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Abstract of a thesis submitted in partial fulfilment of the 

_. requirements for the Degree of Ph.D. 

ASSESSMENT OF GROWING SEASONS CHARACTERISTICS IN THE DRY 

ZONE OF SRI LANKA BASED ON STOCHASTIC SIMULATION OF 

RAINFALL AND SOIL WATER STATUS 

by B.V.R. Punyawardena 

Rainfall and crop water demand are two major agro-climatic variables that determine 

the crop production in the Dry zone of Sri Lanka. The lack of long series of 

historical data of these variables often hinders the proper understanding of the 

agricultural potential of the region. The large random variability displayed by such 

variables means that they are best simulated by appropriate stochastic models and can 

be used to replace the existing short series of data. The main objectives of this thesis 

are to characterise the major growing seasons of the Dry zone, Yala and Maha, using 

extended temporal variability of rainfall and crop water demand through the 

stochastic simulation and to predict the characteristics of upcoming seasons using the 

simulated and historical data. 

The rainfall process was modelled using three Markovian models: the first-order 

discrete time Markov model, the second-order discrete time Markov model and the 

continuous time Markov model. Out of them, the first-order discrete time Markov 

model is the preferred model on the basis of its statistical performance and the 

practical ease. The crop water use was estimated using a single-layer water balance 

model which accounts evapotranspiration as a stochastic element. 

A weekly system model was developed that incorporated the first-order Markov 

rainfall model and the soil water balance model. It characterises the two major 

growing seasons of the Dry zone using five agro-climatic indices: mean rainfall, 

dependable rainfall (DRP) , moisture availability index (MAl), ratio of actual to 

potential evapotranspiration (AETIPET) and crop water satisfaction index (CWSI). 
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The simulated mean onset of the Yala and Maha seasons were the standard weeks 13 

and 40, respectively. The mean end of the Yala season was the standard week 20 

whereas the mean end of the Maha season could occur any time after the standard 

week 5 and it varied depending on the index used. The simulation also revealed that 

though the Maha season is ceased by late January, the soil moisture remains well 

above the 50% of available soil moisture during the inter-season dry month, February. 

According to the simulation, at least one out of every ten years the Yala season could 

experience a complete crop failure and the possibility of occurrence of such a 

catastrophic event during the Maha season is negligible. The onset time of the 

seasonal rains as a predictor of the seasonal characteristics of Yala or Maha season 

was not clearly evident in this simulation study though such links have been apparent 

in other monsoonal areas of the tropic. Nevertheless, cursory examination of 

observed rainfall data and the appearance of EI Nino conditions in the Pacific ocean 

points towards a possible trend of seasonal rainfall in the Dry zone. 

A special case of spatial interpolation of rainfall data was examined assuming that the 

spatial continuity of two neighbouring locations are exponentially correlated. It was 

shown that the exponential spatial interpolation model is a good candidate to estimate 

the mean parameters of weekly rainfall in the Dry zone. 

Key words: stochastic; discrete; continuous; Markov chains; simulation; rainfall; soil 

water balance; spatial interpolation; Yala; Maha; seasonal characteristics; Dry zone; 

Sri Lanka. 
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Chapterl 

Introduction 

1.1 Climate and agriculture in Sri Lanka 

Sri Lanka is a tropical island of 65,610 square kilometres, situated at the southern tip 

of the Indian sub-continent separated by the narrow Palk strait, about 35 km of 

distance, on its north-west. The climate of Sri Lanka is determined by the tropical 

location as well as by the monsoonal regime and thus, appears to be greatly varied 

spatially and temporally. Furthermore, the movement of the Inter Tropical 

Convergence Zone (ITCZ)1 during the year has a major effect on the climate. The 

climatic effects of the topographical features of Sri Lanka also can not be neglected; 

the central highlands, a rough mountain terrain rising upto 2524 m above sea-level, 

also contribute to the spatial variation of climate in the island. The mean annual 

rainfall varies from 970 mm in the south-eastern coast and the north-western coast, to 

over 3500 mm in the south-western quadrant (Figure 1.1). The island is seasonally 

influenced by the southwest monsoon which occurs from May to September and 

northeast monsoon from late November to late January. The intermonsoonal 

convectional rains are effective during March to April and October to November 

which are caused by the movements of the Inter Tropical Convergence Zone 

(Suppiah, 1989). Because of the country's size and its location closer to the equator, 

the temperature at any given place remains high and relatively uniform throughout the 

year. Extreme fluctuations of temperature do not occur in any location in the 

country. The spatial variations of the temperature are related to the altitude and 

1 The zone of general convergence, an area of low pressure, between northern and southern 
hemisphere trade winds. 
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exposure. The variation is less than 5°C between the weekly means of the summer 

months and the winter months. However, the daily maximum temperature can exceed 

37°C during March and April and also in late August. Given the prevailing uniform 

temperature conditions in the island, the rainfall is the most important climatic 

parameter which governs the agricultural production in Sri Lanka. 

With respect to the rainfall, the island can be divided into three agro-climatic zones: 

Wet, Dry and Intermediate zones2 (Figure 1.1). The Dry and the Intermediate zones 

account for 75 per cent of the surface area of the island. The Dry zone has 4.13 

million hectares and Intermediate zone has 0.85 million hectares. These two zones 

consisting mainly of lowlands and are situated in the north, north-central and east. 

The Wet and the Intermediate zones mainly include land used for export oriented 

perennial crops such as tea, rubber and coconut and benefit from both the southwest 

and the northeast monsoons. Although there is a greater potential for cultivation of 

arable crops in the Dry zone because of fertile soils and high insolation, the lack of 

rainfall and relatively high evaporative demand constrain higher crop yields. 

Possibilities of finding adequate supplies of water for fully irrigated agriculture in this 

region are remote. The occurrence of adequate supplies of ground water and 

extractability of such reservoirs have not been fully investigated. The geology of the 

region is such that any ground water reserves may not exceed the domestic 

requirements (Somasiri, 1978). The estimated population in the Dry zone was 4.1 

million in 1981, accounting for 28 per cent of the total population in the country and 

over 90 per cent are engaged in farming. Over 80 per cent of the farmers in the Dry 

zone districts are full time farmers for whom farming is the only means of livelihood. 

Traditionally, in the absence of irrigation facilities dryland farming3 is the main land 

use type for subsistence. 

2 The tenns "Wet zone" and "Dry zone" are commonly used in Sri Lanka in order to express a wetter 
more humid part and a drier, more arid part of the island, respectively. Thus, they are not 
internationally-valid tenns (Domoros, 1974). 
3Dryland farming, also synonymous with rainfed agriculture, refers to a farming situation where, in 
the absence of irrigation, rainfall is inadequate to a greater or lesser extent to achieve the production 
potential set by other inputs such as solar radiation, soil properties and fertilisers. 
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Rainfall in the Dry zone is distinctly bi-modal (Figure 1.2), the larger peak 

occurring in November and the smaller one in late March or April. It is caused 

by regional (monsoonal) as well as local (convectional) meteorological 

phenomenon. Seventy percent of the total annual rainfall, approximately 1,200 

mm, occurs during a limited rainy season known as Maha, major rainy season, 

from early October to late January. This is due to the convectional activity 

(October to November) and the northeast monsoonal circulation (late November 

to late January) of the atmosphere. Meanwhile, the Maha season rainfall is 

generally augmented by the frequent formation of cyclonic depressions in the 

Bay of Bengal especially from mid November to December. The period from 

mid March to mid May, known also as the Yala season, is a minor convective 

rainy season. The amount rainfall during this season hardly exceeds 400 mm, 

well below the requirement of any crop. Low rainfall during this period is due 

to the decreasing convectional activity towards north, north-east, east and 

south-east directions compared to the southwestern part of the country 

(Suppiah and Yoshino, 1983). There are two recognised dry seasons in 

between the two rainy seasons; from early February to early March and late May 

to late September. These dry seasons, which are quite common, are not helpful 

for the agricultural production throughout the year. Further, the extension of 

the dry season beyond late September or October due to the failure of 

convectional and monsoon rains causes severe consequences in the crop 

production (Somasiri, 1992). 

1.2 Nature of the Dry zone agriculture 

The Dry zone agriculture is centred around water tanks or reservoirs which 

provides sustenance for crops, livestock and humans. Dams have been built 

across the slopes of undulating landscape which is characteristic of the Dry 

zone. It is common to find more than one tank within a square kilometre. They 

range in capacity from 62 to 430 megalitres, the typical tank being around 185 

megalitres (Mahendrarajah et aI., 1996). Food and Agriculture Organization has 

estimated that there are 7,758 village tanks in the Dry zone and command area 
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of a tank varies from 4 to 56 ha (Dayaratne, 1991). The lands under command 

of a tank are used for growing rice whereas adjoining highlands which have well 

drained soils are used for producing other commodities under rainfed conditions 

required by the community. The farming system of the Dry zone is a 

combination of irrigated rice cultivation during the Maha season supplemented 

by the dryland farming in highlands which produce cereals, pulses, spices, 

vegetables and other permanent crops. During the Yala season rainfed rice 

cultivation is not practiced in most parts of the Dry zone owing to inadequate 

water. As a result, land is used for cultivation of other field crops provided that 

drainage is satisfactory. In addition to the dryland farming, a large area of the 

Dry zone has now come under irrigated agriculture due to the rehabilitation or 

reconstruction of major tanks that were built during ancient times and the 

diversion of the longest river in Sri Lanka, the Mahaweli Ganga, into the Dry 

zone. Although these lands have been categorised as irrigated lands, cultivation 

of these lands is still an uncertain venture because the water levels of the tanks 

and the flow of the diverted river are dependent upon the amount of seasonal 

rainfall received. Thus, the determining factor of the Dry zone agriculture is the 

arrival and the spatial and temporal distribution of the seasonal rainfall. 

As a result of extensive agronomic and agro-c1imatic research undertaken during 

the last three to four decades, the technological guidelines have been developed 

to establish a farming system in the Dry zone which is economically sound and 

environmentally and sociologically stable. For example, planting time and age 

of the crop cultivars are to be grown for each rainy season for different regions 

of the Dry zone have been formulated using monthly dependable rainfall, rainfall 

at 75% expectancy, and soil properties (Department of Agriculture, 1979). 

However, more often farmers are reluctant to use these recommendations as 

failures by implementing these recommendations are more common than 

successes. For example, frequent crop failures have been reported in the 

southern part of the Dry zone owing to mid season short dry spells despite high 

degree of reliability of seasons shown in the guidelines (Merrey and Somaratne, 

1989). 
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There are several inappropriate aspects of assumptions and methods on which 

those recommendations have been based; For example, calculation of monthly 

dependable rainfall values have been based on the assumption that historical data 

are normally distributed. Use of normality assumption in climatological analyses 

is very common as it enables applications of certain statistical techniques such as 

analysis of variance, regression analysis, confidence interval determination· and 

certain types of hypotheses. Indeed, it can not be so when there is a real chance 

of the whole period being dry (Stern et al., 1982). The preliminary work done 

with this study revealed that monthly rainfall totals over any part -of the island 

are never normally distributed and either gamma or Weibull distributions, right 

skewed distributions, were the commonest in the most cases. It was revealed 

that 135 mm of monthly dependable rainfall for December at Maha-llluppallama 

in the Dry zone with conventional analysis reduced to 105 mm when the Weibull 

distribution, the best fitted distribution for the data available, was considered. 

This type of overestimation of the system variables could easily lead to 

recommendation of unsuitable crops, probably a long-age crop, for the region 

which might end up with complete crop failures. Hence, the farmers who have a 

large number of years of farming experience in the Dry zone continue to use 

their centuries old agronomic practices which have been based on the experience 

of the past climate rather than analysis. This has become an important 

management problem in any attempt of introducing new technologies to increase 

the productivity of the Dry zone lands. Generally, the extent of area to be 

cultivated, date of commencement of water issues from the village tank for rice 

cultivation, and type of crops and cultivars to be grown in highlands are decided 

at the meetings attended by both the farmers and the planners in a particular 

agricultural region before the season. The technical officers from the relevant 

agencies such as the Department of Agriculture and the Department of 

Irrigation are the key people who guide this meeting. They always tend to 

adhere to the findings of the analysis of past rainfall data to come up with a 

suitable cropping calendar for the season in hand. Monthly rainfall analyses for 

many locations in the Dry zone are available (Department of Agriculture, 1993). 

Even though they have been centred on the spatial distribution of the rainfall, 
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the monthly time base is, however, too long to make any meaningful decisions 

for many agricultural operations (Huda, 1994). Monthly mean rainfall may meet 

the crop water requirement theoretically, but the distribution of rainfall within a 

particular month may not be favourable, allowing crops to be exposed to soil 

moisture stress (Hargreaves, 1975). For example, during some months total 

rainfall may be 100-150 mm which may have been received within two or three 

-days, and the rest of the month will be extremely dry. Thus, farmers may have 

high probabilities of loss of the crop, leaving them in a desperate situation and 

making a significant impact on the economy of the country. Therefore, the use 

of shorter time intervals, such as a week, has been recommended for the tropical 

countries like Sri Lanka where the rainfall is showery and highly freakish in 

intensity, amount and distribution (Mavi, 1986 and Krishnan, 1980). 

Crop production in the Dry zone is largely determined by the climatic and 

edaphic features. Development of an improved crop production technology to 

increase and stabilise the food production in these areas requires an 

understanding of temporal and spatial variation of the climate, especially the soil 

moisture adequacy. A rational and effective agro-climatic zoning system can be 

an effective tool in overcoming this situation. The present ecological zoning 

system, The Agro-Ecological Map of Sri Lanka (Department of Agriculture, 

1979), has been drawn from considerations based mainly on monthly dependable 

rainfall, the rainfall at 75 per cent probability, altitude and major soil types. In 

this map, Sri Lanka has been divided into 24 agro-ecological regions (Figure 

1.3). This map has been widely used by the planning authorities to select the 

crops for different regions, preparation of cropping calendars and even in land 

use planning for the whole country. Despite its usefulness as a base-line 

reference, the appropriateness of the map has been questioned owing to several 

inappropriate underlying assumptions. For example, predicting rainfall 

expectancy at 75 per cent probability level is based on the assumption that 

rainfall will behave in the same way as in the past. This assumption is unrealistic 

because atmospheric conditions could vary from time to time and any rhythm of 

this variability can be completely changed due to the changes of solar activity, 

8 



Figure 1.3 

Zone Boundry 
Agroecological boundry ---

DRY ZONE 

• Maha lIIuppallama 

AGRO 
REGION 

~ 

MONTHLY 
HISTOGRAMS 

OF 
75% RAIN 

PROBABILITY FOR 
RESPECTIVE 

REGIONS 

Iwu2 1 :l .... 
I wu3 1 :6 7 f& 

,. 
~. 

