
Visualising the Influence of Data Structure Choice on the Performance of a
Distributed Database System.

Clare Churcher’, Alan McKinnon’, and Roger Jarquin2
’Applied Computing, Mathematics and Statistics Group

Lincoln University
P.O. Box 84, Lincoln University

Canterbury
New Zealand

email: churchec/mckinnon@lincoln.ac.nz

Aoraki Corporation
P.O. Box 20152 Christchurch,

New Zealand
email: rj arquin@j ade . CO. nz

Abstract

The choice of data structure is an important decision
in any sofhvare project. Application developers do not
necessarily have a good understanding of how a
particular system manages its data structures and how
this might influence performance. In this paper we
provide visualisations representing the behaviour of
dijferent data structures in an object oriented distributed
database system. The data is obtained from cache
monitoring sofhvare and the visualisations therefore
represent the actual, as opposed to the theoretical,
behaviour. The visualisations can be used as a
supplement to the textual description of how a particular
system manages its data structures so providing
developers, educators and students with a clearer
understanding of the implications of their choice of data
structure.

1. Introduction

Any software application that manages data will use a
variety of data structures. The comparative advantages
and disadvantages of using B-Trees, linked lists or arrays
are well understood at a theoretical level [I]. Depending
on the type of application environment, the developer will
have different levels of control over which data structures
are used. In ,a relational database environment the
developer will usually put data in high level relations and
leave the low level handling of the data and indexes to the

system. In other environments, the developer will have
more control over the choice of data structures. An
Object Oriented database such as JADEW [2] or
JasmineTM [3] is likely to have a number of collection
classes such as arrays, sets, lists, and B-Trees (keyed
collections) for the developer to consider [4]. The
developer’s choice will be more informed if he or she has
a clear understanding of how the different data structures
perform in the system being used.

The implementations of data structures in different
systems may affect the actual performance significantly.
Also, generically named structures, such as arrays or
collections, may be implemented quite differently in
different systems. Most systems will provide
documentation as to how the structures are implemented,
but a busy developer with a deadline may consign this
reading until “tomorrow”. Even if the design and
implementation of the structures is well understood it can
still be difficult to anticipate what this actually means in
practical terms.

In a distributed system the situation becomes more
complex. A client may need to retrieve an object from a
central server. There may be local caching on the client
machine and there may also be locking involved,
especially when objects are updated. Having a clear
understanding of how arrays, lists or B-Trees operate in
this more complex environment is not a trivial task.

In this paper we present some visualisations of the
behaviour of different data structures in the JADE [2]
object-oriented distributed processing system. For
application developers and students it is hoped that the

472
1530-1362/00 $10.00 0 2000 IEEE

graphical representations will be more immediately
understandable and create a more lasting impression than
a solely textual description.

The visualisations in this paper are based on data
collected from cache monitoring software available in the
JADE kernel release 5.0. In this way we can illustrate
how the different data structures actually behave. We can
see which objects are being requested from the server, the
locking that takes place, the make up of the cache, and
the time involved. Pictures such as those provided here
will be useful to developers, students and educators in
understanding the impact of their choice of data structure.
While the visualisations are based on data from a JADE
system, the philosophy of presenting this type of
information visually is quite general.

2. TheData

JADE is essentially a client-server system although
other deployment options are possible [2]. The basic unit
of information in the client cache managed by JADE is an
object instance. These are ordered with the most recently
used at the top of the cache and the least recently used
(LRU) at the bottom. The latter is the next candidate for
swapping out should space be needed for a new object.

Recently facilities have been incorporated into the
JADE kernel to enable information about the current
contents of the cache and about requests to the server to
be captured from anywhere on the network. The
information available with the requests includes:

time (measured in Node Ticks each about 1 ms).
type of request (e.g. get object, lock object, swap
object out, put object to server)
result of request (e.g. cache object updated by
lock request)
size of the object involved
ID of the object involved
duration of request (i.e. how long it took to go to
the server and back)

Snapshots of the cache give information about each
object currently in the cache. This information includes:

the LRU order of the objects
the ID of each object
how long an object has been in the cache
the number of operations on an object during its
time in the cache

It is possible to produce a number of pictures using
these variables. The visualisations in this paper compare
3 different variables on 2-D scatter plots with one variable
along each axis and the points being coloured by the third.
Many other possibilities exist but we have found that even

these very simple pictures contain a considerable amount
of information.

