese sources of variance would
make the model more complicated, but would be rsacgsn case future research
showed that performance decreased as transferlistioved away from Category A in

the direction of the fuzzy prototype.

Alternatively, the displacement of the Categoryratptype away from
Category B evident in Figures 5.4 through 5.6 mayabcurate in the sense that it
corresponds to subjects’ learning. If so, this ldaesemble a kind of ‘peak shift’ in
which the stimulus value associated with maximapomding is moved away from the

value associated with the other response. Petiknsds originally reported for pigeons
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in terms of wavelength generalization gradientdwihg discrimination training
(Hanson, 1959), but is a general phenomenon, hdeéeg reported in the context of
temporal and spatial discrimination for both pigeand humans (Bizo & McMahon,
2007; Cheng & Spetch, 2002; Cheng, Spetch & Johnd®@97), and human category

learning (McLaren, Bennett, Guttman-Nahir, Kim & skintosh, 1995).

Another possible way in which the model might bedified or enhanced would
be to change the function relating distance to @ateA responding. In the current
version of the model, we assumed that the oddsspianding to Category A was a
(negative) power function of the distance betwéenstimulus percept and the fuzzy
prototype. This assumption was adequate to acdoutite present data, and in fact
performed better than other monotonically-decrepfinctions, such as exponential
and hyperbolic, that we also investigated. HowgiNés possible that a different

function might prove more satisfactory in the fetur

In summary, the Fuzzy Prototype model is a newehfod category learning,
and was to account for the major pattern of reslitained in the present experiments,
unlike previous models. These results includedriierted U-shape pattern for
Category A and the lack of a corresponding patte@ategory B for the information
integration task, and the interaction between ¢aiggan and frequency in the rule-
based, frequency-relevant task. That we obtairgch#gar pattern of results for
humans and pigeons in the information integratask strongly suggests that a
common process is responsible for learning of geuze categories in both species.
The FP model explains this process in terms ohlagrto associate a contiguous

region in the perceptual space with one category.
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Relationship of Fuzzy Prototype model to existingl@s of category learning

The fuzzy prototype model bears some similarittesurrent models of
category learning, in particular the striatal pattelassifier (SPC; Ashby & Waldron,
1999) and exemplar models (e.g., Nosofsky, 198&e the SPC, the fuzzy prototype
model assumes that a region of perceptual spaceisscassociated with a particular
response, but differs in that only one region soagmted with a response, and this
region is described parsimoniously as a contiglioessegment, which could
correspond to a cluster of cells in the striatubhus the FP model imposes more

constraint on the nature of the category repretientthan does the SPC.

Another difference between the FP model and the iSR@t the FP model
assumes that subjects learn an ‘A/not A’ respoukeeduring the information-
integration task. This is arguably a simpler decistrategy than that assumed by the
SPC, which assumes that two response categori¢saaned, that is, an ‘A or B’
strategy. The advantage of an ‘A-not A’ strategyhiat only one prototype need be
maintained in working memory. It was our intuitidrased on experience with
responding in the information-integration task tie easiest way to respond
accurately was to decide whether it was one pdati@ategory, and to make the other
response if the stimulus did not seem to matchdatggory. Ashby and Waldron
(1999) commented that none of the participants taslydebriefed had ever been able
to describe the optimal rule for the task, “everewlhis or her performance was well
described by this rule. Frequently, observers Birspy that their responses were just a

‘gut reaction™ (p. 366). Ashby, Ennis and Spigyi(2007) have argued that these types
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of responses suggest that performance in the iftomintegration task is based on
implicit learning. Thus the fuzzy prototype mogebvides a more specific
characterization of that learning process for ttiermation-integration tasks pioneered

by Ashby and colleagues.

The FP model also shares some similarities witmgtar theory (Brooks,
1978; Nosofsky, 1986). The fuzzy prototype is espnted as a set of points, which
could be viewed as a set of exemplars. Howeveretis an important difference:
According to exemplar models, subjects comparestingulus percept on a given trial
with all of the exemplars that are stored in memokyerages are computed for both
categories, and responding is determined by tla¢ivelsimilarity. By contrast, the FP
model assumes that the subject computes the minidistance to the set of points
comprising the fuzzy prototype. This is an impottdistinction because the FP model

emphasizes the fuzzy prototype as an integral natitjust a collection of points.

Standardized distances (i.8.scores) were used in the computations for the FP
model. As previously noted, we made this assumgticsolve the problem of
orientation and frequency being measured in diffepiysical units, and because it
was simpler than other alternatives, such as imatusieparate scaling factors for each
dimension. However, how this ‘units’ problem idvaal is critical in terms of how the
model is to be interpreted, and particularly whethbkas a realistic neurobiological
interpretation. If the basic assumption of the $€brrect — that is, that there a low-
resolution map of the stimulus space created irstii@um via cortical projections —
then the units problem may be solved through tregipimg. For example, a stimulus

space of arbitrary size could be mapped onto gefimetwork of cells laid out as a grid
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by first anchoring the extreme points on each dsrmento the respective ends of the
grid, and then filling out the interior points tlugh an interpolation-like process. For
this to occur, cells would need to be able to redpa relativistic terms (i.e., sensitive
to the distance between the percept and the exsjenhe this way, the grid would be
scalable and could represent, at least in princgptevo-dimensional stimulus space
with arbitrary ranges on both dimensions. If theglus space was represented in this
way, judgments of similarity in terms of Euclidedistances based on standardized

values would seem plausible.

However, with this type of scalable representatire should be no effects of
stimulus range. This prediction is contradicteddsults from the Narrow condition in
Chapter 3. In that condition, when the range @draation values was limited to 10
degrees, accuracy decreased for both pigeons andrsy and model analyses
suggested that responding was controlled solefydmuency. As currently formulated,
the FP model provides no principled basis for prigaly when this should occur. It
may be that when trial-to-trial variation in a peutar stimulus dimension is low (as it
was for orientation in the Narrow condition), thegess by which the stimulus space is
mapped onto the striatum changes, and extremesvalua more salient dimension
(i.e., frequency in the Narrow condition) becomelamred exclusively in the grid.
Somehow, the effective representation must thengebecoming one- rather than

two-dimensional. Exactly how this happens remaimdear.

Finally, to return to one of the questions motingtthe present research, what
does it mean to say that subjects are ‘integratifaymation’? If the FP model is

accurate, are subjects really ‘integrating’ diffgrsources of information? According
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to Massaro and Friedman’s (1990) definition, theveer is yes. In their terms, the
calculation of Euclidean distances based on staimat stimulus values requires a
combination of the representations of differenhsius dimensions. We therefore
conclude that pigeons as well as humans are capaldsponding accurately in
information-integration tasks using stimuli withmignsions that are fully separable, and
that the best account of this performance — thenB&el — assumes that their decision
process requires thianctional equivalenof information integration: The computation
of distance in a standardized two-dimensional dtisygpace. However, just how these
computations are performed at the neurobiologeatllremains an open question.
Results from this thesis suggest that in functideahs, these computations are likely
to be similar for pigeons and humans, and thusnauoyobiologically-based model for
category learning should not be based on feathegsate unique to the mammalian

brain.

Directions for Future Research

Although the present studies have obtained evielémet both pigeons and
humans show similar deviations from optimality lne information integration and
rule-based tasks which can be predicted by the é&tRelhmuch work remains to be
done before this model can be established on wiglaiother models for category
learning. Future research should explore the gditbeof the empirical results reported

here. For example, would a similar pattern of dgwn from optimality be obtained



Category Learning 207

with different stimuli, such as Shepard circles€fdrd, 1964). Second, all categories
were based on normal distributions. Although ndmdnstributions have been widely
used in previous research on categorization, itlevba interesting to test whether
similar results are obtained in other situatiomshsas uniform distributions. The
primary characteristic of normal distributionshsit stimuli become increasingly less
likely to occur as the distance from the mean iases, and thus the inverted-U shaped
pattern that we obtained might have occurred becstisiuli at the extremes were
presented infrequently. It seems reasonable teatxpat subjects’ learning would
depend on the distributional characteristics ofdfivauli; for example, with a uniform
distribution the ‘fuzzy prototype’ may extend osebroader segment of the stimulus
space than with a normal distribution. Experimewitsch varied the category

distributions could test this prediction, and pdevadditional support for the FP model.

It would also be worthwhile to test the validitfytbe assumption of the FP
model that subjects use an ‘A/Not-A’ response rdlbis could be accomplished in a
number of ways. If an A/Not-A response rule igieal, then subjects should more
readily acquire a new discrimination in which tlesponse or Gabor stimuli for
Category B are changed than if those for CategoayeAchanged. By contrast, if
subjects learn an A-B response rule, there shaailobsystematic difference in
acquisition depending on whether the stimuli fote@ary A or B are changed. A
related experiment could be conducted in whichréisponse associated with either
Category A or B is changed after baseline trainiigubjects learn an A/Not-A
response rule, then it should be more difficuliern a new discrimination in which

the response for Category A is changed compareldanging the response for
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Category B. Finally, although one particular catggvas always associated with the
fuzzy prototype in the present research (i.e., @ateA), it should be possible to
control which category is learned through apprdprieaining. For example, subjects
that are given pre-training with a successive digsaation in which they have to
respond or not respond, depending on whether ailstsnis a member of Category B
should be more likely to apply a B/Not-B responde when subsequently trained in
the A vs B discrimination. Experiments like theselld provide additional support for

the FP model, or else show that an alternativelatds necessary.

