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Abstract 

The choice of data structure is an important decision 
in any sofhvare project. Application developers do not 
necessarily have a good understanding of how a 
particular system manages its data structures and how 
this might influence performance. In this paper we 
provide visualisations representing the behaviour of 
dijferent data structures in an object oriented distributed 
database system. The data is obtained from cache 
monitoring sofhvare and the visualisations therefore 
represent the actual, as opposed to the theoretical, 
behaviour. The visualisations can be used as a 
supplement to the textual description of how a particular 
system manages its data structures so providing 
developers, educators and students with a clearer 
understanding of the implications of their choice of data 
structure. 

1. Introduction 

Any software application that manages data will use a 
variety of data structures. The comparative advantages 
and disadvantages of using B-Trees, linked lists or arrays 
are well understood at a theoretical level [I]. Depending 
on the type of application environment, the developer will 
have different levels of control over which data structures 
are used. In ,a relational database environment the 
developer will usually put data in high level relations and 
leave the low level handling of the data and indexes to the 

system. In other environments, the developer will have 
more control over the choice of data structures. An 
Object Oriented database such as JADEW [2] or 
JasmineTM [3] is likely to have a number of collection 
classes such as arrays, sets, lists, and B-Trees (keyed 
collections) for the developer to consider [4]. The 
developer’s choice will be more informed if he or she has 
a clear understanding of how the different data structures 
perform in the system being used. 

The implementations of data structures in different 
systems may affect the actual performance significantly. 
Also, generically named structures, such as arrays or 
collections, may be implemented quite differently in 
different systems. Most systems will provide 
documentation as to how the structures are implemented, 
but a busy developer with a deadline may consign this 
reading until “tomorrow”. Even if the design and 
implementation of the structures is well understood it can 
still be difficult to anticipate what this actually means in 
practical terms. 

In a distributed system the situation becomes more 
complex. A client may need to retrieve an object from a 
central server. There may be local caching on the client 
machine and there may also be locking involved, 
especially when objects are updated. Having a clear 
understanding of how arrays, lists or B-Trees operate in 
this more complex environment is not a trivial task. 

In this paper we present some visualisations of the 
behaviour of different data structures in the JADE [2] 
object-oriented distributed processing system. For 
application developers and students it is hoped that the 
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graphical representations will be more immediately 
understandable and create a more lasting impression than 
a solely textual description. 

The visualisations in this paper are based on data 
collected from cache monitoring software available in the 
JADE kernel release 5.0. In this way we can illustrate 
how the different data structures actually behave. We can 
see which objects are being requested from the server, the 
locking that takes place, the make up of the cache, and 
the time involved. Pictures such as those provided here 
will be useful to developers, students and educators in 
understanding the impact of their choice of data structure. 
While the visualisations are based on data from a JADE 
system, the philosophy of presenting this type of 
information visually is quite general. 

2. TheData 

JADE is essentially a client-server system although 
other deployment options are possible [2]. The basic unit 
of information in the client cache managed by JADE is an 
object instance. These are ordered with the most recently 
used at the top of the cache and the least recently used 
(LRU) at the bottom. The latter is the next candidate for 
swapping out should space be needed for a new object. 

Recently facilities have been incorporated into the 
JADE kernel to enable information about the current 
contents of the cache and about requests to the server to 
be captured from anywhere on the network. The 
information available with the requests includes: 

time (measured in Node Ticks each about 1 ms). 
type of request (e.g. get object, lock object, swap 
object out, put object to server) 
result of request (e.g. cache object updated by 
lock request) 
size of the object involved 
ID of the object involved 
duration of request (i.e. how long it took to go to 
the server and back) 

Snapshots of the cache give information about each 
object currently in the cache. This information includes: 

the LRU order of the objects 
the ID of each object 
how long an object has been in the cache 
the number of operations on an object during its 
time in the cache 

It is possible to produce a number of pictures using 
these variables. The visualisations in this paper compare 
3 different variables on 2-D scatter plots with one variable 
along each axis and the points being coloured by the third. 
Many other possibilities exist but we have found that even 

these very simple pictures contain a considerable amount 
of information. 

