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A reduction in voluntary feed intake is a major factor in the lost productivity of grazing 

lambs infected by gastrointestinal parasites yet the mechanisms involved are poorly 

understood. Potential pathways involved in parasite-induced feed intake depression were 

investigated in lambs with minimal previous exposure to parasites and artificially infected by 

the small intestinal parasite Trichostrongylus colubriformis. Six in vivo experiments were 

conducted on lambs housed in individual pens or metabolism crates with similar feeding and 

experimental procedures. 

In Experiment 1 (Chapter 4) the effect of T. colubriformis infection on short term feed 

intake in lambs and of some pharmacological agents on feed intake depression were 

investigated. Prior to and for the duration of infection, lambs were fed once per day and 

feed intake recorded at regular intervals over the day (8 h). Following the onset of feed 

intake depression in the infected group (9 weeks after commencing dosing), all animals were 

treated with an analgesic (codeine phosphate per os), an anti-inflammatory agent 

(indomethacin per os), a CCK antagonist (L364-718 by subcutaneous injection) or saline 

(control) in a replicated Latin square design (n = 8). Although the pattern of feed 

consumption was similar in infected and non-infected lambs, average daily intake was 

reduced 32 % and short term intake (recorded at 10 minute intervals for the first hour of 

feeding, 15 minute intervals for the second hour and hourly for the next 6 hours of feeding) 

reduced 40 % by infection. This identified the key component by which intake was 

depressed and enabled the use of a short term intake model and short duration of action 

compounds to identify the pathways involved in intake depression in this sequence of 

experiments. None of the pharmacological treatments increased intake in the infected group. 

These results suggest a reduction in the rate of consumption due to reduced hunger signals, 

rather than change of meal eating patterns, is the major cause of feed intake depression. 
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Specific conclusions about the pathways investigated using the pharmacological agents could 

not be obtained. 

Experiment 2 (Chapter 5) was designed to investigate the roles of pain and osmolality on 

feed intake depression. Digesta samples collected prior to and during parasite infection and 

before and after feeding had similar osmolalities (240-260 mosmolll) which indicated that 

feeding or infection had no effect on osmolality of digesta. Following the onset of feed 

intake depression in infected animals, all animals were treated in a Latin square design (n 

= 4) with no treatment, saline, local· anaesthetic (xylocaine) or analgesic (codeine phosphate) 

solution 15 minutes before feeding, by slow injection into the duodenum. There was no 

effect of these treatments on food intake. In the second part of the experiment, 

hyperosmotic solutions (mannitol and NaCI) markedly depressed short term intake in non-

infected animals, suggesting a role for osmoreceptors in intake regulation. However these 

effects were not blocked by local anaesthetic so the depressed intake may have resulted from 

generalised malaise rather than from specific osmoreceptor effects. 

In Experiment 3 (Chapter 6) the role of peripheral CCK on intake depression was examined 

by a dose-response study utilising the CCK antagonist, loxiglumide. Intravenous injection of 

5, 10 or 20 mg/kg LW of loxiglumide to infected lambs 10-15 minutes before feeding (n = 
6) had no effect on feed intake at any of the dose levels. In experiment 4 (Chapter 7) 

loxiglumide was infused intravenously for 10 minutes (30 mg/kg/h) before feeding and for 

the first 2 h (10 mg/kg/h) after feed was offered to minimise any effect of the rate of 

clearance of loxiglumide on the lack of feed intake response. As well, the rate of marker 

disappearance from the abomasum was recorded in both infected and non-infected animals. 

Continuous infusion of loxiglumide did not attenuate parasite induced intake depression nor 

did it have any effect on abomasal emptying. Abomasal volume was reduced by infection 

(66.3 vs 162 ml) as was the fractional outflow rate (2.2 vs 2.8 ml/min) but these differences 

were accounted for by the lower level of feed intake in the infected animals. 

In Experiment 5 (Chapter 8) brotiwlam, a benzodiazepine appetite stimulant, thought to act 

on the hypothalamus, was administered in a dose-response study to infected and non-infected 

anir,nals (n = 4) immediately prior to feeding or following termination of the first meal (45 

minutes after feeding) and the feed intake response recorded. Brotizolam elevated both the 

short term (0-0.75 h), daily (22 h) intake and all time intervals in the first 5 h after feeding 

in infected and non-infected animals when administered after the first meal but when 



administered prior to feeding elevated intake only over the first 6 h of feeding. In both 

cases the magnitude of the response was greater in infected animals than in non-infected 

animals. Brotizolam appeared to increase the rate of eating without having a major impact 

on meal eating patterns when administered before feeding. Where administration was after 

the first meal, the effect was due to an "extra" meal being consumed. These findings 

showed that infected animals can respond to central stimulators of intake although the 

mechanism of the response is not known. 

Opioids were implicated in intake depression as the rate of intake rather than meal patterns 

appeared to be the major parameter depressed under parasitism. This was examined in 

experiment 6 (Chapter 9) where animals (n = 6) were fasted for 26 h or not fasted, then 

treated with saline (control), brotizolam (intake stimulant) or naloxone (opioid antagonist) 

immediately prior to feeding. Fasting stimulated feed intake in the short term (100 % 

increase in 75 min) and over the day (12 % increase) in both infected and non-infected 

animals. Following fasting, infected animals ate a similar amount of feed to the non-

infected, fasted animals and more than the non-infected, non-fasted animals. The signals 

resulting from a one day fast were sufficient in the short term to override parasite induced 

mechanisms causing feed intake depression. Naloxone suppressed the intake stimulatory 

effects of a 26 h fast in both infected and non-infected animals, which supports a role for 

endogenous opioids as hunger signals. Where animals were not fasted, naloxone reduced 

intake only in the non-infected animals which suggested endogenous opioid levels may be 

lower in infected animals than in non-infected animals. 
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In the final experiment (Experiment 7, Chapter 10) the role of central hunger and satiety 

mechanism were investigated. Infected and non-infected animals (n = 6) were treated with 

naloxone or saline by intravenous injection, or saline and met-enkephalinamide (an opioid 

analogue) by intracerebral infusion, or naloxone and the opioid analogue simultaneously to 

investigate the role of central opioids in feed intake depression. To determine the role of 

CCK induced satiety signals on feed intake at a central level, loxiglumide and CCK were 

infused separately and in combination for 30 minutes prior to feeding and for the first 60 

minutes of feed on offer, into a lateral cerebral ventricle of the brain of infected and control 

ani~als (n = 6). 

The opioid analogue tended to increase intake in infected animals but the effect was not 

significant probably because the dose used was too low to elicit a response in sheep. 



Naloxone depressed intake only in the infected animals, which conflicted with the results of 

Experiment 4. As a consequence these results were inconclusive because of the single low 

dose of opioid analogue used and the conflicting naloxone responses. 

v 

CCK alone depressed intake by 39-52 % only in infected animals and this effect of the 90 

minute infusion was evident over the 8 h short term recording period. Loxiglumide 

attenuated the feed intake depressive effects of CCK in the infected animals to the extent that 

intake was elevated above control levels. Loxiglumide alone was an intake stimulant in both 

infected and non-infected animals. Intake was increased over the entire 8 h but mostly in 

the second hour when intake was increased by 188 % in infected animals and by 16 % in 

the non-infected animals and resulted in almost continuous eating. These results showed 

loxiglumide will temporarily block the effect of parasite infection on feed intake in sheep 

when administered centrally and the fact that it blocked the effects of exogenous CCK on 

intake indicated that the effect is mediated via CCK receptors. 

In conclusion GIT parasite infection reduced both short term and daily feed intake apparently 

by a change in rate -of intake rather than any alteration in meal patterns. It was further 

suggested that anyone of a number of potential peripheral pathways, including changes to 

osmolality, gut emptying, pain and inflammation of the gut, alone is not involved in 

anorexia in sofar as the compounds used could block these factors and the results support the 

idea that intake depression is mediated via a central mechanism. Intake in infected animals 

responded to a much greater extent when fasting, i.c.v. loxiglumide or brotiwlam were 

employed. Feed intake thus appears to be regulated through the same mechanisms in 

infected and non-infected animals. The results from compounds affecting the central 

mechanism suggest central CCK receptors are important in parasite induced anorexia, 

possibly by changing the onset of satiety or by interacting with endogenous opioids to reduce 

the rate of feed intake. Secondly reduced endogenous opioids may be causing the reduction 

in the rate of feed consumption alone or as a result of other interactions. It was concluded 

that intake in parasitised animals could be increased to that of control animals by employing 

procedures and compounds thought to act on the hypothalamus. 

Keywords feed intake; gastrointestinal parasites; T. colubriformis; CCK 

antagonists; L364-718; loxiglumide; fasting; opioids; naloxone; pain; 

osmolality; inflammation. 
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CHAPTER 1 

Introduction 

Gastrointestinal parasite infection is a common and ongoing source of lost production, 

particularly for young animals grazing pasture. In excess of 70 million dollars (NZ) is spent 

annually on anthelmintic treatment in New Zealand. However subclinical parasite infection 

remains the hidden cost to farmers in terms of unseen lost production and development of 

anthelmintic resistance which often remains undetected until a crisis in the flock health 

occurs. 

Research workers have implicated lesions within the relevant organs for the depressed 

intake, with the focus on gut pathology rather than on the feed intake depression. This is 

perhaps understandable since much of the local damage occurs in locations known to house 

receptors which monitor wall tension and changes in digesta content. However this appears 

rather simplistic because intake falls progressively and is more marked in association with 

low quality diets. Identification of the mechanisms or pathway(s) involved in intake 

depression may provide suggestions for a means to block their action. If intake can be 

increased in parasitised animals this is likely to minimise the reduction in animal 

performance observed in parasite infection and hasten the development of immunity or self 

cure. 

In this thesis potential mechanisms involved in causing feed intake depression are 

investigated. The effects of infection on feed intake were studied initially and led to the use 

of a short term feed intake model to screen a nu~ber of potential pathways in parasite 

induced anorexia. 

1 



CHAPTER 2 

Review of the Literature 

2.1 Introduction 

Effects on productivity 

Gastrointestinal nematodes are a major cause of impaired productivity in grazing ruminants, 

which is manifest in a variety of ways, including reduced voluntary feed intake, live-weight 

gain, wool growth and changes in carcass composition. 

The magnitude of losses in production varies with the parasite species and the level of 

infection. Lower levels of infection do not measurably affect production, but with heavier 

infections the effects may be more dramatic and in severe cases death may result. Young 

animals or those on a low plane of nutrition are most severely affected by infections of the 

gastrointestinal tract (GIT). 

The losses in production outlined above are the end result of parasite infection of the GIT. 

Research activity has focused on aspects of the disease process, particularly disturbances to 

the function and/or structure of tissues, feed intake and the efficiency of use of 

metabolisable energy. This review will examine the scientific literature on these effects of 

parasite infection on the host. 

Two factors have been identified as major causes of impaired productivity. The first, 

anorexia or a depression in voluntary feed intake, is the focus of this study but one which 

remains poorly understood. This review will therefore include a major section on factors 

thought to control feed intake in healthy animals. The second, reduction in utilisation of 

metabolisable energy has been extensively studied (Bown 1986). However, the effects of 

parasites on nutrient utilisation by the host are reviewed here because these disturbances to 

gut function and nutrient availability to the tissues may be blocking or potentiating existing 

pat4ways in feed intake regulation or influencing other regulatory pathways to produce feed 

intake depression. 

2 



2.2 Feed intake 

The most significant effect of gastrointestinal parasitism on the host is a depression in 

voluntary feed intake. The extent to which this reduction in feed intake or anorexia occurs 

is dependent on the numbers of larvae ingested and the species of helminth involved 

(Symons, 1985). Reduced intake per se is always important in infections and invariably a 

major contributor to lost production, accounting for 40-90 % of the observed weight 

differences between infected and non-infected animals. 

Where possible the review of the literature will be restricted to situations in which trickle 

infections have been used to produce a sub-clinical infection which is more akin to the 

situation faced by grazing ruminants than the acute infections caused by single massive 

doses of parasites. 

2.2.1 Effect of number of larvae ingested 

3 

Generally the greater the larval intake the greater the degree of inappetence suffered by the 

host. However some caution is needed in the interpretation of experimental data, because of 

the effect of different experimental conditions including the unknown effect of relative 

pathogenicity of different parasite strains and any differences in susceptibility of sheep 

breeds to parasite induced intake depression. 

The small intestinal parasite Trichostrongylus colubriformis (T. colubriformis) depresses feed 

intake in a dose dependent manner. Steel, Symons and Jones, (1980) found anorexia 

occurred mainly during weeks 8-12' of infection, with feed intake being depressed relative to 

non-infected animals by 30, 40 and 60 % at larval intakes of 3 000, 9 500 and 30 000 per 

week respectively. In contrast 17 500 larvae/week depressed intake by only 20 % (Sykes 

and Coop, 1976; Coop, Sykes and Angus, 1976) to 40 % (Kimambo, M'cRae, Walker, Watt 

and Coop, 1988). 

The abomasal parasite Teladorsagia circumcincta (O.circumcincta) depressed intake by up 

to ~O % following a trickle infection of 4 000 larvae/day (Sykes and Coop, 1977) and 5 000 

larvae/day (Coop et aI., 1977). In conflict with this, and highlighting the impact of 

differences in experimental conditions, Steel et aI. (1980) found dose rates up to 5 300/day 

had no effect on feed intake and that dose rates of up to 17 OOO/day were required to reduce 



4 

intake by 20 %. 

2.2.2 Effect or parasite species 

Sheep with either trichostrongylosis or ostertagiasis suffer reduced voluntary feed intake, but 

as discussed in the previous section, there are species differences in the number of larvae 

required to induce anorexia. 

Much of the work has considered only monospecific parasite infections (Sykes and Coop, 

1976; Coop et aI., 1977; Steel et al., 1980 and Symons et aI., 1981) whereas polyparasitic 

infections are more common in sheep grazing pasture. Sykes, Poppi and Elliott (1988) 

found T. circumcincta and T. colubriformis depressed feed intake by 8 and 10 %, 

respectively, while a simultaneous infection with the same number of larvae reduced feed 

intake by 30 %, demonstrating a multiplicative rather than additive effect of simultaneous 

infection on feed intake. 

The multiplicative rather than additive effect of polyparasitic infections on feed intake 

suggests that more than one pathway may have a role in signalling feed intake depression. 

2.2.3 Effect or nutritional status or host 

It is generally accepted that the nutritional status of sheep can affect their susceptibility to 

gastrointestinal parasites (Whitlock, 1949 cited by Holmes, 1986; Gibson, 1963). 

Where lambs infected by H. contortus (Abbott et aI., 1985a, b; Abbott et aI., 1988) were 

offered a diet containing either 88 or 199 g crude protein per kg dry matter, the results 

suggested that crude protein per se did not influence the establishment of a single infection. 

However, lambs on the low protein diet showed more severe clinical signs including weight 

loss, anaemia and inappetence despite apparently similar levels of blood loss. Bown, Poppi 

and Sykes (1986) infused protein (50 g/day) or isocaloric glucose into the abomasum, 

calculated to provide sufficient protein to increase nitrogen retention to that of a non-

inf~ed lamb. Feed intake depression was less in both infused groups than in the control 

group (22 % vs 32 %) while post-mortem worm burdens were much lower in the protein 

infused animals than in both the glucose infused and control groups. The development of 

resistance to parasite infection was impaired by a low protein status. 
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2.2.4 Summary 

In summary, a reduction in voluntary feed intake has a major impact on the productivity of 

sheep. Both the number and type of parasite present affect the degree of inappetence and 

therefore losses to production. Doses of 3 000 - 30 OOO/week T. colubriformis or T. 

circumcincta generally reduced feed intake by 20 - 60 % in young lambs, usually during 

weeks 6-12 of infection. Polyparasitic infections probably result in greater inappetence than 

monospecific infections. Finally the nutritional status of the sheep may affect their 

susceptibility to parasites. A higher jntake of protein reduces but does not prevent anorexia 

and has a beneficial effect on the immunological response of the sheep to parasitic 

challenge. 

2.3 Gastrointestinal structure and function 

Parasites reduce the efficiency of utilisation of metabolisable energy and numerous 

disturbances to the GIT have been identified which appear likely to contribute to this 

reduction in efficiency. One or a combination of these disturbances may have a role in 

stimulating or blocking chemical, neural, hormonal or a combination of these potential 

regulators of feed intake. Alternatively another pathway not usually involved in feed intake 

regulation may be triggered by other disturbances to the gastrointestinal tract. 

2.3.1 Structural and histopathological changes of gastrointestinal tissues 

Marked changes in the histological appearance of tissues are a feature of GIT parasite 

infection. Many of these changes and the associated tissue dysfunction can be attributed 

directly to penetration, migration and feeding habits of the parasite concerned. For example 

T. circumcincta and T. axei lesions are the result of destruction of gastric glands, coinciding 

with the growth of developing larvae and their emergence from the gastric mucosa. 

Extensive replacement of functional GIT cells by undifferentiated cell types as well as 

epithelial hyperplasia, crypt elongation and inflammation which together produce thickening 

of the mucosa and leak lesions (Dargie, 1980) are common. 

2.3.2 Gastrointestinal motility 

Diarrhoea, commonly associated with GIT parasite infection, is indicative of disturbances to 



digestive tract motility. Diarrhoea is usually only recorded in acute infections and occurs 

transiently, commonly at the time of adult emergence, disappears spontaneously (Sykes and 

Coop, 1976; Coop et al., 1977) and does not appear to have a role in or result from feed 

intake depression. 

2.3.3 Endogenous losses 

Mucosal cells 
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Increased desquamation of mucosal ~pithelium cells and/or increased mucus production may 

explain some of the unaccounted endogenous N losses in infected sheep. Increased cell 

proliferation has been suggested from increased mitotic figures in the crypts with T. vitrinus 
(Coop and Angus, 1975; Coop et al., 1979) and H. contortus (Rowe et al., 1982). 
Proliferation of goblet cells and increased mucus production have been reported with 

ostertagiasis (Armour et ai., 1966; Murray et ai., 1970) and in some cases T. vitrinus 
(Jackson et ai., 1983). 

Plasma proteins 

Loss of protein into the GIT is a distinctive feature of GIT parasite inf dependant with T. 

colubrijormis infection but greater than could be explained by a reduction in feed intake 

aloections and usually associated with lowered plasma albumin and elevated plasma globulin 

concentration. Hypoalbuminaemia was dose dependent with T. colubrijormis infection but 

greater than could be explained by a reduction in feed intake alone (Coop et al., 1976; 
1977). Increased enteric catabolism and decreased synthesis appears responsible for the 

observed depletion in the plasma albumin pool (Steel et al., 1980). Parasitised sheep seem 

to be unable to increase the synthesis of albumin in response to excessive enteric loss, 

especially when N intake is depressed (Dargie, 1975; 1980). The increased plasma 

concentration of globulin results from increased synthesis, greater than enteric catabolism, 

which may be associated with the development of an immunological response to infection. 

2.3.4 Digestion, absorption and metabolism 

Protein digestion and absorption 

The amount of protein available to parasite infected lambs is reduced by anorexia, but pair 

feeding experiments indicate that anorexia alone does not account for all the observed 

changes in protein availability. The nitrogen (N) content of digesta at the ileum increased 



et al., 1985b). However true digestibility and absorption in the small intestine are 

unchanged during infection (poppi et al., 1981; Symons and Jones, 1970). These findings 

led the authors to conclude that the extra protein was of endogenous origin. 

Protein metabolism 

The fractional synthetic rate and amount of protein synthesis per day appear to increase in 

infected lambs but not in pair-fed controls (Jones and Symons, 1982). Symons et al. (1981) 
concluded that anorexia, enteric protein losses and increased intestinal tissue protein 

metabolism resulted in a net movement of amino acid N from muscle and possibly skin to 

the liver and intestines, which decreases the availability for deposition in muscle and wool. 

Energy digestibility and metabolism 
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Infection with either T. circumcincta or T. colubriformis has little effect on feed digestibility 

(Sykes et al., 1988; Sykes and Coop, 1976; Dargie, 1980). A reduction in efficiency of use 

of metabolisable energy does occur with both T. circumcincta and T. colubriformis (Sykes 

and Coop, 1976; MacRae et al., 1979; Dargie, 1980; Sykes et al., 1988). 
Sykes et al. (1988) concluded that the predominant effect of simple infection with T. 

colubriformis was to reduce energy retention by reducing the efficiency of use of 

metabolisable energy, while infection with T. circumcincta reduced energy retention by 

reducing feed intake. 

2.3.5 Minerals 

Intestinal infection with T. colubrijormis results in marked villous atrophy of the proximal 

intestine. The intestine is also the primary site of P absorption, so it appears likely the 

physical damage caused by the parasites might affect the mechanism of P absorption. 

Apparent absorption is depressed in infected animals (Reveron et al., 1974; Sykes and 

Coop, 1976) by up to 33 % (Wilson and Field, 1983). The changes in pH of digesta 

associated with infection may also hinder absorption by precipitating P as insoluble Ca and 

Mg complexes in the intestinal lumen (Smith and MCAllan, 1966; 1967). 

Increased faecal Ca levels occur with both T. circumcincta and T. colubrijormis infections 

(Wilson and Field, 1983, Poppi et al., 1985b; Bown et al., 1989), probably originating 

from extra endogenous losses. Hypocalcaemia has been reported in recent studies (Bown et 
al., 1989), but not in earlier studies (Wilson and Field, 1983; Poppi et al., 1985b). 



Feed intake in sheep of low P status is elevated significantly by P supplementation (Milton 

and Ternouth, 1979). The occurrence of induced P deficiency with parasite induced 

anorexia suggests P status of the sheep may have an additive effect with parasitism on feed 

intake (poppi et al., 1985b). 

2.3.6 Summary 
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Increased endogenous losses of plasma, mucus and epithelial cells are a feature of infections 

of the GIT with nematodes. Much of the protein lost is reabsorbed distal to the site of 

infection but the cost of recycling plus that which is not reabsorbed increases the nutrient 

requirements of the infected animal. The resulting elevated gut tissue metabolism and large 

amounts of protein cycling are energetically costly (Sykes, 1982). The result is an 

additional nutrient demand on the host in much the same way lactation or foetal growth may 

be viewed (poppi et al., 1990), but this demand occurs at a time when anorexia is reducing 

the intake of nutrients. The role of these changes in precipitating feed intake depression are 

unknown. 

Of the minerals studied (p, Mg, Ca) P absorption appears most affected by intestinal 

parasites, with the ability to absorb P being impaired. Induced P deficiency may be have a 

role in parasite induced feed intake depression. 

Many histological changes in the appearance and dysfunction of gut tissue result from 

parasite penetration, migration and feeding. Enhanced permeability, mucosal thickening and 

loss of functional cell types are common features. These changes may directly effect feed 

intake due to the loss of production of neural or hormonal signals from the mucosal tissue, 

loss of receptors from this tissue or from stimulation of pain or distension pathways. 

Parasites cause a depression in productivity and increased requirement for nutrients in the 

infected host. Yet another response of the host to infection is the development of anorexia 

so nutrient availability is falling at a time of increased demand. The fall in feed intake may 

result directly from one of the changes described above or indirectly via neural or hormonal 

pathways 



2.4 Regulation or voluntary reed intake 

In a comprehensive review of anorexia in parasitic infection Symons (1985) suggested that 

although anorexia is a symptom of many different infectious and non-infectious diseases of 

various organs and tissues of the body with manifold causes, even with these peripheral 

causes, it is probable that there is a common mechanism in the central nervous system 

(CNS) signalling feed intake depression. Symons (1985) highlighted the lack of 

understanding of likely causes and concluded "the summary of the regulation of eating and 

satiety in the normal animal indicates that a complete understanding of anorexia in 

parasitised animals is certainly complex and may be difficult to unravel" . 
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In one of the few studies in sheep Symons and Hennessy (1981) reported elevated peripheral 

cholecystokinin (CCK) levels associated with the onset of feed intake depression, with a fall 

in CCK levels following anthelmintic treatment. More recently Fox et al. (1989) reported 

increases in plasma gastrin concentration during establishment of gastrointestinal parasite 

infection in calves. Both studies have shown anorexia to be temporary/reversible because 

the intake of both the sheep and calves was restored following anthelmintic treatment. 

This section will outline the regulation of intake in the normal animal then consider possible 

mechanisms in the parasitised counterpart. 

It appears likely that two components to feed intake regulation operate, a short term or meal 

regulator and a longer term (greater than 2-3 days) intake regulator. Differences probably 

exist between these two control mechanisms, with determinants of meal regulation (short 

term intake) not being determinants of longer term feed intake control (Weston and Poppi, 

1987). Yet many similarities exist in the concept of energy demand and flow being 

involved in both short term (Forbes, 1980) and long term (Weston, 1985) regulation of feed 

intake. 

2.4.1 Feed intake regulation (long term) 

F~ intake changes to meet the tissue energy requirements of the individual, which varies 

with the physiological state of the animal. Long term feed intake regulation appears to 

respond to the energy requirements of body tissue, with rumen physical transactions, 

dietary, environmental and other physiological functions being constraints to the system 
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(Weston" 1985; Weston and Poppi, 1987). 

Physiological state 

As the physiological state of the animal changes through growth, maturity and succeSsive 

reproductive cycles, associated changes in feed intake will usually meet the changing 

nutrient demands of the individual. For example, growing animals will adjust feed intake to 

maintain digestible energy intake and body weight gain when the energy concentration of the 

diet is changed (Baumgardt, 1970). Similarly, feed intake decreases when nutrients are 

infused into the abomasum of sheep (Weston, 1971) again such that digestible energy and 

live-weight gain remain unchanged. 

During lactation in ruminants there is a considerable increase in energy demand which is 

positively correlated with litter size (Weston, 1982) but, at least initially, increases in feed 

intake may not match the increased demand (Bauman and Currie, 1980) and mobilisation of 

tissue reserves is required. The final trimester of pregnancy is a phase of increased energy 

demand to meet the demands of a rapidly growing foetus yet feed intake remains unchanged, 

or in some cases falls, during this time. Evidence does not support a physical limitation to 

intake being the sole cause (Forbes, 1986). In this case, during early lactation and possibly 

with the fall in intake during oestrus, associated marked endocrine changes may be 

responsible for the low nutrient intake (Forbes, 1986; Weston and Poppi, 1987). 

Gastrointestinal tract and feed intake 

Forage acquisition has a role in regulating feed intake: the time available for grazing, ease 

of harvesting and mass of feed available will all impact on feed intake. Weston (1985) and 

Weston and Davis (1986) have demonstrated a link between the energy required for 

comminution or grinding a forage and feed intake, so the resistance of a forage to 

degradation during eating may be a constraint to feed intake. There is probably variability 

between species of animal and between age groups in susceptibility to this type of 

constraint. 

Factors which affect flow of digesta through the GIT may influence feed intake. An inverse 

relationship between reticulo-rumen load and DE or ME intake has been reported (Ulyatt, 

1970; Weston, 1984) which Weston (1985) speculated may reflect a relationship between 

reticulo-rumen load and energy deficit of the animal (where energy deficit is the difference 

between tissue energy demand and the energy supplied from the diet). However this 



relationship does not hold in all cases. For instance, Poppi et al. (1980) compared plant 

leaf fractions with stem fractions and found a 21-77 % increase in DE with no change in 

reticulo-rumen load. Particle size constraints exist, as fine particles are cleared more 
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rapidly than coarse particles (poppi et aI., 1985a) hence the decrease in load and increase in 

rate of emptying when forages are ground and pelleted. However there appear to be no data 

on upper limits to flow rates for ruminants. 

Parasites may have a role in disturbing feed intake (long term) regulation by influencing the 

rate of digesta flow to and/or from the reticulo-rumen. Changes in digesta flow have been 

recorded (Gregory et aI., 1985b) in infected animals which were greater than could be 

explained by changes in feed intake alone. Slowing gut emptying would probably affect 

both meal and longer term regulation of intake. Parasites may change the essential nutrient 

balance of the individual. For instance, the fall in plasma P associated with parasite 

infection may depress feed intake as may the protein recycling resulting from increased 

losses of plasma proteins into the intestinal lumen. 

2.4.2 Short term or meal regulation 

Regulation of short term feed intake is concerned with nutrient intake, such that only small 

deviations from a constant are possible, whilst maintaining the internal milieu and 

preventing overload of the GIT. Meal patterning is not rigid and ruminants will vary the 

frequency, duration and size of meals to compensate for limited access to feed or harvesting 

difficulties. Early interest was in the role of metabolites of digestion as determinants of 

initiation and termination of meals, followed by interest in an array of hormones identified 

in the gut and brain of animals. 

2.4.2.1 Metabolites 

Volatile fatty acids 

Volatile fatty acids (VFA) are collectively an essential energy substrate in ruminant 

metabolism, and as a result, their role in regulation of meals has received much attention. 