~:krn" 
I WL3&41 :1& =' 

,. 
[KJ · 
~ :L&-A 
[JQ;J :~ 

~ :L .+i1 
~:~ 
~ :~J@ill 

QSJ:~ 
[g :k AI 
[g :Lm-. A 

[Eg :l..m,. • 
~:LA 
I DL3&41 :L ..6 
~ :L __ .d@ 

Scale 1:2,000,000 

Agro-ecological regions of Sri Lanka. 

9 



appearance of abnormal sea surface temperatures and sudden volcanic 

eruptions. However, influence of such events on the probability calculations 

could be minimised if the data base, on which probabilities have been 

determined, has covered a long period of the history. Moreover, in addition to 

the inappropriate statistical aspects of the methodology on which map has been 

based, there are some agronomically important aspects that should have been 

considered in view of the suitability of the map for agricultural planning. From 

the plant growth point of view, though probability analysis will give some 

measure of expectancy of rainfall in an area depending on the variability 

represented in the historical data, the calculated probability values do not 

indicate the amount of water available for plant use. The same amount of 

rainfall can act differently depending upon atmospheric demand or drying 

potential of the air and soil conditions. Many crops have moisture sensitive 

periods during which a temporary shortage of water can markedly reduce the 

yields; severe water deficits immediately before flowering can lead to pollen 

sterility and decrease in grainset (Van Keulen and Wolf, 1986). Therefore, any 

method of agro-c1imatic zoning that takes into account the crop water demand 

as a cartographic expression would be much more realistic rather than 

quantification of rainfall variability alone. 

Furthermore, boundaries of the current agro-ecological map has been based only 

on the rainfall values collected from 380 recording stations scattered throughout 

the island. Use of only 380 points to represent the whole island could be due to 

the fact that unavilability of reliable data and the large number of calculations 

involved in the study. But, in a country like Sri Lanka where the geography is 

so diverse such a networking intensity of rain gauging stations may be 

insufficient to account for the real spatial variability. Therefore, the introduction 

of more spatial variability by incorporating rainfall values from adjoining areas 

either by using available data or using appropriate spatial interpolation methods 

may produce more accurate boundaries of different agro-ecological regions of 

the island. 
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In addition to the proper understanding of the stochastic nature of the Dry zone 

rainfall and the crop water demand, the need for prior information about the 

seasonal rainfall is also important to reduce the risk and uncertainty associated 

with the farming in the Dry zone. With recent advances in understanding of 

factors affecting climatic variations, we have entered a new era where useful 

climatic prediction will be increasingly available. Use of such predictions along 

with the well understood stochastic structure of the seasonal rainfall in the Dry 

zone would increase the usefulness of the agro-climatic research on design and 

planning of ongoing and future operations related to the agriculture in the 

region. 

1.3 Modelling the agro-c1imatology of the Dry zone 

The Dry zone of Sri Lanka was not ecologically suitable for plantation crops 

such as coffee, tea, rubber and coconut which were introduced to the island in 

the early nineteenth century. Therefore, the Dry zone was not considered as a 

region with high potential for agriculture during the recent history. Thus, 

importance of monitoring the climate or weather change in the Dry zone was 

not properly undertaken. Much of the data records starts only from mid 20th 

century after the restoration of ancient tanks began resulting merely 30 to 40 

years of length of records available. Even if records are available, sometimes 

they are incomplete and often have missing values. Moreover, weather records 

are only a sample of weather that existed and may not include the extremes 

(White, 1978). For example, rainfall being a random process, there may be 

indefinite number of realisations which we have not experienced and yet to be 

experienced. Thus, use of short series of historical data may not accurately 

account the real year to year variability of the weather and may not be a 

reasonable sample space to answer many questions (Stem and Coe, 1982). 

Especially, if the interest is in answering conditional questions such as: 

- what is the probability of occurring a late arrival of monsoon rains in a 

given amount of years ? 
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- is "dry planting" (planting before the rains to use the subsequent rainfall 

for crop growth) a suitable agronomic practice compared to the planting 

after the onset ? 

In this situation, long sequences of data by stochastic simulation of weather variables 

can be expected to provide better estimates of the frequency or return period of the 

infrequent notable events in the historic series simply by producing an increased 

number of such events in the longer sequences of simulated records (Shaw, 1994). 

Also, stochastic simulation provides an expanded spatial source of weather data by 

interpolating between the point-based parameters used to define the weather model 

(Semenov and Porter, 1995). 

An assessment of different cropping patterns is important for the Dry zone to bring 

new lands under cultivation and to increase the productivity of lands that are already 

being cultivated. But, spatial and temporal variability of soil moisture complicates the 

short term evaluation of different cropping patterns. Water balance modelling 

techniques have been successfully used to provide information on this nature (Huda, 

1994; Saxton et al., 1988 and Berndt and White, 1976). Modelling of soil water 

balance can be accomplished using the simulated weather data. A system model that 

consists of soil water balance models are of great importance in assessing the risk 

associated with cropping patterns as stochastically simulated weather data can 

provide a range of scenarios which may differ markedly from the details of the 

historical records, while retaining that record's statistical properties (Chapman, 

1995). 

1.4 Objectives 

The overall goal of this study is to develop a methodology to characterise the 

growing seasons based on the stochastic simulation of some important weather 

variables and the crop water demand in the Dry zone of Sri Lanka. As the 

methodology would quantify the rainfall of the Dry zone in agronomically relevant 

terms, it may lead to the higher level of farmer acceptance and adaptability of 

technological guidelines proposed by the relevant authorities. In addition the 
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attention will be given to ascertain the predictability of the seasonal rainfall in the Dry 

zone. In order to realise this goal, the specific objectives of this study are as follows; 

1. To develop a stochastic rainfall model with a convenient time base. 

2. To develop a stochastic system model which can characterise the 

growing seasons of the Dry zone using water availability and 

demand from the crops. 

3. To estimate of rainfall values by means of a spatial interpolation method. 

4. To validate the models using available field data. 

5. To examine the predictability of the rainy seasons. 

1.5 Outline of the chapter contents 

A review of modelling rainfall process is discussed in the Chapter 2. In order to find 

a suitable model which represents the weekly rainfall process in the Dry zone, both 

discrete and continuous Markov chain modelling of rainfall occurrence are 

considered. These two modelling approaches have been discussed in section 2.2. 

while section 2.3 mainly concentrates on the modelling of rainfall amounts. Section 

2.4 discusses the development of the rainfall model presented here. 

The implementation and the validation of developed rainfall models are presented in 

the Chapter 3 along with the procedure adapted to simulate the rainfall process from 

both discrete and continuous models. Chapter 4 reviews the most common soil-water 

balance models. Some of them are highly complex in nature restricting the 

application in broad scale climatological studies. Section 4.3 and 4.4 discuss the 

model structure presented here to achieve the objectives and its implementation. 

The development of a rainfall data estimation model using a spatial interpolation 

technique is presented in the Chapter 5 along with a brief review on existing 

techniques. The relationships between the start of the season and the seasonal 

characteristics of both the Yala and Maha seasons are discussed in the Chapter 6 

using large number of simulation runs produced from the selected stochastic rainfall 

model. The observed anomalies of seasonal rainfall of the Dry zone using global 
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meteorological phenomenon such as southern oscillation and its two extremes, EI 

Nino and La Nina events are described in the sections 6.5 and 6.6. 

Chapter 7 mainly concentrates on the characterising the two major growing seasons 

of the Dry zone, Yala and Maha, using five different agro-climatic indices. With a 

large number of simulations of the system model, some agronomically important 

information has been derived in the Chapter 8. A summary and the future directions 

of this study have also been included in this chapter. 
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Chapter 2 

Stochastic rainfall models 

2.1 Introduction 

Simulation of growing seasons characteristics using a system model which combines 

rainfall and crop water demand can be used to asses the agricultural potential of an 

area. Since suitably long records of rainfall data are rarely available from large 

number of locations from the Dry zone, especially from remote areas, this approach 

requires in tum a capacity to simulate the rainfall. The large random variability 

displayed in rainfall process in the Dry zone means that it is best simulated by an 

appropriate stochastic model. Therefore, the following discussion will mainly be 

concentrated on the development of the stochastic rainfall models and subsequently a 

selection of the best from the developed models. 

Use of deterministic models to describe the rainfall process is not satisfactory as the 

physical processes governing rainfall in a given geographical area are not properly 

understood. Some deterministic models have been formulated by fitting "best-fit" or 

heuristically relevant equations to available data. But, due to the implicit uncertainty, 

there will be noises about the modelled depiction. Such noises can not be treated as 

randomness within the system, but as a of result of unknown, often complex 

processes. Therefore, processes like rainfall which have random aspects or be 

governed by mechanisms too complicated to describe can best be represented by 

appropriate stochastic models. The statistical structure of the rainfall process can be 

considered as consisting of two sequences of random variables. The first sequence is 

concerned with the rainfall occurrence. The second sequence is concerned with the 
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rainfall amounts associated with eachoccureence. In stochastic rainfall models these 

two sequences are considered independently (Wilson et al., 1991). 

A time step has to be decided to simulate the rainfall depths as a time series of 

discrete events. Daily time step is the most common time base in hydrological 

studies. But, when daily intervals are considered, its subsequent algorithms become 

cumbersome restricting the applicability in broad scales. Chang (1968) suggested that 

for the agricultural water balance computations, weekly intervals could give 

essentially the same results as daily intervals. A weekly time step has been considered 

adequate to capture the agricultural management practices used in the Dry zone and 

other parts of the country and it is the shortest time step available with accurate 

weather and soil moisture data. Considering these aspects plus the fact that plant 

water requirements over a period about seven to ten days can usually be met by water 

stored in the soil (Stem et al., 1982), weekly interval was chosen as the time 

increment for this study. 

2.2 Rainfall occurrence 

Although rainfall of months or longer time periods shows little or no persistence, the 

occurrence of shorter period rainfall at a given location can seldom be considered as 

an independent random event (Chin, 1977). There is a tendency for rainy periods and 

dry periods to cluster and to form respective sequences. When shorter time periods 

are concerned, complication arises from the presence of high number of zero values 

for the rainfall (Selvalingam and Miura, 1978). The structure of wet and dry periods 

can be modelled by using a Markov. chain of discrete or continuous time or an 

alternating renewal process. An alternating renewal process consists of alternating 

dry and wet spells. The wet spells are independent and belong to a certain 

distribution. Similarly, the dry spells are independent and have another distribution. 

The alternating renewal process was used by Green (1964) and Cole and Sheriff 

(1972), who used exponential and empirical distributions for wet and dry spells, 

respectively. The Geometric distribution can also be used for this purpose (Williams, 
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1952 and Longley, 1953). However, estimates of the parameters of a Markov chain 

can be obtained more easily than for alternating renewal process (Buishand, 1978). 

Therefore, in this study, the modelling of rainfall occurrence will consider only the 

Markov process. 

2.2.1 Discrete time Markov process 

A stochastic process X = {X; (t), t E T} is simply a collection of random variables 

Xl' X 2 ' ••••• X n which can be considered to describe the evolution of a system over 

discrete instants of time t, < h, < ......... < to ...... It is assumed that there is a common 

probability space (0, A, P) in which the system operates, where 0 is the sample 

space, A is the a-field and P is the probability measure (Kloeden and Platen, 1992). 

A realisation, a sample path or a trajectory of the stochastic process is the set of 

values X takes for each outcome (0 E 0 over the time set T. 

If we consider a stochastic process X = {Xo = i, n = 0, 1, 2, ..... ,n } that takes a 

countable number of possible values for i in the set of non-negative integers {O, 1, 2, 

..... ,n }, then a fixed probability pij can be defined to indicate the conditional 

probability of the process moving from state i to state j when the time changes from 

the present instance to a future instance. If pij only depends on the present state and 

is independent on the past states then the stochastic process is called a Markov chain, 

and since the transition occurs at discrete time intervals, we can further describe the 

process as a discrete time Markov chain. It should be noted that, as probabilities are 

non-negative and the process must make a transition into some state, the transition 

probability pijmust satisfy the following conditions: 

-LPij =1, i = 0,1, [2.1] 
j=O 

pij ~ 0, i, j ~ ° 
If pt is the probability that a process in state i will be in state j after k additional 

transitions, then the Kolmogorov equation can be used to compute pt using 

intermediatory transition probabilities (Ross, 1993). 
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k _ ~ I m 
Pij - £"Pio Poj I, m ~ 0, all i,j [2.2] 

and 

I+m=k [2.3] 

Equation [2.2] states that if we denotes p(k) as the matrix of kth step transitional 

probabilities P;, then 

p(k) = p(l) p(m) [2.4] 

Once the transitional probability matrices at specific time intervals are known, 

equation [2.4] can be used to compute the probability distribution of the states at any 

given instance (Ross, 1993). Based on the above equations, a variety of discrete time 

Markov chain models on rainfall occurrence has been developed for climatological 

and hydrological applications. 

In rainfall modelling, a Markov chain has only two states; either wet or dry. 

Therefore, the event, the rainfall occurrence, is always in one of these states. At 

regular intervals such as hourly, daily or weekly a "transition" or change of state 

occurs. The probability of any time interval, say week, being in a wet or dry state is 

depend on the state of the previous week. The number of previous dependent weeks 

are then referred to as order of the Markov chain. For example, in a first-order 

Markov chain the state of the current week depends only on the state of the previous 

week whereas in a second order chain it depends on the states of two previous weeks. 

2.2.2 Review of discrete time Markov chains in rainfall 

occurrence models 

As described in the previous section, a Markov chain can be defined as a type of time 

ordered probabilistic process which goes from one state to another according to the 

probabilistic transition rules that are determined by the current state only. Discrete 

time Markov chains have been widely used with daily rainfall models in hydrological 

and climatological studies. The first stochastic model of the temporal precipitation 

with Markov chain (first-order two-state) was introduced by Gabriel and Neuman 

(1962) to model the rainfall of Tel Aviv, Israel. Feyerherm and Bark (1967) found 
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that, except for prolonged dry spells, the first-order Markov chain satisfactorily 

modelled the occurrence of wet and dry days at Garden City Kansas, USA. 

Richardson (1981) used a first-order Markov chain along with an exponential 

distribution for the rainfall amounts to describe the daily rainfall distribution in the 

USA. Brauhn et al. (1980) used a similar Markov chain to simulate the daily rainfall 

occurrence in Geneva and Fort Collins in the USA. A first-order Markov chain has 

also been used by Selavalingam and Miura (1978), Larsen and Pense (1982) and 

Woolhiser et al. (1993) to describe the occurrence of wet and dry day sequences in 

daily rainfall models. All of these studies revealed that the generated data using a 

Markov chain along with a suitable probability distribution preserve the seasonal and 

statistical characteristics of historical rainfall data. Being simple and requiring only 

two parameters are to be determined, the first-order two-state Markov chain is the 

most common one referred in the literature. Smith and Schriber (1973) have 

suggested that the first-order two-state Markov chains were superior to Bernoulli 

models which are based on sequential independence for describing wet and dry days. 

