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Abstract: Diabetic Retinopathy (DR) is one of the main causes of blindness and visual impairment in 

developed countries, stemming solely from diabetes mellitus. Current screening methods using fundus 

images rely on the experience of the operator as they are manually examined. Automated methods based 

on neural networks and other approaches have not provided sensitivity or specificity above 85%. This 

work presents a computer vision based method that directly identifies hard exudates and dot 

haemorrhages (DH) from 100 digital fundus images from a graded database of images using standard 

computer vision techniques, and clinical observation and knowledge. Sensitivity and specificity in 

diagnosis are 95-100% in both cases. Positive and negative prediction values (PPV, NPV) were 95-100% 

for both cases. The overall method is general, computationally efficient and suitable for further clinical 

trials to test both accuracy and the ability to the track DR status over time. 
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1. INTRODUCTION 

Diabetic Retinopathy (DR) is one of the main causes of 

blindness and visual impairment in developed countries (Icks 

et al, 1997; Fong et al, 2004). The prevalence of retinopathy 

and vision threatening retinopathy in the US are 40.3% and 

8.2% respectively for diabetic adults 40 years or older 

(TEDPRG, 2004). The number of people with diabetes is 

expected to double in the next 15-30 years due to obesity, 

aging populations and inactive lifestyles, with over 80% of 

diabetic individuals affected by DR (Wild et al, 2004). 

However, early detection combined with appropriate 

treatment and management can prevent the loss of vision in 

up to 95% of cases (Fong et al, 2003, 2004; Chia et al, 2004; 

ETDRSRG, 1991).  

The high prevalence of diabetes therefore makes mass 

screening an expensive and time consuming process. An 

automated system could greatly reduce the workload by 

filtering out 50% of the screening population (Hipwell et al, 

2000). However, a recent 11,000 patient study concluded that 

automated detection of diabetic retinopathy using published 

algorithms cannot yet be recommended for clinical practice 

(Abramoff et al, 2008), indicating a significant need for 

improvement in this arena.  

DR results from leakage of small vessels in the retina due to 

hyperglycaemia. In the early stages, known as non-

proliferated retinopathy, there may be haemorrhages due to 

bleeding of the capillaries, or exudates resulting from protein 

deposits in the retina. There is usually no vision loss unless 

there is a build up of fluid in the centre of the eye. As the 

disease progresses, new abnormal vessels grow in the retina, 

known as neovascularisation. These vessels frequently leak 

into the vitreous, which is called proliferated retinopathy and 

may cause severe visual problems. The goal of screening is to 

detect non-proliferated DR to implement management that 

decreases the chances of (long-term) vision impairment. 

The use of seven-field stereo fundus photography read by a 

trained reader is the gold standard diagnostic. DR grading 

using the fundus images is significantly more sensitive than 

standard opthalmoscopy, which can miss approximately 50% 

of subjects with only microaneurysms, resulting in under 

reporting of DR by ~10 % (Kinyoun et al, 1992; Moss et al, 

1985). Recent research has combined fundus photography 

and computer algorithms to grade DR (Abramoff et al, 2008). 

The algorithms search for bad lesions in the fundus images 

which define the severity of DR. The lesions are categorised 

into microaneurysms, haemorrhages and exudates based on 

their location, morphology and colour. Several recent reports 

on detecting one of these lesion types report sensitivities of 

81.3-90.1% with false positive rates of ~18% (Sanchez et al, 

2007; Walter  et al, 2007; Sinthnayothin et al, 2002). The 

high false positive rates are the main issue with current 

computer vision based screening methods. The most common 

classifiers used with computer vision are neural networks or 

statistical classifiers (Frame et al, 1998; Gardner et al, 1996). 

This paper takes an alternative more analytical approach by 

focusing on direct identification using accurate geometric 

models at the preprocessing stage. Two separate algorithms 

are developed to detect exudates and dot haemorrhages. 

Information from the colour, morphology and intensity 

gradients of the fundus photographs provide a means to 

detect the number of exudates and dot haemorrhages and thus 

determine the presence of DR. This paper therefore focuses 

on the problem of accurately detecting DR rather than the 

grading of images. However, the methods presented are 

general enough to enable monitoring of the patients DR status 

over time given suitable images. Thus, computer vision may 

offer more than the current clinical, manual approach. 
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2. METHODS 

Two separate algorithms are written. One each for 

automatically detecting exudates and dot haemorrhages from 

fundus images. 