Following large meals, increased hepatic blood flow of VF A has been noted in both sheep 

and cattle (de Jong, 1987) yet such changes are not evident following spontaneous meals 

(Adams and Forbes, 1981). Jugular or ruminal infusions of VFA depress feed intake, (Baile 
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and Forbes, 1974), but the unphysiological levels of VFA used, their form and the meth,od 

of administration suggest the importance of this finding is now questionable (de long, 1986). 

More recently hepatic portal vein infusions of high concentrations of all 3 VF A failed to 

affect meal size, inter-meal interval or 4 h feed intake in goats (de long 1981a, b). . 

Similarly Peters et aI. (1983) tripled propionate concentration in portal blood without 

changing feed intake. In contrast Anil and Forbes (1980) and Elliot, Symonds and Pike 

(1985) demonstrated a reduction in meal size following portal infusions of propionate in 

sheep or cattle. These contradictory findings might be at least partly explained by the 

difference in energy status of the animals (Elliot et aI., 1985). Alternatively the reduced 

feed intake may have resulted from a disturbance to sodium receptors or osmoreceptors by 

the ionic strength of the VFA solutions used (de long, 1986) rather than changes in 

concentration of VF A per se. 

In summary, spontaneous meals do not appear to be reflected by changes in blood VF A 

levels which could provide feedback signals and there is little evidence that experimental 

manipulation of VFA concentrations influences meal size. Where rapid and large changes in 

VFA concentrations occur, such as with schedule fed ruminants, VFA may control intake 

to some extent. 

Glucose and free fatty acids 

Glucose does not appear to be a suitable cue for meal patterning in the ruminant. Blood 

glucose levels are not related to spontaneous meals (Chase, Wangsness and Martin, 1977; de 

long 1981a,b) and even where severe and unphysiological hypoglycaemia or hyperglycaemia 

have been reported, these conditions failed to affect meal patterns (de long, 1986). No 

good evidence exists for the involvement of glucose in negative feedback pathways 

controlling feed intake in ruminants (Forbes, 1986). 

Free fatty acid (FF A) may have a role in regulating meal size. However the conflicting 

results and evidence of hunger in fasted animals, despite elevated plasma FFA 

concentration, make a major role for FFA in regulation of intake questionable (de long, 

1986). Free fatty acid concentrations increased during spontaneous meals in cattle (Chase, 

et ai., 1977) but in fasting ruminants fell with feeding (Thye, Warner and Miller, 1970). 

However decreases in feed intake have been associated with experimental elevation of 

plasma FFA concentrations in sheep (de long, 1986). 



Summary 

Current evidence is conflicting for a role for metabolites in meal regulation. A role for 

VF A and free fatty acids appear more probably than one for at least peripheral glucose 

levels. 

2.4.2.2 Hormones 

Anticipation of and the initiation of feeding results in the release of gut and pancreatic 

peptides associated with digestion, absorption and nutrient metabolism. Considerable 

research has centred on the role of these peptides in feed intake regulation. 
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In addition to nervous pathways, hormones may be essential links in the physiological 

control of feed intake, acting as messengers which can respond to changes in the nutrient 

status of the body. For hormones to be involved in the regulation of feed intake, they must 

meet two criteria. Firstly, infusion of physiological levels of a hormone must change feed 

intake and, secondly, a suitable antagonist should block the feed intake response to the 

hormone. The following sections will concentrate on hormones for which a link with the 

regulation of feed intake has been demonstrated. 
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Pancreatic hormones 

Insulin 

Ingestion of feed causes increases in plasma insulin concentration, suggesting a poteritial role 

in intake regulation. However insulin levels are not at their lowest levels immediately prior 

to feeding and rise in response to eating, suggesting it is unlikely insulin has a controlling 

role in the initiation of meals. In both schedule (Evans, Buchanan-Smith and M"cLeod, 

1975) and free-fed (Chase et al., 1977) ruminants, eating induces a small but significant rise 

in plasma insulin. 

Although evidence suggests a role for insulin in regulation of short term control of feed 

intake, the wide fluctuations in plasma insulin concentrations which occur due to factors 

such as stress and exercise make it doubtful that insulin could exert a very precise control. 

Insulin could function as a long term regulator of intake and it is known that for both 

ruminants and monogastrics a positive correlation exists between degree of adiposity and 

mean plasma insulin concentration (de long, 1987). In baboons (Woods, Lotter, MCKay and 

Porte, 1979) and rats (de long, 1987) experimental elevation of CSF insulin concentration 

reduced feed intake, causing a consequent decrease in body fat content. Such evidence does 

not yet exist for ruminants. 

Reductions of plasma insulin levels in T. colubriformis infected sheep are also observed in 

pair-fed controls, suggesting an insulin response to reduced feed intake rather than an 

insulin-mediated response (fitch en, 19 82a, b). 

Other pancreatic hormones 

Glucagon secretion is stimulated in ruminants by gastrointestinal hormones, the autonomic 

nervous system and various nutrients (e.g. VFA) (de long, 1982; Peters et al., 1983). 

Plasma glucagon concentration increased in response to schedule feeding (Bassett, 1972; 

Ostaszewski and Barej, 1979 cited by de long, 1987), whereas spontaneous feeding by goats 

caused only small increases in glucagon concentration (de long, 1981a) suggesting a 

possible role in meal regulation. 

Current evidence supports a potential role for glucagon in regulation of short term satiety in 

both monogastrics and ruminants, whereas a role in long term control of intake appears to 

be unlikely. 
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Neuropeptide Y and Peptide YY 

Of the pancreatic polypeptide-like hormones, both neuropeptide Y (NPY) and peptide YY 

(pYY) are potent stimulators of feed intake in the rat (Clark et at., 1984; Stanley and 

Leibowitz, 1984; Stanley et al., 1985) and sheep (Miner et aI., 1989) when administered 

into a lateral ventricle of the brain. In sheep 3 nmol of NPY will further stimulate intake in 

hungry animals and animals satiated by rumen distension (water filled balloons) or by prior 

injection of propionate (Miner et aI., 1990). Stanley et aI. (1985) found repeated daily 

injections of NPY into the cerebral ventricle of rats increased daily feed intake and live-

weight gain and the animals became obese. NPY is the only hormone known to have this 

action (Williams et aI., 1991). 

Recently NPY has been suggested to have a role in energy balance by not only stimulating 

energy intake but also reducing energy expenditure in the rat (Williams et aI., 1991). 

Gastrin 

Pentagastrin (an active form of gastrin) depresses feed intake in sheep, whether given into 

the jugular vein (Grovum et aI., 1974) or hepatic portal vein (Anil and Forbes, 1980). 

Increases in plasma gastrin concentration have been recorded with feeding of milk to calves 

or lambs (Bloom and Polack, 1978; Reid et aI., 1984), yet in adult sheep plasma gastrin 

increases in response to restricted feeding, rather than ad libitum feeding (Titchen and Reid, 

1986). In fasted sheep, with an isolated abomasal pouch abomasal acid concentration 

increased in response to exogenous pentagastrin (McLeay and Titchen, 1977) but acid 

concentration was reduced in the abomasum if pentagastrin was administered after feeding. 

Gastrin has a direct effect on these cells to stimulate gastric acid secretion as well as 

strongly potentiating the action of histamine on parietal cells (Uttenthal, 1985). Gastrin also 

has long term effects on the GIT. These effects are principally trophic effects that play a 

part in the adaptation of the gut to longer term changes in intake or to compensate for 

pathological damage (Uttenthal, 1985). 

Gastrin is one of the few hormones implicated in intake depression in parasite infected 

animals. Fox, Gerrelli, Pitt, Jacobs, Hart and Simmonds (1987) found a single dose of 

100.000 Ostertagia ostertagi elevated blood gastrin concentration from day 17 of infection 

to a 7-fold increase on day 28. A later trial (Fox et aI., 1988) which utilised a trickle 

dosing regime also recorded elevated plasma gastrin concentrations, however the level of 

elevation was diet dependent, with infected animals on a hay diet having twice the increase 
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that was apparent with a concentrate diet. Similarly in sheep infected with T. circumcincta, 
rats infected with T. spiralis or T. taeniae/ormis and pigs infected with T. ransomi blood 

gastrin levels were elevated (fitchen, 1982a,b). However sheep infected with the small 

intestinal parasite T. colubriformis showed a fall in plasma gastrin levels, possibly due to 

increased release of duodenal peptides which inhibit gastrin secretion (fitchen, 1982a,b). 

This evidence suggests gastrin may have a role in feed intake depression associated with 

abomasal parasites. The trophic effects of gastrin on intestinal mucosa may be an adaptive 

mechanism allowing the host to better withstand the effects of worm induced mucosal 

damage. 

Cholecystokinin 

CCK is the gutlbrain hormone for which there is the most compelling evidence for a role in 

feeding behaviour (Gibbs et aI., 1973a, b), as a satiety hormone involved in meal 

termination. CCK, classically a gastrointestinal hormone, appears to have an equally 

important role in the brain (Dockray, 1987). CCK peptides and their receptors have 

specific regional distribution in the brain (Rehfeld, 1978) with the highest concentration in 

the cerebral cortex but also being present in the periaqueductal grey matter, dorsomedial 

hypothalamus and hippocampus. 

Exogenous CCK or its analogues administered peripherally before or during feeding may 

reduce intake in sheep (Grovum, 1981; Hond~ and Bu~no, 1984). However in other cases 

no effect of peripheral CCK on feed intake in sheep has been found (Baile and Della-Fera, 

1984). Grovum (1981) did observe a markedly disturbed gut motility pattern following 

treatment of sheep with CCK which depressed intake and de Jong (1986) concluded that this 

alteration of gut motility suggested non-specific intake depression rather than a CCK 

mediated effect. 

More consistent intake depression occurs with central administration of CCK in sheep, 

where CCK produces a dose-related reduction in feed intake in fasted (Della-Fera and Baile, 

1979) and feed restricted sheep (Bu~no et aI., 1983) with no accompanying abnormal 

beh~viour. Further, continuous infusion of a competitive antagonist of CCK receptors, 

increased feed intake by 50 % compared with controls and a 2 h infusion of CCK antibodies 

into the lateral cerebral ventricle of sheep approximately doubled feed intake (Della-Fera 

and Baile, 1981). These studies in sheep where exogenous CCK seems to work centrally 



but not peripherally suggest central but not peripheral CCK receptors are important in the 

control of feed intake. 
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The hypothesis that CCK is released during eating and serves as a short-term satiety factor 

deserves serious consideration. In monogastrics peripheral CCK released from the small 

intestine and most likely peripherally located CCK receptors stimulate satiety (Smith and 

Gibbs, 1979) with the emphasis appearing to be on circulating CCK as the signal while in 

ruminants there is a strong case for central or brain CCK and its receptors being important. 

CCK release from the small intestine in response to a meal activates afferent vagal circuits 

that result in the release of CCK at the paraventricular nuclei, thus eliciting satiety in 

monogastrics (peiken, 1989). 

CCK is also one of the few factors which has been implicated in parasite induced feed 

intake depression. Symons and Hennessy (1981) found plasma concentration of CCK (as 

measured by a bioassay) rose as feed consumption fell. Plasma CCK concentration and feed 

consumption both returned to pre-consumption levels within 6 days of anthelmintic 

treatment. The authors also reduced intake in non-infected sheep in the first 10 minutes 

following intravenous infusion of 150-300 ug of CCK. They concluded anorexia may be 

due to or mediated by a high concentration of CCK. 

Opioids 

Endogenous opioids are some of the few compounds suggested to have a role in the 

expression of eating behaviour. Endogenous opioids have a number of roles, including: 

nociception, regulation of cardiovascular and respiratory systems, behavioural patterns, 

homeothermy, appetite, thirst and various endocrine functions (Olson, Olson and Kastin, 

1986). 

Exogenous opioids increase short-term feed intake in sheep. Continuous lateral cerebral 

ventricular injection with 26 nmollminute of Dala2 met5 enkephalinamide, a long-acting 

peptide, increased feed intake in sheep five-fold in the first 60 minutes of feeding (Baile et 
al., 1981). However, minor changes in structure of these peptides have major effects 

bec~use Dala2-Ieu5-enkephalin decreased feeding in sheep (Della-Fera and Baile, 1984). 

Continuous lateral ventricular injection of various dynorphin-A peptides increased feed 

intake in a dose dependent manner (Baile et al., 1987). Again peptide structure appeared to 

be important with dynorphin B administration not affecting feeding. To establish whether 
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the response to these peptides was opioid mediated, sheep were injected intravenously with a 

0.125 mg/kg bolus of naloxone 15 minutes prior to the lateral ventricle opioid injection 

(0.65 nmollmin DALA dynorphin(I-13) (Baile et ai. , 1987). Under these conditions, 

naloxone blocked the feeding response to opioid by 50 %, yet it had no effect on intake 

when given alone. The authors suggested alteration of the level of opioid agonist and 

antagonist could fully block the feeding effects. A similar response was observed following 

Lv. injection of 3,4 dihydroxyl phenyl-3-4 dimethylpiperidine propiophenone maleate, also a 

specific opioid antagonist (Baile, et ai., 1981). 

Further evidence for a role of opioids in hunger signalling in sheep was the identification of 

immunoreactive met-enkephalin and dynorphin neurons throughout the hypothalamus 

(Marson et ai. I 1986) and reported elevation in endogenous plasma opioid levels in 4 hour 

fasted sheep compared with satiated controls (Scallett et ai., 1985). 

In summary, evidence suggests opioids may have a role in hunger or meal initiation. 

Opioids appear to act at multiple sites with a number of receptor classes and may act via 

several independent mechanisms. Depressed voluntary feed intake reported in sheep 

infected by GIT parasites may result from disturbances to the opioid axis. 

Summary 

The role of hormones in regulating feed intake is not as well defined in ruminants as it is in 

the laboratory rat. CCK, insulin, glucagon and gastrin have suggested satiety roles in intake 

regulation. Some experimental evidence exists for gastrin and CCK having potential roles 

in parasite-induced anorexia. NPY, PYY and the opioids have been found to be potent 

stimulators of feed intake in the sheep as well as having a number of other functions. The 

physiological significance of many of these hormone effects remain to be fully understood. 

2.5 Potential negative feedback pathways for influencing feed intake 

The presence of feed in the gut and associated changes in digesta flow and products of 

digestion may result in satiety or negative feedback signals. 

Although receptors present in the buccal cavity and throat are important in an animal's 

sensory perception of food, the suggestion that jaw fatigue causes reduced intake and 

cessation of feeding does not appear likely (Campling and Balch, 1961; Forbes, 1986) 



because ruminants continued to eat for extended periods when ingested feed was removed 

via a gastric fistula. 
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Early studies which established the relationship between feed intake and rumen capaCity 

(Balch and Campling, 1962) implied a role for mechano or stretch receptors in feed intake 

regulation in ruminants. In support of this, Egan (1972) found adding water-filled balloons 

to the rumen depressed feed intake, with a compensatory increase in the capacity of the 

rumen evident only when sheep were fed a concentrate diet and not with forage feeding. 

In schedule fed sheep and cattle, meal eating decreased linearly with increases in the volume 

of a water filled balloon occupying space in the rumen (Campling and Balch, 1961; Adams 

and Forbes, 1981). Although a role for such stretch receptors has been demonstrated in 

schedule fed herbivores, the importance of these receptors is unknown in free fed animals. 

Signals of digesta reaching the duodenum and jejunum may be mediated by stretch, 

osmoreceptors or chemoreceptors (Forbes, 1988). In pigs, evidence supports a role for 

osmoreceptors in meal termination. Houpt et al. (1983a) infused glucose or sodium chloride 

into the duodenum of pigs shortly after the start of spontaneous meals and found the 

resulting reduction in meal size was proportional to the osmolarity of the infusion solution. 

Non-absorbed solutions were less effective, suggesting the osmoreceptors were not on the 

intestinal surface (Houpt et al., 1983b) but local anaesthetic blocked the effects, suggesting 

the receptors were not deeper than the mucosal layer of the intestine. 

Using sodium chloride to increase the osmolarity of rumen fluid will reduce feed intake 

(Temouth and Beattie, 1971), an effect which is blocked by local anaesthetic. However de 

Jong (1981a) found no correlation between feed intake and osmolarity but did find a 

relationship between feed intake and sodium or potassium concentration of the rumen fluid. 

Osmoreceptors within the GIT may have a satiety role in some species. Many effects which 

have been attributed to stimulation of chemoreceptors may be due to osmotic effects rather 

than specific chemical effects on the gut wall. Temouth and Beattie (1971) and Phillip et 

al. (1981) found an inverse relationship between feed intake and osmolarity of the rumen 

liquor. Similarly an intragastric infusion of electrolytes delayed feeding in horses (Ralston 

and Baile, 1983). However Kato et al. (1979) found no correlation between osmolarity in 

the reticulo-rumen and feeding but did find a significant relationship between intake and 

sodium or potassium concentration, similar to the findings of de Jong (1981a). This 



20 

suggests concentration of specific ions rather than the resulting osmotic concentration of the 

rumen may have a role in feed intake. 

Digestion of feed results in changing concentration of various end-products of digestion in 

the GIT and any of these may generate signals which influence the termination of a meal. 

The potential role of glucose, VF A and FF A as feedback signals was discussed earlier. 

2.6 Liver 

The role of the liver in the regulation of feed intake remains controversial (Forbes, 1982; de 

Jong, 1986). Most substances absorbed from the GIT pass through the liver making it 

strategically placed to monitor uptake from the GIT and contribute to regulation of feed 

intake. 

Many early studies of the role of the liver as a regulator of feed intake are probably of 

limited value because hypertonicity of infusion solutions used was probably responsible for 

observed changes in feed intake (de Jong, 1981a). In two studies where this was not the 

case, propionate infused into the hepatic portal vein of sheep decreased feed intake (Anil and 

Forbes, 1980) whereas a similar infusion had no effect on feed intake in goats (de Jong 

1981b). Anil and Forbes (1984) provided evidence for involvement of sensory nerves 

(vagal and splanchnic nerves) in the transmission of information from the liver to the brain. 

2.7 Integration of feed intake 

Both short term or meal regulation and longer term feed intake regulation appear to result 

from central (brain) integration of feedback signals. Within the brain, several areas may be 

involved in intake regulation, with the hypothalamus having a pivotal role in the integration 

and transmission of hunger signals. 

The hypothalamus 

Historically the hypothalamus has been considered to playa central role in the regulation of 

fee4 intake (Morley, 1980). The hypothalamus receives inputs from metabolic, hormonal, 

and cortical sources describing the nutritional status of the animal and has overall 

responsibility for co-()rdinating this complex sensory input and to determine outputs such as 

hunger or satiety. In the last few decades a rich peptidergic network in the hypothalamus 



has been described in which there is a delicate balance between various neurotransmitters 

involved in the hypothalamic control of feed intake (Morley 1980). 

2.8 Conclusions 
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Subclinical GIT parasite infection reduces voluntary feed intake of grazing sheep. The type 

and number of larvae ingested as well as the nutritional status of the sheep affects the degree 

of anorexia which occurs. 

Parasite infection elevates gut tissue metabolism through increased endogenous losses and 

reabsorption. Protein synthesis is energetically costly and increases nutrient demand at a 

time when anorexia is reducing nutrient intake. They also may contribute to osmolality 

changes in digesta. The role of these changes in precipitating feed intake depression is 

unknown. 

Absorption of P has been found to be impaired during GIT parasite infection and may have 

a role in feed intake depression. 

Parasite penetration, migration and feeding result in many histological changes of the gut 

tissue. The effects of these changes on the onset of feed intake depression are not known. 

Histological changes may have a direct effect on feed intake due to reduced production of 

neural or hormonal signals from the mucosal tissue, causing loss of receptors from the 

tissue. Alternatively histological changes may potentiate signals arising from damaged 

receptors. Stimulation of other pathways not normally associated with feed intake regulation 

may have a role during parasite infection, for example signals of pain, inflammation, 

distension or disturbances to flow or osmotic balance may be occurring. 

In normal animals the regulation of feed intake is a complex, probably energy driven system 

which is integrated centrally to drive appetite. The central integrator, probably located in 

the hypothalamus, responds to central hormonal and neurotransmitter stimuli as well as 

peripheral feedback messages. Peripheral signals of the energy transactions within tissues 

and reticulo-rumen function are a combination of neural and hormonal signals, the liver and 

vagi probably carry out integration and transmission of many of these signals. 

Parasite effects on the host are fairly well understood however little work has been 



undertaken on the interaction or involvement of these effects with the accompanying feed 

intake depression. Such data are important for fully understanding the physiology of host 

response to parasites to aid in developing non-anthelmintic based methods of managing 

losses associated with parasite infection and to provide a model for further developing our 

understanding of feed intake regulation in ruminants. 
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CHAPTER 3 

General materials and methods 

All experimentation was carried out under the guidelines and with the prior approval of the 

Lincoln University Animal Ethics Committee. 

3.1 Recording of feed intake. 

L Daily feed intake 

Feed residuals (hereafter refusals) were removed from bins at 0700-0730 daily, weighed and 

bulked by animal for later dry matter determination. Feed intake was calculated by 

difference. Ad libitum feeding was maintained by offering 120 % of feed consumed in the 

previous 24 h. 

iL Short term feed intake 

Refusals (Le. feed which had not been eaten) were removed daily at 0730 h and fresh feed 

offered in a single feed at 0930 h. This meant that immediately prior to feeding, all animals 

were fasted for 2 h to standardise the time of the first meal. Feed bin weights were 

recorded, then the pre-weighed feed added to the bin and bin plus feed weight recorded. 

Following feeding at time 0, the bin and feed were weighed at 10, 20, 30, 40, 50, 60, 75, 

90, 105 and 120 minutes then hourly for the next six hours and finally 22 h after feeding. 

To determine short term feed intake, bins were individually removed from pens and taken to 

scales for recording before being returned to the animals. This process took 20-50 seconds 

to complete. Animals were accustomed to this procedure in the early stages of the 

experiment, and settled into the routine within 4-7 days of daily recording of intake. 

Experiments were performed only when the animals appeared unconcerned about the 

presence of the operators. The same 2-3 operators, to which the animals were accustomed, 

were used throughout the experiment. Animals were fed initially and feed intakes were 

recorded in a set order to keep the interval between feeds constant for each animal. 

Feed and bins were weighed on an electronic balance (Sartorius 3815 MP, 1.6000- 16000 

or Mettler Pk 36 Max 30000 g). Accuracy of the balance was checked daily using a 

standard weight prior to weighing and on at least 2 other occasions. 
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3.2 Measuring live weight 

During all trials (except, Chapters 7, 9 and 10) animals were weigbed on a portable load 

cell attached to a portable weighing crate (Warp 4, Rathgens Scales Ltd, Christchurch, 

N.Z., electronics by Wormald Vigilant Ltd, accuracy 100 g). Each animal was weighed 

twice or until the difference between weights was not greater than 200 g. A standard weight 

(26 kg) was used prior to and after weighing to establish the accuracy of the balance on the 

day. The balance could not be calibrated so on occasions where the standard weight was 

more than ± 200 g different from 26 kg, live weights were adjusted accordingly. 

In the fmal series of studies an electronic platform load cell (Sauter Multirange, Max 240 

kg, accuracy 10 g) attached to a portable data recorder was used. The number of weighings 

and acceptable variance were set manually for this system (200 weighings or ± 100 g used). 

3.3 Dry matter (DM) determination 

A single feed offered sample was collected daily, thoroughly mixed and subsampled for 

weekly dry matter determination. Feed refusals were bulked separately for each animal and 

subsampled by animal for determination of weekly dry matter. The weekly samples were 

subsampled, weighed and air dried at 80 DC for at least 48 h before being reweighed. 

A daily sample of feed offered was bulked for laboratory analysis at the completion of the 

trial. 

3.4 Surgery 

Duodenal cannulation 

All animals were deprived of both feed and water for 24 h prior to surgery. Wool on the 

neck and a large midside patch on the right side of the sheep were removed before surgery 

using a standard shearing handpiece. 

Ten minutes prior to induction of anaesthesia, animals received 1 ml of atropine solution 

(0.6 mg/ml atropine sulphate, MCGaw Ethicals N.Z.) by subcutaneous injection to reduce 

salivation and prevent ventricular fibrillation during surgery. The animal was then 

anaesthetised with 6-10 ml of sodium pentobarbitone 60 mg/ml (Nembutal, Sanofi, Techvet 
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Laboratories, N.Z.) injected intravenously. 

Animals were placed left side down on the surgery table and positioned so that the head 

hung slightly downwards to allow saliva to drain from the mouth. The remaining 2-3 mm 

of wool left by the handpiece on the midside patch was removed using electric clippers. A 

dilute solution of cetrimide and chlorhexidine (Savlon, Coopers Animals Health Ltd, N.Z.) 

was used to disinfect the exposed skin, followed by painting with an alcoholic solution of 

iodine. A sterile surgery drape was placed over the disinfected area. 

A right side mid-flank laparotomy (as described by Hecker, 1974) was performed by 

making a 6 cm lateral incision through the skin and subcutaneous fascia in the mid-flank 

region, half way between the costal arch and the anterior pelvic bone. Entry through the 

external oblique, internal oblique and the transverse abdominal· muscles and the peritoneum 

was made by blunt dissection and enlarged as necessary by judicious tearing. This 

technique was found to lessen the likelihood of post-operative herniation (A.S. Familton 

pers. comm.). Any severed blood vessels which bled persistently were clamped and tied 

off. Allis forceps were used to secure the muscle layers either side of the incision. The 

section of the duodenum to be cannulated (approximately 10 cm distal to the pylorus) was 

located and the digesta in the tract gently forced away from the cannulation site. Two 

bowel clamps were positioned to prevent re-entry of digesta into the cannulation site. An 

elliptical purse string suture (ellipse size 20 mm x 4 mm ) using polyglactin suture (Vicryl 

J.345, Ethicon, Johnson and Johnson, U.S.A.) was placed in the mucosa of the intestine and 

a single incision made within the suture. Scissors were then used to lengthen the incision, 

with care taken not to cut the suture. The internal flange of the cannula (plate 1) was 

inserted into the visceral lumen, using Allis forceps to hold the duodenal wall. The purse 

string suture was then tightened and tied. 

The barrel of the cannula was exteriorised by making a separate stab entry between the last 

two ribs using scissors. Artery forceps were passed through the stab entry and the barrel of 

the cannula pulled through the hole. Care was taken when pulling the barrel against the 

abdominal wall to ensure no intestine was looped between the flange and the wall. The 

external flange was placed on the barrel of the cannula and oxytetracycline powder 

(Terramycin, Pfizer Laboratories Ltd, N.Z.) applied to the wound. The laparotomy was 

closed using a continuous suture technique. One layer of suture was used to close the 

peritoneum and muscle layers, then the skin closed using horiwntal mattress sutures of 



polyglactin suture (3.5 metric with cutting needle, Vicryl J-616, Ethicon Inc., U.S.A.). 

Immediately following surgery all animals received long acting antibiotic (3 ml Penstrep 

L.A., A.S.Rosco, Veterinary Ethicals Ltd., 100 000 iu procaine penicillin, 100 000 iu 

benzathine penicillin & 250 mg dihydrostreptomycin per ml) injected subcutaneously. 

Abomasal cannulation 

Pre-operative procedures were the same as those described above for duodenal cannulation 

and the surgical technique was similar to that described by Hecker (1974). 
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A ventral paracostal laparotomy was performed by making a 6 cm incision through the skin 

and subcutaneous fascia behind the right costal margin, near the midline to expose the 

abomasum. Cannulation was undertaken using a similar technique to that described for 

duodenal cannulation, again a purse string suture was used to place the cannula (plate 2) 

approximately 8-10 cm from the pylorus. The cannula was exteriorised in the costal region 

using the same technique as for duodenal cannulation. A continuous suture was used to 

close the peritoneum and muscle layers, then the skin closed using horizontal mattress 

sutures (as above). 

Immediately following surgery all animals received long acting antibiotic (3 ml Penstrep 

L.A., A.S.Rosco, Veterinary Ethicals Ltd., 100 000 iu procaine penicillin, 100 000 iu 

benzathine penicillin & 250 mg dihydrostreptomycin per ml) injected subcutaneously. 

Cannulation of a lateral cerebral ventricle 

All lambs were deprived of feed for 24 h and water for 12 hours prior to surgery. Ten 

minutes prior to anaesthesia, lambs were injected intramuscularly with 1 ml atropine 

sulphate (0.6 mg/ml Atropine, MCGaw Ethicals N.Z.) to reduce salivation and prevent 

ventricular fibrillation during surgery. Animals were lightly anaesthetised using 1-3 ml of 

xylazine hydrochloride (Rompun, Bayer N.Z. Ltd) injected intramuscularly and placed in a 

sitting position on the table. 

