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Abstract 
 
 
This study aimed to investigate various aspects of cyclist exposure to common urban air 

pollutants, including CO, PM10, PM2.5, PM1.0 and UFPs. The initial part of the study 

compared cyclist exposure to that of other transport modes, while the second part 

addressed the implications of route choice. The final part analysed the effect of proximity 

to traffic.  

 

Data was collected in Christchurch and Auckland cities over a nine week period, with a 

total of 53 inter-modal and 7 separate cyclist sampling runs completed. Mobile sampling 

was conducted using a collection of instruments in four portable kits. Fixed-site 

meteorological data was used to find associations between pollutants and temperature and 

wind speed. Spatial patterns were also considered by means of time-series comparative 

graphs and colour-coded pollutant concentration GPS mapping.   

 

The cyclist mode was up to 61% less exposed than the car for primary pollutants (CO and 

UFPs), but up to 26% more exposed for PM1.0-10. The bus was generally the most 

exposed for all pollutants apart from CO. The effect of route choice was substantial, with 

the off-road cyclist route recording a reduction of 31% for CO and PM1.0, and 53% for 

UFPs while PM10 was 6%. At a distance of 7 m from traffic, exposure dropped by 30% 

(UFPs), 22% (CO) and 14% (PM2.5). At 19 m, concentrations decreased a further 17%, 

13% and 8%, respectively. When moving much further away from traffic (~700 m), the 

effect was far less pronounced and no difference was observed for CO past 19 m.  

 

Conclusions suggest that for most pollutants studied, the cyclist mode faces much lower 

exposure than other modes, especially when traveling through backstreets and cycle 

tracks. Significant exposure reductions can also be made when only a very small distance 

away from traffic emissions. This has positive implications for health, sustainable city 

planning and active-mode transport promotion.  
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Chapter One: Introduction 
 

1.1  Introduction  
 
Urban air pollution, primarily due to the burning of fuels for heating and industry, has 

been a problem ever since cities existed.  Intermittent attempts at regulation occurred up 

until the mid twentieth century, when the Great London Smog of 1952 led to the 

introduction of the Clean Air Act of 1956 (Phalen 2002). Over the next 30 years, most 

industrialised nations increased efforts to control private and industrial emissions by 

means of policy and legislation. The exponential growth of the human population, 

subsequent demand for material goods and an increasing reliance on fossil fuels slowly 

worsened air quality to the point of global concern, at least within many developed 

nations. The most notable early report in recognition of environmental problems as a 

global issue, was the Brundtland Report of 1987 in which the term ‘sustainable 

development’  was coined (Bruntland 1987). This was the beginning of an era of 

discussing ways of attempting to tackle global environmental degradation collectively. 

Since the Brundtland report, various pivotal reports, summits and international 

agreements have followed. The Rio Earth Summit of 1992 led the development of the 

Kyoto protocol, in which 37 industrialised countries agreed to commit to reducing several 

key primary and secondary greenhouse gases. The Kyoto protocol has been heavily 

criticised around the globe, with notable economists labelling it as a political and 

technical failure (Prins & Rayner 2008). 

 

Transport contributes to 14% of all global greenhouse emissions, with 72% of that 

portion made up of vehicular road transport (IEA 2006). In the US alone, 33% of carbon 

dioxide emissions originate from the transport sector, predicted to rise another 3% by 

2020 (Greene & Schafer 2003). Curtailing emissions from vehicles through use of 

sustainable city transport and alternative modes is now a pressing issue for many local 

and state governments. The relative unwillingness of national governments to adopt 

radical policies and allocate funding to sustainable transport initiatives has left actual 

measurable change largely in the hands of local governmental bodies.  
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Reducing urban pollution is not only a paramount step as part of the ultimate goal of 

slowing environmental degradation; it is a vital necessity for protecting human health. 

Traffic generated emissions are responsible for more deaths than traffic accidents, in 

many major metropolises, including London, New York and Sydney.  The New Zealand 

situation is not far behind the trend, with 399 pollutant associated premature mortalities 

per annum, compared with 502 by motor accident (Fisher et al. 2002). Reducing pollutant 

related mortalities can only be achieved through a reduction of emissions, cleaner fuel 

technologies (reduced toxicity) or using alternative completely alternative options; 

alternative industrial production methods, sustainable transport systems and active mode 

transport. Firstly, the New Zealand situation requires adequate personal exposure 

research to get up speed with international literature.  

 

1.2 Personal pollution exposure: prior investigation and thesis 

rationale 

 

Much of the earlier pollution research has relied on data from fixed site monitors which 

has been extrapolated across wider city areas. While sufficient for informing emissions 

guidelines and policies, fixed site methods often result in the underestimation of 

concentrations for some areas (Gulliver & Briggs 2004). It has also been shown that 

background and kerbside monitoring stations provide poor indications of personal 

exposure (Gulliver & Briggs 2004; Kaur et al. 2005a). Although the spatial distribution 

of some pollutants (especially small non-reactive particles) can be relatively uniform, 

concentrations fluctuate substantially, with levels generally highest closest to their 

source. Therefore, only direct personal exposure assessment can provide accurate 

measures of exposure while traveling.   

 

There is now a wealth of published international research which has focused on personal 

journey time exposure. Results vary substantially, with the highest levels found in large 

cities in underdeveloped nations (Lindén et al. 2008; Saksena et al. 2008; 

Wöhrnschimmel et al. 2008). Significant differences also occur between transport modes. 

While the relative ratio between modes provides an idea of the general picture across 
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studies, there are many exceptions to the more common conclusions. Different 

geographical settings (ambient sources, traffic density), instrumentation, methodologies 

and sampling conditions inevitably result in conflicting findings. It is for these reasons 

that overseas data cannot be relied on for informing health promotion and policy at the 

local level.   

 

While fixed site monitoring has long been in place in New Zealand cities, currently, no 

study investigating personal pollution exposure while traveling exists. This provides a 

major research gap which needs to be addressed to see how the situation compares to 

overseas cities. Decisions can then be made on the usefulness for informing policy and 

promoting healthy transport decisions.   

 

1.3 Research context 

 

New Zealand has a relatively small population for its area, with approximately 4.3 

million inhabitants and a population density of 16 persons per km2. Public transport 

patronage is low, with the number of people traveling to work by private vehicle 

increasing from 64.8% in 1976 to 83% in 2006. This change is reflected in pubic 

transport use, dropping from 12.8% to 5% over the same period (Tin Tin et al. 2009). In 

Australia, national patronage is at 12% and is as high as 18% in New South Wales, where 

electric rail is the most popular means of public travel (Australian Bureau of Statistics 

2007). Larger cities are afforded the luxury of having the population to support extensive 

public transport networks and are often well inter-connected to other cities by rail e.g. 

Europe, Australia and the UK. Due to a combination of a lack of demand and a lack of 

public spending, only two New Zealand cities have a commuter rail service (Auckland 

and Wellington) and inter-city services are limited as well as very expensive. All other 

cities are serviced by bus.  

 

The situation for commuter cyclists could be greatly improved. Cycle lanes typically 

exist in the form of painted broken lines on the roadside but there are still many major 
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streets and roads where no lanes are present. While no safety barrier exists between 

cyclists and traffic, visibility has been improved in recent years by fully painting lanes 

and improving signage to create greater drive awareness. Even so, the general perception 

that cycling is too dangerous remains the key barrier to preventing greater uptake for 

commuting purposes (Taylor et al. 2009).  

 

New Zealand cities and towns are characteristic of typical colonial planning, with large 

areas dedicated to parkland and grid-based street configuration. The wide nature of 

colonial streets and abundant parkland provides ample opportunity for safe and efficient 

active mode networks, especially in areas of flat topography. In most cases, the possible 

options for greatly improved active-mode routes are well under-utilised. Many European 

cities, especially in The Netherlands and Germany, have world-class cycle infrastructure 

where cycling is safer, more direct and often quicker than driving. Segregated cycle 

ways, shared cyclist/pedestrian paths, cyclist give-way priority, large parking facilities 

and cyclist/pedestrian only city centres are some of the key features necessary for 

effective networks. While some progress is being made in New Zealand, more funding 

and faster implementation would likely see a greater uptake at a much faster rate.  

 

The general public’s perception is not only that cycling is unsafe, but one is also exposed 

to more pollution while cycling. This may well be a misconception, at least for certain 

pollutants. Hence there is a need to clarify the situation so that the public can be better 

informed. In addition to finding out how cyclists’ exposure measures up to that of other 

modes, there is scope for addressing more detailed questions about exposure while 

cycling. Segregated cycle ways provide the opportunity to measure exposure at different 

distances from the traffic. The effect of proximity to traffic at the microscale level has 

never been investigated for cyclists anywhere in the world. While some studies have 

considered the effect of taking backstreets and parkland tracks, it is uncertain if any 

difference occurs between on-road exposure and levels experienced just several metres 

from traffic. As New Zealand also lacks research on the effect of route choice, two major 

cycling research gaps exist.     
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Improving alternative mode infrastructure will not only help improve air quality but also 

improve population health and fitness. Similar to the UK, USA and Australia, New 

Zealand, has serious problems with obesity, with prevalence now at 25% for the 

population aged 15 years and above (Ministry of Social Development 2009). Not 

surprisingly, research shows there is an inverse correlation between cycling, walking or 

using alternative transport to commute, and being overweight (Ming Wen & Rissel 

2008). Health problems arising from limited physical activity are not confined to people 

who are overweight. Those who work in sedentary jobs and are relatively inactive have 

an increased risk of premature death from cancers and other serious ailments (Manson et 

al. 2004). Furthermore, the number of road accidents are increasing, with the health and 

social costs to New Zealand exceeding $200 million in 2005 (Billante 2008). Improving 

alternative transport infrastructure has long-lasting benefits that can positively affect the 

environment, individuals and society as a whole. Cyclist and pedestrian infrastructure is 

relatively cheap compared with other alternative transport solutions, making it seemingly 

a more logical area of investment. Research that supports and builds-on active mode 

transport should be encouraged and greater efforts made to shift results into policy.   
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1.4 Objectives and thesis structure 
 

In consideration of the research context and identified research gaps, this thesis has four 

key objectives: 

 

1. To ascertain how cyclists’ personal pollutant exposure compares to levels 

experienced by other transport commuters, for key traffic pollutants including 

carbon monoxide and several sizes of particulate matter.  

 

2. To investigate the effect of cyclist route choice – the difference between on-road 

cyclist exposure, backstreet exposure and off-road cycle path exposure along 

routes within the same vicinity.  
 

3. To determine the degree to which, if any, cyclist pollutant exposure variance 

exists between on-road exposure and that experienced approximately 5 and 15 

metres away from traffic flows.   
 

4. To compare results to previous literature and discuss any implications of the 

results for the New Zealand situation.  

 

This thesis continues by first defining pollutants associated with traffic emissions, 

looking at some of the associated health problems and then presenting an in-depth 

synthesis of findings from previous personal exposure studies (Chapter Two). Chapter 

Three outlines the methods employed in the study. Chapters Four and Five are the results 

chapters in which discussion elements are also included. Chapter Four solely focuses on 

the results from inter-modal comparisons while Chapter Five covers all the cycling 

research; including the effect of route choice and the effect of proximity to traffic. The 

conclusions chapter (Chapter Six) presents separate conclusions for both parts of the 

study, along with limitations and suggestions for further research.  
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1.5 Summary 

 
This chapter has drawn attention to some of the main issues surrounding personal 

pollution exposure, why such research is important and how it fits into other pressing 

issues such as human health, sustainability and climate change. Most importantly, this 

chapter has outlined the New Zealand context and provided clear and logical research 

gaps that legitimately warrant enquiry. The main aim of this thesis is to provide a key 

piece of research that can be drawn on for policy-related reports and future academic 

enquiry.  
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Chapter Two: Literature Review  

 

2.1 Introduction 
 

Approximately half of the world’s population currently resides in urban centres and the 

percentage living in rural areas is projected to decline as cities swell into mega-

metropolises (Cohen 2003). Cities are home to a raft of social and environmental 

problems and air pollution is a key issue due to the detrimental effects on human health. 

Although urban pollution originates from a variety of sources, in most urban areas the 

majority comes from transport emissions. High air pollution exposure has been linked to 

increased allergies, respiratory illnesses, birth defects and numerous forms of cancer 

(Brunekreef & Holgate 2002).  

 

Major pollutants associated with vehicle emissions include: particulate matter (expressed 

as PM10, PM2.5, PM1.0 and UFPs [ultrafine particles <=0.1 μm]), black carbon, volatile 

organic compounds (common VOCs found in petrol include benzene, toluene, 

ethylbenzene and xylenes [BTEX]), polycyclic aromatic hydrocarbons (PAHs), ozone 

(O3), carbon monoxide (CO), carbon dioxide (CO2), sulfur dioxide (SO2) and mono-

nitrogen oxides (NOx), which consist of nitric oxide (NO) and nitrogen dioxide (NO2). 

PAHs are chemicals present in particulate matter and these compounds are primarily 

responsible for PM toxicity and accompanying adverse health effects (de Kok et al. 

2006). Vehicular traffic also produces non-tail pipe pollutants such as material from 

clutch, brake and tyre abrasion, which include many heavy metals (Wahlin et al. 2006).  
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Given the growing environmental and health concerns, a substantial body of literature has 

been produced on both ambient pollutant recordings and personal exposure data. Much of 

the work on personal exposure in the past decade has tended to focus on journey-time 

exposure while traveling. Research from the United States shows that 60% of a persons 

total daily pollution exposure is attributable to their daily commute (Hill & Gooch 2007). 

Therefore it is important commuters be made aware of ways they can reduce personal 

exposure by changing transport modes or using different routes. Such information is 

highly useful for public health campaigns and in city planning.  

 

This review synthesises findings from most of the transport exposure literature of the past 

fifteen years. Some of these studies have compared exposure for different transport 

modes. The main objective of this review is to investigate which modes are subject to the 

highest concentrations of key pollutants. Different variables affecting exposure are then 

summarised, followed by a brief overview of known health implications.   

 

2.2 Effect of transport mode on personal exposure levels 
 

 

This section first provides summarised results tables of most previous studies for the five 

main pollutants of interest. Table 1 outlines CO results. Tables 2, 3, 4 and 5 present the 

four main PM fractions: PM10, PM2.5, PM1.0 and UFPs, respectively. Findings are then 

discussed in order of the most commonly used modes transport modes.  
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Table 1 Modal Studies - CO Summarised Results 

 
 

Author Location Instrument/s Mode  Vehicle 
type/make 

Window and ventilation settings Sampling 
duration  

Sampling setting Number 
of 
samples 

Mean  values 
(ppm unless 
specified) 
 

Bevan et al. 
(1991) 

Southampton, UK Neotronics 
sampling 
pump 

Bicycle   ~35 min Suburban 
commute 
Urban commercial  
Parkland 

16 
 

16 
16 

10.5 
 

4.5 
0.8 

Chan et al. 
(1991) 

Raleigh, NC, USA Interscan 
4146 

Car  1983/87 Mercury 
four door sedan 

Windows & vents closed, A/C on 
Windows closed, vent fan on, A/C 
off 
Front windows half opened, vent 
fan on, A/C off 

1 hr Urban  
Interstate beltway 
 
Rural 

30 
34 

 
6 

13 
11 

 
4 

Koushki et 
al. (1992) 

Riyadh, Saudia 
Arabia 

Ecolyser 
series 2000 

Car Unknown Unknown 25 min (avg) Main arterial 
roadways 

634 31.3 

Limasset et 
al. (1993) 

Paris, France 
Bordeaux, France 

Ecolyser 
 

Bus 
Bus 

Unspecified Unspecified  1.5-2 hrs 
35-60 min 

City centre 
City centre 

18 
24 

10, 11.3 
5.8, 8.1, 12.5 

Liu et al. 
(1994)  

Taipei, Taiwan Horiba 
APMA-350E 

Car 
Bus 
Motorcycle 

Unspecified Not controlled for 
Actual settings unspecified  

30-50 min  Major  city 
transportation 
mains  

30 
94 

295 

11.6 
11.0 
17.5 

Ott et al. 
(1994) 

Menlo Park 
Palo Alto 
Los Altos, CA, 
USA  

GE Model 
15ECS3CO3 

Car Unspecified  Driver’s window fully open, 
front passenger open 3 inches, 
all others closed  

31-61 min Major urban 
arterial  

88 9.8 

Dor et al. 
(1995) 

Paris, France Draeger 
PAC II 

Car 
 
 
 
Bus 
Walk 
Subway  

Renault Express 
(petrol) 
Peugeot 
(electric) 
Renault (diesel)  

Unknown ~82 min 
~105 min 
~82 min 
 
- 
- 
- 

Urban centre 
Suburban  
Urban centre  

22 
30 

2 
 

- 
- 
- 

12, 9,10 
10,9 
9,10 

 
5 
4 
2 

Fernandez-
Bremauntz 
& Ashmore 
(1995) 

Mexico City, 
Mexico 

GE COED-1 
PEM 

Car 
 
Bus 
Trolleybus 
Minibus 
Minivan 
Metro system  

Several small 
1972-88 VWs  
Unspecified 
Electric 
Unspecified 
Unspecified 
Electric  

Not specified ~44 min  Key city routes 
consisting of 
different traffic 
densities 
 
 
Rail/subway   

43 
 

205 
53 

185 
44 

111 

55.2-57.0 
 

20.5-41.1 
21.6-31.9 
31.6-64.4 
39.5-66.1 
16.8-26.5 

Van Wijnen 
et al. (1995) 
 

Amsterdam, 
Netherlands  

Dupont 
pump 

Car 
Bicycle 
Walk 

Peugeot 205 
(petrol) 

Windows closed  
No specific ventilation settings 

30 min- 1 hr 
30 min-1 hr 
30 min-1 hr 

Inner-city, tunnel 
and rural  

41 
66 
10 

6730 µg/m3 
2670 µg/m3 

2460 µg/m3 

Clifford et 
al. (1997) 

Nottingham, UK Crowcon 
CO sensors  

Van (morning) 
 
 
Van (morning)  

Rover Maestro Adjusted daily to suit 
prevailing conditions – 
generally, fan on at lowest 
setting  

35 min (avg) Key commuting 
routes  
 
 

33 
 
 

35 

4.8 
 
 

4.9  
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Table 1 Modal Studies - CO Summarised Results cont.  

 
Rodes et al. 
(1998)  

Sacramento, CA, 
USA   
 
Los Angeles, 
CA, USA   

Draeger 
model 190 
 
Draeger 
model 190 

Car 
 
 
Car 

1991 Chevrolet 
Caprice (sedan) 
 
1997 Ford 
Taurus (sedan) 
  

Vent on high (windows 
closed) 
Vent on low (windows closed) 
Vent on high (windows 
closed) 
Vent on low (windows closed) 

2 hrs 
2 hrs  
 
2 hrs 
 
2 hrs 

Freeway 
commute 
 
Freeway 
commute 

6 
4 

 
8 

 
4 

2.0, 3.5 
2.2, 2.7 

 
4.3, 4.5 

 
4.9, 5.3 

Vellopoulou 
& Ashmore 
(1998) 

Athens, Greece Draeger 
model 190 

Car  
Bus 
Motorcycle 
Walk 

Unspecified Not specified 45.5 min 
(avg) 

Urban commute 
to city 
commercial 
triangle 

20 
19 

4 
1 

16.9 
10.3 
12.3 

6.8 
Alm et al. 
(1999) 

Kuopia, Finland  Langan T15 Car (morning) 
 
 
Car (afternoon) 

1999 VW Jetta 
GL with three-
way catalytic 
converter  

Vent set to 2 (windows up) 
 
 
Vents set to 2 (windows up) 

18-24 min 
 
 
18-24 min 

Small urban 
town  

11 
 
 

12 

5.7 
 
 

3.1 
Chan et al. 
(1999) 

Hong Kong SKC pump, 
Gas Filter 
Correlation 
CO 
Analyser  

Car 
Bus 
Light bus 
Tram 
Train 
Subway 
Walk  

Unspecified 
Unspecified 
Unspecified 
Electric 
Electric 
Electric  

Windows open/Windows 
closed 
Windows open/Windows 
closed 
Windows open/Windows 
closed 

11-90 min 
20-41 min 
14-38 min 
45-50 min 
42 min (avg) 
- 
- 

Various districts 
throughout the 
metropolis 
 
 
 

25 
64 
32 
16
16 
48 
96 

10.1 
1.9 
2.4 
2.0 
1.0 
1.5 
1.8 

Zagury et 
al. (2000) 

Paris, France Draeger 
PAC II 

Taxi Various diesel 
taxis 

Unknown but states A/C not 
used due to weather conditions 

8 hrs  >75% within city 
limits 

28 3.8 

Chan & Liu 
(2001)  

Hong Kong Interscan 
4148 

Taxi 
 
 
Bus 
 
 
Minibus 

LPG/diesel 
 
 
Diesel  
 
 
Diesel 

A/C on 
 
 
Non-A/C 
 
 
A/C on 

2 hrs  
  
 
40-80 min 
 
 
18-40 min  

Urban-Urban 
Urban-Suburban 
Urban-Rural  
Urban-Urban 
Urban-Suburban 
Urban-Rural  
Urban-Urban 
Urban-Suburban 
Urban-Rural 

4 
4 
4 

16 
10 

8 
10 

8 
8 

3.1 
4.0 
2.7 
1.5 
2.1 
1.2 
2.8 
3.3 
2.3 

Chan et al. 
(2002b) 

Guangzhou, 
China 

Interscan 
4148 

Taxi 
 
Bus 
 
Subway 

Petrol 
 
Diesel 
 
Electric 

A/C on 
Non-A/C 
Windows closed, A/C on 
Non-A/C 
A/C on  

30 min (avg) 
30 min (avg) 
49 min (avg) 
53 min (avg) 
30 min (avg) 

Urban 
commericial and 
residential zones 
 
Subway  

10 
10 
20 
20 
20 

28.7 
18.7 

8.9 
8.3 
3.1 
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Table 1 Modal Studies - CO Summarised Results cont.  

 
Duci et al. 
(2003) 

Athens, Greece Solomat 
MPM4100 
Environment
al 
Monitoring 
System 

Car 
Bus 
 
Trolley 
 
Train 
 
Walk 
 

Unspecified 
Unspecified 
 
Electric 
 
Electric 

Unspecified  
Unspecified 
 
Unspecified 
 
Unspecified 
 

1-2 hrs 
1-2 hrs 
 
1-2 hrs 
 
1-2 hrs 
 
1-2 hrs 

Urban (winter) 
Urban (winter) 
Urban (summer) 
Urban (winter) 
Urban (summer) 
Urban (winter) 
Urban (summer) 
Urban (winter) 
Urban (summer) 

34 
40 

144 
87 
24 
18 

8 
15 
30 

21.4 
9.4 

10.4 
9.6 
8.2 
4.0 
3.4 

10.1 
11.4 

Bruinen de 
Bruin et al. 
(2004) 

Milan, Italy Langan 
Model T15 

Car/taxi 
Bus/tram 
Train/metro 
Motorcycle  
Walking  

Unspecified 
Unspecified 
Unspecified 
Unspecified 
 

Unspecified 
Unspecified 
Unspecified 

- 
- 
- 
- 
- 

Urban commutes 207 
158 
57 
14 

241 

5.7 
3.8 
3.0 
4.5 
3.0 

Gómez-
Perales et 
al. (2004) 

Mexico City, 
Mexico 

Langan T15 Bus 
Minibus 
Subway  

Unspecified 
Unspecified 
Electric 

Unspecified 
Unspecified 
Unspecified 

2-3 hrs 
2-3 hrs 
2-3 hrs 

Urban commute 
Urban commute 
Metro system  

15 
23 
16 

12 
15 

7 
Mackay 
(2004) 

Leeds, UK Langan 
T15v 

Car 
 
Bus 
 
Walk  

Unknown 
 
Unknown 

Unknown 
 
Unknown 

2 hrs 
3 hrs 
2 hrs 
3 hrs 
2 hrs 
3 hrs 

Urban (peak) 
Urban (off-peak) 
Urban (peak) 
Urban (off-peak) 
Urban (peak) 
Urban (off-peak) 

- 
- 
- 
- 
- 
- 

0.85 
0.95 
0.59 
0.51 
0.37 
0.47 

Han et al. 
(2005) 

Trujillo, Peru Draeger 
colour stain 
diffusion 
tube 
Draeger Pac 
III 

Taxi 
Bus 
 
 
Taxi 
Bus 

Petrol 
Diesel 
 
 
Petrol 
Diesel  

Unspecified 
Unspecified 
 
 
Unspecified 
Unspecified 

~8 hrs 
~8 hrs 
 
 
~8 hrs 
~8 hrs 

Urban 
Urban 
 
 
Urban 
Urban 

10 
8 

 
 

5 
8 

3.1 
2.36 

 
 

0.87 
0.24 

Kaur et al. 
(2005a) 

London, UK Langan T15 Car 
Taxi 
Bus 
Bicycle 
Walk  

Unspecified 
Unspecified 
Unspecified 
 

Unspecified 
Unspecified 
Unspecified 
 

~20 min 
~20 min 
~20 min 
~20 min 
~20 min 

Urban centre 
Urban centre 
Urban centre 
Urban centre 
Urban centre 

13 
16 
27 
29 
26 

1.3 
1.1 
0.8 
1.1 
0.9 

Kaur et al. 
(2005b) 

London, UK Langan 
T15v 

Walk   ~20 min Urban centre 173 1.3 

Saksena et 
al. (2008) 

Hanoi, Vietnam Langan 
T15n 

Car 
Bus 
Motorcycle 
Walk  

Unspecified 
Diesel  
Unspecified 

Both A/C on & A/C off (no 
diff) 
A/C on  

18 min (avg) 
25 min (avg) 
19 min (avg) 
18 min (avg) 

Major arterial 
roads 

32 
16 
32 
16 

18.5 
11.5 
18.6 

8.5 
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Table 1 Modal Studies - CO Summarised Results cont.  