Models of second and higher orders have also been studied by Chin (1977), Singh et 

al. (1981) and Jones and Thronton (1993). When a second-order Markov chain is 

used, eight separate parameters have to be estimated. Jimoh and Webster (1996) 

found that the second-order models are not better than the first-order models under 

tropical environments in Nigeria. They also found that the performance of the first­

order model in simulating the average monthly number of wet days was not affected 

by the threshold value used to define wet and dry days. However, Coe and Stem 

(1982) preferred choice of either the first or the second order if they fit reasonably 

well. Buishand (1978) commented that a second-order model was seldom justified 

within the context of practical applications. 

Chin (1977) showed that the order of conditional dependence of daily rainfall 

occurrences depended on the season and the geographical location. He further 

concluded that at any station, the rainfall occurrences associated with cyclone passage 

would most likely to indicate a conditional dependence with Markov order higher 

than one while rainfall associated with convectional activity may account for the 

prevalence of first-order conditional dependence. Although several authors have 
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discussed the order of discrete Markov chains with daily rainfall models, the issue of 

choosing the proper order with weekly time interval has not been addressed. Also, 

being Dry zone's rainfall is a combination of several meteorological scenarios, the 

order of the Markov chain that describes the occurrence of weekly rainfall can not be 

assumed priori. 

2.2.3 Continuous time Markov process 

Numerous discrete time Markov rainfall models of rainfall occurrence are used in 

climatological and hydrological applications. This approach is in many ways an 

elegant one which achieves an appropriate balance between complexity and goodness 

of fit (Hutchinson, 1991). The chief inadequacies in discrete time Markov rainfall 

models appear to be in the modelling of rainfall extremes and not incorporating any 

dependance between amounts of precipitation falling on successive wet periods 

(Wight and Hanson, 1991 and Richardson, 1984). Moreover, rainfall occurrence is a 

continuous intermittent process over space and time, which is usually recorded as 

cumulative amounts of series of wet periods over fixed intervals and locations 

(Georgiou and Guttrop, 1986). But, in discrete time Markov chains the occurrence 

of rainfall is modelled at equal lengths of time intervals which is not realistic. The 

increased focussed on discrete event daily rainfall models has led to the recognition 

that rainfall in many areas does not represent the discrete time Markov models 

(Hutchinson, 1990 and Small and Morgan, 1986). Events may exhibit temporal 

dependence between amounts of rain falling on successive wet periods. Inter-event 

duration may no longer distributed in equal time intervals. One way to approach this 

problem is to hypothesise that transition occurs at intervals of variable duration and 

this approach leads to the continuous time Markov models. 

In analogy with the definition of discrete time Markov chain described in section 

2.2.1, the process {X(t), t ;::: 0 } is continuous time Markov chain having the 

properties that each time it enters state i; 
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(i) the amount of time it spends in that state before making a transition 

into a different state is exponentially distributed with intensity parameter 

Ai' and 

(ii) when the process leaves state i, it next enters state j with some 

probability pij that must satisfy the following conditions: 

for all i 

for all 

If there exists an N x N intensity matrix where N is the number of states, with 

. pi'i (t) 
hmHo -=------'-'­

t 

. pi,i (t)-1 
hm I ~O -=-----'-'--

t 
i =j 

[2.5] 

which together with the initial probability vector p(O), completely characterises the 

homogeneous continuous time Markov chain (Kloeden and Platen, 1992). If the 

diagonal components ai,i are finite for each i = 1, ..... , N, then the transition 

probabilities satisfy the Kolmogorov forward equation 

ani,i (t) N 
....:l'=---....;..;.. _ Lpi'k(t)ak'i = 0 

at k=l 

[2.6] 

for all i = 1, ...... , N (Kloeden and Platen, 1992). The time between transition from a 

state to any other state, is then exponentially distributed with intensity parameter 

[2.7] 

The exponential distribution is fundamental in modelling continuous Markov 

processes because of its memoryless property relating to the elapsed time, which is 

critical to the Markov property (Mesterton-Gibbons, 1989), 

2.3 Rainfall amounts 

Shorter period rainfall amounts usually resembles skewed distribution with smaller 

amount occurring more frequently than larger amounts. Several distributions and 

data transformations have been presented in the literature for modelling rainfall 
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amounts in a wet period. Log or cubic transformations were found to be useful in 

reducing skewness (Pickering, 1982). The exponential distribution has often been 

used in the rainfall simulation studies because of its simplicity (Todorovic and 

Woolihiser, 1975 and Richardson, 1981). Although the log-normal distribution has 

often been used in the stochastic stream flow modelling (see Loucks et al., 1981 for 

references), it has not been received much attention with regard to the rainfall 

modelling. However, Mielke and Johnson (1973) suggested that the log-normal 

distribution provides a good fit to the rainfall of short time intervals caused by the 

factors such as cumulus clouds and weather modification experiments. In contrast, 

the two-parameter gamma distribution has often been used in rainfall modelling 

studies especially with daily rainfall models (Jones et al., 1972; Brauhn et aI., 1979; 

Coe and Stern, 1982; Larsen and Pense, 1982 and Jones and Thronton, 1993). It 

gives relatively high probability to small rainfall amounts whereas low probability for 

larger amounts. The general form of a gamma probability density function has a third 

parameter, A, which establishes the lower bound for the random variable, X. For 

rainfall amounts in a wet period researchers assume that A = 0 which indeed 

reasonable since amounts will approach zero but will never be equal to or less than 

zero. Gamma distribution has a disadvantage that the cumulative distribution 

function does not have a closed form and hence not integrable. But with the 

advancement of numerical methods and computers, this problem no longer inhibits 

any simulation studies with a gamma distribution. Skees and Shenton (1974) used the 

three-parameter gamma, the generalised gamma and the censored gamma along with 

many power transformations to model the rainfall amount in wet periods. None of 

the distributions were suitable in all cases, although the censored gamma distribution 

showed a promise. 

Use of the Weibull distribution in meteorological and hydrological modelling is 

becoming popular. This distribution has been shown to provide a good fit to strongly 

skewed data (Wong, 1977). The advantage of the Weibull distribution over the 

gamma and the log-normal distributions is its closed form of cumulative distribution 

function (Wilks, 1989). That is, the probability density function is integrable. Wong 

(1977) concluded that the Weibull distribution provides a better fit than the 
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commonly used gamma distribution in many meteorological and hydrological 

applications. 

The models that have been used for describing the distribution of rainfall amounts 

contain different number of parameters and have various degree of complexity. 

Simple models require fewer parameters but are limited in their ability to describe the 

distribution of rainfall accurately. The more complex models can give a better 

description of rainfall distribution, but the complex models require the estimation of 

several parameters. Also, the choice of probability distributions can evidently have a 

larger impact on the output of the models and, potentially, on the quality of the 

decisions made with the simulation results (Law and Kelton, 1991). 

2.4 Model development 

2.4.1 Data collection 

The data collected by the Dry Zone Agricultural Research Institute, Department of 

Agriculture, Maha-llluppallama (8° oi N, 80° 28'E) were used for the model 

development. This meteorological recording station represents the entire Dry zone in 

terms of general climate, cropping pattern and irrigation network. Fifty one 

consecutive years (1945-1995) of records of cumulative rainfall amounts of each 

standard week' of the year were available for the model development. An effective 

development of stochastic rainfall models requires data sets which are long enough to 

include some extreme events, Wight and Hanson (1991) suggested that for stochastic 

rainfall models, the historical records should be 20 years or more. Therefore, a target 

of 30 complete years of data was set for the parameter estimation leaving 21 years of 

data for the validation of the models, The allocation of each year either for parameter 

estimation or validation was performed using a random number table to ensure an 

unbiased estimation of parameters. 

I Refer Appendix 2 for the definition and the classification of standard weeks 
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2.4.2 Development of discrete time Markov rainfall models 

As discussed in the preceding sections, there have been considerable number of 

investigations on stochastic simulation of rainfall at different time intervals. But these 

existing models are not suitable for direct use in agro-climatological studies in Sri 

Lanka, especially with the weekly time interval as most of the models being used are 

based on either daily or monthly rainfall events which either too short or long for 

agricultural applications. However, those information was the basis for the 

development of rainfall models discussed in the following sections. 

The determination of whether any particular week is wet or dry necessitates to defme 

a threshold value of rainfall that differentiate a week being wet or dry. A value of 7 

mm or more rainfall per week was chosen as the threshold value because the Potential 

Evapotranspiration (PET) of at least 3 mm1day would make a weekly total of 21 mm 

and 33% of PET (7 mm) is considered to be the minimum requirement for the crop 

growth (Hargreaves, 1975). Any rainfall less than 7 mm1week would not make a 

substantial contribution to the crop growth; therefore, 7 mm of total rainfall during a 

week was decided to be the threshold value. 

If weekly rainfall is modelled by a first-order two-state Markov chain, rain falling on 

any week depends only on the state (wet or dry) of the previous week. The changes 

of state from the current state to next state can be modelled by a 2x2 transition 

matrix. The transition matrix is also called probability matrix, Markov matrix or 

stochastic matrix. The elements of the transition matrix are called transition 

probabilities, conditional probabilities or transition percentages. The elements to be 

estimated are therefore the conditional probabilities: 

Pm(Wi I Wi-I) = conditional probability of a wet week on week i given 

a wet week on week (i-I) in a certain period m 

Pm(Di I Wi-I) = conditional probability of a dry week on week i given 

a wet week on week (i-I) in a certain period m 

Pm(Wi I D i-I) = conditional probability of a wet week on week i given 

a dry week on week (i-I) in a certain period m 
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Pm(Dj I D j_]) = conditional probability of a dry week on week i given 

a dry week on week (i-I) in a certain period m 

Thus, for each week four elements in the transition matrix were determined in the 

first-order Markov chains using 30 years of data (Table 2.1 and Table 2.2); For the 

second-order chain eight elements of the transitional probability matrix were 

determined (Table 2.3 and Table 2.4). These were transitional probabilities of a wet 

week following two wet weeks, Pm (Wj I Wj-1 Wj-2); a wet week following a wet week 

and a dry week, respectively, Pm (Wj I Wj_] Dj-2); a wet week following a dry week 

and a wet week, respectively, pm (Wj I Dj_] Wj-2); a wet week following two dry 

weeks, pm (Wj I Dj-1 Dj-2); a dry week following two wet weeks, pm (Dj I Wj_] Wj-2); a 

dry week following a wet week and a dry week, respectively, Pm(Dj I Wj-1 Dj-2); a dry 

week following a dry week and a wet week, respectively, pm (Dj I Dj_] Wj-2); and, a dry 

week following two dry weeks, pm (Dj I Dj_] Dj-2). As a result of seasonal variations in 

rainfall, the elements of the transitional matrices vary throughout the year. The usual 

method of handling this variation is fitting a Fourier series (Richardson, 1981 and 

Woolhiser et al., 1993) and other periodic functions such as polynomials (Coe and 

Stem, 1982) at the expense of some accuracy. But, in this study, the transition 

probability matrices for the first-order and the second-order models for each week 

were estimated using the respective weekly data as it would reflect the variation more 

realistically than approximating by a continuous function. 

It is customary to assume that the amount of rainfall in a given time period follows a 

particular probability distribution and that it is the same for each time interval. But, 

under Dry zone conditions, the rainfall governing mechanisms are changing 

throughout the year consisting monsoons, convectional activity and cyclones and 

depressions. Thus, certain months are relatively wet while some other months could 

be extremely wet. There are some months such as February during which none of the 

rainfall governing mechanisms are effective over the Dry zone_ Therefore, different 

periods of the year could be well represented by different probability distributions 

rather than employing a single pre-determined distribution for the whole year. 
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Table 2.1 Transitional probabilities of the two major rainy seasons for 

the first-order discrete time Markov chain. 

Standard Week No. Pm(W11 WI_I) Pm(DII WI_.) Pm(W.1 DI_.) Pm<D11 0 1_.) 

Yala season 
12 0.3636 0.6364 0.3158 0.6842 
13 0.7000 0.3000 0.5000 0.5000 
14 0.9412 0.0588 0.4615 0.5385 
15 0.9091 0.0909 0.5000 0.5000 
16 0.6667 0.3333 0.5000 0.5000 
17 0.8421 0.1579 0.4545 0.5455 
18 0.6667 0.3333 0.2222 0.7778 
19 0.7500 0.2500 0.3571 0.6429 
20 0.5882 0.4118 0.3077 0.6923 
21 0.2143 0.7857 0.2500 0.7500 

Maha season 
40 0.7222 0.2778 0.5000 0.5000 
41 0.7368 0.2632 0.8182 0.1818 
42 0.9130 0.0870 0.5714 0.4286 
43 0.9200 0.0800 0.6000 0.4000 
44 0.9615 0.0385 1.0000 0.0000 
45 0.9310 0.0690 0.0000 1.0000 
46 0.7778 0.2222 0.6667 0.3333 
47 0.9130 0.0870 0.8571 0.1429 
48 0.7778 0.2222 1.0000 0.0000 
49 0.7083 0.2917 1.0000 0.0000 
50 0.6522 0.3478 0.7143 0.2857 
51 0.7500 0.2500 0.8000 0.2000 
52 0.9130 0.0870 0.7143 0.2857 
1 0.4615 0.5385 0.5000 0.5000 
2 0.5714 0.4286 0.4375 0.5625 
3 0.3333 0.6667 0.3333 0.6667 
4 0.4000 0.6000 0.3500 0.6500 
5 0.4545 0.5455 0.3158 0.6842 

26 



Table 2.2 Transitional probabilities of the two major dry periods for 

the first-order discrete time Markov chain. 

Standard Week No. Pm(W,1 WI_I) Pm(D, I W'_I) Pm(W,1 0,_1) Pm(Di I 0,_1) 

First dry period 
6 0.3636 0.6364 0.2105 0.7895 
7 0.1250 0.8750 0.0909 0.9091 
8 0.6667 0.3333 0.3333 0.6667 
9 0.4545 0.5455 0.2105 0.7895 
10 0.4444 0.5556 0.6190 0.3810 
11 0.4118 0.5882 0.3077 0.6923 

Second dry period 
22 0.2857 0.7143 0.1818 0.8182 
23 0.0000 1.0000 0.1304 0.8696 
24 0.0000 1.0000 0.0741 0.9259 
25 0.5000 0.5000 0.1071 0.8929 
26 ·0.0000 1.0000 0.1154 0.8846 
27 0.3333 0.6667 0.3704 0.6296 
28 0.2727 0.7273 0.2632 0.7368 
29 0.1250 0.8750 0.2727 0.7273 
30 0.2857 0.7143 0.0870 0.9130 
31 0.0000 1.0000 0.1538 0.8462 
32 0.7500 0.2500 0.1923 0.8077 
33 0.2500 0.7500 0.1364 0.8636 
34 0.2000 0.8000 0.2400 0.7600 
35 0.2857 0.7143 0.2174 0.7826 
36 0.7143 0.2857 0.0435 0.9565 
37 1.0000 0.0000 0.2083 0.7917 
38 0.4545 0.5455 0.3684 0.6316 
39 0.6667 0.3333 0.5556 0.4444 
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Table 2.3 Transitional probabilities of the two major rainy seasons for the second-order discrete time Markov chain. 