3. Test Data 

A typical application involves the processing of large 
numbers of objects of the same type (e.g. customer). 
JADE has a number of different data structures for 
maintaining such collections of objects. A developer 
would often choose to maintain collections of objects in a 
MemberKeyDict. This is implemented as a B-Tree [l] 
and allows keyed access to each object. The structure 
consists of a collection header and then a tree of collection 
blocks. Each block contains the values of the keys and the 
addresses of the “next” collection blocks for a number of 
objects or references to the objects themselves. As we 
shall see, the number of objects that can be referenced by 
a single collection block depends on the size of the key. 
JADE has a Set data structure which is also implemented 
as a B-Tree but does not allow keyed access. In this paper 
we will use the MemberKeyDict as an example of the 
behaviour of B-Trees. 

The array structure in JADE allows each element to be 
retrieved by its index in the array e.g. customerArray[n]. 
Currently this structure is implemented as a list. The list 
consists of a header and a list of collection blocks each 
with a number of references to other blocks or to elements 
that may be objects or primitive types. This data structure 
is not suitable for fast random access but adding objects 
can be extremely fast. We use the Array to illustrate the 
difference in cache activity that results from using a list 
data structure instead of a B-Tree structure. 

To produce the data for the visualisations, we defined 
a customer class with four different sized attributes: An 
ID (integer), a short name (50 characters), a long name 
(100 characters) and a reference to a large bitmap object 
(900 KB) typical of a picture. We set up two B-tree 
structures (MemberKeyDicts) referencing the customer 
objects, one indexed by short name and the other by long 
name We also set up a list (Array) containing strings of 
short names. 

We carried out a number of simple experiments such 
as traversing the objects in the structure. We ensured each 
object referenced was brought into the cache by accessing 
one of its attributes. If the attribute we accessed was the 
large bit map then the bit map (another object) also was 
brought into the cache which then filled quickly. We 
could therefore observe the behaviour of the structures 
when the cache was full. 

The data produced by these experiments was stored in 
a file and analysed off-line. The recently released version 
5.1 of JADE allows data to be obtained in real time. 
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4. B-Trees structures. 

When using the MemberKeyDict it is interesting to 
investigate how the size of the key affects the traversal of 
the collection of objects, especially when it is larger than 
the cache. 

The diagrams in Figure 1 show the remote calls 
involved with the traversal of 800 customer objects using 
two MemberKeyDict collections, one with a 50 character 
key and one with a 100 character key. To do this each 
customer object is retrieved from the server and stored in 
the local cache. Each customer object contains a reference 
to a large bit map object. If we specifically access these 
objects for each customer they will also be retrieved from 
the server and the cache will fill very quickly. In this case 
objects at the bottom of the LRU order will be 
successively swapped out of the cache in order to make 
room for the next customer object. 

The vertical axes in Figure 1 represent each object for 
which there is a remote call, numbered in the order they 

were first encountered. Time is represented by the 
horizontal axis. The points are coloured according to the 
type of request. In this case the light points (RequestType 
1) represent objects coming into the cache, while the dark 
points (RequestType 5) indicate an object is being 
swapped out. 

The line at (A) indicates where the cache is first filled 
and the first swap takes place. The two parallel lines are 
therefore showing the objects being read in and then 
swapped out a short time later. The customer objects 
being swapped out have no impact on performance as they 
are each only accessed once. However some collection 
headers and blocks are accessed more than once. The row 
of dark and light blocks along the bottom of Figure l a  
(B) shows that the most frequently accessed collection 
block is being repeatedly swapped out only to be retrieved 
again almost immediately. This is also shown at (C) in 
both figures. 
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a) a B-Tree with a 50 character key 