Additional empirical research is also needed,i@adrly to test the generality of
our finding that humans and pigeons apparentlyausemmon process for visual
category learning. For example, we found thateadmg of pigeons in the RB-
frequency relevant condition showed evidence dhtaraction between frequency and
orientation, such that pigeons were more accuranthe orientation was near
vertical than when it was near horizontal. Althbugasons for this finding are unclear,
it is important to test whether it can also be ot#d with humans. Given the strong
evidence for two category learning systems in hignane based on reinforcement
learning (i.e., trial and error) used in the infation integration task and another based
on explicit hypothesis testing and used in the-based task (Maddox & Ashby, 2003),
the similarity between the pigeon and human resul@hapter 3 suggests that both
species may use a common system for reinforceraarmtihg. It is unlikely that
pigeons would use a separate category learningrayfstr the rule-based and
information-integration tasks, for not oraypriori reasons, but also the fact that

accuracy levels and acquisition rates for the @ei¢ were not systematically different
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in Chapter 2. Thus if humans failed to show aarmmttion between orientation and
frequency in the RB-frequency relevant task, thigedince with the pigeon results

might result from humans using an explicit system.

The results of the RB condition in Experiment Cbfapter 2 also suggest the
possibility of a perceptual interaction betweendhientation and frequency
dimensions. For example, based on pigeons’ resutisuld be concluded that
discrimination of frequency was more accurate wihenorientations were closer to
zero degrees (horizontal) and less accurate whentations were closer to 90 degrees
(vertical). The raises an important question alboetseparability of the dimensions
used in Gabor patches. In order for stimuli tdllly separable they must be
analyzable in terms of their component dimensians, the effects of those dimensions
should be independent. Although the frequencyaishtation of Gabor patches have
been taken as fully separable by previous resear¢aay., Maddox & Ashby 2004,
Maddox, Ashby & Bohil 2003), our results may calht into question. A logical next
step to test this issue of separability would bednduct a follow up RB experiment
with orientation as the relevant dimension andatikely narrow range of stimuli with
pigeons and also a human experiment comparing BherRentation and RB frequency

condition's performance.

Gabor patches are artificial, computer-generatetu and thus their ecological
validity might be questioned. However, whetheerehces based on research using
Gabor stimuli might be limited due to this fact lmd been given much consideration.
Anecdotal evidence suggests that Gabor patcheseaisini the 11 human condition in

Chapter 2 required a non-verbalizable strategyotter words when participants were
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asked about their strategy for accuracy they repdtat it was difficult to describe or
that they figured it out "through experience”. g consistent with everyday human
experience when solving multidimensional probleha tn spite of our ability to
achieve high accuracy we often can't describe hewdevit. In this way Gabor patches
in the 1l condition arguably mimic more naturalegarization tasks where learning
through experience is required. A future experintkat uses naturalistic yet separable
stimuli would be interesting to conduct. Then dliféerences and similarities could be
analyzed and shed further light on the issue ologgral validity with the 1l and RB

tasks.

The question of absolute versus relative stimullges is also relevant. The
current experiment manipulations all involved otéion values that were centered on
45 degrees and ranged from no less than 10 de@resshorizontal) to 80 degrees.
Based on the results of Experiment 1 it was cleatr accuracy was not only higher near
the extremes of the orientation values but alsonwdreentation was closer to
horizontal. Thus a future experiment using a rasfgaientation values centered on a
value other than 45 degrees would be a logical stext. This would help determine
whether the accuracy patterns were due to the raingtemulus values for orientation
and specifically whether Gabor orientations cldeerertical are more difficult to

categorize.
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Conclusion

Empirical research in this thesis has shown #matling of visual categories by
pigeons and humans in ‘information integration’egairy tasks shows intriguing
similarities. These are category structures wharmot be described in terms of simple
verbal rules, and are learned through the badisabiand-error experience —
reinforcement learning. We found that performarafgsgeons and humans deviated
from optimality — and predictions of current modelgh as the GLC — in similar and
systematic ways. This result strongly suggestgthsence of a single process for
visual category learning, common across species.h&Ve proposed a ‘fuzzy
prototype’ model for this process, which assumas shbjects learn to associate a line
segment in the stimulus space with one partic@gponse. This model provided a
parsimonious account of our results, and perforbetter than the GLC or other
current models for category learning. Although thiee the assumptions of the model
will be supported by future experiments is unclear believe that researchers should
continue to use the comparative paradigm emplayekis thesis, to better understand

how organisms learn visual categories on the lmdsgperience.
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TECHNICAL APPENDIX

Our plan to conduct comparative research on categimn with pigeons and
humans required a software and hardware systemspébial requirements, including
the ability to generate and display the Gabor ilmagkfter displaying the images, the
system needed to record and evaluate inputs vintscreen and response keys (for
pigeons), or via the keyboard (for humans). Faeexnents with pigeons, a touch-
enabled screen was necessary for the orientingmesp required after the display of the
images. After each response the system neededvme feedback, either in the form of
grain or on-screen feedback for pigeons and hurmmaspectively, based on the
categorization response. The system also hadttod¢he location and time stamp for
each response.

Apart from the core functionality requirements tharere some secondary goals
for the hardware/software system. Rather thanalgre-generated Jpeg images of the
Gabor patches, we designed a system that couldajertbe images in real time. This
allowed for changes in the display stimuli to bedmavith ease and with precision and
for greater flexibility in the experimental proceds. We also wanted a system that
could be easily run from a laptop computer to featé collection of data with human
participants. By having the same control file agdtem for both pigeons and humans we
eliminated the possible errors associated withrigadifferent programs. Thus the
system represents a platform for comparative rekaar categorization with pigeons and

humans and should be useful for studies in thaduis well.
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New System - Hardware

We began the project by designing a pigeon chamhia¢mould include the
necessary features to support the research, imgudtouchscreen display, response keys
and grain feeder. These devices needed to beotledtfrom a single computer, and thus
to provide a common interface we used a readilytave 1/0 device based on the
Universal Serial Bus (USB) port. The advantagsuah an interface is that it is
inexpensive, available on both laptop and desktwpputers, and multiple interfaces can
be controlled at one time by one computer syst8och devices are available from a
variety of sources, but we selected the USB-102#a8ufactured by Measurement

Computing http://www.measurementcomputing.cgnwhich is shown in Figure 1.

Figure 1. PMD-1024LS DIO Interface

The PMD-1024LS has 24 bits of digital input/outfDtO), is based on industry

standard 82C55 control circuitry and is relativielgxpensive (USD$99.00). The size is
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small meeting our portability requirements andhbedware control can be achieved
through the use of any major programming languagkiding C, C++, Java, Python and
many others. The unit also ships with code androblibrary code samples. Each of the
units can be uniquely identified which gives therube ability to interface multiple
devices to a single computer and control each mtependently.

We then searched for a visual display with integgtdbuchscreen. We looked for
a small touch screen with high resolution for dethimage display and compact screen
size in order to permit a grain feeder to be madiote the front panel of the pigeon
chamber for reinforcer delivery. Based on thosglirements we choose the Open Frame
Touch monitor MTF064D available from TouchScreeomsc This touch screen
measures 6.4” diagonally and includes an Elo Syst&ocuTouch 5-Wire Resistive
touch overlay with USB interface. The screen ftases a standard VGA connector and

displays true VGA 640 (H) x 480(V) resolution. Tim@nitor is shown in Figure 2.

Figure 2. LCD Touch screen monitors
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The upper panel of Figure 3 shows a schematiceoirtelligence panel, which
was mounted on the front of the experimental chamb&here were four response keys
mounted near the corners of the touchscreen, wiuahd be illuminated with five
different colors (red, green, yellow, white anddjlvia rear-mounted LEDs. There also
was a houselight located above the touchscreepictire of the completed system (with

pigeon) is shown in the lower panel.
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Figure 3. The top panel shows a schematic drawitigeointelligence panel design. The bottom panel
shows a drawing of the finished product
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In total, four experimental chambers identicalitattshown in Figure 25 could be
controlled by a single computer. The computer gigations included the following:
Microsoft Windows XP operating system, 2.4 gigahémnerican Micro Devices (AMD)
processor, 2 gigabytes of ram, and 5 VGA video atst4 PCI video cards and 1 AGP

card).

New System - Software

The software required to run the system, contmletkperiments and collect the
data was developed after the hardware specificatiand been finalized. Our goal was to
design a control system that could run all of thedivare concurrently with at least 1-
millisecond accuracy, including the four touch serénterfaces, VGA outputs and I/O
interfaces, and to provide a high-level utilityttin@ade it easy to program experiments
without the need for the operator to learn a sfieeih language. Once the goals were
defined, we began developing the software in collation with the departmental

programmer.