Th~ scalp was clipped and 2 ml of local anaesthetic (Xylocaine, Astra Australia) injected 

intra and sub dermally into the scalp in the region of the incision. The scalp was 

thoroughly cleaned with a dilute solution of cetrimide and chlorhexidine (Savlon, Coopers 

Animal Health Ltd, N.Z.), then painted with an alcoholic solution of iodine. 
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A midline incision was made through skin and down to the skull in the sagittal plane 

between the eyes and the ears. The skull was cleaned of adhering tissue and a 1.5 mm hole 

drilled through the frontal bone of the skull with an electric drill, at a point 8-10 mm lateral 

to the point of Bregma. A specially prepared stainless steel cannula (G.S. Spencer 

pers. comm.) (plate 3) was inserted th'rough the hole into the brain until cerebrospinal fluid 

flowed back through the cannula (a depth of approximately 15 mm). A second hole was 

drilled partly into the skull and a small stainless steel screw (1.5 mm x 5 mm) screwed into 

the skull. The cannula was then cemented into place using methacrylate bone cement 

(surgical Simplex P, Howmedica, LQndon) which covered the screw to lock the cannula to 

the skull. A stainless steel stylet was inserted into the cannula to prevent infection and 

maintain patency. Oxytetracycline powder (ferramycin, Pfizer Laboratories Ltd, N.Z.) was 

applied to the wound area and the incision closed over the cemented area using horizontal 

mattress sutures of polyglactin suture (3.0 metric with cutting needle, Vicryl, Ethicon Inc, 

U.S.A.). Animals then received 500 000 units of procaine penicillin and 500 000 units of 

benethamine penicillin subcutaneously (prop en L.A., Glaxo N.Z.). For the duration of the 

experiment animals received 3 m1 of this antibiotic 2 x weekly. To minimise damage to the 

cannula protruding above the scalp, a piece of 50 mm diameter polyvinyl chloride water 

pipe was sutured (at 3 points) to the scalp immediately after surgery (plate 4). 

Post-operative care 

Animals were placed in a sitting position supported by the wall of the pen and checked 

regularly until they had returned to full consciousness and were standing. Animals were 

offered fresh water and chopped lucerne hay. If any oedema occurred during the 72 h 

following cannulation of duodenum or abomasum, the external flange of the cannula was 

loosened to reduce pressure on the tissue. It was subsequently tightened as the oedema 

subsided. Two to four days after surgery the area around the cannula and laparotomy 

wound was dusted with diazinon powder (Fly Strike Powder, FIL Industries Ltd, N.Z.) to 

prevent fly strike. Fly strike treatment was continued on a weekly basis for the remainder 

of the experiment. 



Plate I. 

Plate 2. 
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An illustration of the cannula inserted into the duodenum in Chapter 5. The 

red bung was inserted into the cannula to seal the cannula . 

An illustration of the cannula inserted into the abomasum in Chapter 7. The 

red bung was inserted to seal the cannula. 



Plate 3 . 

(') 

3 

Plate 4 . 
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An illustration of the cannula inserted into the lateral cerebral ventricle of 

lambs in Chapter 10. The cannula on the right has the stainless steel stylet 

removed . 

A lamb fitted with a lateral cerebral cannula and the protective tubing 

attached. 
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3.5 Jugular catheterisation 

For infusion of the CCK blocker described in Chapter 7 a cannula was inserted into an 

external jugular vein. Wool was clipped from an area over the left and right jugular'veins 

and the skin disinfected with a 30 % cetrimide and chlorhexidine solution (Savlon, Coopers 

Animal Health Ltd, N.Z.) Using a method similar to the Seldinger technique (Hecker, 

1974) a 14 G * 5 cm introducer (plate 5) (Intravenous catheter placement unit, Insyte, 

Deseret Medical Inc., Becton Dickinson & Co., U.S.A.) was inserted into a vein. The 

needle was removed and the introducer used to place 6 of a 7 cm length of medical grade 

vinyl tubing (1.00 mm I.D 1.5 mm O.D., Dural Plastics and Engineering, NSW, Australia) 

into the vein. Following removal of the introducer, the exposed end of the vinyl tubing was 

immediately plugged with a cut-down (20 mm) bluntened needle (19 G Terumo 

Corporation, Japan) and a Surflo injection plug (ferumo Medical Corporation, Elkton, MB, 

U.S.A.) (plate 5). A narrow piece of tape (Leucoplast 1.25 cm, Beiersdorf, AG, Hamburg) 

was attached to the tubing and sutured to the skin to secure the cannula (plate 5). A large 

piece of tape (Sleek, 5 cm, Smith and Nephew Ltd, Hull) was applied to the whole area 

using adhesive (Selleys Supa-glue Gel, Selleys Chemicals, Auckland, N.Z.) so only the plug 

was visible. This reduced accidental removal of the cannula by the animal during feeding. 

The cannula was flushed twice daily with sterile isotonic phosphate buffered saline solution, 

using 50 USP units/ml of sodium heparin (Heparin (mucous) B.P., Leo Pharmaceutical 

Products, Ballerup, Denmark) as an anticoagulant. Animals were injected subcutaneously 

with 3 ml of antibiotic (penstrep LA, 150 mg procaine penicillin and 141.5 mg benethamine 

penicillin! ml, Pitman Moore, N .Z.) following cannulation. 

3.6 Parasitological techniques 

Parasite dosing 

Lambs in the infected groups were dosed per os with on average 4 000 third stage larvae of 

the small intestinal parasite T. colubriformis per day. Larvae were administered 3 times per 

week (8 000 on Mondays, 8000 on Wednesdays and 12000 on Fridays), in order to 

simulate chronic infection (R. MCAnulty pers. comm.) 

The dosing regime was intended to induce chronic parasite infection in the lambs, 

comparable to that caused by the daily ingestion of a small number of infective larvae 

experienced by growing lambs in the field (Anderson, 1972; Gibson and 



Parfitt, 1972; 1973). 

Larvae were dispersed onto moist filter papers which were rolled into 'bullets' suitable for 

administration with a veterinary tablet gun. 

Faecal egg counts 

On a weekly basis, faeces were removed manually from the rectum of each lamb and 

processed immediately to determine faecal egg concentration by a modified MCMaster 

method (M.A.F.F. 1979). 
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Faeces were first thoroughly mixed using the brass inner plunger of the faecal pelleter, 

forced into the pelleter chamber, and flattened off. The pellet (1.7 g) was discharged into a 

clean dry 51 m1 jar by depressing the inner plunger. Up to 10 m1 of tap water was then 

added to the jar and samples stored at 4°C for at least 24 h before counting. 

Prior to counting the jars were filled to a volume of 51 m1 with a saturated sodium chloride 

solution (to suspend parasite eggs in solution) and mixed with a stirrer attached to an 

electric drill for 26 seconds. A single aliquot of sample was pipetted and the first chamber 

of a MCMaster counting slide was filled, the pipette was then revolved through 1800 and the 

second chamber fIlled (0.15 cm3 in each chamber). 

The dilution effects of 1.7 g faeces in 51 m1 solution and a 0.30 cm3 aliquot means that each 

egg counted here is equivalent to 100 eggs per gram in the faeces. 

Parasite Culture 

A monospecific infection of T. colubriformis was generated in male sheep. Sheep were 

housed indoors, dosed with anthelmintic (200 mg/kg L W ivermectin, Ivomec, MSD Agvet 

N.Z.) and injected with corticosteroid (40 mg methylprednisolone acetate, DepoMedrol, 

UpJohn, Auckland N.Z.) to suppress immunity temporarily, 10 days before a single oral 

dose of 30-40 000 T. colubriformis larvae (third stage). Total faecal collection (plate 6) was 

usually undertaken from week four to five of infection when large numbers of eggs were 

evi4ent in faeces. Fresh faeces were placed in floating tanks in a climate controlled room to 

promote larval development (MCMaster mass larval culturing system) (plate 7). Larvae 

hatching from faecal eggs migrated out of the tank into the aerated water surrounding the 

tank and gradually sank into an attached column. Larvae were removed by opening the tap 



at the base of the column and collecting water from the column. Larvae were immediately 

stored at 4 DC until 24 h before use for trickle infection of sheep. 

3.7 Weaning 
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Lambs were used in all the trial work undertaken. Mixed sex Coopworth lambs used in the 

first trial were from Lincoln University Ashley Dene Farm. The lambs used in remaining 

trials were all from the Lincoln University Research Farm and were female Coopworth or 

Coopworth X Dorset Down. Each year lambs were early weaned between 10 and 20 

October, at which time they were six to seven weeks of age. Lambs were selected to have 

an average live weight of 17.5 to 18 kg at weaning. Following weaning all lambs were ear 

tagged and weighed. All lambs were vaccinated against black leg, pulpy kidney, malignant 

oedema, tetanus and black disease (Coopers Multine, Pitman-Moore, N.Z.) and orally dosed 

with ivermectin (200 mg/kgLW Ivomec MSD Agvet, N.Z.). The same vaccine was used at 

3 monthly intervals for the duration of the experiment. 

Following early weaning, lambs were reared in a minimal parasite environment until 

approximately 25 kg live weight. During this period animals were weighed fortnightly and 

treated with anthelmintic (25 mg/kgL W fenbendazole, Panacur Sheep Drench, Hoechst Ltd, 

Pitman-Moore N.Z.) to minimise development of parasite resistance. A brief outline of 

weaning practice used in each year is given below. 

Year 1 (Appendix 4) 

Following weaning all lambs were grazed on pasture which had not been grazed by parasite 

susceptible animals for 12 months. Animals were drenched fortnightly with anthelmintic 

whilst grazing the pasture. 

Year 2 (Chapter 4) 

Following weaning, all lambs were grazed on a lucerne pasture, which had not been grazed 

by any stock for the preceding 5 months. Lambs were grazed on the lucerne pasture for 6 

weeks, orally dosed with anthelmintic at 2 weekly intervals (25 mg/kgLW fenbendazole, 

Panacur, Hoechst Ltd, Pitman-Moore, N.Z.) to minimise infection with parasites and 

gradually introduced to a pasture supplement (barley). All animals were moved indoors in 

early December 1987 and fed barley (200 g/head) and lucerne hay (ad libitum) until 20 

January 1988. Over a period of 1 week the diet was changed to a complete pelleted ration 
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(Appendix 1.) and after 4 weeks of ad libitum intake on this diet, animals were restricted to 

1.2 kglhead/day (1.5 x maintenance) to restrict live-weight gain. 

Year 3 (Chapter 5,6 and 8) 

Following weaning lambs were placed in a paddock which had been "spray fallowed" in the 

early winter to kill all vegetation. There was no pasture on offer so animals were run in an 

extensive feed-lot environment. Ryegrass straw and mineral blocks were available ad 

libitum and lambs were fed daily a complete pelleted ration (Appendix A.2), which was 

gradually increased to ensure 1-2 kg Jive weight gain per week. Animals were weighed 

weekly and drenched with anthelmintic (25 mg/kgLW fenbendazole, Panacur, Hoechst Ltd, 

Pitman-Moore, N.Z.) fortnightly for the duration of time in feed lot. 

Year 4 (Chapter 7 and 9) 

Lambs were moved to the Lincoln University cropping farm after weaning and strip grazed 

on "new grass". This pasture had been sown the previous autumn (7 months earlier) after a 

crop rotation and had not been grazed by any stock. Pasture larval counts during grazing 

showed no evidence of larval contamination on the pasture. The lambs were break fed with 

a new break being offered every 7 days. As the lambs settled and began to gain weight, the 

break size was reduced and a complete pelleted ration offered on a daily basis. When lambs 

reached an average live weight of 25 kg, they were transferred indoors into individual pens. 

Year 5. 

Following early weaning, lambs were housed indoors in pens (8 animals per pen) on a deep 

litter system. Initially animals were offered chaffed meadow hay ad libitum for 10 days. In 

the following period a complete pelleted ration (Appendix 2) was gradually introduced up to 

approximately 400 glhead/day. This was supplemented with ryegrass straw chaff (ad 

libitum). Animals were weighed weekly and moved if necessary to maintain similar size 

and rate of live-weight gain in each pen. Lambs were moved into single pens 4 weeks after 

weaning on approximately 15 November. 

3.8 Statistical analysis 

In all experiments, treatments were allocated in a replicated Latin square, and it was planned 

to use analysis of variance (ANOV A) or multiple analysis of variaut;c (MAN OVA) for 

statistical analysis of the feed intake data. A depression in feed intake was not recorded in 



some lambs, following parasite infection, which were excluded those lambs from the 

treatments and all analysis and led in most cases to an unbalanced experiment. 

34 

The cumulative feed intake response of lambs to parasite infection and various treatments 

was investigated. Using cumulative feed intake data precluded the use of MANOVA 

because the variables were highly correlated. Orthogonal contrasts and ANOVA were not 

used because the data did not meet the assumptions of normality underlying these tests (Steel 

and Torrie, 1980) even following transformation of the data. 

A number of models including linear, quadratic and piecewise linear models, were fitted to 

the data from Chapter 9 to test the effects of parasites and treatments on the cumulative 

intake curves. This approach was found to be unsuitable for 2 reasons. Firstly the 

cumulative intake curves were not of a consistent form making curve fitting very difficult. 

The lack of consistent form resulted from the response of animals to treatments imposed. 

Particular difficulties were encountered where feed intake was depressed, for example 

following naloxone treatment, and where very rapid feeding occurred following fasting and 

brotizolam treatment. Secondly where a model fitted much of the data, biological 

interpretation of the results was difficult. 

The final approach was to use non-parametric or distribution-free statistical testing. The 

Sign test, Friedmans test and an ANOVA of ranked data were evaluated using the data from 

Chapter 9 with the cumulative feed intake data being analysed at each time period recorded. 

The Sign test was of very limited use in analysis of the present study and although 

Friedmans test could be used, it did not handle missing data points well. In addition 

Friedmans testing was difficult to use tests for further comparison of differences between 

treatment means. A non-parametric approach using ANOVA of the ranked data was 

selected as a suitable method of analysis of the cumulative feed intake data which did not fit 

the assumptions of a standard ANOV A. A non-parametric analysis is less powerful and 

more conservative than similar parametric tests. Non-parametric testing was carried out on 

the cumulative feed intake data at each time period recorded. 



Plate 5. 

Plate 6. 
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An illustration of the equipment used for jugular catheterisation of lambs in 

Chapter 7 . From top left; suture with tape attached, Surflo injection plug, 

bluntened needle, vinyl tubing and the commercial introducer. 

An illustration of the jugular catheter assembled as it was in the lamb . 
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Plate 7 . An illustration of total faecal collection for parasite culture. 

Plate 8. An illustration of a mass larval culture tank used for culturing parasite 

larvae. 



CHAPfER 4 

The effect of infection by the gastrointestinal parasite T. colubrifonnis on short term 

feed intake in lambs and of some pharmacological agents on feed intake depression. 

4.1 Introduction 

In studies of intake regulation in sheep and other species, hormones, agonists and 

antagonists of hormones and neurotr~mitters and other agents have been examined for 

their effects on a single meal or short term feed intake. Studies of short term intake are 

useful for testing potential regulatory mechanisms in single meals. They can utilise single 

small doses of test compounds and avoid much of the variability associated with 

measurement of daily intake, which is influenced not only by meal size but also by the 

number of meals consumed. Results from a pilot trial revealed significant differences in 

short term intake (frequent recording over 8 h) between infected animals whose intake was 

depressed and their non-infected controls. 
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The current study utilised parasite infected lambs with intake depression as an animal model 

to investigate some of the pathways which have been postulated for control of feed intake. 

This model enables the screening of pharmacological compounds with known agonistic or 

antagonistic actions to elucidate pathways involved in depression of feed intake. Two 

mechanisms were examined, viz. pain and/or discomfort and CCK, for their role in feed 

intake depression. 

Extensive invasion and disruption of intestinal mucosa may manifest itself in pain, 

inflammation and/or generalised discomfort which could directly or indirectly cause feed 

intake depression. It can be argued that this may be the mechanism which operates in 

parasitised sheep. The first approach used here was to block the effects of pain and 

discomfort by using codeine phosphate, an opioid derived analgesic. Codeine provides 

selective pain relief, leaving other senses intact, and is most effective in humans against dull 

continuous pain as would probably occur in parasitised animals. The second approach used 

was to inhibit prostaglandin production by using indomethacin. Indomethacin has antipyretic 

and effects resulting from the inhibition of prostaglandin production and an analgesic effect, 

which would be beneficial where pain accompanies an inflammatory response, as may be 

occurring in parasitised lambs. The influence of these compounds on short term intake was 
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monitored in the present study. 

Peripheral CCK levels appear to be elevated during intake depression in parasite infected 

lambs (Symons and Hennessy, 1981). This finding could be investigated further using a 

potent blocker of CCK receptors to temporarily antagonise peripheral CCK receptor activity. 

The short term feed intake response was monitored following treatment. 

4.2 Materials and Methods 

Sixteen Coop worth x Dorset Down cross ewe lambs, part of a larger group, were weaned at 

approximately 17 kg live weight onto lucerne pasture which had not been grazed over the 

winter period (5 months) (Section 3.7). On 26 April 1988 animals were paired by live 

weight and one of each pair randomly allocated to an infected or non-infected group (n= 8). 

Infected animals received 4 000 T. colubriformis larvae/day administered orally as bulked 

doses 3 times/week (Section 3.6) whereas non-infected animals received only moistened 

filter paper tablets. Initially (weeks 0-4), each non-infected animal was fed the amount 

consumed by its infected pair in the previous 24 h period. 

A method of short term intake recording was developed based on the feeding regime used by 

Baile et aI. (1979) (Section 3.1). Treatments were administered when intake depression of 

at least 30% had occurred in the parasitised group. 

Each pair (1 infected and 1 non-infected) received each of the 4 treatments (control, CCK 

antagonist, codeine phosphate or indomethacin) in a randomised Latin square design which 

was repeated once (replicated) approximately 8 weeks after the initial infection. 

The treatments were: 

1. CCK antagonist. A CCK antagonist (L364-718, Merck Sharp and Dohme, U.K.) at a 

dose of 0.1 mg/kg LW dissolved in 0.5 ml of dimethyl sulphoxide (DMSO) was used. Four 

sheep doses of L364-718 were placed in a sterile 10 ml glass beaker with 2 ml of DMSO 

and mixed thoroughly. A sterile 1 ml syringe and a 20 G 2.5 cm needle were used to 

deliver 0.5 ml of L364-718 solution which was injected subcutaneously 15 minutes prior to 

feeding, into an area on the medial surface of a fore leg which had been cleaned thoroughly. 

2. Codeine phosphate. Codeine phosphate (120 mg, 60 mg tablets, Codeine Phosphate 



Tabs BP 1973, Douglas Pharmaceuticals Ltd., N.Z.) was administered orally (2 tablets) to 

animals using a veterinary tablet gun, 3 h prior to feeding and again 1 h after the start of 

feeding. 

3. Indomethacin. Indomethacin (100 mg Indocid supplied as 50 mg tablets, Merck, Sharp 

and Dohme N.Z. Ltd.) was administered orally (2 tablets) using a veterinary tablet gun 3 h 

prior to feeding and again 1 h after the start of feeding. 
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4. Control. The control treatment was 0.5 ml of DMSO injected as outlined in 1 and sham 

dosing with the veterinary tablet gun to mimic treatments in 2 and 3. 

Following the completion of the treatment phase, all animals were dosed orally with 

anthelmintic (200 ug/kg ivermectin, Ivomec, MSD Agvet N .Z. Ltd). Short term feed intake 

patterns were again recorded (Section 3.1) 7-14 days after anthelmintic treatment. This was 

following full recovery of daily intake in previously infected animals to preinfection levels. 

4.3 Results 

Two of the 8 infected animals failed to show consistent feed intake depression during the 

time frame of the experiment. These animals plus their non-infected pair were excluded 

from the study. 

Parasitology 

Faecal egg counts recorded during the experiment are shown in Figure 4.1. T. 

colubriformis eggs first appeared in the faeces at the end of week 3 and the peak 

concentrations were also observed at the end of week 3. A second smaller peak was 

recorded during week 9. No parasite eggs were found in samples from non-infected animals 

during the experiment. The experimental treatments were imposed between weeks 8 and 12 

of the trickle infection. 

Live weight 

For. the first 6 weeks of infection, there was very little difference in live weight between the 

infected and non-infected animals (Figure 4.2). However, over the next 4 weeks the non-

infected animals gained on average 203 g per day whilst the infected group gained only 70 g 

per day. During the final weeks of infection, weight gains were similar, but infected 



animals remained on average 4 kg lighter than non-infected animals. 

Daily feed intake 

Mean daily feed intake (7 days) for infected and non-infected animals is shown in Figure 

4.3. Non-infected animals initially were pair fed with infected animals. When feed was 

offered ad libitum (weeks 4-6), intake of the non-infected animals exceeded that of infected 

animals, this increase peaking 10 to 12 weeks after the commencement of infection. Mean 

daily feed intake fell gradually from week 4 in the infected group and was significantly 

lower than in the non-infected group·from week 7 of infection (p < 0.05). 

Short term feed intake 

Mean cumulative feed intake for infected and non-infected lambs during weeks 8-12 is 

shown in Figure 4.4. During the period of intake depression (weeks 8-12) feed intake was 

significantly depressed in the infected group at each time period recorded over the 8 h. 
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Both groups consumed a single large meal lasting 40-60 minutes immediately following 

feeding. During this first meal, infected and non-infected groups consumed 20 % and 22 % 

respectively of the cumulative intake over the 22 h period. 

Figure 4.5 shows the cumulative feed intake (g/kg L~·7S) for the infected group alone prior 

to and during parasite induced intake depression (weeks 8-12) and again following intake 

recovery after anthelmintic treatment. The short term cumulative feed intake was 

significantly less at all recorded time intervals during intake depression in infected animals 

(weeks 8-12) but had returned to the pre-infection level within 2 weeks of anthelmintic 

treatment. 

Treatment effects 

Short term feed intake patterns for infected and non-infected groups following sham, codeine 

phosphate, indomethacin or CCK antagonist treatment are shown in Figures 4.6 and 4.7. As 

indicated earlier, parasite infection had a significant effect on short term feed intake 

(0.01 < P < 0.05) at all time periods tested. A significant treatment by parasite interaction 

occurred during the first 5 h of feeding (0.01 < P < 0.05). This interaction was due to a 

tendency for codeine, CCK antagonist and indomethacin to reduce intake over the first 5 h 

of feeding in the non-infected animals. 
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4.4 Discussion 

These results show that depression of daily feed intake in parasitised lambs can be detected 

by changes in the rate of food intake rather than the pattern of food intake which was similar 

for both groups. This can be readily seen in Figure 4.3. Whilst it was not possible to 

determine accurately individual meal size and pattern of meal distribution the cumulative 

feed intake curve provides a good description of what is occurring and is a suitable model 

with which to investigate the influence of treatments on short term feed intake. This 

approach is necessary because many compounds act only for a short period and their 

influence may not be detected in the daily feed intake. The results indicate that cumulative 

feed intake during parasite infection was depressed at all time intervals in the short term (0-

8 h after feeding) as well as daily. It was apparent with this pelleted diet that there was a 

single large meal when food was offered which terminated for all animals between 40-60 

minutes later. This suggests that at least in the present study the cues for initiation and 

cessation of a meal were similar for both parasitised and non-infected lambs. As cumulative 

food intake was depressed in parasitised animals it further suggests that rate of food intake 

differed between groups. An interesting observation in this regard is that within 1 h both 

groups had consumed 20-22 % of their daily food intake. These results clearly show for the 

frrst time how depression in average daily food intake arises. 

The short term feed intake model used here provides a useful method for examining 

pathways which may be involved in signalling intake depression by using pharmacological 

agents to block or potentiate these pathways. One test is whether the daily intake and 

cumulative intake curves are reversible and the evidence here shows this is the case. Prior 

to parasite infection the mean short term cumulative intake of the infected animals was the 

same as that of the non-infected group. However, following the onset of appetite depression 

associated with subclinical parasite infection, short term cumulative feed intake fell in the 

infected group at all time periods recorded. After anthelmintic treatment the time to full 

feed intake recovery varied with individuals from approximately 4 days to 7-10 days. 

Generally the greater the degree of inappetence suffered by the individual the longer the 

time until full recovery of intake was observed. Short term intake recording following the 

r~very period showed cumulative intake patterns had returned to preinfection levels. The 

cumulative intake data recorded here demonstrate the depressive effects of parasitism on feed 

intake and the total recovery of appetite following removal of the parasites by anthelmintic 

therapy. This clearly reveals the reversible nature of the intake depression pathway and also 
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suggests that learned taste aversion is not a dominant feature of infection induced anorexia. 

The failure to detect any response to the codeine treatment can be interpreted to suggest 

peripheral pain receptors are not mediators of feed intake depression in infected animals. 

Codeine is an opioid derived analgesic, which relieves pain in a large number of species and 

conditions (Jaffe and Martin, 1980). Codeine should have effectively blocked any pain in 

the parasite infected animals. However, the nature of the experiment, where only one dose 

level of treatment was given and one route of administration was used, means that the lack 

of response to Codeine has other possible explanations. For instance it may have been due 

to lack of absorption or an insufficient dose of the drug. Codeine is readily absorbed from 

the gastrointestinal tract and doses of 100-120 mg are sufficient to produce analgesia in most 

species, with peak analgesia occurring 1-2 h after administration and lasting for 4-5 h 

(Jaffe and Martin, 1980). Codeine is generally most effective in relieving continuous dull 

pain and it is suggested here that, if pain is involved in parasite-induced intake depression, 

then the gradual onset of feed intake depression suggests it may be of the continuous dull 

sort. It may be that the dose used in the present experiment was too low. Although 120 mg 

of codeine phosphate is usually sufficient to elicit analgesia in most species, it woul~ have 

been preferable to have tested higher doses as well. 

It is likely that the intestinal mucosa of infected animals was inflamed, but the lack of 

response to treatment with indomethacin suggests that the inflammatory response is not the 

sole instigator of intake depression. Nevertheless similar problems exist when interpreting 

the lack of response to indomethacin as there were with codeine. Indomethacin blocks the 

production of prostaglandins. Prostaglandins cause anorexia in rats (Levine and Morley, 

1981) while in both sheep (Baile et al., 1981) and rats anti-inflammatory and antipyretic 

drugs (dipyrone and indomethacin respectively) attenuated endotoxin induced anorexia. In 

sheep infected by abomasal parasites, Dakkak (1986) found stimulation of bicarbonate 

transport to be indicative of elevated prostaglandin activity (pG~. Daily infusion of aspirin 

into the abomasum to inhibit prostaglandin release resulted in larger and earlier maturing 

populations of worms than in untreated infected animals (Dakkak and Daoudi, 1986, cited 

by Dakkak, 1986). Infusion of a prostaglandin precursor, arachacidonic acid, aggravated 

the ,functional problems within the gut of the host associated with parasite infection and led 

to the elimination of a large proportion of the worms after 48 h (Dakkak and Daoudi 1986, 

cited by Dakkak, 1986). This suggests that prostaglandins and/or other eicosoids are 

elevated during parasite infection. 



Indomethacin is a potent inhibitor of prostaglandin synthetase thus reducing prostaglandin 

production within a tissue. However it does not inhibit production of other eicosoids such 
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as leukotrienes so the role of other eicosoids cannot be eliminated. Therapeutic treatment 

with indomethacin reduces 70-98 % of prostaglandin turnover in man and all other species 

tested (Vane, 1978). Indomethacin is rapidly and almost completely absorbed by the GIT 

following oral ingestion, with peak plasma levels occurring within 1-4 h (Woodbury, 1970). 

The treatment regime used in the present study should have resulted in peak plasma levels of 

indomethacin at the time of feeding. 

All treatments caused some intake depression in the non-infected group. This response is 

difficult to explain but may be attributable to 3 of the 6 control animals having very low 

intakes initially. Low feed intake immediately after feeding may have arisen from operator 

differences in the use of the tablet guns, or in handling of the animals. The depression may 

also have been due to the treatments being used. However there was no clear pattern to the 

incidence of low intakes and no problems were encountered in preliminary testing of dose 

rates in non-infected animals. 

There was no effect of the CCK antagonist, L364-718, on short term feed intake in either 

the infected or non:..infected animals. In pigs L364-718 had no effect on the intake of a 

normal diet (Rayner and Gregory, 1989), but by contrast in both the rat (Shillabeer and 

Davidson, 1984) and mouse (Silverman, Bank and Lendvai, 1987) L364-718 increased 

intake. The present results shift the evidence for a role of CCK towards the conclusion of 

Baile and Della-Fera (1984) that in sheep, unlike some other species, peripheral CCK levels 

do not appear to be important in regulating meal size. Nevertheless the same degree of 

caution in relation to dose level and availability of the agent should be applied to these 

interpretations as for the compounds described above. 

L364-718 is a competitive CCK antagonist with no agonist activity but with high affinity and 

selectivity for peripheral CCK receptors (Chang and Lotti, 1986). Current evidence would 

support the finding that in healthy animals peripheral CCK would be low prior to a meal but 

may rise as the meal progresses. 