3. Test Data

A typical application involves the processing of large
numbers of objects of the same type (e.g. customer).
JADE has a number of different data structures for
maintaining such collections of objects. A developer
would often choose to maintain collections of objects in a
MemberKeyDict. This is implemented as a B-Tree [l]
and allows keyed access to each object. The structure
consists of a collection header and then a tree of collection
blocks. Each block contains the values of the keys and the
addresses of the “next” collection blocks for a number of
objects or references to the objects themselves. As we
shall see, the number of objects that can be referenced by
a single collection block depends on the size of the key.
JADE has a Set data structure which is also implemented
as a B-Tree but does not allow keyed access. In this paper
we will use the MemberKeyDict as an example of the
behaviour of B-Trees.

The array structure in JADE allows each element to be
retrieved by its index in the array e.g. customerArray[n].
Currently this structure is implemented as a list. The list
consists of a header and a list of collection blocks each
with a number of references to other blocks or to elements
that may be objects or primitive types. This data structure
is not suitable for fast random access but adding objects
can be extremely fast. We use the Array to illustrate the
difference in cache activity that results from using a list
data structure instead of a B-Tree structure.

To produce the data for the visualisations, we defined
a customer class with four different sized attributes: An
ID (integer), a short name (50 characters), a long name
(100 characters) and a reference to a large bitmap object
(900 KB) typical of a picture. We set up two B-tree
structures (MemberKeyDicts) referencing the customer
objects, one indexed by short name and the other by long
name We also set up a list (Array) containing strings of
short names.

We carried out a number of simple experiments such
as traversing the objects in the structure. We ensured each
object referenced was brought into the cache by accessing
one of its attributes. If the attribute we accessed was the
large bit map then the bit map (another object) also was
brought into the cache which then filled quickly. We
could therefore observe the behaviour of the structures
when the cache was full.

The data produced by these experiments was stored in
a file and analysed off-line. The recently released version
5.1 of JADE allows data to be obtained in real time.

473

4. B-Trees structures.

When using the MemberKeyDict it is interesting to
investigate how the size of the key affects the traversal of
the collection of objects, especially when it is larger than
the cache.

The diagrams in Figure 1 show the remote calls
involved with the traversal of 800 customer objects using
two MemberKeyDict collections, one with a 50 character
key and one with a 100 character key. To do this each
customer object is retrieved from the server and stored in
the local cache. Each customer object contains a reference
to a large bit map object. If we specifically access these
objects for each customer they will also be retrieved from
the server and the cache will fill very quickly. In this case
objects at the bottom of the LRU order will be
successively swapped out of the cache in order to make
room for the next customer object.

The vertical axes in Figure 1 represent each object for
which there is a remote call, numbered in the order they

were first encountered. Time is represented by the
horizontal axis. The points are coloured according to the
type of request. In this case the light points (RequestType
1) represent objects coming into the cache, while the dark
points (RequestType 5) indicate an object is being
swapped out.

The line at (A) indicates where the cache is first filled
and the first swap takes place. The two parallel lines are
therefore showing the objects being read in and then
swapped out a short time later. The customer objects
being swapped out have no impact on performance as they
are each only accessed once. However some collection
headers and blocks are accessed more than once. The row
of dark and light blocks along the bottom of Figure l a
(B) shows that the most frequently accessed collection
block is being repeatedly swapped out only to be retrieved
again almost immediately. This is also shown at (C) in
both figures.

7
1500 -

1 rmoo 1120M) 114000 116WO
W l i C k S

Request

a) a B-Tree with a 50 character key

-1

b) a B-Tree with a 100 character key

Figure 1: Traversing a B-Tree larger than the cache. The vertical axis represents each object for which there
was a remote call, numbered in the order they were first encountered. The horizontal axis represents time. The
objects are coloured according to the remote call (Request) type. Note that in b) there are some residual
objects in the cache at the beginning of the traversal.