The resulting software is call&kperimenteiand has turned out to be a useful
system not only for research with pigeons, but &dstaboratory coursework and
research conducted at the Van De Veer Institutédain research (Christchurch Medical
School) using eye-tracking hardware. The softweas written in Visual C++ and
allows for display of file-based images, but alsdudes a utility that generates the

Gabor patches on the fly based on a predefinedflisequency and orientation values.
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The list can be randomized with a common seed \@ubat each day the pigeons
receive the Gabor stimuli in a unique random ordgthat is common for all of the
subjects running in the session because it is basedcommon seed value. Other
elements of the experiment are created or changjed a simple graphical step-by-step
interface that is menu-driven and graphic intensizgperimental steps can be easily
sequenced based on text files and the steps thesasen each be randomized in with or
without replacement fashion. Steps can also beernadtingent on specific hardware
inputs and the outputs themselves can also be seggdieandomly or based on a

predefined list. Figure 4 shows a screen shot pkaof some of the menus available in

Experimenter

-~ Experimenter Main

Currently Loaded Experiments Charlotte's Stroop

Exp | TiHe | state [ step | Tineout | Step | Label | Type | SeqMumber |

1 Charlotke's Stroop Ready A ns £=1 PBranch branchevent  -842150451

2 Charlotte’s Stroop 2 Ready  NA i wié?  ShowIntroScreen  eventDispl...  -B42150451

3 Charlotke's Stroop 3 Ready A A E3 spaceken T > 347150451
w4 Show Background L. eventDispl..  -842150451
A35  Show coloured bext Texk -342150451
Es Wealk For mouse click.  bouchscreen -842150451

Load Experiment(s) Mew Experiment
Save Experiment(s) Edit File Paths
Save Selected Edit Displays
¥
3
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Experimenter Step Editor 1
Step
Description: |Di3|:'|‘5'-"J Gabor Patch T_';_'PEZIDiSpIa_y Gabor Patch ;I
S Globaltariable.
Tineout [F00000 S8 Vet - oK cacel__|
—Gabor Image Properties
~Preview

Rotation: | so.0000  ©° Degrees

" Radians

‘Cyles per.l—
Pixel: P2

Ima_98|
Width: o

Backgrourd e
Foreground e

Phase: [0.0000
Image
Height: EZ

"

Figure 4. Sample menus available in the software

The top panel of Figure 4 shows the makperimenteicontrol window. In this

window, specific control programs (i.e., experingrman be loaded to run, or edited.

While an experiment is running, progress can beitoid and any problems noted.

The bottom panel shows a screen capture of thedogenerating Gabor stimuli.

Various characteristics of the stimuli can be Syt including size and color, but for

our purposes the two most important features aguncy and orientation, which are

defined as ‘cycles per pixel’ and ‘rotation’, respeely, and can be changed by right-

clicking the appropriate boxes.
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The enclosed CD contains a fully functional vemsod theExperimenter
software package, as well as an example of thevaodtused to run the human
experiment contained in Chapter 3. Appendix A aom# instructions for running the
experiment as a demonstration on any computer mgrthie Windows XP operating
system. Appendix B is a user’s manual, which dbssrthe important features of

Experimenter.
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Appendix A

Place the enclosed CD into any Windows XP enatdadputer and open the
‘Open First’ text file. InstalExperimentemwith all of the default options by hitting the

‘Next’ button until installation is complete.

Now the necessary demonstration files must beecoipito theExperimenter
folder in order to run the program. This is dogecbpying and replacing the folders
marked ‘Images’ and ‘Experiments’ from the enclo€#2ito the same named default
folders that were created when installExperimenteexe. Open Windows explorer to
the folder entitledExperimentéer which is usually CExperimenteon most
computers. Then completely replace the folderglethtimages’ and ‘Experiments’

with the ones from the CD. Now the demonstratimgpam is ready to run.

To run the demonstration program, first launchEkperimenteprogram by
double clicking on the newly created desktop shortExperimentewill now open to
the main interface window. Next open the demotistriaconfiguration file by clicking
on the ‘Load Experiment’ button. After clickingaoutton, an explorer window will
open allowing you to browse and locate the dematstr program entitled
‘Humanl.xml’. Once that has been selected, it beyun by right clicking on it in the
experiments list. A right click gives several opis for running the procedure; select
the ‘initialize and run’ option from the list. Nig» data recording option window will
open, please leave all options in this window whita default settings and click the
‘save’ button. The demonstration experiment witvnbegin and the on-screen

instructions should be followed. Categorizatiosp@nses are made by pressing either
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the A or L keys on the keyboard. To exit the pamgy press the Escape key on the

keyboard.

Additional installation, running and editing insttions are found in the
comprehensive instruction manual Experimenterfound in Appendix B. The
instruction manual was prepared to make the progresassible to other users who had
little or no experience with the system but warttedse it for research or teaching

purposes.



Category Learning 236

Appendix B

Experimenter Overview

Experimenter Main Screen

WhenExperimenteis first run the Main Screen appears:

—

} % Experimenter

-Experimenter Main -

Currently Loaded Experiments Selected Expetiment

Exp | Title State | Step | Timeout | Step | Label Type | Seqhumber

Load Experiment(s) | Mew Experiment

Save Expetiment(s) | Edit File Paths

Save Selected I Edit Displavs

This wersion will expire in 95 days,

The first thing we are going to do is to load arserg configuration by clicking
the ‘Load Experiment(s) button. This configuratiwas previously created in
Experimenteiand then saved. This is the configuration loadestr
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aaal.xml @ current27 1005, =ml irvie
= aaaz.,xml disp. Ma
@ a8zl display kiming tests,x=ml @ ma
=) aaaa.xml DISPLAYS, ML ma
AAABMP, il DisplaySwap group, xml ma
@ aaabmpriurn, <ol EXPERIME, £ML ma
AfAGabor, xml experiment,xml ma
=) AddGabor Il xml Foo,=ml ma
ABATERT =l @ Help Config,xml Pre
black background Jan 06, Irnages. xrml Pre
4 | i

File name: |.-i'-.-'-‘-.'| il

Filez of type: |><ML Files [*.xml]

=
]

: j]i:uen I
Cancel |

We will select the configuration file, AAL.xml. Nethat all Experiment
Configuration files are in Extensible Markup LangagXML). This is a human-
readable text file format which is widely used be tnternet for platform-
independent data exchange. This is not the mastesft way to represent data
because of its large file size, but is very podald ubiquitous on the Internet, can
be displayed in any web browser and in a pinchbeamanually edited using any

text editor.

This is the Main Screen with the configuration ledd
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¥ Experimenter

—~Expetimenter Main

Currently Loaded Experiments Test Stuff
Exp | Title | state | step | Timeout | Step | Label | Tvpe Seq Mumber |
1 Test Stuff Ready T T .4_31 Stark Text Text 2015353465
B2 Label kel 1]
Double-Click on any experiment to edit .3 Display Image eventDispl,.. 124

B4  Bramch branchevent 20859503

Right-Click for ather options,

Load Expetiment(s) I Mew Expetiment

Save Experiment(s) I Edit File Paths

fli

Save Selected I Edit Displays

This wersion will expire in 95 dawvs.

This configuration consists of just one experiméntould just as easily have 2 or
10 or 1000 experiments, all of which would be lisie the left pane. The right
pane lists the steps in the experiment which iseculy selected in the left hand
pane. In this case there is only the single expantrao only its steps are listed.

The only items of interest in the left pane rightvare the Experiment Number,
Title and State. There are currently four poss@ibktes as follows:

* Ready —this is the default state and indicates that thpeament is ready
for editing or initialization preparatory to rungitthe experiment.

* Initialized — before running the experiment it must be ‘initiati>. Once
the experiment has been initialized it will be lststate. More on this

later.
* Running — This indicates that the experiment is executimgj @llecting
data.

» Finished- After the experiment has completed it entersdtase
showing that all steps have been executed.

Copying Experiments

It is frequently useful to create multiple copiéerperiments with minor
variations between each experimentEkperimentethis can be easily done by
first creating an experiment or loading an existiogfiguration with the
experiment in it, making a copy of the experimamd ¢hen editing the copy to
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make the changes. This can save a lot of time vaiheémizing copying errors.
Just remember that errors in the original will @oate!

