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Abstract— The use of multi-layer perceptrons (MLP) to deter-
mine the significance of climatic variables to the establishment
of insect pest species is described. Results show that the MLP
are able to learn to accurately predict the establishment of a pest
species within a specific geographic region. Analysis of the MLP
yielded insights into the contribution of the individual input
variables and allowed for the identification of those variables
that were most significant in either encouraging or inhibiting
establishment.

I. INTRODUCTION

The rising rate of global tourism and trade is rapidly
increasing the threat to human health, agricultural and hor-
ticultural production and biodiversity of many countries by
unintended introductions of exotic species. There is therefore
a desperate need to develop methods that have a higher level
of prediction to assist the pest risk assessment process and
that are able to mine the vast quantities of data in existence
for useful information. This mining includes assessment of
the risk of establishment of exotic species and analysis of
the available data with respect to the significance of the
numerous individual variables present. The factors affecting
the establishment within a geographical region of a particular
species can be divided into two general groups: firstly, biotic
factors, which includes the presence of food or host species,
as well as competing species; and abiotic factors, which is
essentially the climate of the region in question.

A number of models and approaches have been designed
to predict the establishment of species in regions where they
are not normally found. Such methods range from classical
statistical approaches that relate species presence and absence
at localities to environmental factors, to process models that
describe species response to the environment.

Artificial neural networks (ANN) have previously been
used for many applications in ecology [7], [4], including
modelling the relationship between cities and the levels of
contaminants in grasses [2] and the presence of certain
species of freshwater fish [5]. ANN have also been used to
detect significant features in ecological data [6].

A large amount of data exists that describes many features
of the climate in numerous geographical locations, as well
as the presence or absence of numerous species of insect
pests. It is desirable to be able to identify the abiotic factors
that affect the establishment of particular species, so that the
threat they pose to the agriculture and biodiversity of various
regions can be more accurately assessed.
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The goal of the research reported here was to investigate
the use of ANN, specifically MLP, in identifying abiotic
factors that are important for the establishment of insect pest
species.

II. METHOD

A. Data

The complete data set used in these experiments consisted
of data about the climate in each of 459 geographic regions
and the presence in or absence from each of those regions
of 844 insect pest species. The species presence data were
sourced from the CABI Crop Protection Compendium [1].
The climate data were compiled from Internet sites main-
tained by recognised meteorological organisations.

These species were divided into two groups, those species
that are recorded as being present in New Zealand, and those
that are not. Each of these sets were ordered according to
the threat posed by the species, according to the method
described in [11], [12]. The top two species of each set were
selected as case studies for this paper and are listed in Table I.
The column in Table I labelled “Prevalence” lists the number
of geographic regions in which each particular species is
recorded as being present.

TABLE I
TARGET SPECIES.

Name Prevalence
Myzus persicae 234

Brevicoryne brassicae 210
Sitophilus zeamais 127

Drosophila melanogaster 109

M. persicae is commonly known as the green peach aphid,
while B. brassicae is the cabbage aphid. The common name
of S. zeamais is the maize weevil, and D. melanogaster is a
fruit fly.

A total of forty five climate variables were available. For
each of these variables, the maximum, mean and minimum
were used as separate inputs. This is because a single
geographical region had to be represented as a single input
vector, while including the maximum and minimums was
necessary for describing the range of the climate variables
within that region. This yielded a total of one hundred and
thirty five input variables. The data for each of these variables
was linearly normalised to the range of zero to unity. The
output targets were the presence or absence of the target
species in each region.

The data was split into two major sets. The first, containing
80% of the data, was the training and test set, from which

0-7803-9490-9/06/$20.00/©2006 IEEE

2006 International Joint Conference on Neural Networks
Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada
July 16-21, 2006

1840

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lincoln University Research Archive

https://core.ac.uk/display/35462849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


samples were randomly drawn to form training and test data
sets. The second was the validation set, which was used only
once for each species.

B. Training and Evaluation of MLP
Standard three neuron-layer MLP were used in these

experiments, and the learning algorithm used was unmodified
back-propagation with momentum. The parameters of the
MLP and learning algorithm are presented in Table II. These
parameters were found via experimentation to yield the best
balance of training and generalisation errors.