474

To understand the affect of the key size on the
number of times a collection block is being recalled, it is
useful to look at a snapshot of the cache at the end of the
traversal. In this experiment we did not access the large
bit map object so all the customer objects and collection
headers were in the cache at the time the snapshots were
taken. In Figure 2 each square is an object in the cache
and is coloured by the ClassID. The dark squares are
the customer objects while the lighter ones are the
collection blocks. Along the bottom of each picture are
the objects that are accessed just once. These include all
the customer objects and also a number of leaf node
collection block objects. In JADE the size of the
collection blocks grows as more objects are added to the
collection but there is a maximum size. With the 50
character key each leaf collection block can hold keys
and references for about 20 objects so 40 blocks are
required to keep track of the 800 objects. In Figure 2a
we see one collection block (A) that is being accessed

swapped out and read in Figure la. Increasing the size
of the cache slightly would prevent this object reaching
the bottom of the LRU before it was required again,

With the larger key in Figure 2b, each leaf node can
hold keys and references for only 10 objects, requiring
80 leaf nodes for the 800 customer objects in the
collection. The next tier in this B-Tree has 7 collection
block objects being accessed on average about 12 times
(the first two have 6 and 17 operations, respectively),
which is consistent with the number of leaf nodes. These
7 objects are the ones being swapped out and read back
(in some cases twice) in Figure lb.

In Figure 2 we also see 9 collection blocks that are
accessed twice. Figures 1 and 2 do not shed much light
on why this should be the case, although presumably it is
a consequence of the detailed mechanism of the tree
traversal.

In all the experiments in this paper there are a few
system objects in the cache that appear as objects in the

about forty times. We assume this is the next tier up in
the B-Tree and is being accessed in order to reach each
of the leaf nodes. It is this object that is being repeatedly

pictures (S).

“ ‘ = - A 1
lperations 20 I

I O -I
S

0 200 400 600 800
Order

Class10

0 537 1074 1610 2147 - >-y > ” rl*6?”

a) a 6-Tree with a 50 character key

40 -

30 -

lperations 20 -
U

0 200 400 600 800
Order

Class10

0 1087 1630 217 ”* ’?,

b) a B-Tree with a 100 character key

Figure 2: Snapshots showing the objects in the cache at the end of a collection traversal. The vertical
axis is the number of operations on each object and the horizontal axis is the position the object has ended up
in the cache, 1 being the top of the LRU. System objects not directly related to the collection are indicated by S.

475

5. Traversing lists

In JADE, arrays are a specialisation of a generic list
class. We use arrays to look at some of the implications
of choosing a list structure.

5.1. Traversing by index

To reference the ith element of an array requires all the
previous elements to be accessed in turn. Figure 3 shows
the consequences of accessing each element of the list of
strings using the code below:

foreach index in 1 to 700 do

endforeach;
stringvar := stringArray[index];

Figure 3a shows each of the remote calls to retrieve
the array of strings into the cache. The objects being
brought into the cache are the list nodes (collection

blocks) which contain the strings. The cache never fills so
no objects are swapped out. The time to access the later
objects in the list increases as each of the increasing
number of previous elements is traversed. Figure 3b
shows each of the objects that is in the cache at the end of
the traversal and is coloured by the number of operations.
The elements at the beginning of the list have many
operations (bottom of the long diagonal line) and this
number of operations decreases until the last object which
is accessed just the once. The short diagonal line in
Figure 3b are system objects.

The horizontal line along the bottom of Figure3a
shows a series of locks and unlocks. The header object of
the list, is being locked each time an element of the list is
accessed. JADE has a facility to prevent this repeated
locking by using beginLoad/endLoad. A picture such as
Figure3a sends a clear message to the developer or student
that there is potential for improving performance.

a) remote calls

40

mjma

7.0

0
0 20 40 60

Rda
Opereions

b) cache snapshot: number of operations I

Figure 3: Traversing a List of Strings by index. The vertical axis represents each object numbered in the
order they were first encountered. The short diagonal line in b) are system objects present in the cache.

476

5.2. Traversing a List with an Iterator Figure 4b shows that each collection block object is
now being accessed only once. A comparison of Figure3a
and Figure 4a shows how much more efficient this method
of traversal is especially towards the end of the List.

Clearly traversing a list by accessing each element via
its index is extremely inefficient. JADE has an iterator
class which can be used to keep track of the current
position in the list as it is traversed. The code segment
below creates an iterator and uses it to traverse the list

The pictures show real data of cache activities in each
of these situations. While a developer or student may
theoretically understand the concept of accessing a JADE

iteratorobject:= ListObject.createIterator array by index or by using an iterator, the pictures
while iteratorObject.next(stringvar) do showing the actual performance will improve that
endwhile; understanding.