 

*Bus Rapid Transit system (dedicated lanes)  

Lindén 
(2008) 

Ouagadougou, 
Burkina Faso 

Langan 
T15v 
Tpi A701 

Car 
 
Car 

Unspecified 
 
Unspecified 

One window open 
 
One window open 

~1.5 hrs 
 
~1.5 hrs 

Urban (In-
traffic) 
Urban 
(Roadside) 

32 
 

32 

16 
 

6.5 

Wöhrnschim
mel et al. 
(2008) 

Mexico City, 
Mexico  

Langan T15 Car 
 
Bus 
Minibus 
Metrobus (BRT)* 

1999 Nissan 
Pickup (petrol) 
Diesel 
LPG/CNG/diesel 
Diesel  

Unspecified 
 
Unspecified 
Unspecified 
Unspecified 

1 hr 30 min 
 
1 hr 30 min 
1 hr 30 min 
1 hr 30 min 

Urban 
 
Urban 
Urban 
Urban 

23 
 

34 
34 
57 

15.3-16.3 
 

11.5 
7.8 

20.3 
Kaur & 
Nieuwenhui
jsen (2009) 

London, UK Langan 
T15/T15v  

Car 
 
 
Taxi 
Bus 
Bicycle 
Walk 

Toyota Starlet 
(petrol w/ three 
way catalyst) 
Diesel  
Diesel  

Unspecified 
 
 
Unspecified 
Unspecified 

18 min+ 
 
 
18 min+ 
18 min+ 
18 min+ 
18 min+ 

Urban centre 
 
 
Urban centre 
Urban centre 
Urban centre 
Urban centre 

10 
 
 

13 
19 
14 
16 

1.3 
 
 

1.2 
0.8 
0.9 
0.7 
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Table 2 Modal Studies - PM10 Summary Results  

 
 

Author Location Instrument/s Mode  Vehicle 
type/make 

Window and ventilation settings Sampling 
duration  

Sampling setting Number 
of 
samples 

Mean  values 
(µg/m3) 
 

Fromme et 
al. (1998) 

Berlin, Germany Gravikon 
PM4/ 
Strohlein 
sampler  

Car 
 
 
 
Subway  
 

1996 VW Golf 
with 3 way 
catalytic convertor 
Electric (series 
F76)  

Unspecified  
 
 
 
Non-A/C  

11 hrs 
 
 
 
11 hrs  

Urban (winter) 
Urban (summer) 
 
 
Urban (winter) 
Urban (summer)  

1 
1 
 
 

1 
1 

42.8 
43.5 

 
 

141 
153 

Chan et al. 
(2002b) 

Guangzhou, 
China 

TSI 
DustTrak 
8520 

Taxi 
 
Bus 
 
Subway 

Petrol 
 
Diesel 
 
Electric 

A/C on 
Non-A/C 
Windows closed, A/C on 
Non-A/C 
A/C on  

30 min (avg) 
30 min (avg) 
49 min (avg) 
53 min (avg) 
30 min (avg) 

Urban 
commericial and 
residential zones 
 
Subway  

8 
8 

11 
15 
14 

88 
140 
125 
184 
55 

Lewné et al. 
(2006) 

Stockholm, 
Sweden 

Data-RAM Taxi 
Bus 
Truck 

Petrol/diesel 
Diesel/ethanol 
Diesel 

Participants free to adjust 
settings as desired 

9 hrs 50 min 
8 hrs 20 min 
8 hrs 35 min 

Urban/rural 
Urban/rural 
Urban/rural 

39 
42 
40 

26 
44 
57 

Branis 
(2006) 

Prague, Czech 
Republic  

TSI 
DustTrak 
8520 

Subway 
 
Walk  

Electric A/C on  7 min (avg) 
 
13 min (avg) 

Urban (winter) 
Urban (summer) 
Urban (winter) 
Urban (summer)  

77 
31 
77 
31 

125.5 
82.3 
84.9 
51.4 

Li et al. 
(2007) 

Beijing, China Dustmate 
sampler 

Rail  
Subway 

Electric 
Electric 

A/C on 
Vents on (mechanical fans) 

Unspecified Rail 
Subway  

83 
156 

108 
324.8 

Gulliver & 
Briggs 
(2007) 

Leicester, UK  OSIRIS/Dus
tmate 
sampler 

Car 
Walk  

2002 Fiat Doblo 
(petrol) 

Windows closed, vents set to 2 1 hr 
1 hr 

Urban arterials 
and residential 
zones  

33 
33 

18.2 
19.1 

Saksena et 
al. (2008) 

Hanoi, Vietnam PDR-1000 Car 
 
 
Bus 
Motorcycle 
Walk  

Unspecified 
 
 
Diesel  
Unspecified 

Windows closed, A/C on 
Windows open, A/C off 
Overall mean (closed, A/C on) 
A/C on  

18 min (avg) 
 
 
25 min (avg) 
19 min (avg) 
18 min (avg) 

Major arterial 
roads 

32 
 
 

16 
32 
16 

222 
595 
408 
262 
580 
495 

Tsai et al. 
(2008) 

Taipei, Taiwan  Grimm 
1.108 dust 
monitor 

Car 
Bus 
Motorcycle 
Metro System 

Petrol 
Diesel 
Petrol 
Electric  

Windows closed, A/C on 
Windows closed, A/C on 
 
A/C on  

30 min (avg) 
43 min (avg) 
28 min (avg) 
34 min (avg) 

Urban 
Urban 
Urban 
Rail/subway  

16 
16 
16 
16 

41.9 
70.0 

112.8 
64.9 

Gulliver & 
Briggs 
(2004) 

Northampton, 
UK  

OSIRIS 
sampler 

Car 
Walk  

1995 Ford Fiesta Windows closed, A/C off, 
vents off 

1 hr 
1 hr 

Main commuting 
routes 

36 
36 

43.16 
38.18 

Briggs et al. 
(2008) 

London, UK  OSIRIS 
sampler 

Car 
Walk  

2001 Ford Focus 
(diesel)  

Windows closed, vents set to 2 4 min (avg) 
13 min (avg) 

Urban  
Urban  

46 
46 

5.87 
27.56 

Cheng et al. 
(2008)  

Taipei, Taiwan  TSI 
DustTrak 
8520 

Metro System Electric A/C on 16-24 min Rail/subway 294 41 
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Table 2 Modal Studies PM10 - Summary Results cont.  

*Bus Rapid Transit system (dedicated lanes)  

Wöhrnschim
mel et al. 
(2008) 

Mexico City, 
Mexico  

SKC 
sampling 
pump 

Bus 
Minibus 
Metrobus (BRT)*  

Diesel 
LPG/CNG/diesel 
Diesel 

Unspecified 
Unspecified 
Unspecified 

1 hr 30 min 
1 hr 30 min 
1 hr 30 min 

Urban  
Urban 
Urban 

34 
34 
57 

212 
201 
188 

Thai et al. 
(2008) 

Vancouver, BC,  
Canada 

Grimm 1.108 
dust monitor 

Bicycle    2 hrs  Urban commercial, 
residential, 
industrial and 
parkland 

14 21.6-74.8 

Berghmans 
et al. (2009) 

Mol, Flanders, 
Belgium  

Grimm 1.108 
dust monitor 

Bicycle (range) 
Bicycle (all data) 
Bicycle (track) 

  ~1 hr 
~1 hr 
20 min  

Small urban 
centre/residential 
Cycle track 

6 
7 
1 

34.8-102 
62.4 
54.3 

Nasir & 
Colbeck 
(2009) 

Colchester, UK 
 
Various UK 
regions 

Grimm 
1.101/1.108 
dust monitor 

Car (morning) 
Car (evening) 
Train (peak) 
 
Train (off-peak) 

Unspecified 
Unspecified 
Electric 
Electric 
Electric 
Electric 

Unspecified 
Unspecified 
A/C on  
Non-A/C 
A/C on  
Non-A/C 

1 hr 
1 hr 
1 hr 
1 hr 
1 hr 
1 hr 

Suburban/rural 
Suburban/rural 
Urban/rural 
Urban/rural     
Urban/rural 
Urban/rural     

80 
80 
10 

5 
10 

5 

22 
21 
44 
94 
21 
90 
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Table 3 Modal Studies – PM2.5 Summarised Results 

 
Author Location Instrument/s Mode  Vehicle 

type/make 
Window and ventilation settings Sampling 

duration  
Sampling setting Number 

of 
samples 

Mean  values 
(µg/m3)  
unless 
specified 

Rodes et al. 
(1998)  

Sacramento, CA, 
USA   
 
Los Angeles, 
CA, USA   

Modified 
BGI 
AFC123 
Modified 
BGI 
AFC123 

Car 
 
 
Car 

1991 Chevrolet 
Caprice (sedan) 
 
1997 Ford 
Taurus (sedan) 
  

Vent on high (windows 
closed) 
Vent on low (windows closed) 
Vent on high (windows 
closed) 
Vent on low (windows closed) 

2 hrs 
2 hrs  
 
2 hrs 
 
2 hrs 

Freeway 
commute 
 
Freeway 
commute 

6 
4 

 
8 

 
4 

13.3, 7.6 
11.3, 11.0 

 
49.8,40.6 

 
47.2,37.4 

Pfeifer et al. 
(1999) 

London, UK  SKC 
224PCXR3 

Taxi Unspecified Unspecified ~8 hrs (taxi 
shift)  

Urban  14 33.36 

Adams et 
al. (2001) 

London, UK  Casella 
vortex 
ultraflow 

Car 
 
Bus 
 
Bicycle 

Petrol/diesel 
combination 
Diesel 

Not controlled for  <1hr 
 
<1hr  
 
20-50 min 

Urban (winter) 
Urban (summer) 
Urban (winter) 
Urban (summer)  
Urban (winter) 
Urban (summer)  

12 
42 
32 
36 
56 
40 

33.7 
37.7 
38.9 

39 
23.5 
34.5 

Chan et al. 
(2002a) 

Hong Kong TSI 
DustTrak 
8520 

Taxi 
Bus 
 
Light bus 
 
Train  
Tram  

LPG/diesel 
Diesel 
 
Diesel  
 
Electric 
Electric  

A/C on  
A/C on 
Non-A/C 
A/C on  
Non-A/C 
- 
Non-A/C  

2 hrs 
2-2.5 hrs 
2-2.5 hrs 
2-2.5 hrs 
2-2.5 hrs 
2-2.5 hrs 
2-2.5 hrs 

Urban 
Urban 
Urban 
Urban 
Urban 
Urban 
Urban 

30 
24 
12 

7 
7 

70 
17 

58 
74 

112 
63 

137 
50 

175 
Chan et al. 
(2002b) 

Guangzhou, 
China 

TSI 
DustTrak 
8520 

Taxi 
 
Bus 
 
Subway 

Petrol 
 
Diesel 
 
Electric 

A/C on 
Non-A/C 
Windows closed, A/C on 
Non-A/C 
A/C on  

30 min (avg) 
30 min (avg) 
49 min (avg) 
53 min (avg) 
30 min (avg) 

Urban 
commericial and 
residential zones 
 
Subway  

8 
8 

11 
15 
14 

73 
106 
101 
145 
44 

Dennekamp 
et al. (2002) 

Abderdeen, UK TSI 
DustTrak 
8520 

Car 
Landrover 
Bus 
Walk  

Unspecified Unspecified Unspecified  Urban  13 
7 

14 
10 

~11 (median) 
~65 (median) 
~38 (median) 
~22 (median)  

Levy et al. 
(2002) 

Buston, USA  TSI 
DustTrak 
8520 

Car 
Bus 
Subway 

Unspecified  
Diesel 
Electric  

Windows open  
Windows open  

~2 hrs 
~2 hrs 
~2 hrs 

Urban  - 
- 
- 

~105 (median) 
~110 (median) 
~60 (median) 

Chertok et 
al. (2004) 

Sydney, 
Australia 

Micro-Vol 
sampler 

Car Petrol (1997 
sedans) 

Unspecified ~40 min  
~40 min 

Urban  8 
8 

20.75 
29.61 

(geometric) 
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Table 3 Modal Studies – PM2.5 Summarised Results cont.  

Gómez-
Perales et 
al. (2004) 

Mexico City, 
Mexico 

Casella 
vortex 
ultraflow 

Bus 
Minibus 
Subway  

Unspecified 
Unspecified 
Electric 

Unspecified 
Unspecified 
Unspecified 

2-3 hrs 
2-3 hrs 
2-3 hrs 

Urban commute 
Urban commute 
Subway  

16 
28 
18 

71 
68 
61 

Gulliver & 
Briggs 
(2004) 

Northampton, 
UK  

OSIRIS 
sampler 

Car 
Walk  

1995 Ford Fiesta Windows closed, A/C off, 
vents off 

1 hr 
1 hr 

Main commuting 
routes 

36 
36 

15.54 
15.06 

Krausse 
(2004) 

Leicester, UK  OSIRIS 
sampler  

Van Electric Unspecified  ~1 hr Urban 133 9.7-25.6 

Han et al. 
(2005) 

Trujillo, Peru SKC pump, 
BGI KTL 
Cyclone 

Van 
Bus 

Unspecified 
Diesel  

Unspecified 
Unspecified 

~8 hrs 
~8 hrs 
 

Urban 
Urban 
 

5 
3 

 

114 
161 

Kaur et al. 
(2005a) 

London, UK Casella 
vortex 
ultraflow 

Car 
Taxi 
Bus 
Bicycle 
Walk  

Unspecified 
Unspecified 
Unspecified 
 

Unspecified 
Unspecified 
Unspecified 
 

~20 min 
~20 min 
~20 min 
~20 min 
~20 min 

Urban centre 
Urban centre 
Urban centre 
Urban centre 
Urban centre 

29 
22 
42 
48 
56 

38 
41.5 
34.5 
33.5 
27.5 

Kaur et al. 
(2005b) 

London, UK Casella 
vortex 
ultraflow 

Walk   ~20 min Urban centre 155 37.7 

den Breejen 
(2006) 

Utrecht, 
Netherlands  

TSI 
DustTrak 
8520 

Car Unspecified  Windows closed, vents set to 2 
Windows closed, vents set to 4 
Windows open  

5-25 min 
5-25 min 
5-25 min 

Urban 
Urban 
Urban 

6 
6 
6 

14 
13 
16 

Hill & 
Gooch 
(2007) 

Austin, TX, USA 
 
 
 
Columbus, OH 
 
 
 
Boston, MA  
 
 
 
 
 
 
 
 
 
New York, NY 

TSI 
DustTrak 
8520 

Car 
 
 
 
Car 
 
Bus 
Walk 
Car 
 
 
Bus 
 
 
Train 
 
Subway  
Walk  
Train 
 
Subway 

2006 Dodge 
Minivans 
(petrol) 
 
2006 Dodge 
Minivans 
B90 Biodiesel  
 
Unspecified 
 
 
Diesel 
DPF 
CNG  
Diesel  
Diesel 
Electric 
 
Diesel 
Diesel 
Electric 
 

Windows open 
Windows closed, A/C on 
Windows open 
 
Windows open 
Windows closed, A/C on 
 
 
Windows open 
Windows closed, A/C off, vent 
recirc 
Windows closed, vent fresh 
Diesel Particulate Filter 
 
Locomotive in front (pull) 
Locomotive in rear (push)  
 
 
Locomotive in front (pull) 
Locomotive in rear (push) 

~80 hrs 
(figures 
given for 
this study 
are total 
sample time 
by mode) 
~5 hrs  
 
 
 
~14 hrs  
 
 
~12 hrs  
 
~3 hrs  

Freeway/urban 
commute 
Special lane (no 
trucks permitted) 
Freeway/urban 
commute 
 
Urban centre 
Freeway/urban 
commute 
 
Urban 
Urban 
Urban 
Urban commute 
Urban commute 
Subway 
Urban centre 
Urban commute 
Urban commute 
Subway  

15 
13 

7 
 

34 
8 

15 
3 

16 
12 

2 
5 
9 

10 
6 
6 
3 
6 
3 
2 
3 

55 
66 
30 

 
48 
58 
36 
21 
35 
34 
65 
26 
55 
24 
70 
56 
47 
14 
13 

5 
55 
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*Bus Rapid Transit system (dedicated lanes)  

Li et al. 
(2007) 

Beijing, China Dustmate 
sampler 

Rail  
Subway 

Electric 
Electric 

A/C on 
Vents on (mechanical fans) 

Unspecified Rail 
Subway  

83 
156 

39.9 
112.6 

Gulliver & 
Briggs 
(2007) 

Leicester, UK  OSIRIS/Dus
tmate 
sampler 

Car 
Walk  

2002 Fiat Doblo 
(petrol) 

Windows closed, vents set to 2 1 hr 
1 hr 

Urban arterials 
and residential 
zones  

33 
33 

8.3 
10.9 

Gómez-
Perales et 
al. (2007) 

Mexico City, 
Mexico 

Casella 
vortex 
ultraflow 

Bus 
 
Minibus 
 
Subway  

Unspecified 
 
Unspecified 
 
Electric 

Unspecified 
 
Unspecified 
 
Unspecified  

2-3 hrs 
 
2-3 hrs 
 
2-3 hrs 

Urban (morning) 
Urban (evening) 
Urban (morning) 
Urban (evening) 
Urban (morning) 
Urban (evening) 
 

15,14 
15,14 
15,14 
15,13 
15,13 
15,14 

~48, ~39 
~39,~16 
~61,~35 
~30,~22 
~38,~32 
~22,~20 

(medians) 
Adar et al. 
(2008) 

Seatttle/Tahoma, 
WA, USA 

DataRAM 
pDR-
1000AN 

Car 
 
 
Bus  

Toyota Prius 
petrol/electricity 
hyrbrid 
Diesel  

Windows open  
 
 
Various  

22 min (avg) 
 
 
22 min (avg) 

Urban commute 
 
 
Urban commute 

57 
 
 

85 

12.4 
 
 

20.9 
Tsai et al. 
(2008) 

Taipei, Taiwan  Grimm 
1.108 dust 
monitor 

Car 
Bus 
Motorcycle 
Metro System 

Petrol 
Diesel 
Petrol 
Electric  

Windows closed, A/C on 
Windows closed, A/C on 
 
A/C on  

30 min (avg) 
43 min (avg) 
28 min (avg) 
34 min (avg) 

Urban 
Urban 
Urban 
Rail/subway  

16 
16 
16 
16 

22.1 
38.5 
67.5 
35.0 

Briggs et al. 
(2008) 

London, UK  OSIRIS 
sampler 

Car 
Walk  

2001 Ford Focus 
(diesel)  

Windows closed, vents set to 2 4 min (avg) 
13 min (avg) 

Urban  
Urban  

46 
46 

3.01 
6.59 

Cheng et al. 
(2008)  

Taipei, Taiwan  TSI 
DustTrak 
8520 

Metro System Electric A/C on 16-24 min Rail/subway 294 32 

Wöhrnschim
mel et al. 
(2008) 

Mexico City, 
Mexico  

SKC 
sampling 
pump 

Bus 
Minibus 
Metrobus (BRT)*  

Diesel 
LPG/CNG/diesel 
Diesel 

Unspecified 
Unspecified 
Unspecified 

1 hr 30 min 
1 hr 30 min 
1 hr 30 min 

Urban  
Urban 
Urban 

37 
33 
51 

146 
155 
112 

Thai et al. 
(2008) 

Vancouver, BC,  
Canada 

Grimm 1.108 
dust monitor 

Bicycle    2 hrs  Urban commercial, 
residential, 
industrial and 
parkland 

14 7.3-33.6 
 

McNabola 
(2008a) 

Dublin, Ireland  Casella 
vortex 
ultraflow 

Walk    20 min Urban pavement 
Urban boardwalk 
(<3 m away) 

10 
10 

2.83:1 (ratio of 
pavement to 
boardwalk) 

McNabola et 
al. (2008b) 

Dublin, Ireland  High flow 
personal 
sampler 
(HFPS) 

Car 
 
 
Bus 
Bicycle 
Walk  

1994 Landrover/ 
1994 Nissan 
Vanette (diesel) 
Diesel 

Windows closed, A/C off, vents 
closed 
 
Non-A/C, ventilation random 

20-45 min  
 
 
25-30 min 
20 min 
25-30 min 

Urban 
 
 
Urban 
Urban 
Urban 

46 
 
 

44 
56 
48 

82.73 
 
 

128.16 
88.14 
63.45 

Rim et al. 
(2008) 

Austin, TX, USA  TSI SidePak Bus  Diesel  Windows closed, A/C on 102-110 min Suburban-urban 
school commute 

9325 7-20 
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Table 3 Modal Studies – PM2.5 Summarised Results cont. 

Morabia et 
al. (2009) 

New York, NY, 
USA  

TSI SidePak 
AM510 

Car 
 
 
Subway 
Walk 

Various 
 
 
Electric 

Participants free to choose 
Windows closed, vents on 
Windows closed, vents off   

1 min avg 
 
 
1 min avg 
1 min avg  

Urban centre 
 
 
Subway 
Urban centre  

7941 
 
 

6299 
5929 

13.1 (geo) 
18 (per min) 
44 (per min) 

19.6 (geo) 
23.9 (geo) 

Berghmans 
et al. (2009) 

Mol, Flanders, 
Belgium  

Grimm 1.108 
dust monitor 

Bicycle (range) 
Bicycle (all data) 
Bicycle (track) 

  ~1 hr 
~1 hr 
20 min  

Small urban 
centre/residential 
Cycle track 

6 
7 
1 

12.3-75.8 
38.8 
31.7 

Nasir & 
Colbeck 
(2009) 

Colchester, UK 
 
Various UK 
regions 

Grimm 
1.101/1.108 
dust monitor 

Car (morning) 
Car (evening) 
Train (peak) 
 
Train (off-peak) 

Unspecified 
Unspecified 
Electric 
 
Electric 

Unspecified 
Unspecified 
A/C on  
Non-A/C 
A/C on  
Non-A/C 

1 hr 
1 hr 
1 hr 
1 hr 
1 hr 
1 hr 

Suburban/rural 
Suburban/rural 
Urban/rural 
Urban/rural    
Urban/rural 
Urban/rural      

80 
80 
10 

5 
10 

5 

9 
8 

14 
30 

6 
14 

Kaur & 
Nieuwenhui
jsen (2009) 

London, UK High flow 
personal 
sampler 
(HFPS) 

Car 
 
 
Taxi 
Bus 
Bicycle 
Walk 

Toyota Starlet 
(petrol w/ three 
way catalyst) 
Diesel  
Diesel  

Unspecified 
 
 
Unspecified 
Unspecified 

18 min+ 
 
 
18 min+ 
18 min+ 
18 min+ 
18 min+ 

Urban centre 
 
 
 

22 
 
 

18 
33 
29 
39 

33.4 
 
 

43.4 
33.1 
33.8 
27.1 

Boogaard et 
al. (2009) 

Apeldoorn, 
Netherlands 
Delft 
 
Den Bosch 
 
The Hague 
 
Eindhoven 
 
Groningen 
 
Haarlem 
 
Maastricht 
 
Nijmegen 
 
Utrecht 
 
Zwolle 
 
Combined total 

TSI 
DustTrak 
8520 

Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 

Unspecified Unspecified  1 min avg 
 

Urban centre 163 
168 
117 
155 
170 
149 
184 
154 
102 
145 
170 
138 
167 
176 
202 
148 
131 
122 
186 
174 
102 
103 

1694 
1632 

14 
11 
33 
26 
95 
99 
15 

6 
34 
39 
20 
13 
36 
29 
31 
20 
93 
95 

122 
112 
45 
44 

49.4 
44.5 
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Table 4 Modal Studies – PM1.0 Summarised Results 
 

 

Author Location Instrument/s Mode  Vehicle 
type/make 

Window and ventilation settings Sampling 
duration  

Sampling setting Number 
of 
samples 

Mean  values 
(µg/m3) 

Gulliver & 
Briggs 
(2004) 

Northampton, 
UK  

OSIRIS 
sampler 

Car 
Walk  

1995 Ford Fiesta Windows closed, A/C off, 
vents off 

1 hr 
1 hr 

Main commuting 
routes 

36 
36 

7.03 
7.14 

Li et al. 
(2007) 

Beijing, China Dustmate 
sampler 

Rail  
Subway 

Electric 
Electric 

A/C on 
Vents on (mechanical fans) 

Unspecified Rail 
Subway  

83 
156 

14.7 
38.2 

Gulliver & 
Briggs 
(2007) 

Leicester, UK  OSIRIS/Dus
tmate 
sampler 

Car 
Walk  

2002 Fiat Doblo 
(petrol) 

Windows closed, vents set to 2 1 hr 
1 hr 

Urban arterials 
and residential 
zones  

33 
33 

2.9 
4.8 

Tsai et al. 
(2008) 

Taipei, Taiwan  Grimm 
1.108 dust 
monitor 

Car 
Bus 
Motorcycle 
Metro System 

Petrol 
Diesel 
Petrol 
Electric  

Windows closed, A/C on 
Windows closed, A/C on 
 
A/C on  

30 min (avg) 
43 min (avg) 
28 min (avg) 
34 min (avg) 

Urban 
Urban 
Urban 
Rail/subway  

16 
16 
16 
16 

16.2 
31.3 
48.4 
26.5 

Briggs et al. 
(2008) 

London, UK  OSIRIS 
sampler 

Car 
Walk  

2001 Ford Focus 
(diesel)  

Windows closed, vents set to 2 4 min (avg) 
13 min (avg) 

Urban  
Urban  

46 
46 

1.82 
3.37 

Berghmans 
et al. (2009) 

Mol, Flanders, 
Belgium  

Grimm 1.108 
dust monitor 

Bicycle (range) 
Bicycle (all data) 
Bicycle (track) 

  ~1 hr 
~1 hr 
20 min  

Small urban 
centre/residential 
Cycle track 

6 
7 
1 

7.32-70.9 
37.4 
29.8 

Nasir & 
Colbeck 
(2009) 

Colchester, UK 
 
Various UK 
regions 

Grimm 
1.101/1.108 
dust monitor 

Car (morning) 
Car (evening) 
Train (peak) 
 
Train (off-peak) 

Unspecified 
Unspecified 
Electric 
 
Electric 

Unspecified 
Unspecified 
A/C on  
Non-A/C 
A/C on  
Non-A/C 

1 hr 
1 hr 
1 hr 
1 hr 
1 hr 
1 hr 

Suburban/rural 
Suburban/rural 
Urban/rural 
Urban/rural    
Urban/rural 
Urban/rural      

80 
80 
10 

5 
10 

5 

6 
5 

12 
19 

4 
6 
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Table 5 Modal Studies –UFP Summarised Results 

 
 
 
 
 
 
 
 
 
 
 
 
 

Author Location Instrument/s Mode  Vehicle 
type/make 

Window and ventilation settings Sampling 
duration  

Sampling setting Number 
of 
samples 

Mean  values 
(pt/cm3) unless 
specified  

Dennekamp 
et al. (2002) 

Abderdeen, UK TSI 3934 
Scanning 
Mobility 
Particle Sizer 
(SMPS) 

Car 
Landrover 
Bus 
Walk  

Unspecified Unspecified Unspecified  Urban  22 
24 
11 
10 

~25000 
~55000 
~60000 
~40000 

(medians) 
Levy et al. 
(2002) 

Buston, USA  TSI 
DustTrak 
8520 

Car 
Bus 
Subway 

Unspecified  
Diesel 
Electric  

Windows open  
Windows open  

~2 hrs 
~2 hrs 
~2 hrs 

Urban  - 
- 
- 

~39000 
~33000 
~22000 

(medians) 
Kaur et al. 
(2005a) 

London, UK TSI P-Trak 
8525 UPC 

Car 
Taxi 
Bus 
Bicycle 
Walk  

Unspecified 
Unspecified 
Unspecified 
 

Unspecified 
Unspecified 
Unspecified 
 

~20 min 
~20 min 
~20 min 
~20 min 
~20 min 

Urban centre 
Urban centre 
Urban centre 
Urban centre 
Urban centre 

13 
9 

18 
21 
25 

99736 
87545 

101364 
93968 
67773 

Kaur et al. 
(2005b) 

London, UK TSI P-Trak 
8525 UPC 

Walk   (Kaur et al. 
2005b) ~20 
min 

Urban centre 120 80009 

Vinzents et 
al. (2005) 

Copenhagen, 
Denmark  

TSI 3007 
CPC 

Bicycle    93 min (avg) Urban centre  5 32400 
(geometric) 

Kaur et al. 
(2006) 

London, UK  TSI P-Trak 
8525 UPC  

Car 
Taxi 
Bus 
Bicycle 
Walk  

Unspecified 
Unspecified 
Unspecified 
 

Unspecified 
Unspecified 
Unspecified 
 

~20 min 
~20 min 
~20 min 
~20 min 
~20 min 

Urban centre 
Urban centre 
Urban centre 
Urban centre 
Urban centre 

8 
5 
6 

10 
2 

36821 
108063 
95023 
84005 
46072 

den Breejen 
(2006) 

Utrecht, 
Netherlands  

TSI 3007 
CPC  

Car 
Bicycle  

Unspecified   Unspecified  5-25 min 
5-25 min 
 

Urban 
Urban 
 

52 
51 

22125 
22823 
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Table 5 Modal Studies – UFP Summarised Results cont.  

 
 

Hill & 
Gooch 
(2007) 

Austin, TX, USA 
 
 
 
Columbus, OH 
 
 
 
Boston, MA  
 
 
 
 
 
 
 
 
 
 
New York, NY 

TSI 
DustTrak 
8520 

Car 
 
 
 
Car 
 
Bus 
Walk 
Car 
 
 
 
Bus 
 
 
Train 
 
Subway  
Walk  
Train 
 
Subway 

2006 Dodge 
Minivans 
(petrol) 
 
2006 Dodge 
Minivans 
B90 Biodiesel  
 
Unspecified 
 
 
 
Diesel 
DPF 
CNG  
Diesel  
Diesel 
Electric 
 
Diesel 
Diesel 
Electric 

Windows open 
Windows closed, A/C on 
Windows open 
 
Windows open 
Windows closed, A/C on 
 
 
Windows open 
Windows closed, A/C off, vent 
recirc 
Windows closed, vent fresh 
 
Diesel Particulate Filter 
Compressed Natural Gas  
Locomotive in front (pull) 
Locomotive in rear (push)  
 
 
Locomotive in front (pull) 
Locomotive in rear (push) 

~80 hrs 
(figures 
given for 
this study 
are total 
sample time 
by mode) 
~5 hrs  
 
 
 
~14 hrs  
 
 
 
~12 hrs  
 
~3 hrs  

Freeway/urban 
commute 
Special lane (no 
trucks permitted) 
Freeway/urban 
commute 
 
Urban centre 
Freeway/urban 
commute 
 
Urban 
Urban 
Urban 
Urban 
Urban commute 
Urban commute 
Subway 
Urban centre 
Urban commute 
Urban commute 
Subway  

15 
13 

7 
 

34 
8 

15 
3 

16 
12 

 
2 
5 
9 

10 
6 
6 
3 
6 
3 
2 
3 

25928 
21248 

8671 
 

43337 
14328 
17196 
22502 
29401 
17429 

 
28981 
83227 
29788 
23452 

118218 
13607 
11909 
30273 

137366 
51591 
49045 

Briggs et al. 
(2008) 

London, UK  OSIRIS 
sampler 

Car 
Walk  

2001 Ford Focus 
(diesel)  

Windows closed, vents set to 2 4 min (avg) 
13 min (avg) 

Urban  
Urban  

46 
46 

 

21639 
30334 

Rim et al. 
(2008) 

Austin, TX, USA  TSI 3007 
CPC 

Bus  Diesel  Windows closed, A/C on 102-110 min Suburban-urban 
school commute 

9325 6040-34500 

Thai et al. 
(2008) 

Vancouver, BC,  
Canada 

TSI P-Trak 
8525 UPC 

Bicycle    2 hrs  Urban commercial, 
residential, 
industrial and 
parkland 

7 18830-57692 

Weichentha
l et al. 
(2008) 

Montréal, 
Canada  

TSI P-Trak 
8525 UPC 

Car (morning) 
Car (evening) 
Bus (morning) 
Bus (evening) 
Walk (morning) 
Walk (evening)  

Unspecified  
 
Unspecified 

Participants free to choose  20.5-55 min 
21-50 min 
8-15.5 min 
11-33 min 
3-16 min 
3-10 min  

Urban highway 
and busy 
roadway   
 
Two-lane 
roadway 

22 
(total) 

42 
(total) 

- 
 

38348 
31489 
28029 
22626 
25161 
15778 

Zhu et al. 
(2008) 

Los Angeles, 
LA, USA  

TSI 3934 
Scanning 
Mobility 
Particle Sizer 
(SMPS) 

Van  2002 Chevrolet 
Express  

Windows closed, A/C on  2 hrs 
 
2 hrs  

Freeway (mostly 
diesel traffic) 
Freeway (mostly 
petrol traffic)  

2 
 

2 

134000 
 

83800 
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Table 5 Modal Studies – UFP Summarised Results cont.  
 