-1 

b) a B-Tree with a 100 character key 

Figure 1: Traversing a B-Tree larger than the cache. The vertical axis represents each object for which there 
was a remote call, numbered in the order they were first encountered. The horizontal axis represents time. The 
objects are coloured according to the remote call (Request) type. Note that in b) there are some residual 
objects in the cache at the beginning of the traversal. 
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To understand the affect of the key size on the 
number of times a collection block is being recalled, it is 
useful to look at a snapshot of the cache at the end of the 
traversal. In this experiment we did not access the large 
bit map object so all the customer objects and collection 
headers were in the cache at the time the snapshots were 
taken. In Figure 2 each square is an object in the cache 
and is coloured by the ClassID. The dark squares are 
the customer objects while the lighter ones are the 
collection blocks. Along the bottom of each picture are 
the objects that are accessed just once. These include all 
the customer objects and also a number of leaf node 
collection block objects. In JADE the size of the 
collection blocks grows as more objects are added to the 
collection but there is a maximum size. With the 50 
character key each leaf collection block can hold keys 
and references for about 20 objects so 40 blocks are 
required to keep track of the 800 objects. In Figure 2a 
we see one collection block (A) that is being accessed 

swapped out and read in Figure la. Increasing the size 
of the cache slightly would prevent this object reaching 
the bottom of the LRU before it was required again, 

With the larger key in Figure 2b, each leaf node can 
hold keys and references for only 10 objects, requiring 
80 leaf nodes for the 800 customer objects in the 
collection. The next tier in this B-Tree has 7 collection 
block objects being accessed on average about 12 times 
(the first two have 6 and 17 operations, respectively), 
which is consistent with the number of leaf nodes. These 
7 objects are the ones being swapped out and read back 
(in some cases twice) in Figure lb. 

In Figure 2 we also see 9 collection blocks that are 
accessed twice. Figures 1 and 2 do not shed much light 
on why this should be the case, although presumably it is 
a consequence of the detailed mechanism of the tree 
traversal. 

In all the experiments in this paper there are a few 
system objects in the cache that appear as objects in the 

about forty times. We assume this is the next tier up in 
the B-Tree and is being accessed in order to reach each 
of the leaf nodes. It is this object that is being repeatedly 

pictures (S). 
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a) a 6-Tree with a 50 character key 
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b) a B-Tree with a 100 character key 

Figure 2: Snapshots showing the objects in the cache at the end of a collection traversal. The vertical 
axis is the number of operations on each object and the horizontal axis is the position the object has ended up 
in the cache, 1 being the top of the LRU. System objects not directly related to the collection are indicated by S. 
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5. Traversing lists 

In JADE, arrays are a specialisation of a generic list 
class. We use arrays to look at some of the implications 
of choosing a list structure. 

5.1. Traversing by index 

To reference the ith element of an array requires all the 
previous elements to be accessed in turn. Figure 3 shows 
the consequences of accessing each element of the list of 
strings using the code below: 

foreach index in 1 to 700 do 

endforeach; 
stringvar := stringArray[index]; 

Figure 3a shows each of the remote calls to retrieve 
the array of strings into the cache. The objects being 
brought into the cache are the list nodes (collection 

blocks) which contain the strings. The cache never fills so 
no objects are swapped out. The time to access the later 
objects in the list increases as each of the increasing 
number of previous elements is traversed. Figure 3b 
shows each of the objects that is in the cache at the end of 
the traversal and is coloured by the number of operations. 
The elements at the beginning of the list have many 
operations (bottom of the long diagonal line) and this 
number of operations decreases until the last object which 
is accessed just the once. The short diagonal line in 
Figure 3b are system objects. 

The horizontal line along the bottom of Figure3a 
shows a series of locks and unlocks. The header object of 
the list, is being locked each time an element of the list is 
accessed. JADE has a facility to prevent this repeated 
locking by using beginLoad/endLoad. A picture such as 
Figure3a sends a clear message to the developer or student 
that there is potential for improving performance. 

a) remote calls 
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b) cache snapshot: number of operations I 

Figure 3: Traversing a List of Strings by index. The vertical axis represents each object numbered in the 
order they were first encountered. The short diagonal line in b) are system objects present in the cache. 
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5.2. Traversing a List with an Iterator Figure 4b shows that each collection block object is 
now being accessed only once. A comparison of Figure3a 
and Figure 4a shows how much more efficient this method 
of traversal is especially towards the end of the List. 