Standard Week pm (yVi I Wi.l Wi.2) pm (yVi I Wi.l Di.2) pm (Wi I Di.l Wi.2) pm (Wi I Di.l Di.2) Pm (Di I Wi.l Wi.2) pm (Di I Wi.l Di.2) pm (Di I Di-I Wi.2) pm (Di I Di.1 Di-2) 

Yala season 
12 0-4286 03000 0-2500 03333 05714 0.7000 0.7500 0.6667 

13 0.7500 0.2857 0.6667 0.6154 0.2500 0.7143 0.3333 0.3846 

14 0.8571 0.6667 1.0000 0-4000 0.1429 03333 0.0000 0.6000 

15 1.0000 0.0000 0.6667 05714 0.0000 1.0000 0.3333 0.4286 

16 0.6500 05000 0.7500 05000 0.3500 0.5000 0.2500 05000 

17 0.8125 03750 1.0000 0.6667 0.1875 0.6250 0.0000 03333 

18 0.6250 0.0000 0.8000 0.3333 03750 1.0000 0.2000 0.6667 

19 0.7857 0.0000 0.5000 0.7143 0.2143 1.0000 0.5000 0.2857 

20 05833 05000 0.6000 0.2222 0-4167 0.5000 0-4000 0.7778 

21 0.2000 0.0000 0.2500 0.4444 0.8000 1.0000 0.7500 05556 

Maha season 
40 0.7500 0.0000 0.7000 0.7500 0.2500 1.0000 0.3000 0.2500 

41 0.6154 0.8000 1.0000 0.8333 03846 0.2000 0.0000 0.1667 

42 0.8571 0.6000 1.0000 0.5000 0.1429 0-4000 0.0000 05000 

43 0.9048 0.0000 1.0000 0.6667 0.0952 1.0000 0.0000 0.3333 

44 0.9565 1.0000 1.0000 1.0000 0.0435 0.0000 0.0000 0.0000 

45 0.9600 0.0000 0.7500 0.0000 0.0400 1.0000 0.2500 0.0000 
46 0.7778 1.0000 0.0000 0.0000 0.2222 0.0000 0.0000 1.0000 

47 0.9048 0.8333 1.0000 1.0000 0.0952 0.1667 0.0000 0.0000 
48 0.8095 1.0000 0.6667 1.0000 0.1905 0.0000 0.3333 0.0000 

49 0.6667 1.0000 1.0000 0.0000 0.3333 0.0000 0.0000 0.0000 

50 0.7059 0.7143 0.5000 0.0000 0.2941 0.2857 0.5000 0.0000 

51 0.8000 0.7500 0.6000 1.0000 0.2000 0.2500 0-4000 0.0000 
52 0.8667 0.8000 1.0000 0.5000 0.1333 0.2000 0.0000 0.5000 

0-4762 05000 0-4000 0.5000 05238 05000 0.6000 05000 
2 0.5833 0-4286 0.5000 05000 0-4167 05714 05000 05000 
3 0.2500 03333 0-4286 03333 0.7500 0.6667 05714 0.6667 
4 0-4000 0-4000 0-4000 03000 0.6000 0.6000 0.6000 0.7000 

5 0.2500 0.6667 0.5714 0.1538 0.7500 03333 0-4286 0.8462 
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Table 2.4 Transitional probabilities of the two major dry periods for the second-order discrete time Markov chain. 

Standard Week pm (Wi I Wi.) Wi.2) pm (Wi I Wi.) Di.2) pm (Wi I D i.) Wi.2) pm (Wi I Di.) Di.2) pm (Di I Wi.) Wi.2) pm (Di I Wi.) Di.2) pm (Di I Di.) W;.z) pm (Di I Di-) Di-2) 

First dry period 
6 0.4000 0.3333 0.3333 0.1538 0.6000 0.6667 0.6667 0.8462 
7 0.2500 0.0000 0.0000 0.1333 0.7500 1.0000 1.0000 0.8667 

8 0.0000 0.1429 1.0000 004000 1.0000 0.8571 ,0.0000 0.6000 
9 0,0000 1.0000 0.5556 0.1667 1.0000 0.0000 0.4444 0.8333 
10 0.2000 0.8333 0.7500 0.5233 0.8000 0.1667 0.2500 0.4667 
11 0.5000 004000 0.3846 0.2500 0.5000 0.6000 0.6154 0.7500 

Second dry period 
21 0.2000 0.0000 0.2500 0.4444 0.8000 1.0000 0.7500 0.5556 
22 0.3333 0.0000 0.2500 0.3636 0.6667 1.0000 0.7500 0.6364 
23 0.0000 0.2000 0.0000 0.1111 1.0000 0.8000 1.0000 0.8889 
24 0.0000 0.0000 0.0000 0.1000 0.0000 1.0000 1.0000 0.9000 
25 0.0000 0.3333 0.5000 0.0800 0.0000 0.6667 0.5000 0.9200 
26 0.0000 0.0000 0.0000 0.1200 1.0000 1.0000 1.0000 0.8800 
27 0.0000 0.7500 0.3333 0.3043 0.0000 0.2500 0.6667 0.6957 
28 0.0000 0.0000 0.3000 0.2941 1.0000 1.0000 0.7000 0.7059 
29 0.0000 0.3750 0.2000 0.2143 1.0000 0.6250 0.8000 0.7857 
30 0.0000 0.0000 0.3333 0.1250 1.0000 1.0000 0.6667 0.8750 
31 0.0000 0.2000 0.0000 0.1429 1.0000 0.8000 1.0000 0.8571 
32 0.0000 0.2500 0.7500 0.1818 0.0000 0.7500 0.2500 0.8182 
33 0.3333 0.0000 0.2000 0.1429 0.6667 1.0000 0.8000 0.8571 
34 0.0000 0.3333 0.3333 0.2105 1.0000 0.6667 0.6667 0.7895 
35 0.0000 0.0000 0.3333 0.2632 1.0000 1.0000 0.6667 0.7368 
36 1.0000 0.0000 0.6000 0.0556 0.0000 1.0000 0.4000 0.9444 
37 1.0000 0.0000 1.0000 0.2273 0.0000 1.0000 0.0000 0.7727 
38 0.3333 0.0000 0.6000 0.3684 0.6667 0.0000 004000 0.6316 
39 004000 0.5000 0.8571 0.5833 0.6000 0.5000 0.1429 004167 
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Hence, in this study, four right skewed probability distributions namely, gamma, 

Weibull, log-normal and exponential distributions were used to represent variation of 

rainfall amounts on wet weeks. Their probability density functions are given in the 

Table 2.5. 

2.4.2.1 Parameter estimation of probability distributions 

Weekly rainfall data of 30 years, the same data used for transitional probability matrix 

estimation in Markov chain, were used to the find appropriate distribution for each 

week. Each distribution was assigned a relative evaluation score from 0 to 100 (best) 

based on the heuristic ranking algorithm of UNIFIT II, a statistical software to 

determine the appropriate probability distribution for observed data (Law and 

Vincent, 1993). The higher the score of a distribution, the better it is relative to the 

other fitted distributions. Out of four probability distributions considered, the one 

with the highest score was selected to represent the weekly amount of rainfall for that , 
particular week. Since no heuristic algorithm is perfect, the selected model was 

tested by Chi-square test and Anderson-Darling goodness of fit test to see whether 

the observed data could have been simulated from the specified probability 

distribution. A further evaluation of the selected model was done by making 

Distribution Function Differences Plot (DFDP), which is a graph of the differences 

between a sample distribution function computed from the data and the distribution 

function of the fitted model. If the fitted distribution were a perfect fit, the graph 

should be a horizontal line at height zero. Thus, the greater the vertical deviations 

from this line, the worse is the quality of the fitted distribution. If the model with the 

highest score does not satisfy the above tests criteria, the model with next highest 

score was considered and evaluated with the same tests mentioned above. Once a 

suitable candidate for the probability distribution was selected, its parameters were 

determined for each week. There are many ways such as maximum likelihood 

estimation, method of moments and least-squares estimation to estimate the 

parameters of a suitable probability distribution. But, in this study Maximum 

Likelihood Estimation (MLE) technique was chosen to estimate the parameters of the 

selected distribution as it has several desirable properties often not enjoyed by the 
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Table 2.5 Probability distributions and their density functions. 

Distribution Probability density function 

exponential 

log-normal 

gamma 

Weibull 

{
l-e-X/~ 

f(x) = 
o 

1 ex 

{ 

-(lnx- J.I/ 
f(x) = X~M2 p 2cr 2 

ifx~O 

otherwise 

ifx>O 

otherwise 

ifx>O 

otherwise 

ifx>O 

otherwise 

<X = shape parameter P = scale parameter I! = mean (J = standard deviation 
r = gamma function 
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other alternative methods (Law and Kelton, 1991). For example, MLE has some 

stronger theoretical properties than the ordinary least squares method (Gujarati, 

1995). Larsen and Pense (1982) have shown that method of moments estimators of 

the shape parameter of the gamma distribution are less precise than the MLE. Table 

2.6 and 2.7 show the best fitted probability distribution and its distribution parameters 

based on the maximum likelihood estimation method for each week in the year. 

2.4.3 Development of continuous time Markov rainfall model 

The methodology developed here simulates the rainfall occurrences and rainfall 

amounts in continuous time. The continuous time Markov models attempt to 

describe the rainfall events independently of the time interval used for rainfall 

measurements. The conditional probabilities of {Pm (Wi I Wi-I) - I} and {Pm (Wi I Di-

I)} were fitted into an annual function of time and then each function was partitioned 

into three parts namely, January to mid April, mid-April to mid-July and then mid-July 

to the end of the year representing a simple curve for each part. The each part was 

then fitted to a polynomial equation using SigmaPlot non linear curve fitting routine 

(Kuo and Fox, 1992). This routine uses Marquardt-Levenberg algorithm to 

determine the parameters that minimise the sum of squares of differences between the 

dependent variable values in the fitted model and the observed values. The general 

form of the polynomial equation was decided priori to satisfy the conditions set by 

equation [2.6] in the section 2.2.3. 

From January to mid April, the following two polynomial equations were found to be 

the best fitted equations for respective conditional probabilities with time (t) in 

months; 

!(PI)=-0.0234t4 +0.09628t3 + 0.1445t2 
- 0.7456t 

where 

!(PI) =_ 0.0234t3 +0.09628t 2 + 0.1445t - 0.7456 
t 

[2.11] 

[2.12] 
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Table 2.6 Best fitted probability distribution and its Maximum Likelihood 

Estimates (MLE) during the two major rainy seasons. 

Standard Week No. Distribution Scale (~) Shape (a) 

Yala season 
12 Weibull 19.36 0.9321 
13 exponential 33.17 
14 Weibull 50.63 1.0400 
15 Weibull 40.25 1.3900 
16 gamma 47.61 0.9526 
17 gamma 45.15 0.7620 
18 gamma 71.98 0.6932 
19 exponential 42.60 
20 gamma 30.41 0.8503 
21 exponential 8.23 

Maha season 
40 Weibull 36.97 0.7478 
41 gamma 100.73 0.7259 
42 exponential 66.33 
43 exponential 57.37 
44 Weibull 85.90 1.5500 
45 gamma 51.02 1.3800 
46 gamma 86.86 0.7793 
47 Weibull 42.53 1.3700 
48 gamma 45.07 1.1789 
49 Weibull 37.02 0.7466 
50 gamma 56.70 0.8618 
51 Weibull 44.22 1.0500 
52 exponential 58.82 
1 gamma 76.69 0.4296 
2 gamma 72.56 0.5685 
3 gamma 37.96 0.6505 
4 Weibull 22.15 1.4116 
5 Weibull 16.04 0.7806 
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Table 2.7 Best fitted probability distribution and its Maximum Likelihood 

Estimates (MLE) during the two major dry periods. 

Standard Week No. Distribution Scale (~) Shape (a) 

First dry period 
6 Weibull 6.76 1.5615 
7 exponential 9.86 
8 Weibull 13.13 0.7971 
9 Weibull 21.28 0.6679 
10 Weibull 6.74 0.7836 
11 Weibull 19.36 0.9321 

Second dry period 
22 Weibull 9.22 0.7873 
23 Weibull 5.86 0.8611 
24 exponential 6.53 
25 exponential 4.19 
26 exponential 0.78 
27 gamma 7.27 0.6706 
28 Weibull 3.41 0.5621 
29 log-nonnal 12.67 8.9700 
30 exponential 3.26 
31 Weibull 2.19 0.6189 
32 gamma 33.15 0.2646 
33 exponential 7.10 
34 log-nonnal 1.46 1.9000 
35 log-normal 1.72 1.3600 
36 Weibull 3.65 0.7030 
37 Weibull 18.42 0.4974 
38 gamma 31.26 0.4368 
39 Weibull 6.80 0.8278 
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As t-+o 

!(Pl) = _ 0.7456 
t 

If 

!(P2)=0.04919tS -0.5377t4 +2.1465t3 -3.69t2 +2.4151t 

!(P2) =0.04919t4 - 0.5377t3 +2.1465t2 -3.69t+2.4151 
t 

As t-+o 

!(P2) = 2.4151 
t 

[2.13] 

[2.14] 

[2.15] 

[2.16] 

Assuming a homogeneous Markov chain, then the intensity matrix (equation [2.5]), 

A, is 

[

all a 12 ] [-0.7456 0.7456] 
A = a2l a22 = 2.4151 - 2.4151 

Thus, time between transition from any state to a next state is exponentially 

distributed with intensity parameters Aw and AD (equation [2.7]) where, 

Aw = time between next state and current state provided current state is 

wet 

AD = time between next state and current state provided current state is 

dry 

and together with the initial conditional probability2 vector (0.50,0.39), the transition 

probabilities satisfy the Kolmogorov forward equation [2.6]. 

a'Pi,j (t) N 
.....!....----.:.....;.. - Lpi.k(t)ak.j = 0 

at k=l 

apll 

at [2.17] 

=P"(-O.7456) + pI2(2.4151) 

2 The conditional probability of the states when time equals zero. This was determined from the 
annual functions of W IW and WID at time equals zero for each part of the year. 
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=plI (-o.7456) + 2.4151(1-plI
) 