In the current study there was interest in whether peripheral CCK concentrations increased 

in infected animals, as suggested by Symons and Hennessy (1981). Lack of other studies 

using L364-718 in sheep and the limitation of only 1 dose level in the current study means 



that future studies should use a continuous infusion of the antagonist or a dose response 

study. The use of a subcutaneous injection as the means of delivery presents difficulties in 

determining whether the antagonist was reaching the receptors rapidly. A small trial was 

undertaken at the conclusion of the current trial to test the effectiveness of subcutaneOus 

L364-718 in blocking exogenous CCK-induced feed intake depression. The study was 

inconclusive because it was impossible to obtain repeatable intake depression following 

intravenous injection of CCK (Appendix 6). 
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Administration of either a CCK antagonist, an opioid based analgesic or anti-inflammatory 

drugs, failed to attenuate parasite induced anorexia in the current trial. Only single dose 

rates were used for each of the drugs so further study where the compounds are used 

intravenously or intraduodenally is necessary to avoid the possible effects of rumen microbes 

on activity of these drugs. 

The model developed here detects differences in short term feed intake following the 

establishment of parasite infection. The recovery to eating patterns following anthelmintic 

treatment provides further evidence of the temporary/reversible nature of parasite induced 

intake depression. 



CHAPTER 5 

An investigation of the role of duodenal discomfort and osmoreceptors in parasite 

induced feed intake depression. 

5.1 Introduction 

If the depression in feed intake is the result of painful stimuli from the intestine, then 

blockade of pain receptors in this organ with analgesic drugs or preventing transmission of 

sensory signals by use of local anaesthetics should result in a temporary increase in feed 

intake. 

At the body surface pain is perceived directly via free nerve endings, however internally, 

such as within the intestine, such perception may be more indirect and be a response to 

chemical stimuli. Numerous chemoreceptors, including glucoreceptors, amino acid 

receptors, pH receptors and osmoreceptors have been identified in the GIT of the sheep 

(Forbes, 1986). All are connected to unmyelinated small diameter nerve fibres (C fibres). 

Application of local anaesthetics to the mucosa abolishes the response of these receptors to 

their respective chemicals (Mei, 1985). Local anaesthetics prevent both the generation and 

the propagation of the nerve impulse, principally by blocking the large transient increase in 

the permeability of the cell membrane to sodium ions (Ritchie and Greene, 1980). This 

suggests that the effects of chemical changes induced by the presence of parasites may be 

temporarily abolished by local anaesthetics. 

Mucosal mechanoreceptors which discharge upon stroking of the mucosa and muscular 

tension receptors are both stimulated by contraction or distension of the viscera, and are 

present in the duodenum (Mei, 1985). These receptor classes may be affected by 

parasitism, passage rate of digesta, tissue swelling at the sites of invasion by worms, 

distension or other pathological changes in the small intestine. Their activity should be 

blocked by application of local anaesthetic. 

Int~tinal receptors playa role in the control of gastrointestinal motility, intestinal 

circulation, absorption and exocrine and endocrine secretions. The multifunctional role of 

chemoreceptors and their abundance suggest that some are capable of acting as nociceptive 

nerve endings, which upon stimulation by physical or chemical agents cause pain. Visceral 
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pain is often associated with excessive tension on nerve endings in smooth muscle (Keel et 

al., 1982) as would occur in the inflamed intestines of parasitised sheep. Ulceration 

probably causes pain due to the tissue destruction which occurs, this pain may be increased 

by the action of acidic gastric juices on exposed sensory nerve endings. Inflammation may 

also contribute to the pain experienced as inflammatory-response products are associated 

with hypersensitivity to pain of the inflamed area (Keel et al., 1982). 

Local anaesthetics suppress the inhibition of feed intake resulting from glucose infusion in 

pigs (Houpt, 1982; Gregory, McFayden and Rayner, 1987), presumably by blocking 

chemoreceptor activity. This finding provides support for the idea that a local anaesthetic 

should be able to block pain felt by parasitised animals. 

An opioid-derived analgesic such as codeine provides selective relief for dull continuous 

pain and may provide relief for parasitised animals. 

Most animals become satiated (end meal) before complete absorption of all the nutrients 

from a meal can occur. A possible feedback pathway for regulating appetite could utilise 

osmoreceptors of the anterior intestine (Hunt, 1980). Satiety may occur for instance 

whenever the duodenal osmoconcentration exceeds body fluid tonicity (MCHugh, 1979). 

Intragastric and intraduodenal infusions of hypertonic solutions into pigs restrict meal size 

(Houpt, 1982). Local anaesthetics may inhibit the satiety effects of hypertonic solutions by 

preventing sensory neurons or cells from signalling changes in osmoconcentration. More 

recent findings (Gregory et al., 1987) propose that intake control is not limited to just 

duodenal receptors but to receptors throughout the small intestine. 

Osmolality of digesta in the GIT usually fluctuates around 200 to 300 mosmols (isotonic c.a. 

330 mosmols/l), although, as in the case of adult ruminants on a dry feed, it may increase to 

585 mosmols (Maloiy and Clemens, 1980). 

Inflammation at the site of GIT infection may alter intracellular permeability causing 

disturbances in osmotic balance which may affect feed intake. Worms can also modify 

physiological function causing altered mucous secretion, increased plasma protein loss and 

desquamation of gut epithelium, any of which may change the osmolality of duodenal fluid. 

Elevated osmolality of intestinal fluid may trigger osmoreceptors to send neural or hormonal 

signals to the hypothalamus to induce satiety. These potential feedback mechanisms would 
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probably act via receptors associated with the duodenum where the adult T. colubrijormis 
worm resides. An analgesic and a local anaesthetic could be used to identify the role of 

possible pathways in depression of feed intake in these circumstances. In experiment 1 

(Chapter 4) oral administration of 120 mg of codeine phosphate did not elevate cumulative 

feed intake in parasite infected lambs but there was no guarantee that the codeine actually 

reached the site of damage. This may have been because it was administered orally and 

absorption was affected by rumen conditions. This concern can be overcome by direct 

infusion of the drug into the duodenum. To avoid these complicating factors in the present 

study, both an analgesic (codeine phosphate) and a local anaesthetic (xylocaine) were infused 

into the duodenum. 

This study had 3 objectives. Firstly, it aimed to determine if there were any changes in 

osmolality of duodenal fluid as sub-clinical T. colubrijormis infection established and 

developed. Secondly, it aimed to study the role of duodenal pain and osmoreceptors using 

intraduodenal infusions of an analgesic and a local anaesthetic. Finally, following 

anthelmintic treatment and full feed intake recovery in the infected group, absorbed and 

non-absorbed hypertonic solutions were injected intraduodenally to study their effects on 

feed intake and determine the effectiveness of a local anaesthetic at blocking osmoreceptors 

in the duodenum. The study used the model of short term cumulative feed intake developed 

in Chapter 4 as a means of assessing treatment effects. 

S.2 Materials and Methods 

Animals 

Twelve lambs, part of a larger group born in September 1988, were early weaned at 7 

weeks of age and reared in parasite free conditions (Section 3.7). On either April 11 or 

April 18, 1989 all animals were fitted with a T-shaped cannula into the duodenum (Section 

3.4). Following this surgery all lambs were returned to paddocks for at least two weeks, 

during which time a 3 mI subcutaneous injection of antibiotic (penstrep L.A., 100 000 iu 

procaine penicillin, 100 000 iu benzathine penicillin and 250 mg dihydrostreptomycin/mI, 

A/S Roscoe Veterinary Ethicals Ltd N.Z.) was administered every 3 days. Once a week for 

the remainder of the trial the area of skin around the cannula was cleaned, clipped and 

dusted with diazinon powder (Fly Strike Powder, FIL Industries Ltd, N.Z.) to prevent fly 

strike. 
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The lambs were moved indoors to individual pens on 30 April 1989 and randomly allocated 

on the basis of live weight to an infected group (n=8) and a non-infected group (n=4). 

Trickle infection of the infected group with T. colubrijormis larvae started on 30 April with 

each animal receiving 28 000 larvae per week, administered in three doses; 8 000 on 

Mondays and Wednesdays and 12000 on Fridays for the duration of the trial (Section 3.6). 

All animals were initially fed at maintenance to restrict live-weight gain and to aid in the 

rapid establishment of a pathogenic parasite infection. In a group from the same pool of 

animals where parasite dosing had commenced 8 weeks earlier establishment of infection 

had been poor, so the decision was made to restrict the feed intake of animals in the present 

study. 

Three weeks after the commencement of parasite treatment, faecal sampling for 

determination of faecal egg counts commenced. Samples of faeces were obtained once per 

week and faecal egg counts determined by the MCMaster technique (Section 3.6). Following 

5 weeks of infection all infected animals had low faecal egg counts and displayed no sign of 

sub-clinical parasite infection. To promote the establishment of a satisfactory infection, feed 

on-<>ffer was further restricted to 450 g per head per day for a 14 day period and all animals 

treated with 20 mg of methylprednisolone (0.5 ml Depo Medrol, Upjohn) on 2 occasions 7 

days apart. This occurred during weeks 6 to 8 from the start of trickle infection, the feed 

restriction to stress the animals and the glucocorticoid to inhibit temporarily any immune 

response to developing parasite infection. Feed intake was then gradually increased to ad 

libitwn levels in all animals during weeks 8 and 9 of the trickle infection. During this 

period animals became accustomed to having feeds removed for weighing at regular 

intervals (Section 3.1). 

Duodenal osmolality 

Over the 9 week infection period, prior to treatments being imposed, a duodenal digesta 

sample (20 ml) was taken weekly for determination of osmolality. Each sample was taken 

by allowing 'free flow' from the duodenal cannulae into a polythene bag attached to the 

duodenal cannula with a Gray clip (acetal resin snap-<>n tubing clip, Gallankamp). The 

samples were centrifuged at 2 500 rpm for 20 min, supernatant decanted and stored frozen 

for ,analysis at a later date. 

Following onset of feed intake depression in infected animals (9 weeks), further duodenal 

samples were collected prior to feeding and after the first meal (45 min) on both control and 
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treatment days (see experimental design section). Again duodenal samples were centrifuged 

at 2500 rpm for 20 min and the supernatant collected and frozen for later analysis. 

Supernatant samples were thawed in a water bath (20°C) before analysis. This technique 

had been checked previously to confirm that the procedure did not affect the osmolality of 

the sample. Osmolality of digesta samples was determined using the freezing point 

depression method (Fiske Osmometre, Uxbridge Mass, U.S.A. 3203226). 

Experimental pr~dure 

i. Pain blockade 

When feed intake depression of at least 20 % had occurred in the infected animals, the 

experimental treatments commenced. This was 10 weeks from the start of trickle infection. 

A replicated Latin square design was used to test the effect of 4 treatments on feed intake of 

both infected and non-infected animals. These were: 

1. control - no injection. 

2. phosphate buffered saline solution - 50 mI, infused via cannula into the 

duodenum 15 min before feeding. 

3. local anaesthetic - 50 ml xylocaine hydrochloride ( 1 % solution Lopaine in 

sterile distilled water, Lopaine 2 % Troy Laboratories Pty Ltd), infused via 

cannula into the duodenum 15 min before feeding. 

4. analgesic - 50 mI solution of codeine phosphate (360 mg in phosphate 

buffered saline) infused via cannula into the duodenum 15 min before 

feeding. 

The Latin square design was repeated so animals received all treatments twice during the 

period 7 to 17 August 1989. Treatments were administered every second day to minimise 

carry-over effects. 

All treatments were administered via the duodenal cannula using a 60 mI syringe attached to 

a duodenal stopper, which had a 10 cm section of silicone rubber tubing (I.D. 4 mm O.D. 6 

mm, Silastic, Dow Corning Corporation, Michigan, U.S.A.) threaded through it and 

secured in place with silicon rubber adhesive (Dow Corning Corporation, Michigan, 

U.S.A.). This apparatus prevented backflow of injected material out of the cannula. The 

50 ml treatment solution was warmed in a water bath (37°C) prior to infusion and injected 

slowly into the cannula. 25 ml of saline solution followed the injection to wash the 



treatment solution out of the cannula and the modified injection tube was clamped off and 

left in place for 2 h. No spillage of duodenal contents occurred. 

ii. Osmoreceptor stimulation plus blockade 
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Experimental treatments commenced on 28 September 1989, 4 weeks after anthelmintic 

treatment to infected animals (29 August), 10 animals received the following treatments via 

the duodenum in a repeated Latin square allocation of treatments; 

1. control - 250 ml saline. 

2. absorbable hypertonic solution - NaCI 5 ml/kg W of a 6.5 % solution. 

3. non-absorbable hypertonic solution - mannitol 5 ml/kg LW of a 40 % solution. 

4. NaCI (as in ii) + 100 ml 1 % local anaesthetic (20 mg/mllignocaine hydrochloride, 

Lopaine 2 % Troy Laboratories Pty Ltd). 

5. mannitol (as in iii) + 100 ml 1 % local anaesthetic (as above) 

Treatments were applied 5-10 min prior to feeding. Where treatment included local 

anaesthetic, the anaesthetic was infused into the cannula prior to infusion of the hypertonic 

solution. Feed was then offered at to and intake recorded as in Section 3.1. 

Animals were weighed weekly prior to feeding and feed sampling carried out as per Section 

3.2 and 3.3. 

Statistical analysis 

Feed intake recorded at each time period was analysed using one-way analysis of variance 

(Minitab v. 7.2, Minitab Inc.) and general linear model (GLM) for unbalanced designs. 

Student's t-test (Minitab v. 7.2, Minitab Inc.) was used for comparison of mean 

osmoconcentrations . 

5.3 Results 

A failure to display consistent feed intake depression resulted in 4 infected animals being 

removed from the trial and their data excluded from all analysis. Treatment and analysis 

was undertaken on 4 infected and 4 non-infected animals. 
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Parasitology 

Mean faecal egg numbers recorded during the experiment are shown in Figure 5.1. 

T. colubriformis eggs first appeared in the faeces after the sixth week of infection and peak 

egg numbers were evident after week 11 of infection. There was considerable individual 

variation in faecal egg numbers. 

Live weight 

Mean live weights for infected and non-infected animals are shown in Figure 5.2. Mean 

live weight of infected lambs showed . little change up to week 6 of infection then increased 

over the remainder of the experiment although live weight remained approximately 5 kg less 

than that of the non-infected animals. Throughout the experiment, non-infected lambs 

gained weight steadily. 

Daily feed intake 

Average daily feed intakes (7 day) are shown in Figure 5.3. Up to week 6 intake was 

restricted, thereafter, feed was offered ad libitum. Following removal of intake restriction, 

intake increased rapidly in both groups, however, after 9 weeks intake fell in infected 

animals and remained depressed for the next 3 weeks. After 12 weeks of infection intake 

gradually increased in infected animals. 

Short term feed intake 

Mean short term cumulative feed intakes are shown in Figure 5.4. In infected animals 

intake was depressed at all time periods by approximately 40 % (p < 0.05). All animals 

initially ate rapidly, with infected animals terminating their first meal 30-40 min after 

feeding and non-infected animals terminating theirs about 10 min later. 

Treatment Effects 

i. Effect of parasite infection and feeding on duodenal osmolality. 

Mean osmolality of duodenal fluid collected from lambs before and immediately after 

feeding is given in Table 5.1. 



Table 5.1 Mean (± s.e.m) osmolality of duoden<li digesta fluid for infected and non-

infected lambs fed once per day and sampled prior to feeding or at the 

termination of the first meal (n=4). 

Mean osmolality (mosmols/l) 

Prefeeding Post feeding 

Infected 250 ± 14.5 260 ± 14.5 

Non-infected 240 ± 6.7 260 ± 6.7 
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Treatment with local anaesthetic or analgesic had no effect on the osmolarity of the duodenal 

fluid, so results were pooled. There was no change in duodenal fluid osmolarity with 

parasite infection or following feeding (fable 5.1). 

ii. Injections of analgesic and local anaesthetic to infected and non-infected 

animals. 

Figures 5.5 and 5.6 show feed intake for infected and non-infected groups following 

intraduodenal treatment with saline solution, codeine phosphate and local anaesthetic. Only 

parasite infection had a significant effect (0.01 < P < 0.05) on intake by causing intake 

depression in the infected group at all time periods analysed. Treatment with intraduodenal 

analgesic or local anaesthetic did not attenuate this feed intake depression in the infected 

group. Similarly the treatments had no effect on intake in the non-infected group. 

iii. Intraduodenal infusion of hypertonic solutions to non-infected animals only. 

Intraduodenal infusion of hypertonic mannitol or NaCI solutions prior to feeding 

significantly reduced feed intake (0.001 < P < 0.05) for the first 3 h of feeding (Figure 

5.7). Intake depression of around 70-80 % occurred immediately after treatment, with 

individuals eating nothing or a small amount in the first 10 min of feeding, then no feed for 

the next 1.5 h. The intake depressive effects of the treatments lasted for 1.5 h and was 

followed by a period of rapid intake. Between 1.5 and 3 h after feeding on control 

treatment days animals ate 6.65 g/kg LWO·75, whereas following mannitol, NaCI, mannitol 

+ anaesthetic or NaCI + anaesthetic they ate 17.2, 13.3,21.2, and 17.1 g/kg LW·75 

respectively. These intakes being significantly higher (p < 0.05) than those of the controls. 

By 4 h after feeding, effects of the treatments on cumulative feed intake were not evident. 
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Local an~esthetic did not block the intake depressive effects of either mannitol or NaCl, the 

cumulative intake in both cases was not different from that when the hypertonic solutions 

were given alone. 
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5.4 Discussion 

Some difficulty was experienced in the establishment of pathogenic parasite infections. The 

initial larval preparation appeared to have a poor pathogenicity, possibly due to lengthy 

storage of the larvae or repeated passage of the same culture over several years to obtain 

larvae (R.W MCAnulty, M. Bown pers. comm.). To minimise the likelihood that the initial 

exposure to larvae may compromise development of infection with the new larval culture, 

all animals were treated with a corticosteroid, to suppress the immune system. 

Intake depression occurred 10 weeks after commencing infection, somewhat later than the 6 

weeks usually recorded by other authors (Sykes and Coop, 1977) but similar to earlier 

studies (Chapter 4). Intake depression in the infected group was similar to that reported for 

T. colubrijormis infections (Sykes, 1982; Holmes, 1986). However there was no clear fall 

in live weight in the infected animals in the current trial, rather their weight remained 

unchanged while the non-infected animals continued to grow. 

Establishment and onset of T. colubrijormis infection did not affect the osmolality of the 

duodenal fluid in infected animals. This was despite a number of samples from infected 

animals having mucus and a strong green colouration present in the digesta collected. 

Changes to mucosal function and increased leakage of albumin into the digestive tract might 

be expected to increase osmolarity. Flow of digesta from the abomasum even in infected 

animals is of the order of 120-180 mllh (see Chapter 7) so any localised changes would 

have to be marked to overcome the diluting effect of digesta flow. DifficultieS existed with 

the collection of duodenal samples for analysis. Initial plans to pass silicone rubber tubing 

into the cannula and down the duodenum some 20-50 cm, were not successful, so a free-

flow sample was collected. The duodenal cannula was placed in the anterior duodenum, 

approximately 10 cm from the pylorus. Although 90 % of T. colubriformis worms are in 

the anterior third of the small intestine, the cannula was close to the pylorus and would be 

likely to be cranial to the locality of a large percentage of the adult worm population. 

Despite this, many samples from infected animals were obviously different in appearance to 

those from non-infected animals. Furthermore, there was no change in duodenal osmolarity 

foll~wing feeding. In pigs, changes in duodenal.osmolarity have been recorded 8 min after 

feeding (Houpt, Houpt and Swan, 1983b). The presence of a rumen reservoir may well 

buffer against major changes in duodenal osmolarity in the case of ruminants such as sheep. 

The osmolarity recorded here (approximately 250 mosmol/l) was somewhat lower than the 



465, 585 and 564 recorded in duodenums of sheep, camels and cattle by Maloiy and 

Clemens (1980). These differences can arise from species differences or dietary effects. 
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Sampling coincided with the termination of the first meal (45 min after feeding) and 'it may 

be concluded that satiety was not associated with osmotic changes in the anterior duodenum 

or in digesta from the abomasum in either infected or non-infected animals. Elevated 

osmotic pressure stimulates intestinal receptors to inhibit feed intake in humans (Hunt, 1980) 

and pigs (Houpt, Anika and Houpt, 1979; Houpt, Baldwin and Houpt, 1983a; Houpt et al., 

1983b; Gregory et at., 1987). In the pig, digesta arrives at the intestine 12 min before the 

termination of the meal, suggesting osmoreceptors are not the only regulators of meal size 

(Houpt et at., 1983b). Gastric distension may have an important inhibitory role in this 

situation (Gregory et at., 1987). In ruminants osmoreceptors in the reticuio-rumen may 

have a role in intake regulation (Carter and Grovum, 1990). Prior to feeding rumino-

reticular fluid is hypotonic to plasma, 247 ± 18 mosmollkg (Engelhardt and Hauffe, 1975), 

the precise level being a function of diet type and its fermentation characteristics. A post 

prandial rise in the osmolarity of rumen fluid occurs with the rate and extent depending on 

the diet, amount consumed per unit time, activity of ruminal microbiota and water intake 

(Carter and Grovum, 1990) so these changes may have a role in the termination of meals. 

There appears to be little in the literature on the role of duodenal osmolarity in meal 

regulation in ruminants. No changes in duodenal osmolarity following feeding were 

observed in the present experiment. Hypertonic solutions injected into the duodenum caused 

a dramatic and transient depression in intake, but the effect was not blocked by local 

anaesthetic. The apparent inability of the local anaesthetic to reverse this response is 

interesting. Mannitol is not absorbed in the intestine and its osmotic effect would be 

expected to act on receptors at or near the mucosal surface whereas NaCI is absorbed by the 

intestinal mucosa and could affect deeper receptor sites. For the first 30 min sheep were 

prevented from drinking water. This led to some distress in a number of instances, not 

unexpectedly, as the hypertonic solution would lead to considerable movement of 

extracellular water into the gut and could stimulate a strong thirst. Concentration and levels 

of local anaesthetic and the hypertonic solutions were similar to those used successfully in 

pig~ to block responses to hypertonic solutions (Houpt et at., 1983b). This finding suggests 

intestinal osmoreceptors are not present in sheep. The hypertonic solutions (approximately 

1 000 mosmolll) could have caused a rapid movement of fluid into the intestine possibly 

reducing blood volume which may have caused a centrally mediated intake depression or 
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stimulated osmoreceptors. Alternatively, the intake depression following hypertonic 

solutions recorded here may not be due to specific osmoreceptors but due to generalised 

malaise caused by the massive movement of fluids within the gut resulting from the infusion 

of the hypertonic solutions into the duodenum. 

Local anaesthetic did not increase feed intake in infected animals. Xylocaine is absorbed 

very rapidly from the OIT tract and peak anaesthetic effects should be felt within 2-5 min, 

with the duration of the effect 30-45 min. Pain felt at the mucosal surface could be 

expected to be alleviated by local anaesthetics, but, pain caused by pressure or distortion of 

adjacent structures may not be alleviated (Smith and Aitkenhead, 1985). Pressure or 

distortion of adjacent structures in the duodenum may occur in infected animals and maybe 

this mechanism is not blocked by the anaesthetic hence intake depression prevailed. Local 

anaesthetics have been used successfully in the rumen of sheep (Baile and Forbes, 1974) 

and in the intestine of pigs (Houpt et aI., 1983a,b) to block receptor function and attenuate 

the intake depressive effects of VFA and hypertonic solutions respectively. Interpretation of 

the lack of response here is confounded by the local anaesthetic not blocking intake 

depression caused by infusion of hypertonic solutions. 

Blocking continuous dull pain by using an opioid-derived analgesic intraduodenally did not 

successfully elevate feed intake in infected animals. This result confirms the earlier finding 

(Chapter 4) of no attenuation of intake depression when codeine was administered orally. 

Codeine phosphate is a highly soluble salt which should have been absorbed rapidly and its 

analgesic activity could be expected to have a duration of 4-5 h, sufficient time to elicit an 

eating response. This evidence indicates that dull pain associated with OIT parasites is 

unlikely to have a major role in feed intake depression. 

There were no changes in the osmolality of duodenal digesta in this experiment during the 

establishment or onset of a subclinical T. colubrijormis infection of the small intestine. 

Parasite induced feed intake depression was not blocked by local application of either an 

opioid analgesic or a local anaesthetic. Any local pain at the infection site does not appear 

to be an important mediator of the observed anorexia. 

In conclusion, feed intake depression could not be alleviated by either blocking duodenal 

pain receptors using an opioid derived analgesic or by using a local anaesthetic to block 

duodenal osmoreceptors. Furthermore, feed intake could be depressed in healthy animals by 



infusing hypertonic solutions but the presence of osmoreceptors remains uncertain because 

of an inability of the local anaesthetic to block the effects of the hypertonic solution. 
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CHAPTER 6 

The effect of varying levels of peripheral CCK blockade on feed intake in parasite 

infected· lambs. 

6.1 Introduction 
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No increase in feed intake of infected lambs following a single subcutaneous injection of the 

peripheral CCK antagonist L364-71~ was found in the experiment reported in Chapter 4. 

Conclusions were limited by the fact that the dose and route of administration had to be 

assumed as suitable to elicit a short term eating response. It is proposed here that use of 

intravenous administration and the formulation of a dose-response relationship should help to 

refute many of the limitations of the earlier approach. 

The CCK receptor antagonist loxiglumide (CRI505), a highly potent and competitive 

antagonist of peripheral CCK, was used in the current study. A proglumide derivative, 

loxiglumide is from a chemically different family to the asperlycin derived L364-718 used in 

the earlier study but is also a potent CCK antagonist and can be administered intravenously. 

Specific CCK receptors have been localised in different areas of the GIT and have a role in 

gut motility, function and feed intake regulation in a number of species (Smith and Gibbs, 

1984). Unlike the case in other species, the role of peripheral CCK receptors in intake 

regulation in sheep remains controversial. Baile and Della-Fera (1984) concluded, following 

considerable work in the area, that in sheep peripheral CCK receptors are not as important 

for regulating intake as they are in other species. However differences may occur in 

parasite infected lambs. Symons and Hennessy (1981) found elevated CCK levels in 

infected animals associated with the period of intake depression, and the plasma 

concentration of CCK fell following removal of worms by anthelmintic treatment. Elevated 

peripheral CCK concentration could depress feed intake directly or indirectly by slowing gut 

movement, and although not a factor in normal control of intake may operate as a safety 

mechanism in cases of disturbance to the interior mileau such as occurs with parasite 

infection. 

This study investigated the involvement of peripheral CCK action in feed intake depression 

by using a continuous infusion of a potent peripheral CCK antagonist (loxiglumide). 
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6.2 Materials and Methods 

Animals 

A pool of Dorset Down-Coopworth cross ewe lambs were early weaned (see Section: 3.7) in 

October 1988. Sixteen of these lambs were moved indoors into individual pens on 10 April 

1989 and offered a complete pelleted ration (Appendix 1). Larval dosing of infected lambs 

(n=8) commenced on 10 April 1989 (Section 3.6), non-infected animals (n=8) were dosed 

with filter tabs only. 

Feeding 

For the first 3 weeks of trickle infection, non-infected and infected animals were offered 80-

85 % of maintenance metabolisable energy (ME) requirements. Intake gradually increased 

so that after 4-5 weeks of infection all animals were offered ad libitum rations. Animals 

were fed a complete pelleted ration (Appendix 1). Feeding procedures, sampling and 

analysis were as described in Section 3.3. 

Parasite infection 

As in Chapter 4 problems encountered with establishment of infection led to all animals 

receiving 20 mg methylprednisolone (0.5 ml Depo Medrol, Upjohn Ltd.) on 2 occasions 7 

days apart during weeks 4 and 5 of infection. A culture of T. colubrijormis larvae was 

obtained (Dr T. Watson, Ruakura Agricultural Research Centre) in the hope that it would 

have greater pathogenicity than the local culture and animals were infected with the new 

culture from week 3. 

Treatments 

The trial was run as a replicated duplicate Latin square design (8 infected animals paired 

with 8 non-infected animals receiving 2 replicates of each of 4 treatments). Immediately 

prior to feeding animals were injected i.v. with 0, 5, 10 or 20 mg loxiglumide per kg live 

weight via a temporary indwelling catheter (16 G x 5 cm, I.D. 1.3 x 51 mm, Surflo LV 

catheter, Terumo Corporation, Tokyo, Japan). Loxiglumide was supplied in sterile glass 

vials containing 0.54 % loxiglumide in a phosphate buffered saline solution. Zero dose (0 

mg) consisted of phosphate buffered saline solution only. 

Prepared solutions were drawn from sterile vials into 60 ml syringes. The syringe was 

attached directly onto the catheter and the solution infused steadily into a jugular vein. 
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Statistical analysis 
, 

Analysis of variance for unbalanced data was carried out on ranks of cumulative intake data 

at each time period (non-parametric testing) and least squares differences used to establish 

differences between means (SAS v 6.1, SAS Institute Cary N.Y., U.S.A.). Live weight, 

weekly intake and faecal egg counts were analysed using Student's t-test (Minitab v 7.2). 

6.3 Results 

Two of the infected animals failed to' develop consistent feed intake depression within the 

duration of the experiment so were excluded, along with their non-infected pair, from 

treatment and all data analysis. 