To copy an experiment in the Main Screen, simpghRiClick on the experiment
to be copied and select ‘Copy’:

1~ Experimenter Main
Currenthy Loaded Experiments Psyc209 Yideo Experiment
[ Exp | Title | state | step | Timeout | Step I Label Type I Seq Nurmber 4 |
Psyc209 Yideo Exgast D i L%l Clear screen topin.,.  label 1}
I Init and Run | B2 WatForspacekey  keyinput 2015353466
Iritialize a3  Display Intro2 Bitmap  evertDispl.., 20859508
Run @4 ‘ait For space key kevinput 124
dtop L5 Display IntrozA Bk, everkDispl.,, 0
Pauss @6 ‘iait For space key kevyinput 124
% ﬂ? Cisplay Intro3 Bitmap  eventDispl... 0
Load Expetiment(s) | DZTetEe |Ew Experiment 8 Walt Forispars kley kaan!t 124
| wih?  Display Introd Bitmap  eventDispl,,. 0
@ 10 Wait For space key kevyinput a =
Save Experiment(s) ‘ Edit File Paths B Label label 0
ﬂ\’ 12 Show Shapes evertDispl,,, 0
Save Selected j Edit Displays !f }i'iiocm s fieﬂ'ji\f'feo ?2?59508 bl
< I | ¥

This versian will expire in 95 days,

Now right-click anywhere in the left-pane and stlPaste’:

You now have a duplicate copy of the first expenighich you can now edit to
your heart’s content. The Main Screen will now shbw copy:
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i Experimenter Main -

Currently Loaded Experiments Psyc209 Video Experiment
Title |State [ Step | Timeout | Step | Label | Type | SeqMumber A
Psyc209 Yideo Display 2 Ready TA TA wiaS  Display Introza Bit..,  eventDispl,.. 124
sy 209 Mideo Experimerit k Ready [ula3 Eﬁ Wait For space key kevinput il
Double-Click on any experiment to edit "‘ﬁ? UisplapTntrod Btinen fEvEntDispl, ., <124
f#Ra  ‘Waik For space key kevinput i}
Right-Click far ather aptions. waa?  Display Introd Bitmap  eventDispl... 124
he, 1L =10 Waik For space key kevinput 0
S93 Label label 19433760
w12 Showsh tispl... O
Load Experimentis) ‘ Mew Experiment i : Gl e _ISD
M1z video event¥ideo 20859508
ait For 1-8 Key Pr... winpiu
14 Wait for 1-8 Key P ke 13 2015353465

Save Experiment(s) ‘ Edit File Paths £=15 Eranch branchevent 0

w1t Display End TextI... eventDispl.. 2015353468
‘ [ER17  Wai for space key keinput 20859508

Save Selected ‘ Edit Displays

£ I |

This wersion will expire in 95 days.

You may also make multiple copies of any and glleziments by using Shift-
Click and Ctrl-Click in the left pane to select #periment(s) to be copied and
then following the procedure just outlined to mak@ies. Whichever experiment
is selected in the left pane will be shown in tight pane.

Editing an Experiment

To edit an existing experiment simply Double-Cliokhe left pane on the
experiment you wish to edit. To create and ediéw experiment Left-Click on
the ‘New Experiment’ button. For this example weuble-Click on the first
experiment to get to the Experiment Editor.

The Experiment Editor

This is how the Experiment Editor appears. Thisdrasxperiment already set
up::



Experirment Title: |F's_l,u:2EIE Yideo Experiment

Category Learning 241

Dizplay: |2. Dizplay Physical: E40W 2 480H Virtual: Change

Drata File: |E:"~E:-:perimentethata'xF'syu: 208 Lab.caw Ehangﬂ [ Relative Patk

Edit Experiment Pathz

[ Allow Spster Mouze

[ Allow Buntime Menu

12
13
14
15

Show Shapez

Yideo

Wfait for 1-8 Key Press
Branch

eve
eve
ke

o=t

brar

-Double-Click on Step bo Edit

-Right-Click on Selected Stepls) For Copy
and Paste options.

-Highlight and Drag to move selecked
stepis). 3

| Step | Lahel | Tupe | Extra L
ks Dizplay Introl Bitmap eventDizplayl...
ﬁ 2 Wialt for zpace key kepinput
iy 2 Dizplay IntraZ Bitmap eventDizplayl..
4 Wiait for zpace key k. eyinpit
ﬁ ] Dizplay Intro2d, Bitmap eventlizplayl...
@ G Wait for zpace key keinpLt
e Digplay Intro3 Bitmap eventDizplayl...
ﬁ a Wiait for zpace key kepinpuit
o 3 Dizplay Intrad Bitmap eventDizplayl...
ﬁ 10 ‘Wait for zpace key keninput
S 11 Label label
i
o
4

Cancel

These are the items in the Experiment Editor:

» Experiment Title — this is the user-defined name for the experimEmis can
be edited in place.

* Display - refers to the output display for all steps whiave a visual display
component. Clicking the ‘Change’ button brings e Display Editor dialog.

» Data File — this is the destination file name for all datgpwt when the
experiment is run. Clicking the ‘Change’ buttoimigs up a file dialog to set
the data file name.
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» Edit Experiment Paths— Opens the Editor for all default paths such as
‘Images’, ‘Data’, etc.

» Allow System Mouse- When the Experiment is running this allows the
mouse to appear if checked. For a single displatesy deselecting this hides
the mouse to prevent it ‘bleeding through’.

* Allow Runtime Menu — For multiple display systems you can monitor the
experiment’s progress in the Runtime Menu by selgc¢his.

The large pane shows the steps in the current iexper. These are in the order in
which they will be executed. The step number, asdined label specified in the
Step Editor and the Step Type are listed for esgh Ihe ‘Extra’ column shows
extra information such as the Step number thatad&r Step will branch to.

To copy steps, select the steps to copy with m&mske-Click or Ctrl-Click and
then Right-Click to bring up the sub menu and geé{@apy’ as shown below.
Now Right-Click again and select ‘Paste’. A copytled steps which you just
copied and pasted will now be appended at the tmodticthe steps list as shown
(highlighted for illustration):
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E speriment Title: |Pspc209 Video Display 2

Digplay: ]2. Digplay Physical; B400¢ & 480H Virtual: Change I

D ata File: ]EZ: “\EsperimentertiD atatPape 209 Lab.cay Change I [ Relstive Patk
- Experimenter
Edit Experiment Paths
Exp | Title [ Allow System Mouse I~ Allow Runtime Menu Mumber 4
1 Pswi
2 Psye2 5353465
| Step J Label | Type ! Extra FEEL
L% 1 Clear screen to pink. - SetVar 4 to... label
E 2 Wwiait for space key keyinput
& -‘h 3 Dizplay Introd Bitmap eventDisplayl. .
= 4 Wiait for space key leyinput
Load Exq .ﬁ iz} Dizplay Intra2é, Bitrnap eventDizplayl ..
=5 Label labed
e _ﬁ 7 Show Shapez eventDisplayl...
ﬂ g Wideo eventyideo
9 Whait for 1-8 Key Press keyinput B
saved |2 10 Branch branchewvent Branch to Step 7
wa 1 Diizplay End Text Image eventDisplayl. . | |
B 12 Wait for space key T
tfor 1-8 Key P
Branch joh to Step 7
Delete
Add Mew Step |

~ Caneel

Steps can be moved by highlighting and then dragtjia highlighted step(s) to
the step under which you want to move the stefs)nove a step(s) to be the
new first step(s), drag the highlighted items ® filst step. Then highlight and
drag the original first step down to its new propesition. Selection made be
made in any combination using Shift Left-Click a@@RL Left-Click operations.

Display Configuration and Selection

Experimentellows the concurrent use of as many display algts can be
physically installed on one computer. Much of thdytesting and development
was done using a system with one dual-head AGPRagisialapter and 4 PCI
display adapters for a total of six displays avdégall six were actually used).
The recent proliferation of USB 2.0 display adapiacreases the number of
display adapters possible, particularly for lonesalution display requirements.

In theExperiment Editor, theDisplay box shows the currently selected display.
Clicking on theChangebutton to the immediate right of that brings ue th
following Display Selection Editorwindow:
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Display Editor

Configured Displayvs Selected Display Configuration
D.| Mame ] hysical: 1024768
irtual 640x430

1 MULL Display
2 Display One - Geforce
3

Display Two GeForce Display Previsw

Create Mew Display %

Load Display Lisk

Save Display List

(0] 4 iZancel

This menu allows the selection of the Display te f this experiment
configuration. When creating a new experiment tiaheonly be the first entry,
‘NULL Display’. For the sake of illustration, twalditional Displays have been
configured. A virtually unlimited number of displagnfigurations may be added.
As in otherExperimentemmenus, any combination of configured Displays fnay
selected, copied, pasted or deleted at any tinmgulke normal Windows Shift-
Drag and Ctrl-Click key combinations.

There are two ways to activate thesplay Configuration Editor : Double-
Clicking on an existing Display in th@onfigured Display box and by selecting
theCreate New Displaybutton. Performing these actions brings up the
following:
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Display Editor. @

| Display Mame: | Display Available Adapters: JN\.-'IDIA GeForce PCk 5300 0 'l,'l,.'l,DISPLAVlj Test ]
] Adapter Number: Sterent | GeF v 5300 14),3DISPLAYE

| TouchScreen fvailable i 10 Board Test

i Mumber Change I IO | —‘—J Murmber =

Hardware Display Adapter 1 Phiysical Display Size: 640 x 430H

Adapter Format: |DSDFMT_X8RSGBBB

Resolution: |640 by 460

Ll L] Lol

Refresh Rate: |6D Hz

Custom Display Adapter

Res iy |07 Res i |4 Refresh; | i

-Wirtual Display Settings
—align

Offset: 152

wlo wlo Left | center | Right |

Size Boktam
| 640 1| 480
s g Match Hardware
oK | Cancel |

This menu provides the following options:

* Available Adapters —This is a list of the display adaptemst are
physically present on the system. No more or less.