By solving the differential equation with the initial value of 0.50 

P = 0.764103 - 0.264103e-3.16011 

That is 

Pm (W;IW;-I )= 0.764103 - 0.264103e-3.16071 

Similarly, with the initial value of 0.39, 

Pm (W;ID;_I)= 0.764103 - 0.374103e-3.16011 

[2.18] 

[2.19] 

[2.20] 

The same procedure was adapted to calculate other two parts of the annual function 

and their final equations are: 

mid-April to mid-July; 

Pm (W;IW;-I)= 0.747899 - 727.4814e-2
.
381 

Pm (W;ID;_I)= 0.747899 -1185.6741e-2
.
381 

mid-July to the end of the year 

Pm (W;IW;_I )= 0.888523 - 0.6977568 X 1017 e-5.78151 

Pm CW;ID;_I)= 0.888601 - 0.9317955x 1017 e-5
.
181t 

[2.21] 

[2.22] 

[2.23] 

[2.24] 

The detailed calculations of equations [2.21] through [2.24] are given in the 

Appendix 1. In this model, a single distribution (gamma) was used to generate the 

rainfall amounts as there is no historical data to determine the best fitted distributions 

when the rainfall occurrence is taking place at unknown intervals. It was so chosen 

by considering its well known wide application in meteorology and hydrology (Geng 

et al., 1986). The maximum likelihood estimates of scale and shape parameters of the 

gamma distribution were represented by polynomial curves for the three different 

parts of the year (January to mid April, mid-April to mid-July and mid-July to the end 

of the year) in order to obtain smoothly varying weekly mean parameters throughout 

the year. 
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2.4.4 Summary 

This chapter presents the use of discrete and continuous time Markov chains, and 

• probability distributions to model the weekly rainfall process in the Dry zone of Sri 

Lanka based on the historical data. Two states were used in the Markov chains: wet 

and dry. A wet week was defmed to occur whenever a 7 mm or larger amount of 

rainfall is recorded. The dry weeks are weeks which are not wet. Rainfall occurrence 

was modelled using first-order and second order-discrete time Markov chains, and 

continuous time Markov chain. In discrete time Markov chain models, the amount of 

rainfall in a wet week was represented by the most suitable right skewed probability 

distribution out of gamma, Weibull, log-normal and exponential distributions whereas 

in the continuous time Markov chain model only the gamma distribution was used. 
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Chapter 3 

Implementation 

stochastic rainfall models 

and validation 

3.1 Introduction 

of 

Any model of a complex natural phenomenon such as rainfall can only be an 

approximation of the reality. How closely a stochastic weather simulation model 

needs to represent the real system depends on the type of applications. Clearly, there 

has to be a balance between complexity and the foreseen uses (Larsen and Pense, 

1982). Otherwise, the effort may be largely wasted within the context of the desired 

application. In view of this, the developed models are required to validate with the 

data from the real system in measures of central tendency, dispersion and distribution. 

In other words, a testing has to be done to see whether the model behaves with 

satisfactory accuracy consistent with the study objectives, within its domain of 

applicability. Therefore, a rather extensive model validation was done to assess these 

claims. 

The term reproduced is used when the comparisons between generated and historical 

values are statistically the same. One way of evaluating the reproducibility is to test 

whether the two distributions of generated and historic data are the same, 

homogeneous. There are many tests of homogeneity available. For distributions that 

are normal or approximately normal, the Analysis of Variance (ANOVA) is 

equivalent to testing for the homogeneity of the means and the F distribution can be 
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used to test for homogeneity of the variance of pairs of the two populations (Hoover 

and Perry, 1990). The most cited distribution free tests in simulation studies are the 

Kolmogorov-Smimov two-sample test and the Chi-Square test. Each of these tests 

have their own merits and in particular situations, one test may be more powerful than 

the other. A major limitation of the Kolmogorov-Smimov test (K-S test) is that it can 

only be used on continuous distributions (Hoover and Perry, 1990). However, this 

test has been used by many researchers in weather simulation studies (Semenov and 

Porter, 1995; Larsen and Pense, 1982; and Brauhn et aI., 1980). 

Another method of comparison is to compare the statistical properties for both the 

average and extreme rainfall situations. The two-tailed t-test has been used in many 

occasions to compare the average weather situations in simulation studies (Larsen and 

Pense, 1982 and Nicks and Harp, 1980). Therefore, in this study weekly mean 

rainfall, weekly maximum rainfall and total annual rainfall of simulated sequences 

were tested against the observed sequence using two-tailed t-test. The mean rainfall 

occurrence, number of weeks with rainfall of 7 mm or more, and other extreme 

attributes such as number of events greater or less than a pre-determined amount of 

rainfall were tested using Chi-square test for contingency (Gangelosi et aI., 1979). 

3.2 Simulation procedure 

Generally, long generated sequence of rainfall gives a more accurate interpretation of 

the simulation results. However, considering the fact that only 21 years of data was 

available for the validation, a same number of years of weekly rainfall data were 

generated by both discrete time Makov models and the continuous time Markov 

model described in the Chapter 2. The low annual autocorrelation 1 in the historic 

data suggests that years are virtually independent events. Thus, the method of dealing 

with annual dependence by the use of multiple runs was considered unnecessary 

(Fishman, 1973). 

I first order autocorrelation for 51 years historical data was -0.20 
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Generation of synthetic sequences of weekly rainfall data using discrete time Markov 

chain models is straightforward. Once the transitional probability of rain occurring on 

a given week was determined using equation [2.4],. the probability of rainfall 

occurrence for the current week was calculated given. the initial conditional 

probability vector for the two states. A random number generated from a uniform 

probability distribution (U (0,1)) was then used to determine the occurrence of rain 

during the current week. If the random number exceeds the probability of rainfall, 

weekly rainfall was zero, literally less than 7 mm of rainfall, otherwise the amount of 

rainfall was determined by a random variate generated from the selected probability 

distribution of the current week. Generation process of rainfall occurrence and the 

amount of rain if rain occurred were similar for the both first and second-order 

discrete Markov chains. 

In continuous time Markov model, rainfall occurrences is taking place at unequal 

distances. Once the probability of rain occurring given the previous wet state 

(equations [2.19], [2.21] and [2.23]) and given the previous dry state (equations 

[2.20], [2.22] and [2.24]) are known, then the unconditional probability of occurrence 

of rainfall is determined using initial conditional probability vector of the two states. 

This unconditional probability of state being wet is then compared with a random 

number generated from a uniform probability distribution to simulate the amount of 

rainfall. If the random number exceeds the probability of rainfall, amount of rainfall 

is zero and then make a transition to next state, otherwise a amount of rainfall is 

generated using a gamma distribution and then make the transition to the next state. 

The transition to the next state from any current state is exponentially distributed 

along with the conditions set by equation [2.6]. The weekly amount of rainfall from 

this model was determined by taking the cumulative amount of rainfall that occurred 

as a result of number of rainfall events within the week. The flow charts of the 

generation programs for the discrete time Markov models and the continuous time 

Markov model are given in Figures 3.1 and 3.2, respectively. 
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i = i + 1 

j =j + 1 

generate a random 

number, Rn 

generate RF for the 
current week 

initial probability vector 

rainfall occurrence 
equation 2.4 

RF=O 

j = 21 

i = 52 

(RF = rainfall amount, ~ = unconditional probability of rainfall occurrence) 

Figure 3.1 Simplified flow chart for the discrete time Markov chains 
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i = i + 1 
~---------------------------+ I i=1 I 

time =0 

generate a random 

number, R 

1 
probability of rainfall occurrence 

equation 2.6 

1 1 
I RF=gamma(a.~) RF = 0 

1 1 
transition to next state eqn. 2.7 

i = 21 

(RF = rainfall amount, ~ = unconditional probability of rainfall occurrence) 

Figure 3.2 Simplified flow chart for the continuous time Markov chain 
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3.3 Comparison between the first and the second-order discrete 

time Markov models 

The 21 years observed rainfall time series of Maha-llluppallama was compared to a 

time series of 21 years of weekly rainfall simulated by the first and second-order 

Markov chains. The ability of the stochastic model to preserve the observed year-to­

year variability of historical rainfall events was the major evaluation criterion. Each 

rainfall time series was sorted by the standard week of the year and then assigned to 

four different periods of the year namely, Yala (minor rainy season), Maha (major 

rainy season), first dry period and second dry period. 

3.3.1 Cumulative distribution functions 

The hypothesis that the both observed and simulated data have come from the same 

distribution was tested using Kolmogorov-Smimov two-sample test (K-S test). The 

test statistic, D, is the maximum value of the absolute difference between the 

Cumulative Distribution Functions (CDFs) of observed values and the corresponding 

simulated values from the first or the second-order model (Table 3.1 and Table 3.2). 

The critical value at the 5% probability level is 0.420. The K-S test shows that except 

in a few instances, both models represent the CDF of the observed values equally 

well. However, during the wet seasons performance of the first-order Markov model 

is better than the second-order model (Table 3.1). During both Yala and Maha 

seasons, CDFs of the second-order model have been significantly different at five 

different weeks whereas the standard week 4 was the only different one in the first­

order model. Nevertheless, The performance of the both models were similar during 

the major dry seasons. Each model resulted one week on which CDF was different 

from the observed CDF. However, magnitude of the difference was less with the 

first-order model (Table 3.2). 
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Table 3.1 Kolmogorov-Smirnov test statistics between weekly simulated and 

observed rainfall during the two major rainy seasons with two 

discrete time Markov models, Maha-Illuppallama, Sri Lanka. 

Standard Week No. First -order Second-order 

Yala season 
12 0.286 0.476* 
13 0.190 0.333 
14 0.190 0.143 
15 0.333 0.238 
16 0.286 0.381 
17 0.190 0.238 
18 0.238 0.143 
19 0.286 0.333 
20 0.286 0.333 
21 0.190 0.190 

Maha season 
40 0.333 0.333 
41 0.143 0.333 
42 0.190 0.238 
43 0.190 0.190 
44 0.238 0.190 
45 0.190 0.190 
46 0.238 0.190 
47 0.333 0.429* 
48 0.190 0.143 
49 0.333 0.190 
50 0.381 0.286 
51 0.286 0.286 
52 0.333 0.143 
1 0.238 0.190 
2 0.190 0.429* 
3 0.143 0.190 
4 0.524· 0.524* 
5 0.095 0.429* 

* The weekly distribution function is significantly different from the corresponding 
distribution function of the observed values at the 5% probability level. 
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Table 3.2 Kolmogorov-Smirnov test statistics between weekly simulated and 

observed rainfall during the two major dry periods with two 

discrete time Markov models, Maha-Illuppallama, Sri Lanka. 

Standard Week No. First -order Second-order 

First dry period 
6 0.333 0.143 
7 0.381 0.667* 
8 0.238 0.238 
9 0.238 0.190 
10 0.429* 0.190 
11 0.095 0.286 

Second dry period 
22 0.280 0.286 
23 0.143 0.095 
24 0.190 0.190 
25 0.143 0.095 
26 0.048 0.000 
27 0.095 0.238 
28 0.238 0.143 
29 0.143 0.190 
30 0.095 0.143 
31 0.143 0.143 
32 0.048 0.238 
33 0.238 0.286 
34 0.095 0.095 
35 0.143 0.143 
36 0.190 0.048 
37 0.286 0.286 
38 0.095 0.190 
39 0.095 0.286 

* The weekly distribution function is significantly different from the corresponding 
distribution function of the observed values at the 5% probability level. 
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3.3.2 Rainfall amounts 

The mean weekly rainfall of both the first and the second-order models and the 

observed time series are shown in Figure 3.3. Results demonstrate a reasonable 

agreement between the observed values and the simulated values of each model. 

However, during the period of November through the end of December, the northeast 

monsoon season, the both models have underestimated weekly rainfall amount. The 

Table 3.3 and 3.4 show the results of the two-tailed t-test that were used to compare 

the observed and simulated sets of means of weekly rainfall amount. It shows that the 

apparent discrepancy during the northeast monsoon season between the simulated and 

the observed rainfall amount is not reflected in the analysis except during the standard 

weeks 47 and 51 with the second-order model (Table 3.3). Discrepancies during the 

rainy seasons were never significant with the first-order model. The performance of 

the second-order model during the two major dry periods was not encouraging (Table 

3.4). Out of total of 24 weeks during these two dry periods, nine weeks were 

significantly different from the observed sequence. However, there was only two 

such weeks, standard weeks 26 and 34, with the first-order model during the 

corresponding period. Despite the significant differences, the overall ability of the 

second-order model to simulate the weekly rainfall amount appeared adequate (Figure 

3.3). 

3.3.3 Rainfall occurrence 

In analogy with the definition of threshold rainfall level that differentiated wet and dry 

states of Markov models, the number of weekly rainfall occurrences, weeks with 

rainfall of greater than or equal to 7 mm, from both models were determined with 21 

simulation runs. These statistics were tested against the observed sequence using the 

Chi-square test. Both models simulated weekly rainfall occurrence that were in 

general closer to the historical values (Figure 3.4). However, with the Chi-square 

test, the first-order model failed at six weeks (standard weeks 3, 4, 6, 17,29, and 40) 

whereas the second-order model failed only during standard weeks 4, 6 and 40 (Table 

3.5 and 3.6). In most cases, failure was due to the magnitude of the values rather 

46 



E g 

~ 
c: 
'(ij 
II: 

100 

------ First order 
--- Second order 

80 .. Observed 
.. 

.. .. .. 
60 .. 

40 

.. 

20 

o 

o 5 10 15 20 25 30 35 40 45 50 

Standard week 

Figure 3.3 Simulated weekly rainfall from discerete time 
Markov models. Observed values are 
represented in small dark triangles. 

47 



Table 3.3 Simulated and observed average weekly rainfall amount of the two 

major rainy seasons with discrete time Markov models, 

Maha-Illuppallama, Sri Lanka. 

Standard Week No. First-order Second -order Observed 
rainfall rainfall rainfall 
(mm) (mm) (mm) 

Yala season 
12 20.8 33.4 22.2 
13 28.8 38.0 22.5 
14 54.7 44.7 39.8 
15 40.3 39.0 32.6 
16 39.2 37.4 54.2 
17 53.2 29.7 48.8 
18 67.2 37.4 40.8 
19 24.9 19.3 18.7 
20 33.9 21.9 37.0 
21 7.0 8.7 16.5 

Maha season 
40 52.4 59.2 29.4 
41 44.9 30.1 53.8 
42 80.6 69.7 67.2 
43 76.8 50.6 62.5 
44 67.7 67.9 82.8 
45 68.4 56.3 66.7 
46 51.6 88.5 66.6 
47 44.7 32.6* 72.6 
48 75.7 59.7 59.4 
49 47.5 54.1 70.3 
50 37.0 34.3 59.4 
51 49.9 32.6* 65.0 
52 47.6 45.1 69.2 
1 35.6 18.6 20.6 
2 33.1 47.2 25.1 
3 16.2 17.4 16.0 
4 23.5 25.2* 14.9 
5 25.0 15.4 17.6 

* The means are significantly different from the observed mean at the 5% probability level 
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Table 3.4 Simulated and observed average weekly rainfall amount of the two 

major dry periods with discrete time Markov models, 

. Maha-IlIuppallama, Sri Lanka. 

