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Abstract: Models of glucose metabolism can help to simulate and predict the blood glucose
response in hyperglycaemic, critically ill patients. Model prediction performance depends on
a sufficiently accurate estimation of the patient’s time-varying insulin sensitivity. The work
presents three least squares approaches, the integral method and a Bayesian method that have
been compared by prediction accuracy on an absolute and on a relative scale. Clinical data
yields 1491 blood glucose predictions based on 10 critically ill patients were processed. The
Bayesian approach proved to be best with small errors (9.7% absolute percent error, 14.7 root
mean square of logarithmic error for prediction times ≤ 2h), and fewer and smaller outliers
compared to the other methods. Computationally, the Bayesian method took 1.5 times longer
per prediction compared to the fastest method. It can be concluded that a Bayesian parameter
estimation gives safe and effective results for the insulin sensitivity estimation for this model.

Keywords: insulin sensitivity, parameter identification methods, hyperglycaemia, critical care,
metabolic modelling, glucose control.

1. INTRODUCTION

Hyperglycaemia is a frequent complication in the treat-
ment of critically ill patients who present with or without
previously diagnosed diabetes (McCowen et al., 2001).
Since the first positive results from tight glycaemic con-
trol (TGC) (Van den Berghe et al., 2001; Krinsley, 2004)
the means to achieve TGC have been subject of intense
research (Meijering et al., 2006). In particular, it has been
shown that intensive insulin therapy (IIT) can increase
hypoglycaemia, which necessitates close monitoring IIT
patients, and increases the clinical burden (Cryer, 2006;
Devos and Preiser, 2007).

A number of model-based algorithms have been developed
to simulate the blood glucose response to exogenous insulin
treatment and nutrition (Wong et al., 2006; Plank et al.,
2006). Virtual trials (Chase et al., 2008; Hovorka et al.,
2008) allow estimating a model’s capability to predict the
longer term (> 2 hours) glycaemic response to intervention
since accurate, longer-term predictions reduce the need
for frequent blood glucose monitoring and thus reduce
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the clinical burden. Model-based simulations of blood
glucose depend on the identification of model parameters
to capture inter-subject variability as well as time-varying
patient-specific dynamics. The identification method may
be of importance for model predictive accuracy and thus,
influence model performance in virtual trials.

In the present work, we look at five different methods
to identify the time-varying patient-specific insulin sen-
sitivity and evaluate the method impact on model-based
prediction accuracy in shorter (≤ 2 hours) and longer-term
(> 2 hours) predictions. More specifically, the Glucosafe
model (Pielmeier et al., 2009) is used for with three dif-
ferent least squares methods, the integral method (Hann
et al., 2005), and a Bayesian approach to identify insulin
sensitivity. Methods are compared based on prediction
accuracy and computational time.

2. METHODS

The Glucosafe model (Pielmeier et al., 2009) has been
developed for blood glucose regulation in the critically
ill. It is a composite metabolic model comprising four
sub models: a two-compartment model of insulin kinetics,
a model of saturation of insulin action at high insulin
concentrations, a model of glucose absorption in the gut,
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and a blood glucose balance model. Insulin sensitivity is
the patient-specific, time-varying parameter that needs to
be identified for model prediction. In this model structure,
the insulin sensitivity is a dimensionless factor s ≥ 0 that
links insulin effect and glucose levels. Reduced insulin
sensitivity is thus modeled as scaling down the maximum
effect of insulin on glucose uptake.

2.1 Simulation conditions

Simulations were run for each measurement mi in discrete
steps of one minute, beginning with a run-in period R fol-
lowed by a parameter estimation period E and concluded
by a prediction period P such that the duration ∆ of the
i-th simulation S is:

∆Si = ∆Ri + ∆Ei + ∆Pi . (1)

P contained a set of measurements {mn+1, ..mj , ..mk}.
The prediction duration ∆P was 10 hours. E contained
a set of measurements {m1, ..mi, ..mn} and was defined
to end at the time τn of the last measurement mn. The
duration ∆E varied with the identification method and
the frequency of blood glucose measurements. The insulin
sensitivity s was estimated over E and assumed to be
constant over S.

R preceded the parameter estimation period by at least 3
hours, and up to 24 hours if glycaemic data was available.
I, Q, N, G are state variables and the run-in period lets
them eliminate initial transients from the initial values
defined:
I: plasma insulin concentration

= 30 mU/L
Q: peripheral insulin concentration

= 18 mU/L
N : gut content

= 1 mmol per kg bodymass
G: simulated blood glucose

= value of first measurement in S in mmol/L.