Parasitological 

Faecal egg counts recorded during the experiment are shown in Figure 6.1. Eggs first 

appeared in faeces after week 3 of infection and remained high for the duration of the 

experiment. No eggs were detected in faeces of non-infected animals during the experiment. 

All animals were treated with anthelmintic at week 7 of infection, and egg numbers fell after 

drenching. 

Live weight 

Mean live weights of infected and non-infected animals during the experiment are shown in 

Figure 6.2. Following the removal of feeding restrictions the live weight of the non-infected 

animals continued to increase and these animals gained approximately 480 g/day, while the 

infected animals gained very little weight (90 g/day). As a result, by the end of the 

experimental period non-infected animals were 5-6 kg heavier than the infected group. 

Daily feeel" intake 

Mean (± s.e.m) daily feed intakes over 7 day periods are displayed in Figure 6.3. 

Following removal of intake restrictions, feed intake in the non-infected group rose rapidly 

to approximately 110 g/kg WO·75/day then fell slightly to 90-100 g/kg WO·75/day. Intake in 

the infected animals dropped immediately and remained depressed (24-28 %) for 

app~oximately 5 weeks, until 7-10 days after anthelmintic treatment, then increased 

gradually and recovered fully by week 11. 



73 

Short term feed intake 

Short term intake for infected and non-infected animals recorded during weeks 5-7 of 

infection is shown in Figure 6.4. Parasite infection reduced short term voluntary feed intake 

by between 34 % (360 min) and 50 % (40-50 min), with the average intake depression being 

43 % during the period recorded (0 to 8 h). 

Treatment effects 

Figure 6.5 shows the short term cumulative feed intake for infected and non-infected animals 

following intravenous injection of 0, '5, 10 or 20 mg of loxiglumide per kg live weight 

before feeding. There was no significant effect of the 3 levels of loxiglumide on cumulative 

feed intake at any of the recorded time periods. In all cases the resulting feed intake was 

not significantly different from that of the saline (control) treatment in both groups of 

animals. 
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6.4 Dis~ussion 

There was no change in feed intake in either parasite infected or non-infected animals at any 

of the 3 levels of loxiglumide used. 

Trickle infection with T. colubrijormis resulted in a 24-28 % depression in daily feed intake, 

characteristic of that reported by others (Steel et aI., 1980; Sykes and Coop, 1976) and 

similar to other experiments reported in this study. Live-weight gain was also depressed by 

infection, again a common feature or such infections (Holmes, 1985) and of the studies 

described in earlier chapters. 

Loxiglumide has been used frequently as a research tool to aid in understanding the role of 

CCK in gastrointestinal function and a number of disease conditions (Setnikar et aI., 1987b). 

However, there are no published reports of its use in sheep. An attempt to validate its use 

in sheep in conjunction with this trial (Appendix 6) was thwarted by lack of consistent and 

reproducible depression in short term intake in sheep injected intravenously with CCK-8 to 

test the antagonist effects of loxiglumide. In man loxiglumide pretreatment is a powerful 

means of blocking exogenous CCK effects on gastric acid secretion, gut emptying (Konturek 

e(az., 1990) and gall bladder contraction (Malesci et aI., 1990) as well as blocking of post 

prandial effects of a rise in endogenous CCK (Fried et aI., 1991; Schwarzendrube et al., 
1991). Similarly single doses of loxiglumide block exogenous CCK effects on gall bladder 

contractions in rats (Reidelberger et al., 1991) and in opossum (Hanyu, 1991). In man 

loxiglumide has a Ih life of approximately 4.8 h and does not interfere with the distribution 

and metabolism of CCK (Jebbink et al., 1990). 

These results support the conclusions of Baile and Della-Fera (1984) that unlike many other 

species, peripheral CCK does not appear have a meal intake regulating role in sheep. The 

current trial was limited by my inability to test the effectiveness of loxiglumide on peripheral 

CCK (Appendix 6) However, the response of the intake depressed infected animals in this 

study was of particular interest. If, as Symons and Hennessy (1981) suggested, elevated 

peripheral CCK levels were depressing feed intake, then loxiglumide should have blocked 

these effects at least in the short term. But there was no change in feed intake in infected 

animals even at doses of 20 mg/kg, which is almost double the dose used orally in humans 

to cause total inhibition of gall bladder contraction (Corazziari et al., 1990). 
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Several experimental limitations restrict the conclusions from this experiment. Firstly, 

loxiglumide use has not been reported in sheep nor validated for use in this species. 

Secondly, single doses of loxiglumide were used here whereas a continuous infusion would 

have ensured a constant availability of loxiglumide. Finally, if the effects of elevated CCK 

are indirect, for instance reduced feed intake is a consequence of slowing gut emptying, the 

short term reversal of this effect may not have been of sufficient intensity or duration to 

elicit an intake response detectable by the model used here. Notwithstanding these 

limitations, a role for peripheral CCK receptors in intake depression appears unlikely. 

Further work is required to address the limitations discussed above. 



CHAPTER 7 

A study of the effect of a peripheral cholecystokinin antagonist on feed intake and 

abomasal emptying in lambs infected with Trichostrongylus colubrifonnis. 

7.1 Introduction 
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Disturbances to gut motility have been observed during clinical T. colubriformis infections 

(Bu6no et aI., 1975; Bu6no et aI., 1982; Wiesbrodt & Castro, 1977) but the role of these 

disturbances in feed intake depression have not been studied. The effects of subclinical 

parasite infection on gut motility in lambs have not often been reported where account is 

taken of the lowered feed intake in infected animals (Roseby, 1973). In one trial, Gregory 

et aI. (1985b) recorded increases in small intestinal transit time, abomasal volume and half 

time of marker clearance, associated with reductions in abomasal emptyingin lambs infected 

with T. colubriformis. The parasites caused a progressive inhibition of motility and slowing 

of digesta flow which were more severe than could be explained by a reduction in feed 

intake alone, and appeared to be due to a failure of transit through the duodenum and upper 

jejunum. 

Altered secretion of gastrointestinal hormones such as CCK may have a role in changing gut 

motility or even reducing feed intake. Symons and Hennessy (1981) recorded elevated 

levels of plasma CCK in infected lambs which preceded the fall in feed consumption and 

postulated this elevation to be due to the presence of parasites in the duodenum. T. 

colubriformis worms reside in the proximal small intestine, the site of the greatest number of 

CCK-secreting cells (polack et aI., 1975), so could stimulate CCK release directly or 

secreting cells could respond to the worm-induced changes in intestinal motility reported by 

Gregory et al. (1985b). 

The possible role of CCK in changes in intestinal motility which accompany worm infection 

has not been investigated. A problem with CCK studies has been the lack of a reliable assay 

to measure changes in endogenous CCK secretion. An experimental approach which has 

been available for nutritional and physiological studies on the role of CCK has been the use 

of CCK antagonists. Loxiglumide (CR1505), a pentanoic acid derivative (~lH30CI2N20S) 

(Setnikar et al., 1987a) is a CCK antagonist. It is a potent, specific and competitive 

antagonist of CCK receptors in both in vitro and in vivo studies (Setnikar et aI., 1987b). In 
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in vivo studies loxiglumide was on average 100 times more potent than the classic CCK 

blocker proglumide (Setnikar et al., 1987b) thus it provides an effective means for blocking 

peripheral CCK activity. 

The hypothesis under test here is that a change/disturbance to the function of intestinal 

secretory cells due to worm infestation or the physical presence of the worm, will promote 

increased secretion of peripherally active CCK. Previous trials described in this thesis, 

using single bolus injections of loxiglumide, failed to show any changes in short term feed 

intake in infected lambs. This study. was undertaken to determine if feed intake could be 

temporarily elevated and/or the rate of abomasal emptying increased in infected animals by 

the provision of a plateau level of loxiglumide in their blood. 

7.2 Materials and Methods 

Animals 

Sixteen Coopworth x Dorset Down ewe lambs were weaned at seven weeks of age (17 ± 
1. 5 kg) (S ection 3.7). 

Surgical preparation 

On 20 and 21 of November 1989, T-shaped cannula were inserted into the abomasum, 

approximately 10 cm cranial to the pylorus (Section 3.4). 

Administration of parasites 

At approximately 4.5 months of age (25 kg live weight) the lambs were treated with 

anthelmintic (ivermectin 200 mg/kg Ivomec, MSD Agvet N.Z.) and housed in individual 

pens. At this stage 8 lambs were randomly allocated to parasite infection and 8 to control 

groups. Infected animals were each dosed orally per os three times per week with 

approximately 9 400 infective T. colubrijormis larvae (equivalent to 4 000 larvae/lamb/day) 

for the duration of the trial. 

Faeces were taken manually from the rectum of each lamb on a weekly basis, and processed 

immediately to determine faecal egg concentration (Section 3.6). Animals were weighed 

weekly at 0800 h prior to feeding except during treatment runs. 



Feeding 

Animals were offered a complete pelleted ration (Appendix 2). Feed refusals (hereafter 

refusals) were removed daily at 0730 h and all animals deprived of food for 2 h, to 

standardise the time of the first meal at 0930 h (Section 3.1). 
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During the first 3 weeks individual non-infected lambs were pair-fed with an infected animal 

(i.e. offered the amount consumed by its pair on the previous day). After 3 weeks feed 

offered to non-infected lambs was increased in a stepwise manner until sheep refused to eat 

10-20 % (by weight) of the feed offered. During this period, animals became accustomed to 

feed intake recording (Section 3.1). 

Experimental procedures 

On 6 January 1990 all lambs were transferred to metabolism crates. The trial commenced 

on 15 and 22 January (3 infected and 3 non-infected on each date), when an in-dwelling 

catheter was inserted into a jugular vein of all animals (Section 3.5). 

Infusion of CCK antagonist 

The experiment was run in two parts: 

Part 1 

Infected and non-infected lambs were infused with loxiglumide for 140 minutes. 

Loxiglumide powder was added to sterile phosphate buffered saline solution which had been 

adjusted to pH 7.6 to increase solubility, then filtered through a bacterial filter (0.2 ftm 

cellulose acetate filter, Advantec, Toyo, labdisc disposable 50 mm unit). The infusion was 

via gravity feed, using a sterile commercial solution administration set (2COOOI s Solution 

Administration Set, Travenol, Travenol Laboratories INC U.S.A.) which had a drip 

chamber and a friction wheel to adjust flow rate (plate 9). Initially 1 ml/min of the 10 

mg/ml solution was administered for 10 min to approximate a 30 mg/kg L W /h infusion, to 

produce plateau levels in the blood. The infusion rate was reduced to 0.3 ml/min 

(approximately 10 mg/ kg/ h) for the remaining 2 h, as had been advised to maintain a 

steady state level of loxiglumide in circulation (L Rovati, Rotta Research Laboratory, pers. 

comm.). Flow rates were monitored at least every 10 min and altered as required by 

adjusting the rate of flow into the drip chamber. During connection and disconnection of 

the infusion lines aseptic conditions were maintained. The hub of the needle was swabbed 



with a 70 % ethanol solution and the stopper cleaned then placed in the ethanol solution 

whilst the infusion was running. Sheep were fed following the initial 10 min infusion and 

intake recorded as described in Section 3.1. 

Part 2 
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In Part 2, the procedure was carried out as for Part 1 except that a single dose of 

indigestible radioactive marker, the 51chromium complex of ethylenediaminetetra-acetic acid 

(10 ml solution 51Cr EDTA; Downs and MacDonald, 1964; Amersham Australia Pty. Ltd) 

was injected into the abomasum 45 min after feeding, a time which corresponded to the end 

of the first eating period. Injection of 10 ml 51Cr EDTA was calculated to deliver 100 000 

counts per min of tracer into the abomasum. The initial and final syringe weights were 

recorded and the exact infusion weight calculated. 51Cr EDTA was injected through the 

abomasal cannula using a 10 cm long piece of slightly curved but rigid polyvinyl chloride 

tubing (I.D. = 4 mm ; O.D. = 6 mm ) with a rubber stopper fitted on the syringe end. This 

allowed the operator to inject the solution upwards into the body of the abomasum and 

prevented any spillage. Abomasal samples were then collected at 15, 30, 45, 60, 75, 90, 

105, 120 and 135 min following injection by placing a plastic collection bag over the 

cannula and carefully removing the stopper. Abomasal motility caused a flow of digesta 

through the open cannula. Each sample was immediately mixed thoroughly and a 10 ml 

aliquot taken for determination of radioactivity using an Autogamma scintillation 

spectrometer (1282 Compugamma Universal Gamma Counter; LKB Wallac). The samples 

and standards were stored at 4 °c until counting, which was within 4 days of collection. 

Statistical methods 

Cumulative feed intake data did not meet the assumptions of normality, so a general linear 

mode (GLM, SAS 6.1, SAS Institute, N.Y.) for unbalanced data was carried out on the 

ranked values (non-parametric analysis) and least square differences used to test differences 

between means. Rank values have no biological meaning, so data are presented as raw 

means. Means of abomasal volume, flow, retention time and T 112 were tested using GLM 

and a Duncan's new multiple range test for differences between individual means. 

Calculation of abomasal volume, flow and retention time 

Marker analysis was carried out using regression analysis on the natural logarithms of the 

adjusted counts. 



k (time-I) = lIretention time = 0.693/ [TIh] 

where k is the slope of the plot of the natural log concentration of the marker vs time 

(fractional outflow rate, ml/min), retention time is the average time the marker remains in 

the abomasum and Ph is the time at which half of the marker remains in the abomasum. 

Abomasal volume and flow were found using the following : 

Volume = Dose/[marker] to 
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Where dose is the total counts/min Qf standard x volume of marker injected (i.e. total counts 

injected) divided by the concentration of marker in the abomasum at the time of injection 

(to). This is found by extrapolating the regression of the natural logarithm of the 51Cr 

counts vs time back to the origin (intercept of Y axis) to give the concentration at time 0 

(Faichney, 1975). 

7.3 Results 

Nine weeks after the start of larval dosing 2 infected animals had failed to show significant 

depression in feed intake, so these and their pair-fed controls were excluded from all 

experimental treatments and analysis. 

Live weight 

Live weights of infected and non-infected animals during of experiment are shown in Figure 

7.2. Up to week 3 the mean live weight of infected and non-infected animals was similar. 

After week 3, which coincided with all animals being offered ad libitum feed, mean live-

weight gain of non-infected lambs was greater than that of infected lambs. A consistently 

greater live-weight gain in the non-infected animals resulted in a final live weight some 11 

kg heavier (p < 0.001) than the infected animals Oive-weight gains of 16 vs 5 kg for non-

infected and infected animals respectively). 

Faecal egg counts 

Mean faecal concentration of trichostrongylid eggs are given in Figure 7.1. Eggs first 

appeared in the faeces of the infected lambs during the third week of infection and faecal 

concentration peaked during week 6 of infection. Faecal egg concentration fell gradually 

from week 6 to week 10, at which time all animals were treated with anthelmintic. No 

parasite eggs were detected in faecal samples for non-infected animals during the 



experiment. 

Daily dry matter intake 

Mean daily voluntary feed intakes, calculated each week, are shown in figure 7.3. Up to 

week 3 intake of the non-infected animals was restricted to that of an infected pair. 

To allow for differences in live weight as the experiment progressed, intake was expressed 

per kg metabolic live weight (LWO.75). 
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Parasitism caused a reduction in mean daily intake from the fourth week of infection. The 

mean reduction in voluntary intake was 36 %, with a maximum reduction of 53 % occurring 

during week 7. From weeks 3-6 of infection, mean daily intake of infected lambs fell 

steadily to the minimum value at week 7. Thereafter to the end of the trial, daily intake 

gradually increased in the infected group. There was considerable variability in both the 

degree of intake depression suffered by individual lambs and the timing of the onset of the 

depression. 

Short term feed intake 

Short term feed intakes for infected and non-infected animals are presented as cumulative 

means in Figure 7.4. Parasite infection depressed short term feed intake at all recorded time 

periods (p < 0.001) by between 33 % (10 min) and 49 % (8 h). The pattern of eating was 

not markedly different during the 8 h day (Figure 7.4) i.e. the initiation and termination of . 

meals did not differ greatly. The reduction in cumulative feed intake was reflected by a 

lower rate of consumption (fable 7.1). 

Table 7.1 

Infected (1) 

Rate of feed consumption (g/ kghifl.75 / min) over the first, second and 

subsequent hours (2-8 h) of feeding for parasite infected and non-infected 

lambs fed once per day (to) (n=6). 

0-1 h 1-2 h 2-8 h 

0.27 ± 0.003 0.05 ± .003 0.03 ± .004 

Non-infected (N) 0.47 ± 0.003 0.16 ± 0.004 0.06 ± 0.004 

% depression (N-I1N *100) 43 69 50 
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The 69 % depression which occurred between 1 and 2 h after feeding was significantly 

greater than that recorded over 22 h (36 %),0-1 h (43 %) or 2-8 h (50 %) (p < 0.05). 

Effect of CCK antagonist loxiglumide on feed intake 

The effect of either intravenous saline or loxiglumide on short term feed intake is presented 

in Figure 7.5. Cumulative intake data are presented here (Fig 7.5) as raw means because 

the rank transformed data have no biological meaning and are hard to interpret visually. 

Loxiglumide did not elevate short tenn feed intake in either the infected or the non-infected 

groups and there was no effect of the infection status of the animals on the response to 

loxiglumide, so data were pooled for analysis. Analysis of variance of the rank 

transformed, pooled data revealed a significant depression (p < 0.05) in feed intake 

following loxiglumide infusion, the depression occurred only at feed intake recordings 20, 

75, 105 min, 4 and 6 h after feeding. Except for the depression following loxiglumide 

infusion at 20 min, depression at the other time periods occurred only in the non-infected 

animals during the second phase of the study when the slCr was being injected. When 

account of this was taken in the model for injection of SICr, no differences in intake due to 

loxiglumide were detected. 

Effect of infection status on marker retention and flow. 

Table 7.2 

saline 

Mean (± s.e.m) value of the fractional outflow rate (k; ml/min) of marker 

from the abomasum of infected and non-infected lambs following intravenous 

infusion of saline (control) or the CCK receptor antagonist loxiglumide 

(n=6). 

Infected Non-infected 

loxiglumide saline loxiglumide 

2.2 ± 0.17" 2.5 ± 0.143 2.8 ± 0.12b 2.8 ± 0.14b 

'superscripts with different letters indicate significant differences (p < 0.05) 

The rate of disappearance of the radioactive marker from the abomasum, as estimated by the 

slope of the log concentration of the mark~r (k), was significantly depressed in infected 
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lambs (p < 0.05). Treatment with loxiglumide had no effect on the value of k in either 

infected or non-infected groups. 

Effect on abomasal volume 

Parasite infection reduced abomasal volume of lambs by 60 % (162 ml and 67.3 ml for non-

infected and infected animals respectively) (fable 7.3). Treatment with the CCK antagonist 

loxiglumide did not affect the calculated value of abomasal volume in either infected or non-

infected groups. 

Table 7.3 

saline 

Mean (± s.e.m) abomasal volume (ml) for infected and non-infected groups 

following infusion with either saline (control) or CCK antagonist 

Qoxiglumide) (n=6). 

infected non-infected 

loxiglumide saline loxiglumide 

67.3 ± 11.30" 79.8 ± 18.49" 162.2 ± 24.20" 167.4 ± 27.89b 

'superscripts with different letters indicate significant differences (p < 0.05) 

A further experiment (Appendix 3) measured abomasal emptying in lambs offered a range of 

levels of feed intake and found a strong correlation between both abomasal volume and flow 

rate and level of feed intake, while the level of feed intake was not correlated with T Ih or 

retention time of the marker in the abomasum. 

Reanalysis of abomasal volume and flow rate data from the earlier experiment with infected 

and non-infected animals, using the feed intake of individual lambs on the day prior to 

recording abomasal emptying as a covariate, showed that all differences in abomasal volume 

between infected and non-infected groups were due to the different levels of feed intake of 

the groups. 



Plate 9. An illustration of the gravity-feed infusion technique used to infuse the 

loxiglumide. 
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7.4 Discussion 

A 36 % reduction in feed intake is within the range characteristic of sheep infected by the 

gastrointestinal parasite T. colubrijormis (Dargie, 1980; Sykes, 1982; Holmes, 1985) but in 

the present studies feed intake depression was first evident at week 5, rather than weeks 3-4 

when depression in feed intake is commonly detected (Sykes, 1982) and later than the 

appearance of eggs in the faeces of the infected animals which occurred during week 3. 

However, both the level of feed intake depression and onset of depression here were similar 

to those in other experiments in this study. 

Short term feed intake expressed as intake per kg of metabolic live weight (LW'.75) was 

depressed by, on average, 41 % over the 8 h measurement period. This correlated well 

with the daily intake depression of 36 % but was consistently 5 % higher suggesting that in 

the once-a-day feeding situation, where a large component of the daily intake is consumed 

over a relatively short period, the depression of intake of infected animals is more 

pronounced. The cumulative intake graph (Figure 7.4) does not suggest major changes in 

the eating pattern of infected animals compared with their non-infected counterparts. 

Differences in the rate of intake observed between 60 and 120 min implies the infected 

animals either had a longer inter-meal interval between the first and second meals or, if the 

inter-meal interval was the same, then their rate of feed consumption was further reduced. 

A study of the intake curves for individual animals suggests the former is true, with the 

infected animals having more time intervals with no changes in feed intake, apparently due 

to the first meal being terminated earlier in infected animals. 

Unfortunately it was not possible to record meal duration, but animals were observed to 

terminate the first meal 40-50 min after feed was offered, drink water then a non-eating 

phase occurred. Meals occurred at intermittent intervals throughout the remainder of the 

day. In the infected animals it was difficult to observe changes in meal duration. Animals 

appeared to be feeding, yet when feed bin weight was next checked, no changes in weight 

would be evident. By comparison non-infected animals tended to be more decisive, finish 

eating, move immediately to the water trough then move back to feeding or to sit and little 

time was spent at the feed bin without feeding. 

Both groups of lambs continued to gain weight during the experiment though the non-

infected group grew on average 3 times faster than the infected group. Other workers have 
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found the presence of gastro-intestinal parasites causes a fall in the rate of live-weight gain 

in infected animals (Coop, Sykes and Angus, 1976), or a live-weight loss (Steel et al., 1980) 

during infection. The comparatively moderate increase in live weight in the infected group 

can be attributed to their significantly lower feed intake during the experimental period. 

The ad libitum feeding regime offered to both groups of animals makes it impossible to 

separate any effects of parasitism on live weight change from differences in live weight due 

to different levels of feed intake. In several cases (Bown, 1986; Coop et al., 1976; 1977 

and Sykes and Coop, 1976; 1977) restricting the intake of non-infected animals to that of 

infected animals has produced a greater fall in live weight gain in the infected animals 

suggesting parasitism per se depresses live-weight gain. 

Short term feed intake in parasite infected animals was not increased by continuous infusion 

of a powerful peripheral CCK receptor antagonist (loxiglumide). This was despite the 

tendency of infected animals to terminate meals earlier than the non-infected animals. 

Likewise there was no increase in short term intake in the non-infected animals. If the 

loxiglumide was blocking peripheral CCK activity then these results would suggesting 

peripheral acting CCK is not a factor in parasite induced feed intake depression or a 

regulator of meal termination in healthy sheep fed once-a-day. As was discussed in Chapter 

6 this may lend further support to the findings of Baile and Della-Fera (1984) that unlike 

some monogastric species, peripheral CCK action does not appear to be involved in 

individual meal termination. Alternatively loxiglumide may have blocked satiety effects of 

CCK, without changes in intake being recorded because other biological regulators of short 

term intake become important when the effects of one system are removed. The findings of 

the present study do not rule out the possibility that loxiglumide was not blocking receptor 

activity, but findings in a later study (Chapter 10) support the activity of loxiglumide in 

sheep. 

Unexpectedly, there was a tendency for loxiglumide to reduce short term feed intake, but 

only intermittently. This depression in intake at 75, 105, 240 and 360 min occurred in non-

infected animals during the second part of the experiment. The observed depression of 

intake b'ccurred when animals were receiving a single abomasal injection of SICr EDT A 45 

minutes after feeding, with abomasal digesta samples collected every 15 min over the next 

2.5 h. Lambs became accustomed to digesta collection and were observed to be not stressed 

by sampling. They were generally required to stand during collection, and this may have 

disturbed subsequent eating patterns resulting in the observed significant feed intake 
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depressiop.. Accounting for the chromium injection in the analysis of variance model did not 

alter the finding that there was no significant intake stimulation due to loxiglumide 

treatment. 

There are no reports in the literature of loxiglumide causing feed intake depression. In the 

present work intake was depressed with loxiglumide compared to saline infusion, so the 

infusion per se does not appear to be the cause. Clinical trials have recorded incidences of 

local reaction to the loxiglumide infusion when the concentration was over 0.05 % in 

humans (L.Rovati, Rotta Res. Lab., pers. comm.). In this case a concentration of 0.05 % 

was used. This may have caused some localised discomfort, particularly given the relatively 

long and repeated nature of the infusions. There was no intake depression due to 

loxiglumide in the first part of the experiment and the observed depression did not occur at 

all time intervals, further supporting the conclusion that the intake depression was associated 

with abomasal sampling. 

Interpretation of the lack of response of animals to loxiglumide infusion was limited by the 

inability to measure blood CCK or loxiglumide levels. In a preliminary study to validate the 

use of loxiglumide to block peripheral CCK in sheep, difficulties were encountered with 

using exogenous CCK (Appendix 6). Exogenous CCK administration in lambs immediately 

prior to feeding failed to produce repeatable feed intake depression, and prevented testing of 

the effectiveness of the loxiglumide. However, extensive experiments in rats and humans 

have shown the effectiveness of loxiglumide in antagonising CCK receptors (Setnikar et al., 

1987b). 

GIT parasite infections can alter gut motility and increase abomasal volume (Gregory et al., 

1985b) but here abomasal volume reduced by 60 % in infected animals. This difference was 

fully accounted for by the differences in voluntary feed consumption between the 2 groups. 

Abomasal volumes even in the non-infected animals were much lower than those reported by 

Gregory et al. (1985a,b) (162 ml vs 300-900 ml). A large component of this difference was 

probably due to differences in feeding regimes between the two experiments. In the present 

study, to facilitate testing of pharmacological agents, sheep were fed once per day, whereas 

Gregory et al. (1985a) used a continuous feeding regime which produces more steady state 

rumen conditions and differences in the pattern of digesta flow from the gut. For instance 

sheep fed 3 times per day have approximately double the abomasal outflow of digesta 

compared with sheep fed the same amount of feed once per day (Harrison & Hill, 1962; 
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Gregory et al., 1985a) so it could be expected that major differences in abomasal volume 

between the experiments may reflect different feeding regimes. This does not explain the 

lack of effect of T. colubriformis infection on gut emptying recorded here, by comparison, 

Gregory and co workers found approximately 20 % increase in abomasal volume over that 

expected for the level of feed intake in the infected group. The nature of the outflow from 

the abomasum on once daily feeding may have masked any parasite induced effects on 

increases in abomasal volume and emptying which were reported by Gregory et al. (1985b). 

As discussed above, large differences in abomasal volume occurring in the present work 

were attributed to the differing levels of feed intake recorded. When animals were fed a 

number of levels of intake encompassing the range of intakes recorded during this study, a 

strong linear relationship was established (Appendix 3) between level of feeding and both 

abomasal volume and flow, also reported by Gregory et al. (1985a). There was no 

relationship between marker retention time or T 112 and level of feeding, also in agreement 

with Gregory et al. (1985a). Considerable variability within and between animals occurred 

in the present experiment. Gregory et al. (1985a) partially overcame this problem by 

recording abomasal emptying on twelve occasions which was sufficient to reduce the within 

animal variability but not the between animal variability whereas in the current study 

emptying was recorded in each animal only twice at each feeding level. 

A continuous infusion of CCK antagonist loxiglumide had no effect on retention time, T 112, 

volume, or flow of the abomasal contents, in either the infected or non-infected group. T 

112 values did not differ with either infection status, treatment, or level of feed intake but 

did fall within the range of 17-42 min reported by Grovum and Williams (1973) and 

Gregory et al. (1985a). Loxiglumide infusion at 30 mg/ kg LW/ min for 10 min and then at 

10 mg / kg L W / min for the first 2 hours of feeding should have been more than adequate 

(L Rovati, Rotta Res. Lab., pers. comm.) to achieve a plateau circulating level of antagonist 

and block any CCK induced changes in abomasal emptying in infected animals. 

Loxiglumide is a competitive antagonist of CCK receptor activity with an affinity for 

peripheral receptors 19 000 times greater than that of the model CCK antagonist, 

proglumide (Setnikar et al., 1987a). Loxiglumide and a closely related antagonist (CR 

1409) block exogenous and endogenous CCK activity in a number of species (Makovec et 

al., 1986) and should have blocked peripheral CCK activity here. In addition these receptor 

antagonists are effective at blocking exogenous CCK activity in a wide number of in vitro 
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situations. However, to detect changes due to loxiglumide infusion this model required the 

CCK antagonist to change short term intake or change abomasal emptying so that it was 

detected in the 0.75 to 2.5 h period digesta samples were collected in, or that antagonist 

induced changes in abomasal emptying brought about detectable changes in intake later in 

the day. Any delayed effects of loxiglumide on emptying or feed intake may not have been 

detected by the current model. 