Berghmans 
et al. (2009) 

Mol, Flanders, 
Belgium  

TSI P-Trak 
8525 UPC 

Bicycle (range) 
Bicycle (all data) 
Bicycle (track) 

  ~1 hr 
~1 hr 
20 min  

Small urban 
centre/residential 
Cycle track 

6 
7 
1 

10851-30576 
21226 
21626 

Kaur & 
Nieuwenhui
jsen (2009) 

London, UK TSI P-Trak 
8525 UPC 

Car 
 
 
Taxi 
Bus 
Bicycle 
Walk 

Toyota Starlet 
(petrol w/ three 
way catalyst) 
Diesel  
Diesel  

Unspecified 
 
 
Unspecified 
Unspecified 

18 min+ 
 
 
18 min+ 
18 min+ 
18 min+ 
18 min+ 

Urban centre 
 
 
 

9 
 
 

8 
14 

8 
16 

101770 
 
 

91947 
100018 
77621 
63065 

Cattaneo et 
al. (2009) 

Milan, Italy  TSI P-Trak 
8525 
UPC/TSI 
3007 CPC  

Car 
 
 
 
Bus 
Walk  

Petrol  w/ three 
way catalyst & 
anti-particulate 
filter  
Diesel  

Windows closed, vents on 
 
 
 
Unspecified  

15 min+ 
 
 
 
15 min+ 
15 min+ 

Urban centre  21 
 
 
 

21 
21 

107000 
 
 
 

117600 
100200 

Boogaard et 
al. (2009) 

Apeldoorn, 
Netherlands 
Delft 
 
Den Bosch 
 
The Hague 
 
Eindhoven 
 
Groningen 
 
Haarlem 
 
Maastricht 
 
Nijmegen 
 
Utrecht 
 
Zwolle 
 
Combined total 
 

TSI 3007 
CPC  

Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 

Unspecified Unspecified  1 min avg 
 

Urban centre 163 
167 
112 
153 
170 
147 
184 
131 
102 
143 
170 
138 
167 
175 
202 
87 

131 
121 
186 
173 
89 

101 
1676 
1536 

20796 
17070 
24460 
27998 
23012 
21191 
15430 
15697 
23461 
28141 
22234 
21326 
34739 
30363 
35538 
28220 
24064 
20244 
29722 
27246 
23583 
31354 
25545 
24329 
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2.2.1 Car 
 

Much of the available literature suggests that car or light vehicle commuters are generally 

exposed to higher levels of pollution than those traveling by almost all alternative modes; 

including walk, bicycle, bus, subway and train (Adams et al. 2002; Batterman et al. 2002; 

Boogaard et al. 2009; Bruinen de Bruin et al. 2004; Chan et al. 1991; Chan et al. 1999; 

Chertok et al. 2004; Dor et al. 1995; Duci et al. 2003; Duffy & Nelson 1997; Gulliver & 

Briggs 2004; Hill & Gooch 2007; Kaur et al. 2007; Kingham et al. 1998; Leung & 

Harrison 1999; Löfgren et al. 1991; McNabola et al. 2008b; Rank et al. 2001; Shiohara et 

al. 2005; Taylor & Fergusson 1998; Torre et al. 2000; van Wijnen et al. 1995; 

Vellopoulou & Ashmore 1998). While this may be true for most transport pollutants 

including PM, UFP, VOCs, CO, PAHs and black carbon, different results occur for NO2 

for example, where exposure in buses is usually higher than that found in cars due to in-

vehicle sources (Chertok et al. 2004; Farrar et al. 2001). Some studies have also recorded 

slightly higher levels of PM2.5 and UFPs for buses than for cars (Adams et al. 2001; Adar 

et al. 2008; Dennekamp et al. 2002; Hill & Gooch 2007; Levy et al. 2002; McNabola et 

al. 2008b).  

 

Although these findings show that car exposure levels are generally among the highest, 

there can be considerable variation between transport modes at different study sites. 

Results are affected by variables such as vehicle makeup and configuration, ambient 

pollutant levels and local environmental factors, meaning car drivers may actually be the 

least exposed to PM in certain conditions. Recent research by Briggs et al. (2008) found 

that walking exposure rates for PM were greater than vehicle exposure by a factor of 4.7 

(PM10), 2.2 (PM2.5), 1.9 (PM1.0) and 1.4 (UFPs). These ratios for PM2.5 and UFPs are very 

close to those reported by Dennekamp et al. (2002), who gave factors of 2.0 and 1.65 

respectively. Furthermore, comparisons between motorcycles, cars, buses and the 

train/subway system in Taipei, Taiwan, showed car commuters received the lowest PM 

concentration exposure of all vehicular modes (Tsai et al. 2008). While sampling was 

conducted with windows closed, it is interesting to note that these three studies used 

different ventilation settings. The influence of vent settings appears to vary greatly 
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between studies. An investigation in three US cities, Boston, Austin and Columbus, 

found that while UFP exposure was lowest with windows closed (A/C on), exposure for 

PM2.5 was higher at this setting than with the windows open (Hill & Gooch 2007).  

 

Overall, the literature consistently presents comparatively high levels of CO and VOCs 

for the car mode (Bruinen de Bruin et al. 2004; Chan et al. 1991; Chertok et al. 2004; Dor 

et al. 1995; Duci et al. 2003; McNabola et al. 2008b; van Wijnen et al. 1995; Vellopoulou 

& Ashmore 1998). Coupled with research which also ranks cars as receiving the highest 

levels of PM pollution, the car commuter does not fare well against other modal choices. 

However, when measuring total accumulative intake, car travel may not be the most 

detrimental mode when travel times and breathing rates are taken into account, especially 

for active modes.  
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2.2.2 Motorcycle 
 

The exception to cars possibly being the most affected mode is commuting by 

motorcycle, where exposure is substantially higher than all other modes of transport. 

Studies have so far reported this for PM, CO, NO2 and VOCs (Bugajny et al. 1999; Chan 

et al. 1993; Kuo et al. 2000; Piechocki-Minguy et al. 2006; Saksena et al. 2006; Saksena 

et al. 2008; Tsai et al. 2008). This is likely to be due to motorcyclists being situated 

directly in the ‘stream of pollutants’ without any shielding, along with their relatively 

close proximity to the exhaust tailpipes of traffic ahead. One study found mean exposure 

concentrations in Taipei city to be approximately three times higher than cars for PM10 

(112.8 vs 41.9 μg/m³) and PM2.5 (67.5 vs 22.1 μg/m³), while PM1.0 recordings were 48.4 

and 16.2 μg/m³ respectively (Tsai et al. 2008).  

 

An important factor affecting motorcycle exposure is time spent idling at traffic lights, 

which increases PM levels by 5-7% compared to when moving (Tsai et al. 2008). Hence 

trips through areas with high traffic light density are likely to render far higher overall 

exposure rates. To date, exposure differences between motorcycles and bicycles on the 

same route have not been explored and this is an area requiring further research.      
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2.2.3 Train and subway 
 

Electrified rail commuters are thought to receive the lowest amount of pollutants 

compared with all other modes. This has been found to be the case for NO2 (Chertok et 

al. 2004; Piechocki-Minguy et al. 2006), CO (Duci et al. 2003) and VOCs (Barrefors & 

Petersson 1996; Chertok et al. 2004; Lau & Chan 2003; Shiohara et al. 2005). Currently, 

no PM data comparing above-ground electrified rail and other roadway modes are 

available. Exposure rates for VOCs, CO and NO2 are lower because tracking is generally 

situated away from traffic flows, cabins provide protection, and the train itself is not a 

strong source of pollutants. However, results are influenced by background levels and 

frequency of passenger movements, with far higher levels found in some cities compared 

to others (Li et al. 2007).  

 

Research conducted on Sydney’s CityRail electrified rail network found VOCs and NO2 

to be under half the levels found in private cars, which had the highest recordings of all 

modes (Chertok et al. 2004). Adjusted geometric means for cars and trains were 

(expressed as parts per billion): benzene (12.29, 3.77), toluene (28.76, 12.44), ethyl 

benzene (4.38, 1.73), xylenes (19.91, 7.26) and NO2 (29.70, 14.85). Such findings are in 

agreement with a study by Lau & Chan (2003) in Hong Kong, where mean 

concentrations for benzene, toluene, ethyl benzene, m/p-xylene and o-xylene were 

considerably lower for electric rail than those recorded in a taxi.  

 

Results for diesel-powered locomotives differ greatly depending on locomotive position. 

Recordings from the Boston and New York rail networks show that when the locomotive 

is in front of the carriages (pull), UFPs, black carbon and PAH are much higher than any 

other mode. When the locomotive is in the rear (push), levels are comparable to that of 

subway electric rail. However, fine particles (PM2.5) for Boston were at around the same 

concentration as subway and car (windows up, vents open), regardless of where the 

locomotive was located (Hill & Gooch 2007).   
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Subway studies seem to differ in agreement, with some reporting the lowest exposure 

levels of all modes for PM, PAH, CO and benzene (Chan et al. 2002b; Gómez-Perales et 

al. 2004; Hill & Gooch 2007), and others finding PM10 and PM2.5 to be between 3 to 10 

times higher than for road surface transport modes (Aarnio et al. 2005; Adams et al. 

2001; Johansson & Johansson 2003). Fromme et al. (1998) found substantially higher 

PAH concentrations in the Berlin subway than for cars. The explanations suggested 

included ambient seasonal variation and the influence of tar preservatives in the wooden 

railway ties. Gómez-Perales et al. (2004) puts such variance across subway studies down 

to differences in brake systems, ventilations systems and tunnel depth, while Kim (2008) 

suggests it could be due to different monitoring conditions such as equipment, outdoor 

climate and season. The most recent subway study on the Taipei system found lower 

levels of PM10 and PM2.5 than those reported in all previous studies (Cheng et al. 2008).  
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2.2.4 Bus 
 

Investigation into NO2 levels has shown buses have the highest concentrations due to 

self-pollution from diesel engines (Chertok et al. 2004; Farrar et al. 2001). Tsai et al. 

(2008) found particulate matter to be highest in buses (excluding motorcycles) for all PM 

fractions. This is supported by various studies for PM2.5 (Adams et al. 2001; Adar et al. 

2008; Dennekamp et al. 2002; Fondelli et al. 2008; Hill & Gooch 2007; Levy et al. 2002; 

McNabola et al. 2008b). Hill & Gooch’s (2007) results for PM2.5 in a conventional diesel 

bus were around half that of cars (windows up), but UFPs (pt/cm3) were around four 

times higher. PAH levels on buses were substantially lower than in cars, regardless of the 

in-vehicle setting. VOC concentrations have also been found to be highest in buses for 

butadiene, ethylene and acetylene (McNabola et al. 2008b) and BTEX, apart from 

toluene (Chertok et al. 2004). Conversely, Shiohara et al. (2005) observed higher VOC 

concentrations in cars. There is also substantial evidence showing that exposure to CO in 

buses is much lower than in cars (Bruinen de Bruin et al. 2004; Dor et al. 1995; Duci et 

al. 2003; Han & Naeher 2006; Kaur et al. 2005a; Saksena et al. 2008; Scotto di Marco et 

al. 2005; van Wijnen et al. 1995; Vellopoulou & Ashmore 1998).  

 

Experiments with Diesel Particulate Filters (DPF) resulted in a reduction of UFP 

concentrations by around three-quarters to match ambient air levels – and the same found 

in compressed natural gas (CNG) powered buses - but PM2.5 concentrations double and 

PAH concentrations are elevated. Biodiesel buses emit the lowest levels of UFPs and 

PAH, but slightly higher levels of PM2.5 than traditional engines (Hill & Gooch 2007).  

 

As with cars, self-pollution intake can vary depending on whether windows are open or 

closed, along with the age of the vehicle (Marshall & Behrentz 2005). Bus commuters are 

also affected by doors opening and closing, with concentrations for PM2.5 and PM10 

increasing by 2% and 5% when opened compared to when closed (Tsai et al. 2008).  
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2.2.5 Pedestrian  
 

Pedestrian exposure is an uncertain area with results varying between studies. Research 

finding lower exposure has often cited the relative separation from the traffic emission 

stream as the primary explanation. Evidence supporting this idea has been provided by 

Kaur et al. (2005b), who found pedestrian exposure varied greatly with distance from 

traffic, and was highest at the kerbside. However, differences inevitably occur between 

studies in the form of sampling settings (geographic location, buildings, vegetation) and 

methodologies. Three of the most recent studies, conducted in Dublin, Milan and 

London, reported pedestrians were the least exposed to PM2.5 and UFPs compared to car 

and bus (Cattaneo et al. 2009; Kaur & Nieuwenhuijsen 2009; McNabola et al. 2008b). 

Yet a similar study completed in London produced opposite findings for all PM, 

including ultrafines (Briggs et al. 2008). Such results are supported by other research for 

PM10, PM2.5 (Dennekamp et al. 2002; Gulliver & Briggs 2004; Morabia et al. 2009; 

Saksena et al. 2008; Zhao et al. 2004), and UFPs in the pilot-study phase of research 

underway in Barcelona (de Nazelle et al. 2008). This study not only measures exposure 

concentrations, but also factors in inhalation rates. Preliminary findings suggest 

pedestrians may actually inhale greater amounts of UFPs than any other mode.  

 

There is no disagreement between the literature on carbon monoxide exposure, with 

pedestrians being the least exposed (Saksena et al. 2008; Zhao et al. 2004). This is likely 

to be due to vehicles being the only source of CO, whereas PM can be re-suspended 

having originated from other sources. For VOC exposure, pedestrians are also ranked 

lowest for all BTEX pollutants combined (Chertok et al. 2004; McNabola et al. 2008b). It 

is thought that this is due to wind dispersion not experienced in the closed 

microenvironment setting of vehicles used in most studies.  

 

For Hill & Gooch’s (2007) study, pedestrian commuters were exposed to the lowest 

levels of PM2.5 and black carbon, but UFPs and PAH levels were comparable to those 

found on CNG or DPF equipped buses. Therefore, they were relatively low compared to 

most, but not lower than biodiesel buses or cars with windows closed (A/C on).  
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2.2.6 Bicycle 
 

As with walking, cyclist exposure is also quite a contentious issue, with research 

providing conflicting results. One of the earlier exposure studies (completed in 

Amsterdam) found CO levels to be substantially lower than cars, and lower than 

pedestrians during most sampling instances (van Wijnen et al. 1995). Later research 

confirmed the contrary, with cyclists receiving higher levels than walk, car and bus 

(Mackay 2004). In London during 2005, a study found levels to be about the same as in 

cars (Kaur et al. 2005a).     

 

For NO2, van Wijen et al. (1995) found levels to be higher for cycles than for cars. 

Australian research in Perth was in agreement, reporting 22 ppb compared with 15 in 

taxis and 14 in couriers (Farrar et al. 2001). Yet for Sydney, cars and buses measured 

29.70 and 44.30 ppb, but cycles only 24.58 (Chertok et al. 2004). In this study, exposure 

was even lower than for pedestrians (26.08 ppb). The variance between vehicle exposures 

in Perth and Sydney may have been due to differences in in-vehicle settings (windows, 

A/C), sampling time-of-day (peak versus off-peak traffic), or differences between the 

types of measurement equipment used.  

 

PM2.5 has been found to be quite a bit lower for bicycles than for cars (Adams et al. 2001; 

Gee & Raper 1999; Kaur et al. 2005b; McNabola et al. 2008b; Rank et al. 2001). Seasons 

appear to have a marked affect, with wintertime recordings in London showing a mean 

exposure difference of 10.2 μg/m³ higher compared with summer (Adams et al. 2001). 

No data is currently available comparing course particle concentrations and few peer-

reviewed published studies have addressed cyclist ultrafine exposure (Kaur et al. 2005a; 

Thai et al. 2008; Vinzents et al. 2005). Only one of these compared results with other 

modes of travel. Geometric means were 64,861, 88,055, 92,824 and 99,266 UFPs/cm³ for 

walk, cycle, car and bus, respectively (Kaur et al. 2005a). In 2006, a Dutch report found 

overall mean UFP comparisons (N=52) for cycle (22,823 UFPs/cm³) and car (22,125 

UFPs/cm³) to be virtually the same (den Breejen 2006). For the Barcelona pilot study, de 

Nazelle et al. (2008) found the mean concentration to be roughly 40,000 UFPs/cm³. 
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Although this was slightly lower than for bus and walk, after inhalation rates had been 

considered, walking and cycling climbed well above subway and bus.  

 

There do not appear to be any studies reporting higher VOC concentrations for cyclists 

than cars and buses. Besides electric train commuters and pedestrians, cyclists are 

exposed to the lowest amounts of VOCs including BTEX (Chertok et al. 2004), 

butadiene, ethane, ethylene and acetylene (McNabola et al. 2008b; O'Donoghue et al. 

2007). These findings are supported by previous VOC measurements, including initial 

BTEX investigation by van Wijnen et al. (1995); further BTEX work by Rank et al. 

(2001) and a study that just measured benzene (Kingham et al. 1998). Moreover, 

following consideration of increased respiration rates experienced by cyclists, Rank et al. 

(2001) concluded that car drivers were still more exposed than cyclists as cabin 

concentrations were 2-4 times greater than cyclist breathing zones. In 2006, a study 

produced a different view, stating “Relationships between heart rate (HR) and oxygen 

uptake, and between HR and pulmonary ventilation (VE) for each participant were 

established in laboratory tests. The VE during cycling was four times higher than resting 

value. The level of air pollution exposure when cycling seemed to be comparable with 

the levels of exposure when sitting inside a vehicle” (Bernmark et al. 2006, p. 1486). The 

following year, O’Donoghue et al. (2007) compared cyclist VOC inhalation to bus 

passengers. Although exposure was lower, after respiration rates and travel times were 

accounted for, cyclists received slightly higher VOC intake than bus patrons.  

 

The evidence seems to suggest that although cyclists have the benefit of greater wind 

dispersion and do not typically have to wait behind queued traffic, faster respiration rates 

may result in higher overall intake of VOCs. As the majority of pollutant studies have not 

considered respiration rates, it is possible that actual pollutant intake for cyclists and 

pedestrians has been greatly underestimated.  

 

Nevertheless, there are various potential factors influencing cyclist exposure. These 

include: position on the road; traffic light timings; ability to pass between congested 

traffic; height of cyclist from ground; chosen route; traffic density and use of bus or 

cyclist lanes (Kaur et al. 2007).  
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2.3 Effect of proximity to traffic: pedestrians and cyclists 

2.3.1 Pedestrians  
 
Pedestrian exposure relative to traffic proximity has been investigated in many key 

research papers. Much of the initial investigation focused on position on pavement and 

time spent crossing at busy intersections. Kaur et al. (2005b) measured CO, PM2.5 and 

UFP variation along a heavily trafficked London road, finding significant UFP reductions 

for the building side of the pavement as well as for the south side of the road. The 

reduction between kerbside (89,469 pt/cm³) and building side (73,329 pt/cm³) is 

indicative of a rapid decrease in particle concentrations when moving just a very small 

distance away from emissions sources. Higher concentrations on the north side can be 

explained by meteorology and street topography. Although little or no difference was 

recorded for PM2.5 and CO for side of street and pavement position in this study, a 

reduction in CO concentrations with distance from the kerb was observed by Wright et al. 

in 1975 (cited in Kaur et al. 2005b). Kaur et al. (2006) later concluded that walking on 

the building side of the pavement whilst avoiding smokers and industrial work sites, can 

reduce mean UFP pedestrian exposure by 10-30%.  

 

Walking along routes in busy areas with lengthy traffic signal delays can also increase 

exposure. A study using a micro-simulation model to track pedestrian and vehicle 

movements found that longer pedestrian crossing signal lengths result in greater exposure 

to CO and PM (Ishaque & Noland 2008). The study also noted that giving signal priority 

to pedestrians could greatly reduce overall exposure, despite an increase in traffic 

emissions. Such simulated results are supported by time-activity exposure profiles 

showing immense spikes (to maximum recorded UFP levels) when pedestrians wait at 

crossings (Kaur et al. 2006). Built-up city streets with tall structures are prone to urban 

street canyon effects where microscale wind flow characteristics cause the formation of 

high pollutant zones, exacerbating the higher levels experienced when taking heavily 

trafficked routes.   

 

Clearly it is optimal for pedestrians to choose backstreet routes, avoid dusty/smoky areas 

and generally keep as far away from roadside high pollutant zones as possible. General 
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background concentration and exposure variability have been confirmed to be much 

lower for pedestrians using a quieter backstreet route compared to a busier option (Kaur 

et al. 2006).  

 

A recent noteworthy study investigated differences between PM2.5 and benzene exposure 

right next to a 3 lane roadway (on the pavement) and on a boardwalk, only 2 metres 

away. The footpath and boardwalk are separated only by a small ‘low-boundary’ wall, 

meaning the boardwalk is a mere further 1-2 metres away from traffic than the footpath. 

Simultaneous recordings of pedestrians walking along each side of the wall found PM2.5 

and benzene levels to be higher by a factor of 2.83 and 2.0 on the pavement side. 

Computation Fluid Dynamics (CFD) modeling showed that due to the dispersive effect of 

the wall, levels would always be lower on the boardwalk, regardless of different wind 

characteristics (McNabola et al. 2008a).  

 

These results, along with the aforementioned studies, highlight the degree to which 

substantial differences can occur at the microscale level. If significant differences can be 

observed at only a few metres from traffic sources, it potentially has large implications 

for future walkway planning and design.  
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2.3.2 Cyclists  
 

As for pedestrians, the effect of chosen route also has important implications and can 

significantly reduce exposure for cyclists, especially when using backstreets, and away-

from-road cycle tracks.  

 

An early investigation by Bevan et al. (1991) compared CO, Respirable Suspended 

Particles (RSPs) and VOC concentrations along a busy roadway to a common parkland 

area. This study found CO and RSP levels to be higher along the roadway by a factor of 

13 and 6, respectively. A range of 18 different VOCs were also sampled with all but four 

being substantially higher on the road. A similar study completed in 1998 also recorded 

consistently lower levels of benzene and particulates (measured by absorbance) for the 

cyclist riding on an exclusive cycle path (Kingham et al. 1998). 

 

Similarly, taking backstreet routes provides cyclists with a relatively low-exposure 

option. Kaur et al. (2005a) looked at backstreet versus main road exposure in Central 

London, finding significantly lower concentrations of CO and UFPs across five different 

modes, indicating the positive effect of travelling on less heavily trafficked routes. 

Unfortunately the study did not break the findings down into exact comparative figures 

for each mode on each study route. However, research by Hertel et al. (2008) – based on 

street pollution modeling - explored the differences between cycling along the shortest 

possible route, cycling along a low-exposure route (backstreets), and taking the shortest 

direct route by bus. The study found that total exposure for the shortest cyclist route was 

between 10-30% lower for primary pollutants (NOx and CO), but differences were 

insignificant for secondary pollutants (NO2 and PM10/PM2.5). When traffic-generated 

concentrations were excluded, accumulated exposure was up to 67% lower for the low-

exposure route, while for bus patrons, this figure was between 79% and 115%. The study 

also observed that travelling during off-peak times reduces exposure between 10% and 

30% for primary pollutants, and 5% and 20% for secondary.  
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Berghmans et al. (2009) conducted interesting research in a small town in Flanders, 

Belgium, where a cyclist rode around various parts of the town and PM10 and UFP 

exposure was mapped according to concentration. They found that while UFP exposure 

was considerably higher in the city centre and along busy roads, PM10 variance was 

almost entirely dependant on the presence of mechanical or manual construction work. 

The lack of difference in PM10 levels for backstreet and main road areas are consistent 

with the findings of Hertel et al. (2008). As with the 2005 study by Kaur et al., the 

findings of Berghmans et al. (2009) were only presented as overall mean concentrations 

and not split into main road and backstreet areas. Although concentration variability was 

presented by means of time-exposure profiles and concentration ‘dust maps’, these 

methods do not allow for a clear distinction between overall mean exposure levels and 

mean levels experienced within different land use zones.   

 

 

Somewhat similar methods were employed in a study conducted by Thai et al. (2008),  

where PM10, PM2.5 and UFP concentrations were measured by cycling across a variety of 

land use zones. Comparable observations were made, with PM10 levels peaking in 

construction zones and UFPs near heavy traffic. Exposure-distance profiles were 

presented, outlining clear transitions between a main transit corridor, an off-road seaside 

cycle route, construction sites and the central business district. Sudden drops in UFP 

concentrations were evident when transferring from key commuting roads to smaller 

backstreets or off-road cycleways. Recorded PM2.5 data was also mapped by colour-

coding concentrations and overlaying them onto a land-use regression model (LUR), 

demonstrating how concentrations varied geospatially and compared to background PM3 

modeling. Unlike the heterogeneous distribution of UFPs, PM2.5 was found to be more 

spatially uniform across the study route due to ability of PM2.5 to stay airborne for long 

periods. This lack of variance was also noted by Hertel et al. (2008).  

 

One area not previously explored in detail, is microscale variance at different distances 

from the roadway. In many cities, most notably in the Netherlands and Germany, cycle 

lanes are often situated in between parked cars and the road rather than directly on the 

roadside. This provides an interesting situation for exposure measurement. There are 



 

 38

obvious positive implications when positioning cycle ways as far away from the road as 

possible, but it is uncertain at which distance it becomes worthwhile. A separation as 

little as only two or three metres may even be beneficial and it is possible that parked cars 

provide some degree of protection, as found with the small dividing wall in the study by 

McNabola et al. (2008a). O'Donoghue et al. (2007) noted considerable differences in 

VOC levels between travelling on the congested side of the road as opposed to going 

against the main flow of traffic, suggesting a 5-7 metre gap is highly beneficial, even 

without the presence of dispersive barriers. However, local wind conditions undoubtedly 

influence the degree to which distance from sources is significant. Berghmans et al. 

(2009) noted dust concentrations from construction work rose substantially when riding 

on the windward side of the road whereas when riding on the other side, almost no 

increase occurred. Traffic pollutants behave in a similar fashion and are also influenced 

by temperature and precipitation. Therefore, any positive results presented can only be 

viewed with consideration of associated factors and may only be applicable under 

particular conditions.  

 

Due to dependence on associated sources and the behaviour of different pollutants, it is 

apparent that coarse particle measurement is less important for cyclist exposure studies 

and that UFPs, CO and perhaps PM1.0 should be of key concern. While time-exposure 

profiles and particle mapping techniques are useful for displaying the variance across 

routes, a clear research gap exists where comparative mean exposure for different route 

types could be ascertained.  

 

Cyclists are generally not able to commute exclusively on dedicated off-road cycleways, 

but a combination of parkland, trail and backstreet routes are realistic options in many 

towns and cities. Exploring total mean exposure between such an option and taking a 

more direct busier roadway is an area worthy of further investigation. The possibly 

negative consequence of a longer commuting duration may greatly outweigh the 

associated health cost of higher pollution intake. Additionally, the degree to which 

pollutant levels drop off at different distances parallel to the road has only been explored 

for pedestrians, leaving another key aspect open to investigation.  
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2.4 Other variables affecting personal exposure levels  
 
 

There are a multitude of variables that affect exposure levels. These can be grouped into 

five main categories: physical environment (geographic location, topography and urban 

built environment), meteorological conditions, traffic conditions, travel behaviour; and 

vehicle makeup and configuration.  

