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Abstract—A new method for visualisation and segmentation of
vessel structures in 3D magnetic resonance angiography (MRA)
images is presented. This method uses a simple statistical model
of the information stored along parallel rays within the data
set to derive a 2D projection image. Although similar to the
maximum image projection (MIP) method, the new method uses
a single parameter to achieve a higher contrast-to-noise ratio at a
modest computational cost. The same idea is employed to provide
a means of segmenting a 3D data set in order to derive a region
of support for the purpose of reconstructing image sequences
with high temporal resolution.

Index Terms—MR angiography; 3D segmentation; Maximum
intensity projection.

I. INTRODUCTION

The ability to visualise blood vessels is of great importance
for many medical imaging modalities and the term ‘angiogra-
phy’ is generally applied. CT and MRI scanners can be used
to obtain 3D data sets, which allow the extraction of vascular
structures, especially if some form of contrast agent has been
injected into the bloodstream. Data originating from magnetic
resonance angiography (MRA) exhibits some properties which
make the application of some volume visualization techniques
like ray casting or iso-surface extraction difficult [1]. MRI data
sets, for example, contain a significant amount of noise. The
high background signal also produces poor contrast images if
a straightforward densitometric (X-ray like) projection is used.

The maximum intensity projection (MIP) algorithm is a
simple solution to this problem and has proven to be the
most popular rendering algorithm for MRA [2], [3]. Note that
the term ‘rendering’ is here used to represent in a general
sense a method to generate a 2D image from a 3D data set.
To generate an MIP image, the voxels within the 3D data
set with maximum intensity that occur along parallel rays
traced from the observer’s viewpoint are projected onto the
visualization plane. This method of projection is the most
frequently employed because it conveys the densitometric
information of the original images without the need to tune
any parameters and its implementation is relatively simple. The
main limitations of MIP are that it cannot adequately depict
the spatial relationships of overlapping vessels and large bright
structures can occlude other structures along rays from two or
more directions.

The MIP algorithm is very simple and provides high signal-
to-noise ratio (SNR) for large, bright vessels [4], [5]. However,
by keeping the maximum background signal along each ray,

the algorithm causes the average background intensity in the
MIP image to be larger than the background intensity in the
original image data and thus small vessels, with low initial
SNR, have reduced conspicuity [6], [7]. Additionally, since
only the maximum value is recorded, the MIP images provide
no information regarding vessel overlap or the depth of the
vessels. Fig. 1 shows an MIP for a 3D data set obtained by
contrast enhanced MRA of the knee region of a normal healthy
volunteer.

Fig. 1. Coronal MIP image formed from a set of contrast-enhanced MRA
data obtained from the knee region of a healthy normal volunteer.

As well as requiring a rendering method for visualising 3D
data sets for radiological assessment, we also require a method
to segment the 3D set into those regions which have a high
probability of containing significant blood vessels and the rest
(the ‘background’). We have reported a method for accelerated
parallel MRA which relies on the use of a region of support
(ROS), i.e. a region outside of which significant changes due
to the presence of contrast are unlikely to occur [8], [9], [10].
Knowledge of the ROS allows the elimination of the regions
outside the object from the reconstruction, as they are known
not to contribute to the signals received in the scanner coils.
Comparison between reconstruction methods shows that the
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relative performance of this approach tends to improve with a
smaller ROS, provided the ROS still encompasses the vessels
of interest. The results have shown that this method is superior
to the others in terms of giving lower overall noise levels.
In addition, it could be very useful in cases where imaging
speed is critical and a small ROS applies. The significance of
establishing an ROS has been confirmed by others [11].

In 3D contrast-enhanced MR angiography, the stationary
anatomical background can be suppressed via a subtraction
to reduce the effective ROS to a large extent. The method
we have used to date for definition of that ROS is primitive,
however. In brief, three orthogonal MIP images (axial, coronal
and sagittal) were segmented by simple global thresholding
and application of morphological dilation. The three binary
images so formed were backprojected within the 3D volume
and combined by a logical AND operation to derive a crude
ROS [10].

In the following we present an alternative rendering method
to the MIP and demonstrate its use on 3D MRA data sets. We
also use the new method to derive an ROS for the purpose of
achieving better time resolved MRA image sequences.
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Fig. 2. Histograms of voxel intensities along 6 adjacent parallel rays in
the 3D data set shown in Fig. 1. In the first three histograms (a to c), rays
intersect the large vessel central in Fig. 1 and thus relatively bright voxels are
encountered. The remaining three histograms (d to f) are for rays which lie
just outside the vessel and appear to comprise background voxels only.