Further to the earlier findings that a single dose (Chapter 4) or a range of doses of 

loxiglumide (Chapter 6) did not change short term feed intake in infected animals, the 

present experiment has shown that maintaining plateau levels of loxiglumide over the first 

two hours of feeding also did not enhance feed intake in lambs suffering anorexia. This 

study provides initial evidence to discount a role for the elevated peripheral CCK being the 

primary disturbance to feed intake in infected lambs either directly or indirectly via CCK 

effects on gut emptying. In light of conflict over the effect of T. colubriformis on gut 

emptying between this study and that of Gregory et aI. (1985b), further studies under a 

variety of feeding regimes are needed to investigate the effects of parasite infection on gut 

emptying. 



CHAPTER 8 

The effect of varying levels of a centrally active benzodiazepine on feed intake i~ 

infected lambs. 

8.1 Introduction 

The short term feed intake model developed in the study described in Chapter 4 provides a 

useful method for investigating a variety of potential pathways involved in parasite induced 

feed intake depression by using various pharmacological agents to block or stimulate 

potential pathways. 

In studies described so far in this thesis, parasite infected animals have not shown any 

increase in feed intake following blockage of pain receptors, peripheral CCK receptors or 

prostaglandin production (Chapters 4-7). The diazepam family of chemicals contains 

members which enhance appetite in many species (Baile and MCLaughlin, 1979). 

99 

Stimulation of food intake by such compounds has been reported in humans, rats, cats, dogs, 

pigs, sheep, cattle and horses (Baile and MCLaughlin, 1979). Benwdiazepine induced 

hunger is intense and will suppress many inhibitory effects on intake such as those due to 

amphetamines, taste aversion, heat stress, anorexia, bulk limitation or disease (Baile and 

MCLaughlin, 1979) so may temporarily overcome the effects of parasite infection on intake. 

This study used brotizolam (a benzodiazepine compound with central satiety blocking 

activity) to stimulate feed intake in sheep following infection with T colubriformis. 

8.2 Materials and Methods 

A pool of Dorset Down-Coopworth cross ewe lambs were early weaned (see Section 3.7) in 

October 1988. Sixteen of these lambs were moved indoors into individual pens on 1 March 

1989 and fed a complete pelleted ration. Parasite infection commenced on 1 March 1989 

(Section 3.6) for the infected group (n=8). 

Feeding 

For the first 3 weeks of trickle infection non-infected and infected animals were fed at 90-

95 % of maintenance energy requirement. Intake was then gradually increased so that 



following 5 weeks of infection all animals were receiving rations ad libitwn. The animals 

were offered a complete pelleted ration (Appendix 2). Feeding procedures, sampling and 

analysis were as described in Section 3.1. 

Parasite infection 

Problems encountered with establishment of infection led to all animals receiving 20 mg 

methylprednisolone (0.5 ml Depo Medrol, Upjohn Ltd.) on 2 occasions, 7 days apart, 

during weeks 7 and 8 of infection. A culture of T. colubriformis was obtained from a 

source external to Lincoln University (Dr T. Watson, Ruakura Agricultural Research 

Centre) and animals infected with the new culture from week 7 in the hope that this strain 

would have improved pathogenicity. 

Experimental design 
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The experiment was a replicated duplicate Latin square design (8 infected animals paired 

with 8 non-infected animals receiving 2 replicates of each of 4 levels of brotizolam). The 

same procedure was then repeated with all animals receiving all levels of brotizolam at the 

termination of the first meal (45 min after feeding). 

Infected and non-infected animals received 0, 2, 4 or 8 mg of brotizolam/animal 

immediately prior to feeding or 45 min after feeding. Brotizolam (Mederantil, Boehringer 

Ingleheim, N.Z.) was administered by very slow injection into a jugular vein. To prevent 

ataxia care was taken not to occlude the vein during injection. 

Statistical analysis 

Analysis of variance for unbalanced data was carried out on ranked cumulative intake data at 

each time period (non-parametric testing) and least squares differences were used to establish 

significance of differences between means (SAS, v. 6.0, SAS Institute, Cary N.Y., U.S.A.). 

Live weight, weekly intake and faecal egg counts were analysed using Student's t test 

(Minitab v. 7.2). 

8.3 Results 

Four of the infected animals failed to develop consistent feed intake depression within the 

duration of the experiment. These animals and their non-infected pairs were excluded from 

treatment and statistical analysis. 
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Parasitological 
The faecal egg counts during the experiment infected and non-infected groups are shown in 

Figure 8.1. Eggs first appeared in the faeces of infected animals after week 3 of infection 

and their number increased slightly to a maximum after week 6 of infection. No eggs were 

detected in the non-infected animals during the experiment. Egg counts were generally very 

low throughout the trial. 

Live weight 

The mean live weights for infected ~d non-infected animals during the experiment are 

shown in Figure 8.2. Live weight increased in both infected and non-infected groups and 

was not affected by parasite treatment. 

Daily feed intake 

Means (± s.e.m) of daily feed intake over 7 day periods for animals in both infected and 

non-infected groups are given in Figure 8.3. Intake depression had developed by week 9 in 

the infected group, with the maximum intake depression being recorded after 14 weeks of 

infection when voluntary feed consumption was 27 % lower than in the non-infected group. 

Short term feed intake 

The short term cumulative feed intake for infected and non-infected groups recorded during 

weeks 9-14 of the experiment are shown in Figure 8.4. Parasite infection reduced short 

term voluntary feed intake by between 34 % (360 min) and 50 % (40-50 min) with the 

average intake depression being 43 % during the period recorded (0 to 8 h). 

Effects of brotizolam 

i. Brotizolam administered before feeding. 

Cumulative short term feed intake for infected and non-infected animals treated with 0, 1, 2 

or 4 mg brotizolam per kg live weight is shown in Figures 8.5 and 8.6. There was a 

significant treatment by parasite interaction (0.001 < P < 0.05) for the first 4 h following 

feeding except between 30-50 min (p < 0.1). An interaction resulted from an elevation of 

feed intake in infected animals following treatment with all 3 levels of brotizolam. There 

was no significant effect of treatment on the non-infected animals (p > 0.05). Although 4 

mg of brotizolam elevated feed intake in the non-infected animals from 1 to 3 h after feeding 

by between 23 and 37 %, the variability of this response (CV @ 1 h = 37 %) precluded it 

from being significant. By comparison all 3 levels of brotizolam increased feed intake in the 



infected animals although there was no difference in the intake response between doses 

(fable 8.1). Brotizolam did not elevate daily (22 h) feed intake in either group. 

ii. Brotizolam administered 45 min after feeding. 

Treatment with 1, 2 or 4 mg of brotizolam following the first meal (45 min after feeding) 

resulted in a second meal immediately following the injection which markedly increased 
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(p < 0.01) 1-2 h intake compared with the feed intake of animals receiving saline alone (0 

mg brotizolam) in infected and non-infected groups (fable 8.2 and 8.3). Brotizolam 

administered 45 min after feeding elevated total daily intake in the infected group using 1, 2 

or 4 mg but only 1 and 4 mg elevated daily intake in the non-infected group. 



Table 8.1 

10 min 

30 min 

60 min 

8h 

Ie :,. 

Mean (± s.e.m) cumulative feed intake (g/kg LWO·7S
) over the first 8 h of feeding of infected animals following treatment with 0, 

1, 2 or 4 mg ofbrotizolam injected Lv. immediately before feeding (n=4). 

Cumulative feed intake 

Omg 1 mg 2mg 4mg 

8.1 ± 1.19 15.6 ± 1.70 14.4 ± 2.34 18.8 ± 2.54 I 

10.9 ± 1.75 25.8 ± 4.16 23.9 ± 4.19 28.3 ± 4.66 

11.3 ± 1.22 30.4 ± 3.51 32.1 ± 3.52 37.9 ± 5.49 

34.1 ± 4.25 42.7 ± 2.68 42.5 ± 3.47 52.2 ± 6.2 
---

-o 
c...,) 



Table 8.2 

1 h 

2h 

8h 

22 h 

Mean (± s.e.m) cumulative feed intake (g/kg LWW) of infected animals following treatment with brotizolam immediately prior to 

feeding (0 min) or at the termination of the fIrst meal (45 min) (n=4). 

Cumulative feed intake 

Level of brotizolam 

Omg 1 mg 2mg 4mg 

Time after feeding brotizolam administered 

Control o min 45 min o min 45 min o min 45 min 

11.3 30.4 34.0 32.1 24.0 37.9 47.5 
± 1.22 ± 3.51 ± 2.80 ± 3.37 ± 2.80 ± 5.49 ± 2.80 

13.3 32.0 36.0 32.9 24.0 38.1 48.0 
± 1.95 ± 3.77 ± 2.80 ± 3.37 ± 2.80 ± 5.49 ± 2.80 

I 

34.1 42.7 46.0 42.5 40.5 52.2 57.5 
± 4.25 ± 2.68 ± 2.68 ± 3.47 ± 2.80 ± 6.20 

, 

± 2.80 

55.0 50.0 67 57.0 71.0 54.0 80.0 
± 2.60 ± 2.60 ± 2.60 ± 2.60 ± 2.60 ± 2.6 ± 2.80 

-o 
~ 



Table 8.3 

1 h 

2h 

8h 

22 h 

Mean (± s.e.m) cumulative feed intake (g/kg LWO·7S) of non-infected animals following treatment with brotizolam immediately 

prior to feeding (0 min) or at the termination of the first meal (45 min) (n=4). 

Cumulative feed intake 

Omg 1 mg 2mg 4mg 

Control o min 45 min o min 45 min o min 45 min 

22.3 23.70 23.0 22.7 23.0 35.2 30.0 
± 1.36 ± 2.73 ± 1.60 ± 2.16 ± 1.60 ± 6.66 ± 1.60 

24.50 25.8 25.0 23.6 24.0 36.4 30.0 
± 1.82 ± 3.49 ± 1.60 ± 2.17 ± 1.60 ± 6.58 ± 1.60 

52.4 42.6 45.0 43.5 38.0 43.5 45.5 
± 2.60 ± 2.60 ± 1.60 ± 4.00 ± 1.60 ± 6.38 ± 2.80 

71.0 57.0 78.0 70.0 71.0 65.0 80.0 
± 2.40 ± 1.60 ± 2.40 ± 2.40 ± 2.60 ± 2.4 ± 2.80 

-o 
Vt 
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8.4 Discussion 

This study provides the first evidence that feed intake in parasite-infected lambs mignt be 

increased by the use of a satiety blocking agent. 
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Brotizolam elevated both short term and daily (22 h) feed intake when administered 

immediately after the first meal, while administration prior to the first meal elevated only 

short term intake (0-5 h). When brotizolam was administered just prior to feeding, the 

resulting cumulative feed intake curves were similar in magnitude to those of non-infected 

animals receiving saline. This finding of an increase in intake following administration of a 

benzodiazepine in infected animals suggests a central mediation of feed intake depression in 

parasite infected lambs. These results also suggest that the non-infected lambs were eating 

at a maximum rate which could not be increased by benzodiazepines. 

The actual mechanisms involved in the response to brotizolam were not investigated in this 

experiment, and one cannot eliminate peripheral mechanisms being involved. However 

evidence from the current trial and the wide distribution of diazepam receptors in the brain, 

(including hypothalamic nuclei), of many species (Cooper, 1983) suggests peripheral and/or 

central mechanisms are integrated centrally to depress intake. Stimulation of diazepam 

receptors with benzodiazepine agonists elevates feed intake while inverse agonists decrease 

feed intake and antagonists block the effects of both agonists and inverse agonists on feed 

intake, suggesting diazepam receptors may have elicited the hyperphagic response recorded 

here. Other work reviewed by Baile and MCLaughlin (1979) and Cooper (1983) found 

benzodiazepines to mimic 'Y amino butyric acid (GABA-ergic) pathways but this response 

appears likely to be the mediator of motor incoordination which can occur following 

benzodiazepine administration and as such may not be of significance in the hyperphagic 

response to benzodiazepine. 

Opioid pathways are another proposed pathway of response (Cooper 1983) by the animal to 

benzodiazepine administration. Naloxone (an opioid receptor antagonist) when used 

con~urrent1y with benzodiazepines will block the induced hyperphagia suggesting 

benzodiazepines may act by releasing endogenous opioid peptides and/or their action at the 

receptors. If brotizolam acts via an opioid pathway, the results of the current study suggest 

a lack of hunger or a weak hunger signal, possibly due to lower than normal levels of 
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endogenous opioids, may be causing the reduced rate of feed intake recorded in parasite 

infected animals. If brotizolam acts to block a satiety signal as was concluded from early rat 

studies, then this implies a strong peripheral and/or central satiety signal may be operating. 

Further work to explore both these areas may provide valuable information of the 

mechanisms involved in parasite induced reduction in rate of eating. The current experiment 

did not investigate mechanisms of benwdiazepine action but further valuable information on 

mechanisms of benwdiazepine action in disease-induced anorexia could be gained by using 

parasite infected lambs and benwdiazepine agonists, antagonists and inverse agonists, and 

hunger/satiety agonists and antagonists like loxiglumide and naloxone. 

Intense feeding occurred when brotizolam was administered" prior to feeding, both the rate of 

feeding and the duration of the first meal were increased in the infected animals by 100 % 

and 30 min respectively. Intense feeding was uncharacteristic of infected animals which 

even following the 2 h feed deprivation period never showed a strong desire for feed, unlike 

the non-infected animals which were vocal and active prior to feeding. These observations 

support the earlier suggestion that a reduced hunger signal may be occurring in infected 

lambs during anorexia. 

In a study similar to the present experiment, Van Miert, Koot and Van Duin (1989) 

administered a single injection of brotizolam before feeding to goats fasted for 2 h and 

recorded a 35 % increase in intake 30 min after feeding. Unfortunately no other time 

periods were reported. A lack of significant response in the non-infected animals in the 

present study was similar to that of Fanneau de la Horie and Vaugon (1986) who found 

cattle with a variety of gastro-intestinal disorders responded more to brotizolam than healthy 

animals. The lesser response by the control animals may also be attributed to these animals 

being closer to maximum potential physical rate of consumption. Thus in removing satiety 

blockage other factors, like rate of prehension, limited the intake response. It was 

interesting that where brotizolam was administered to non-infected animals after the first 

meal, daily intake was increased by some 12 % yet the same dose rates administered prior 

to feeding did not change daily intake. In these once daily fed animals, the control animals 

showed considerable hunger prior to fresh feed being offered and ate rapidly during the first 

4O-?0 min resulting in a variable hyperphagic response to brotizolam. Treatment following 

the first meal effectively added another meal into the daily pattern. In this case a meal 

terminating satiety signal was overcome so the response was not constrained by physical 

factors such as may have been the case with brotizolam treatment prior to feeding. 
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Parasite infection produced a characteristic depression in daily intake, similar to that found 

by Steel et al. (1980) and reported in earlier experiments. In the current study parasite 

infection did not impede live-weight gain, unlike other reports of the effects of GIT parasite 

infection on live weight changes (Sykes 1982; Holmes 1986) and unlike earlier studies 

(Chapters 4-7) where infection restricted I ive-weight gain. 

In conclusion, this study found stimulation of diazepam receptors (probably within the brain) 

prior to feeding temporarily restored short term feed intake in anorexic parasite infected 

lambs. Where treatment was administered immediately after the first meal, daily intake in 

these infected animals was increased. These results show that parasite infected lambs will 

respond to stimulation of receptors, probably located within the brain, associated with 

feeding. Further studies on the role of hunger and satiety pathways in mediating this intake 

depression are required. 



CHAPTER 9 

The effect of fasting and an opioid antagonist on feed intake in lambs infected by 

Trichostrongylus colubrifonnis. 

9.1 Introduction 
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Work on the role of hormones such as CCK in parasite induced feed intake depression 

described in this thesis and in other studies has focused on the effects of enhanced satiety 

signals in parasite infected lambs. There has been little consideration of a possible effect of 

"reduced hunger" in infected lambs. In earlier studies of short term feed intake, parasite 

infected lambs consumed feed but were observed to lack a strong desire to seek feed, 

manifested in a reduced rate of intake over short time periods, suggesting that they may be 

experiencing a reduced hunger drive. 

Some studies (Della-Fera and Baile, 1984) have implicated endogenous opiates as mediators 

of hunger signals in sheep. At least three families of opioid peptides have been defined, the 

enkephalins, endorphins and dynorphins. Feeding responses in many animals have been 

recorded with all three of these opioid families. Generally the magnitude of the response 

increases in the order B-endorphins, enkephalins and dynorphins but depends on the specific 

structure of each peptide (MCLaughlin and Baile, 1986). For example, central administration 

of met-enkephalin via a lateral cerebral ventricular cannula (i.c.v.) did not affect feed intake, 

however i.c.v. infusion of D-ala2-met5-enkephalinamide, which differs from met-enkephalin 

by only one amino acid residue, increased feed intake by 500 % in the first 60 min (Baile et 

al., 1981). In contrast D-ala2-leu5-enkephalin (one more amino acid residue) decreased 

intake (Della-Fera and Baile, 1984), highlighting the importance of the specific structure of 

each opioid for these responses. Similarly various dynorphin A peptides increased feed 

intake in sheep in a dose-dependent manner following continuous i.c.v. injection (Baile et 

al., 1987). 

Further support for a role of opioids as mediators of hunger signals is the identification of 

imn)unoreactive met-enkephalin neurones throughout the hypothalamus of the sheep (Marson 

et al., 1986), which is evidence that these peptides could act directly at the level of feed 

intake regulating centres. 
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Fasting o,r feed deprivation is a method employed by researchers to enhance hunger and is 

commonly used in the study of both hunger stimulating and satiety hormones. Elevated 

brain levels of hunger hormones such as opioids have been recorded in sheep following at 

least a 4 h fast (Scallett et al., 1985), conversely low levels of satiety hormones like CCK 

have been associated with fasting in laboratory animals. 

One method of establishing whether or not an eating response is opioid mediated is to 

determine if administration of the universal opioid antagonist naloxone, will block it. For 

this reason naloxone was used here ih a preliminary study of the role of opioids in intake 

depression. Brotizolam was also used, as previous studies (Chapter 8) had shown it 

temporarily elevated feed intake in infected lambs, so it was included as a treatment here to 

check the reliability of the short term feed intake recording technique and to demonstrate 

that lambs in the study could respond to an intake stimulant (Le. a positive control 

treatment). Fasting was included as a treatment, as a means for "naturally" enhancing 

hunger in both infected and non-infected lambs. 

9.2 Materials and Methods 

Animals 

Twenty female sheep (Coopworth x Dorset Down) from the pool of lambs which had been 

weaned in October 1989 at 7 weeks of age (live weight 19 ± 2 kg, Section 3.7) were 

maintained indoors on a complete pelleted diet (Appendix 2). At approximately 12 weeks of 

age (25 kg live weight), animals were randomly allocated to parasite infected (n= 10) and 

non-infected groups (n= 10), balanced for live weight. 

Infected lambs were dosed orally with 28 000 infective T. colubriformis larvae each week, 

administered 3 times per week (c.a. 9 300 larvae per dose) commencing on 29 January 

1990. For the first 4 weeks of the trial non-infected animals were pair-fed with infected 

animals to minimise live weight differences between groups. In the first 2 weeks the pattern 

of short term feed intake was established for each animal by recording intake, following a 

2 h feed deprivation period (Section 3.1). 

Treatment commenced during weeks 7-8 of infection, when feed intake depression of at least 

30 % occurred in all lambs of the infected group. 
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Experim~tal procedure 

Treatments were applied in a factorially designed (2 x 23) regime to both infected and non-

infected animals. Animals were fasted for 26 h or not fasted then infused Lv. with either 

saline vehicle, brotiwlam or naloxone prior to feeding (see below). 

fasted 

Infected 

non-fasted 

fasted 

Non-infected 

non-fasted 

brotiwlam 

saline 

naloxone 

brotiwlam 

saline 

naloxone 

brotiwlam 

saline 

naloxone 

brotiwlam 

saline 

naloxone 

Treatment allocation to infected and non-infected animals 

Treatments were allocated in a randomised Latin square design, such that each infected or 

non-infected animal received all combinations of treatments once. The design was replicated 

once. 

Fasted animals had free access to water but no feed for a 26 h period and non-fasted animals 

had ad libitum feed for 22 h followed by a 2 h feed deprivation prior to infusion of the test 

substances . 

Brotiwlam (Mederantil, Boehringer Ingleheim, N.Z.) was administered directly into a 

jugular vein by slow injection (2 mg in 2 ml) immediately prior to feeding (within 5 min). 

Naloxone (Sigma Chemical Co. St Louis, Mo, U.S.A.) was administered intravenously at a 

rate of 0.125 mg! kg LW in a sterile 2 ml 0.9 % phosphate buffered saline solution 

(Appendix 5) 15 minutes prior to feeding. To minimise carry-over effects of either the 

drugs or the 26 h fast on recorded intake, treatments were applied on alternate days or after 



a 2 day rest period when each animal had been fasted. 

Sampling 

Feed intake was recorded in the short term (0-8 h) and daily (22 h) on both treatment and 

rest days (Section 3.1). Faecal samples were collected once per week and the number of 

parasite eggs per gram counted (Section 3.6). All animals were weighed weekly (Section 

3.2). 

Statistical analysis 
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Statistical analysis was carried out using a non-parametric rank transformation of the intake 

data followed by analysis of variance for unbalanced data using the SAS statistical package 

(SAS 6.01 SAS Institute N.C., N.Y., U.S.A.) 

9.3 Results 

Parasitological changes 

All eggs recovered from faeces were identified as those of T. colubriformis. Changes in 

mean faecal egg concentration of infected animals over the experiment are shown in Figure 

9.1. Eggs first appeared in faeces 3 weeks post-infection and the number excreted peaked 

during week 4. Thereafter egg output tended to fall, with a sudden drop in output during 

week 8, but with a second peak occurring during week 9. No eggs were found in samples 

from non-infected animals during the experiment. 

Live weight 

Changes in mean live weight for infected and non-infected groups during the experimental 

period are shown in Figure 9.2. Prior to week 9 live weight gains of the 2 groups were 

very similar with mean weekly gains of 1.3 (± 0.30) and 1.3 (± 0.43) kg for infected and 

non-infected groups, respectively. From week 8 mean live weight of the infected group 

remained unchanged (31.0 ± 1.30) kg while the non-infected group continued to gain 

weight (1.3 ± 0.04 kg/week) for the remainder of the trial. 

Feed intake 

Mean weekly feed intake of infected lambs was lower than that of non-infected lambs 

(Figure 9.3). Feed intake of the infected lambs remained depressed for 5 weeks of the 
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experiment. 

The maximum depression of 29 % was recorded during week 12 of infection. 

Short term feed intake 

Short term feed intake in infected animals was depressed relative to non-infected animals at 

all recorded time periods following a single daily feed (Figure 9.4). Average feed intake 

depression was 36 %, with maximum depression of 48 % recorded at 10 min and minimum 

depression of 25 % recorded at 7 h .. The observed depression in intake tended to decrease 

as the day progressed. 

Treatment effects 

Fasting 

A 26 h fast alone significantly (0.01 < P < 0.05) elevated feed intake in both infected and 

non-infected groups in the short term (100 % increase in intake at 120 minutes) and on a 

daily basis (12 % increase). Over the 8 h recording period the infected, fasted group ate 

only slightly less feed than the non-infected and fasted group (Figure 9.5). During the first 

40 min of feeding the mean cumulative feed intake for the infected and fasted group was not 

significantly different from that of the non-infected non-fasted group. However, from 50 

min to 7 h post feeding intake of the infected, fasted group was significantly above that of 

the non-infected non-fasted group (p < 0.05). 

Naloxone 

Naloxone depressed short term feed intake in both infected and non-infected groups 

following the 26 h fast (Figs 9.8, 9.9) and after the standard 2 h feed deprivation period 

(Figs 9.6, 9.7), except in the infected, non fasted group (Fig 9.6) where the slightly lower 

intake was not significantly different from the intake following saline solution alone 

(p > 0.05). 

Where the groups were not fasted, naloxone-induced intake depression in the non-infected 

gro,..ps resulted in a cumulative intake curve which was the same as for the infected control 

treatment. Where both groups were fasted first, naloxone treatment appeared to depress 

feed intake more in the non-infected group, resulting in the infected and non-infected groups 

having similar intakes over the first 5 h following feeding. 
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Brotizolam 

Brotizolam significantly elevated feed intake only in the infected animals. 

In the non-fasted, infected animals, brotizolam increased the rate of feed intake by 88 % in 

the first hour (Figure 9.6). On average the increase during the first 3 h was 62 % for these 

infected animals. Following fasting in infected animals (Figure 9.8) brotiwlam increased 

feed intake significantly during the period 1.75 h to 7 h after feeding (p < 0.05). In the 

non-infected group brotizolam tended to increase intake during the first 2 hours (Figure 9.9) 

but this increase was not significant (p > 0.05). 

There were no significant parasite by treatment interactions revealed by analysis of variance 

on untransformed or rank transformed data. 
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9.4 Discussion 

These findings demonstrate that fasting will stimulate feed intake in lambs even when they 

are suffering inappetence due to parasite infection. Fasting was a powerful stimulant to both 

short term (100 % increase in intake by 120 min) and daily intake (+ 12 %). The increase 

in consumption rate from 0.25 g/kg LWO·7s/min to 0.42 g/kg LWO·7s/min would result in a 

fasted 30 kg lamb consuming 262 g DM more than a non-fasted lamb in the 2 h period 

following feeding. 

An interesting result was the fmding that a 26 h fast resulted in infected animals consuming 

a very similar amount of feed to the non-infected, fasted animals and, at least over 7 of the 

8 hours recorded, more than the non-infected non-fasted animals. This means the signals 

resulting from the one day fast were sufficient, in the short term anyway, to override the 

parasite induced mechanisms which caused intake depression. 

The strong desire of the animals to seek food and increased rates of consumption indicate an 

elevation of hunger following fasting. Feed consumption increases following central 

administration of opioids (Baile et al., 1981; Morley, Levine, Yim and Lowy, 1983) so it 

can be argued that decreases in feed intake and blockage of opiate induced feeding following 

administration of opioid antagonists suggests opiates are involved in the appetite stimulating 

effects of feed deprivation. Also, naloxone treatment partially blocked the stimulatory 

effects of a 26 h fast suggesting a role for opiates in fasting-induced hunger. This is 

consistent with the findings of Scallett et al. (1985) who found elevated levels of brain 

opioids in sheep fasted for 4 h, compared with those of satiated sheep. In the present study, 

fasting was for considerably longer than 4 h which would favour further enhancement of 

hunger levels and presumably of hunger stimulating hormones. However, because 

endogenous hormone levels were not measured, information about the duration of opioid 

elevation is not available. Because naloxone crosses the blood-brain barrier (Jones and 

Richter, 1981) its site of action cannot be determined and the effect could have been 

mediated by peripheral and/or central opioid receptors. 

Nalpxone suppressed the intake stimulatory effects of a 26 h fast in both infected and non-
" 

infected animals, the suppression in the first 90 min resulted in consumption being 

equivalent to that of animals which were not fasted, and is further support for the role of 

opioids in hunger. Naloxone suppressed intake in control animals (non-infected and non-
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fasted) in the present study, which conflicts with suggestions that naloxone will not affect 

intake in normally fed animals (Jaffe and Martin, 1980). Feed intake depression of 36 %, 

45 % and 42 % at 30, 60 and 90 min, following naloxone treatment, recorded here in non-

infected and non-fasted animals, is consistently higher than the 27 %, 25 % and 24 % 

depression recorded in the same time periods by Baile et aI. (1981) who used 0.125 mg/kg 

of naloxone following a 4 h fast. Baile et aI. (1981) fed their animals for an hour 

immediately prior to the 4 h fast whereas in the current study feed was on offer, except for 

the 2 h deprivation p.eriod, immediately prior to fresh feed being offered. In a free feeding 

situation, sheep will consume 16-18 meals per day (R. Weston pers. comm.) so the 2 h feed 

deprivation period used every day to standardise the timing of the first meal may have been 

sufficient to stimulate endogenous opioids and therefore hunger. Because of the relatively 

long term nature of this study lambs may have become conditioned to the offer of fresh feed 

at the same time daily and delayed eating in anticipation of fresh feed thereby enhancing 

hunger signals. 