 

2.4.1 Physical environment 
 

Building configuration, road layout, trees and roadside structures have an effect on the 

accumulation and dispersion of pollutants (Bowker et al. 2007; Briggs et al. 2008). 

Comparisons between an open terrain area and an area with vegetation and noise barriers 

found higher concentrations of UFPs for the open area. Concentrations in the vegetated 

area were more uniform and vertically well-mixed (Bowker et al. 2007).     

 

Street canyon environments – streets amongst dense blocks of structures such as 

skyscrapers – can increase concentrations at the pedestrian level by up to 30% (Bogo et 

al. 2001). Using 3D Computational Fluid Dynamics, McNabola et al. (2009) have 

discovered that low boundary walls can reduce pedestrian exposure by 40% for 

perpendicular wind directions and up to 75% for parallel wind directions .  

 

2.4.2 Meteorological conditions 
 

Wind speed/direction, seasonal variation, precipitation, temperature, humidity and sea 

spray can all influence pollutant levels (Briggs et al. 2008; Jamriska et al. 2008; 

Minguillón et al. 2008). While some conditions have more obvious effects on chemical 

behaviour and pollutant concentrations, there are also less obvious factors where weather 

can have an indirect influence. For example, in countries with very cold climates, 

particulate from studded tyre abrasion is reported to significantly elevate levels of high 

particle mass concentrations (Gustafsson et al. 2008).  
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2.4.3 Traffic conditions 
 

Clearly, the more congested the traffic conditions, the higher the levels of traffic-related 

pollutants. Other influences which increase certain pollutant concentrations are time 

spent idling at traffic lights and heavy traffic density. Heavy traffic density especially 

increases NO2, and high truck density has been shown to elevate PM2.5 above levels in 

traffic without trucks present (Janssen et al. 2003).   

 

2.4.4 Travel behaviour  
 

Various elements of an everyday typical commute can affect total daily exposure. Some 

of these may include frequency of stops - e.g. opening doors, gasoline refueling, time 

spent in parking lots, which side of the footpath you walk on, and so on (Kaur et al. 

2005b). Cyclists can take shortcuts and dodge through traffic, resulting in less time spent 

in congestion if they choose to.   

 

2.4.5 Vehicle makeup and configuration 
 

Older vehicles and vehicles running poorly are more likely to emit higher amounts of 

exhaust fumes. New vehicles often have very high in-cabin concentrations of VOCs due 

to the construction materials (Yoshida et al. 2006). In-vehicle settings; including 

windows, ventilation settings and air conditioning are other key factors influencing in-

cabin levels. The Clean Air Task Force (Hill & Gooch, 2007) experience shows having 

the windows up and the air conditioning on is the most protective setting. Having the 

windows open is the next best option, while setting the vents to fresh (windows closed) is 

the worst as pollutants infiltrate but cannot disperse. Esber & El-Fadel (2008) found that 

in-vehicle CO ingression varied between 250 to 1250 mg/h depending on the vehicle 

ventilation settings. Again, windows closed (A/C on) resulted in the lowest recordings, 

while ‘windows half-opened, vents closed’ resulted in the highest. Having the windows 
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half-opened and the vents closed provides a similar environment to having the windows 

closed and the vents open, reducing dispersion while allowing significant infiltration.  

 

 

2.5 Health implications of personal exposure to transport 
pollution   

 

 

Transport related pollutants are widely known to be associated with various cancers and 

other medical ailments. NO2 has been linked to wheezing in infants (Ryan et al. 2005), 

childhood asthma and increased rates of respiratory illnesses such as bronchitis (Duhme 

et al. 1996; Gauderman et al. 2005; Pikhart et al. 2000). PM exposure can cause various 

cancers, chronic respiratory diseases and cardiovascular diseases (Miller et al. 2007; 

Pandya et al. 2002; Samet et al. 2000; Sørensen et al. 2003). The smaller PM fractions are 

known to have the highest toxicity as they penetrate deeper into the lungs and contain 

higher concentrations of organic matter. Due to their incredibly small size, UFPs are able 

to easily enter the body, transfer between blood cells and access bone marrow, the heart, 

spleen and lymph nodes (Oberdorster et al. 2005). Certain VOCs are extremely 

carcinogenic and can cause damage to the central nervous system (Bolla 1991). Benzene 

and 1,3-butadiene are considered the most toxic and are known to cause leukemia, even 

after only short-term, low-level exposure (Glass et al. 2003; Murray 2000). As for VOCs, 

some PAH compounds are also highly carcinogenic. PAHs have been linked to multiple 

organ cancers, including lung, bladder, kidney, larynx and cancer of the skin (Boffetta et 

al. 1997). High PAH exposure is also thought to cause premature birth and limit 

neurodevelopment during the first 3 years of life (Perera et al. 2006).   

 

Some research has specifically linked proximity to traffic with adverse health effects, 

such as low birth weight and premature births among women living near busy roads 

(Wilhelm & Ritz 2003), and increased allergies and respiratory illness among street 

vendors (Kongtip et al. 2006).  
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More recently, long-term research has also concluded that excessive exposure to air 

pollution (experienced living in highly polluted cities) can cause neuroinflammation and 

an altered brain immune response, which increases the likelihood of developing 

Alzheimer’s and Parkinson’s disease (Calderon-Garciduenas et al. 2008). A large 

epidemiological study based on 23 European cities estimated 16,926 premature deaths 

could be prevented annually if long-term exposure to PM2.5 levels were reduced to 15 

lg/m³ in each city (Boldo et al. 2006). This highlights the sheer scale of damage vehicle 

pollutants contribute to, and this is for only one particle fraction.  

 

 

 

 

2.6 Summary  
 

Formerly, car commuters were overwhelmingly thought to be exposed to higher 

concentrations of total air pollutants than for walking, cycling and taking the bus. While 

recent studies continue to support this position, there are also several which consider 

active mode travel to be the most affected. Additionally, such research has been 

expanded to take higher respiration rates into account, which suggests pollutant intake 

disparities are increased even further. However, actual individual pollutant inhalation can 

vary considerably depending on physical characteristics, fitness level and overall health. 

For this reason, results that factor in breathing rates should be viewed with caution.     

 

For total pollutant exposure, motorcycle commuters are clearly the most exposed. 

According to the bulk of the literature, motorcycle is then followed by bus, car, 

pedestrian, cycle, train/subway. While this order is equivocal - largely dependant on local 

environmental conditions and a range of other variables - it remains the status quo for 

now.  

 

In order to more accurately advise the public on transport exposure, investigation must be 

carried out at the local level under realistic settings. The numerous conflicting results 
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discussed in this review emphasise the effects just one or two conditions can have e.g. it 

appears the best way to reduce exposure in a vehicle is to re-circulate the air with air 

conditioning on, but this may not be suitable advice in countries that remain cool over 

summer.  Planning the position of cycle paths and pedestrian walkways relative to traffic 

is one way of mitigating the effects of air pollution. The extent to which microscale 

differences impact exposure levels has not been fully explored and further research is 

required. While a small distance could make a big difference in some environments; built 

structures (e.g. canyon-effects), trees, topography, and ambient levels may prevent 

sizable improvements in others.  

  

As years of air pollutant intake is potentially very harmful, there is an increasing need to 

find ways to avoid it as much as possible. Given the climbing global population, cheaper 

vehicles and rising incomes in developing nations, fuel pollutant reductions are not likely 

to be achievable without significant advances in fuel and emissions technology. While 

fuel modifications are relatively easy to implement, it will take decades to replace or 

upgrade the world’s current vehicle fleet when viable petroleum alternatives are 

developed. Therefore it is vital to inform citizens so that they can make better 

behavioural choices for themselves. Even after factoring in increased respiration rates, 

the health benefits of choosing an active mode may far outweigh the negatives. This is an 

area which is likely to receive greater attention in future exposure research.   
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Chapter Three: Physical Setting, Tools, and 
Methodology  

3.1 Introduction 

This chapter outlines the exact process that took place to prepare for and to conduct the 

pollutant sampling, starting with the physical setting. Section 3.3 details all instruments 

and equipment needed for the study, 3.5 describes the preparation phase and 3.6 defines 

the sampling strategy. Sections 3.8 and 3.9 provide an overview of the required data 

corrections and analyses used.  

3.2 Physical setting 

3.2.1 Location  

 

Traffic pollutant sampling was conducted in New Zealand’s two largest urban areas, 

Christchurch and Auckland.  

 

Christchurch city, situated at 43° 32'S, 172°, 37'E, sits on very flat Canterbury 

floodplains at the southern end of Pegasus Bay on the east coast of the South Island 

(Figure 1). Christchurch city covers 1610 km2 and has a population of approximately 

350,000, giving a population density of around 217 persons per km2. 

 

Auckland is situated at one of the narrowest parts of the country (36° 51'S, 174°, 46'E), a 

volcanic isthmus between the Waitemata Harbour on the Pacific Ocean and the Manukau 

Harbour on the Tasman Sea (Figure 1). The greater Auckland region, split into several 

territories, is the largest (6,059 km2) and most populous New Zealand metropolis with 1.4 

million inhabitants (234 persons per km2).  
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Figure 1 Physical setting of the two study cities 
 

3.2.2 Local climatology and the influence of the physical setting  

 

Christchurch has a relatively dry, temperate climate. During the warm summer months 

the city often receives strong nor’west winds. Winters are notably calmer with overnight 

temperatures often dropping below 0 °C. These cool, calm winter conditions often form a 

stable inversion layer above the city. Emissions from domestic heating combine with 

industry and traffic pollutants, forming a layer of smog under the inversion layer. As a 

result, far greater ambient coarse particle concentrations are experienced during winter, 

potentially affecting exposure samples (Town 2001). Ultrafine particles are negatively 

correlated with temperature, as higher temperatures are thought to increase coagulation 

which results in a rapid loss of concentrations as particles grow into larger size fractions 

(Kaur et al. 2006; Vinzents et al. 2005). Increased windspeed also negatively affects 

ultrafine particles whereas it can have the opposite effect with coarse particles as it aids 
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resuspension (Zhu et al. 2002). While sampling under a range of conditions was 

important, calm conditions with moderate temperatures would provide the most 

comparable data. Hence it was decided that Autumn would be the optimum period.  

 

Conversely, Auckland has a very wet, humid climate with the highest rainfall occurring 

in June and July. As the sampling instruments were not waterproof, data collection could 

not take place during wet weather, so it was ideal to have the sampling finished before 

the winter months.  

 

 With all of these variables considered, sampling was scheduled for March (Christchurch) 

and May (Auckland).  

 

 

3.3 Instruments, equipment & tools  

3.3.1 Sampling instruments 

 

Instrument choice was primarily based on practical suitability and successful use in 

previous published research. Although resource availability was a factor in determining 

which would be used, the study ended up securing a collection of mid to top-range 

instruments that have been commonly used in past research and are still considered to be 

the industry standard (Table 6). GRIMM aerosol instruments have been widely used in 

previous fine to coarse particle studies (PM1.0, PM2.5, PM10), and TSI 3007s are 

considered the current leading portable instrument for measuring ultrafine particles (Thai 

et al. 2008; Tsai et al. 2008). Langan T15n CO measurement devices have also been 

successfully used in previous transport pollutant exposure research (Gómez-Perales et al. 

2004; Kaur et al. 2005a; Lindén et al. 2008).  
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Table 6 Instruments used for data collection 
 

 

 

 

 

 

 

 

 

 

 

Instrument Measures Sampling 
Range 

Sampling 
Resolution

Other 
Capabilities 

Technical 
Notes 

Manufacturer  Number  
Employed

Langan T15n Carbon 
Monoxide 0-200 ppm 

0.05 ppm 
 

1 second 
intervals 

Temp, rH 

Switching on 
display causes 

spikes in logged 
data. Has button 

which can be 
used as an ‘event 

marker’ 

Langan 
Instruments, San 
Francisco, CA, 

USA 

4 

GRIMM 
Environmental 
Dust Monitor – 
Models 1.101, 
1.107 & 1.108 

PM10, PM2.5 
and PM1.0 

1-6,500  
µg/m3 

120 nm to 
30 microns 

 
6 second 
intervals 

Temp, rH 
Moisture 

Compensation 
System 

Counts particles 
across 32 size 

channels and use 
that information 

to estimate PM1.0, 
PM2.5 and PM10 

mass 

 
GRIMM Aerosol 
Technik GMBH 

& CO. KG, 
Ainring 

Dorfstraße, 
Germany 

 

4 

TSI 3007 
Condensation 

Particle Counter 
(CPC) 

Ultrafine 
particles 

0-500,000 
pt/cm3 

0.01 to >1.0 
µm 

 
1 second 
intervals 

Although capable of counting particles 
as small as 10 nm (and even smaller), 
there is only a 50% chance (or less) at 

this size due to different particle 
makeup. The shape, surface area and 

solubility determine whether the 
particle takes on enough alcohol to be 

recognised. 

TSI Incorporated, 
Knoxville, TN, 

USA 
 

3 

Kestrel 4500 Meteorological 
Data N/A 1 minute 

intervals  

Wind dir, wind 
speed, temp, 

wind chill, rH, 
barometric 

pressure and 
more 

 

Nielsen-
Kellerman Inc., 
Boothwyn, PA, 

USA 

6 

Nokia N82 GPS 
Cellular Phone 

GPS co-
ordinates, 

sound, 
photographs 

N/A 3 second 
intervals  

Ran custom 
software to log 

GPS co-
ordinates, sound 

and low-res 
images 

Nokia Inc., 
Keilaniemi, 

Espoo, Finland 
4 
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3.3.2 Sampling kit development 

 

Four Kincrome heavy duty tool kit bags were purchased to house the sampling 

instruments and Nokia N82 phones. The kit bag main compartment provided a perfect fit 

for a 3007 and a GRIMM dust monitor sitting side by side. Instrument inlet tubes were 

positioned horizontally using an adjustable plastic stalk. The Langans and Kestrels sat in 

the front pockets of the kit and the Nokia phones were attached to an adjustable clip-in 

mobile phone holder (Figure 2). 

 

Due to high concentration recording limitations for the 3007s, a filter had to be developed 

to dilute incoming values. Concentrations behind buses and other smoky vehicles often 

exceed 200,000 pt/cm³ - 3007s can only reliably record concentrations up to 100,000 

pt/cm³ - hence diluters were put together to dilute values to approximately 1/10th. Knibbs 

et al. (2007) have observed coincidence-related undercounting at concentrations greater 

than 100,000 pt/cm³. This occurs due to multiple particles simultaneously passing 

through the single-particle counting optics. Diluters were made by crimping the end of a 

bicycle valve to create a very small orifice. It was then attached to a plastic tube 

connected to a HEPA TSI zero-check filter with a Y-type flow splitter to draw in ‘dead 

air’ (Figure 2).  

 

Solid steel mounting racks were made to securely hold the kits in place while used on 

bicycles. They clipped into brackets attached to the handlebars and were also secured 

with hose clamps and cable ties for extra strengthening. The kits themselves were 

attached to the racks with tie down cables, bungee cords and G-clamps (Figure 2).  
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Figure 2 Example of a sampling kit attached to a cycle 
 

 

3.3.3 Logging software and analysis tools 

 

All logged data was downloaded using the instruments’ proprietary software - Hoboware 

Pro (Langan), DustMonitor (GRIMM), Aerosol Instrument Manager (3007) and Kestrel 

Weather Tracker (Kestrel). Data was then exported into Microsoft Excel formats, 

manually collated into master spreadsheets and averaged up to a uniform logging interval 

(6 seconds) for analysis, using NI LabVIEW.  

 

A customized logging application (GEOGDataLogger) was written to run on the Nokia 

N82 phones. The software recorded GPS coordinates, sound and took photographs every 

3 seconds. Data could then be mapped using another custom application written for the 

project, GRC Media Mapper (see Bartie & Kingham 2009). This software displayed 

pollutant concentrations to the left of the screen, along with mapped GPS points and still 

images to the right (Figure 3).  
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Pollutant concentration GPS co-ordinate maps were produced by plotting XY data and 

colour coding corresponding concentration values using ArcGIS 9.3. All other maps were 

created using a combination of Google Earth Pro 5.1 and Adobe Photoshop 7.0. For the 

cyclist study, the average distance between cyclist positions was calculated by digitising 

a series of 19 points at equal intervals along the section of road and ultilising ArcINFO’s 

‘PointDistance_analysis’ function.  
 
Microsoft Excel 2003/2007 was used for primary summary statistics and descriptive 

statistics were produced using StatSoft Statistica 8.  
 

 
Figure 3 Screenshot of GRC Media Mapper 
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3.4 Study vehicles  

 

The car used for all sampling in both cities was a stock-standard 1992 Toyota Corolla 

four door sedan. The car had had regular servicing and was thought to be running cleanly 

and efficiently. To prevent biased results, it was important the vehicle was not overly 

susceptible to the exchange of indoor/outdoor air. Refer to section 3.5.2 for a more 

detailed explanation.   

 

The bus fleets in both Christchurch and Auckland cities predominantly consist of diesel 

engine buses. Red Bus Ltd in Christchurch operates German made MAN 17.223 model 

diesel buses and Auckland’s MAXX runs the Swedish Scania L94 model. While both 

cities operate gas-turbine hybrid electric buses within the city centres, only the diesel 

models were ridden during the study.  

 

The trains operating on the Auckland rail network consist of a combination of diesel 

multiple units (DMUs) and diesel locomotives. There are 9 ADK/ADB class DMUs, 10 

ADL/ADC class DMUs, 2 DBR class locomotives and 14 DC class locomotives. The 

DMU engines are situated either at the front or rear of the units and the locomotives 

operate in push-pull mode. Trains are intermittently switched between different services 

so the position of the engine and the train type is somewhat random.     

 

3.5 Pre-fieldwork tests and setup 

3.5.1 Wind tunnel tests 

 

Initial tests were conducted to determine how best to configure the instrument inlet 

tubing and to discover how different travelling speeds affected instrument readings. 

While less important in the closed microenvironments of cars and buses, it was necessary 

to investigate for the cycling and pedestrian elements. This was done by setting up a 
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GRIMM dust monitor at the rear of a wind tunnel and burning an incense stick to 

artificially create smoke. Particulate measurements of one minute duration were taken 

with the inlet tubing set at both vertical and horizontal positions at a range of tunnel 

speed settings. The results confirmed that the horizontal position rendered far higher 

concentration recordings (Figure 4). A significant drop-off in concentrations was also 

noted for both settings at 20 km/hr. A speed of approximately 15 km/hr was thought to be  

most appropriate for cyclists and inlet tubes were configured horizontally for all four kits.  

 

Figure 4 One minute average particulate recordings at different velocities and inlet 
tube positions 
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3.5.2 Car air exchange characterisation 

 

Some vehicles, particularly older models, have higher rates of cabin pollutant decay and 

are also prone to greater self-pollution and outdoor infiltration. To prevent the results 

being affected by the use of a ‘leaky vehicle’, the air exchange rate of the study vehicle 

was measured. This was done by igniting an incense stick in the vehicle while traveling 

along a straight road at a constant speed of 50 km/hr and measuring the concentration 

decay with a GRIMM dust monitor (the incense was extinguished once the cabin filled 

with smoke). The results were then normalised by dividing each data point by the first 

and the data was then trimmed to the start point of exponential decay (Figure 5). An 

exponential curve of the form y = AeBt was applied (B = Air Exchange Rate), giving a raw 

AER value of 0.0117 units/s for PM10. Multiplied to per hour, results were 42, 31 and 29 

for PM10, PM2.5 and PM1.0 respectively. Based on similar trials conducted by the National 

Institute of Water & Atmospheric Research (NIWA), these values fell within the normal 

range of 10 – 100 for a typical car with vents open, windows closed. This setting was 

decided to reflect the most typical setting in New Zealand and for this study, all sampling 

runs were completed with the windows closed, vents set to ‘fresh’ with the fan set to 

position 2 (of 4 possible settings).  This configuration has been used in previous research 

in the UK, where it is also considered to represent typical urban driving behaviour 

(Briggs et al. 2008). 
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Figure 5 Air exchange characteristics of the study car 
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To fully confirm the vehicle was not prone to biased sampling results, a test was 

conducted using a control vehicle of similar age and design. The study car and a 1992 

petrol Nissan Primera sedan were driven together (one behind the other) up and down a 

busy urban road for 40 minutes, followed by a 20 minute countryside drive along a two-

lane regional highway. All windows were closed and vents set to fresh, with the fan on 

level 3 (of 4). Mean results  for PM10, PM2.5 and PM1.0 were in close agreement: 11, 5.9 

and 4.2 µg/m³ (study car) and 9.9, 5.5 and 3.9 µg/m³ (control car).  
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3.5.3 Meteorological data 
 

Background weather data required for the study included wind speed, wind direction and 

temperature. Precipitation was not considered as the sampling kits were not capable of 

operating in rainy weather. In order to obtain local scale 10 minute wind data for 

Christchurch, two Kestrel 4500s were mounted within the study area, one situated at 340 

Main North Road and another at 69 Deans Avenue. This data was then checked against 

two larger meteorological sites located at Coles Place and the Department of Geography 

at Canterbury University. Data from the two northern sites was combined and averaged to 

provide overall results for the north-south route (Journey 1). The same was done for the 

east-west (Journey 2) route. The journey routes and the locations of the met sites are 

depicted in Figure 6 and Figure 7.   

 

Mean wind data were calculated by averaging the wind vector components: 

 

Ve = Σ [Uisin(Ai)]/N 
Vn = Σ [Uicos(Ai)]/N 

 
And calculating average wind speed and direction from the vector averages: 
 

UV = (Ve

2 
+ Vn

2
) 

1/2
 

AV = ArcTan(Ve/Vn) 
 

Wind speed was also included in the analysis as a fixed category of high (>2 m/s) or low 

(<2 m/s) readings. At <2 m/s, wind direction becomes very variable, consisting of 

numerous slow-moving eddies whereby the dispersive influence on pollutants becomes 

significantly reduced. The threshold of 2 m/s has been applied in previous air pollutant 

research for Christchurch (Marsh & Wilkins 2004).   

 

Temperature recordings were taken from Kestrels attached to the sampling kits, 

accounting for variability throughout each journey.   
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For Auckland, background data was retrieved from the Auckland Regional Council 

Khyber Pass met station, situated in the middle of the sampling route (see Figure 10). A 

lack of resources and suitable sites made the use of static Kestrel sites too difficult.    

 

3.5.4 Pilot study and sampling configuration  

 

Two pilot runs were conducted along the Christchurch routes to test the equipment and to 

confirm sampling logistics were realistic in relation to bus timetables and cycling times. 

The timing of the runs was successful from the first trial but changes were made in regard 

to the equipment. The plastic inlet tubes were replaced with stainless steel tubes to ensure 

concentration measurements weren’t affected by particles sticking to the inside of plastic 

tubing. It was also found that the 3007s were prone to ‘tilt errors’ when shaken around on 

the cycles. Tilt errors occur when the instrument optics are contaminated with alcohol 

and has been problematic in other recent cycle research (Boogaard et al. 2009). The 

presence of front suspension on the cycle appeared to almost completely alleviate tilt 

events, hence one of the cycles was changed.   

 

3.6 Sampling strategy 

 

The sampling strategy involved two distinct lots of data collection. Inter-modal data was 

collected along set commuting routes while comparative cyclist data was recorded 

separately by three cyclists riding at different distances from the traffic flow, along a 

short section of road.   

 

Sampling took place during February 26 – April 1 (Christchurch) and April 27 – May 21 

(Auckland). Autumn was chosen as the ideal sampling period due to moderate rainfall 

and mild temperatures. Warmer temperatures also resulted in a reduced risk of domestic 

heating emissions augmenting traffic pollutants, especially for Christchurch which has a 

far cooler climate during winter.   
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3.6.4 Inter-modal sampling 

 

Four commuters set out on specified routes that were designed (as closely as possible) to 

replicate typical commutes to and from sites of work or study. Journeys did not fully 

reflect the most logical commuting route for the car and main cyclist as it was important 

they took the same path as the bus commuter. Sampling trips were made during rush hour 

traffic to reflect when most people travel and to yield higher (more comparable) 

concentration recordings. The Christchurch study allowed for the replication of two 

separate journeys per sampling run – one from the northern fringe of the city to the city 

centre and then another to the University of Canterbury.  

 

A total of 27 Journey 1 and 26 Journey 2 legs were completed in Christchurch with 

another 26 journeys completed in Auckland. Data was lost for multiple journeys and not 

all of the collected data was useful.  

 

For Christchurch, the modes consisted of bus (Kit 1), car (Kit 2), cycle off-road (Kit 3) 

and cycle on-road (Kit 4). One cyclist rode an off-road route via dedicated cycle-ways, 

through parks and backstreets, while another took exactly the same route as the bus and 

car. This was to explore the exposure implications of taking a longer off-road route 

versus a more direct route on-road.  

 

In Auckland, bus became Kit 3, Kit 1 became train and there was no off-road cycle mode 

due to equipment restrictions and lack of suitable comparative routes. Kits 2 and 4 

remained the same as for Christchurch. The cyclist, car and bus again travelled the same 

route which ran as closely as possible to the train line.  

 

As there were only three 3007s available among four kits, one was switched between kits 

near the end of each sampling campaign to ensure data was collected across all modes. In 

Christchurch, a 3007 was placed in Kit 3 for Runs 1-17 and then moved to Kit 1 for the 

remaining ten runs. In Auckland, a 3007 was switched from the bus to the train for the 
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final journey only. NIWA had already collected substantial UFP data for the train mode 

and data loss and time constraints meant greater priority was given to the other three 

modes.    

3.6.5 Cyclist sampling: Effect of proximity to traffic  

 

To investigate differences in microscale exposure levels, a number of sampling runs were 

made using three cyclists riding simultaneously at different distances from the flow of 

traffic. One cyclist was situated on the road right next to traffic, another on the footpath 

4.5 - 7 metres away and the third was on an off-road path approximately 17.5 – 19 metres 

away on average. Cylists rode along a specified road/path section and then turned around 

and went back the other way, repeating the process until at least 20 lengths were 

completed. This was done three times in each city to account for different weather 

conditions.  

 

An additional scenario was tested in Christchurch where the off-road cyclist rode on a 

path in the middle of a park, ~700 metres north of the other two cyclists. The purpose 

was to ascertain how much exposure decreased at this distance compared to 

concentrations just 5 – 20 metres away. The cyclist in the middle of the park was always 

at least 30 metres away from traffic sources, with the radius of distance to traffic in all 

directions as large as 420 metres. The extent to which pollutant levels decrease at very 

small distances from traffic has important implications for the positioning of cyclist and 

pedestrian pathways. While microscale computer modeling may provide clearer answers 

than monitoring by means of numerous fixed sites, it may not be entirely representative 

of exposure whilst moving.  
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3.7 Study areas 

3.7.4 Christchurch inter-modal routes  

 

The Christchurch run was split into two separate journeys to replicate two normal 

commutes within the rush hour timeframe. The first of these journeys, referred to as 

‘Journey 1’ or J1, ran 8.2 km from 340 Main North Road to the city bus exchange at 36-

54 Lichfield Street (Figure 6). On arrival, the car driver parked in a parking lot above the 

bus terminal and met the bus commuter and the cyclists at Cashel Mall (a street closed off 

to traffic). After a short wait, ‘Journey 2’ (J2) to the University of Canterbury Geography 

department commenced (Figure 7). Journey 2 was 7.5 km long. As the bus was, in terms 

of timing, the least flexible, the sampling schedule was designed to fit around the bus 

timetable (Table 7).  