All other variables were calculated as described in Pielmeier
et al. (2009) and the endogenous insulin production was
set to 35 units per day except patients with type 1 diabetes
where the production rate was set to zero.

The value of s was identified by fitting G to the measured
blood glucose concentrations {m1, ..,mn} in E. The search
space for s was limited to values in {0..1}, where very low
values indicate a high insulin resistance and 1 indicates a
patient with normal insulin sensitivity. Five objective func-
tions to identify s were investigated (method acronyms in
bold face). The global minimum of the argument of each
method was searched over the search space of s, stopping
when s± 0.001 yielded no further improvement.

2.2 Parameter identification methods

The first approach was the “12 hour” least squares iden-
tification method used in Pielmeier et al. (2009) where
the value of s that minimizes the sum of the squares of
residuals was found (12h):

max
s

n∑
i=1

(lnmi − lnGi(s))2, ∆E = 12h (2)

where mi is the i-th of n measurements in E and Gi
denotes the model-predicted blood glucose concentration
of the i-th measurement. Residuals were calculated on a
logarithmic scale because blood glucose measurements are
approximately log-normally distributed as shown by Chase
et al. (2008) and Pielmeier et al. (2009).

The second and third approach were both least squares
methods derived from the 12h method, but focused on
recent changes in a patient’s glycaemic state. For the
second method, only the last two measured blood glucose
concentrations were fitted (2p):

max
s

n∑
i=n−1

(lnmi − lnGi(s))2, E = {mn−1,mn} (3)

where ∆E depends on the time between the last two
measurements.

The third approach focused the most recent glycaemic
state and s was identified by fitting only to the last blood
glucose measurement mn, so ∆E = 0, and the objective
function thus being (1p):

max
s

n∑
i=1

(lnmi − lnGi(s))2, E = {mn} (4)

The integral method of Hann et al. (2005) starts the
simulation at time τn−1, i.e. with Gn−1 = mn−1 as a
limiting condition. Then they require that the simulation
has the value mn at τn, i.e. that Gn(s) = mn or (integ):

τn∫
τn−1

Ġ(t | s) dt = mn −mn−1, (5)

where Ġ(t | s) is the derivative of the simulated blood
glucose. As Hann et al. (2005) have shown, an explicit solu-
tion for s can be found. The option to solve for s explicitly
was abandoned here in favor of the computationally more
expensive approach of numerically searching for the value
of s that satisfies Equation 5.

A Bayesian method was the final investigated approach.
The general idea is to combine the empirical information
contained in a set of samples {m1, ..,mn} with the a
priori knowledge about s to obtain the a posteriori density
function. In agreement with the previously mentioned log-
normal distribution of blood glucose we define

m∗
i = lnmi (6)

and

m̄∗
i = {m∗

1, ..m
∗
n} . (7)

If we assume that

P (m∗
i ) = N(lnGi, σ2

i ) (8)

then s can be found by maximizing the a posteriori
probability of s given mi using Bayes’ theorem:

max
s

P (s|m̄∗
i ) =

P (m̄∗
i |s)P (s)

P (m̄∗
i )

= P (m̄∗
i |s)P (s) (9)



because P (m̄∗
i ) is a factor, independent of s, which does

not change the maximization operation. Given that

P (m̄i|s) ∼=
∏
i

P (mi|s) (10)

and P (m∗
i |s) being a normal density yields

P (m∗
i |s) =

1√
2πσ

exp[−1
2

(m∗
i − lnGi(s))2

σ2
i

]⇒

P (m̄∗
i |s) =

∏
i

1√
2πσ

exp[−1
2

(m∗
i − lnGi(s))2

σ2
i

] . (11)

Further we assume that s is also log-normally distributed:

P (ln s)∼N(lnµs, σ2
s)

=
1√
2πσ

exp[−1
2

(ln s− lnµs)2

σ2
s

] . (12)

Inserting Equations 11 and 12 into 9 yields

max
s

P (s|m̄∗
i ) =

∏
i

1√
2πσi

exp[−1
2

(m∗
i − lnGi(s))2

σ2
i

]

× 1√
2πσs

exp[−1
2

(ln s− lnµs)2

σ2
s

] (13)

Removing constants gives:

max
s

P (s|m̄∗
i ) =

∏
i

exp[−1
2

(m∗
i − lnGi(s))2

σ2
i

]

× exp[−1
2

(ln s− lnµs)2

σ2
s

] (14)

Next we note that:

max
s

P (s|m̄∗
i ) = max

s
lnP (s|m̄∗

i )

= [−1
2

(mi − lnGi(s))2

σ2
i

]