Standard Week No. First-order Second-orde.r Observed 
rainfall rainfall rainfall 
(mm) (mm) (nun) 

First dry period 
6 7.0 5.0 4.9 
7 8.7 14.0 8.6 
8 7.9 17.2 18.0 
9 20.5 13.6 13.8 
10 7.1 8.0· 16.4 
11 18.2 29.3 12.6 

Second dry period 
22 11.8 8.3 10.8 
23 6.0 7.2 5.8 
24 6.0 5.7 3.9 
25 4.1 4.7 5.2 
26 1.0· 0.8· 0.3 
27 3.6 6.0' 2.6 
28 9.4 6.4 7.0 
29 7.8 9.6 13.7 
30 4.4 3.4 6.5 
31 3.2 2.4* 9.0 
32 6.0 12.0 4.7 
33 6.9 7.2' 15.3 
34 1.5' 2.2' 6.5 
35 1.2 0.9* 5.2 
36 5.8 3.3* 7.8 
37 22.0 46.9 20.0 
38 24.1 17.2 18.0 
39 10.5 5.7* 12.1 

* The means are significantly different from the observed mean at the 5% probability level 
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Table 3.5 Simulated and observed rainfall occurrence during the two 

major rainy seasons with discrete time Markov models, 

Maha-Illuppallama, Sri Lanka. 

Standard Week No. First -order Second -order Observed 
rainfall rainfall rainfall 

occurrence occurrence occurrence 
Yala season 

12 16 16 11 
13 17 17 14 
14 20 20 17 
15 19 19 18 
16 18 17 19 
17 14* 18 20 
18 16 18 13 
19 16 16 11 
20 18 18 13 
21 8 8 5 

Maha season 
40 14" 14" 7 
41 17 20 17 
42 20 20 20 
43 19 19 18 
44 21 21 20 
45 21 20 19 
46 17 18 15 
47 18 18 18 
48 20 20 17 
49 16 16 19 
50 17 17 18 
51 19 19 19 
52 20 20 17 
1 13 16 12 
2 17 15 13 
3 17" 10 11 
4 19· 19· 9 
5 11 11 8 

* The means of simulated and observed values are significantly different at the 5% probability 
level. 
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Table 3.6 Simulated and observed rainfall occurrence during the two 

major dry periods with discrete time Markov models, 

Maha-Illuppallama, Sri Lanka. 

Standard Week No. First-order Second-order Observed 
rainfall rainfall rainfall 

occurrence occurrence occurrence 
First dry period 

6 10* 10* 4 
7 9 9 4 
8 7 7 9 
9 15 15 9 
10 7 7 8 
11 10 10 7 

Second dry period 
22 10 10 5 
23 8 8 6 
24 7 7 4 
25 3 3 5 
26 0 0 0 
27 7 3 2 
28 6 6 2 
29 12* 4 5 
30 5 5 4 
31 2 2 3 
32 8 4 3 
33 9 9 4 
34 0 0 2 
35 0 0 3 
36 6 6 3 
37 12 12 7 
38 12 11 10 
39 8 8 9 

* The means of simulated and observed values are significantly different at the 5% probability 
level. 
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than due to excessive variability. Out of six weeks that have failed to simulate the 

rainfall occurrence on par with the historical sequence, three weeks, standard weeks 

4, 6 and 40, are common for both models. These three weeks represent either very 

early stages or the tail end of the rainy seasons. The rest of the weeks, standard 

weeks 17 and 29, which failed in the first-order model come within the characteristics 

inter-season dry period of the Dry zone. None of the above mentioned weeks other 

than the standard week 4 failed in the analysis of mean rainfall amount with the both 

models. Thus, results presented give no clear evidence as to the basis for selection of 

an appropriate order of a Markov chain for the different seasons or periods of the 

year. 

3.3.4 Extreme rainfall events 

The most important property of stochastic rainfall models is their ability to simulate 

the extreme values. A failure to do so is a major shortcoming of the developed 

models (Wight and Hanson, 1991 and Richardson, 1984). Therefore, additional 

comparisons were made with the mean annual rainfall, mean annual weekly maxima, 

number of weeks which receive more than 150 mm of rainfall, storm situations and 

number of weeks which receive less than 10 mm of rainfall, dry conditions (Table 

3.7). Except the criterion of number of weeks which receive less than 10 mm of 

rainfall, all the other attributes were not significantly different from the observed 

values with the both models. The both models have simulated less number of weeks 

which receive less than 10 rnm of rainfall compared to the observed sequence. This 

concludes that both models are capable of reproducing the annual and storm 

sequences but, ability of simulating the drought situations are yet to be improved. 

The results of the foregoing discussion suggest that first-order model performs better 

than the second-order model in simulating the weekly rainfall amount in the Dry zone 

of Sri Lanka. The situation becomes opposite in terms of the weekly rainfall 

occurrence where the second-order model is more representative than that of the first 

order model. However The capability of simulating annual and extreme events of 
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Table 3.7 Simulated and observed annual rainfall and other extreme 

attributes, Maha-IIIuppallama, Sri Lanka. 

Attribute 

Mean annual rainfall (mm) 

Mean annual weekly maxima 
(mm) 
No. of weeks ~ 150 (mm) 

No. of weeks < 10 (mm) 

Simulated 

lSI order 2od order 

1504 1424 

210 207 

36 33 

513* 507· 

Observed 

1481 

201 

33 

587 

* Means are significantly different from the observed values at the 5% probability level. 
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rainfall are almost similar in the both models. However, in general, there is no 

discernible difference in the performance of the first and second-order models. 

3.4 Performance of the continuous time Markov model 

The test statistics of the Kolmogorov-Smimov goodness of fit between the CDFs of 

the observed and the simulated values of weekly rainfall are shown in the Table 3.8 

and 3.9 for the wet and dry seasons respectively. The performance of the continuous 

time Markov chain during the Dry periods of the year was poor. Most of CDFs 

between the observed and the simulated rainfall were significantly different at the 5% 

probability level (Table 3.9). The performance during the Yala season was also not 

encouraging (Table 3.8). However, during the Maha season the CDFs of the 

simulated rainfall were reasonably matched with the observed CDFs (Table 3.8). 

The Figure 3.5 shows the 95% confidence band width of the simulated rainfall data of 

the continuous time Markov model along with the corresponding observed values. In 

general, the simulated weekly means are in a reasonable agreement with the observed 

means. But, 50% of the means lie outside the confidence interval band indicating a 

significant departure from the reality. During the Maha season, the model has 

underestimated the weekly rainfall whereas during the Yala season weekly means are 

within the band limits. The underestimation of the model during the period from 

May to September, the characteristics inter-season dry period of the Dry zone, was 

also significant. These results contradict the discussion in terms of the weekly CDFs 

of rainfall where the model's performance during the Maha season was reasonably 

acceptable. 

The Figure 3.6 shows the number of weeks which receive rainfall of 7 mm or more, 

rainfall occurrence, with the 21 simulation runs of the continuous model. The 

simulated values are always greater than that of the observed values. However, some 

differences during the Yala season, standard weeks 13 through 17, and during the 

Maha season, standard weeks 42, 43, 44, 45, 47, 49, 50, 51 and 52, were not 

significantly different at the 5% probability level with the Chi-square test. All these 
I 
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Table 3.8 Kolmogorov-Smirnov test statistics between weekly observed and 

simulated rainfall during the two major rainy seasons with the 

continuous time Markov model, Maha-Illuppallama, Sri Lanka. 

Standard Week No. 

Yala season 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Maha season 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
1 
2 
3 
4 
5 

K-S test statistics 

0.476* 
0.286 
0.429* 
0.286 
0.238 
0.381 
0.381 
0.571 * 
0.381 
0.667* 

0.667* 
0.333 
0.190 
0.286 
0.238 
0.190 
0.286 
0.286 
0.333 
0.286 
0.333 
0.286 
0.286 
0.429* 
0.381 
0.330 
0.524* 
0.524* 

* The weekly distribution function is significantly different from the 
corresponding distribution function of the observed values at the 
5% probability level. 
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Table 3.9 Kolmogorov-Smirnov test statistics between weekly observed and 

simulated rainfall during the two major dry periods with the 

continuous time Markov model, Maha-IIIuppallama, Sri Lanka. 

Standard Week No. 

First dry period 
6 
7 
8 
9 
10 
11 

Second dry period 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

K-S test statistics 

0.762* 
0.619* 
0.429* 
0.476* 
0.571 * 
0.619* 

0.714· 
0.714* 
0.667* 
0.571· 
0.857* 
0.857" 
0.857* 
0.762· 
0.667" 
0.143 
0.524* 
0.524* 
0.667" 
0.524* 
0.619" 
0.619" 
0.429" 
0.333 

* The weekly distribution function is significantly different from the 
corresponding distribution function of the observed values at the 
5% probability level. 
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weeks which were not significantly different from the observed sequence represent 

peak rainfall periods of the respective seasons. This indicates the capability of the 

continuous model in simulating the weekly rainfall occurrence of the Dry zone during 

rainy seasons. However,. the ability of the model to simulate the weekly rainfall 

occurrence during the dry periods was very poor (Figure 3.6). In general, the 

performance of the continuous model was not convincing. The representativeness of 

the model was not consistent with the different criteria tested. However, the 

indication of possible applications in modelling wet seasons rainfall process show a 

promise. The chief limitation of the model in its current form could be the time 

interval. The continuous Markov models attempt to describe the rainfall process 

independently from the time interval used for rainfall observations and in a way the 

model relates more or less to directly the real rainfall occurrence structure. 

Therefore, the estimated parameters based on the weekly measurements may not be 

sensitive enough to represent the actual rainfall process which is highly dynamic in 

nature. It is anticipated that the most of the shortcomings of the model could be 

minimised with a more shorter observation time scale and will be the subject of 

further study. 

3.5 Summary 

The validation analysis in the previous sections of this chapter has revealed that the 

both the discrete and the continuous Markov models can model the weekly rainfall 

process in the Dry zone of Sri Lanka with a reasonable agreement to the historical 

data. Although, only the first-order discrete Markov model gives good results 

statistically, errors encountered with the second-order Markov model are small and 

hence, in terms of functionality either of the discrete model could be used. The 

overall performance of the continuous Markov model was poor although it shows a 

promise in modelling rainfall process. The first-order discrete model is the preferred 

model since the number of parameters to be estimated is less and the resulting output 

gives slightly smaller errors over the historical sequence. 
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Chapter 4 

Modelling soil water balance of the 

Dry zone 

4.1 Introduction 

Water use in crops takes place in the process of transpiration, by which the water 

absorbed by the roots is transformed into water vapour exhaled by the stomata of the 

leaves. This process is necessary not only for the transportation of nutrients and 

photosynthetic products to all parts of the plant, but also for the cooling of the leaves 

when these are exposed to the sun for long periods. Kramer (1963) pointed out that 

water is: 

1. the major constituent of physiologically active plant tissues; 

2. a reagent in photosynthesis and in hydrolytic processes such as starch 

degradation; 

3. the solvent in which sugar, salts and other solutes move from cell to cell 

and organ to organ; and, 

4. an essential element for the maintenance of plant turgidity, necessary for 

cell enlargement and growth; 

Thus, it is obvious that lack of water or moisture stress reduces the growth and 

development of the plants. The close relationship between dry matter production 

increase in plants and the quantity of water transpired by those plants has been well 

documented (Lawes, 1850, Briggs and Shantz, 1913 and many others). Tanner and 

Sinclair (1983) and Monteith (1986) discussed the physical and physiological 

principles that underlie this phenomenon. Almost all the moisture consumed by the 
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plants comes from the soil. The soil is supplied with water through rain, snow or hail 

out of which rain is the most important source in the tropics. The entire amount of 

water supplied to the soil by rain is not available for plant growth because it can be 

lost in several ways. Only a portion of water taken up by plants is useful for 

producing plant dry matter. This component is called transpiration. As the amount 

of water transpired by the plants and the dry matter production are closely related 

(Campbell and Diaz, 1988), the fraction of the rainfall which is available for 

transpiration must be determined to explore the agricultural potential in a given 
I 

region. The rapid progress in the study of evapotranspiration has lead to the 

development of the water balance technique as a method of estimating plant water 

requirement or the soil moisture adequacy for crop growth (Chang, 1968). 

A soil water balance model is a method of calculating crop water use (Mavi, 1986). 

The way in which we define the water balance and its intended use depends greatly on 

the space and time scales of interest. The most precise definition is needed for the 

smallest scales, where the local water balance has several important agricultural 

applications (Henderson-Sellers and Robinson, 1986). The equation for soil water 

balance is generally written as in the form given below using moisture mass 

conservation equation (Rosenberg et al., 1983): 

RF - RO - D - ET + Il W = 0 

where, 

RF = Rainfall 

RO = Runoff 

D = Deep drainage 

ET = Evapotranspiration 

Il W = Change in soil water storage 

[4.1] 

The equation [4.1] can be used on any scale, ranging from continental land masses 

and hydrological catchments down to individual plants. On the basis of equation 

[4.1], numerous models of water transfer between soils and crops have been 

formulated (See reviews by Jury, 1979). To run these models spatially for agro­

climatological purposes, it is necessary to estimate the spatial distribution of their 

input data, state parameters and boundary conditions (Wagenet et aI., 1991). As the 
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kind and number of input values depend on the degree of model complexity, the 

experimental investment will differ for each model. The lower the possibility of 

measuring the input parameters, more simpler the model. Generally, model 

simplification increases with the extent of the application area (Leenhardt et aI., 

1995). 

4.2 Review of soil water balance models 

Two types of soil water models are recognised based on the details with which soil 

water redistribution in the soil profile is described; models based on physics and soil 

water budget models. The models based on physics describe the soil-water-plant 

relations in terms of fluxes, using Darcy's law for soils and electrical analogy for 

evapotranspiration (Brisson et aI., 1992). This approach requires a detailed 

knowledge of soil physical and hydro-dynamic properties and they are not readily 

available for operational use on agro-climatological purposes. 

Models of the soil water budget types range in complexity from simple book keeping 

methods such as that of Thomwaite and Mather (1955) to complex computer models 

such as that described by Norman and Cambell (1983). Complex models rely on 

limited number of assumptions and extensive experimental information for their 

parameters which restrict their applicability directly at the field level. Carneiro da 

Silva (1984) compared a model based on physics and a water budget model with field 

measurements of water under sugar cane and com grown in Brazil. He reported that 

the model based on physics was a better predictor at high water contents whereas the 

water budget model performed better at low water contents. 