 

Table 7 Christchurch inter-modal run timetable 
 

Morning Bus  
 

Car  
 

Cycle – Off-Road Cycle – On-Road 

Meet Redwood 7:40 7:40  7:40 7:40 
Depart Redwood 7:51 (#12) 7:50 7:45 7:45  
Arrive BusX  8:15 8:15 8:25 8:15 
Meet Cashel Mall 8:25 8:25 8:25 8:25 
Depart BusX 8:42 (#21 or 3) 8:35 8:30 8:42 
Arrive UC 8:57 8:50 9:00 9:00 
Meet GEOG 9:00 9:00 9:00 9:00 
Afternoon     
Meet GEOG 4:45 4:45 4:45 4:45 
Depart UC 4:55 (#21) 4:55 4:50 4:50 
Arrive BusX 5:13 5:10 5:20 5:20 
Meet Cashel Mall 5:20 5:20 5:20 5:20 
Depart BusX 5:25 (#12)  5:30 5:25 5:25 
Arrive Redwood 6:01 6:00 6:05 6:00  
Depart Redwood 6:10 6:10 6:10 6:10 
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Figure 6 Journey 1 – Redwood 
to Christchurch City Bus 
Exchange 
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Figure 7 Journey 2 - Christchurch City Bus Exchange to University of Canterbury 
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3.7.5 Christchurch cyclist study area  

 

The cycling aspect of the Christchurch study was conducted along the Riccarton Avenue 

stretch of Hagley Park (Figure 8). This area was chosen as it has both a footpath and an 

off-road track only 19 metres from the road. Riccarton Avenue is also very busy 

throughout the day and the parking spaces are usually full (Figure 9). Parked cars were 

thought to possibly provide a protective barrier, resulting in lower concentrations on 

inside paths. The area is also well vegetated with large trees and gardens. Figure 10 

provides a clearer idea of the sampling setting and path layout. Figure 9 shows the travel 

direction of the three paths. The path marked in red to the north of the map shows the 

location of the third cyclist during the additional test scenario. One cyclist was situated 

on-road, the other off-road and the third, right in the centre of the park.   

 

 
Figure 8 Christchurch cycle sampling area showing location and direction of travel  
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Figure 9 Satellite image of Christchurch cycle sampling area showing one section 
and the position of travel paths on both sides of the road 

 

3.7.6 Auckland inter-modal route 

 

The Auckland route ran from 947 New North Road at Mt Albert to NIWA headquarters 

at Market Lane in the city centre (Figure 10). This route was chosen due to its: proximity 

to the train track; proximity to volunteers’ residences; use as a key commuting route to 

the city centre; use as a key bus route featuring dedicated rush hour bus lanes. The car, 

bus and cycle traveled along exactly the same route but the bus commuter walked part of 

the journey; to and from the Victoria Street bus station. Similarly, the train commuter 
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walked part of the leg, to and from the Britomart Transport Centre along the same route 

as the car and cycle. The car and cycle route also varied slightly during the afternoon due 

to ‘Bus Only’ turning restrictions but this was not considered to significantly alter the 

results (see Figure 10). The total distance of the morning journey was 9 km and the 

afternoon journey was slightly longer at 9.4 km. The timing of the runs, outlined in Table 

8, was designed to fit as closely as possible to bus and train travel times.  

 

 

 

 

 

Table 8 Auckland inter-modal run timetable 
 

Morning Bus  
 

Car  
 

Train Cycle 

Meet Mt Albert 7:40 7:40  7:40 7:40 
Depart Mt Albert 7:51 (#210) 7:50 7:53 7:50  
Arrive city station  8:27 - 8:18 - 
Depart city station 8:27 - 8:23 - 
Arrive at NIWA 8:37 8:35 8:39 8:31 
Afternoon     
Meet NIWA 4:25 4:25 4:25 4:25 
Depart NIWA 4:25 4:45 4:40 4:45 
Arrive city station  4:35 - 4:52 - 
Depart city station 4:48 (#211) - 4:58 - 
Arrive Mt Albert 5:24  5:30 5:21 5:30 
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Figure 10 Auckland inter-modal sampling route 
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3.7.7 Auckland cyclist study area 

 

Tamaki Drive, St Heliers Bay was chosen for the cycle sampling in Auckland. St Heliers 

Bay is an affluent area lined with boutique stores and expensive restaurants along the 

landward side of Tamaki Drive. It is also popular location for water sports and family 

recreation. The area provided a 500 metre section consisting of a shared cycle and 

pedestrian walkway as well as a boardwalk running alongside the beach. This made for a 

suitable replication of the study area in Christchurch except the footpath and on-road 

cyclists were slightly closer together and only one side of the road could be used (Figure 

11 and Figure 12).  

 

 
Figure 11 St Heliers Bay cycle sampling area 
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Figure 12 Satellite image of St Heliers Bay cycle sampling area 
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3.8 Sample data correction 

3.8.1 Langan data 
 
The Langan CO data required a considerable amount of correction, including manual 

correction and adjustment for temperature error. After collating the data, it was scanned 

by eye for extreme peaks and unusual troughs where readings dropped below zero. Many 

spikes of only 1-2 seconds duration were present, indicating an erroneous reading as the 

slow response time of these instruments means they cannot record such rapid spike 

events. All run data was plotted on a time series and suspicious sudden peaks above 5 

ppm were removed manually. The same was done for recordings below zero parts per 

million. Langans also seem to ‘black out’ on occasion, reporting numerous instances of 

0.031 ppm. Following these events, the instrument usually takes up to 30 seconds to 

recover. Such events and the subsequent 30 seconds of data were removed. Further 

adjustment was then applied to correct temperature error.  An electrical current is 

generated by the result of the chemical interaction between CO and CO2, which is 

detected by the electrochemical sensor. This causes temperature-dependant variation of 

output from the sensor, consequently requiring correction to recorded data. At 

temperatures above 20º C, the instrument over-reads, while at lower temperatures, under-

reporting occurs (Langan 2006). After applying appropriate temperature corrections, CO 

errors were corrected to within +/- 0.2 ppm. 
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3.8.2 3007 data 
 

A minor issue with the TSI 3007s was the occurrence of tilt errors, most commonly 

experienced while cycling and walking with the kits. Tilt errors cause the instrument to 

log false values of 1.68E+07 for around 8-10 seconds and then values gradually increase 

from less than 10 pt/cm3 as the pump recovers. It takes around 20 seconds for the 

instrument to fully recover and all ‘tilt error blocks’ of around 30 seconds in duration 

were manually removed. Occasionally, automatic recovery did not occur and the 

instrument had to be reset by removing the battery pack, resulting in substantial data loss 

when left unnoticed.  

 

A dilution system developed by Knibbs et al. (2007) was used during UFP measurements 

with the TSI 3007 instruments, meaning all recorded data first needed to be multiplied by 

ten. While the goal was to dilute concentrations to 1/10th of incoming values, it was 

discovered that the behaviour of the diluter was likely to change over time as the HEPA 

filter absorbed small particles. Two of three filters retained the original set dilution ratio 

of 10:1 throughout the Christchurch sampling campaign, while the ratio for the third filter 

grew substantially over time. The change in performance was able to be observed from 

the approximate 20 minute period when all three instruments were recording together in 

between Journey 1 and Journey 2, in the city centre. Data from the affected diluter was 

plotted against the reliable data, clear outliers were removed, and a linear regression with 

a forced zero intercept applied. This was done for every run and the resulting slope 

applied to the original data. Unfortunately, while the instruments were co-located in an 

office environment following each run in Auckland, the sampling campaign lacked a 

similar period where the instruments were co-located in a high concentration 

environment. Due to an undocumented change in performance among two of the filters, it 

was decided the data was not correctable and all Auckland UFP data was removed from 

the analysis.  
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3.8.3 GRIMM data 
 
The major concern surrounding the recorded PM concentration data was that none of the 

Grimms were characterised against a reliable reference instrument. The preferred method 

is to concurrently run the Grimm dust monitors alongside a Tapered Element Oscillating 

Microbalance (TEOM), measure association across size fractions and adjust if required 

(Chan et al. 2004, Tsai et al. 2008). TEOMs are Environmental Protection Agency (EPA) 

approved Federal Reference Method (FRM) samplers. Secondly, Grimm Environmental 

Dust Monitors or Portable Aerosol Spectrometers (PAS) are typically calibrated under 

controlled conditions using polydisperse aerosol composed of Arizona test dust. Grimms 

have been observed to size and count particles differently when sampling other dust types 

such as monodisperse aerosols (Peters et al. 2006). Although monodisperse 

concentrations are extremely rare in normal environments, the instruments may not 

always function in the same fashion when encountering dusts of other composition. For 

these reasons, absolute PM values presented within this study should be viewed with due 

caution. While absolute values are presented, where possible, results are discussed in 

terms of ratios and relative percentage differences.  

 

One instrument, the Grimm 1.108, under-read throughout the entire campaign by a factor 

of two. This was determined using the same correction method used for the 3007 diluters; 

using the most reliable instrument as a reference. A second instrument, the Grimm 1.101, 

produced strange output with values ranging from the tens to thousands. It was hoped at 

least some of the data could be recovered, but with no clear pattern observed, all data was 

rendered unusable and excluded from analysis. This meant all PM data for the train mode 

was lost.  
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3.9 Statistical analysis 
 
Overall summary statistics were produced using Microsoft Excel. Raw data was then 

transferred into Statsoft Statistica for advanced analysis. As there was such a large 

amount of skewed data to analyse, advanced linear non-parametric tests were required. 

Analysis of variance (ANOVA) was chosen as the most suitable method, applied in the 

form of a linear mixed effects model. Analysis was blocked by Run (sampling trip) or 

Leg (for cyclist sampling) as the random factor. Other variables included Mode, Journey 

(1 or 2, for Christchurch only), Direction, Time of Day, Wind Strength (average wind 

speed categorised as either high [>2 m/s] or low [<2 m/s]), Wind Influence (upwind or 

downwind) as fixed effects, with Average Temperature and Average Wind Speed as 

covariates. All variance components analyses (VCA) were computed using Type I 

sequential sums of squares (Type I SS) and Error d.f. were calculated using 

Satterthwaite's method of denominator synthesis (Satterthwaite 1946). A star (*) next to 

any factor in the output tables specify that tests assume entangled fixed effects are zero. 

The type of relationship between any significant independent factors and the dependant 

variable (pollutant sampled) was determined using correlation matrices.  

 

3.10 Summary 

 
This chapter first introduced the physical setting of the two study cities and briefly 

discussed the influence of local topography and climatology. It gave a detailed account of 

the sampling methodology, including the pilot study, timetabling and an overview of the 

study design. Various problems were encountered with data correction and analysis, 

which were outlined as clearly as possible. The final section explained the reasoning 

behind the chosen statistical models, which set the scene for the next two chapters; the 

results chapters.   
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Chapter Four: Inter-modal Results and Discussion  

 

4.1 Introduction  
 

This chapter provides all summary statistics and ANOVA tables based on the raw results. 

All logged data were trimmed to include only samples taken while traveling. Results for 

the two Christchurch routes were analysed together for the summary statistic tables, but 

‘Journey’ was included as a fixed factor to ascertain whether any significant differences 

occurred between routes. Overall mean results for each city are then discussed in relation 

to previous studies consisting of similar methodologies.   

 

 

4.2 Christchurch 

  

4.2.1 Carbon monoxide 
 
Mean results for Christchurch ranked the car mode as the most exposed, at around 2.6 

times higher than bus and the on-road cyclist. The off-road cyclist was the least exposed 

and 4.4 times lower than car. The max concentration was 52.33 ppm, recorded by the car 

mode (see Table 9). All modes recorded the lowest possible resolution of 0.05 ppm as the 

minimum value. There was a statistically significant difference across modes (F3,172.6 

=33.45, p<0.001). Both wind speed (p=0.003) and temperature (p=0.005) were negatively 

correlated with CO (Table 10). Time of day was non-signficant, as was wind speed, 

which was grouped into fixed categories. There was a significant interaction between 

Journey and Mode (p=0.008), with CO levels being considerably higher for Journey 1, 

but only for the car and on-road cyclist. 
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Table 9 Summary statistics for CO modal exposure in Christchurch 
 

Mode of 
transport 

N Journeys 
(samples) 

Arithmetic Mean 
(+/-0.2 ppm) 

Std. 
Dev. Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

         
All samples 184 (42153) 1.35 2.00 0.05 52.33 0.66 1.33 1.37 
         
Bus 49 (11172) 1.10 1.12 0.05 8.85 0.86 1.08 1.12 
Car 48 (8810) 2.87 3.22 0.05 52.33 2.37 2.81 2.94 
Cycle on-road  39 (9161) 1.12 1.58 0.05 25.90 0.49 1.08 1.15 
Cycle off-road  48 (12110) 0.65 0.88 0.05 22.75 0.37 0.64 0.67 

 
Table 10 ANOVA results for CO modal exposure in Christchurch 

 
Variable  Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 27.59 34.19 2.66 10.37 0.003
Avg Temp  *Fixed 1 32.90 25.66 3.43 9.60 0.005
{1}Journey *Fixed 1 13.12 75.39 1.76 7.47 0.008
{2}Time of Day *Fixed 1 1.30 23.75 3.74 0.35 0.561
{3}Mode *Fixed 3 39.47 172.65 1.18 33.45 <0.001
{4}Wind Strength  Fixed 1 4.50 146.19 1.38 3.26 0.073
{5}Run Random 25 3.52 150.00 1.10 3.21 <0.001

 

4.2.2 PM10, PM2.5 and PM1.0  
 

For average PM10 exposure, the bus mode ranked highest at 45.79 µg/m³ followed by the 

cyclists and then the car, which was the least exposed at 27 µg/m³ (Table 11). Results 

were significant across modes (F3,103.6 =4.21, p=0.007). Similar results were found for 

PM2.5, except the off-road cyclist had slightly lower exposure than the on-road cyclist, 

which also had a far lower PM10 result (F3,84.09 =3.88, p=0.012). The off-road cyclist 

received the lowest recordings for PM1.0; 7%, 31% and 43% lower than car, on-road 

cyclist and bus, respectively (F3,90.52 =5.08, p=0.002). The influence of wind strength was 

significant for PM10 and PM2.5, with lower median scores for the high wind speed category 

of >2 m/s. Average wind speed was negatively correlated with all fine-coarse PM 

fractions, but was only significant for PM1.0 (p=0.004). Full ANOVA results are 

presented in Table 12.  
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Table 11 Summary statistics for PM modal exposure in Christchurch 

 
Mode of 
transport 

N Journeys 
(samples) 

Arithmetic 
Mean (µg/m³) 

Std. 
Dev.  Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

         
38.12 30.40 4.00 1138.80 32.20 37.80 38.44 
19.29 15.84 1.30 505.40 16.60 19.13 19.47 All 

samples 

PM10 
PM2.5 
PM1.0 

143 (34221) 
10.44 10.77 0.30 312.30 7.80 10.33 10.55 

         
45.79 40.09 4.80 1138.80 36.20 45.00 46.58 
23.59 20.54 2.20 268.00 18.80 23.17 24.01 Bus 

 

PM10 
PM2.5 
PM1.0 

43 (9922) 
13.74 13.70 0.80 118.60 10.40 13.47 14.01 
27.00 12.96 4.00 94.84 24.36 26.60 27.41 
14.03 6.97 1.60 62.80 11.79 13.82 14.25 Car 

PM10 
PM2.5 
PM1.0 

19 (3950) 
8.40 5.48 0.80 55.90 6.67 8.23 8.58 

37.45 31.41 4.30 573.50 31.20 36.90 38.01 
17.94 16.63 1.30 505.40 15.40 17.65 18.24 

Cycle 
Off-
Road 

PM10 
PM2.5 
PM1.0 

47 (12351) 
7.83 10.04 0.30 312.30 5.70 7.66 8.01 

35.12 14.47 9.01 117.52 31.92 34.81 35.44 
18.99 8.61 4.98 77.55 16.43 18.80 19.17 

Cycle 
On-
Road 

PM10 
PM2.5 
PM1.0 

34 (7984) 
11.38 8.14 1.86 73.13 8.45 11.20 11.56 
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Table 12 ANOVA results for PM modal exposure in Christchurch 
 

PM10 
Variable  Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 213.13 31.32 674.63 0.32 0.578 
Avg Temp  *Fixed 1 79.54 26.35 809.36 0.10 0.756 
{1}Journey *Fixed 1 2.28 61.79 427.65 0.01 0.942 
{2}Time of Day *Fixed 1 2479.86 24.80 873.70 2.84 0.105 
{3}Mode *Fixed 3 1417.46 103.61 336.56 4.21 0.007 
{4}Wind Strength  Fixed 1 2937.85 99.04 343.68 8.55 0.004 
{5}Run Random 25 864.32 109.00 239.89 3.60 <0.001 

PM2.5 
Avg Wind Speed *Fixed 1 522.98 29.27 316.93 1.65 0.209
Avg Temp  *Fixed 1 53.76 25.89 385.27 0.14 0.712
{1}Journey *Fixed 1 188.53 51.62 182.71 1.03 0.314
{2}Time of Day *Fixed 1 427.87 24.80 418.08 1.02 0.321
{3}Mode *Fixed 3 531.77 84.09 136.98 3.88 0.012
{4}Wind Strength  Fixed 1 752.26 81.42 139.33 5.40 0.023
{5}Run Random 25 411.46 107.00 84.11 4.89 <0.001

PM1.0 
Avg Wind Speed *Fixed 1 1182.75 29.92 120.22 9.84 0.004
Avg Temp  *Fixed 1 331.70 26.06 146.83 2.26 0.145
{1}Journey *Fixed 1 193.28 53.62 71.45 2.71 0.106
{2}Time of Day *Fixed 1 276.79 24.84 159.53 1.74 0.199
{3}Mode *Fixed 3 271.39 90.52 53.46 5.08 0.003
{4}Wind Strength  Fixed 1 209.14 85.99 54.87 3.81 0.054
{5}Run Random 25 157.68 109.00 34.38 4.59 <0.001
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4.2.3 Ultrafine particles 
 
Ultrafine exposure was highly significant across modes (F3,105.77 =13.12, p<0.001) and 

significantly negatively correlated with average wind speed (p<0.001) and average 

temperature (p=0.007). Time of day was also significant (p=0.009), with far higher levels 

generally experienced during mornings than in the afternoons – overall means by 

morning and afternoon for all samples were 81691 and 62095 pt/cm3 respectively. The 

off-road cyclist was by far the least exposed; 53%, 69% and 70% lower than the on-road 

cyclist, bus and car, respectively (Table 13). ANOVA results are given in Table 14.  
 

Table 13 Summary statistics for UFP modal exposure in Christchurch 
 

Mode of 
transport 

N Journeys 
(samples) 

Arithmetic 
Mean (pt/cm³) Std. Dev.  Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

         
All samples 184 (28909) 52895.28 70818.37 23.33 1304048 26993.33 52078.93 53711.63
         
Bus 19 (3809) 76481.74 68833.83 544.83 506990 57056.67 74295.07 78668.40
Car 42 (7802) 77654.53 85145.92 3202.98 970369.02 46594.22 75764.91 79544.16
Cycle on-road  38 (8545) 49842.85 71568.47 85 1304048 25516.67 48325.19 51360.51
Cycle off-road  33 (8753) 23541.97 37176.55 23.33 741751.67 11115 22763.04 24320.90

 
Table 14 ANOVA results for UFP modal exposure in Christchurch 

 
Variable  Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 5.93E+10 31.68 2.69E+09 22.05 <0.001
Avg Temp  *Fixed 1 2.48E+10 28.03 2.98E+09 8.32 0.007
{1}Journey *Fixed 1 2.47E+09 71.60 1.70E+09 1.45 0.233
{2}Time of Day *Fixed 1 2.85E+10 23.90 3.49E+09 8.16 0.009
{3}Mode *Fixed 3 1.88E+10 105.77 1.43E+09 13.12 <0.001
{4}Wind Strength  Fixed 1 4.76E+08 106.49 1.42E+09 0.33 0.565
{5}Run Random 25 3.32E+09 98.00 1.08E+09 3.09 <0.001
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4.3 Auckland  

 

4.3.1 Carbon monoxide 
 

Mean results for Auckland ranked the car mode as the most exposed, at 2.3 times higher 

than bus and the on-road cyclist, which faced the same level of exposure. Train was the 

least exposed; lower than car by a factor of 4.3 and 1.9 times lower than bus/cyclist. The 

cyclist recorded the highest concentration, at 112.91 ppm (Table 15). There was a 

statistically significant difference across modes (F3,69.06 =134.3, p<0.001). Both wind 

speed (p=0.029) and temperature (p=0.001) were negatively correlated with CO (Table 

16). Time of day was non-significant, as was wind speed grouped into fixed categories.   

 
Table 15 Summary statistics for CO modal exposure in Auckland 

 
Mode of 
transport 

N Journeys 
(samples) 

Mean 
(+/-0.2 ppm) Std. Dev.  Min Max Median 

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

         
All samples 95 (36707) 3.13 2.81 0.05 112.91 2.41 3.11 3.17 
         
Bus 23 (9942) 2.51 1.45 0.05 13.78 2.27 2.48 2.54 
Car 24 (9530) 5.74 2.85 0.35 27.11 5.19 5.67 5.79 
Train  24 (6579) 1.34 0.83 0.05 8.62 1.08 1.32 1.36 
Cycle on-road  24 (10656) 2.51 2.99 0.05 112.91 1.96 2.46 2.57 

 
Table 16 ANOVA results for CO modal exposure in Auckland 

 
Variable  Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 11.48 18.85 2.04 5.6 0.029
Avg Temp  *Fixed 1 30.35 19.02 2.02 15.0 0.001
{1}Time of Day *Fixed 1 1.94 18.85 2.04 1.0 0.342
{2}Mode *Fixed 3 88.75 69.06 0.66 134.3 <0.001
{3}Wind Strength  Fixed 1 2.98 18.85 2.04 1.5 0.241
{4}Run Random 19 2.02 68.00 0.66 3.1 <0.001

 



 

 78

 

4.3.2 PM10, PM2.5 and PM1.0  
 
Mean results for PM2.5 (F2,41.81 =6.85, p=0.003) and PM1.0 (F2,40.66 =9.13, p=0.001) were significant 

across modes but PM10 was non-significant (F2,43.85 =0.39, p<0.982). This was possibly due to 

an uncorrectable instrument error causing under-reading for the PM10 channel in the bus 

Grimm. Time of day significantly affected PM2.5 (p=0.005) with overall morning 

concentrations (26.3 µg/m³) being substantially higher than those of the afternoons (17.6 

µg/m³). Average temperature significantly affected PM1.0 (p=0.025), for which there was 

a negative correlation. Refer to Table 18 for full ANOVA results. The on-road cyclist 

was the least exposed for both PM2.5 and PM1.0, at 33% and 44% lower than bus, and 11% 

and 28% lower than car (Table 17).   

 
Table 17 Summary statistics for PM modal exposure in Auckland 

 
Mode of 
transport 

N Journeys 
(samples) 

Arithmetic 
Mean (µg/m³) 

Std. 
Dev.  Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

         
24.61 19.95 5.40 803.85 21.37 24.37 24.85
19.66 18.64 3.23 696.70 15.60 19.43 19.88All 

samples 

PM10 
PM2.5 
PM1.0 

65 (26200) 
14.40 12.29 1.86 141.80 10.54 14.25 14.55

         
24.56 10.22 8.34 89.72 23.91 24.33 24.78
24.63 14.08 3.23 149.89 22.41 24.31 24.93Bus 

 

PM10 
PM2.5 
PM1.0 

21 (7988) 
18.87 11.74 2.72 122.99 15.55 18.62 19.13
23.55 16.07 5.4 151.23 19 23.20 23.90
18.66 15.11 4.73 144.40 14 18.33 19.00Car 

PM10 
PM2.5 
PM1.0 

22 (8052) 
14.72 15.03 2.90 141.83 9.8 14.40 15.06
25.49 27.17 7.67 803.86 21.84 24.96 26.02
16.54 23.01 4.68 696.65 13.64 16.09 16.99

Cycle 
On-
Road 

PM10 
PM2.5 
PM1.0 

22 (10161) 
10.63 8.47 1.86 98.62 8.24 10.47 10.80
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Table 18 ANOVA results for PM modal exposure in Auckland 

 
PM10 

Variable Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 76.94 16.93 104.12 0.74 0.402
Avg Temp  *Fixed 1 12.76 17.21 103.02 0.12 0.729
{1}Time of Day *Fixed 1 899.51 17.56 101.71 8.84 0.008
{2}Mode *Fixed 2 17.89 43.85 46.31 0.39 0.682
{3}Wind Strength Fixed 1 143.35 17.14 103.28 1.39 0.255
{4}Run   Random 19 96.91 38.00 44.42 2.18 0.020

PM2.5 
Avg Wind Speed *Fixed 1 187.53 15.78 121.06 1.55 0.231
Avg Temp  *Fixed 1 23.94 16.21 120.38 0.20 0.662
{1}Time of Day *Fixed 1 1248.33 16.75 119.56 10.44 0.005
{2}Mode *Fixed 2 583.63 41.81 85.20 6.85 0.003
{3}Wind Strength Fixed 1 192.34 16.10 120.54 1.60 0.224
{4}Run   Random 19 116.59 38.00 84.03 1.39 0.191

PM1.0 
Avg Wind Speed *Fixed 1 86.57 14.41 47.00 1.84 0.196
Avg Temp  *Fixed 1 293.42 15.01 47.04 6.24 0.025
{1}Time of Day *Fixed 1 143.62 15.77 47.09 3.05 0.100
{2}Mode *Fixed 2 449.03 40.66 49.18 9.13 0.001
{3}Wind Strength Fixed 1 3.51 14.87 47.03 0.07 0.788
{4}Run   Random 19 47.27 38.00 49.25 0.96 0.523
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4.4 Combined Results 
 

4.4.1 Carbon monoxide 
 

For both cities combined, the car mode was higher than the on-road cyclist by a factor of 

2.3, and by 2.5 and 3.3 for bus and train (Table 19). However, a lack of an off-road 

cyclist and train mode for Christchurch renders these modes less inter-comparable. 

Overall mean CO levels for Auckland (3.13 ppm) were greater than Christchurch by a 

factor of 2.3 (1.35 ppm). The maximum level sampled was 112.91 ppm, recorded by the 

on-road cyclist mode in Auckland. Across four modes in each city, results were 

significant (F4,256.63 =56.52, p<0.001). Table 20 provides full ANOVA results.     

 
Table 19 Summary statistics for combined CO modal exposure 

 
Mode of 
transport 

N Journeys 
(samples) 

Mean 
(+/-0.2 ppm) Std. Dev.  Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

         
All samples 279 (77960) 2.19 2.58 0.05 112.91 1.45 2.17 2.21 
         
Bus 72 (21114) 1.76 1.46 0.05 13.78 1.55 1.74 1.78 
Car 72 (18340) 4.36 3.35 0.05 52.32 4.04 4.31 4.41 
Train  24 (6579) 1.34 0.83 0.05 8.62 1.08 1.32 1.36 
Cycle off-road 48 (12110) 0.65 0.88 0.05 22.75 0.37 0.64 0.67 
Cycle on-road  63 (19817) 1.87 2.54 0.05 112.91 1.33 1.83 1.90 

 
Table 20 ANOVA results for combined CO modal exposure 

 
Variable  Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Windspeed *Fixed 1 9.73 74.81 6.20 1.56 0.214
Avg Temp  *Fixed 1 20.04 75.31 6.10 3.28 0.074
{2}Time of Day *Fixed 1 0.08 74.60 6.24 0.01 0.906
{3}Mode *Fixed 4 86.38 256.63 1.52 56.52 <0.001
{4}Wind Strength  Fixed 1 0.24 95.39 3.93 0.06 0.804
{5}Run Random 76 5.97 194.00 1.04 5.72 <0.001
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4.4.2 PM10, PM2.5 and PM1.0 
 

Results for combined PM exposure show PM2.5 (F3,196.32 =5.10, p=0.002) and PM1.0 

(F3,198.86 =3.01, p=0.031) differed significantly across modes (Table 22). PM1.0 was 

significantly affected by wind strength (p=0.039) for which there was a negative 

correlation. Median values for run means in wind conditions >2 m/s were 8.38 and 13.36 

when average wind speed was <2 m/s. Overall PM1.0 exposure for Auckland was 28% 

higher than Christchurch, while PM2.5 was virtually the same with a difference of only 

1.8%. The Christchurch bus commuter recorded the highest PM10 value of 1138.8 µg/m³, 

followed by the Auckland cyclist (803.8 µg/m³) which also had the highest PM2.5 peak of 

695.65 µg/m³ (Table 21). The Christchurch off-road cyclist was exposed to the highest 

PM1.0 recording of 312.3 µg/m³.  