» Test —selecting this will display a test image on therently selected
adapter

» Display Name —This can be any descriptive name.

» Hardware Display Adapter Adapter Format — This is a drop-down list
of the colour formats supported by the currentlgcted adapter.

» Hardware Display Adapter Resolution —This shows all screen
resolution that this adapter supports. It will Bbbw any unsupported
resolutions.

» Hardware Display Adapter Refresh Rate —This will show any refresh
rates actually allowed for the current adaptehatdurrently selected
Resolution

* Custom Display Adapter X/Y/Refresh —These settings allow a user-
defined display adapter. This is included for depetent of experiments
intended to be run on a different computer.
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» Virtual Display Settings Offset/Size X/Y -These settings allow a user to
have virtual displays within the actual physicaplay contexts. The idea
here is to allow separate experiments to run coeatly using different
portions of the same physical display adapter.

» Virtual Display Settings Align Options —These are helpers to allow
rapid placement d¥irtual Displays.

» Match Hardware — this forces thé&/irtual Display setting to match the
Physical Displayselections.

The Sequence Editor and Sequence Lists

The concept of th8equencd.ist is key toExperimenterand is frequently
mentioned throughout this documentSAquenceList is simply a list of similar
items such as a list of text strings or a list wifrbers or a list of RGB colour
values. These are used primarily to repeatedlyecycbugh a block of Steps,
substituting different values from ti&quence Lisfor variables in the Step. One
example would be to display different images eautle & particular Step is
executed by having a Sequence List of filenames.

Sequence Lists may be defined in one of two wayst plain-text Microsoft

Excel .CSV file and as an automatically-generategu8nce List. CSV files may
consist of multiple columns where each columnsgjparate Sequence List.
Columns are comma delimited and rows are delinbiethe ‘newline’ character.
The only restriction at present is that each colunust have the same number of
items. Adjacent columns may consist of any typdai#, although the type needs
to be the same for the entire column.

Columns may be further broken down into categoAesexample would be the
case where 20 images are to be presented. A cotuaoneated in any text editor
or in Excel with the first 10 items being filenanfes a particular category of
image, say images of birds. The next ten itemgpiatares of dogs. We configure
the list to be presented in random order and waltg data for which category
was presented for matching to a subsequent keg.pnés simply set the number
of categories to ‘2’ an&xperimenterautomatically tracks which category is
presented each time even though the ordering reas dmvoluted.

If two Sequence Lists are used and the random nusaeeg for each list is the
same then there is a guarantee that the listbwithtndomized in the same order.
In the example just given we may have a secondmolof numbers representing
the expected key press for a subseqeyboard Input step. If the seed is the
same gven across multiple steps, then the rows, although presented in random
order, will always retain their relative orderirighis is true whether different
columns in one CSYV file are used, different CS¥dibr any combination.
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For RGB Colour Sequence Lists, each item is assumedcupy 3 consecutive
columns in the same CSV file representing the [Eeden and Blue values
respectively. Values should be 0-255. Higher validsbe modulus 255.

In the Step Editor screens for the various step types certain vasawill have a
yellow or green background. This signifies thatwheable is ‘Sequenceable’.
The following snippet from the Display Image Steafitar illustrates this:

Display Image Step Editor

Source Image Attributes

File: | EMEW _PROJNIMAGESIBUTTONS BMF  Browse

Relative Path Width: [640  Height: | 480

Cukput Image Display Atkributes

I T
Fesize | Height:l._
Note that thd=ile, Width andHeight boxes all have yellow background. Right-
Clicking on any of these Sequenceable variablessgilre option to ‘Edit
Sequence List'. If that option is selected thenSleguence Editor for that variable
is displayed. Avellow background indicates that the actual value enterédue
box will always be used. If we enable the sequémtiee Sequence Editor, then
this will change to greenbackground in which case the Sequence List is used
and the value in the box is ignored.

WhenEdit Sequence Listis selected for a variable, tBequence Editorscreen
pops up:
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Sequence Editor @

Enable ; [ Temporal
Sequence v i {rterpolation
List Size: | 100 Fired (v
ok Y ariable e 1234 Time - Here Time

et Yarable Seed: [nteral

I lvarE - Mumnber 5 a
s Cats: | AddRand — | Totl
M i
Type: [ASCH Sting Sl B e
istEnd o
Seq — Freshufle:
frcr ]1
o Auto-Generate
‘whards |ntegers Floating Ft. R G B
* From *#ford List Shart | | : l— l_. I_
(™ Bandom Letters . l—
Length: |/ 2o | | ; :
Case: |-":"-" Capitals [\_J Use Formula; |
Mo Change

" Usze File| &)l Lower Case
Firzt Capitalized
Handam Ease . 21 1 3
Ful: L= ~ Al C S
Colum: | e File I ki ] W Llse Experiments Folder

oK Cancel ‘ Help |

This is a description of configuration options ve Sequence Editor

» Enable Sequence # this is checked then the Sequence List will bedufor
the Step configuration option that we selectedetiotg this screen. If not
checked then the Sequence List will NOT be used.

» List Size —this option is used only when the Auto-Generatgorautton is
ticked. This is the number of items created in @to-@enerated list.

» Set Variable to Value —This item is only meaningful for key and numeric
lists. When the parent step is executed it willtsetselected Global Variable
to the current Sequence List value.

* Type —Read-Only — this shows the type of the variabée,lnteger, RGB, etc.

» Random —if checked then the list will be presented in pkerandom order.

* Fixed Seed —This is a fixed number that determines the ordpoithe
randomized list. All lists using this seed, assugrtimey are the same length,
will be randomized in the same order.

» Time Seed -f checked then thExperimenteprogram start time value is
added to th&ixed Seedvalue. This allows different lists to be randondize



Category Learning 249

the same order as each other, but that order eidlitberent each time the
program is run.

Number Cats —Number of categories to divide the list into.

Maximum Consec —maximum number of consecutive items of the same
category to allow.

Seq Incr —meaningful only if temporal interpolation is naibg used. This is
the number of list items to increment each timestiep is executed. Normally
setto 1.

List End Reshuffle —the normal behaviour for a Sequence List is t@fr
when the list is exhausted. This means that iep bas a Sequenced variable
with a list size of 10 items and the step is exedutl times then it will start at
the beginning of the list on the "iteration. IfList End Reshuffle is checked
then the list will be randomized again when exhedisthis does not affect
correlated lists — they will always reordered tams.

Temporal Interpolation None —checked - Sequence Lists are always
executed sequentiallivery time the step is executed the Sequence List
counter is incremented.

Temporal Interpolation Interval — checked the Sequence List counter is
incremented only is the time specified in Time box has elapsed since the
last time this step incremented.

Temporal Interpolation Total — a total time is specified in thEme box.
This is the total time that the list should be ctetgly sequenced. For
example, the Sequence List has 100 elements whatlidsbe completely
exhausted in 2000 milliseconds. Each time theistegecuted the current
item in the list to be used is calculated fromfitst time the step was
executed. This means that if 1001 ms has elapsedtiie item at position 50
would be used. If next time 1008 ms has elapsed fiiember 50 would be
used again. If the next time 1017 ms has elapsdwle use the item at
position 51, because that is the nearest expeeted This is useful for
smooth movement of bitmap images across the screen.

Temporal Interpolation End-to-End — this is only valid for auto-generated
numerical Sequence Lists. It works the same a3 oked except the actual
value to be used is calculated instead of theiposih the list. This is based
on Start/Stop values specified in th&uto-generatesection values and the
value inTime. If the Start value is 12, th&top value is 24, and thEime
value is 1000 then the value used would be caledlas 12 + elapsed * (24-
12)/1000)

Auto-Generate From Word List — create a word list using the built-in
10,000+ most common English words list. This ubesvalue in thé.ist Size
box to determine number of words to grab.

Auto-Generate Random Letters —create a word list using random letters.
This uses the value in thest Size box to determine number of ‘words’ to
generate.

Auto-Generate Length —length of word taken from word list or created from
random letters..



Category Learning 250

* Auto-Generate Case Jetter case to use in word lists as shown in the
example above..

» Auto-Generate Integer/Floating Pt. Start/Stop -for numerical values this
will be the first and last values for the list. Tiie will be the length of the
value in thelist Size box. A linear interpolation is used to determihe t
value of each item in the list. List may be low4hnigr high-low.

» Auto-Generate R/G/B Start/Stop —a list of RGB values is created using the
value in thelist Size box for the size of the list and performs a linear
interpolation to create items. If values largemt@85 are used in the Start or
Stop boxes then the value will be the calculatddevenodulus 255. To create
a complete grey-scale list use a list size of 2866 RGB Start values of 0, O,
0 and Stop values of 255,255,255.

* Auto-Generate Case Jetter case to use in word lists as shown in the
example above..