4.3 Selection of a model to be used at broad scale studies 

In reality, simplified approaches are preferred in spatial applications for practical 

reasons (Leenhardt et aI., 1995). A simple soil water balance using long term values 

of monthly rainfall and potential evapotranspiration could give some indication of 

availability soil water and of surplus water (Thomwaite, 1948). However, extreme 
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simplicity of the model, equally available soil water at all soil water potential, renders 

the questionable results for agro-climatic classification studies. To improve this type 

of simple water balance models, Baier and Robertson (1965) developed a versatile 

soil water budget which involved several soil layers, a knowledge on rooting depth 

and behaviour of the specific crop in question, information on water release 

characteristics of each soil layer and other relevant climatic data. Considering the 

large uncertainty in even the best measurement of soil water and other relevant 

parameters over a large area (Robertson, 1973), it appears that estimation by detailed 

soil water models involving many parameters of unknown certainty may be over 

extending the model's complexity and ability to provide a reasonable estimate of the 

soil water" status (Robertson, 1988). This is why simple conceptual models of soil 

water balance such as single layer models have been preferred in many studies 

(Robertson, 1988 and Rao, 1987). On the other hand, in the areas of where only the 

rudimentary meteorological data are available, simple models using minimal inputs are 

required (ICRISAT, 1978). Since it is a relatively easy task to estimate the soil water 

status of a particular region, without the need for, or with a minimum of, field 

measurements, from rainfall and other climatological data, the calculation of such 

balances seems to be the most useful and easiest way to characterise the climate of a 

region for its agricultural potential. 

4.3.1 Single-layer soil water balance model 

Single-layer water balance models have been widely used for many years in irrigation 

and hydrologic investigation and in general descriptive climatology (Porteous et aI., 

1994; Rao, 1987; NZMetS, 1986 and Fitzpatric and Nix, 1969). These models are 

straightforward to derive and apply, and explain the variation of soil moisture 

availability for crop use adequately (Porteous et aI., 1994). There are two commonly 

used single-layer water balance models. The simplest one, "Veihmeyer and 

Hendrickson" model (Veihmeyer and Hendrickson, 1955 and Coulter, 1973) assumes 

a constant evapotranspiration from field capacity (FC) to permanent wilting point 

(PWP) and fell sharply thereafter. This concept assumes that plant functions remain 
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unaffected by decrease in soil water, and evaporation is at its potential rate until the 

PWP is reached at which plant activity curtailed abruptly. 

The second one, "Two-phase" models assume a first phase of constant 

evapotranspiration rate upto a critical point somewhere between FC and PWP, and a 

second phase of linearly declining evapotranspiration rate from that point to zero at 

the wilting point(Porteous et al., 1994; Scotter et al., 1979 and Denmead and Shaw, 

1962). These two concepts are depicted in the Figure 4.1. Still others, propose a 

compromise between these two extremes. They propose that the actual 

evapotranspiration (AET) proceeds at the potential rate for some time, and then 

decreases rapidly in exponential manner (Pierce, 1958). However, there are 

considerable discrepancies in research findings as to where the actual 

evapotranspiration begins to drop (Chang, 1968). As the model developed here 

intended to be applied in broad scale agro-climatological surveys, it necessitates a 

certain level of simplification and therefore linear version of the "Two-phase" model 

was chosen for the development of the soil water balance sub-model of the system 

model. 

4.4 A soil water balance sub-model for the Dry zone 

In order to asses the possible crop water usage in the Dry zone by means of a soil 

water balance model, the physical characteristics of the predominant soil type and 

climatic conditions must be determined. In this study, attention is mainly focussed on 

the most important and prevalent great soil group of the Dry zone, the Reddish 

Brown Earths (RBE) which covers approximately 2.5 million ha (Amarasiri, 1987). 

According to the USDA soil taxonomy classification, RBE soils are in the Alfisol 

order and fall into the Great Group Rhodustalfs. These soils are formed from 

residuum or colluvium from mixed intermediate and basic metamorphic crystalline 

rocks of the Vijayan series and Khondalite series. These soils are well, moderately 

well and imperfectly drained and occur in undulating landscapes (De Alwis and 

Pan abokke , 1972). The texture becomes heavier with depth, varying from sandy clay 

loam at the surface to clay loam or sandy clay with gravel in sub-soil. 
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Figure 4.1 Relationship between AETIPET ratio and soil 

moisture status with two conceptual models. 
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The gravelly B horizon is typical for RBE soils and is underlain by the partly 

weathered parent material or saprolite, usually of coarse sandy texture (Joshua, 

1985). Much of the elementary soil physical information of RBE soils needed for 

water balance. calculations are available as modal values based on the frequency 

distribution of measurements made with soil surveys for many development projects 

over the years (Joshua 1985). 

4.4.1 Components of the soil water balance model 

4.4.1.1 Available soil moisture 

The physical limits of available soil moisture are defined by the concepts of the field 

capacity (FC) and the permanent Wilting point (PWP). Field capacity .is a soil 

characteristics and has been defined as the water content of soil when free drainage of 

an initially saturated profile under gravity has decreased to a negligible rate (Chang, 

1968). Wilting point is a plant characteristic occurring when leaves lose their turgor 

and depends on the plant and the factors influencing water loss (transpiration) and 

water intake from the soil (Jackson, 1989). Most plants have an osmotic potential of 

15 to 20 bar and therefore a value of 15 bar matric suction is commonly taken as the 

water potential at which soil moisture becomes severely limiting (Kramer, 1983). It is 

generally considered that the water held between FC and PWP is the available water 

for crop use, and for a given root zone it can be expressed as: 

ASM = ....:..,.{F_C_-_P_w'_p.....;.)_X_p_X_D_ 
100 

where, 

ASM = Available soil moisture in the root zone as an 

equivalent depth of water, cm/cm 

FC = Percentage gravimetric water content at the FC 

PWP = Percentage gravimetric water content at the PWP 

p = Relative density of the soil 

D = Depth of the root zone, cm 

[4.2] 
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Field drainage studies on RBE soils have shown that the moisture content at 0.1 bar 

matric suction corresponds to the FC (Joshua, 1985). Modal values of soil moisture 

retention at 0.1 bar and 15 bar tensions for different horizons have been calculated 

based on the frequency distribution of routine measurements on undisturbed core 

samples of RBE soils (Joshua, 1985) and these are shown in Table 4.1. 

The determination of available soil moisture (ASM) component in a water balance 

model has to be in accordance with the dynamic nature of growth of plant roots 

(Cassel and Nielsen, 1986). Different models deal differently with the root extraction 

or sink term. The objective of the sink term is to distribute the atmospheric demand 

for water over the root zone, and to estimate the water uptake from each layer taking 

into account its water status. Incorporation these aspects, within a model based upon 

limited and generalised data with intended applications at a broader scale, may lead to 

unnecessary model complications. Therefore, in this study, a constant root zone 

depth was assumed for the whole growth period. In RBE soils average rooting depth 

is around 60 cm attributing to the high mechanical impedance of underlying horizons, 

(Joshua, 1985). Thus, 60 cm depth was considered as the hypothetical single-layer 

for the proposed water balance model. Since the RBE soils consist of different soil 

horizons with variable water holding capacities, a weighted average of ASM for 60 

cm depth was calculated as suggested by Gardner (1986). When 60 cm rooting 

depth is considered, the RBE soils contain 185 mm and 115 mm of water at field 

capacity and permanent wilting point respectively, leaving 70 mm of water as the total 

available soil moisture. 

4.4.1.2 Evapotranspiration 

Evapotranspiration is the combined loss of water from a given area by evaporation 

from the soil surface and by transpiration from plants. Evapotranspiration is governed 

by the same factors which govern the open water evaporation, namely supply of 

energy to provide the latent heat of vaporisation and the ability to transport vapour 

away from the evaporative surface. In addition, a third factor enters to the picture; 
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Table 4.1 Modal values of field capacity (Fe) and permanent wilting point 

(PWP) of RBE soils in the Dry zone of Sri Lanka (Joshua, 1985). 

Horizon Fe % (v/v) PWP % (v/v) 

Surface (0-15 cm) 26.0 16.0 

Sub-surface (15-35 cm) 30.5 18.5 

Gravely (35-60 cm) 34.0 21.5 
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the supply of moisture at the evaporative surface (Chow et aI., 1988). As the soil 

dries out, the rate of evapotranspiration drops below the level it would have 

maintained in a well watered soil. Therefore, it is advisable to consider the case when 

the water supply is unlimited because the rate of evapotranspiration from a partially 

wet surface is greatly affected by the nature of the ground (Chang, 1968). This leads 

to the concept of Potential Evapotranspiration (PET). The PET is meant to define 

the upper limit of the evaporation rate from a given soil-vegetation unit under a given 

set of meteorological conditions. Multiplicity of definitions in the literature draws a 

rather confusing picture, and therefore, sometimes the usefulness of the PET concept 

has been questioned. Part of the problem in defining PET unambiguously may be 

because several earlier workers considered it to be solely a property of the 

atmosphere (Sharma, 1985). In fact, it depends on soil, vegetative as well as climatic 

factors, but it is difficult to define these influences exactly. Despite variety of 

definitions, the one proposed by Penman (1956) has been widely accepted. He 

defines the PET as "the amount of water transpired in unit time by a short green crop, 

actively growing, completely shading the ground, of uniform height and never short 

of water". For a given crop and its stage of development, the PET is given by (Rao, 

1987); 

PET = Kc ETo 

where, 

Kc = Crop factor which depends on the stage of 

crop growth 

ET 0 = Reference evapotranspiration 

4.4.1.2.1 Reference evapotranspiration 

[4.3] 

Reference evapotranspiration (ET 0) has recently come into widespread use (Burman 

et aI., 1983). Two definitions of ETo are commonly used. Doorenbos and Pruit 

(1984) used the definition as "the maximum rate of evapotranspiration from an 

extended surface of 8-15 cm height green grass cover, completely shading the 

ground under unlimited supply of water." The second definition is based upon alfalfa 

(Medicago sativa) and was proposed by Jensen et al. (1971). In their definition ETo 
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represents "the upper limit or maximum evapotranspiration that occurs under given 

climatic conditions with a field having a well watered agricultural crop with an 

aerodynamically rough surface, such as alfalfa, with 30 to 50 centimetres of top 

growth." The present study will be based on the definition of Doorenbos and Pruit 

(1984). They have reviewed four methods of estimating ETo ; Blaney and Criddle 

method, the radiation method, the modified Penman method and the evaporation pan 

. method. They concluded that the choice of the method is determined by the 

availability of climatic data and the accuracy required. Out of four methods, the pan 

evaporation method was chosen for this study in view of data availability and its 

relative accuracy (Shih et aI., 1983 and Pruit, 1960). The reference 

evapotranspiration (ETo) is given by (Doorenbos and Pruitt, 1984); 

ET 0 = Kpan Epan 

where, 

Kpan = Pan coefficient 

Epan = Evaporation from a Class A pan 

[4.4] 

Pan coefficient, Kpan, is a empirically derived coefficient which take into account 

climate and pan environment such as relative humidity, wind speed and pan location. 

Given the average climatic condition of the Dry zone, a value of 0.8 was chosen as 

the pan coefficient (Doorenbos and Pruitt, 1984). This is in agreement with the 

generalised value proposed by Jatzold (1977) for semi arid climates. 

4.4.1.2.2 Crop coefficient (Kc ) values 

The Kc values relates the evapotranspiration of a disease free crop grown in large 

fields under optimum soil water and fertility conditions and achieving full production 

potential to that of a green grass surface growing under the same environment 

(Doorenbos and Pruitt, 1984). The value of Kcis dependent on crop characteristics 

and varies with time based on variations in leaf area index (LAI) as shown in Figure 

4.2. The initial value of Kc for well watered soil with little ground cover, is 

approximately 0.35. As the ground cover develops, Kc increases to a maximum 

value, which can be greater than 1 for crops with large vegetative cover such as com 
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Figure 4.2 The relationship between the crop coefficient and the 
stage of crop growth (Chow et aI., 1988). 
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(Chow et al., 1988). As the crop matures or ripens, its moisture requirements 

diminish because LA! decreases and grains and pod form. 

4.4.1.2.3 Crop coefficient values for the water balance sub-model 

The water balance for different crops may differ each other because the evaporating 

surface, the total area of stomata of the leaves, can be different from one crop to 

another. But, in the Dry zone, most of the Maha (major rainy season) or Yala (minor 

rainy season) upland crops bear approximately similar crop coefficient values, in other 

words, similar water requirements. For example, maize a commonly grown cereal 

crop in the Maha season bears an average crop coefficient value of 0.75 to 0.9 for the 

entire growing period while an average value of 0.75 to 0.8 is reported for the 

groundnut which is a common legume crop during the Yala season. Thus, selection 

of a modal crop which represents the entire cropping pattern in the Dry zone may be 

easier in this exercise rather than considering the whole set of crops that are being 

grown in the region. The general trend of cropping pattern of rainfed farming in the 

region is to sow for cereals with high water consumption during the Maha season and 

low water demanding legumes during the Yala season. But considering the fact that 

wide popularity of cowpea (Vigna unguiculata)!, a legume crop, among the rainfed 

farmers in both cropping seasons, it was selected as the modal crop. According to 

several authors (Nieuwolt, 1975; Pruitt et aI., 1972 and Denmead and Shaw, 1959), 

the crop factor (Kc) depends on the stage of development of the crop, development 

of the leaves and density of the crop cover. Therefore, Kc values for different growth 

phases of the cowpea crop were determined using values given by Smith (1991) and it 

is presented in the Table 4.2. The period in between two rainy seasons during which 

land becomes fallow was considered as covered with natural grasses. Water balance 

during this period was calculated assuming an average value of crop coefficient for 

dry season grasses owing to the lack of better information on Kc values (Nieuwolt, 

1975). 

1 An important characteristics of cowpea over other grain legumes under drought environment is its 
ability to delay the crop development so that flowering and reproductive growth can resume when 
the soil moisture is replenished (Sinclair et aI., 1987). 
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Table 4.2 Crop coefficient (Ke) values for Cowpea (Vigna unguiculata) 

(Smith, 1991). 

Growth stage Age of the crop Crop coefficient (Ke) 

Initial development 4 weeks 0.567 

Vegetative phase 4 weeks 1.103 

Reproductive phase 4 weeks 0.967 

Maturity 4 weeks or more 0.740 
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4.4.1.2.4 Actual evapotranspiration 

Actual evapotranspiration (AET) is usually considered to be occurring at a potential 

(maximum) rate (PET) when all the water needs of crops are being met. As the soil 

dries, it becomes more difficult for plants to extract the water from the soil. Hence, 

actual evapotranspiration will, at some stage, fall below the potential rate. 