 
Table 21 Summary statistics for combined PM modal exposure 

 
Mode of 
transport 

N Journeys 
(samples) 

Arithmetic 
Mean  (µg/m³) 

Std. 
Dev.  Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

         
32.26 27.22 4.00 1138.80 27.40 32.04 32.48
19.46 17.13 1.30 696.65 16.20 19.32 19.59All 

samples 

PM10 
PM2.5 
PM1.0 

208 (60407) 
12.16 11.62 0.30 312.30 8.80 12.07 12.25

         
38.85 34.05 4.80 1138.80 32.00 38.31 39.39
24.75 18.48 2.20 268.00 20.15 24.46 25.05Bus 

 

PM10 
PM2.5 
PM1.0 

64 (15416) 
16.02 13.50 0.80 122.99 12.00 15.81 16.23
24.69 15.20 4.00 151.20 20.30 24.42 24.96
17.14 13.19 1.60 144.40 13.30 16.91 17.38Car 

PM10 
PM2.5 
PM1.0 

41 (12002) 
12.65 13.05 0.80 141.80 8.74 12.41 12.88
37.45 31.41 4.30 573.50 31.20 36.90 38.01
17.94 16.63 1.30 505.40 15.40 17.65 18.24

Cycle 
Off-
Road 

PM10 
PM2.5 
PM1.0 

47 (12351) 
7.83 10.04 0.30 312.30 5.70 7.66 8.01

28.64 21.96 7.67 803.86 26.48 28.34 28.94
17.90 17.64 3.23 696.65 15.29 17.66 18.14

Cycle 
On-
Road 

PM10 
PM2.5 
PM1.0 

56 (20638) 
11.58 8.77 1.86 98.62 8.55 11.46 11.70
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Table 22 ANOVA results for combined PM modal exposure 

 
PM10 

Variable Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 1175.49 71.96 577.85 2.03 0.158 
Avg Temp  *Fixed 1 78.38 71.64 581.11 0.13 0.715 
{1}Time of Day *Fixed 1 3587.95 69.20 607.92 5.90 0.018 
{2}Mode *Fixed 3 571.15 198.60 216.95 2.63 0.051 
{3}Wind Strength Fixed 1 1155.23 103.17 400.72 2.88 0.093 
{4}Run   Random 74 558.22 125.00 163.17 3.42 <0.001 

PM2.5 
Avg Wind Speed *Fixed 1 433.62 71.36 252.52 1.72 0.194 
Avg Temp  *Fixed 1 132.71 71.25 253.00 0.52 0.471 
{1}Time of Day *Fixed 1 1458.89 68.84 263.74 5.53 0.022 
{2}Mode *Fixed 3 501.75 196.32 98.42 5.10 0.002 
{3}Wind Strength Fixed 1 436.43 103.82 176.75 2.47 0.119 
{4}Run   Random 74 242.23 123.00 74.82 3.24 <0.001 

PM1.0 
Avg Wind Speed *Fixed 1 292.76 72.04 126.11 2.32 0.132 
Avg Temp  *Fixed 1 860.78 71.73 126.84 6.79 0.011 
{1}Time of Day *Fixed 1 481.94 69.38 132.77 3.63 0.061 
{2}Mode *Fixed 3 138.90 198.86 46.15 3.01 0.031 
{3}Wind Strength Fixed 1 381.73 102.06 86.87 4.39 0.039 
{4}Run   Random 74 121.76 125.00 34.23 3.56 <0.001 
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4.5 Comparisons to previous studies  
 
This section presents simplified versions of the comparative tables presented in the 

literature review chapter. Results from the current study are presented with results of the 

most comparative previous studies, primarily based on similar ventilation and sampling 

settings where possible.  

 

4.5.1 Carbon monoxide 
 
 

Table 23 Inter-modal CO results compared to previous studies 
 

Author Location Mode  Sampling setting Mean (ppm) Ratio (car:alternative 
mode) 

Bevan et al. (1991) Southampton, 
UK 

Bicycle Suburban commute 
Urban commercial  
Parkland 

10.5 
4.5 
0.8 

 

Chan et al. (1991) Raleigh, NC, 
USA 

Car  Interstate beltway 
Rural 

11 
     4 

 

Clifford et al. 
(1997) 

Nottingham, 
UK 

Van (morning) 
Van (afternoon)  

Key commuting 
routes  

4.8 
4.9  

 

Rodes et al. (1998)  Sacramento, 
CA, USA  
Los Angeles, 
CA, USA   

Car 
 
Car 

Freeway commute 
 
Freeway commute 

2.0, 3.5 
2.2, 2.7 
4.3, 4.5 
4.9, 5.3 

 

Alm et al. (1999) Kuopia, 
Finland  

Car (morning) 
Car (afternoon) 

Small urban town  5.7 
3.1 

 

Kaur et al. (2005a) London, UK Car 
Taxi 
Bus 
Bicycle 
Walk  

Urban centre 
 

1.3 
1.1 
0.8 
1.1 
0.9 

- 
1.18 
1.63 
1.18 
1.44 

Wöhrnschimmel et 
al. (2008) 

Mexico City, 
Mexico  

Car 
Bus 
Minibus 
Metrobus (BRT) 

Urban 
 

16.3 
11.5 
7.8 

20.3 

- 
1.42 
2.09 
0.80 

Kaur & 
Nieuwenhuijsen 
(2009) 

London, UK Car 
Taxi 
Bus 
Bicycle 
Walk 

Urban centre 
 

1.3 
1.2 
0.8 
0.9 
0.7 

- 
1.08 
1.63 
1.45 
1.86 

Current study Christchurch, 
NZ 
 
 
Auckland, 
NZ 
 
 

Car 
Bus 
Bicycle (on-road) 
Bicycle (off-road) 
Car 
Bus 
Train 
Bicycle 

Urban commute 2.87 
1.10 
1.12 
0.65 
5.74 
2.51 
1.34 
2.51 

- 
2.61 
2.57 
4.42 

- 
2.29 
4.28 
2.29 
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For the car mode, absolute results for Christchurch were most comparable to those found 

by Rodes et al. (1998) in Sacramento along a freeway (Table 23). Similarly, their results 

for Los Angeles are very close to those found in Auckland. The mean for Auckland (5.7 

ppm) was also exactly the same as the mean observed for a small urban Finnish town 

during morning sampling (Alm et al. 1999). Both of these studies sampled with windows 

closed, vents set to 2.  

 

Much of the research including a bus mode has been conducted in very large urban 

centres such as Mexico and Taipei, making results less comparable. However, results 

from London are very similar to those for Christchurch for both the bus and on-road 

cyclist (Kaur et al. 2005). The off-road cyclist result agreed with that found for parkland 

in Southampton, UK (Bevan et al. 1991). Cyclist results are discussed in greater detail in 

Chapter 5.  

 

No comparable study exists for the train mode as most large urban centres around the 

world have electrified rail systems, where exposure is generally lower than all other 

modes.  

 

When comparing ratios, the ratios for car:bus and car:bicycle for the current study were 

almost double those found in other cities. The closest found was car:minibus in Mexico 

city (Wöhrnschimmel et al. (2008)   
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4.5.2 PM10, PM2.5 and PM1.0 

 
Comparative results for PM10 are presented in Table 24. Auckland results were omitted as 

they were non-significant and most likely erroneous.  

 
Table 24 Inter-modal PM10 results compared to previous studies 

 
Author Location Mode  Sampling setting Mean (µg/m³) Ratio (car:alternative 

mode) 
Lewné et al. (2006) Stockholm, 

Sweden 
Taxi 
Bus 
Truck  

Urban/rural  26 
44 
57 

- 
0.59 
0.46 

Gulliver & Briggs 
(2007) 

Leicester, 
UK 

Car 
Walk  

Urban arterials and 
residential zones 

18.2 
19.1 

- 
0.95 

Briggs et al. (2008) Northampton, 
UK  

Car  
Walk  

Urban 
 

 5.87 
27.56 

- 
0.21 

Thai et al. (2008) Vancouver, 
BC, Canada 

Bicycle Urban commercial, 
residential, industrial 
and parkland  

21.6-74.8  

Berghmans et al. 
(2009) 

Mol, 
Flanders, 
Belgium  

Bicycle Small urban 
centre/residential  
Cycle track  

62.4 
 

54.3 

 

Nasir & Colbeck 
(2009) 

Colchester, 
UK 

Car (morning) 
Car (evening)  

Suburban/rural 
Suburban/rural 

22 
21 

 

Current study Christchurch, 
NZ 
 

Car 
Bus 
Bicycle (on-road) 
Bicycle (off-road) 

Urban commute 27 
45.8 
35.1 
37.5 

- 
0.59 
0.77 
0.72 

 
Results from the current study are in agreement with previous research in that the car 

mode is ranked the least exposed. This is due to the origins of PM10 being mostly 

background sources and heavy diesel vehicles, which are particularly prone to self-

pollution. Active modes are more influenced by background concentrations, whereas cars 

are primarily affected by CO and other emissions generated in front of them.  

 

Mean results for Christchurch were very similar to those for Stockholm, giving the same 

ratio of 0.59 for car:bus (Lewné et al. 2006). For active-mode transport, mean cyclist 

results fell within the range reported by Thai et al. (2008) across a variety of urban 

settings in Vancouver, while those for small Belgian town ~11 times smaller than 

Christchurch (population), were far higher (Berghmans et al. 2009). The on-road cyclist 

result was greater than car by a factor of 1.3, whereas Briggs et al. (2008) found 

pedestrian exposure to be greater by a factor of 4.7. The reason given for such a 
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difference is that the fanned ventilation system filters out particles, creating an 

independent microenvironment inside the vehicle cabin.  Additionally, greater travel time 

for the pedestrian further increased exposure.  

 

For Christchurch car PM2.5 exposure (14 µg/m3), results were again comparable to those 

of Rodes et al. (1998) in Sacramento (11.3, 11 µg/m3) and exactly the same as found in 

Utrecht, Netherlands (den Breejen 2006). Auckland results were slightly higher and 

comparable to those for New York (Morabia et al. 2009). As for ratios, car:cyclist were 

very close to those for car:walk in Leceister, Northampton and New York (Table 25). The 

car:cyclist ratios were comparable to those found in London and across numerous cities 

in the Netherlands. Overall, it could be stated that cyclists are slightly less exposed. There 

were no comparable findings for the bus mode.  



 

 87

 

Table 25 Inter-modal PM2.5 results compared to previous studies 
 

Author Location Mode  Sampling setting Mean (µg/m³) Ratio (car:alternative 
mode) 

Rodes et al  
(1998) 

Sacramento, CA 
Los Angeles, CA, USA  

Car 
 
Car  

Freeway commute 
 
Freeway commute 

11.3, 11.0 
 

47.2, 37.4 

 

den Breejen 
(2006) 

Utrecht, Netherlands  Car Urban  14  

Gulliver & 
Briggs (2007) 

Leicester, UK Car 
Walk  

Urban arterials and 
residential zones 

8.3 
10.9 

- 
0.76 

Briggs et al. 
(2008) 

Northampton, UK  Car  
Walk  

Urban 
 

3.01 
6.59 

- 
0.46 

Thai et al. 
(2008) 

Vancouver, BC, Canada Bicycle Urban commercial, 
residential, industrial 
and parkland  

7.3-33.6  

Morabia et al. 
(2009)  

New York, NY, USA  Car 
Walk  

Urban centre 18 
23.9  

- 
0.75 

Berghmans et al. 
(2009) 

Mol, Flanders, Belgium  Bicycle Small urban 
centre/residential  
Cycle track  

38.8 
 

31.7 

 

Nasir & Colbeck 
(2009) 

Colchester, UK Car (morning) 
Car (evening)  

Suburban/rural 
Suburban/rural 

9 
8 

 

Kaur & 
Nieuwenhuijsen 
(2009) 

London, UK Car 
Taxi 
Bus 
Bicycle 
Walk 

Urban centre 
 

33.4 
43.4 
33.1 
33.8 
27.1 

- 
0.77 
1.01 
0.99 
1.23 

Boogaard et al. 
(2009) 

Apeldoorn, Netherlands 
 
Delft 
 
Den Bosch 
 
The Hague 
 
Eindhoven 
 
Groningen 
 
Haarlem 
 
Maastricht 
 
Nijmegen 
 
Utrecht 
 
Zwolle 
 
Combined total 

Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle  

Unspecified  14 
11 
33 
26 
95 
99 
15 
6 

34 
39 
20 
13 
36 
29 
31 
20 
93 
95 

122 
112 
45 
44 

49.4 
44.5 

- 
1.27 

- 
1.27 

- 
0.96 

- 
2.5 

- 
0.87 

- 
1.54 

- 
1.24 

- 
1.55 

- 
0.98 

- 
1.09 

- 
1.02 

- 
1.11 

Current study Christchurch, NZ 
 
 
 
Auckland, NZ 

Car 
Bus 
Bicycle (on-road) 
Bicycle (off-road) 
Car 
Bus 
Bicycle 

Urban commute 14 
23.6 

19 
17.9 
18.7 
24.6 
16.5 

- 
0.59 
0.74 
0.78 

- 
0.76 
1.13 
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Mean results for car PM1.0 in Christchurch were closest to those in Colchester, UK, while 

mean results for Auckland were almost as high as in Taipei, Taiwan (Table 26). Ratios 

for car:cycle (on-road) in Christchurch were comparable to car:walk in Leicester and 

New York, yet car exposure was 28% higher than cyclist in Auckland.  A relative lack of 

PM1.0 literature on inter-modal journey exposure makes comparison with other cities 

difficult.  

 

Table 26 Inter-modal PM1.0 results compared to previous studies 
 

Author Location Mode  Sampling setting Mean (µg/m³) Ratio (car:alternative 
mode) 

Gulliver & 
Briggs (2007) 

Leicester, UK Car 
Walk  

Urban arterials and 
residential zones 

2.9 
4.8 

- 
0.60 

Briggs et al. 
(2008) 

Northampton, UK  Car  
Walk  

Urban 
 

1.82 
3.37 

- 
0.54 

Tsai et al. 
(2008) 

Taipei, Taiwan Car 
Bus 

Urban   16.2 
31.3 

- 
0.52 

Morabia et al. 
(2009)  

New York, NY, USA  Car 
Walk  

Urban centre 18 
23.9  

- 
0.75 

Berghmans et al. 
(2009) 

Mol, Flanders, Belgium  Bicycle Small urban 
centre/residential  
Cycle track  

37.4 
 

29.8 

 

Nasir & Colbeck 
(2009) 

Colchester, UK Car (morning) 
Car (evening)  

Suburban/rural 
Suburban/rural 

6 
5 

 

Current study Christchurch, NZ 
 
 
 
Auckland, NZ 

Car 
Bus 
Bicycle (on-road) 
Bicycle (off-road) 
Car 
Bus 
Bicycle 

Urban commute 8.4 
13.7 
11.4 
7.8 

14.7 
18.9 

10..6 

- 
0.61 
0.74 
1.08 

- 
0.77 
1.39 

 

4.5.3 Ultrafine particles 
 
For the car mode, mean UFP results were greatly in excess of those found in Boston, 

Northampton and Montréal, yet lower than in London (Table 27). Findings are generally 

far higher for car than for bus and active modes (Boogaard et al. 2009; Kaur & 

Nieuwenhuijsen 2009; Weichenthal et al. 2008). Ratios for car:bus and car:bicycle (on-

road) are in agreement with Kaur & Nieuwenhuijsens’ (2009) findings for London.  
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Table 27 Inter-modal UFP results compared to previous studies 
 

Author Location Mode  Sampling setting Mean (µg/m³) Ratio (car:alternative 
mode) 

Hill & Gooch 
(2007) 

Boston, MA, USA Car 
Bus 
Walk  

Urban 28981 
83227 
30273 

- 
0.35 
0.96 

Briggs et al. 
(2008) 

Northampton, UK  Car  
Walk  

Urban 
 

21639 
30334 

- 
0.71 

Thai et al. 
(2008) 

Vancouver, BC, Canada Bicycle Urban commercial, 
residential, industrial 
and parkland  

18830-57692  

Weichenthal et 
al. (2008) 

Montréal, Canada  Car (morning) 
Car (evening) 
Bus (morning) 
Bus (evening) 
Walk (morning) 
Walk (evening) 

Urban highway and 
busy roadway 
 
 
Two-lane roadway 

38348 
31489 
28029 
22626 
25161 
15778 

- 
- 

1.37 
1.39 
1.52 
1.99 

Berghmans et al. 
(2009) 

Mol, Flanders, Belgium  Bicycle Small urban 
centre/residential  
Cycle track  

21226 
 

21626 

 

Kaur & 
Nieuwenhuijsen 
(2009) 

London, UK Car 
Taxi 
Bus 
Bicycle 
Walk 

Urban centre 
 

101770 
91947 

100018 
77621 
63065 

- 
1.11 
1.02 
1.31 
1.61 

Boogaard et al. 
(2009) 

Apeldoorn, Netherlands 
 
Delft 
 
Den Bosch 
 
The Hague 
 
Eindhoven 
 
Groningen 
 
Haarlem 
 
Maastricht 
 
Nijmegen 
 
Utrecht 
 
Zwolle 
 
Combined total 

Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle 
Car 
Bicycle  

Unspecified  20796 
17070 
24460 
27998 
23012 
21191 
15430 
15697 
23461 
28141 
22234 
21326 
34739 
30363 
35538 
28220 
24064 
20244 
29722 
27246 
23583 
31354 
25545 
24329 

- 
1.22 

- 
0.87 

- 
1.09 

- 
0.98 

- 
0.83 

- 
1.04 

- 
1.14 

- 
1.25 

- 
1.19 

- 
1.09 

- 
0.75 

- 
1.05 

Current study Christchurch, NZ Car 
Bus 
Bicycle (on-road) 
Bicycle (off-road) 

Urban commute 77654 
76481 
49842 
23541 

- 
1.02 
1.56 
3.30 
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4.6 Summary 
 
 

The results of the current study place the car mode as the most exposed for CO and UFPs 

but the least exposed for PM, with the exception of PM2.5 and PM1.0 in Auckland, where 

the on-road cyclist was least exposed. CO levels were comparatively quite high, with 

car:bus and car:cyclist ratios in Christchurch and Auckland around double those observed 

in London (Kaur et al. 2005a; Kaur & Nieuwenhuijsen 2009). Particulate findings were 

generally consistent with previous research. Briggs et al. (2008) suggest that while car 

filtration systems effectively prevent the ingress of course particles, finer particles are 

able to penetrate and accumulate. Secondly, the number of intense exposure peaks (heavy 

vehicles, construction activity, passing smokers) has been known to significantly 

influence overall exposure for pedestrians and cyclists (Briggs et al. 2008; Kaur et al. 

2006). Vehicles, acting as independent ‘indoor’ microenvironments, are far less affected 

by these events; due to the less penetrable environment and/or the ability to move more 

quickly through high exposure situations. This may explain the heightened car:cyclist 

PM2.5 and PM1.0 exposure in Auckland. The car was constantly queued behind buses 

and other traffic while the cyclist was able to quickly move to the front of queues and 

always finish the study route first. In Christchurch, congestion was much less of an issue 

and the on-road cyclist and car generally completed routes simultaneously. UFP results 

also support previous findings, with car being higher than bus and active modes 

(Boogaard et al. 2009; Kaur & Nieuwenhuijsen 2009; Weichenthal et al. 2008). However, 

some research comparing car to pedestrians, found opposing results (Hill & Gooch 2007, 

Briggs et al. 2008). The differences in findings between Kaur & Nieuwenhuijsen (2009) 

and Briggs et al. (2008) are difficult to explain given the same vehicle configuration was 

used and sampling methodology was similar, taking place in and around major urban 

centres.  



 

 91

Chapter Five: Cyclist results   
 

5.1 Introduction  
 
This chapter presents and discusses all results recorded by the cyclists in Christchurch 

and Auckland. The first section explores the implications of taking either the more direct 

route on-road or a longer, off-road route consisting of cycle ways and parkland. Results 

are discussed in terms of spatial variability/uniformity observed and the effect of 

meteorological variables. Inferences about spatial variation were made by adding 

comparative data to transparent area charts for at least eight runs. Two charts for each 

pollutant are included to illustrate observed trends. Note that due to instrument failure 

and data loss, a mixture of examples are given from different days and are not always 

inter-comparable. The second part looks at any changes in pollutant concentrations at the 

microscale level. The influence of traffic proximity is considered using mean exposure 

data and frequency distributions where significant differences are found. Further 

consideration is given to wind influence, where relative position in relation to wind 

direction is addressed. The final sections consider the results in light of any comparable 

literature. 
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5.2 Christchurch: Effect of route choice  
 

Table 28 compares cyclist summary results. Overall, the off-road cyclist was exposed to 

lower concentrations of all pollutants apart from PM10. The largest decreases found were 

for UFPs, CO and PM1.0, where there was a 53, 42 and 31% reduction, respectively. 

PM2.5
 dropped by 6% while PM10

 increased by 7%.  

 
Table 28 Summary cyclist results 

 

Mode Pollutant N Journeys (samples) Mean Std. Dev. Min Max Median 
-95% 

Cnf.Lmt 
+95% 

Cnf.Lmt 
CO 48 (12110) 0.65 0.88 0.05 22.75 0.37 0.64 0.67 

37.45 31.41 4.30 573.50 31.20 36.90 38.01 
17.94 16.63 1.30 505.40 15.40 17.65 18.24 

PM10 
PM2.5 
PM1.0 

47 (12351) 
7.83 10.04 0.30 312.30 5.70 7.66 8.01 

Cycle 
Off-
Road 

UFP 33 (8753) 23541.97 37176.55 23.33 741751.67 11115 22763.04 24320.90
CO 39 (9161) 1.12 1.58 0.05 25.90 0.49 1.08 1.15 

35.12 14.47 9.01 117.52 31.92 34.81 35.44 
18.99 8.61 4.98 77.55 16.43 18.80 19.17 

PM10 
PM2.5 
PM1.0 

34 (7984) 
11.38 8.14 1.86 73.13 8.45 11.20 11.56 

Cycle 
On-
Road 

UFP 38 (8545) 49842.85 71568.47 85 1304048 25516.67 48325.19 51360.51
  

 

The off-road cyclist recorded the lowest minimum values for all pollutants, but also had 

the highest particulate values in excess of 18 times the standard deviation. This can be put 

down to a single event on the morning of March 10 during which the cyclist passed an 

old idling diesel school bus while traveling down a suburban backstreet. The peak event 

lasted for approximately one minute, indicating that the vehicle had been idling for some 

time, emitting a plume of pollutants that the rider slowly passed through. Wind 

conditions were weak at only 1.3 m/s and no other vehicles were present. Although the 

on-road cyclist would have also passed idling diesel vehicles at traffic lights, it is likely 

that this bus was running particularly poorly, with concentrations elevated by greater 

idling time. A higher mean PM10
 value can be explained by a greater susceptibility to 

background influences from home heating and industrial sources, whereas the on-road 

cyclist is primarily affected by traffic emissions. The same can be said for PM2.5 which 

mainly originates from home heating. Conversely, the majority of PM1.0 emerges from 
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vehicular fuel combustion and gas-to-particle conversion, accounting for the substantial 

difference in exposure (Phalen 2002). The off-road cyclist rode past several factories in a 

small industrial area near the start of the route and with the exception of the parkland 

section, the remainder was residential zoning. Results from the 2006 Christchurch 

inventory of emissions to air show that motor vehicles and industry are comparatively 

small contributors to PM10 (11%, 13%) and PM2.5 (9%, 8%), with the balance made up of 

domestic heating (Smithson 2009). Although levels drop over summer, relatively cool 

temperatures and poorly insulated housing necessitate heating during most months of the 

year. Throughout the sampling period, average morning temperatures ranged from 8.1 - 

18.6ºC and smoke from residential chimneys was occasionally noted by volunteers.  
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5.2.1 Carbon monoxide  
 
Figure 13 displays mean CO concentrations for all comparable runs. Exposure varies 

greatly, highlighting the dependence on traffic fumes and the influence of meteorological 

conditions. For example, on the low exposure days where mean exposure for both modes 

was only a fraction of 1 ppm, average wind speed was 4.16 m/s and higher.   

Figure 13 Cyclists’ comparative mean CO exposure by journey 
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For the first three runs displayed in Figure 13, mean exposure is more than double for the 

off-road cyclist, indicating the occurrence of extreme peak episodes. These events also 

caused higher mean exposure for ultrafine particles during the same runs, shown in 

Figure 33. CO and UFP concentrations are generally found to be highly correlated e.g. 

r = 0.7 (Kaur et al. 2005). Locating peak events for the off-road cyclist in GRC Media 

Mapper showed that whenever the cyclist emerged from a heavily vegetated area in 

Hagley Park onto a roadway crossing, both CO and UFP levels skyrocketed. Average 

temperatures were lower during these two days (15.8, 14.3ºC) were lower than all other 

sampling days, making temperature a key predictor of concentration, along with traffic 

density. Average wind speed was also relatively high, at 3.2 and 3.8 m/s for 26 February 

and 4 March, respectively. It is likely that the low temperatures made for higher 

concentrations which remained more stagnant at the fringe of highly vegetated sheltered 

areas. While most vegetated areas act as pollutant sinks, they have also been shown to 

reduce airflow and cause stagnancy, significantly elevating concentrations; “the special 

structure of vegetation reduces near-surface air exchange, leading to an increase in 

atmospheric particle concentration and thus deterioration in the pollution situation near to 

emission sources” (Litschke & Kuttler 2008, p. 232). The abovementioned conditions, 

coupled with crossing wait times of around 3-4 minutes, led to higher mean exposure for 

the off-road cyclist.  

 

Figure 14 and Figure 16 illustrate comparative CO concentrations by geographic location, 

during a morning commute from Redwood to Christchurch city centre and then to 

Canterbury University, on 12th March 2009. Overall, exposure for the off-road cyclist 

was extremely low, rising only when coming into contact with traffic at intersections and 

crossings. On-road was highest when cycling alongside queued traffic and waiting at 

traffic lights. Exposure peaked at queues situated within street canyons, most evident in 

the southwest corner of Figure 16, where the cyclist faces a very long queue and 

concentrations reach 25.9 ppm. These figures represent typical colour-coded 

concentration comparisons between the two cyclists, with the exception of the first three 

runs. Note that due to volunteer error, the on-road cyclist route differs slightly for this 

particular run but was not considered to make much of a difference to the mean, if any.   
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Figure 14 Cyclists’ real-time comparative CO exposure by GPS co-ordinates: 
Redwood to Christchurch city centre, 7:40 – 8:20 am,12 March 2009 
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Figure 15 and Figure 17 illustrate the general pattern of exposure for the same two 

journeys. CO spatial distribution between the two cyclists was found to be heterogeneous, 

which is consistent with literature outlining the limited spatial extent of CO (Zhou & 

Levy 2007). Exposure was very low for the cyclist traveling away from traffic, often only 

just above zero, with mean concentrations only exceeding 1 ppm three times.  

 

 
Figure 15 Cyclists’ real-time comparative CO exposure showing a heterogeneous 

spatial distribution: Redwood to Christchurch city centre, 7:40 – 8:20 am, 12 March 
2009 
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Figure 16 Cyclists’ real-time comparative CO exposure by GPS co-ordinates: 

Christchurch city centre to Canterbury University, 8:30 – 9:00 am, 12 March 2009 
 

Figure 17 Cyclists’ real-time comparative CO exposure showing a heterogeneous 
spatial distribution: Christchurch city centre to Canterbury University, 8:30 – 9:00 

am, 12 March 2009 
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5.2.2 PM10  
 

Mean exposure for PM10 shows a clear pattern of spatial uniformity across the distance 

between the two cyclists, which, at certain points, was as wide as 3.3 km for Journey 1 

and 0.6 km for Journey 2. While on-road exposure was occasionally higher, for the most 

part, exposure was relatively even or slightly higher for the off-road cyclist, indicating 

increased susceptibility to non-traffic sources (Figure 18). This resulted in an overall 

mean disparity of 6%, with the off-road cyclist being more exposed.  

 

Conclusions on spatial homogeneity for coarse particles across large metropolitan centres 

are mixed, with many earlier studies finding high correlation between fixed sites (Burton 

et al. 1996; Martuzevicius et al. 2004). More recent research has shown that high 

correlation is not always indicative of homogeneity and that coefficients of divergence 

provide a more accurate measure. A study in Iowa City utilising 33 sites, found 

distribution for PM10–2.5 to be heterogeneous, with maximum coefficients of divergence 

ranging from 0.21 – 0.36 (Ott et al. 2008). The average distance between sites was only 

4.4 km and results closely matched those of mobile sampling. Concentration mapping 

corresponded well with known sources, including quarries, large constructions sites and 

industrial areas. The differences in findings for spatial variability between studies 

highlight the importance of considering local sources and utilising appropriate statistical 

methods. Traditionally, the greatest source affecting Christchurch concentrations has 

been home heating. While emissions from home heating are declining, recent research 

across 11 Christchurch sites found PM10 to be substantially spatially variable (Wilson et 

al. 2006).  

 

While no analysis was done between the two mobile datasets and fixed site data, basic 

comparisons between the two cyclist routes found PM10 and PM2.5 to be extremely 

spatially uniform (Figures 20, 22, 25 & 27). Although such evidence is by no means 

reflective of city-wide uniformity, it does pose interesting questions for small-scale 

variability. Large particles (greater than 5 µg m³) from ambient sources are said to settle 

within a few kilometres (Phalen 2002), while traffic-generated PM settles within 400 m 
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(Zhou & Levy 2007). The slightly elevated exposure experienced by the off-road cyclist 

is likely to reflect a complex mixture of ambient and mobile-source emissions, whereas 

on-road cyclist exposure is more dependant on fluctuations within immediate traffic 

sources.    