2.1 Identifying Hard Exudates: 

Exudates are common abnormalities in the retina, and are 

bright lipid leaked from a blood vessel. The leaked fluid 

tends to stay close to the puncture yielding a generally well-

defined edge suitable for computer analysis (Ege et al, 2000). 

Figure 1 gives an example of exudates on a fundus image, 

which show up as small, light yellow regions. However the 

optic disc, which can be seen in Figure 1, is also a light 

yellow region.   

Therefore, before searching for exudates, an algorithm is 

developed for automatic detection of the optic disc. In the 

image, the yellow colour corresponds to a high intensity on 

the green channel and typically the optic disc contains the 

majority of the highest green intensities on a given image.  

Thus, an initial approximation to the optic disc is obtained by 

sorting the green intensities from the lowest to the highest, 

and choosing all pixels in the top 0.5% of intensities. This 

method may also capture some other bright yellow regions 

like exudates, but the majority will lie on the optic disc.  

Figure 1 shows the optic disk identified as the largest 

connected region (LCR) of such dots on this color channel, as 

well as the bounding circle created to eliminate it from 

further consideration in the algorithm. 

 

Figure 1: Optic disk, LCR and hard exudates identified on a 

fundus image via yellow color. The LCR is identified in blue 

and doesn’t cover the entire optic disk, but the identified 

portion that is not searched as a result is circled. 

In identifying the other exudates in Figure 1, or any image, 

each region found must be bound by a contour to identify if it 

is 1 large exudate or several smaller exudates. Such contours 

would thus help identify, over time, the growth of current 

exudates and the number of any new exudates. 

The neighbourhood of an exudate is defined as a rectangle 

with a boundary 40 pixels from the unique rectangle precisely 

surrounding the exudate. Within the exudate neighbourhood, 

contours of red/green (R/G) intensity are computed around 

the mean R/G of the exudate. Contours of sufficient length 

and “nearby” are selected as potential exudates. Nearby is 

defined on the distance from the centre of the unique circle, 

with radius rEXUDATE precisely surrounding the exudate. 

Specifically, if any part of the contour is within a radius of 

1.5*rEXUDATE the contour is selected as a candidate for the 

boundary of exudate. Once all the “nearby” contours are 

selected, the contour with the largest mean absolute image 

gradient is chosen. In addition, the contour must have a 

length of greater than 20 pixels to be large enough for 

consideration. 

The overall algorithm is based on specific colour channels 

and standard image processing techniques in a new 

configuration. The algorithm is defined: 

 

I. Define Optic Disk: 

• Obtain top 0.5% of pixel intensities in green channel 

• Place a rectangle around the largest connected region 

• Define a circle with the centre at the left edge mid-point 

and radius of the horizontal width respectively 

• Increase radius 50% to guarantee disk is bounded 

II. Find Exudates Using Median Filter: 

• Compute 50 pixel median filter along all vertical and 

horizontal lines. Median filter takes the moving median 

intensity value over 50 pixels (centered). 

• Subtract the minimum of the median in each direction. 

From each pixel intensity to equalize the contrast over 

the image. 

• For each vertical and horizontal line, select pixels with 

filtered intensities > 10 and take the union. If the filtered 

intensities>30 and the green intensity >100, label the 

pixel ICE, where CE= “confirmed exudate”. 

• Form connected regions, remove regions with number of 

pixels < 5.  Remove regions containing pixels with red + 

green + blue channel < 60, remove regions containing 

pixels in optic disc. 

III. Add Pixels and Confirm Bright Exudates 

• For each exudate compute the lower 5th percentile Ilow 

and upper 95th percentile Ihigh of red/green (R/G) 

intensities.  Within a ± 100 pixel neighbourhood of the 

exudate, select pixels where: (R/G) ε [Ilow, Ihigh].  Add the 

selected pixels to the potential exudate if they are 

connected to the exudate. 

• Save all connected regions that have pixels labelled ICE.  

Remove these regions from the image analysis as they 

are confirmed as exudates. 