II. A MODIFIED MIP

To achieve better visualisation of blood vessels, as well as
to enable better 3D segmentation results to be achieved, a
method needs to be developed that increases the contrast-to-
noise ratio. We propose a modification to MIP which aims
to use the maximum value in optical rays which intersect
at least one vessel, while selecting the mean value in other
cases. In order to achieve this a model is required for the
statistical distribution of intensities along rays. We conjecture
that virtually all rays comprise a relatively high proportion of
non-vessel voxels with intensities belonging to a population
with a relatively low intensity (the ‘background’). Some rays
include as well a relatively small proportion of bright voxels

lying inside vessels. The intensity histograms of the latter
type of rays therefore contain ‘outliers’ with respect to the
background population.

Fig. 2 illustrates the types of histograms which occur within
a typical MRA data set. The background in each case forms
a relatively large population of low intensities. When vessels
are present they belong to a separate, more intense population.
Therefore if a robust measure of the background population
can be made, it should be possible to detect the presence of
the ‘outliers’.

As a robust measure of data location the median is used
instead of the mean and as a robust measure of data dispersion
the median absolute deviation about the median (MAD) is
used [12]. In order to normalise the latter so that it gives
a value directly comparable to the standard deviation for a
Gaussian distribution, a normalized quantity MADN is defined
by

MADN(x) = MAD(x) / MAD(N(0, 1)) , (1)

where N(µ, σ2) is a normally distributed random variable with
mean µ and variance σ2 [12].

As the intensities of voxels lying within vessels are expected
to be significantly higher than the background distribution, a
threshold for detection can be specified as

Tray = median + K ×MADN , (2)

where the median and MADN quantities are estimated for the
particular ray concerned and K is a positive scalar. To form a
modifed MIP image, then, the threshold is calculated for every
ray for a particular viewing direction (usually chosen to be in
the direction of one of the cartesian axes). For each pixel in
the 2D projection, if any voxel intensities in the corresponding
ray exceed the threshold, the maximum voxel intensity for the
ray is entered as the projected value, otherwise the median
(background) level is entered. Fig. 3 shows modified MIP
images for the same set of data and viewing direction as Fig.
1, for three different values of K. While the images in Fig. 3
are necessarily very similar to that in Fig. 1 in terms of the
bright pixels associated with blood vessels, they show much
less variation in the background. The contrast-to-noise ratio
for the modified MIP images is therefore better than for the
corresponding MIP. It has to be acknowledged, of course, that
the improvement is as a result of lowering the background
noise level without any improvement in the estimates of the
object pixels. The result is relatively insensitive to the K value
chosen.

III. 3D SEGMENTATION

In order to provide improved time-resolved MRA image
sequences of the blood vessels, our reconstruction algo-
rithms [8], [9], [10] require an accurate segmentation of
the relatively noisy 3D data set into vessel and background.
The method described in Section I produces a segmentation
with many false detections because of the effect of overlying
structures and the relatively noisy background in MIP images.
We propose therefore to use the same principle as employed
for the modified MIP in Section II to achieve better 3D
segmentation.
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Fig. 3. Coronal modified MIP images formed from the same set of contrast-enhanced MRA data obtained as shown in Fig. 1: (left) K = 4.5, (centre) K =
5.5, and (right) K = 6.5.

In the proposed method, for each voxel in the 3D data
the histograms of the 3 orthogonal rays in the directions
of the Cartesian axes which intersect with that voxel are
evaluated. A threshold is calculated for each of the three rays
in the same way as described in Section II. Thus for the
voxel three thresholds Tx, Ty and Tz are found. If the voxel
intensity exceeds at least two of the thresholds (i.e., a majority)
the voxel is classed as ‘vessel’, otherwise it is classed as
‘background’.

Comparison of results shows that the best value to use for
K in computing Tx, Ty and Tz is in the range 5 to 7.

IV. RESULTS EVALUATION

To facilitate a quantitative comparison for the modified
MIP visualisation method, we used the contrast-to-noise ratio
(CNR) which was calculated as follows:

CNR =
(µV − µB) (NV + NB)

1
2

(NV σ2
V + NB σ2

B)
1
2

, (3)

where µV and σ2
V are the mean and variance respectively of

pixels lying within a vessel, µB and σ2
B are the mean and

variance respectively of pixels lying within the background,
NV is the number of vessel pixels considered and NB is the
number of background pixels considered [13].