The non-fasted, infected animals showed no reduction in intake following naloxone 

treatment. The lack of response compared with the non-infected group under identical 

experimental conditions may be evidence for lower release of opioids and therefore less 

hunger in parasite infected lambs. It is tempting to conclude that opioid levels were lower 

in these infected aIiimals because of the lack of effect of naloxone. Such a conclusion 

cannot be reached without measuring circulating levels of endogenous opioids. A possible 

explanation for the presumed low opiate concentrations in infected lambs could be increased 

levels of peptidases, enzymes which break down circulating opioids. The presence of th.ese 

enzymes has been suggested as a reason for the conflicting results of trials using injection of 

opioids into peripheral blood (Riv~re and Bu~no, 1988). These peptidases are released from 

the intestines, so it is possible that parasite damage to the intestines may result in higher than 

usual levels of peptidases and therefore faster clearance of peripherally released opioids in 

infected animals. This argument would hold for peripherally circulating opioids. However 

if peptidases of intestinal origin were to affect opioid action centrally they would have to 

cross the blood-brain barrier and their ability to do this has not been established or rejected. 

Brotizolam was used principally to demonstrate the short term responsiveness of both 

infected and non-infected animals to a feed intake stimulating challenge. This means that the 

intake depression observed here in naloxone treated lambs was achieved in animals with 

competent feed intake regulatory pathways, which increases the validity of the observation. 
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Brotizolam stimulated feed intake in the infected animals but no significant increases in 

intake were apparent in the non-infected animals following brotizolam treatment. This 

finding is not unexpected since other workers (Fanneau, de la Horie and Vaugon, 1986) 

have found that cattle suffering from gastro-intestinal disorders responded to brotizoHun 

better than controls. Similarly in an earlier experiment (Chapter 8) non-infected animals did 

in fact respond to brotizolam treatment but the response was variable and much less than 

that observed in the infected animals. 

Only fasting significantly increased daily food intake. A lack of effect of brotizolam on 

24 h intake was also observed by Fanneau, de la Horie and Vaughan (1986) who concluded 

this was due to the short biological half-life (0.3 h) of the compound (Cooper 1983). 

Nevertheless increases in daily feed intake following brotizolam have been reported 

previously (Baile and MCLaughlin, 1979; Breier, 1985). However, in both of these instances 

treatment was administered when animals were already satiated whereas in the present case 

animals had been deprived of feed for 2 h at the time of treatment and a significantly larger 

than normal meal occurred. In an earlier study (Chapter 8) daily feed intake was elevated 

by brotizolam only where brotizolam was administered after the first meal and again not 

where treatment was prior to feeding. 

The 20 % reduction in voluntary feed intake in the infected group of lambs is of similar 

magnitude to the 16 % depression recorded by Sykes and Coop (1976) and Steel, et al. 

(1980) but quantitatively less than has been recorded in other experiments in this study. The 

trickle infection was obtained from a successful monoculture with no parasite eggs from 

another species detected in faeces during the experiment. The sudden drop in parasite egg 

numbers observed during week 8 appears likely to be due to a processing problem during 

the counting procedure, in this instance, a weak salt solution was thought to be the problem 

(R MC Anulty pers. comm.). The comparatively mild effect on feed intake recorded here 

possibly reflects low pathogenicity of the larvae. 

In conclusion, this study has established that parasite-induced depression of feed intake in 

lambs can be temporarily overcome by fasting or by central stimulation of feeding centres. 

In a,ddition, the results show that fasting may produce its effects on intake by an opioid 

pathway and it is possible that this mechanism is impaired in parasite-infected sheep. 



CHAPTER 10 

The effects of central administration of CCK, opioids and their antagonists in feed 

intake depression in lambs infected by the gastrointestinal parasite Trichostrongylus 

colubrifonnis • 

10.1 Introduction 
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In the previous studies described in this thesis I have been unable to demonstrate a role for 

peripheral CCK action in parasite induced feed intake depression. Using high affinity CCK 

receptor antagonists, both in single injection and continuous infusions, short term feed intake 

was not elevated in either infected or non-infected lambs. Similarly extensive studies on 

peripheral effects of CCK, (Baile and Della-Fera, 1984) suggest that even in "normal" 

control of intake in sheep, peripheral CCK does not appear to be as important a controlling 

hormone as in other species. This does not exclude the possibility of CCK acting centrally 

within the brain, either directly or indirectly, to influence feed intake. 

Specific CCK receptors have been localised in the hypothalamus of the sheep (Marson et aI. , 

1986) and fasting decreased CCK content in this part of the brain (Morley, Levine and 

KneIp, 1981) so there is good evidence for an involvement of CCK in central control of 

intake. Nevertheless inconsistent results following injection of CCK into the brain of sheep 

has led to some controversy on its role in feeding behaviour. In a thorough study with 

sheep, Della-Fera and Baile (1979) showed that CCK injected into a lateral cerebral ventricle 

depressed feed intake in a dose dependent fashion, with the dose required to elicit satiety 

being directly related to the duration of the fast. The lowest dose was similar to normal 

concentrations reported for humans (Rehfeld and Kruse-Larsen, 1978) suggesting that the 

dose was physiological. Since then, these workers have shown that central administration of 

CCK antibodies increased short term intake in sheep (Della-Fera and Baile, 1981). 

A significant feature of the changes to short term feed intake in parasite infected lambs is the 

red~ction in the rate of feed consumption. Naloxone, a universal opioid antagonist, was 

found to reduce short term intake in fasted and non-fasted control animals but only in 

infected animals following a prolonged fast (Chapter 9). The apparent lack of hunger and 

lack of responsiveness to naloxone observed in parasite infected lambs after the usual 2 h 
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fast may be the result of a diminished opioid signal or response. This together with the 

successful stimulation of feed intake by use of a central acting compound (brotizolam) has 

provided an incentive to investigate the central involvement of opioids in intake depression. 

Synthetic opioid analogues tend to be less rapidly cleared from the system, and have been 

used successfully to elevate feed intake in a number of species, including sheep. An 

enkephalin analog, D-ala-2 met-5-enkephalinamide, injected into a lateral cerebral ventricle 

(26 nmollmin) increased intake by 346 % at 90 min while 51 and 102 nmol increased intake 

by 414 and 439 % respectively, an effect which was blocked by using the opioid receptor 

antagonist naloxone (Baile et al., 1981). 

The following experiments examined the role of centrally acting opioids and CCK in feed 

intake depression, by using both the active compounds and their receptor antagonists. These 

studies employed the same model of short term cumulative intake to identify a response as 

has been used in the studies described in earlier chapters. 

10.2 Materials and Methods 

Twenty five female lambs (Coopwortb) were early weaned on 7 October 1990 (live weight 

17 ± 2.5 kg) (Section 3.7). On 30 October animals were weighed, stratified on the basis of 

live weight, and allocated randomly within the live weight strata to a parasite infected or a 

non-infected control group (n= 12). Lambs were moved into individual pens on 

approximately 15 November and into individual metabolism crates on the 25 November 

1990. 

Parasitology 

Parasite dosing commenced on 7 November 1990. See Section 6 of general materials and 

methods (Chapter 3) for details. 

Feeding 

All animals were offered a complete pelleted ration (Appendix 2) from early November, 

wi~ the chaffed meadow hay being gradually reduced over 7-10 days. Non-infected lambs 

were restricted to the average intake of the infected group for the first 3 weeks of the 

parasite dosing, then feed offered to non-infected animals was gradually increased so all 

lambs were receiving ad libitum rations by early December. 



Surgery. 

All animals were fitted with a chronically implanted stainless steel cannula into a lateral 

cerebral ventricle (Section 3.4). 
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Animals spent 2 days in individual pens immediately after surgery. All commenced eating 

within 2 h of surgery and there were no apparent side effects of surgery. 

Two days after surgery animals were returned to modified metabolism crates. Briefly, feed 

bins were placed inside the metabolism crates and the crate lined with 10 mm plastic mesh 

to reduce the likelihood of the cannula being damaged. Animals remained in visual contact 

with the surroundings. 

On the same day, the 3 x weekly dosing of infected lambs with T. colubriformis was 

recommenced as outlined above. During this period lambs became accustomed to having 

feed removed for weighing at regular intervals, to being handled in metabolism crates, and 

to having tubing attached to their cannulae and tied into their fleece. 

When feed intake of an infected lamb was depressed by 20 % from its pre-infection level, 

this lamb and its non-infected pair were started on the infusion treatment sequence. 

Treatments 
Treatments were randomly allocated in a replicated Latin square design and, unless stated 

otherwise below, infused into the lateral ventricle at a rate of 0.03 ml/min for 90 min, 30 

min prior to feeding and for the first hour following feeding. 

1. Control: 

2. CCK 

3. CCK antagonist 

4. .CCK plus antagonist 

5. Opioid agonist 

6. Opioid antagonist 

Sterile phosphate buffered saline solution pH=7 

(Appendix 5). 

CCK-8 dissolved (2.5 pmollmin) in sterile phosphate 

buffered saline solution. 

0.54 % (w/v) of loxiglumide in 3 ml phosphate buffered 

saline solution. 

Rates as above 

0.102 pmollmin D-ala2-met5-enkephalinamide dissolved (2.0 

J.'g/ml) in phosphate buffered saline solution. 

Naloxone 0.125 mg/kg LW (3.75 mg/lamb/day) in 2 rnl 



phosphate buffered saline. Administered in a bolus 

intravenous injection 15 min before feeding. 
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7. Opioid agonist plus antagonist 

Rates as above 

Treatments were administered on alternate days over 2 x 2 week periods. 

Solution preparation 

1. Phosphate buffered saline: 

2. CCK agonist 

3. CCK antagonist 

4. Opioid agonist 

Prepared as per Appendix 5 and heat sterilised in sealed 

glass bottles in an autoclave for 20 min. 

48 p.g CCK-8 ([Tyr(S0:JH)Z1], fragment 26-33, product n° 

9271, Sigma Chemical Co., St Louis, Mo, U.S.A.) was 

weighed on a Cahn Balance and dissolved in 250 m1 of 

sterile phosphate buffered saline solution. 125 ml of this 

stock solution was aliquoted as a 200 % stock for use with 

loxiglumide and the remaining 125 ml was added to 125 ml 

of sterile saline solution to give 250 ml of a 100 % stock 

solution (0.096 p.g CCK-8 Iml). Aliquots (10 ml) were 

placed in sterile 50 ml polyvinyl tubes and frozen at - 70·C 

until required. 

Loxiglumide (sodium salt of Loxiglumide, ~I H29 Clz Nz Na 

Os, MW 483.37, Rotta Research Laboratorium, Monza, 

Italy) was dissolved in a sterile phosphate buffered saline 

solution at pH 7.6 to permit dissolution of loxiglumide. The 

solution was filtered through a bacterial filter Oabodisc 50 

mm disposable unit, 0.2 p.m cellulose acetate; Advantec 

Toyo). Fresh stocks of the 0.54 % solution were prepared 

on a weekly basis and stored at 4°C until required. 

Methionine enkephal inamide (D-ala2-metS-enkephalinamide, 

acetate salt, MW 655.7, Product If E 2006, Sigma Chemical 
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Co., St Louis, Mo, U.S.A.) was dissolved in sterile 

phosphate buffered saline solution. The opioid was difficult 

to solubilize, so the manufacturers recommendations were 

followed and approximately 0.5 ml of sterile dilute acetic 

acid (6 % glacial acetic acid) were added to the saline 

solution to promote dissolution. Aliquots (10 ml) were 

transferred to 50 ml plastic tubes and frozen at -70 ·C until 

required. 

The treatment solutions were thawed at 4 °C overnight as required. Treatment solutions 

were drawn into sterile 3 ml syringes and loaded into sterile tubing (Silastic Medical-grade 

tubing 1.0. 0.04 in 0.0. 0.085 in, Dow Coming U.S.A.) infusion lines. The dead volume 

of the infusion lines was greater than 3 ml, so the lines were clamped to prevent the 

introduction of air bubbles, then sterile saline solution loaded into the line until the solution 

containing drug started to drip out of the infusion line. The line was then clamped and 

connected to a syringe containing 3 ml of sterile saline solution which was attached to the 

multichannel syringe pump (Sage Instruments Syringe Pump, model 355). The multichannel 

pump had been modified by attaching a perspex backing plate and a perspex syringe holder 

to enable the pump to hold 12 syringes (plate 10). The required pump speed settings had 

been established in calibration trials using saline solution to determine the speed required to 

deliver 0.03 ml/min. There tended to be slight daily variations in the rate of pumping, so 

the infusion rate was checked every 15 min during the 90 min procedure and the pump rate 

adjusted, if required. 

Once all the lines were loaded, they were connected to the animals using aseptic techniques. 

Briefly, the outer cannula, stylet and surrounding area were swabbed with 70 % ethanol 

solution. The stylet was carefully withdrawn from the cannula and the clamped infusion line 

swabbed with ethanol solution and attached (friction fit) to the cannula. The infusion line 

was tied into the wool at the base of the neck, over the shoulder and at least once on the 

lamb's back, to prevent chewing of the lines, and passed over the back of the metabolism 

crat~. Finally the clamp was removed from the line and the pump switched on to start the 

infusion. 

After 30 min of continuous infusion all animals were fed and intake recorded as described in 



Section 3.1. 

After 90 min of infusion the pump was switched off, the cannula area thoroughly cleaned 

with the 70 % ethanol solution, the line disconnected and stylet (freshly sterilised in an 
autoclave) replaced. All lines and syringes were flushed twice with deionised water then 

once with sterile saline solution before re-sterilisation. 

Statistical analysis 
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Feed intake data recorded in this trial did not meet the assumptions of normality, so a non-

parametric statistical analysis was undertaken. Initially an analysis of variance on rank 

transformed data was carried out using the SAS statistical package (SAS 6.06 SAS Institute 

Inc Cary, N.C., U.S.A.) on the complete model, including all treatments and both groups of 

animals. A significant model (p < 0.05) was found at all time periods, so the model was 

separated to investigate the two aims of the experiment namely 1. the role of central CCK 

and 2. the role of central opioids in parasite induced feed intake depression. A rank 

transformation and analysis of variance was repeated using data from the CCK, CCK 

antagonist and control for both groups and again for the opioid agonist, antag~nist and 

control. 



Plate 10. An illustration of the continuous infusion syringe pump used to deliver the 

intracerebral infusions in Chapter 10. 
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10.3 Results 

One of the infected animals died prior to the start of treatments due to a clostridial infection, 

and one of the other infected animals failed to show any feed intake depression. These 

animals and their non-infected pairs were removed from all analysis. 

Parasitology 

The mean faecal egg concentrations of infected animals each week during the experiment are 

shown in Figure 10.1. Eggs first appeared in faeces after the 3 rd week of infection and 

output of eggs reached a peak during week 10 of infection. No eggs were detected in the 

faeces of the non-infected animals during the experiment. 

Live weight 

Mean live weights for infected and non-infected animals are shown in Figure 10.2. The risk 

of damaging the cerebral ventricle cannulae precluded weekly live weight recording being 

undertaken. 

Daily feed intake 

The mean daily feed intake (7 days) for infected and non-infected lambs during the 

experiment is shown in Figure 10.3. Following the period of restricted feeding, both groups 

had a rapid increase in daily feed intake. In the non-infected group, intake continued to 

increase until week 8 of the trial, thereafter it remained relatively constant and tended to 

decrease slightly. By comparison feed intake in the infected animals peaked in week 6, after 

which it fell and remained low for the next 8 weeks, and then appeared to increase in the 

final 2 weeks of infection. 

Short term intake 

The effect of T. colubriformis infection on short term feed intake recorded over an 8 h period 

is shown in Figure 10.4 for infected and non-infected animals. Parasitism significantly 

depressed feed intake at all recorded time periods (0.05 > P < 0.001) by between 22 % 

and,39 % of that consumed by the non-infected animals (per kg metabolic live weight 

LWO·75). 

When the recording period is divided into 3 sub periods: an initial meal (0-60 min), medium 
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term (1-2 h), and over the remainder of the measurement period (2-8 h), the reduction was 
, 

similar in the 1st and 3rd intervals, but was considerably higher in the medium term (1-2 h) 

(fable 10.1). 
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Table 10.1 Feed intake (g/kg LWO·7S
) (± s.e.m) and rate of consumption (g/kg LWO·7S

/ min) for 1st 2nd and 3rd periods of feeding for 

infected and non-infected lambs fed once pre day (n=6). 

0-60 min 60-120 min 2-8 h 

Intake Rate Intake Rate Intake Rate 

Infected (I) 17.1 ± 2.12 0.29 2.8 ± 1.69 0.05 14.1 ± 3.99 0.03 

Non-infected (N) 21.9 ± 2.17 0.37 5.5 ± 1.71 0.09 22.7 ± 4.21 0.06 

% Depression 22 49 38 
(N-IIN)*l00 
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Treatment effects 

Opioid agonist and antagonist 

Cumulative intake of infected and non-infected animals treated with the opioid agonist D-

ala2-met5-enkephalinamide is shown in Figures 10.5 and 10.6. A continuous infusion of 

this opioid agonist for 30 min prior to feeding and for the first hour of feeding tended to 

elevate intake in the infected animals initially. However, this effect was not significant 

(p > 0.05) and there was no effect on short term feed intake in the non-infected groups. 
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A single bolus injection of the opioid antagonist naloxone 15 min prior to feeding depressed 

feed intake in the infected animals and intake remained depressed for 40 min (p < 0.05). 

Naloxone had no effect on short term intake in the non-infected animals (Figures 10.5 and 

10.6). 

Feed intake was not affected when naloxone was administered with the opioid (Figure 10.5). 

CCK and CCK antagonist (Ioxiglumide) 

CCK-8 infused alone for 30 min prior to feeding and for the first hour of feeding depressed 

intake in the infected animals. The resulting reduction in intake was significant from 20 min 

to 6 h after feeding (0.05 > P < 0.(01) (Figure 10.7). CCK reduced short term intake 

over the 6 hours by 41 % to 55 %. CCK had no effect on intake in the non-infected 

animals (Figure 10.8). 

The CCK receptor antagonist (Ioxiglumide) elevated feed intake in both infected and non-

infected groups (Figure 10.7 and 10.8). Loxiglumide increased intake gradually, with the 

increase becoming apparent at 30 min (p < 0.1) and being significantly increased from 40 

min through to 4 h in the infected (0.08 > P < 0.(01) and non-infected (0.05 < P < 
0.(01) groups. 

Following infusion of both CCK and loxiglumide, feed intake was intermediate between that 

of the control (saline) and the loxiglumide alone in both groups (Fig 10.7 & 10.8). In the 

infected group at 1.25 and 1.5 h the increase in intake above that of infected controls was 

approaching significance (p < 0.1) and was significantly different 1.75 h after feeding 

(p < 0.05). In the non-infected group cumulative intake was increased above that of 

controls from 40 min to 3 h after feeding (p < 0.05). 



Table 10.2 Effect of Loxiglumide on mean cumulative feed intake (± s.e.m) and rate of intake for infected and non-infected animals in the fIrst 

hour of feeding (0-1 h), medium term (1-2 h) and remainder of the recording period (2-8 h) following once-a-day feeding (n=6). 

Time since feeding (h) 

0- 1 1 - 2 2-8 

Intake Rate (/min) Intake Rate (fmin) Intake Rate 
(g/kg WO·75) (g/kg WO·75) ·(glkg WO·75) (fmio) 

Loxiglumide 30.6 ± 5.54 0.51 7.8 0.13 12.2 0.033 
Infected animals 

Saline 17.2 ± 1.49 0.29 2.7 0.045 18.9 0.052 

Loxiglumide 35.9 ± 5.33 0.60 5.6 0.093 20.28 0.056 
Non-infected animals 

Saline 21.9 ± 1.62 0.36 4.8 0.080 22.9 0.064 

14U 
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Loxiglumide infusion increased the rate of eating during the first hour of feeding by 75 % in 

the infected animals and 67 % in non-infected animals compared to their respective control 

treatments (saline) (fable 10.2). The greatest effect was evident in the second hour of 

feeding when non-infected animals ate 16 % more feed and the infected 188 % more'than in 

the same period following saline treatment. During the final period (2-8 h) the loxiglumide 

treatment effects were no longer apparent and both groups ate less feed compared with their 

respective controls, being 36 % and 13 % less for the infected and non-infected groups 

respectively. As a result of the early stimulation of intake, the cumulative intake for both 

groups was 30 % higher than control values at the end of the short term recording period (8 

h). Infusing loxiglumide to the infected animals produced a 8 h cumulative feed intake not 

different from the non-infected control (saline) treatment so feed intake had been temporarily 

restored. 

Between 1 & 2 h after feeding there was a significant parasite by treatment interaction 

(p < 0.05, except p < 0.1 at 1 Ih h). The interaction was due to the infected animals 

suffering significant intake depression following CCK-8 infusion when no effect was evident 

in the non-infected animals, and as a result of a greater response in the infected animals to 

the intake stimulating effects of loxiglumide. 

Treatment effects on daily intake (22 h) 

There was no significant effect of any treatment on total daily intake (p > 0.05). 
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10.4 Discussion 

Increased feed intake by parasite infected lambs following infusion of the CCK antagonist, 

loxiglumide, in this study is the first evidence of a CCK receptor antagonist alleviating 

parasite induced intake depression in lambs. This is the second procedure by which intake 

was successfully elevated in parasite infected animals following the use of centrally active 

compounds (brotizolam and loxiglumide). These experiments provide evidence to support 

the view that central.mechanisms have an important role in causing the feed intake 

depression, with the current study supporting an involvement of central CCK mechanisms. 

A simultaneous infusion of CCK-S and loxiglumide elevated feed intake, but the elevation 

was less than when loxiglumide was administered alone. Loxiglumide successfully blocked 

the intake depressive effects of exogenous CCK-S and appeared also to block some 

endogenous CCK activity as well. Had the biological activity of loxiglumide and the CCK 

infused been comparable then the recorded feed intake should not have differed significantly 

from the control treatments. However it was difficult to equate the treatment level of 

loxiglumide in the present study with doses used in rats to block CCK activity (Setnikar et 

aI., 19S7a) so a maximum recommended (0.54 % w/v) (L. Rovati, pers. comm.) infusion 

was used. No data on kinetics of loxiglumide activity are available thus the relative receptor 

on/off rate of loxiglumide or its clearance from the system cannot be speculated upon. 

Increased cumulative intake in lambs following infusion of loxiglumide, which was recorded 

over the whole S h, is the result of changes in the pattern of eating during the first 2 h of 

feeding. The rate of feed consumption was elevated in both the first and second hours of 

feeding, but the most marked change occurred in the second hour when the rate of 

consumption was elevated by 188 % in infected animals and by 16 % in the non-infected 

group. Generally the second hour of feeding was observed to be a rest/rumination period, 

but loxiglumide induced an almost continuous eating period, contrasting with the control 

treatments where animals stopped eating 40-60 min after feeding with a second small meal 

between 1.25 and 2 h after feeding. Usually feeding was rapid for the first 20 min of 

feeding then declined to meal termination 40-50 min after feeding, possibly due to rising 

leve,ls of endogenous CCK inducing satiety. Blocking this effect with the infusion of the 

CCK receptor blocker led to a prolonged first meal in both the infected and non-infected 

animals. Although there was a significant elevation of feed intake in the short term, this 

was not manifested in changes to daily intake in either group, possibly due to other 
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constraints to intake such as reticulo-rumen fill reducing intake in the latter parts of the day. 

This contrasts with the brotizolam treatment (Chapter 8) where the extra feed intake 

following injection of brotizolam after the first meal was maintained and evident in the daily 

feed intake. 

It is tempting to conclude that central CCK activity is an important factor in meal 

termination in sheep and that elevated central CCK levels reduce meal size and resultant 

daily intake in intake depressed parasite infected sheep. Further work is required to draw 

such a conclusion. Offering feed to 'animals once a day changes eating patterns, from the 17 

or 18 small meals spread throughout the day (Weston pers. com.) and the observed diurnal 

grazing pattern of sheep on pasture (Scott & Sutherland, 1981; Thomson, Cruickshank, 

Poppi and Sykes, 1985), to a large single meal immediately following feeding, then small 

meals throughout the day. It could be unwise to assume that the same meal control 

mechanisms exist in both situations. However, it would appear logical that they may. 

Thomson et al. (1985) found grazing sheep did not appear to regulate grazing pattern by 

reference to rumen fill, with the rumen reaching its maximum fill only at the end of the 

afternoon grazing, the intensity of both morning and midnight grazing being insufficient to 

markedly increase rumen fill. The authors concluded that models such as Forbes (1980) 

which incorporate physical, metabolic and hormonal regulators are required. Integrated 

models such as thoSe of Forbes (1980) and Weston (1985) do accommodate hormonal 

regulators such as the role of CCK in the termination of individual meals. Studies are 

needed to provide data on levels of CCK, both central and peripheral, in sheep before and 

after spontaneous meals to understand the physiological significance of this hormone. 

Loxiglumide is a pentanoic acid derivative which was originally developed as a therapeutic 

aid to manage CCK dependent disorders in man. Although loxiglumide has almost 30 times 

greater affinity for peripheral CCK than for central CCK receptors, its affinity for central 

receptors is still 19000 times greater than that of proglumide, the original CCK antagonist 

(Setnikar et al., 1987a). There is considerable evidence from studies on laboratory animals 

for the antagonistic potency of loxiglumide on CCK-8 induced stimulation of gastrointestinal 

tissue (Setnikar et al., 1987b). There are no published studies of its effects on feed intake in 

sh~p so comparisons with the present findings are not possible. Makovec et al. (1986) 

noted that a very similar antagonist (CR 1409) tended to increase feed intake in rats during 

testing of its ability to antagonise the intake depressive effects of CCK. 
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I.C.V. infusion of the CCK octapeptide was very effective in reducing feed intake in the 

infected animals only, with the depression resulting in a much smaller than usual first meal 

followed by an extended intermeal interval, lasting between 2-3 h after feeding. Intake was 

depressed by 39 % after 20 min, peaking at 52 % depression 5 h after feeding. 

Interestingly Della-Fera and Baile (1979), also using a 2 h feed deprivation and 2.5 

pmol/min i.c.v. infusion of CCK-8 found that healthy animals ate no feed at all for the 

duration of the 3 h infusion and as little as 0.159 pmol/min depressed intake by 85 % during 

the infusion period. In the present study there was no effect of CCK at all in non-infected 

animals and where it was effective in the infected animals the maximum recorded depression 

was only 52 %. Conditioning to once-a-day feeding, as used in the present study, may lead 

to animals not eating for approximately 3 hours prior to feed being offered then having a 

large meal of fresh feed (Forbes, 1980). Cumulative intake curves show clearly the large 

initial meal the animals eat immediately following feeding, so these animals may have had a 

greater hunger drive than expected from a 2 h fast. However, CCK-8 depressed feed intake 

by 53 % in 8 h fasted animals during a 3 h infusion (Della-Fera and Baile, 1979), so it is 

somewhat surprising that a depression in feed intake in the non-infected animals was not 

seen during the 90 min infusion. 

Differing responsiveness to CCK-8 infusion between infected and non-infected animals may 

be due to the infected animals having higher levels of brain/central CCK activity acting 

directly on satiety centres, with the result that the exogenous CCK was sufficient to 

precipitate a strong satiety signal and reduce intake accordingly, whereas in the non-infected 

animals central CCK levels/activity would have been low (Scallett et aI., 1985) and even 

with a relatively high level of infusion insufficient CCK was present to elicit satiety effects. 

Some authors have suggested that general malaise may cause intake depression following 

CCK injection, especially since the historic lack of an effective means of measuring CCK 

has prevented an understanding of what are physiological levels of CCK to infuse. 

However, the finding here that a CCK receptor antagonist blocked the depressive effects of 

the CCK is evidence for the effect having occurred via a CCK receptor and not from 

und,efined malaise. Further studies are needed in this area to record endogenous levels of 

CCK both peripherally and centrally in infected and non-infected lambs. 

Infusion of the opioid agonist D ala2-met5-enkephalinamide tended to raise intake in infected 
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animals, but this difference was not significant. Baile and Della-Fera (1981) have found 

significant increases in intake following infusions of between 26 and 102 nmollmin. The 

authors found the increases in intake were large and lasted for up to 3 h. In the present 

study, the stock solution was inadvertently prepared to infuse 102 pmol/min instead of the 

102 nmol used by other workers. As a result the lack of response appears likely to be due 

to insufficient elevation of central opioid levels. A tendency for the infected animals to eat 

more following infusion of the opioid agonist is encouraging, with some individuals seeming 

to respond well to th.e treatment. It would be useful to repeat this experiment using higher 

levels. Baile et aI. (1981; 1987) elevated intake by 80-500 % over a 3 h period of which 90 

min involved infusion of an opioid agonist in satiated sheep, a situation where opioid levels 

could be expected to be low. In healthy animals deprived of feed for 2 h, hunger levels 

would be expected to be high and even at the higher levels of infusion used by Baile it is 

difficult to predict if an eating response would have been observed. Here the real interest 

lay in the response of the parasite infected animals which even following a 2 h deprivation 

period did not appear hungry. The tendency of the opioid, at a level much lower than used 

by other workers, to increase intake in these animals suggest this study should be repeated 

using higher levels of opioids. 

