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ABSTRACT: Structural Health Monitoring (SHM) algorithms based on Adaptive Least 
Mean Square (LMS) filtering theory can directly identify time-varying changes in 
structural stiffness in real time, are robust to noise, and computationally efficient. 
Common modal or wavelet methods are less robust to noise and small levels of damage. 
However, the best metrics of seismic structural damage are related to permanent and 
plastic deformations, which no reported methods identify. This research uses LMS-based 
SHM methods with a baseline non-linear Bouc-Wen structural model to directly identify 
permanent deflection and changes in stiffness (modelling or construction error), in real-
time. The algorithm is validated, in silico, on an equivalent single degree of freedom of a 
non-linear 5-storey shear-type concrete structure using MATLAB®. The Cape Mendocino 
ground motion is scaled to a level that causes permanent deflection to show the 
algorithm’s capability. For the simulated structure, the algorithm identifies stiffness 
changes to within 10% of true value in 2.0 seconds, and permanent deflection is identified 
to within 0.5% of the actual as-modelled value. 

1 INTRODUCTION 

Structural health monitoring (SHM) is the process of comparing the current state of a structure’s 
condition relative to a baseline state to detect the existence, location, and degree of likely damage after 
a damaging input. Many current vibration-based SHM methods are based on the idea that changes in 
modal parameters; frequencies, mode shapes and modal damping, are a result of damage or decay. 
These methods are typically more applicable to steel-frame and bridge structures where vibration 
response is highly linear (Chase et al., 2004). However, a major drawback of many approaches is their 
inability to be implemented in real-time, on a sample-to-sample basis as the event occurs. Further, 
their reliance on modal properties has potential problems. In some cases, modal properties are not 
robust in the presence of strong noise and insensitive to small amounts of damage (Hou et al., 2000). 
Adaptive fading Kalman filters (Loh & Lin, 2000) and adaptive H filter techniques (Sato & Qi, 1998) 
which achieve real-time or near real-time results, provide identification of modal parameters in real 
time, but come with significant computational cost and complexity. Moreover, like other linear 
approaches they are not applicable to the typical non-linearities found in seismic structural responses. 

In contrast, direct identification of changes in stiffness and/or permanent deflection would offer the 
post-earthquake outputs desired by engineers. Least Mean Squares (LMS) based SHM has been used 
for a benchmark problem (Chase et al., 2004), and also for a non-linear rocking structure (Chase et al., 
2005), to directly identify changes in structural stiffness only. They are robust with fast convergence 
and low computational cost. However, they require full state measurement and do not identify plastic 
and permanent deflections. The goal is to obtain these plastic and permanent deflections in real time in 
a computationally efficient and robust fashion. Model-based methods combined with modern filtering 
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theory offer that opportunity.      

2 PROBLEM DEFINITION 

A seismically excited non-linear structure can be modelled as: 

      gxvtvv   MKCM )(T  (1) 

where M, C, and KT are the mass, damping, and tangent stiffness matrices of the model respectively, 
 v ,  v , and  v  are the displacement, velocity, and acceleration vectors, respectively, and gx  is the 

ground motion acceleration. The tangent stiffness matrix of a hysteretic structure can be represented 
using Bouc-Wen model. The dimensionless hysteretic component of the ith storey, zi, is governed by 
the following first order non-linear differential equation (Constantinou & Tadjbakhsh, 1985): 
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where Ai (usually 1.0), βi (0.1 to 0.9), γi (-0.9 to 0.9), and ni (1 to 3, usually 1) are stiffness, loop 
fatness, loop pinching, and abruptness parameters in a classical Bouc-Wen model, respectively. 
Further, ni, the power factor, determines the curve from elastic to plastic force-deflection behaviour of 
each storey. )(tri

  is the velocity of storey i relative to storey i-1, Yi is the yield displacement of ith 
story, and N is the number of stories. The five dimensionless parameters, Ai, βi, γi, ni, and αi determine 
the hysteresis loops shape. Neither degradation nor pinching of hysteresis is accounted for by the 
classical Bouc-Wen model. Over the years, this classical model has been modified to accommodate 
changes in hysteresis loops arising from deteriorating systems, and the contemporary model can be 
found in (Baber & Noori, 1986). In this study, the classical Bouc-Wen model has been used, and only 
non-linearities arising from the hysteresis behaviour of the building has been considered. 

Using Equation (2), the tangent stiffness matrix of a 4-DOF four-storey shear-type structure, as an 
example for the tangent stiffness matrix of a hysteretic structure in MDOF case, can be written as: 
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If damage occurs in the structure from an earthquake, or any other source of damaging excitation, 
structural properties, such as natural frequency and stiffness may also change, and may be time-
varying. For the damaged structure, the equations of motion can be re-defined as: 

      gxvvv   MKKCM )( TT  (4) 

where v ,  v , and  v  are the measured responses of the damaged structure, TK , is the tangent 
stiffness matrix of the damaged structure from Equation (3) using damaged structural responses, and 

TK contains changes in the tangent stiffness of the structure due to modelling or construction error 

damage and can be a function of time. Using Equation (3), TK  due to modelling or construction 
damage can be written as: 
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Identifying the TK term enables the structure’s condition to be directly monitored without using 
modal parameters. 