Editing Steps
Getting to the Step Editor is similar to gettinghe Experiment Editor from the
Main Screen. To edit an existing step, Double-Ctiokstep the step to edit. To
add a new step, just Right-Click and select ‘AddvN\&tep’ from the drop-down
menu.

The Step Editor

The Step Editor looks similar to the following:
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‘Experiment Editor

Experiment T itls: lF’syc209 “Wideo Experiment

Digplay: 12. Display Physical 6400 « 480H Yirtual: Change ! Edit

Diata File: ;C:\Expel’lmentel\Data\F’syc’209 Lab.csw Change l I Relative Patk Step l Label ] Type i Seq Mumber
=1 Display Introl Btmap  eventDispl... 124
Edit Experiment Pathz | select Dats e Lad 2 ‘Wait for space key keyinput 2015353463
4a?  Display Intro2 Bitmap _ evenkDispl,,, 20859508

I Allow Syste] Experimenter Step Editor
 Step

Descriptinn'!Displaylnnm Bitmap Type: |Displa_u|mage _:J View/Edit Paths i

Global ' ariable
1 Display Intral Bitmap - SetVariable
| ig =
Wwait for space key | Timeout: B T it ]| ;Var o i 0K l Cancel 1

™
L&

| Step | Label

Drizplay Intro2 Bitrmap
‘Wait for space key
Display Intra24 Bitmap
‘Wait for space key
Display Intra3 Bitmap File: | EYNEW_PRONIMAGES|EUTTONS.BMH  Browse i
“Wait for space key
Dizplay Introd Bitmap Relative Path ™ ‘Width: W Height: T‘E
“Wait for space key
Label - Oukput Image Display Attributes
Show Shapes

Videa 2 Width; iT =

r
W ait for 1-8 Kep Press it Height: | 50
EBranch Center v

E i
Overlay [
£ Center: | 0 I 240

Mask [
Transparent -
Render v Mask Color! M.I
Preload [ Background!
Colar: C_han_gEJ

-~ Display Image Step Editor

~Source Image Attributes ———— Image Preview

=
=
=
&
&=
=
=
%
=
il
=
=
s

R=639, Y=479

The Step Editor Dialog consists of two sectionse Tdp section is the same for
every type of step. The bottom section is spetifithe type of step. In the
example above the bottom section is specific toDigplay Image’ Step.

Clicking in the top section'$ype window would display the following. Note that
this installation oExperimentehas several Step Plugins in addition to the basic
Step types. Any Step type shown in the Type pulladonenu may be selected. It
is also possible to change the type of an exisieg here.
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|| Experimenter Step Editor

Step

Description: | Display Image Type: | Display Image LI | \fiew/E dit Paths I
Global Yariable Display Image ~

: | Set VWariable ideo
Timeout: {0 T B |m B duid Cancel
Misrlay Image Step Editar -

Label, Clear Screen, !
Branch

Digplay Text
Keyboard Input

=

ol ;
e T
2 A

N
oteletelatetels
SR

B

Editing theDescription box will change the label of this particular step ie th
Experiment Editor. This can be as descriptive &slad.

TheTimeout box is the time in milliseconds that this step wake to execute
when the experiment is running. If this step isigplay Image step with a timeout
value of 1000, then when the experiment is runaimg it reaches this step the
image will be displayed for 1000 milliseconds (t@®d) at which time the next
step will execute. If the timeout were 0 millisedsrthen the image would be
displayed and the next step would immediately ete=cu

Timeouts are not used for every type of step. WhBmnanch Step is executed it
immediately branches or else moves on to the riegtregardless of the timeout
value. When a Key Input Step is executed the steg @hen an allowed key is
pressed or at the timeout, whichever comes first.

Note that the Timeout box has a yellow backgrodiis means that it is a
‘Sequenceable’ value. This is to allow differembdiouts each time this particular
Step is executed.

Checking theSet Variable to Timeoutbox will set the selected Global Variable
to the value used when this step is executed.i$hiseful when the timeout value
uses a Sequence and a later Branch step depetius timeout value.
TheView/Edit Paths button is here as a convenience and duplicatesciien of
theView/Edit Paths button in the Experiment Editor.

Display Image Step Editor

This is a view of the Display Image Step Editor:
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Experimenter Step Editor

-Step -
Description: iDispIa}lIntro'I Bitmap Type: ]Display Image LJ View/Edit Paths |
Glabal Yanable
Timeout: [0 e ol T ok | Carcel |
Display Image Step Editor RE
\-Source Image Attributes #=0, ¥=0 Image Preview

Resize [
Center [v
verlay [
Mask |
Render v

Preload [

File: ]t'l,NEW_PROJ'I,IMAGES'I,BLITTONS.BMF‘| Browse

Relative Path [

= Output Image Display Attributes

width: [640  Height: [480
widt[an. 7 Mo
Height: | 120

" ¥
Center: ﬁ ]_-
e I crvo- |
Change]

Background
Calar:

R=639, ¥=479

This is a description of the various fields andapfor this step:

File Path — This is the path of the image file to be displhyhen this
step is executed. Clicking on the ‘Browse’ buttqeios a file browser
displaying all supported image file formats. Onnaraage has been
selected it is displayed in the preview pane. Tdtaa dimensions of the
image are shown in the ‘Width’ and ‘Height’ boxasder the file path.
This field is Sequenceable so that different filmea can be used each
time the step is executed.

Relative Path— If checked then the filename is parsed fronftiigpath
and the default image path will be prepended tditheame. This is to
enable portability between systems and individupleeiments, letting the
images reside in one folder on one computer antfeaaeht folder on
another computer.

Width — This is read-only and is the actual width of tharse image
when not using a sequence.

Height — This is read-only and is the actual height of therse image
when not using a sequence.



Category Learning 254

Resize -Checking this will force the image to be renderethie specified
size.

New Width —Width to resize image to
New Height —Height to resize image to.

Center —Checking this will cause the image to be displayeitie centre
of the screen

Overlay —If checked then the existing screen will be retdiaed the
image drawn over it, otherwise the existing scnedibe cleared first.

Mask —Checking this will cause any portion of the imad@ah is the
same colour as the ‘Transparent Colour’ to be prarent.

Render- If checked then the image will be rendered imiaiedly upon
step execution, otherwise it is simply bufferedmoff-screen buffer. This
is useful when consecutive Display Image Steps ieistisplayed
simultaneously. All but the last of several Displmage steps would have
the ‘Render’ checkbox unchecked and ‘Retaxisting Screen’checked.
The last ‘Display Image Step’ in the series woudgtdrthe ‘Render’
checkbox checked, causing it and the preceding stegisplay in the
same screen refresh cycle. Text and video mayba&dayered in similar
fashion.

Center X & Y — These specify the screen location of the cerittieeo
image. Nice for displaying moving cursors or digptg stimuli in varying
screen locations.

Transparent Color — The transparent color if the ‘Mask checkbox is
checked. This can be used for creating Spritedvéasks. Clicking the
‘Change’ button brings up the standard color salagbalette:
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B asic: colars:
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Define Cugtomn Colors 3> "

k., I Cancel |

If for example the colour red (RGB 255,0,0) is st#d here then any
pixels in the image with the same value would bagparent, showing
whatever pixel colour was already there.

Video Step Editor

The Video Step Editor allows the user to load vigeages and preview them.
When Video Steps are executed they will run uiitilex the video clip finishes or
a timeout takes place. Most times the Timeout valilidoe set to a large value as
in the example so that the video clip will alwaiyggh.
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i Experimenter Step Editor

Step-
Description: 1F'Ia_l,l Skiing Video Tope: |Yideo i Wiew/Edit Paths
Global Wanable
. ; Set Yariable
Timeout, |0 il el TR Ok | Cancel |
ideo Step Editor s T

- Source Yideo Attributes -

Pai:lf' IC:".U Canterbury Projects\Experime  Browse

| Relative Pathl— width: 1 Height:i :§

~Yideo Play Attributes
e e Yideo Size and Position
Palse First Frame o v W H
[™ Capture 1st Frame ]D ||3 540 1480
Capture
File: j\p'ideDCap.bmp Browse

|~ Videao Dynamic Control

Enable Varisble FUse Valuz LaE ey

I~ PAUSE  |var 7 v] [101 P Key -]
[~ RESUME [var7 =| [102  |Rkey v e
stop |va7] [103 fskey =] #=639, ¥=479

Set End
B Var Yar 7 V] 111

The following configuration options for the Videte$ are available:

* Browse —Click this button to bring up a file dialog. Mosiramon
video file formats such as AVI, WMV, etc. are renagd by
Experimenter

* Video Size and Position Video may be resized and played back
anywhere on the display for this experiment. Milétipideos can
be played at the same time by using more than adeo\Step.

* Play Video Preview —This will play the loaded video in the
preview window.