 

Figure 18 Cyclists’ comparative mean PM10 exposure by journey 
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Figure 19 Cyclists’ real-time comparative PM10 exposure by GPS co-ordinates: 

Redwood to Christchurch city centre, 7:40 – 8:20 am, 19 March 2009 
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Figure 20 Cyclists’ real-time comparative PM10 exposure showing relative spatial 
uniformity: Redwood to Christchurch city centre, 7:40 – 8:20 am, 19 March 2009 

 
 

Figure 20 and Figure 22 show an almost perfect relationship, keeping in mind that the on-

road cyclist was usually ahead by 2-5 minutes due to the shorter route. Figure 19 and 

Figure 21 show an obvious influence of heavy diesel vehicles on-road where peak 

exposure occurs, while the off-road tracks also represent very high concentrations in 

areas with no vehicles present, such as the middle of Hagley Park.  
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Figure 21 Cyclists’ real-time comparative PM10 exposure by GPS co-ordinates: 
Christchurch city centre to Canterbury University, 8:30 – 9:00 am, 19 March 2009 

 

 
Figure 22 Cyclists’ real-time comparative PM10 exposure showing relative spatial 
uniformity: Christchurch city centre to Canterbury University, 8:30 – 9:00 am, 12 

March 2009 
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5.2.3 PM2.5  
 
As with PM10, PM2.5 also shows very close uniformity, with notably higher means for the 

off-road cyclist during some runs (Figure 23). As the dominant sources of PM2.5 in 

Christchurch are home heating and industry (to a far lesser extent), the 6% difference in 

overall mean exposure is presumptively due to the same reasons given for PM10. Again, 

spatial patterns are profoundly uniform (Figure 25 and Figure 27) and high 

concentrations are observed off-road, with no vehicles present (Figure 24 and Figure 26). 

These findings are in strong agreement with spatial homogeneity observed across a 

similar small-scale mobile study for cyclists in Vancouver (Thai et al. 2008).  

 
 

 
Figure 23 Cyclists’ comparative mean PM2.5 exposure by journey 
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Figure 24 Cyclists’ real-time comparative PM2.5 exposure by GPS co-ordinates: 

Redwood to Christchurch city centre, 7:40 – 8:20 am, 19 March 2009 
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Figure 25 Cyclists’ real-time comparative PM2.5 exposure showing relative spatial 
uniformity: Redwood to Christchurch city centre, 7:40 – 8:20 am, 19 March 2009 

 

Figure 26 Cyclists’ real-time comparative PM25 exposure by GPS co-ordinates: 
Christchurch city centre to Canterbury University, 8:30 – 9:00 am, 19 March 2009 
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Figure 27 Cyclists’ real-time comparative PM2.5 exposure showing relative spatial 
uniformity: Christchurch city centre to Canterbury University, 8:30 – 9:00 am, 12 

March 2009 
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5.2.4 PM1.0 

 
As for CO, a significant reduction in overall mean exposure (31%) was observed for the 

off-road cyclist due to the reliance on traffic emissions as the primary source. However, 

in contrast to CO, spatial distribution appeared to be highly uniform. This is reflected in 

pollutant traces for numerous days (see Figure 30 and Figure 32 for an example), as well 

as in comparative mean exposure by journey (Figure 28). Uniformity is also visible in 

pollutant concentration mapping, with high off-road exposure observed in residential 

backstreet areas, similar to on-road levels (Figure 29 and Figure 31). The only differences 

causing such a large overall disparity was the occurrence of peak exposure points for the 

on-road cyclist (queued traffic, street canyons) and minimum exposure areas experienced 

by the off-road cyclist (parkland sections). On-road exposure was higher for all days with 

the exception of the afternoon runs for the 18th of March.   

 

This observed lack of spatial variation was also found in Mol, Belgium, where bicycle 

measurements along a 17 kilometre route traversing a variety of land uses rendered little 

variation (Berghmans et al. 2009). Exposure peaks only occurred when coming into 

contact with heavy traffic, reflecting the impact of traffic proximity and the long 

atmospheric residency of fine particles. Such uniformity is attributable to the lightweight, 

non-reactive characteristics of PM1.0 and associated slow settling time (Phalen 2002).   
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Figure 28 Cyclists’ comparative mean PM1.0 exposure by journey 
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Figure 29 Cyclists’ real-time comparative PM1.0 exposure by GPS co-ordinates: 
Redwood to Christchurch city centre, 7:40 – 8:20 am, 19 March 2009 
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Figure 30 Cyclists’ real-time comparative PM1.0 exposure showing relative spatial 
uniformity: Redwood to Christchurch city centre, 7:40 – 8:20 am, 19 March 2009 
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Figure 31 Cyclists’ real-time comparative PM1.0 exposure by GPS co-ordinates: 

Christchurch city centre to Canterbury University, 8:30 – 9:00 am, 19 March 2009 
 

Figure 32 Cyclists’ real-time comparative PM1.0 exposure showing relative spatial uniformity: 
Christchurch city centre to Canterbury University, 8:30 – 9:00 am, 12 March 2009 
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5.2.5 Ultrafine particles  
 
Journey mean exposure for the on-road cyclist was often in excess of off-road exposure 

by a factor of 3 or more, giving a disparity of 53% between means (Figure 33). Exposure 

was always lowest off-road, with the exception of the first three sampling runs discussed 

in section 5.2.1. A significant negative relationship was found for UFPs and temperature, 

explained by accelerated coagulation and condensation at higher temperatures (Vinzents 

et al. 2005). Comparisons between ultrafine particle exposure showed no spatial 

agreement (Figure 35 and Figure 37). Significant temporal variation is also evident from 

these figures when looking at high exposure events. While all extreme peak events are 

very rapid, usually lasting only several seconds or more, the fluctuations are generally 

more gradual for the on-road cyclist. Levels can stay elevated for several minutes, 

sustained by the constant presence of fresh emissions when in high traffic situations. The 

influence of traffic is clearly visible in Figure 34 and Figure 36. When not in the vicinity 

of running vehicles, UFP levels are virtually zero. This is reflected in the minimum 

values for both the on-road (23 pt/cm3) and off-road cyclists (85 pt/cm3). Concentration 

mapping only shows elevated levels when in very close proximity to traffic, with the 

exception of riding along a gravel path section in Hagley Park and along the riverside 

(the orange and red sector just before arriving at point B, southeast corner, Figure 34).  
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Figure 33 Cyclists’ comparative mean UFP exposure by journey 
 
 
The observed spatial heterogeneity of UFPs is consistent with findings of previous recent 

cyclist sampling campaigns (Berghmans et al. 2009; Kaur & Nieuwenhuijsen 2009; Thai 

et al. 2008). A meta-analysis of mobile source dispersion modeling studies concluded that 

the spatial extent of UFPs is limited to 100-300 metres (Zhou & Levy 2007). However, a 

large portion of UFPs are lost within seconds of being emitted due to coagulation into 

larger particles. This process is known as the transition between the transient nuclei mode 

(formed by condensation and nucleation) and the accumulation mode, when vapours 

condense onto existing particles (Phalen 2002).  Secondly, a complex interplay between 

influential variables effects actual distance traveled. Under many circumstances it is 

likely most particles not lost to coagulation travel far less than 100 metres. The 

atmospheric behaviour of ultrafine particles is further discussed in section 5.3.3. 
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Figure 34 Cyclists’ real-time comparative UFP exposure by GPS co-ordinates: 
Canterbury University to Christchurch city centre, 4:45 – 5:05 pm, 17 March 2009 

 

Figure 35 Cyclists’ real-time comparative UFP exposure: Canterbury University to 
Christchurch city centre, 4:45 – 5:05 pm, 17 March 2009 
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Figure 36 Cyclists’ real-time comparative UFP exposure by GPS co-ordinates: 
Christchurch city centre to Redwood, 5:25 – 6:00 pm, 17 March 2009 
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Figure 37 Cyclists’ real-time comparative UFP exposure: Christchurch city centre 
to Redwood, 5:25 – 6:00 pm, 17 March 2009 
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5.3 Christchurch: Effect of proximity to traffic  

 

5.3.1 Carbon monoxide 
 

A substantial decrease with distance from traffic was observed for CO. The off-road 

cyclist had lower exposure than the one on the sidewalk and on the road, with a 

difference of 41% and 54%, respectively. Mean exposure for the cyclist riding along the 

pavement was 22% lower than the cyclist on the road (Table 29). Reduced exposure was 

significant across cyclist position in relation to traffic (F2,449.12=82.27, p<0.001). Table 30 

presents full ANOVA results.  

 

Average temperature (p<0.001) and wind speed (p=0.001) were negatively correlated 

with CO. This mirrors findings in previous research (Kaur & Nieuwenhuijsen 2009). The 

Wind Strength fixed factor was also significant (p=0.002), with a higher median value 

for leg means and a greater number of extreme outliers under low wind speed conditions 

(Figure 38). The position of cyclist relative to wind direction and traffic did not render a 

significant relationship. This may be due to the majority of cyclist sampling being 

conducted during low wind speed periods (<2 m/s), when wind direction is quite variable.   

 
 

Table 29 Summary statistics for cyclist CO exposure in Christchurch 
 

Mode of 
transport 

N Legs 
(samples) 

Mean 
(+/-0.2 ppm) Std. Dev.  Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

      
All samples  459 (9325) 0.89 0.73 0.05 12.8 0.69 0.87 0.90 
         
Cycle on-road 153 (3106) 1.19 0.75 0.05 12.8 1.00 1.16 1.22 
Cycle footpath 153 (3101) 0.93 0.79 0.05 7.14 0.74 0.90 0.96
Cycle off-road  153 (3114) 0.55 0.45 0.05 3.66 .42 0.53 0.56
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Table 30 ANOVA results for cyclist CO exposure in Christchurch 
 

Variable Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 3.61 129.16 0.34 10.69 0.001
Avg Temp  *Fixed 1 4.36 129.26 0.34 12.89 <0.001
{1}Direction *Fixed 2 0.01 55.00 0.46 0.03 0.970
{2}Mode *Fixed 2 19.93 449.12 0.24 82.27 <0.001
{3}Wind Strength  *Fixed 1 4.72 57.88 0.45 10.46 0.002
{4}Wind Influence  Fixed 1 0.40 170.31 0.32 1.28 0.259
{5}Leg Random 23 1.02 427.00 0.23 4.34 <0.001

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 38 Mean CO exposure values grouped by Wind Strength 
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5.3.2 PM10, PM2.5 and PM1.0 
 
The off-road cyclist was exposed to 26% and 32% less PM1.0 than the footpath and on-

road cyclist (Table 31). While the on-road to off-road reduction for PM2.5 and PM10 was 

relatively high (21%, 16%), the drop-off in concentrations was much lower from the 

footpath to the off-road path (8%, 3%). Differences between the on-road and footpath 

cyclists were also observed, with a reduction of 13% (PM10), 14% (PM2.5) and 9% 

(PM1.0), only 7 metres from traffic.  Results were significant across cyclist position in 

relation to traffic for all three fine-coarse particle fractions (Table 32): F2,352.92=6.52, 

p=0.002 (PM10), F2,351.03=5.55, p=0.004 (PM2.5) and F2,352.42=8.24, p<0.001 (PM1.0). All 

max concentrations occurred on the road, with the exception of PM10, sampled at the 

footpath. For average temperature, there was a significant positive correlation for PM10 

(p=0.003), no correlation for PM2.5 (p=0.557) and a negative correlation for PM1.0 

(p<0.001). Average wind speed was significant and relationships were negative; p<0.001 

(PM10/PM2.5) and p=0.033 (PM1.0). The fixed wind strength effect (Figure 39) was 

significant for PM1.0 (p<0.001), with many outliers towards the upper end of the range 

within the low speed category (<2 m/s), yet the median and overall range was much 

higher for higher wind speeds (>2 m/s).   

 
Table 31 Summary statistics for cyclist PM exposure in Christchurch 

 
Mode of 
transport 

N  Legs 
(samples) 

Arithmetic 
Mean (µg/m³) Std. Dev. Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

         
21.16 11.46 4.0 197 19.28 20.93 21.39
9.97 4.50 1.2 41 9.52 9.88 10.06All 

samples 

PM10 
PM2.5 
PM1.0 

414 (9558) 
4.97 3.24 0.4 37 4.37 4.90 5.03

         
23.14 10.51 6.9 105 21.68 22.82 23.47 
11.08 4.83 3.23 41 11.27 10.93 11.23 Cycle 

on-road 

PM10 
PM2.5 
PM1.0 

169 (4023) 
5.61 3.75 1.4 37 4.40 5.49 5.72 

20.05 13.09 7.24 197.2 17.20 19.57 20.52 
9.50 3.10 3.04 33.8 9.10 9.39 9.62 Cycle 

footpath 

PM10 
PM2.5 
PM1.0 

145 (2913) 
5.13 2.92 1.5 30.5 4.68 5.03 5.24 

19.36 10.39 4 99 17.00 18.96 19.76 
8.78 4.87 1.2 27 7.40 8.59 8.97 Cycle 

off-road 

PM10 
PM2.5 
PM1.0 

157 (3711) 
3.80 2.28 0.4 18 3.97 3.71 3.89 
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Table 32 ANOVA results for cyclist PM exposure in Christchurch 
 

PM10 
Variable Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 2957.09 310.76 70.13 42.17 <0.001
Avg Temp  *Fixed 1 651.74 168.19 73.65 8.85 0.003
{1}Direction *Fixed 2 59.59 144.41 74.53 0.80 0.452
{2}Mode *Fixed 2 435.70 352.92 66.79 6.52 0.002
{3}Wind Strength *Fixed 1 24.84 149.90 74.31 0.33 0.564
{4}Wind Influence Fixed 1 54.79 348.70 69.20 0.79 0.374
{5}Leg  Random 23 93.73 350.00 66.70 1.41 0.104

PM2.5 
Avg Wind Speed *Fixed 1 542.93 372.89 12.64 42.95 <0.001
Avg Temp  *Fixed 1 4.05 333.99 11.73 0.34 0.557
{1}Direction *Fixed 2 6.63 314.55 11.51 0.58 0.563
{2}Mode *Fixed 2 74.86 351.03 13.50 5.55 0.004
{3}Wind Strength *Fixed 1 26.82 319.66 11.56 2.32 0.129
{4}Wind Influence Fixed 1 6.59 371.64 12.88 0.51 0.475
{5}Leg Random 23 6.57 350.00 13.52 0.49 0.980

PM1.0 
Avg Wind Speed *Fixed 1 18.13 333.96 3.96 4.58 0.033
Avg Temp  *Fixed 1 395.91 199.34 4.04 97.98 <0.001
{1}Direction *Fixed 2 4.96 172.54 4.06 1.22 0.297
{2}Mode *Fixed 2 31.99 352.42 3.88 8.24 <0.001
{3}Wind Strength *Fixed 1 706.04 178.83 4.06 174.09 <0.001
{4}Wind Influence  Fixed 1 1.31 360.99 3.94 0.33 0.565
{5}Leg Random 23 4.50 350.00 3.88 1.16 0.280
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Figure 39 Mean PM1.0 exposure values grouped by Wind Strength 
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5.3.3 Ultrafine particles  
 

Overall mean UFP exposure decreased substantially with greater distance from traffic. At 

7 metres away, the footpath cyclist was 30% less exposed than the on-road cyclist (Table 

33). At 19 metres away, the off-road cyclist’s exposure was lower by 17% (footpath) and 

42% (on-road). The maximum concentration was observed by the on-road cyclist and the 

minimum by the off-road cyclist.  

 

Exposure was highly significant across cyclist position in relation to traffic 

(F2,314.94=24.25, p<0.001). UFP levels were positively correlated with wind speed 

(p=0.007) and no association was found for temperature (Table 34). Wind strength 

(p<0.001) and the influence of position in relation to wind direction were found to be 

significant (p=0.003). The median value for mean exposure at >2 m/s was almost double 

that of low wind speed exposure (Figure 40). Being positioned downwind from traffic 

made a substantial difference, resulting in a higher median and more extreme values 

(Figure 41). Figure 42 illustrates the influence of wind direction, showing two traverses 

of the sampling area – A to B on the north side and then C to D on the south side, with 

the three series of points representing the cyclists at different positions to the road. Note 

the general pattern showing the lowest concentrations when position is upwind relative to 

traffic and the highest when position is downwind.    

 
Table 33 Summary statistics for cyclist UFP exposure in Christchurch 

 
Mode of 
transport 

N Legs 
(samples) 

Arithmetic 
Mean (pt/cm3) Std. Dev.  Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

         
All samples 355 (8352) 33606.85 48226.19 185.0741 1588280 23938.84 32572.42 34641.27 
         
Cycle on-road 146 (3597) 43450.45 61034.96 1091.67 1588280.42 29495.70 41455.18 45445.73
Cycle footpath 52 (1044) 30235.72 38518.22 4320 490908.33 19440.83 27896.51 32574.93
Cycle off-road  157 (3711) 25014.02 32191.09 185.07 1149812 22155 23977.98 26050.07
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Table 34 ANOVA results for cyclist UFP exposure in Christchurch 

 
Variable Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 4.42E+09 217.74 588963793 7.51 0.007
Avg Temp  *Fixed 1 2.04E+09 104.47 684788363 2.98 0.087
{1}Direction *Fixed 2 1.24E+09 81.27 728362756 1.70 0.190
{2}Mode *Fixed 2 1.27E+10 314.94 525005877 24.25 <0.001
{3}Wind Strength *Fixed 1 1.23E+10 89.44 710723481 17.27 <0.001
{4}Wind Influence  Fixed 1 5.16E+09 242.39 575978592 8.95 0.003
{5}Leg Random 23 1.28E+09 292.00 500494517 2.55 <0.001

 

 

 

 

 

 

 

 

 

 

 

Figure 40 Mean UFP exposure values grouped by Wind Strength 
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Figure 41 Mean UFP exposure values grouped by Wind Influence 
 

 
Figure 42 Cyclists’ comparative UFP exposure at different distances from traffic: a 
sample section showing two legs (west-east and back). Wind speed = 1.6 m/s. Wind 

direction indicated on figure.  
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The lack of association between UFPs and temperature was due to the limited sampling 

period of ~2 hours across 3 days and the fact that sampling took place during warm 

afternoons. Temperature only fluctuated by ~2°C, compared to an approximate 16°C 

fluctuation throughout the inter-modal campaign, for which there was a significant 

inverse relationship. Such a relationship was also observed by Thai et al. (2008) and Kaur 

et al. (2009).  

 

The positive association found for wind speed can possibly be explained by the decreased 

opportunity for particles to diffuse closer to their source. At such a close distance to 

emissions sources, the positive correlation is not surprising (Figure 40). When measuring 

concentrations across greater distances, a negative association can be expected due to 

increased time for coagulation and dispersion. This was confirmed for the inter-modal 

sampling (see section 4.2.3) and in prior research (Vinzents et al. 2005). The calculated 

time taken for a 0.1 µm particle to settle in still air at a distance of 2 metres from its 

source is 14 hours (Phalen 2002). At elevated wind speeds, while most particles not lost 

to larger size fractions settle within minutes, the remainder may travel several kilometres. 

This is evident from the current study when considering the sharp drop-off in 

concentrations when moving away from the road. Concentrations decreased by 30% at a 

7 metre distance, 42% at a 19 metre distance and 62% in the middle of the park, 

approximately 700 metres away (see Table 35). Results are further supported by the inter-

modal on-road-off-road comparisons, where exposure was 53% lower, despite being 

exposed to peak event situations behind vehicles and at crossings. Furthermore, unlike all 

other pollutants in the study, the influence of wind direction was highly significant for 

ultrafines (p=0.003). This is likely owing to their extremely small size and aerodynamic 

properties, while heavier particle concentrations are less affected by wind direction due to 

constant formation processes and the re-suspension of road dust. Additionally, average 

wind speeds were quite low at 2.14 m/s or less, with the exception of one day (4.16 m/s). 

If sampling took place across a greater number of days under higher wind speed 

conditions, the influence may have been non-significant.  
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Figure 43 shows the frequency distribution for all collected UFP data. The size of the on-

road and footpath cyclist distributions is affected by a reduced number of observations, 

yet their shape is very similar. The bulk of observations occur at the mid-range level, 

tapering down towards the high end of the range. This pattern is especially pronounced 

for the on-road cyclist. This shows fairly even exposure to roadside levels and the high 

susceptibility to peak events such as queued traffic and heavy diesel vehicles passing, 

although exposure is clearly lessened at the footpath. The off-road distribution is likely to 

represent two distinct source contributions. The greatest number of observations either sit 

at extremely low levels or within the mid-range zone. It is probable that the lower end of 

the spectrum is representative of background levels attributable to city traffic from all 

surrounding roads (as observed in the middle of the park), while the mid-upper range 

reflects the influence of traffic sources within the direct vicinity (Riccarton Avenue).  
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Figure 43 Freq. distribution for UFPs 
(a) On-road cylist 
(b) Footpath cyclist 
(c) Off-road cyclist 
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5.3.4 Additional park scenario  
 
This extra scenario was completed for one sampling afternoon (total of 16 legs) in order 

to gain an idea of how concentrations in the middle of the park compared to those closer 

to the road. Data was collected independently of other sampling days, to supplement the 

main microscale variance results for further comparison. While only the descriptive 

results are presented for discussion (Table 35), ANOVA results were significant across 

modes for all pollutants (p<0.001). Due to the very small sample size, results cannot be 

treated with absolute confidence and this part of the study is intended for indicative 

purposes only.   

 

No difference for mean CO levels was found between the park and off-road cyclists, yet 

the findings presented in section 5.3.1 show a 54% reduction from on-road to off-road 

and a 41% reduction for on-road to footpath. This potentially highlights the degree to 

which separation becomes beneficial. It appears that at distance of 7 and 19 metres away, 

CO concentrations become highly dilute, reaching the lowest levels for some distance. 

The spatial extent of CO is thought to be somewhere in the order of 100-400 metres 

(Zhou & Levy 2007). The results agree well, considering the influence of traffic 

approximately 300 metres to the north [for the park cyclist].   

 

PM10 and PM2.5 show a substantial decrease with distance from traffic, with levels lowest 

in the park centre. PM1.0 appears to show the opposite trend for this dataset, which 

disagrees with findings in section 5.3.2. Wind direction was southwest, with an average 

speed of 1.68 m/s. No immediately obvious explanation exists.  

 

UFP concentrations were 39% lower off-road than on road, in very close agreement with 

the 42% reduction found in section 5.3.3. Between off-road and park, concentrations 

decreased a further 38%.  



 

 129

 

 

In addition to particle loss over distance, it is likely that the flat parkland topography 

played a role in reducing concentrations. A large golf course is situated at the north top of 

Hagley Park and there are far fewer trees in this area. Large open areas reduce wind 

friction allowing for greater air flow and heightened dispersion.    

 
 

Table 35 Summary statistics for additional park scenario 
 

Mode Pollutant N Legs (samples) Mean Std. Dev. Min Max Median 
-95% 

Cnf.Lmt 
+95% 

Cnf.Lmt 
CO Data lost        

24.69 13.47 9.41 105.3 20.73 23.83 25.55
10.70 5.58 3.23 37.08 10.75 10.34 11.06

PM10 
PM2.5 
PM1.0 

16 (946) 
2.51 2.01 0.30 6.30 1.50 2.38 2.64

Cycle 
On-
Road 

UFP 16 (933) 39633.22 71938.71 5210.06 1588280.42 27487.31 35011.17 44255.26
CO 16 (949) 0.44 0.42 0.07 3.13 0.29 0.41 0.46

17.04 13.02 4.00 98.80 14.20 16.20 17.87
5.18 3.18 1.20 17.8 3.70 4.98 5.38

PM10 
PM2.5 
PM1.0 

 16 (940)  
3.06 2.29 0.40 10.3 2.20 2.91 3.20

Cycle 
Off-
Road 

UFP 16 (773) 24108.58 10298.32 4840.00 97638.33 22311.67 23381.46 24835.70
CO  16 (949) 0.44 0.34 0.07 2.53 0.35 0.42 0.46

8.37 4.69 1.90 28.7 7.50 8.06 8.67
3.82 2.28 1.00 8.60 2.80 3.67 3.97

PM10 
PM2.5 
PM1.0 

16 (913) 
6.50 4.49 1.52 26.0 6.33 6.21 6.79

Cycle 
Park 

UFP 16 (936) 14726.68 5735.80 2898.33 67271.67 15114.17 14358.75 15094.62
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5.4  Auckland: Effect of proximity to traffic  

 

5.4.1 Carbon monoxide 
 

Mean CO results ranked the off-road cyclist as the least exposed; 12% lower than the 

footpath and 36% lower than the road (Table 36). The footpath cyclist observed a 27% 

reduction from the on-road position. Maximum peaks were picked up on the road and 

minimum values on the boardwalk, which also had the lowest minimum value. Results 

were significant across modes (F2,210.03=36.59, p<0.001). Both average wind speed 

(p=0.005) and temperature (p<0.001) were positively correlated with CO (Table 37). The 

positive association with temperature is most likely related to the traffic influence. As 

sampling had to take place during the weekend, it was highly dependant on traffic 

volume. During the first day of sampling, it had been raining and temperatures were cool. 

As the weather improved, there were noticeably more vehicles during the last two 

sampling runs. Wind strength was excluded from the Auckland ANOVA models as 

average wind speed was 2.52 m/s or higher for all sampling days. The influence of wind 

in relation to traffic was also excluded as only one side of the road could be used and 

wind direction was always west or southwest.  

 
Table 36 Summary statistics for cyclist CO exposure in Auckland  

 
Mode of 
transport 

N Legs 
(samples) 

Mean 
(+/-0.2 ppm) Std. Dev.  Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

      
All samples 234 (6889) 0.59 0.25 0.17 3.58 0.58 0.59 0.60 
         
Cycle on-road  78 (2295) 0.75 0.30 0.39 3.58 0.68 0.73 0.76 
Cycle footpath  78 (2297) 0.55 0.17 0.23 3.14 0.55 0.54 0.55 
Cycle off-road   78 (2297) 0.48 0.19 0.17 1.21 .52 0.48 0.49 

 
Table 37 ANOVA results for cyclist CO exposure in Auckland 

 
Variable Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 0.25 227.88 0.03 8.17 0.005
Avg Temp  *Fixed 1 1.29 86.58 0.02 53.46 <0.001
{1}Direction *Fixed 1 0.04 14.58 0.02 2.33 0.148
{2}Mode Fixed 2 1.17 210.03 0.03 36.59 <0.001
{3}Leg Random 36 0.02 192.00 0.03 0.63 0.950
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5.4.2 PM10, PM2.5 and PM1.0 
 

Mean results for the off-road mode showed a significant decrease for PM2.5 and PM1.0; 

18%, 7% (from footpath) and 25%, 28% (from road). PM10 showed an opposite trend; 

highest at the boardwalk and decreasing at the footpath (8%) and road (19%). PM2.5 and 

PM1.0 also decreased between the road and footpath by 12% and 19%, respectively (Table 

38). Results were significant across modes for all fractions (Table 39): F2,221.87=43.83, 

p<0.001 (PM10), F2,211.15=169.62, p<0.001 (PM2.5) and F2,217.86=76.61, p<0.001 (PM1.0). 

All PM was negatively correlated with average wind speed (p<0.001) and positively 

correlated with average temperature: p=0.020 (PM10), p=0.007 (PM2.5) and p=0.005 

(PM1.0). Direction was also significant: p=0.040 (PM10) and p=0.008 (PM2.5), with higher 

mean values observed for the east-west transverse.  