Naloxone will reduce short term intake in rats in a dose dependant manner and will reduce 

eating induced by food deprivation, glucose, insulin, a GABA agonist or adrenalectomy 

(Reid, 1985). Similarly in an earlier study (Chapter 9) 0.125 mg/kg naloxone depressed 

intake in healthy sheep for 90 min, while Baile et aI. (1981) found doses as low as 0.033 

mg/kg depressed intake in 4 h fasted sheep. By comparison naloxone had no effect on 

normal animals (non-infected) in the present study but depressed intake in the 2 h fasted 

infected animals for 40 min. The inconsistency between trials in the response of infected 

and non-infected animals to naloxone treatment is disturbing. When naloxone was first 

identified and used it was thought to be inert with no activity of its own except blocking 

opioid activity (Jaffe and Martin, 1980). There is now wide ranging evidence for it 

decreasing eating and drinking in a number of species (Reid, 1985). However it is not 

apparent whether these effects are via the opioid axis or are nonspecific and indirect nor 

why differences in response were recorded between trials. 

T. colubrijormis infection reduced daily voluntary feed intake from week 6 of infection. 

The onset and magnitude of the fall in intake was consistent with Chapters 3 and 4 and with 

published results of Sykes and Coop (1976). Likewise the depression in feed intake evident 
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over the 8 h recording period was similar to that recorded in Chapters 2 through 4. Parasite 
-infection reduced the rate of consumption in lambs 1 to 2 hours after feeding, more than at 

any other time during the day, and similar to the findings of the earlier studies (Chapters 4-

9). 

In summary, central administration of a potent CCK antagonist blocked the effects of 

exogenous CCK in both infected and non-infected lambs. Furthermore the CCK antagonist 

administered alone significantly elevated feed intake in both groups of lambs. The present 

experiment reinforces a role for central or brain mechanisms in parasite induced feed intake 

depression. Further these results suggest CCK pathways are involved in integrating this 

effect. 

Unfortunately the findings of the role for opioids in this study were inconclusive but the 

trends suggest more work should be undertaken. 
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CHAPTER 11 

General Discussion 

It was known from the outset of these studies that a major effect of internal parasites was a 

reduction in voluntary feed intake and that there needed to be a decision on the appropriate 

experimental method to characterise this, i.e. measure average daily feed intake or short 

term rate of feed consumption. Short term rate of intake was chosen for study here as this 

enabled identification of potential pathways and compounds and manipulation by various 

compounds or their agonists and antagonists, many of which have a short duration of action. 

Using a short term rate of intake model permitted the testing of a wide range of compounds 

or pathways which would not have been possible had average daily intake been investigated. 

This was considered to be much more beneficial in an initial investigation because so little 

was known about intake depression under parasitism. Only two studies (Symons and 

Hennessy, 1981; Fox et aI., 1987) have previously examined intake depression and they 

related CCK and gastrin respectively to depression in average daily feed intake. Using the 

average daily feed intake approach would have limited the study to a few "best bet" 

pathways whereas the approach using short term rate of intake in this thesis has enabled a 

number of pathways to be examined. It was hoped that this would rapidly identify 

promising pathways and open up this field of research. 

For this approach to be successful a number of criteria had to be met. Firstly, learned taste 

aversion must not unduly influence the outcome of experiments. If, for example a 

compound did block an intake inhibitory pathway but learned taste aversion was a 

dominating factor then no increase in feed intake might be observed, leading to an incorrect 

rejection of any hypothesis. This is particularly important when using the short term rate of 

feed intake approach and arose from Keymer et aI. (1983) who suggested that learned taste 

aversion was a real phenomenon in parasitised rats. The role of learned taste aversion was 

investigated in a preliminary experiment (Appendix 4) and found to be minor and thus 

unlikely to influence the results of future studies. Secondly, the mode of action of a 

compound should be known and must be effective in the sheep. In the present study this 

was ,a major difficulty as many of the compounds considered here were well documented for 

their effects on humans, rats or mice but not for sheep. In some cases the mode of action 

had to be inferred from the action in other species and/or their veterinary application e.g. 

codeine phosphate. To define clearly the role of a pathway in feed intake regulation it is 
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useful to both activate and suppress the pathway under investigation. This approach was 

tried here but met with variable success. An example was increased osmolality which 

clearly depressed feed intake in non-infected animals (Chapter 5) yet administration of a 

local anaesthetic did not block the effect of the hypertonic solutions. The use of the local 

anaesthetic in parasitised animals could not unequivocally be used to dismiss osmolality as a 

contributing factor to intake depression, although there is probably little debate about the 

effectiveness of local anaesthetics elsewhere in sheep. Similarly, CCK antagonists which 

are effective at blocking the effects of exogenous and post-prandial CCK on gut function in 

humans and rats (Setnikar et al., 1987b) have not been widely used in sheep. Because the 

administration of peripheral CCK has been shown to have a variable effect on feed intake in 

sheep (Baile and Della-Fera 1984), administration of an antagonist under these 

circumstances does not clearly define the effectiveness of the antagonist, or, therefore the 

role of the pathway under investigation. 

These examples serve to highlight some of the difficulties which were encountered during 

experimentation. It is important to realise with this experimental approach that certain 

criteria needed to be met and that these were not always achieved for a variety of 

experimental reasons although an attempt was made in all cases to test the effectiveness of 

compounds or action of pathways under investigation. In early trials some problems were 

experienced with the pathogenicity of the parasite larvae, with low faecal egg counts and 

slow onset of feed intake depression. Initially this was attributed to early exposure to 

parasites and the resultant initiation of immunity and to the high quality diet. Subsequently 

it appeared much of the problem was one of reduced larval vigour due to continued culture 

of the original strain and to the long storage time of larvae. Having outlined above the 

general philosophy of the approach, a discussion of the actual experimental results follows 

below. 

If short term rate of feed intake was to be used as the response parameter for this 

experimental approach, there had to be clear-cut differences in short term feed intake 

between infected and non-infected animals. This was in fact the case (Figure 4.5). It was 

one of the initial findings described in this thesis and demonstrated for the first time that the 

rate of intake, particularly that observed in the first hour of feed consumption, was a major 

difference between infected and non-infected animals. The pattern of eating was similar but 

the rate at which animals consumed feed differed. Differences in short term intake was 

recorded in all subsequent experiments. Actual meal sizes and duration could not be 
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measured as appropriate equipment was not available but careful visual observation indicated 

that animals tended to start and stop eating at similar times. The magnitude of the 

depression in both daily and short term feed intake varied between animals and between and 

within experiments. 

The procedure to determine cumulative rate of feed intake involved manually weighing feed 

bins at set times and initial training ensured animals became quite accustomed to this 

procedure. For the procedure to be valid, the depression in rate of intake had to be 

reversible. This was indeed the case in Chapter 4 where it can been seen that infected and 

non-infected animals had similar rates of intake in the preinfection period, the parasitised 

group were lower after about 6 weeks of infection and on administration of an anthelmintic 

their intake returned to the level of the non-infected group. This clearly demonstrated that 

feed intake depression under parasitism could be examined by the cumulative feed intake 

model and that differences were readily apparent in the Jirst main eating period, i.e. 

approximately 1 h, and all subsequent periods record,ed. Removal of the parasite reversed 

the short term depression of intake demonstrating that the presence of the parasite was 

instrumentaUn the feed intake depression. The fact that it took up to 10 days for intake to 

return to control levels after the parasite was removed suggests tissue repair was needed and 

that the presence of the worm per se and/or its secretions were not the only causative 

factors. 

This model of cumulative feed intake to examine short term rate of feed consumption was 

then used throughout subsequent studies to examine the actions of various compounds on 

feed intake of infected and non-infected animals to determine which pathway(s) were 

involved. Identification of the pathway(s) might then provide suggestions for a means to 

block their action. If intake can be increased in parasitised animals, this is likely to 

minimise the reduction in animal performance observed in parasite infected animals and also 

hasten the development of immunity or "self cure" 

Although the pattern of eating did not change markedly in infected animals, there was a 

significant reduction in the rate of feed consumption, which suggests a reduced hunger in 

the infected animals. Hunger was defined as a desire to consume feed with increasing 

hunger reflected in an increased rate of consumption and satiety as the termination of a 

meal, followed by non-feed seeking behaviour (rest, ruminate, socialise) and usually 

immediately preceded by a decreasing rate of feed consumption. Changes in meal patterns 
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due to disturbances to the intermeal interval would support a role for increased satiety 

causing a reduction in voluntary feed intake, but were only observed following some 

treatments. This interpretation is limited by an inability to continuously record feed intake 

and thus accurately define meal patterns. The reduced rate of consumption occurred' 

throughout the day and appeared to be a greater contributor to reduced feed intake than 

changes to meal patterns. 

The aim of the studies undertaken was to increase feed intake in the infected animals and 

thereby identify pathways with a potential role in feed intake depression for further study. 

A number of potential pathways were examined in both infected and non-infected lambs, a 

summary of the pathways examined is shown in Table 11.1. 

Table 11.1 

Pathway 

Pain 

Inflammation 

CCK 

Osmolality 

Central 

Hunger 

Opioids 

Pathways tested, pharmacological agents used and feed intake response 

(no=none, inc=increased, dec = decreased) of infected and non-infected 

lambs described in this thesis. 

Pharmacological agent 

oral codeine phosphate 

duodenal codeine P. 

oral indomethacin 

peripheral antagonist 

central antagonist 

local anaesthetic 

hypertonic solutions 

brotizolam 

feed deprivation 

central opioid analogue 

naloxone (antagonist) 

Change to intake 

Non-I Inf 

no 

no 

no 

no 

inc 

no 

dec 
. . mc 

inc 

no' 

dec 

no 

no 

no 

no 

inc 

no 

inc 

inc 

no 

dec· 

• response not observed in all experiments 

, level used may have been too low 

Initial findings (Chapters 4-7) suggest that anyone of a number of potential peripheral 

pathways, including changes to osmolality, gut emptying, pain and inflammation of the gut, 
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alone were not the trigger for anorexia in parasite infected animals. In regulation of 

"normal" intake it is highly improbable that a single pathway would regulate intake but the 

temporary/reversible nature of parasite induced intake depression suggests a single pathway 

may cause the depression. A number of peripheral mechanisms such as pain and 

inflammation may result in increases in central hormone or neurotransmitter levels. For 

example increases in the release of central CCK may occur in response to a number of 

peripheral signals and blockade of a single peripheral signal temporarily may be insufficient 

to elicit an initial short term feed intake response. Limitations of the experimental 

technique, where the action of a number of compounds which did not change feed intake 

could not be demonstrated unequivocally in sheep make it difficult to conclude that many of 

the pathways tested do not have a role. It can however be concluded that these compounds 

will not increase intake in parasite infected lambs. 

Fasting, i.c.v. loxiglumide and brotizolam, all treatments which probably act centrally 

(brain), increased the rate of feed intake and duration of the initial meal in infected animals. 

Fasting and post meal brotizolam also stimulated daily feed intake in the infected animals. 

However, these treatments also elevated feed intake and meal duration in the non-infected 

animals so these [mdings are not unequivocal evidence for the pathways being those 

responsible for parasite induced intake depression. Changes in circulating metabolites 

(glucose, VF A, FF A) as a result of fasting were not investigated. Any changes may have 

directly or indirectly contributed to the increased hunger observed. 

A comparison of the response of infected and non-infected animals to these intake 

stimulating compounds is shown in Figure ILIa and b. Parasitism decreased the rate of 

feed consumption without major effects on the time to terminate the initial meal. All three 

treatments increased the rate of feed intake and duration of the first meal in infected and 

non-infected animals but the . magnitude of the increase in rate of intake was on average 

three fold greater in infected animals than in non-infected animals (fable 11.2). The 

duration of the initial meal was 2-3 times longer in both infected and non-infected groups 

(fable 11.2). 
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control 

loxiglumide 

brotizolam 

fasting 
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Change in feed intake (%) during the first hour of feeding and in the 
duration of the first meal (2 consecutive recordings with no change 
in cumulative intake) in infected and non-infected animals treated 
with Lc.v. loxiglumide, Lv. brotizolam, fasted for 26 h or not 
treated (control). 

% change in feed intake 1 h Approximate duration of the first 
after feeding meal (minutes) 

Infected Non-infected Infected Non-infected 

0 0 30 30-40 

178 58 60-75 50-60 

235 58 60 ? 

121 44 90-105 90-105 

However, despite differences in the magnitude of the response between groups, the absolute 

response in cumulative intake to treatments was very similar (Figure 11.1a and b) in 

infected and non-infected animals and peaked initially (60-90 minutes after feeding) at 

approximately 40 and 50 g/kg L WO·75 following brotizolam, loxiglumide or fasting 

respectively in both infected and non-infected animals, suggesting other factors like 

prehension or chewing rate probably limit feed intake above this level. The nature of the 

response to i.c.v. loxiglumide and brotizolam was very similar. Both treatments increased 

the initial rate of consumption and duration of the first meal, without increasing daily feed 

intake. In contrast fasting appeared to increase the rate of eating over the whole day with 

no extended intermeal intervals being apparent. 

The similar response by both groups to treatments which increased intake reinforces the 

view that a unique mechanism is not operating in infected animals to reduce feed intake but 

rather it is a disturbance of normal central (brain) control mechanisms. However the 

magnitude of the response by infected animals, which temporarily restored intake to pre-

infection levels may indicate a role for central CCK receptors in parasite induced anorexia. 

Further, the intake depression caused by exogenous CCK was attenuated in both infected 

and non-infected lambs by i.c.v. loxiglumide, which supports a role for CCK receptors 

specifically rather than a generalised response. Loxiglumide (i.c.v.) not only increased the 

rate of consumption of feed but also appeared to increase the duration of the first meal. The 

response was greater in infected animals but the stimulation occurred in both groups and 
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suggests a potential role for central CCK in feed intake regulation rather than a specific 

parasite induced effect. Fasting temporarily restored intake in infected animals and 

naloxone treatment (an opioid antagonist) partially attenuated this response, supporting the 

view of reduced hunger in parasitised lambs. The response to naloxone suggests redllced 

circulating opioid levels may be the cause of the lack of hunger in infected animals. 

Changes in the rate of feed intake may be mediated by opioid pathways while changes to the 

onset of satiety may reflect the role of CCK receptors. An interaction of these pathways 

may be occurring, with CCK affecting the production or action of opioid mechanisms 

(Kumar, 1990). 

If fasting is assumed to stimulate a hunger signal and both i.c.v. loxiglumide and brotizolam 

elicit responses via satiety signals, these seemingly conflicting results of both hunger and 

satiety signals acting centrally may reflect the effect of integration which leads to depressed 

rates of consumption. This mechanism may be the result of a balance between disturbances 

to both hunger and satiety mechanisms located centrally or reflect the interrelationship 

between hormonal pathways and would explain why treatments appeared to both increase 

aspects of hunger (rate of consumption) and reduce satiety signals (increase the initial meal 

length). The reduction in hunger and increase in satiety occurring centrally may be a 

response to both central and peripheral signals, with disturbances occurring to the action of 

one or several of these pathways in infected animals, resulting in anorexia. 

This study did not address potential interactions between more than one pathway and 

interactions between pathways which alone did not change intake cannot be discounted. For 

example there is considerable research evidence for benzodiazepines and opioid activity 

being interrelated possibly via effects on GABA transmission (Cooper, 1983; Kumar, 1990) 

In summary T. colubriformis infection reduced the rate of feed consumption as well as total 

daily intake, without changing meal patterns. A single peripheral mechanism appears 

unlikely to be the only trigger of feed intake depression in infected animals. Increasing the 

rate of feed consumption and meal duration by fasting animals or administering a central 

sati~ty blocker or CCK antagonist restored intake in the short term and suggests a number 

of signals, all acting centrally may be involved in mediating both the rate of intake and the 

onset of satiety. 
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In conclusion, feed intake appears to be regulated through the same mechanisms in infected 

and non-infected animals. However, intake in infected animals responded to a much greater 

extent when fasting, i.c.v. loxiglumide or brotizolam were employed. The findings suggest 

central CCK receptors are important in parasite induced anorexia, possibly by changing the 

onset of satiety or by interacting with endogenous opioids to reduce the rate of feed intake. 

Secondly, reduced endogenous opioids may be causing the reduction in the rate of feed 

consumption alone or as a result of other interactions. It was concluded that intake in 

parasitised animals could be increased to that of control animals by employing procedures 

and compounds thought to act on the hypothalamus. 
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Composition 

Malt culIns 

Barley screenings 

Vitamin/minerals 

Analysis 

% Dry Matter 

Organic Matter 

50~0 % 

49.5 % 

0.5 % 

Neutral detergent fibre (NDF) 

Fat 

Protein 

in vivo digestibility 72 % 

Appendix 1 

Diet 1 (Propel) 

89.0 

88.8 g/kg DM 

40.6 g/kg DM 

1.07 g/kg DM 

18.3 g/kg DM 
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Appendix 2 

Diet 2 (Integrity Feeds) 

Composition 

wheatlbarley straw 30 % 

barley grain 49 % 

field peas 20 % 

vitamins/minerals 1 % 

Analysis 

88/89 89/90 90/91 

% Dry Matter 87.7 87.6 91.3 

NDF (g/kg DM) 31.5 26.5 35.5 

Fat (glkg DM) 1.2 1.4 1.85 

Protein (g/kg DM) 16.7 18.4 20.3 

in vivo digestibility 71.7 72.0 73.6 



Appendix 3 

The effect of the level of feed intake on the rate of abomasal emptying in lambs fed 

once per day. 

Introduction 

The rate of passage of digesta through the GIT tract of sheep is strongly influenced by the 

level of feed intake in the individual. Consequently the retention time of markers in the 

GIT of sheep decreases as the level of feed intake increases (Grovum and Williams, 1973; 

1977). This effect is most evident in the reticulo-rumen and hind-gut of the sheep (Grovum 

and Williams, 1977), areas having long retention times. Whilst the abomasum and small 

intestine with much shorter retention times are less affected by the level of feeding. 

In Chapter 7, abomasal emptying was studied in infected and non-infected animals fed once. 

per day. The hypothesis that parasite induced neural or hormonal effects might slow 

abomasal emptying, thus reducing digesta flow and feed intake, requires an understanding of 

the effect of feed intake on abomasal emptying. This study examined the relationship 

between level of feed intake and rate of abomasal emptying. 

Materials and Methods 

A group of 6 animals recently used in an experiment (Chapter 7) were used. All animals 

were treated with anthelmintic 4 weeks prior to commencement of study. Animals were 

offered 1600, 1200, 1000, 800, 600, or 400 g of the complete pelleted ration once per day. 

Each feeding level was offered for 10 days, then abomasal emptying measured as in Chapter 

7. Abomasal emptying was recorded on 2 consecutive days in each animal at each feeding 

level. 
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Results 

Table A 3.1 Mean (± s.e.m) retention time (RT), time for half the marker to leave 

abomasum (T th), abomasal volume (Vol) and flow rate of digesta fluid 

186 

c_->_"c,,'~ ___ c_.. from the abomasum in sheep with changing level of feed intake. 

-. ....-_-.. - .. " ... ---.... : 

Leve~ of feed intake (g/day) 

400 600 800 1000 1200 1600 

RT 44 44 46 37 42 46 

(min) ± 10.6 ± 10.3 ± 9.6 ± 10.2 ± 9.8 ± 11.2 

Vol (ml) 48 50 55 52 110 186 

± 27.7 ± 27.0 ± 29.8 ± 30.0 ± 20.0 ± 38.1 

Flow 60 72 72 66 174 324 

(mllh) ± 46.8 ± 46.8 ± 46.8 ± 52.2 ± 35.4 ± 58.8 

There was generally a good linear relationship of the natural log concentration of marker 

(Chromium) vs time recorded in each animal at each level of feed intake. In the 8 

measurements (out of 72) where a linear relationship was not recorded, these results were 

not used for further analysis. There was a significant relationship between abomasal volume 

and level of feed intake (p < 0.01) and between digesta flow rate from the abomasum and 

the level of feed intake (p < 0.05). No significant correlation was recorded between mean 

retention time or half-time of marker in the abomasum and feed consumption. The highest 

feeding level (1600 g) was close to ad libitwn feed intake for these animals (90-98 %). 

Discussion 

Decreasing feed intake in lambs fed once per day led to significant decreases in both the 

flow of digesta from the abomasum and the volume of the abomasum. There was a 

tendency for Tth to decrease with increasing level of feed intake and the values fell within 

the range reported by Grovum and Williams (1973) of 17-42 minutes. Values recorded in 

the present experiment for abomasal volume and flow were much less than reported by 
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Gregory et al. (1985) at all feeding levels, probably reflecting the different feeding regimes 

which were described in Chapter 7 because animals were a similar live weight in both 

experiments . 

There was considerable variation in all measured parameters of abomasal emptying between 

individuals, which was a similar problem encountered by other workers (Gregory et al. 

1985), so the mean value for each parameter was calculated for individual animals, rather 

than pooling all results to determine responses. 
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Appendix 4 

A study of the role of learned taste aversion in the reduction in voluntary feed intake 

associated with GIT parasitism. 

Introduction 

A reduction in voluntary feed intake is a common feature of parasite infections in many 

species (Symons, 1985), yet the mechanisms causing this reduction in feed intake remain 

poorly understood (Symons, 1985). Learned taste aversion may have a role in feed intake 

depression in ruminants. In rats infected by a single inoculum of Nippostrongylus 

brasiliensis (Nematoda), Keymer, Crompton and Sahakian (1983) found infected rats 

strongly preferred the diet not associated with infection when given simultaneous choice. 

Uninfected rats showed no preference and ate equal amounts of both flavoured diets. 

Learned taste aversion occurs in ruminants and is an important survival mechanism for 

foraging ruminants (provenza and Pfister, 1991). Learned aversion has been recorded as 

rapidly as within four hours of novel diet being offered (provenza and Pfister, 1991). 

Preference for, or aversions to, foods may result from trial and error based on cautious 

sampling followed by nutritional and physiological consequences. 

If intake depression of a particular diet is mediated via and/or prolonged by developed taste 

aversion to the diet associated with parasitic infection, then the feed intake response to 

blocking/potentiating a pathway may not be detected because of the dominant effect of 

learned taste aversion. The role of learned taste aversion in feeding preferences was 

examined in the present experiment. 

Materials and Methods 

Thirty lambs (Coop worth) were early weaned in October 1986 (Section 3.7) and grazed on 

"safe pasture" until March 1987. In March 1987 animals were house indoors in single 

pen&, under continuous lighting. Preference ranking (pretreatment) for meadow hay and 

lucerne chaff was established by offering a free choice of chaffed meadow hay and chaffed 

lucerne hay ad libitum. Forages were offered in separate bins at either end of 3.5 m pens 

and alternated daily between bins to minimise any effect of bin location on forage 
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preference. Tap water was available at all times in the centre of the pen. Animals were 

weighed (Section 3.2), blood sampled by jugular venipuncture, and faecal sampled (during 

infection phase) (Section 3.6) weekly for the duration of the experiment. 

After 14 days of ad libitum choice the animals were allocated on the basis of live weight to 

meadow hay or lucerne hay (n= 15). Within each forage group animals were allocated to 

infected (n= 10) or non-infected (n=5) treatments. Animals in the infected groups were 

dosed with T. colubrijormis larvae (Section 3.6). 

During the infected stage all animals were offered ad libitum only their allocated forage. 

Following the onset of feed intake depression of at least 25 % in the infected groups, all 

animals were treated with anthelmintic (200 mg/kg ivermectin, Ivomec, MSD Agvet N.Z.). 

The following day animals were again offered a free choice of meadow hay and lucerne 

chaff (post treatment preference ranking) as above for 4 weeks. Feed intake was recorded 

daily. 

Results 

Feed intake of meadow and lucerne hay before and following parasite treatment for all 

groups are shown in Figure A 4.1. 

During the pretreatment preference ranking, both groups showed a slight, but not significant 

preference for meadow hay compared to lucerne chaff. Following the infection period all 

groups increased preference for and intake of lucerne chaff and reduced their intake of 

meadow hay. There was no effect of treatment or infection status on the change to selection 

(p > 0.05). Both groups which had been parasite infected tended to eat less over the day 

than the non-infected groups but this difference was not significant. 
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Figure A 4.1 Daily feed intake (± s.e.m) of lambs offered a free choice of meadow hay 
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There was no evidence of a consistent shift in feed intake in infected lambs to suggest 

learned taste aversion was operating to reduce feed intake in lambs infected by T. 

colubriformis on either of the diets tested. All groups decreased consumption of meadow 

hay in the second preference ranking test and there was an associated increase in intake of 

lucerne chaff. The forages were both from the same source and no changes in the quality of 

either ration were detected during the course of the experiment. However the results 

suggest a change in palatability of the forages may have occurred, with meadow hay 

becoming less palatable or the lucerne chaff becoming more palatable. 

Previous studies using rats which suggested a role for learned taste aversion in parasite-
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induced ~orexia in rats (Keymer et aI., 1983) used a single large inoculation of parasites 

which would result in an acute infection and rapid onset of symptoms of infection. 

However the present experiment used trickle dosing and resulted in a relatively slow onset 

of subclinical infection (6-9 weeks) in the lambs. The gradual development of symptoms 

and anorexia would presumably be less likely to produce learned taste aversion than a 

sudden episode of malaise which would occur with acute infection or with aversive 

compounds (provenza and Pfister, 1990). 

In summary there was no evidence of learned taste aversion causing or prolonging intake 

depression in lambs suffering from subclinical T. colubriformis infection. With subclinical 

infection learned aversion does not appear to be a major component of the reduction in 

voluntary feed intake which occurs. 



For 4 litres 

NaCl 

N~HP04(An) 

~04 

KCl 

Appendix 5 

Preparation or phosphate burrered saline solution 

32.0 g 

1.82 g 

0.8 g 

0.8 g 

add to 3.5 1 distilled water and make up to 4 1 

stir for 10 min at 30°C until dissolved 
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Appendix 6 

A study of the effectiveness of loxiglumide and 1.364-718 (CCK antagonists) at blocking 

exogenous CCK-induced feed intake depression. 

Introduction 

The lack of a reliable and specific assay for endogenous CCK has limited our ability to 

understand the physiological role of CCK. Early work utilising a bioassay suggested 

elevated peripheral CCK levels may have a role in potentiating feed intake depression in 

lambs infected by gastrointestinal parasites (Symons and Hennessy, 1981). The 

development of potent, highly specific CCK receptor antagonists offers another approach to 

investigating the role of CCK in parasite infected lambs. Two CCK receptor blockers used 

in early studies in this thesis (Chapter 4 and 6) were developed for pharmacological use in 

treating CCK related conditions. L364-718 (Chang and Lotti, 1986) and loxiglumide 

(Setnikar et aI., 1987a,b) are potent, highly specific antagonists of peripheral CCK, as 

described earlier (Chapters 4 and 6). 

These compounds were developed for use in the pharmacology and medical fields, so 

although tested extensively on laboratory animals and to a lesser extent on humans, their use 

in sheep had not previously been validated. 

This experiment was undertaken to validate the use of the CCK antagonists in sheep, by 

using the antagonists to block the anorexic effects of exogenous CCK on short term feed 

intake. 

Materials and Methods 

Four ewe lambs, part of a larger pool of experimental animals were used. The animals 

were housed indoors under constant lighting in individual metabolism crates. All animals 

were accustomed to the metabolism crates and to removal of feed for determination of short 

term feed intake recording. 

Animals were offered each of 4 treatments in a replicated Latin square design. Treatments 

were offered on alternate days only. 



1) 5.ml phosphate buffered saline solution (control) administered by intravenous 

injection immediately prior to feeding. 
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2) 150 ILg of CCK-8 (C-9271, Sigma Chemical Company, St Louis, MO, U.S.A.) in 5 

ml of saline solution immediately prior to feeding. 

3) 0.1 mg/kg L364 718 in 0.5 ml of dimethyl sulphoxide injected subcutaneously 60 

minutes before feeding and 150 ILg of CCK-8 (as above) immediately before 

feeding. 

4) 10 mg/kg loxiglumide in phosphate buffered saline solution (0.54 % loxiglumide) 

administered by slow intravenous injection immediately prior to feeding and 150 ILg 

of CCK-8 (as above) immediately before feeding .. 

Short term feed intake was recorded (Section 3.1) on treatment and rest days. 

Results and Discussion 

There was no effect of any of the treatments on short term feed intake. The use of the CCK 

antagonists in sheep was not successfully validated because CCK-8 administered peripherally 

did not depress short term feed intake. 

Other work (Grovum, 1981) found exogenous CCK-8 administered peripherally to sheep 

depressed feed intake at a similar dose to that used in the present experiment but it was later 

suggested that changes to gut motility were responsible for the intake depression (de Jong, 

1986). Della-Fera and Baile (1979; 1984) found exogenous peripheral CCK did not affect 

feed intake in sheep and the authors concluded that in sheep unlike in other species 

peripheral CCK may not have an intake regulatory role. 

Peripheral CCK-8 did not depress feed intake in sheep in the present experiment. As a 

result the use of CCK antagonists L 364-718 and loxiglumide in sheep was not validated. 
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