IV. Remove False Exudates: 

• In a 40-pixel neighbourhood of each remaining potential 

exudate, compute the R/G contours in steps of 0.05 ± 0.5 

around the mean R/G for the exudate. 

• Let rEXUDATE denote the radius of the unique circle, C, 

that precisely surrounds the exudate. Select a contour if:   

  a) Any part of contour is within 1.5*rEXUDATE  from  
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       the centre of the circle 

  b) The contour has a length > 20 pixels 

• For each selected contour, C, calculate the mean absolute 

gradient of the surrounding points and choose the 

contour corresponding to the largest value 

• Compute the distance Dc between the current contour 

and nearest exudate.  If Dc >4 pixels, reject the exudate 

V. Output Number and Size of All Exudates: 

2.2 Identifying Dot Haemorrhages: 

Haemorrhages are a secondary sign of diabetic retinopathy 

resulting from ruptured micro aneurysms, capillaries and 

venules. Classification of dot haemorrhages (DHs) depends 

on their location within the retinal layers. DHs are located 

within the outer plexiform and inner nuclear layer. The round 

shape and distinct borders of DHs are due to intra-retinal 

compression confining the DH to a specific location. 

DHs have a similar red colour to the vessels and are close to 

circular with well defined boundaries. This circularity is used 

to segment the DHs from other features in the fundus image. 

The colour similarity between DHs and vessels, makes it 

necessary to accurately detect the vessels from the image 

before checking for DHs. 

The ratio of the red to green (R/G) intensities gives the best 

definition of the red features, and is also more resistant to 

lighting changes between images. The R/G ratio brightens the 

vessels, DHs and the fovea, which are predominantly red, and 

dulls the primarily yellow optic disk and exudates. An 

example image of the R/G ratio is shown in Figure 2, where 

the significant brightening of the DH and vessels simplifies 

the choice of thresholds to select the desired regions. 

 

Figure 2: R/G intensities and identified DH, fovea and blood 

vessels, which are clearly shown in this transformed image. 

As with the exudate identification algorithm, the overall DH 

identification algorithm uses standard computer vision 

techniques in a new configuration, along with clinical 

observation or knowledge.  

The overall algorithm is defined: 

I. Create Binary Image: 

• Calculate R/G intensities from the fundus image 

• Apply 50 pixel median filter scaling to R/G intensities. 

• Threshold top 7% R/G intensities to yield binary image. 

II. Select Potential DHs by Shape: 

• Number all connected regions in binary image. 

• For each connected region calculate the shape factor Fs = 

A / Lmax, where A = area in pixels and Lmax = maximum 

distance between any 2 pixels in the region. 

• Label all regions with 30 or more pixels and a shape 

factor greater than 0.54 as potential DH’s. 

III. Check if Potential DHs are Blood Vessels: 

• For each potential DH find the line of minimum distance 

to the largest neighbouring connected region.   

• Calculate the difference in intensity between the 

maximum and minimum intensities along the line of 

minimum distance. 

• If difference between maximum and minimum intensities 

< 0.5, the potential DH is unlabeled and connected to 

neighbouring region. 

IV. Remove False DHs: 

• In a 40-pixel neighbourhood of each remaining DH, 

compute the R/G contours in steps of 0.05 ± 0.5 around 

the mean R/G for the DH. 

• Let rDH denote the radius of the unique circle Ccircle 

precisely surrounding the DH. Select a contour if:   

             a) Any part of contour is within 1.5* rDH from the  

                  centre of the circle 

              b) The contour has a length > 20 pixels 

• For each selected contour, calculate the mean absolute 

gradient of the surrounding points and choose the 

contour C corresponding to the largest value. 

• Compute the distance Dc between the current contour 

and nearest DH.  If Dc >4 pixels, reject the DH. 

V. Output Number and Size of All DHs: 

 

2.3 Analysis and Testing: 

The algorithms were developed base on fundus images from 

the DiaretdbO_v_1_1 database (Kauppi et al, 2006, 2007). 