In order to check that comparable results were achieved
from a range of data sets, we applied the modified MIP method
to three data sets using K = 7. The data sets were each of
the knee region and made with similar injections of contrast
agent, but obtained from different subjects and with different
MRI sequences. In each case those pixels for which voxels in
the corresponding ray exceeded the threshold were counted as
‘vessel’, while the remainder were counted as ‘background’.
The resulting CNR values for the three data sets were: 5.2971,

6.7756 and 4.5528. Figs. 4 and 5 show images formed for the
second and third of these data sets, both by the standard MIP
method (left) and by the modified MIP method (right).

CNR values were also calculated with respect to specific
features in the images. For example, for the coronal projection
images shown in Figs. 1 and 3, patches were manually selected
within the large central blood vessel and one of the small
vessels. A larger region was chosen within the part of the
images clearly separated from the vessels. The patches chosen
had sizes 66 pixels (large vessel), 19 pixels (small vessel) and
2296 pixels (background). The results are shown in Table 1.

Fig. 4. Projection images for a second 3D data set of the knee region of
a healthy volunteer obtained by contrast-enhanced MRA: (left) coronal MIP;
and (right) coronal modified MIP (K = 7).

To evaluate the success of using the new method for 3D
segmentation, we present results for a single coronal slice in
Fig. 6 and a single axial slice in Fig. 7. In each figure the left
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Fig. 5. Projection images for a third 3D data set of the knee region of a
healthy volunteer obtained by contrast-enhanced MRA: (left) coronal MIP;
and (right) coronal modified MIP (K = 7).

Standard MIP Modified MIP
large vessel 43.45 84.22
small vessel 37.88 71.43

TABLE I
CNR VALUES BASED ON PATCHES CHOSEN FROM THE CORONAL

PROJECTION IMAGES SHOWN IN FIGS. 1 AND 3.

image shows the raw data for the 3D reconstruction (the same
data set as used for Figs. 1 and 3, but a single slice only).
The centre image shows the crude segmentation generated for
that slice by our original MIP-based segmentation [10]. The
morphological dilation operations used in forming the ROS
have clearly made the ROS a poor fit to the vessels present in
the slice. The right image shows the result of performing our
modified segmentation with those voxels segmented as back-
ground shown black. It is clear that the algorithm successfully
forms a tight support region around all sizeable vessels.

Fig. 6. 3D segmentation using the modified MIP method. A single coronal
slice from the same 3D data set depicted in Fig. 1 is shown: (left) raw slice
data; (centre) slice segmented by the crude thresholding method; and (right)
slice segmented into vessel and non-vessel by the modified MIP method.

V. DISCUSSION

Despite the simplicity and widespread acceptance of the
maximum intensity projection (MIP) technique for displaying
three-dimensional (3D) magnetic resonance angiographic data,

Fig. 7. 3D segmentation using the modified MIP method. A single axial
slice from the same 3D data set depicted in Fig. 1 is shown: (left) raw slice
data; (centre) slice segmented by the crude thresholding method; and (right)
slice segmented into vessel and non-vessel by the modified MIP method.

several disadvantages are associated with MIP. These include
an elevated noise level in the background and low contrast be-
tween small vessels and background tissue. We have developed
a method to complement the conventional MIP and alleviate
these problems. Significantly better CNR values are obtained
with the modified MIP method according to our preliminary
studies. The incorporation of a single parameter allows the
new method to be tailored to specific viewing tasks.

The main motivation in developing the modified MIP
method was in seeking a way of segmenting 3D MRA data
sets. Simple global thresholding of MIP images allowed only
fairly gross approximations to the vascular region to be
formed. By assessing each voxel on the basis of the three
orthogonal rays passing through it and forming thresholds
based on robust statistics, it is possible to better discriminate
between voxels likely to lie within vessels and those likely
to lie outside. The use of the majority operator reduces
the possibility that an overlaying structure can influence the
segmentation decision.

The ROS formed by the new method (cf. right hand images
in Figs. 6 and 7) is ‘tight’. Best use of the ROS for MRA
reconstruction algorithms requires a somewhat looser support,
so we plan to use some form of 3D dilation operation
following the segmentation.

The work presented here is preliminary. Next steps in-
clude performing more extensive studies and incorporating the
new 3D segmentation method into our MRA reconstruction
work [10].
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