TABLE II
TRAINING PARAMETERS

Parameter Value
Hidden neurons 3
Learning rate 0.03
Momentum 0.03

Epochs 750

The method of training and evaluating the MLP (and also
selecting the parameters) was similar to that suggested in
[3], [10]. A total of one thousand runs were performed
over each species. For each run, the training and test data
set was randomly divided into a training set, consisting of
two-thirds of the available data, and a test set consisting
of the remaining one-third. A MLP was then created with
randomly initialised connection weights and trained over the
training data set. The accuracy of the MLP over the training
set was then evaluated to determine how well the network
had learned the training data. The accuracy of the MLP
was then evaluated over the testing data set to determine
how well the network generalised. Accuracy was measured
as both the percentage of examples correctly classified and
using Cohen’s Kappa statistic. Whereas percentage accuracy
is easily interpreted, it is also easily biased by unbalanced
numbers of classes. That is, percentage correct may be
misleadingly high when the data set in question has only
a small number of examples from one class. The Kappa
statistic takes the number of examples of each class into
account and thus yields a less biased measure of accuracy
than percentages.

For each run the contributions of each input neuron to the
output of the network was also determined, using the method
of Olden and Jackson as described in [8]. This method
has been experimentally determined to give the least-biased
estimate of the contribution of each input neuron [9] and has
been used previously in ecological modelling applications
[5].

At the completion of the one thousand runs, the MLP
with the highest kappa over the test set was selected as the
winner for that species. The accuracy of this winning network
was then evaluated over the validation data set. A sensitivity
analysis was also performed over each input variable of the
winning network. This was to illustrate the response of the
network to variations in each variable so that the influence
of strongly contributing inputs (as determined above) could
be investigated.

III. RESULTS

A. Accuracies

The accuracies for each species are presented in Table III.
For the accuracies over the training and test sets, the results
are presented as the mean and standard deviation of both the
overall percentage and the Kappa.

TABLE III
ACCURACIES

Species Train Test Validate
M. persicae % 84.52/2.32 74.72/3.64 68.48

� 0.69/0.05 0.49/0.07 0.37
B. brassicae % 84.30/2.20 75.01/3.45 67.39

� 0.68/0.05 0.49/0.07 0.36
S. zeamais % 81.53/6.42 74.54/3.95 78.26

� 0.44/0.28 0.26/0.18 0.40
D. melanogaster % 82.56/2.73 73.65/3.54 75.00

� 0.44/0.14 0.18/0.10 0.22

These results show that the MLP were able to imperfectly
learn the relationships between the climate variables and the
presence of the target species. The low testing and validation
kappas over D. melanogaster suggests that a degree of over-
training occurred, although the lower training accuracies for
both S. zeamais and D. melanogaster indicates that the less
prevalent species were harder for the MLP to learn. The low
Kappa values for these two species, compared to their higher
percentage accuracies, suggests that a large number of false
negative predictions were made.

B. Contribution of Input Variables

The three inputs that positively contributed the most to the
networks are listed for each species in Table IV. The mean
and standard deviation of the contributions are listed, along
with the name of each input variable.

TABLE IV
MOST POSITIVELY CONTRIBUTING INPUTS

Species Variable Name Contribution
M. persicae Max RSprr1 18.755/5.763

Mean TAut1 9.85/3.520
Mean TAut2 9.42/3.379

B. brassicae Max RSprr1 9.986/5.353
Max TAut1 9.666/3.306
Max TAut2 9.279/3.163

S. zeamais Max RWinr2 8.906/4.956
Max RWinr1 7.779/4.497
Max Im300 5.569/3.644

D. melanogaster Max AnnualDayLength 7.350/3.456
Max Im300 7.188/3.235

Max Mi 7.123/3.143

The variable “RSprr1” is the rainfall during the first month
of spring. “TAut1” and “TAut2’ are the temperatures during
the first and second month of autumn, respectively. “RWinr1”
and “RWinr2” variables describe the rainfall during the first
and second month of winter, while “Im300” is the moisture
index of the soil at a depth of 300mm. “AnnualDayLength”
is the length of the day from sunrise to sunset. The variable
“Mi” is a moisture index. The fact that both M. persicae and
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TABLE V
COMMON VARIABLES FROM TOP TEN RANKED VARIABLES FOR M.

persicae AND B. brassicae

Contribution
Species M. persicae B. brassicae

Max RSprr1 18.755/5.763 9.986/5.323
Max TAut2 8.840/3.755 9.280/3.123

Mean RSprr1 8.340/3.403 6.552/3.113
Max TAut1 8.296/3.726 9.666/3.306
MaxDD5 7.704/3.682 7.831/3.405

B. brassicae had the same variables most highly ranked is
informative, although perhaps unsurprising since both species
are types of aphids. Further investigation of the similarities
between the input rankings of M. persicae and B. brassicae
revealed that five of the top ten ranked variables were the
same for both species: these variables are listed in Table
V, where “DD5” is the “degree days” variable, a measure
of the temperature accumulation above a 5 degrees Celsius
threshold across a certain time period.