Comparison is made to manual counting and identification of 

both DHs and exudates in each image. Results are measured 

in terms of: Specificity, Sensitivity, Positive Predictive Value 

(PPV) and Negative Predictive Value (NPV). All threshold 

values, such as filtered intensities, the number of pixels to 

form connected intensities, and the shape factor from the 

algorithm were determined from a selection of 6 images, 

three which were difficult images to diagnose and three that 

were straightforward. Accounting for the worst case 

scenarios that are selected by eye, avoids having to train the 

algorithms on excessive numbers of images. 
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Diagnoses for these tests are based on existence, which only 

captures whether (or not) of these phenomena are present. 

Thus, R0 and M0 diagnoses indicate the existence of one or 

more DHs (R0) or exudates (M0). The absence of DHs and 

exudates are diagnosed R1 and M1, respectively. Thus, if the 

images are considered as being sequential over time, they 

would also diagnose the occurrence (or not) of new exudates 

and/or DHs, highlighting changes in the patient’s DR status. 

 

3. RESULTS AND DISCUSSION 

3.1 Hard Exudate Identification: 

The algorithm detected the presence of exudates correctly 

according to the diagnosis of (Kauppi et al, 2006, 2007) in all 

but two cases.  The results are summarized in Table 1, with a 

sensitivity of 94.9% and specificity of 96.7%. Note that to the 

human eye, the two false positives appeared to be exudates 

and the fact that dot haemorrhages are also present confirms 

this possibility. However, the images were pronounced clear 

by the diagnosis in (Kauppi et al, 2006, 2007). Similar 

results/controversy occurred for the two false negatives, 

demonstrating the inherent subjectivity involved in DR 

screening. Thus, no computer algorithm should be expected 

to fully agree with every ophthalmologist’s observation in 

these types of cases, but do provide a consistent measure 

without subjectivity. 

Figure 3: Image 099 (M1) showing false positives found 

when algorithm is used without Step IV. 

 

Table 1: Hard exudate identification results 

 Observed Diagnosis  

 M1 M0  

M1 59 2 PPV  0.97 

M0 2 37 NPV  0.95 

 
Specificity 

96.7% 

Sensitivity 

94.9% 

 

 

One of the reasons for the significant accuracy of the method 

is the use of the contour method to remove false exudates. 

The contour method is based a little on the concept of level 

set methods to find closed boundaries in an image. A level set 

method evolves level 0 contours by solving a partial 

differential equation (PDE) until the object contour settles 

around the object or shape of interest. The stopping criteria is 

usually a region of high gradient. The contour method 

assumes that the image intensity contour surface already 

contains the required boundary around the shape of interest. 

This approach thus avoids having to solve a PDE which is 

very computationally expensive and not suitable for this 

application. The solution to the PDE is effectively the image 

intensity surface. To extract the final contour, the contour 

with essentially the largest gradient is chosen as detailed in 

the algorithms of the methodology. To the authors’ 

knowledge this is a new approach in image processing which 

shows particular promise for DR.  

Figure 3 shows the value of the contour checker in Step IV of 

the exudate algorithm, where an image (#099) is diagnosed 

M1 or clear of exudates. The figure shows several identified 

regions along blood vessels where image contrast would have 

yielded false positive results without this added algorithm 

step. Note that simply eliminating all exudates within a 

tolerance of a blood vessel is not an effective solution, as 

exudates can lie close to veins and would be falsely removed. 

However, with the contour method, if an exudate is close to a 

vein the contour surrounds the exudate and thus does not 

remove it. Alternatively, around a false exudate the contour 

method finds the boundary of the vein, and pixels along this 

located boundary lie far away from the false exudate, leading 

to its removal in  Step IV. 

To demonstrate the overall efficacy of the algorithm, Figures 

4 shows two images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Specific before-after images of exudate 

identification algorithm results. 
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The first is a standard fundus image and the second shows the 

identified hard exudates pixellated over top. It is clear that 

while they are easily found by eye with experience, they are 

not readily found at first glance. These marks match the 

results and diagnosis in the database. 

More specifically, Figure 4 shows the original image in 

Figure 4a without processing and the identified image 

automatically generated from the algorithm. The 3 exudates 

are circled and pixellated in yellow in Figure 4b after 

processing. Clinically, these three exudates are of significant 

size and would likely be considered as readily identifiable to 

a skilled or experienced technician. 