×−1
2

(ln s− lnµs)2

σ2
s

. (15)

Removing constants and changing sign yields (Bayes):

max
s

P (s|m̄∗
i ) = min

s

n∑
i=1

(lnmi − lnGi(s))2

σ2
i

+
(ln s− lnµs)2

σ2
s

(16)

Choice of a priori parameters: We identified µs = 0.257
and σs = 0.091 previously with these data (see subsection
“Patient data” below) using the 12h method presented
earlier, yielding the probability density function P1(s)
shown in Figure 1. However, this function is very narrow
and reflects the small range of insulin sensitivities in a
homogenously ill group of patients. Thus, for the Bayesian
approach in this study, we propose to use function P2(s)
instead as a priori probability function where µs = 0.33

Fig. 1. Probability density functions for the natural log-
arithm of s: P1(s) with µs = 0.257 and σs = 0.091
(Pielmeier et al., 2009); P2(s) the chosen a priori
distribution with µs = 0.33 and σs = 0.3.

Table 1. Method specifics and constraints

fitted
method ∆E measurements constraints

12h 12 hours m1, ..,mn

2p τn − τn−1 mn−1,mn

lp 0 mn

integ τn − τn−1 mn Gn−1(s) = mn−1

Bayes τn − τ1 m1, ..,mn µs = 0.33;σs = 0.3;

σ0 = 0.02
√

2
σm = 0.007

and σs = 0.3 were values chosen to make the method
applicable to a glycaemically broader range of patients.

The value for σi was calculated using:

σi =
√
σ2

0 + σ2
m(τn − τi) (17)

where σ0 is an expression for the variance due to measure-
ment error associated with the assay method and σm is a
factor that increases the variance for measurements that
are “older” compared to mn, thus reducing the weight of
measurements in proportion to a receding time horizon.
For this study, σ0 has been set to 0.02

√
2 that is an

estimate of variance of two consecutive blood samples
using the ABLTM700 blood gas analyzer (Pielmeier et al.,
2009). The value for σm was found by repeated calculation
of the root mean square (RMS) of logarithmic prediction
error over prediction time for different values of σm. Visual
inspection of RMS results yielded σm = 0.007.

A summary over method specifics and constraints is given
in Table 1. Figure 2 shows an example of a model simula-
tion for each of the five methods.

Over the prediction interval P , the predicted blood glucose
value Gj and the measured value mj were recorded as well
as the length of the forecasted time tj ≤ 10h (i.e. the
prediction time). Prediction errors were calculated on a
logarithmic scale using:

ej = lnmj − lnGj (18)

and as absolute percent error (APE) using:



Fig. 2. Case scenario: The top panel shows the simulated blood glucose over time for each identification method. The
identification interval E stops at 22:00 at the time of the last measurement. The Bayes and the 12h method fit four
measurements over a longer ∆EBayes,12h compared to a shorter ∆E2p,integ for the 2p and the integ method that
fit only the last two measurements. ∆E for the 1p method is zero. The right-hand side of the top panel shows two
future measurements that will be predicted. In this case, Bayes and 1p method predict the first measurement more
accurately while the 2p and 12h method make a more accurate prediction on the second measurement. Panels 2, 3
and 4 plot modelled insulin concentrations, exogenous insulin input and feed rate/gut absorption rate, respectively.

APEj =
| Gj −mj |

mj
. (19)

The RMS of logarithmic prediction error and the median
and interquartile range (IQR) of APE were calculated for
5 prediction time intervals of 2 hours length (number of
predictions in parenthesis):

interval 1-2: predictions with t ≤ 2 h (170)
interval 3-4: predictions with 2 h< t ≤ 4 h (352)
interval 5-6: predictions with 4 h< t ≤ 6 h (328)
interval 7-8: predictions with 6 h< t ≤ 8 h (323)
interval 9-10: predictions with 8 h< t ≤ 10 h (318)∑

1491

2.3 Patient data

Simulations were run with retrospective clinical data from
10 hyperglycaemic patients, admitted to the neuro- and
trauma intensive care unit (ICU) at Aalborg hospital, Den-
mark, between 2005 and 2007. Glycaemic control had been
carried out according to a local nurse-directed protocol
that aimed for 5 to 8 mmol/l target blood glucose concen-
tration. Insulin was given as intravenous infusions or as
bolus injections. Blood samples were taken via an arterial

catheter and analyzed using a blood gas analyzer (ABL
TM700, Radiometer A/S). Nutrition was given preferably
by the enteral route and supplied with total parenteral
nutrition if necessary. A detailed description of the patient
characteristics and glycaemic control data can be found in
(Pielmeier et al 2009). Ethical approval was given by the
Ethical Committee for the Region of Northern Jutland.