» Pause/Resume/Stop Any combination of these options may be
used to control playback. For example, checking 3tith the
default Var 7 = ‘'S Key’ means that once the videplaying, the
callback function will monitor for user keypressexl if the ‘S’
key is pressed the video will immediately stop pigy
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» Capture First Frame —This is a simple utility that when checked
will automatically save the first frame of a videlip as a BMP
with the name, CAPxxxxxx.BMP where ‘Xxxxxx’ reprege a
random number. This is useful in cases wherdperimenter
may want to freeze the first frame of a video &tipa fixed period
of time or until a key is pressed and then searyigday the rest
of the video. This would be done by:

1.

2.

Select ‘Add New Step’ in the Experiment Editor.

Choose ‘Video'’ in the ‘Type’ dropdown list in theep Editor.
Select ‘Browse’ and select the video file.

Check the ‘Capture First Frame’ check box.

Save the experiment and then run it once. You eanibate
the experiment anytime after the first frame of¢ieo has
been displayed.

Create a new Display Image step in your experintedit. the
step and for the filename select the most rectnirfiyour
Experimentefolder with the CAPxxxxxx.BMP name.

Place the new Display Image step immediately befoze
Video step and set the Timeout value for the Digpiaage
step to the delay time desired. When the experinsamxt run
there will be a flawless transition from the ‘padisiérst frame
to the real vide.

If a keypress pause is desired, simply insert abdayd or
Mouse Input step between the Display Image ando/sieps
and set the Timeout value in the Display Image sigp When
the experiment is run the first frame will be des@d until the
key is pressed and then the video will continugipa

Label Step Editor

The Label Step provides some miscellaneous featliresmost common use for
the Label Step is to clear the screen when thergwpst is running.

Example Label Step
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Experimenter Step Editor

-Step-
Description: ICIear soreen to pink - SetVar 4 to 123 Type: |Labe|, Clear Screen, ﬂ View/Edit Pathz |
i Global Waniable
Timeout [0 i il T 0K | Concel |
Label Sfep Editor 1%

Cleat Screen Background
ko Backaround; W Color: - change

Wariable
Mumnber

Set Wariable: v

‘Wariable
123
Yalue:

The followingLabel Stepitems are configurable:

» Clear Screen to Background —f this is checked then when the
experiment is run and this step is executed theescwill be
cleared to the colour displayed in the ‘Backgro@udour’ box.

» Background Colour —This is changed by clicking on the
‘Change’ button and then choosing a colour fromGloéur
Selection Palette.

» Set Variable —If this box is checked then when this step is
executed, the Global Variable selected in the ‘afale Number’
list will be set to the value in the ‘Variable Valwedit box.

+ Variable Number — Select box for Global Variables.

* Variable Value —Edit box for a number to apply to the selected
Global Variable.
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To simply clear the screen during an experimentyges after a Display
Image or Video step, simply insert a Label StefphwaifTimeout value of 0
milliseconds and with the ‘Clear Screen to Backgaicheckbox
checked. Alternatively you may wish to clear theesa and wait for a
specified time in which case simply set the Timealte for the required
delay.

Note the judicious use of the Description box. Viéhat is entered here
will be displayed in the Steps List in the ExpenmEditor and on the
Main Screen. This provides the opportunity to diedocument what each
step is doing.

Branch Step Editor

The Branch Step is one of the most powerful featof&xperimenterlt provides
a great deal of flexibility in the flow of the expr@ent. While simple experiment
programs execute in a ‘toe-to-heel’ fashiBrperimenterllows new paths to be
taken based on dynamic inputs and changing conditian experiment could
contain a Keyboard Input step which only allows‘ttie’2’, ‘3’ and ‘4’ keys and
then based on which key was pressed a completié¢yeaht sequence of steps
could be executed. This is an example of the Br&tep:



-Branch Step Editor
Step to Branch To

2 Display Intro4 Bitmap
10 Wait for space key
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Experimenter Step Editor,

Branch Repetition Counter

| 9 Repetitions

Step
Drescription: |Blanch toStep 129 Times Tyvpe: |Branch ﬂ Wiew/E dit Paths |
Global Wariable
Timeout; {0 r vag ] ok | Cancel |
by

Flush Data When Done: v

ud | Lébel 7 (" Elapsed Time From Variable Modify Sequence on Branch

1 Display Introl Bitmap {Fixed Repetition Count Only)

Z  Walt for space key War S v | Yariable

3 Display Intro2 Bitmap # | Target |

4 Wai for space key (" Elapsed Time Fixed 1 Display Introl Bitmap

5 Display Intro24 Bitmap | 10000 Timeout Wait far space key

£ \Wait for space key Cisplay IntroZ Bitmap (* Mo dckion
7 Display Intro3 Bitmap &+ Fixed Repetition Count Walk far space key

& Wait for space key Display Intro2A Bitmap

‘Wait For space key
Display Intro3 Bitmap

~ Decrement
Sequence

¢~ Zero

11 Label Branch Conditions Wait for space lfev Sequence
12 Show Shapes 2 Display Introd Bitmap
13 Wdea + Unconditional - Always Branch 10 Wait For space key
14 \Wait for 1-8 Key Press 11 Label
15 Branch " Conditional - Branch Cn Yariable; 12 Show Shapes
16 Display End Text Image Yariable  Condition Yalue 13 Video
17 Wait For space key | T ; 14 ‘Wait for 1-8 Key Press
15 Branch
16 Display End Text Image
7 Conditional - Branch Cn Kevy: 17 Wait for space key
Wariable Condition Key

There are currently three types of Branch Stepsth#¢e share the following
configuration options:

» Step to Branch To —this is the step that will be executed next if the
branch is taken; the ‘Target’ step. This windowslisvery step for this
experiment. Any step may be selected, including Branch Step (useful
for empty time-out loopsExperimenteinternally assigns a unique
identifier to each step as it is created. The Bnastep always branches to
the step with that identifier.

What this means is that if this Branch Step wadigared to branch to the
first step, ‘Start Text’ in the example above, tlaery number of further
changes could be made to the experiment, but tlaisdd Step will

always branch to the original ‘Start Text’ step.uY@an insert or delete
steps (except for the target step), move this Bratep or the target step
anywhere in the Step List ordering or copy theepsand this Branch
step will still branch to the same step.

» Elapsed Time From Variable—if selected then the first time this step is
reached, the current value of the selected Globak¥le will serve as a
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timeout value (in milliseconds). The branch comfit(if any) will be
evaluated every time this step is executed urdititmeout value has been
reached. It then ‘falls through’ to the next step aesets.

» Elapsed Time Fixed-similar to theElapsed Time FromVariable,
except that the value used is taken fromTtimeeout box.

» Fixed Repetition Count —if selected then this is the number of times that
this step will execute. If this number is ‘3’ thére 4th time this step is
reached while the experiment is running it willllféarough’ to the next
step in the Steps List and reset.

» Step(s) to Modify Sequence on Branch Taken kater in this document
we will be describing in detatxperimentes robust ‘Sequencer’. In
brief, the ‘Sequencer’ allows the experiment desigo assign
‘Sequences’ to many of the configuration varialbteshe various steps.
These ‘Sequences’ allow the variables to changeevadch time the step
is executed. A Display Image Step could use a Semur the image file
name so that every time that step is executedereift image is
displayed.

It may be that the researcher would like to haverage (or other
variable) repeated when an incorrect key is pre®®gdelecting the
Display Image Step and checking the ‘Decrement &eacgi radio button
the sequence counter for that Display Image Stépwidecremented to
the previous value. All Sequence variables fostps selected in this list
will have the desired action applied if the brarstaken.

* No Action —This is the default. Selecting this means that egunce
variables are modified if the branch is taken.

» Decrement Sequence Becrements the Sequence Counters for all
selected steps if the branch is taken.

* Reset Step SequencesResets the Sequence Counter to the beginning of
the sequence for selected steps if the branchkeésnta

Branch Conditions

» Unconditional — Always Branch To This Step -This selection always
causes a branch to the selected step.

» Conditional — Branch to This Step On Value This is a conditional
branch comparing the Global Variable selected en"Wariable’ list to the
number in the ‘Value’ edit box using the evaluatformula specified in
the ‘Condition’ dropdown list.
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» Conditional — Branch to This Step On Key -This is a conditional
branch comparing the Global Variable selected en'Wariable’ list to the
‘key’ value in the ‘Key’ dropdown list using the&uation formula
specified in the ‘Condition’ dropdown list. Theseykvalues are the result
of a key press or mouse click in a previous ‘Keybdaa Mouse Input’

step.
I o

* Conditional - Eranch To This Skep On Key g'ﬁ
i
Yariable Condition ke Dis;:u
|‘f’c"r 3 x| |E':|ual v| |Left Mouse E > | | | Display
Display L
Left Mouse B« Dicclay T
Right Mouse [~ | P IE: :
Space Key Branc
Enter Key Some Texk
1 Key All Done Text
2 ke B :
4 kew g
S Eey
& Eey
7 kew
g Eey

Additional Notes on the Branch Step

Branch Steps may be nested without any real IMditenever a Branch Step
times out or executes for a fixed repetition countiill reset to its initial state. If
there is an inner Branch set to repeat 9 timesaamuuter branch set to repeat 4
times then the innermost group of steps would lee@ed a total of 50 times — 10
times for the inner branch group multiplied byraés for the outer branch. Some



Category Learning 263

care needs to be exercised to prevent jumpingdritdian outer Branch from an
inner Branch.