That two of the variables are spring rainfalls and another
two are autumn temperatures suggests a link to the aphid life
cycles. During spring the aphids hatch from over-wintering
eggs and their host plants undergo a spring flush. High
rainfall during that time could potentially improve the devel-
opment of the host plants and thus provide more bountiful
food supplies for the aphids. During autumn the aphids lay
their eggs, which hibernate over winter and hatch in spring.
Higher temperatures in autumn could potentially allow the
aphids to survive to migrate back to their primary over-
wintering hosts.

The inputs that negatively contributed the most to the
networks are listed for each species in Table VI. The mean
and standard deviation of the contributions are listed, along
with the name of each input variable.

TABLE VI
MOST NEGATIVELY CONTRIBUTING INPUTS

Species Variable Contribution
M. persicae Min DD15 -18.098/5.018

Min PEannual -11.002/3.881
Min Climate values -9.686/4.971

B. brassicae Min RAutr3 -13.276/3.985
Min RSprr3 -11.766/4.577
Max RSprr2 -8.368/4.858

S. zeamais Mean RAutr3 -9.182/4.534
Max AEannual -6.845/4.308

Min DD15 -6.820/3.817
D. melanogaster Min Climate Values -7.255/3.651

Max AEannual -7.143/3.938
Max RSprr3 -5.268/3.801

The variable “PEannual” is the potential evapotranspi-
ration while “AEannual” is the actual evapotranspiration.
“RAutr3” is the rainfall during the third month of autumn.
“Climate Values” are the most extreme minimum of all
climate values.

The final analysis of the input contributions involved
examining the top ten inputs for each species and the bottom

ten inputs for every other species. The goal of this was
to identify input variables that contribute positively to the
establishment of one species, but negatively to another. This
analysis showed that the variable “Max RSprr3” contributed
positively to M. persicae and negatively to D. melanogaster,
and that the variable “Mean Climate values” contributed
positively to B. brassicae but negatively to S. zeamais. These
results are summarised in Table VII, where the mean and
standard deviation of the contributions are presented.

TABLE VII
OPPOSING VARIABLES

Variable Species Contribution
Max RSprr3 M. persicae 8.827/4.946

D. melanogaster -5.267/3.801
Mean Climate values B. brassicae 5.316/4.275

S. zeamais -6.116/4.732

C. Sensitivity Analysis

Sensitivity analysis is a way of visualising the response
of an ANN to variations of a single variable. To perform a
sensitivity analysis over variable � , all other input variables
are set to their mean values, while the values of � are varied
across the range of � , and the output of the ANN recorded.

The advantage of a sensitivity analysis is that it allows for
a more detailed investigation of the importance of a particular
variable. Whereas an analysis of the importance of each input
will yield a single overall value for the contribution of each
input, a sensitivity analysis shows how the network reacts to
that variable across its range. When plotted for positively and
negatively contributing climate variables, sensitivity analysis
allows for the visualisation of the probability of a species
establishing as the climate varies.

In this subsection, the results of a sensitivity analysis of
the most positively and negatively contributing variables are
plotted.

Figures 1 and 2 display the results for M. persicae and
B. brassicae. In Figure 1 it can be seen that the output of
the network increases rapidly with respect to increases in
the “Max RSprr1” variable, and decreases even more rapidly
with respect to increases in the “Min DD15” variable. The
same effect, with respect to “Max RSprr1”, is seen in Figure
2, while the effect of the “Min RAutr3” variable is less
pronounced. Referring to the values in Table IV and VI
shows that the magnitude of the contribution of the “Min
RAutr3” variable is significantly less than that of the “Min
DD15” variable for M. persicae. This supports the conclusion
that the magnitude of the calculated input contribution is truly
indicative of the importance of the input variable.