Clearly traversing a list by accessing each element via 
its index is extremely inefficient. JADE has an iterator 
class which can be used to keep track of the current 
position in the list as it is traversed. The code segment 
below creates an iterator and uses it to traverse the list 

The pictures show real data of cache activities in each 
of these situations. While a developer or student may 
theoretically understand the concept of accessing a JADE 

iteratorobject:= ListObject.createIterator array by index or by using an iterator, the pictures 
while iteratorObject.next(stringvar) do showing the actual performance will improve that 
endwhile; understanding. 
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a) remote calls 
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b) cache snamhot: number of oDerations 1 

Figure 4: Traversing a List of Strings with an Iterator. The vertical axis represents each object numbered in 
the order they were first encountered. The short diagonal line in b) are system objects present in the cache. 

6. Repeated Traversal of a Collection The first light diagonal line in Figure 5a represents the 
objects in the collection being read into the cache for the 
first time. At (A) the first items in the collection begin to 

Larger than the Cache 

Successive operations on a collection of objects is 
likely in a number of data processing situations. For 
example each object may need to be retrieved to calculate 
an average or total of some attribute and then the 
collection may be traversed again to compare each object 
with the result. If the total size of the objects is slightly 
greater than the cache then every object may be swapped 
out and then retrieved later. 

Figure 5a show this situation for traversing a B-Tree 
twice. 

be swapped to make room for the last few objects. When 
the collection is traversed a second time (starting at B) the 
later objects are successively swapped out to allow for the 
earlier ones to be reloaded. The small horizontal distance 
between the dark diagonal line and the next light line 
indicates that the objects are being swapped out only to be 
reloaded a very short time later. The final few swaps (C) 
give an indication of how many objects in the collection 
cannot be accommodated by the cache - in this case about 
10%. 
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Figure 5: Traversing a collection of objects slightly bigger than the cache. 

If the developer sees this pattern (closely parallel dark 
and light lines) in a larger application he will be alerted to 
the fact that he is dealing with a collection slightly larger 
than the cache size and so may choose to adjust the size of 
the cache accordingly. 

Another way to decrease the number of reloads when 
traversing a large collection twice is to make the second 
pass in reverse order. Figure 5b shows this case. While 
the first few objects (D) still need to be swapped out to 
accommodate the later objects, when the second pass is 
started in the reverse order the objects initially required 
are already in the cache. There are no remote calls nor 
corresponding network traffic during the time interval (E) 
until the traversal needs to reload the objects from the 
beginning of the collection. The negative gradient of the 
lines from this point reflects the fact that the objects are 
being retrieved in the reverse order from which we first 
encountered them. 

7. Discussion 

The behaviour of the cache in a distributed system 
such as JADE is inevitably complex. However, it is 
important for the application developer to have at least a 

conceptual understanding of how it operates so that 
applications are as efficient as possible. The developer 
must make decisions about the choice of data structure, 
such as arrays or indexed collections and also about how 
these data structures will be accessed during processing. 

Software visualisation is intended to facilitate both the 
understanding and effective use of computer software [ 5 ] .  
We believe the visualisations shown in this paper are a 
useful complement to a textual description of how the 
cache behaves and would significantly enhance an 
application developer's understanding. They show the 
implications of both the choice of data structure and the 
processing done on it. 

In this paper we have chosen to visualise the cache 
performance information at a level which shows the 
movement of objects and collection blocks into and out of 
the cache. We believe that is the level at which the 
application developer needs to have a conceptual 
understanding of how the system operates. 

We could have chosen to visualise the cache 
performance information at a different level. For example, 
it would have been possible to explore in more detail how 
the system handles the collection headers and blocks that 
implement the B-Tree structure of the keyed collections. 
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This would be of interest to a person who is curious about 
the underlying swcture of the system, but is not important 
knowledge for a developer. On the other hand, we have 
done some work that shows the developer how the cache 
management of the application is performing at a more 
macroscopic level by displaying histograms of different 
types of requests. This would be useful for a developer 
wishing to identify areas where the application is 
performing badly but does not add to understanding 
without a more detailed investigation. 

The work reported here is part of a project to develop 
visualisations of the performance and behaviour of 
distributed systems such as JADE at levels that are 
appropriate to the various interests of the people who are 
involved with the software, be they the developers of the 
system itself or those that use it for developing 
applications. 
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