 
Table 38 Summary statistics for cyclist PM exposure in Auckland 

 
Mode of 
transport 

N  Legs 
(samples) 

Artithmetic 
Mean (µg/m³) Std. Dev. Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

         
15.89 3.87 7.49 27.14 14.89 15.80 15.99
9.33 4.24 2.77 27.17 8.24 9.23 9.43All 

samples 

PM10 
PM2.5 
PM1.0 

  234 (6881) 
4.58 2.21 1.40 26.30 4.79 4.53 4.64

         
14.53 3.60 7.49 25.75 13.54 14.38 14.67 
10.74 4.66 4.06 27.17 11.17 10.55 10.93 Cycle 

on-road 

PM10 
PM2.5 
PM1.0 

 78 (2293) 
5.36 2.49 2.23 26.30 5.30 5.26 5.46 

15.91 3.93 10.11 27.14 14.01 15.75 16.07 
9.50 4.07 3.13 17.95 10.00 9.33 9.66 Cycle 

footpath 

PM10 
PM2.5 
PM1.0 

 78 (2292) 
4.35 2.04 1.56 12.77 4.73 4.27 4.43 

17.25 3.59 8.80 26.92 17.20 17.10 17.40 
7.75 3.35 2.77 14.67 7.46 7.61 7.88 Cycle 

off-road 

PM10 
PM2.5 
PM1.0 

  78 (2291) 
4.04 1.84 1.40 6.98 4.79 3.96 4.11 
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Table 39 ANOVA results for cyclist PM exposure in Auckland 
 

PM10 
Variable Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 1705 211.51 3.61 471.90 <0.001
Avg Temp  *Fixed 1 24 60.01 4.06 5.96 0.018
{1}Direction *Fixed 1 27 24.16 4.55 6.01 0.022
{2}Mode Fixed 2 153 221.87 3.49 43.83 <0.001
{4}Leg  Random 36 4 192.00 3.42 1.26 0.167

PM2.5 
Avg Wind Speed *Fixed 1 3223.94 228.00 0.98 3304.88 <0.001
Avg Temp  *Fixed 1 6.46 82.80 0.80 8.04 0.006
{1}Direction *Fixed 1 6.81 15.78 0.61 11.12 0.004
{2}Mode Fixed 2 173.49 211.15 1.02 169.62 <0.001
{4}Leg  Random 36 0.71 192.00 1.05 0.68 0.918

PM1.0 
Avg Wind Speed *Fixed 1 720.44 221.81 0.45 1587.32 <0.001
Avg Temp  *Fixed 1 3.87 66.61 0.45 8.52 0.005
{1}Direction *Fixed 1 0.90 21.51 0.46 1.99 0.173
{2}Mode Fixed 2 34.76 217.86 0.45 76.61 <0.001
{4}Leg  Random 36 0.45 192.00 0.45 1.00 0.473
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The trend observed for PM10, being higher on the boardwalk and lower at the road, is the 

complete reverse of findings for Christchurch, although the disparities between modes 

were much lower. This is likely due to the influence of sea spray and the far lower traffic 

volume, reflected in the CO results, with the on-road result almost twice as high in 

Christchurch. Sea spray is a significant contributor of PM10 in both cities; 23% in 

Christchurch and 22% in Auckland (Senaratne et al. 2005). Hagley Park is located ~6 

kilometres from the coast, where PM10 originating from different sources is well mixed. 

Secondly, the associated short settling time would render sea spray an unlikely 

contributor this far inland. Conversely, it is most probably the primary source in an area 

like St Heliers Bay during autumn.   

 

The inverse relationship for wind speed and all PM is consistent with results for 

Christchurch, along with the positive correlation with temperature for PM10. For 

Auckland, increased vehicle movements may have had an influence, as with the increase 

in CO. However, it may be better explained by coincidental changes in ocean swells and 

meteorological conditions, thereby increasing the influence of sea spray. An explanation 

for Christchurch is less apparent. 

 

 

5.5 Combined results: Effect of proximity to traffic   

 

5.5.1 Carbon monoxide 
 
Combined CO results showed that the off-road cyclist was 32% and 48% less exposed 

than the footpath and on-road cyclists, with the footpath exposure 23% lower than on the 

road (F2,648.12=52.32, p<0.001). The max value was 12.81 ppm, sampled in Christchurch 

(Table 40). There was an overall negative correlation between average wind speed and 

CO (p<0.001). Grouped into fixed wind speed categories, average concentrations were 

greater at lower wind speeds with higher extremes (Figure 44). ANOVA results are 

displayed in Table 41.  
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Table 40 Combined summary statistics for cyclist CO exposure 

 
Mode of 
transport 

N Legs 
(samples) 

Mean 
(+/-0.2 ppm) Std. Dev.  Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

      
All samples  693 (16214) 0.76 0.59 0.05 12.81 0.62 0.75 0.77
         
Cycle on-road  231 (5401) 1.00 0.64 0.05 12.8 0.80 0.98 1.02
Cycle footpath 231 (5398) 0.77 0.64 0.05 7.14 0.61 0.75 0.79
Cycle off-road  231 (5411) 0.52 0.36 0.05 3.66 0.47 0.51 0.53

 
Table 41 Combined ANOVA results for cyclist CO exposure 

 
Variable Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 24.16 646.12 0.31 76.80 <0.001
Avg Temp  *Fixed 1 0.58 673.42 0.31 1.88 0.171
{1}Direction *Fixed 2 0.01 682.11 0.31 0.03 0.971
{2}Mode *Fixed 2 15.67 648.12 0.30 52.32 <0.001
{3}Wind Strength  *Fixed 1 4.66 684.00 0.31 15.18 <0.001
{4}Wind Influence  Fixed 1 0.11 451.39 0.33 0.32 0.573
{5}Leg Random 37 0.54 647.00 0.30 1.80 0.003
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Figure 44 Combined CO exposure grouped by Wind Strength  
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5.5.2 PM10, PM2.5 and PM1.0 
 

Overall, the off-road cyclist was ranked lowest for all PM exposure apart from PM10 

where the footpath mode was slightly lower. The greatest differences occurred between 

the off-road and on-road cyclists, with an 8% (PM10), 24% (PM2.5) and 29% (PM1.0) 

reduction 18-19 metres from traffic (Table #). 5-7 metres from traffic, the footpath mode 

observed overall reductions of 9% (PM10) and 13% (PM2.5/PM1.0). Results were 

significant across modes for PM2.5 (F2,570.86=7.72, p<0.001) and PM1.0 (F2,570.88=5.16, 

p<0.001) only. Wind strength and wind influence were also significant for PM2.5 and 

PM1.0 (Figure 45): p=0.005 and p<0.001. The median values for wind influence were 

heavily affected by the upwind position for all Auckland sampling, where the influence 

of sea spray was dominant.   

 
 

Table 42 Combined summary statistics for cyclist PM exposure 
 

Mode of 
transport 

N  Legs 
(samples) 

Artithmetic 
Mean (µg/m³) Std. Dev. Min Max Median  

-95% 
Cnf.Lmt 

+95% 
Cnf.Lmt 

         
18.96 9.45 4.00 197.24 16.80 18.81 19.10 
9.70 4.40 1.20 40.75 9.10 9.63 9.77 All 

samples 

PM10 
PM2.5 
PM1.0 

616 (16434) 
4.81 2.86 0.40 37.39 4.50 4.76 4.85 

         
20.02 9.60 6.90 105.3 17.72 19.78 20.25 
10.96 4.77 3.23 40.8 11.27 10.84 11.07 Cycle 

on-road 

PM10 
PM2.5 
PM1.0 

 231 (6316) 
5.52 3.35 1.40 37.4 4.70 5.44 5.60 

18.23 10.34 7.24 197.24 15.20 17.94 18.51 
9.50 3.56 3.04 33.80 9.25 9.40 9.60 Cycle 

footpath 

PM10 
PM2.5 
PM1.0 

  223 (5205) 
4.79 2.60 1.50 30.50 4.70 4.72 4.86 

18.38 8.05 4.00 98.80 17.15 18.15 18.60 
8.30 4.26 1.20 27.42 7.40 8.18 8.42 Cycle 

off-road 

PM10 
PM2.5 
PM1.0 

162 (2291) 
3.91 2.09 0.40 18.00 4.30 3.85 3.97 
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Table 43 Combined ANOVA results for cyclist PM exposure 
 

PM10 
Variable Effect (F/R) df Effect MS Effect df Error MS Error F p 
Avg Wind Speed *Fixed 1 3665.95 606.93 47.37 77.39 <0.001
Avg Temp  *Fixed 1 1618.89 603.67 47.41 34.15 <0.001
{1}Direction *Fixed 2 97.56 588.18 47.45 2.06 0.129
{2}Mode *Fixed 2 27.68 572.29 47.48 0.58 0.559
{3}Wind Strength *Fixed 1 2844.86 591.36 47.45 59.96 <0.001
{4}Wind Influence Fixed 1 96.16 573.27 47.27 2.03 0.154
{5}Leg  Random 37 45.69 570.00 47.49 0.96 0.536

PM2.5 
Avg Wind Speed *Fixed 1 649.81 593.24 10.94 59.37 <0.001
Avg Temp  *Fixed 1 1776.61 586.68 11.10 160.06 <0.001
{1}Direction *Fixed 2 4.67 577.41 11.29 0.41 0.661
{2}Mode *Fixed 2 88.06 570.86 11.41 7.72 <0.001
{3}Wind Strength *Fixed 1 88.61 578.93 11.26 7.87 0.005
{4}Wind Influence Fixed 1 298.61 605.12 10.52 28.38 <0.001
{5}Leg Random 37 4.07 570.00 11.43 0.36 1.000

PM1.0 
Avg Wind Speed *Fixed 1 327.67 593.74 4.22 77.59 <0.001
Avg Temp  *Fixed 1 48.99 587.08 4.28 11.44 0.001
{1}Direction *Fixed 2 10.23 577.61 4.35 2.35 0.096
{2}Mode *Fixed 2 22.69 570.88 4.40 5.16 0.006
{3}Wind Strength *Fixed 1 478.17 579.17 4.34 110.10 <0.001
{4}Wind Influence  Fixed 1 84.65 605.46 4.06 20.83 <0.001
{5}Leg Random 37 1.61 570.00 4.41 0.37 1.000

 
Figure 45 Mean PM2.5 and PM1.0 exposure grouped by Wind Influence 
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5.6 Cyclist results in the context of previous research 

 

5.6.1 Effect of route choice 
 
Research into the effect of cyclist route choice is relatively limited compared to inter-

modal enquiry. Only three comparable studies exist for CO. The first, by Bevan et al. 

(1991) found CO levels to be higher on-road than within a parkland area by a factor of 

13. These results are not completely comparable as sampling only took place within 

common parkland and did not replicate an actual commute, whereas the on-road element 

did. While the off-road element of the current study was largely situated within cycle 

ways and parkland areas, mean results were significantly elevated when coming into 

contact with traffic at backstreets or roadway crossings. Hence on-road exposure was 

only higher by a factor of 1.72. Even so, the 42% reduction found is very significant 

considering a cyclist commuter may be able to almost halve their exposure. Furthermore, 

the overall mean values of 10.5 ppm (Southampton; Bevan et al. 1991) and 1.12 in 

Christchurch highlight the relatively low-risk of commuting by bicycle in smaller cities 

where vehicle emissions are a lesser concern. Interestingly, commuting by bicycle in 

central London resulted in a mean exposure of only 1.1 ppm, exactly the same as in 

Christchurch (Kaur et al. 2005). The reduced exposure compared to Southampton may 

have been due to the use of bus lanes in the London study, providing more separation 

from the main stream of traffic. While this study did consider the use of backstreet travel, 

results were combined with other modes such as car and bus, although only pedestrians 

and cyclists could travel the full backstreet route. Combined mean exposure for the 

backstreet area was 0.6 ppm compared with 1.3 ppm on the main roads (Kaur et al. 

2005). These findings are almost identical to those for Christchurch cyclists – 0.65 ppm 

and 1.12 ppm, respectively. A third study, utilising street pollution modeling based on the 

city of Copenhagen, found a 23 – 28% reduction for a backstreet route, compared to a 

shorter, more direct route (Hertel et al. 2008). This estimate is well below the findings of 

the current study.     



 

 138

 

For PM10, the same modeling study simulated an 11 – 12% reduction for backstreet route 

concentrations, but found accumulative exposure to be 2 – 3% higher due to the increased 

travel time (Hertel et al. 2008). The current study reported a 6% increase in 

concentrations for the off-road cyclist. Results are expected to differ due to differences in 

traffic concentrations and background sources, in addition to the methodologies. Both 

Thai et al. (2008) and Berghmans et al. (2009) reported significant elevations in PM10 

levels for cyclists near constructions sites. While neither study separated mean exposure 

by area type, the overall range of mean values largely agreed with those of the current 

study. For Vancouver, Thai et al. (2008) found the range to be within 21 – 74 µg/m³. For 

Mol, Belgium, Berghmans et al. (2009) found the range to be within 34 – 102 µg/m³. In 

Christchurch, the range for both on-road and off-road combined was within 8 – 93 µg/m³. 

Berghmans et al. (2009) sampled along an additional cycle track area on one day, finding 

a mean exposure of 54 µg/m³. This was only lower than all data combined by 13%.  
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 PM2.5 was 13 – 14% lower off-road in the simulation model but accumulative exposure 

was virtually the same (Hertel et al. 2008). The range of exposure for the current study (5 

– 41 µg/m³) closely agreed with that of Vancouver (7 – 33 µg/m³), while Mol findings 

were much higher (12 – 75 µg/m³). Mean exposure for the cycle track in Mol was 32 

µg/m³; 18% lower than the overall combined mean (Berghmans et al. 2009). The 

reduction found off-road for Christchurch was only 6%.  

 

The study in Mol, Belgium is the only other piece of research to consider PM1.0 exposure 

for cyclists. Mean exposure ranged from 7 – 77 µg/m³ compared to 1 – 27 µg/m³ in the 

current study. The cycle track results for Mol were 13% lower than for all data combined, 

while the off-road cyclist experienced a 31% reduction in Christchurch.  

 

Ultrafine results for Mol ranged between 10851 and 30576, not far below those for 

Vancouver (18830 – 57692 pt/cm³). Mol cyclist track exposure was 2% higher than 

overall mean exposure for all data (21226 pt/cm³). Mean data for Christchurch ranged 

between 2387 and 160520 pt/cm³, while the on-road-off-road reduction was 53%. The 

reduced disparity between the results for Mol is likely to do with the limited sample size, 

with only one sample for the cycle track and seven main samples. The mean result for the 

on-road cyclist in Christchurch (49842 pt/cm³) was 47% lower than that recorded in 

London (93968 pt/cm³) by Kaur et al. (2005). The London main street (101142 pt/cm³), 

versus backstreet (71628 pt/cm³) sampling resulted in an overall difference of 41% (for 

all modes combined). This difference highlights the effect of taking backstreet routes, 

regardless of mode. The overall differences found for London are not far below those 

found for Christchurch cyclists.  
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5.6.2 Effect of proximity to traffic  
 
The results for the current study show substantial reductions for CO, UFPs and PM with 

distance from traffic, with the exception of PM10 at the seaside setting in Auckland. 

Comparative research addressing exposure differences at such small distances from 

traffic is extremely limited, with studies (fixed site) tending to look at downwind levels 

much further from roads (Hitchins et al. 2000). However, reductions in pedestrian 

exposure when moving away from the kerb have been noted for CO (Wright et al. 1975) 

and UFPs (Kaur et al. 2005b, Kaur et al. 2006). In central London, Kaur et al. (2005b) 

observed a 15% reduction for average UFP exposure from kerb to buildingside. No 

difference was found for CO levels and PM2.5 decreased by only 1%. The results for 

Christchurch indicate an average reduction of 30% (UFPs), 22% (CO) and 8% (PM2.5) at 

7 metres from traffic. The differences between the two studies can primarily be explained 

by the higher traffic volume and street canyon environment in central London. Secondly, 

no indication of the width of the pavement was provided by the London study. 

Furthermore, the parkland setting of the Christchurch study would have provided a 

greater dispersive effect. The London results for UFPs are encouraging for New Zealand, 

proving that microscale deterioration occurs even within street canyons. Due to lower 

traffic densities and building heights, such reductions may not be limited to UFPs in 

smaller cities like Christchurch. A subsequent study by Kaur et al. (2006) in the same 

area, suggested that with careful avoidance of cigarette smokers and construction sites, 

UFP exposure can be lessened by 10-30%. In certain situations, the same degree of 

reduction may be able to be achieved in busy street canyons as occurs alongside 

parkland.  
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Only one other study provides actual exposure data for microscale variance. In Dublin, 

McNabola et al. (2008) explored the effect of a low-boundary wall (less than 1 metre 

high) between a pavement and a boardwalk. The pavement is approximately 2 metres 

from the traffic flow and the boardwalk, 3-4 metres away from traffic. PM2.5 was found to 

decrease by a factor of 2.83 on the boardwalk, while for Christchurch, this figure was 

only 1.17 at 7 metres from traffic. This highlights the powerful dispersive effect of the 

wall compared to an open area. It was thought that parked cars may have some dispersive 

benefit, but this did not appear to be the case when looking at the pollutant traces and 

photographs using the Media Mapper software. It is likely the airflow traveled under and 

over the car (as well as through gaps between parked cars), reaching the cyclist on the 

other side.  

5.7 Summary  
 
The results of this section have addressed spatial variation of concentrations over 

relatively short distances, as well as variation within very small distances. The results 

show that CO and UFP levels decrease substantially with distance from traffic, exhibiting 

a heterogeneous distribution. While the three PM fractions are more uniform in 

concentration patterns, PM2.5 and PM1.0 also rapidly decreases with distance from traffic. 

PM10 appears to be more reflective of background concentrations and is less dependant on 

traffic sources. These findings have significant implications for behavioural choices and 

city planning. Taking an off-road route can reduce exposure by 31-53% for traffic-

dependant pollutants (UFPs, CO and PM1.0), while differences in background exposure 

are minor, but can be slightly higher off-road. These primary traffic-generated pollutants 

appear to either dissipate or be lost to other processes such as coagulation, over extremely 

small distances. At an average distance of only 7 and 19 metres, CO dropped 41 & 54%, 

PM1.0 26 & 32% and UFPs 30 & 42%, respectively. This shows a very steep gradient and 

no difference was observed for CO at 19 metres or 700 metres north. However, UFPs, 

due to their interactive nature, did decrease a further 38% to levels likely representative 

of background. Correlations with temperature and wind speed largely agreed with 

findings of international studies, although some unusual results occurred for Auckland 

due to the seaside location and lack of traffic as a result of bad weather.  
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The Auckland data was less useful due to the loss of the UFP data, but did help confirm 

overall microscale reductions for CO, PM2.5 and PM1.0 across two distinct geographical 

settings.  

 

Findings for the effect of route choice were in agreement with those for London, 

illustrating the benefits of taking backstreet routes in cities of various sizes (Kaur et al. 

2005). Microscale variance somewhat agreed with previous work on pedestrian pavement 

exposure. Although the current study made use of open areas and previous work was 

situated within street canyons, UFP exposure reduction away from the kerb may 

sometimes be as high as within the Christchurch study. The fact a reduction of this 

magnitude (comparable to that in a parkland area) may be possible in large cities has 

important implications for pedestrian and cyclist planning, including the placement of 

temporary paths and detours that avoid construction activity.   
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Chapter Six: Conclusions  
 
 

6.1 Inter-modal findings 
 
The inter-modal section of this study successfully addressed the issue of which transport 

modes encounter the highest and lowest overall mean concentrations of key pollutants 

associated with transport emissions. While it failed to include motorcyclist and pedestrian 

exposure; or adequately address train commuter exposure, it did reasonably replicate the 

general study design of the majority of similar international research. Furthermore, 

significant results were produced from two distinct cities, providing the first mobile 

exposure literature for New Zealand.  

 

 

Final comparative exposure results largely agreed with those of international studies. The 

cyclist (on-road) fared relatively well against other modes. Carbon monoxide exposure 

for the car was around 2.6 and 2.3 times higher than both the cyclist and bus, in 

Christchurch and Auckland, respectively. Train exposure was lower still - by a factor of 

4.3, compared to car. The cyclist was also the least exposed for ultrafine particles – by a 

factor of 1.6, compared to car and bus concentrations which were roughly the same. 

There was not a lot of variation between modes for mean PM1.0-10 exposure. PM10 was 

highest for the cyclist in Auckland, but only 4% greater than bus, whereas this difference 

was 23% in Christchurch, in favour of the cyclist. The bus mode also had the highest 

mean exposure for PM2.5 and PM1.0 in Auckland, while the cyclist was slightly lower than 

car. The bus was also highest in Christchurch, followed by the cyclist and then the car. 

The higher levels in the bus are likely due to diesel self-pollution and intake of outside air 

through open windows and the continual opening of doors. The car proved to be a more 

protective environment, filtering out larger particles through the ventilation system. 

Although the cyclist was exposed to higher PM than the other modes in Christchurch, 

modal differences across PM fractions only ranged from 6 – 26%. Comparatively, the 

cyclist was 36% and 61% less exposed than the car, for UFPs and CO, respectively.  
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The results of this study highlight a significant advantage for cyclists in regard to 

pollution exposure, as it is the ultrafine particles which are considered the most 

dangerous due to their penetrative ability and greater toxicity. Larger particles are less 

concerning, yet still pose serious health risks. This study has further shown cyclists may 

also be the least exposed to PM2.5 and PM1.0 in heavily trafficked large urban areas such 

as Auckland.   

 

6.2 Cyclist findings 
 
The results of the inter-modal study have demonstrated that a separation of just one or 

two metres from the traffic stream, coupled with the ability to move to the front of 

queued traffic, substantially reduces CO and UFP exposure compared to other modes.  

 

The second part of this study investigated the effect of traveling as far away from traffic 

as possible, by means of backstreets and parkland. The results show off-road cyclists 

have reduced exposure in the order of 31% for CO and PM1.0, and 53% for UFPs. 

Although exposure was 6% higher for both PM10 and PM2.5, this is minor compared to the 

other reductions. Higher PM10 and PM2.5 for the off-road cyclist represents the strong 

influence of background sources while high CO, PM1.0 and UFPs levels on-road, 

highlight the impact of being in close proximity to traffic flows. Previous investigation 

into the effect of cyclist route choice is rather limited and has generally looked at 

activity-exposure profiles using one cyclist, rather than comparing real-time exposure 

along two distinct routes. This study has provided some of the first concrete evidence to 

suggest that taking a longer alternative route significantly lowers exposure, which is 

likely to be beneficial to one’s health over months or years of commuting. Furthermore, 

the study design allowed for a glimpse into patterns of spatial variation across distances 

of up to 3.3 km. All PM was found to be highly uniform, whereas CO and UFPs were 

rapidly dispersed or lost to other processes. Pollutant correlations with temperature and 

wind speed were also found to agree with the results of prior research.  
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The final section addressed a previously unexplored area of microscale exposure variance 

whilst traveling. The results showed a separation of only 5 – 7 m from the on-road 

position can greatly lower exposure of CO, UFP and PM1.0; and to a lesser extent, PM10 

and PM2.5, in certain settings. At 15 – 19 m away, the reduction effect is more than 

doubled for all pollutants sampled. At approximately 700 m away, the effect wanes, 

where levels are more representative of background. This element of the study was also 

able to demonstrate the significance of cyclist position in relation to traffic and wind 

direction, with higher UFP concentrations experienced at the downwind side of the road. 

The influence was not significant for other pollutants due to their non-reactive nature and 

the fact larger particles are constantly being re-suspended by traffic movement. While a 

distance of 5 – 7 m may not render contrasts to the extent found in more open areas, past 

pedestrian enquiry within street canyons has shown reductions do occur, at least for CO 

and UFPs.  
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6.3 Implications for policy   
 
The policy implications of the overall study results are very wide ranging. In the broader 

context, as many preceding inter-modal studies have concluded, traveling by private 

vehicle is not the optimal way to avoid high pollutant concentrations. Walking, taking a 

train, subway, tram or bicycle generally all prove much better than being amidst in-traffic 

sources. The implications here are obvious and policy-makers have been aware of the 

evidence for many years, especially overseas. Not only does investment in alternative and 

active transport infrastructure greatly improve population health, it prepares cities for 

uncertain futures in regard to energy availability, technology and international trade. 

Furthermore, it makes for a healthier and more active population, which makes economic 

sense in that improved psychological and physical health is positively correlated with 

increased productivity (Bloom et al. 2004).  

 

The results of the cyclist components of this research provide an additional argument in 

campaigning for greater investment in cycle track/walkway infrastructure within local 

and national governmental bodies. While the safety advantages of having segregated 

paths are well researched and demonstrated overseas, the impact on pollution exposure is 

less understood. This study has shown that very small distances of separation from 

roadways can result in large exposure reductions. Secondly, the effect is greatly 

diminished between a separation of a few metres and a large distance of several hundred 

metres. Given the space limitations for long-distance segregations in built-up areas, often 

the only existing opportunity lies within small separations. Such an opportunity may 

seem futile, but is in fact extremely significant. The layout of Christchurch streets and 

roads is a prime example of this, easily allowing for segregated cycleways in wide streets 

and shared pathways within wide pavements. In countries such as The Netherlands and 

Germany, where this type of infrastructure is commonplace, active mode transport is 

extremely popular and on the rise (Pucher & Buehler 2008).  
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Various progressive studies outline the numerous benefits of implementing functional 

policies and investing in alternate mode infrastructure. A top example of this comes from 

Victoria, Canada, where Litman (2008) explains the logic behind various policy options 

that can render substantial benefits for resident populations, transport system efficiency 

and city attractiveness. The types of policies include: increased fuel taxes, smart growth, 

least-cost planning, pay-as-you-drive pricing, reduced employee parking, High Occupant 

Vehicle (HOV) priority, walking and cycling infrastructure improvements and more. 

Litman (2008) outlines how improved cyclist and pedestrian facilities fit into smart 

growth policy; active-mode oriented land use and building design, increased connectivity 

with shortcuts for non-motorised modes, improved paths and cycle lanes, and traffic 

calming, speed reductions and vehicle restrictions. Additionally, such improvements 

greatly support travel by public transport. If commuters are able to quickly and safely get 

to public transit stations (and securely store equipment), patronage will increase as people 

become less reliant on private vehicles. These ‘Win-Win’ strategies are examples of 

forward-planning that “provide multiple, economic, social and environmental benefits” 

and “are justified regardless of uncertainties about global warming or other 

environmental and social impacts” (Litman 2008, p. 1).  
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6.4 Limitations  
 
One of the main limitations of this study is that it did not measure VOC or NOx 

exposure. Initially, NO2 was to be included as one of the sampled pollutants but a lack of 

equipment prevented this from going ahead. However, as discussed in the literature 

review, the results of previous studies show that cyclist exposure to VOCs or NOx is 

comparatively low and is likely to be correlated with other primary pollutants such as 

CO. Secondly, the analysis did not include accumulative dose. The issue of accumulative 

dose based on breathing rates is rather complex and has received little attention up until 

recent years.  

 

The use of the ultrafine diluter system proved rather problematic and requires continual 

co-location and data correction to maintain accurately recorded absolute concentrations. 

Unfortunately, the lack of attention to this necessity resulted in the loss of all UFP data 

for Auckland. Nonetheless, the inter-modal and cyclist data collected for Christchurch 

was sufficient to meet the objectives of the study.  

 

The absolute PM data presented, obtained from two different Grimm spectrometer 

models, cannot be treated with absolute certainty due to the inability to characterise 

against instruments that meet Federal Reference Method requirements. However, 

meaningful ratios were able to be calculated from this data which were comparable to 

those found for other inter-modal studies. Furthermore, raw mean values seemed to be 

within the expected range for the associated mode for cities of this size (Christchurch and 

Auckland). It is probable that the error surrounding the lack of unequivocal 

characterisation is negligible.   

 

The somewhat questionable nature of the PM data, coupled with the loss of Auckland 

UFP and PM train data, did not significantly reduce the quality of the study. An 

enormous amount of data was collected and carefully corrected and/or screened for 

erroneous occurrences. The final dataset was of a very high standard and able to provide 

a quality assessment of exposure for two different cities.  
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The final limitation was that this study did not compare mobile data to fixed site 

monitoring. This was mainly due to time restrictions and that many studies have already 

investigated relationships with fixed sites. Additionally, it was not a key objective of this 

enquiry, which principally focused on comparisons between modes and distance from 

traffic sources.  

 
 

6.5 Future research 
 
 
An interesting question apparent following a full literature review, is that of motorcyclist 

versus cyclist exposure, which has not yet been investigated. This would give a fully 

complete real-time representation of the effect of being just one or two metres away from 

the main traffic flow. Furthermore, it is possible that full-faced motorcycle helmets 

provide a protective area, limiting the ingress of particles into the helmet enclosure.    

 

Future microscale cyclist research should include looking at the effect of proximity 

across a range of land uses, with a special focus on street canyons. This poses some 

difficulty, due to requiring the use of pedestrian paths. The pavement cyclist could be 

substituted by a pedestrian sampler, providing increased travel time is accounted for, yet 

this would not fully mirror the real-time method used in this study. This type of work 

could be supplemented by high resolution modeling techniques within various street 

settings. Such studies are limited, with researchers calling for high resolution modeling 

near emissions sources (Zhou & Levy 2007).  

 

There is also a need for a standardised method of measuring accumulative dose and 

respiration rates. Further inter-modal and active mode research should aim to include a 

combination of exposure, accumulative dose, respiration and modeling techniques. 

Perhaps only then can fully accurate conclusions be made regarding different levels of 

intake between modes.    
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