To determine TK using adaptive LMS, following the method proposed in (Chase et al., 2004), a new 

form of TK is defined with time-varying scalar parameters, i̂ , to be identified using the LMS filter. 

For instance, TK for a 4-DOF four-story shear building is sub-divided into four matrices to allow 
independent identification of changes in stiffness of each story i.e. (Δk0)1, (Δk0)2, (Δk0)3, and (Δk0)4:  
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where 

404303202101 )(ˆ,)(ˆ,)(ˆ,)(ˆ kkkk    (7) 

hence equations (6) can be expressed as: 
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where n is the number of degrees of freedom (DOF) of the model, and Ki is the corresponding time-
varying matrix to ith DOF in Equation (6). Rewriting (4) using (6)-(8) yields: 
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In Equation (9), responses of the damaged structure v , v , and  v  are measured. The matrix TK  at 

each time step is calculated using Equations (2) and (3). The 
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term in TK  and Ki matrices can 

be re-defined by introducing a hysteretic displacement, hi, for each storey as: 

NizYh iii ,...,1,   (10) 

where Yi and zi are the yield displacement and the hysteretic component of the ith storey, respectively. 

Assuming Ai=1, βi=0.5, and γi=0.5 in Equation (2), 
i

i
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 term for the damaged system can be obtained from Equation (13): 
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where ih  and ir  are the damaged hysteretic displacement of storey i and the damaged relative 

displacement between storey i and storey i-1, respectively. ih  can be calculated from Equation (14) 

using Equation (12) for the damaged structure and assuming constant ih  at each time step. 
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where Δt is the time step.  

In this fashion, plastic displacement in the Bouc-Wen model is defined as: 

NithtrtD iii ,...,1),()()(   (15) 

where Di(t) is the plastic deformation of storey i.  

The damaged structure stiffness, or the effective stiffness changes due to non-linear behaviour such as 
hysteresis, can then be determined by identifying the i̂ at every discrete time step using Equation (16). 
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where kgx )(  is the input ground acceleration at time k, and kv , kv  and kv  are the measured 

acceleration, velocity, and displacement of the damaged structure at time k, respectively. Matrices of 

TK and Ki are calculated sample-to-sample using Equations (3) and (6) with the measured damaged 
structural responses. The elements of the vector signal yk can be readily modelled in real-time using an 
adaptive LMS filter so that the coefficients i̂ , changes in linear elastic stiffness of each storey due to 

modelling or construction damage, can be readily determined. 

3 ADAPTIVE LMS FILTERING 

Adaptive filters are digital filters with coefficients that can change over time. The general idea is to 
update filter coefficients and assess how well the existing coefficients are performing in modelling a 
noisy signal, and then adapt the coefficient values to improve performance. The least mean squares 
(LMS) algorithm is one of the most widely used of all the adaptive filtering algorithms and is 
relatively simple to implement. It is an approximation of the Steepest Descent Method using an 
estimator of the gradient instead of its actual value, considerably simplifying the calculations and to be 
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readily performed in real-time applications. The goal in this case is to model the individual, scalar 
elements of the signal yk of (16) using the adaptive LMS filter. 

In adaptive LMS filtering, the coefficients are adjusted from sample-to-sample to minimize the mean 
square error (MSE), between a measured noisy scalar signal and its modelled value from the filter. 
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where Wk is the adjustable filter coefficient vector or weight vector at time k, kŷ  is the measured noisy 
scalar signal at time k, to be modelled or approximated, Xk is the input vector to the filter, model of 
current and previous filter inputs, ikx  , so k

T
k XW is the vector dot product output from the filter at time 

k to model a scalar signal kŷ , and m is the number of prior time steps or taps considered. The 
Widrow–Hopf LMS algorithm for updating the weights to minimize the error, ek, is defined as 
(Ifeachor & Jervis, 1993):  

kkkk XeWW  21   (18) 

where µ is a positive scalar, called step size, that controls the stability and rate of convergence.  

To identify TK  at time k, using LMS adaptive filters we will follow the One-Step method (Chase et 

al., 2004) and re-write Equation (17) in matrix form by substituting k
T

k XW with its equivalent from 
Equation (16): 
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Minimizing the mean square error (MSE) with respect to ij̂ using Equation (18) yields the following 

weight update formula for the SHM problem: 

jk
T
kkk veww   .K2 i1   (20) 

Summing ij̂ over j, yields the i̂ , changes in stiffness of each story in Equation (16). 