Display Text Step

This step allows text strings to be displayed inteary font styles,
fore/background colours, font sizes and screertitmta In addition text may be
displayed in a circle or at different orientati@swell as the normal left-to-right
horizontal layout. For normally laid-out text theperiment designer specifies a
bounding rectangle for the te@xperimentemwill automatically perform word
wrap if necessary. Text may be centred horizontabytically or both.

The following example shows a Text Step that hanleodified:

Experimenter Step Editor

Step
Description: iH Centered in top half test O verlayed Type: |Di$p|a_l,l Text ﬂ Wiew/E dit Paths |
) Global Yariable
Timeout; |E| S:Dt ¥;:I:§L.3t g:: m Mg | Cancel |
[~ Text Display Step Editar - =
Texk Ta Displaw:

e e R A S

Mow is the time For all good men ko come to the aid of
their country

—~
Now is the time for all good |

Font

ize

|
|
I mewn to come to the aid of |
|

| Bradley Hand ITC 36 Change tt/] E, e t
LY COLW lfy |
Text W Transparent
; Change (=i i Ve Ve o Do Ol ]|
ol - 4 W Horz Center
Back
il Change | ™ Wert Center
I Render
Upper Left
(T Kl % i Width  Height
™ Circle a g &40 240
Rakation:

Display Text Step options include:
» Text to Display —the actual text to display when the step is execute
This is Sequenceable so different text may bealysgd each time this
step is executed.
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Font and Size these two options are configured by clicking the
‘Change’ button. This brings up the Font Settinigdad):

Font 21 x|
Faont; Font ztyle; Size:
[Bock Artigud [Reular 48 | ok |
22 -
Bookman Old e |Italic % A teen |
)} Bookshelf Symbol 7 Bold 26

{} Bradley Hand ITC Bold [talic 28
H Broadway BT 35
()} Calisto MT

H Caligraphd21 BT =] 72
—Sample
Script;
|'W'estern LI

Text Colour — Clicking the ‘Change’ button next to this brings the
standard Color Selection Dialog. This is the ctihat the text will be
displayed in. This is Sequenceable.

Back Colour - Clicking the ‘Change’ button next to this brings thhe
standard Color Selection Dialog. This is the cdbtorthe text background.
If the “Transparent’ checkbox is left unchecked ¢éinéire screen
background will be set to this color when the sgepxecuted.

Transparent — If this is checked then the text will be displayedtop of
whatever is already showing on the display. If weaked everything on
the screen is erased to the ‘Back Color’.

Horz Center —This causes text to be horizontally centered én th
bounding box. If unchecked then the text will bie-jestified in the
bounding box.

Vert Center - This causes text to be vertically centered in ihenoling
box. If unchecked then the text will be top-jugtifiin the bounding box.

Render - If checked the text will be displayed immediatelgen the step
executes. If unchecked the text will be drawn andfi-screen buffer and
not displayed until a step such as another Disp&gt or a Display Image
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step is executed with its ‘Render’ checkbox checHéuils allows layering
of different images and text with different fontrétutes and colors for
simultaneous display.

* Normal — When checked the text will be displayed horizogtdéft to
right as in the first Display Text example. Texbigput to a bounding box
with the upper left corner at the settings in theper Left X andY edit
boxes and a width and height as specified inM#th andHeight edit
boxes.

» Circle — When checked the text will be displayed in a dacpattern with
the first letter at the 12 o’clock position and setuent letters spaced
evenly and placed in clockwise order. The centehefcircle is at the
Center X andY edit box coordinates. THeadius edit box describes the
radius of the circle in pixels. One good use o #etting is to place
individual letters at specific screen locationsseyting a Radius value of 0
and then specifying the X and Y settings to positlte center of the letter
precisely. Placement is always based on the cehtbe characters for
circular output.

Example of Circular Text Output

Experimenter Step Editor,

Step
Description: !Displa_l,J HeandDs Type: |Disp|ay Text Ll Wiew/Edit Paths |
B ] Global ¥ ariable
Timeout: iU SFDt \};ﬂ':';lli B m oK. | Cancel |

Text Display Step Editor

Text To Display; ’
Preview Windaw

HHRRRREE

Font Jize

| Arial ’? Changn_aJ

Text
Color:

[ Transparent
[~ Horz Center

Cgfg? - Changs | [ Vert Center

[v Render

Change |

Cenker
" Mormal b Y Radius  Height

& crde 1320 [3200 [ion [

Faotation: |_
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Keyboard Input Step

The Keyboard Input Step waits for either ‘allow@gpbut from the standard PC
keyboard or until the value in tAiémeout box has elapsed. Any combination of
keys may be selected in tAowed Inputs box using standard Windows Shift-
Drag and CTRL-Click operations. When the step etecit will ignore any key
pressed which is not in thdlowed Inputs list except for the ESCAPE key which
always terminates a running experiment.

Experimenter Step Editor

Step
Diescription: |Wait for Space or 1-5 Key Pressd Type: |Ke_l,lbc:ard|nput ﬂ Wiew/Edit Paths |
Global W ariable
. o Set Wanable
Timeout; ]3590090 o Trneat | 1Ward -] ok | Cancel |
T Ke_l,.l-boar.d Input. -Stép Editor
* Single Key Input
Allowed Inputs Corect Input
ace Key ~ Space
- “Wariable Comect  |ncomect
Setar on 1 i)
Result - j\r"arl] lJ |
SetVarta ]ﬁ
Actual Input R Var§  x
o
™ String lnput M ax
Prampt Chars Alignment
Enter Input J'I oo Bottam _:J
-~
i 0K Only
" OK/Cancel
" YesMo

The above image showKayboard Input Step in which the Space Key and
Number keys 1-5 have been ‘allowelBixperimenterallows most of the standard
101-key PC keyboard keys to be used and is alddfeventiate between left and
right Shift, Ctrl and Alt Keys.
Keyboard Input Step options include:

» Single Key Input —if checked then a single key press is expected..

* Allowed Inputs —a list of keys which may be used.
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» Correct Input — This is a drop-down menu which allows the user to
specify which key is the ‘Correct’ response. Ndtatithis is Sequenceable
so that different keys may be the ‘Correct’ keyreame this step is
executed.

* Set Var On Result— If checked then the specified Global Variableas
to the specified number in ti@orrect box if the ‘Correct Input’ matches
the actual key pressed and the number inrtberrect box if not a match.
This Global Variable value may be used in subsegBeanch Steps
and/or logged as data.

» Set Var to Actual Input — If checked then the specified Global Variable
is set to the actual key pressed. This may be imseabsequent Branch
Steps and/or logged as data.

e String Input — if checked then a prompt is displayed and striqpgiins
expected. This string is terminated with the ER&r or mouse click in a
provided ‘OK’ button.

* Prompt —the prompt that the user sees.

* Max Chars —The maximum number of characters the user is allawe
type.

* Alignment — This is the vertical screen position for the prospd text
entry box. This may be one of Top, Bottom or Centre

Sound Step

The Sound Stepallows the loading and playback of pre-existingrabfiles in
almost all of the common sound file formats. Thene also a number of
waveforms which can be generated on-the-fly, indgdsine wave, square wave,
white noise and pink noise. The frequency and aogsi for the dynamic
waveforms may be specified. Any combination of gbfile and dynamic
waveform may be specified for either ear in stevéb any parameters.
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Step

Deseription: |5 ound
] Global ariable
Timeout: i" 0ona Sfot ¥i?‘|2|:'0314.3t I~ Iwarn vi
-~ Sound Step Editar
(¥ Play Sound File
1 Sound File Attributes

File:

Sample Rate:

@ Auktomatically Generate

- Auko-Generated Waveform Atkributes -

Left Wawefarm: ‘Sine Wave :_J
Right Waveform: [Random White Noise |

Sample Rate: 122050 Hz -
Left Right

= Stereo Frequency: [Ypong  [1o00.
" Mona - Both Left Duration: [1a00 ; 1000

Phase: r—. I_—

Type: JSound -

Wiew/E dit Paths

Path: | Ci Canterbury ProjecksExperiment Lak Browse

LS I Cancel I

MOLLIME

Preview

Sound Stepoptions include:

* File Path —Sequenceable file name for sound file to play

» Sample Rate -This is a read-only field showing the sample dHtthe

selected sound file.

» Left/Right Waveform — the automatically-generated waveform to use for
dynamic waveforms. One value for each of two ears.

» Sample Rate -the sample rate to use for each channel of dynamic
waveform sounds. Values range from 11,025 to £4HD

* Frequency Left/Right —dynamic sound frequency. This ranges from 20

Hz to 22 kHz

» Duration Left/Right — length of time in milliseconds to play sounds.

* Phase -start of waveform. Valid values are 0.00 to 36aléQrees.
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Volume —these sliders control the level of the output fil@m 100%
output.

Preview —pressing this button will play the current soupd{ghe Sound
Step Editor.
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