616500 617000 617500 618000 618500
UcdaTtcks

R e q u e d

a) remote calls

0 20 A0 a,
or&

Opentions

b) cache snamhot: number of oDerations 1

Figure 4: Traversing a List of Strings with an Iterator. The vertical axis represents each object numbered in
the order they were first encountered. The short diagonal line in b) are system objects present in the cache.

6. Repeated Traversal of a Collection The first light diagonal line in Figure 5a represents the
objects in the collection being read into the cache for the
first time. At (A) the first items in the collection begin to

Larger than the Cache

Successive operations on a collection of objects is
likely in a number of data processing situations. For
example each object may need to be retrieved to calculate
an average or total of some attribute and then the
collection may be traversed again to compare each object
with the result. If the total size of the objects is slightly
greater than the cache then every object may be swapped
out and then retrieved later.

Figure 5a show this situation for traversing a B-Tree
twice.

be swapped to make room for the last few objects. When
the collection is traversed a second time (starting at B) the
later objects are successively swapped out to allow for the
earlier ones to be reloaded. The small horizontal distance
between the dark diagonal line and the next light line
indicates that the objects are being swapped out only to be
reloaded a very short time later. The final few swaps (C)
give an indication of how many objects in the collection
cannot be accommodated by the cache - in this case about
10%.

477

0 .l 3 4 5

a).Traversing a collection forwards twice

1111

(001

rbject

1111

b)Traversing a collection forwards then
backwards

Figure 5: Traversing a collection of objects slightly bigger than the cache.

If the developer sees this pattern (closely parallel dark
and light lines) in a larger application he will be alerted to
the fact that he is dealing with a collection slightly larger
than the cache size and so may choose to adjust the size of
the cache accordingly.

Another way to decrease the number of reloads when
traversing a large collection twice is to make the second
pass in reverse order. Figure 5b shows this case. While
the first few objects (D) still need to be swapped out to
accommodate the later objects, when the second pass is
started in the reverse order the objects initially required
are already in the cache. There are no remote calls nor
corresponding network traffic during the time interval (E)
until the traversal needs to reload the objects from the
beginning of the collection. The negative gradient of the
lines from this point reflects the fact that the objects are
being retrieved in the reverse order from which we first
encountered them.

7. Discussion

The behaviour of the cache in a distributed system
such as JADE is inevitably complex. However, it is
important for the application developer to have at least a

conceptual understanding of how it operates so that
applications are as efficient as possible. The developer
must make decisions about the choice of data structure,
such as arrays or indexed collections and also about how
these data structures will be accessed during processing.

Software visualisation is intended to facilitate both the
understanding and effective use of computer software [5] .
We believe the visualisations shown in this paper are a
useful complement to a textual description of how the
cache behaves and would significantly enhance an
application developer's understanding. They show the
implications of both the choice of data structure and the
processing done on it.

In this paper we have chosen to visualise the cache
performance information at a level which shows the
movement of objects and collection blocks into and out of
the cache. We believe that is the level at which the
application developer needs to have a conceptual
understanding of how the system operates.

We could have chosen to visualise the cache
performance information at a different level. For example,
it would have been possible to explore in more detail how
the system handles the collection headers and blocks that
implement the B-Tree structure of the keyed collections.

478

This would be of interest to a person who is curious about
the underlying swcture of the system, but is not important
knowledge for a developer. On the other hand, we have
done some work that shows the developer how the cache
management of the application is performing at a more
macroscopic level by displaying histograms of different
types of requests. This would be useful for a developer
wishing to identify areas where the application is
performing badly but does not add to understanding
without a more detailed investigation.

The work reported here is part of a project to develop
visualisations of the performance and behaviour of
distributed systems such as JADE at levels that are
appropriate to the various interests of the people who are
involved with the software, be they the developers of the
system itself or those that use it for developing
applications.

8. References

[l] Model, Mitchell L. Data Structures, Data Abstraction, a
Contemporary Introduction Using C++ Prentice Hall NJ
1994.

[2] Aoraki Corporation JADE http://www.discovejade.com
cited March 2000.

[3] Computer associates International Jasmine
http://www.cai.com cited May 2000

[4] Cattell, Rick Morgan Kaufman; The Object Database
Standard: ODMG 2.0; 1997

[5] Price B.A., Baecker, R.M., and Small I.S. A Principled
Taxonomy of Sofware Visualization. Journal of Visual
Languages and Computing 4(3):211-266; 1993.

479

http://www.discovejade.com
http://www.cai.com