The results of the sensitivity analysis of S. zeamais and D.
melanogaster are presented in Figures 3 and 4, respectively.
Again, the plots show the steady increase and decrease of
output values as the positively and negatively contributing
variables are increased. The curves for the output responses
for the negatively contributing variables are substantially
flatter for S. zeamais and D. melanogaster than they are
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Fig. 1. Output response of M. persicae network against Max RSprr1 and
Min D15 variables
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Fig. 2. Output response of B. brassicae network against Max RSprr1 and
Min RAutr3 variables

for M. persicae and B. brassicae. It seems that for these
species, the high number of false negative predictions was
the result of a lower overall activation of the output neuron,
which also depresses the curves for the sensitivity analyses
of the negatively contributing variables. The curves for
the positively contributing variables are lower than for M.
persicae and B. brassicae, but still show an upward swing
as the values of the relevant variables are increased.

In Table VII two variables are identified that have contra-
dictory effects for specific pairs of established and unestab-
lished species. Figure 5 presents the results of the sensitivity
analysis over these variables for the species M. persicae and
D. melanogaster, while Figure 6 presents the results for the
species B. brassicae and S. zeamais.

The curves in Figure 5 are unique in that the curves do not
cross. That is, at all points the activation for the M. persicae
is greater than the activation for D. melanogaster. This means
that the probability of M. persicae establishing is always
greater than the probability of D. melanogaster establishing,
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Fig. 3. Output response of S. zeamais network against Max RWinr3 and
Mean RAutr3 variables
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Fig. 4. Output response of D. melanogaster network against Max Annual
Day Length and Min Climate Values variables
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Fig. 5. Output responses of M. persicae and D. melanogaster networks
against Max RSprr3 variable

1843



no matter the value of the “Max RSprr” variable. However,
a depressive effect for D. melanogaster is shown by the plot.

The curves in Figure 6 show that at extremely low values
of the target variable the probability of S. zeamais establish-
ing is higher than that of B. brassicae, with the probability
dropping well below B. brassicae as the values increase.

Again, the “flatness” of the curves for the negatively
contributing variables seems to be related to the magnitude
of the contribution, as listed in Table VII.
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Fig. 6. Output responses of B. brassicae and S. zeamais networks against
Mean Climate Values variable

IV. DISCUSSION

As is the case with many ecological data sets, the data
used in this study is likely to be very noisy. For example,
while the climate in a particular region may be conducive to
the establishment of a species, the species may never have
gained access and therefore not established in the region.
Alternatively, while a species may be listed as being absent
from a particular geographic region, this may be because it
has never been officially recorded in that region, as opposed
to being truly absent. Conversely, a species may be falsely
recorded as being present in a region due to misidentification
of a specimen. There is nothing that can really be done about
this, other than to admit that it may be detrimental to the
performance of the ANN.

While use of the maximum, minimum and mean of the
climate variables provides useful information, in terms of
providing the range of the variables for a region, there is a
high degree of correlation between the mean and the other
two statistics. There is also likely to be correlation between
the climate variables themselves. This could be reduced
by performing a principal components analysis (PCA) over
the data and using only the top few principal components.
However, the issue of identifying the contribution of the
original variables during the analysis of the networks would
have to first be resolved.

An investigation of the biology of the target species would
be of great use in interpreting the results of this study. For

example, both M. persicae and B. brassicae are aphids, and
both are positively affected by the same variable. On the
other hand, S. zeamais is a weevil and D. melanogaster is a
fruit fly, and there is less similarity between the importance of
the variables for these species. Whether the similarities and
differences are due to fundamental differences in the biology
of the species, or whether they are simply artifacts of noisy
data, is a question that can only be answered by a study of
the biology of the species involved. The work reported in
this paper, however, does at the very least, provide a starting
point for proposing appropriate questions to be investigated.

V. CONCLUSION

The paper has presented an investigation into the use of
MLP in determining the importance of different climatic
variables to the establishment of several species of insect
pests. The results show that the MLP are able to learn
the relationship between the climate within a geographic
region and the establishment of pest species. Analysis of
the trained MLP was able to identify those input variables
that contribute the most to both encouraging and discourag-
ing establishment. While the most important features were
generally idiosyncratic to each species, there were also some
similarities between species of the same taxon.

Problems encountered were the high number of false
negative predictions made by the MLP for some species. This
is related to the amount of noise that is inherent in ecological
data, the correlations between the input variables and the
unbalanced nature of the data, that is, the relatively smaller
number of positive examples that exist for some species.

Future work will focus on alternative training methods, a
more detailed analysis of the biological effect of the climate
variables identified as important, and data processing meth-
ods such as PCA that will reduce the amount of correlation
between variables.
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