4 INPUTS TO THE SHM PROBLEM 

Inputs to this SHM problem are acceleration, velocity, and displacement of the structure. Acceleration 
can be easily measured with low cost accelerometers at high sampling rates. Due to practical 
constraints, direct high speed measurement of displacement and velocity is not typically possible. A 
high speed displacement sensor would provide displacement, and could be used to derive velocity at 
low added computational cost. Estimating the velocity using both acceleration and displacement data 
would provide a more precise estimation of the velocity. To measure displacement of a real structure 
at high rates up to tens of kHz, line scan cameras can be used, although this paper proposes but does 
not explore the method proposed in (Lim M. & Lim J., 2008). 

5 SIMULATED CASE STUDY STRUCTURE 

The simulated structure is an equivalent single degree of freedom (ESDOF) of one of the moment-
resisting frames in long-direction of a five-story concrete building. The plan view of a typical floor of 
the building is shown in Figure 1. The floor system consists of 200 series precast hollow-core floor 
units having a 65 mm topping spanning on long direction of each floor. The seismic weight per floor is 
1692 kN for roof level and 2067 kN for other levels. Each storey has 3.8 m height, and the frame 
system is designed according to the New Zealand Concrete Structures Standard (NZS 3101) using the 
displacement-based design approach to sustain a target drift level of 2% under a 500-year return 
period earthquake. 
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Figure 1. Plan view of the simulated 5-storey shear-type concrete building 

Figure 2 shows the push-over analysis results of the building. Ruaumoko was used to perform the 
analysis to determine the total linear stiffness (27300 kN), the bi-linear factor (0.065), and the yield 
displacement (46.5 mm) of the building. 
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Figure 2. Push-over analysis results of the simulated building using Ruaumoko 

Non-linear dynamic analysis using a Bouc-Wen hysteretic model was performed in MATLAB® to 
represent the non-linear hysteretic behaviour of the structure, and the simulated structural responses 
from MATLAB® was used to provide proof of concept and quantify the accuracy of the identified 
parameters, changes in linear elastic stiffness of each storey, and identified plastic and permanent 
displacements. In simulating the structural responses, 5% constant damping was considered, and the 
building was given a shaping parameter of n=2 to provide realistic non-linear structural behaviour. 

The developed SHM algorithm was implemented in MATLAB® for the stiffness identification process, 
and identified values were used to recalculate structural responses using the Newmark-β integration 
method. The simulated structure was subjected to the Cape Mendocino record with peak ground 
acceleration (PGA) of 0.23 g, with a 10% reduction in pre-yield stiffness applied to the structure at the 
10 second mark. Simulated-derived data was recorded at 500Hz.  

6 RESULTS 

Typical responses of the ESDOF of the simulated five-story shear-type concrete structure with a 10% 
reduction in the linear elastic stiffness at a time of 10 second under the Cape Mendocino earthquake 
are shown in Figure 3. As shown in Figure 4, in a worst-case sudden failure case, Δk0, the changes in 
pre-yield linear elastic stiffness of the structure converge to within 10% of the actual value in less than 
2 seconds using 10 taps at a 500 Hz sampling rate. Figure 5 shows that filter approaches faster and 
smoother to the final values of the pre-yield stiffness changes after damage when higher sampling 
rates or a greater number of taps are used to identify the stiffness changes.  
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Figure 3. Responses of the simulated structure subject to the Cape Mendocino earthquake and 10% sudden 
failure 
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Figure 4. Identified changes in pre-yield stiffness of the simulated structure with 10% sudden failure using 
adaptive LMS algorithm  
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Figure 5. Identified changes in pre-yield stiffness of the simulated structure with 10% sudden failure using 
adaptive LMS algorithm, (a) at different sampling rates and (b) with different tap numbers 

Running the simulation with estimated values for changes in pre-yield stiffness of the structure to 
obtain identified responses of the damaged structure using the Newmark-β integration method and 
Equations (14) and (15)  to get  the plastic and permanent deflections of the structure, yields Figure 6. 
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This figure clearly shows that as the filter approaches its final value for changes in stiffness (Δk0), the 
plastic deflection approaches its actual final value and the error between actual and estimated values 
for plastic deflections becomes smaller. For the entire record, the ratio between norms of the error 
signal in estimating the plastic deflections and the displacement signal is less than 2.5%, and the error 
in identifying the permanent deflection is less than 0.5% of the actual value. 
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Figure 6. Identified plastic displacement of the simulated structure with 10% sudden failure using estimated 
changes in pre-yield stiffness of the structure using adaptive LMS algorithm 

7 CONCLUSION 

The developed LMS-based SHM method with a baseline non-linear Bouc-Wen structural model can 
directly identify plastic deflections and changes in stiffness (modelling or construction error), in real-
time. The simulation results show that the algorithm identifies stiffness changes to within 10% of true 
value in less than 2.0 seconds, and permanent deflection is identified to within 0.5% of actual value. 
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