2.4 System requirements and performance measurement

Simulations and performance measurements were pro-
cessed on a laptop computer Dell Latitude D600 with Intel
Pentium 1.6 GHz processor and installed Windows XP
OS Version 2002. Program code was written in Java using
JDK 1.6 and executed using Netbeans IDE version 6.0.1.
Patient data were processed in batch mode, without multi-
ple threads. Execution times are expressed on an absolute
scale in seconds as arithmetic mean per simulation per
patient and as multiples on a relative scale. SPSS software
version 16.0 was used as statistical tool and MATLAB
version 7.5 was used for curve fitting.



Fig. 3. Distribution of APE by method and prediction
time interval. “Whiskers” extend to minimum and
maximum values in the distribution not bigger than
1.5 times the interquartile range (IQR) as measured
from the 75th percentile. Diamonds (asterisks) are
outliers bigger than 1.5 (3) times the IQR as measured
from the 75th percentile.

3. RESULTS

Results of prediction errors are reported as box-and-
whiskers plots and RMS diagram.

The box-and-whiskers plot in Figure 3 compares the meth-
ods by APE and prediction time interval. For longer pre-
diction times, the error tends to increase for all methods.
Median, 25th and 75th percentile are lowest for the 1point
method and highest for the 12h method for short predic-
tion times ≤ 2 h. At longer prediction times, medians,
25th and 75th percentile tend to be lowest for the Bayes
method. Over all prediction times outliers were smaller for
the Bayes method.

Fig. 4. Root mean square (RMS) of logarithmic prediction
error for the five identification methods.

Fig. 5. Logarithmic prediction error ej = lnmj − lnGj for
prediction times ≤ 2 hours.

Figure 4 compares the methods by RMS of logarithmic
prediction error and prediction time interval. It can be
seen that the Bayes method gave the smallest errors
over all prediction time intervals compared to the other
methods. Figure 5 shows a detailed view over short-term
predictions (1-2 hours forward). Outliers seen in Figure
5 mark a case where the identified insulin sensitivity by
the 1p method, integ method and the 2p method was
highly overestimated, yielding a largely underpredicted
blood glucose. This example shows how single large errors
affect the RMS of prediction error though the effect on
the median is not distinct. Figures 3 and 4 also show a
decreasing method effect on error outcome for increasing
prediction time intervals: at prediction times > 9 hours
the APE and logarithmic prediction errors are very much
the same for the different methods.

Computational times are listed as mean identification time
per measurement in Table 2. On average, the 1p method
was fastest per identification. The Bayes method took on
average 1.50 times longer.



Table 2. Computational times ∗

absolute time time per measurement
method per measurement (sec) relative to 1point method

12h 0.50 1.39
2p 0.40 1.11
lp 0.36 1.00
integ 0.43 1.19
Bayes 0.54 1.50

∗ The integral method would have been computationally
much faster had an explicit solution for s been imple-
mented.

4. DISCUSSION

The present work compared five methods for identification
of the insulin sensitivity in a simulation model of glucose
metabolism. The comparison was carried out from 1491
blood glucose predictions from retrospective glycaemic
data of 10 critically ill patients and calculation of the
accuracy of predictions on an absolute and a relative
scale. Additionally, the computational time needed by each
method was recorded and compared.

For short prediction times (< 2 hours) comparing absolute
percent error, results showed a slight advantage of the 1p
method that based the parameter estimation entirely on
the last measured blood glucose concentration. However,
the Bayes method gave fewer and smaller outliers for the
same prediction time interval on an absolute scale, and
outperformed the other methods firmly when compared by
root mean square on a relative scale. The computational
disadvantage was small since a prediction using the Bayes
method required on average only 1.5 times longer than the
fastest method (1p).

It can be concluded that the Bayesian approach is a reason-
able and effective method to identify the insulin sensitivity
for simulations using this model. Overall, prediction error
is a function of sensor error (small and random) and
evolution or changes in condition over the prediction time
period, which can be quite large in critical care (Lin et al.
(2008)). The Bayesian approach presented performs better
for outliers, and thus overall, because it manages this
variability with its a priori probability density functions,
as seen in Figure 1, limiting or accounting for the range
of possible changes and liklihood. In contrast, Lin et al.
(2008) used this likelihood from their stochastic model to
moderate the intervention. One interesting future avenue
would be to replace P2(s) in Figure 1 with a data based
and dynamic function of current insulin sensitivity based
off the stochastic models like those of Lin et al. (2008).
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