Finally, speed and computational time are important. Each 

image in the 100 image database was processed with this 

algorithm in approximately 40-80 seconds. Each image had 2 

Mpixels of data, where current fundus images can be much 

larger if required. However, the algorithm was also not 

optimised for speed. Thus a 1 minute, on average, processing 

time occurs. With optimisation or the use of C instead of 

Matlab, this time would be on the order of 1-10 seconds. 

Clinically, such turnaround times would enable the images to 

be taken and answer provided to the clinician, and expressed 

to the patient, in real-time while still in the office. 

 

3.2 DH Identification: 

For the first 100 from the DIARETDB0 database (Kauppi et 

al, 2006, 2007), the DH algorithm detected the presence of 

DHs accurately with no false positives and one false 

negative, as seen in Table 2. Again, the baseline for diagnosis 

was determined from the database and associated works. 

 

Table 2: DH identification results. 

 Observed Diagnosis  

 R1 R0  

R1 1 24 PPV  96.0% 

R0 75 0 NPV  100% 

 
Sensitivity  

98.7% 
Specificity 

100% 

 

 

The algorithm failed to correctly diagnose 1 image, which 

contained a DH as seen in Figure 5. However, the DH is seen 

to lie in a dark region of this particular image, as shown by 

the labelled section “C”. As the DH lies in this dark region, 

the boundaries are not well defined. Therefore, when the 

fundus photograph is converted into a binary image, the 

shape of the DH becomes distorted and the shape factor, Fs, 

equation in Step II of the DH algorithm rules this DH out. 

Without the contour checker, the algorithm found 5 false 

positives instead of 1. But in a similar way to the case of the 

exudates, the contour method easily removed these false 

points. On the other hand, the contour method presently only 

works on regions that have been identified. Thus, it does not 

eliminate the false negative. However, simulations have 

shown that the contour method does not exclude these 

regions that were missed by the algorithm. Thus, future work 

should include the contour method in the initial identification 

part of the algorithm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Close view of false negative (C is missed, but 

found in the database) with recurring almost perfectly round 

spots not identified here or in (Kauppi et al, 2006, 2007). 

 

Note that although there appears to be more than one DH in 

Figure 5, the recurring dark spots are not DH. These dark 

dots appear in almost all of the images in the database at the 

exact same location and are assumed to be associated with 

dust on the camera lens or similar imperfection. Other 

databases do not have such spots on their images, but also did 

not have diagnoses associated with their images. Hence, this 

image database was still used. Overall, these spots are 

ignored when processing the results of the algorithm. In 

practice, the quality of the lens could be checked, for 

example, by taking a picture of a white page. 

 

4. CONCLUSIONS 

Automatic methods for screening exudates and dot 

haemorrhages have been developed based on image 

processing methods that utilize colour, morphology and 

intensity gradients in fundus photographs. 100 images from a 

standard database were used to test the methods. For exudate 

detection, the sensitivity was 96.9% and specificity was 

94.9% in terms of whether detecting the presence of DR or 

not. For dot haemorrhages, the sensitivity was 98.7% due to 

one false negative and the specificity was 100 %. From visual 

checks of the images, there were virtually no false exudates 

or dot haemorrhages detected which suggests the method 

could be used to accurately track changes over time. 

However, these results need to be validated in future clinical 

trials. 

The reasons for the very high sensitivity with no false 

positives are the use of the red/ green ratio combined with a 

contour finding method and the image gradient after median 

filtering. The red/ green ratio has the advantages of helping to 
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normalize out changes in light across the images and 

improves the contrast of DR features relative to the 

background. Furthermore, no statistical classifying methods 

were required.  

The methods demonstrate a significant improvement over 

other algorithms in the literature and show potential for 

practical, clinical DR screening. The use of colour channels 

to directly identify DR dysfunctions allows clinical expertise 

and observation to be directly incorporated into the 

algorithm, providing a potentially far superior result.  

Finally, it is also obvious that further clinical testing and 

trials will be required to prove the algorithm in practice. 

However, the same approach can be taken to a wider range of 

dysfunction or disease in the eye. Additionally, the ability to 

detect the number and size implies further clinical outcomes 

will be available in terms of tracking or monitoring patient 

evolution. 
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