Considerable controversy exists as to the effect of the soil moisture tension on the 

depletion rate (Chang, 1968). It has shown that the actual evapotranspiration can 

typically be considered to occur at the potential rate until some critical soil moisture 

deficit has been reached. This often occurs when about 50-80% of the available soil 

moisture has been used up (Porteous et al., 1994). The method of determining actual 

evapotranspiration in this study is a single-layer two-phase model which is already 

been discussed in the section 4.3.1. Based on the assumption listed below and the 

previous attempts made by Porteous et al. (1994), Rao (1987), Doorenbos and 

Kassam (1979), and Denmead and Shaw (1962), the expression for actual 

evapotranspiration (AET) in this study was considered as follows: 

AET=PET 

AET= PET[ASM-PWP] , 
CP-PWP 

where, 

ASM ~ CP 

PWP~ ASM ~CP 

AET = Actual Evapotranspiration, mm 

PET = Potential Evapotranspiration, mm 

ASM = Available soil moisture over the rooting depth (mm/root 

depth) at time t 

CP = Available soil moisture over the rooting depth (mm/root 

depth) at the critical point 

PWP = Available soil moisture over the rooting depth (mm/root 

depth) at the PWP 

The graphical representation and proof of equation [4.6] is given in Appendix 3. 

[4.5] 

[4.6] 
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The following assumptions were made during the development of the model 

(equation [4.6]): 

1. the rainfall is absorbed to the soil through the surface and leaf 

interception of rainfall is negligible; 

2. the total depth of effective rainfall from discrete storm events occurring 

in the week was assumed as input to the root zone of 60 cm at the 

beginning of the week; 

3. the infiltrated water is redistributed uniformly over the root zone, and 

the water remaining in excess of the corresponding soil storage capacity 

is negligible; 

4. roots distribution within the depth is uniform and roots take water 

preferentially from the whole depth considered; and, 

5. the contribution to soil moisture storage from capillary rise is negligible. 

Experiments conducted on RBE soils with many crops under different soil moisture 

regimes have shown that soil moisture depletion up to 75% of total available soil 

moisture do not cause any depression in the yield due to the moisture stress (Joshua, 

1985). Thus, readily available soil moisture is more likely to be 75% of total available 

soil moisture and it was considered as the critical point (CP) at which 

evapotranspiration begins to drop from its potential rate. Evidence in support of such 

a conclusion can also be found from moisture retention curves of RBE soils where 

more than 75% of total available soil moisture is released below 1 bar tension 

(Joshua, 1985). 

4.4.1.3 Effective rainfall 

The use of direct rainfall values in water balance studies is often misleading because 

when it exceeds the maximum infiltration rates of the top soil, a proportion of the 

rainfall is lost by surface runoff and is not available to replenish the soil moisture 

reservoir. For RBE soils, the proportion of rain that will be lost as surface runoff is 

considerable when the rain is in excess of 25 mmIhr particularly if the profile is moist 

(Panabokke and Walgama, 1974). Thus, there could be an appreciable amount of 
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surface run off when very high rainfall intensities are experienced especially during the 

convectional rainy months. 

The term effective rainfall is defined by different workers to overcome the runoff 

problem in relation to the anticipated role of rain water in their field of interest. Any 

factor which affects infiltration, runoff or through-drainage affects the portion of total 

rainfall that is effective. Higher intensities of rainfall normally increase runoff and 

drainage thus reduce the fraction of rainfall that is effective. In water budget models, 

effective rainfall is the amount of rain infiltrated into the soil since these models either 

estimate deep percolation based on soil properties or assume negligible. In this case 

effective rainfall equals rainfall minus runoff; runoff water could be used at another 

location as an input into the soil water balance. Most of the rainfall is effective during 

periods when rainfall intensity, frequency and amounts are low (Dastane, 1974). Flat 

and level land retains water on the soil surface and increases rainfall effectiveness 

relative to sloping land where rapid runoff occurs. In tropics, 100% acceptance of the 

rainfall is possible when land is terraced and bunded (Rao, 1987). 

Percentage acceptance of total fortnightly rainfall for the RBE soils in the Dry zone of 

Sri Lanka is presented Figure 4.3. These estimates have been obtained by matching 

infiltration rates at the prevailing soil moisture with the rainfall intensities, using data 

from five-year period for the RBE soils in the Dry zone of Sri Lanka (Joshua, 1985). 

The percentage acceptance of rainfall is low for the period from October. to late 

January (major rainy season) and is 100% for the dry period (May to September) 

because the rainfall is low. 

4.5 Meteorological inputs of the water balance sub-model 

4.5.1 Rainfall 

Rainfall data for the soil water balance model are supplied by the first-order discrete 

time Markov model discussed in the Chapter 2. This model was found to be the 
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most practical one in modelling the Dry zone's weekly rainfall climatology among the 

three models considered in this study; Rainfall data coming from the rainfall sub­

model was converted to an effective rainfall value to account the runoff loss using 

weekly percentage acceptances given by Joshua (1985) before being used in the soil 

water model. The model has been designed in such a way that user can decide the 

number of years of rainfall data to be used as the input for the soil water balance 

model. 

4.5.2 Pan evaporation 

The drying power of the atmosphere or the evaporation component of the water 

balance sub-model was accounted using another model. For this purpose, a 

stochastic evaporation sub-model was developed using historical weekly pan 

evaporation data from 1976 to 1995 recorded at the same location where the other 

meteorological data of the study were obtained. Generally, meteorological 

parameters tend to be correlated. For example evaporation in an area is determined 

to a larger extent by energy available from the sun for latent heat used in the process 

and it is a function of cloudiness (Nieuwolt, 1975). As the cloudiness is related to the 

rainfall' process (Brauhn et aI., 1980), it was hypothesised that weekly evaporation 

from open water pan is correlated with amount of rainfall (Jones et aI., 1972). Table 

4.3 shows the coefficient of determination (r2) values for the standard weeks of the 

second intermonsoon season (convectional) and northeast monsoon season. No 

significant correlation was evident between amount of rainfall and the open pan 

evaporation during those two seasons except standard weeks 37, 40 and 46. Even 

with these three weeks, r2 value was less than 50% exhibiting the weakness of the 

relationship. A similar trend was found for the rest of the year and therefore these 

two variables were considered as independent in this study. 

Historical weekly pan evaporation values were evaluated for their best fitted 

probability distribution out of gamma, Weibull, log-normal and normal distributions 

using the same methodology adapted in section 2.5.2.5. The use of normal 
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Table 4.3 Coefficient of determination (r2) between weekly amount of rainfall 

and pan evaporation, Maha-Illuppallama, Sri Lanka (1976-1995). 

Standard week Coefficient of determination (r2) P - value2 

Intennonsoon season 

36 0.02 0.55 

37 0.44 0.01 

38 0.23 0.05 

39 0.00 0.97 

40 0.32 0.01 

41 0.09 0.20 

42 0.09 0.21 

43 0.12 0.16 

44 0.00 0.79 

Monsoon season 

45 0.23 0.05 

46 0.29 0.04 

47 0.02 0.56 

48 0.14 0.13 

49 0.12 0.15 

50 0.17 0.08 

51 0.19 0.06 

52 0.09 0.21 

2 p_ value provides a measure of the extent to which data support or do not support the Null 
hypothesis. More specifically, if the P-value is large, we should not reject the Null hypothesis. If 
the P-value is small, we should reject the Null hypothesis. 
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distribution for simulation of pan evaporation introduces the possibility of generating 

negative values. An additional restriction to the model was introduced by setting the 

pan evaporation (E) equal to zero if a negative value is generated (Jones et aI., 1972); 

therefore, E is equal or greater than zero for all weeks. 

With each run of the model, a random variate will be produced from the best fitted 

probability distribution for the pan evaporation. This value then will be converted to 

reference evapotranspiration value using equation [4.4] and then to potential 

evapotranspiration using equation [4.3]. This sub-model has been embedded in the 

soil water balance model in such a way that it produces a weekly potential 

evapotranspiration value for each generated effective rainfall value from the rainfall 

model. 

4.6 Field data collection and the validation of the soil water balance 

sub-model 

Validation of the soil water balance sub-model was performed using the volumetric 

soil moisture content measurements (v/v%) made during the period of 1992/1993. 

These volumetric soil moisture content measurements were obtained from a Troxler 

model Neutron probe in a well drained RBE soils grown for cowpea (variety MI-35) 

under rainfed conditions. The experimental site (Maradankadawala) was located at 

17 Ian areal distant from Maha-Dluppallama where the other meteorological data of 

this study were obtained. Four plots of 10 x 8 m were established in the uppermost 

portion of the catena of a micro catchment. The slope of the area was around 3 to 4 

percent. The first crop was planted on November 5, 1992 (standard week No. 45) 

with the arrival of northeast monsoon rains. Five measurements of soil water content 

were made at fortnightly during the life cycle of the crop before the crop was being 

damaged completely by the wild elephants. The second crop was planted on March 

25, 1993 (standard week No. 13) with the arrival of first convectional rains. Fifteen 

measurements were made starting from March 4, 1993 (standard week No.9), upto 

September 9, 1993 (standard week No. 37) fortnightly though crop was harvested on 

August 7, 1993 (standard week No. 32). 
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Neutron probe readings were taken at 15 cm intervals from 15 cm to the maximum 

depth of 60 cm of three aluminium access tubes installed in each plot about 2 m apart. 

Moisture content of the surface horizon ( 0-15 cm) was measured gravimetrically as 

the use of Neutron probe near the surface soil is limited by the functional 

requirements of the instrument. Soil water content in millimetres was determined 

from summation of the volumetric measurements. 

4.6.1 Comparison of simulated and observed soil moisture contents 

Soil moisture regimes of the first 60 cm horizon of Reddish Brown Earths soils, 

cropped with cowpea, in the Dry zone of Sri Lanka were compared with the 

simulated values of soil moisture. Comparison was made possible only with five 

measurements during the Maha season while there were continuous measurements for 

the following Yala season. These measurements were available fortnightly through 

the long dry spell of the Dry zone (mid may to mid September) until the onset of next 

convectional rains in mid September. 

Figure 4.4 shows the 95% confidence interval band width of the simulated soil 

moisture contents along with the observed data. The band width is wider in the rainy 

seasons than the dry period attributed to the high variability of rainfall during rainy 

seasons. Thus, for agriculturists, this might well be thought of as a perversity of the 

nature, in that the critical decisions such as sowing, fertilising and harvesting have to 

be taken when the variability is highest. However, the confidence interval band width 

is less than 18 mm for any week of the year; therefore, the maximum difference 

between any simulated value and the mean of the simulated value is less than 9 nun 

with a 95% probability. In general, observed values are always higher than that of the 

simulated values. This trend was more prominent during the major rainy periods. 

Nevertheless, difference between the simulated and the observed values does not 

exceed 15 mm for any week of the year. During the dry period where the effect of 

canopy cover is minimum, the simulated values are very closer to the observed values. 

In rainfed conditions, crops seldom attain full canopy conditions (leaf area index> 3). 

But the crop coefficients used in the model to estimate the crop water usage assume 
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full canopy conditions. Thus, if adjustments are not made accordingly, the estimated 

crop water consumption is higher than that of the actual values because reduced leaf 

cover reduces the water requirement of the crops (Stewart, 1988). This in tum 

increases the discrepancy between the simulated and the observed values of soil 

water. The poor crop establishments under rainfed conditions is inevitable because of 

some factors that adversely affect the germination and seedling emergence (Unger et 

al., 1988). 

RBE soils are strange in water balance modelling mainly due to the presence of a 

gravel layer. Gravel retains a thin fIlm of clay that absorb moisture and retain 

dampness which will give a higher estimate of Neutron probe readings (Lal, 1979). 

As the single layer water balance models are not meant to account for such 

complicated aspects, the predicted values may always differ from the observed values. 

Although the Neutron probes are the one of the best way to measure the volumetric 

soil water content in-situ, it should be cautioned that Neutron probe meter readings 

from moderately wet to wet status of the soil can be very confusing (Stewart, 1988). 

Thus, noted deviation of the observed values from the simulated values especially 

during the major rainy season could be attributed to the insensitivity of the 

instruments. The discrepancy between the simulated and observed values also could 

be due to the question of validity of assumptions made on development of the single 

layer water balance model. The most concern would be on the contribution of soil 

water from the capillary rise when the root zone moisture is diminishing. Although 

the model assumes that there is no capillary rise from the lower layers of the soil 

profile, due to the presence of large number of micro pores3 in RBE soils, there 

. would be a substantial amount of capillary rise especially during the rainy period when 

the soil water table is comparatively high. 

3 Clay content is nearly 25-30% in both surface and sub-surface horizons and increases to about 40% 
in the gravel layer (Joshua, 1985). 
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4.7 Summary 

The main objective of this Chapter was to test the validity of a single-layer water 

balance model for weekly time scale in the Dry zone of Sri Lanka. This study 

confirms that the model can provide estimates of soil moisture and crop water 

requirement or the consumptive use in the 60 cm profile that agree reasonably with 

field measurements with exception of a few instances. The disagreement of soil water 

contents appears basically only when the soil moisture approaches its potential 

storage as a result heavy of downpours during the Maha season. Thus, it may not 

hamper the use of the model in future efforts as the maximum storage phase of soil 

water is not so crucial to the crop growth compared to the soil moisture deficit. 

The model has successfully differentiated fallow and cropped periods of the year by 

accounting the differences in evaporative demand during two periods. Provided that 

the available water capacities and crop factors such as crop coefficients and rooting 

depth are known, calculation of temporal variation of soil moisture in a 60 cm horizon 

of RBE soils from this model can be used with confidence for various agricultural 

applications such as irrigation planning, growing season characterisation, as well as 

for demarcating homogeneous zones of available soil water for crop production. 

However, the major limitation of the model for specific applications is, it has been 

developed with one crop, so that a thorough validation with other crops is required. 
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ChapterS 

Point estimation of rainfall in the 

Dry zone 

5.1 Introduction 

The complex, interacting atmospheric processes which give rise to rainfall make it a 

variable phenomenon across the landscape. Hence, recorded rainfall from a rain 

gauge usually represents only an extremely small area of the catchment. This 

necessitates of having a highly dense network of gauges to record the real spatial 

variability in a region. In the Dry zone, one of the problems which often arises is 

missing or un gauged rainfall data. But, a proper understanding of the spatial 

variability of rainfall in the Dry zone is a must to apprehend the agricultural potential 

of the region. However, the current network of gauges in the Dry zone is not 

adequate enough to account the real spatial variability of the region. Thus, there is a 

need for a methodology to interpolate the data with minimum number of neighbouring 

locations having reliable data. 

Spatial interpolations of data available at other sites are being used in the field of 

hydrology and climatology to generate the data for ungauged locations. In most 

cases, simple methods of point estimation are applied (Abtew et aI., 1993). The 

availability of high powered computing facilities has encouraged the development of 

advanced methods of interpolation. As a result, a number of spatial interpolation 

techniques are available today with varying degree of complexity such as local mean, 

Thiesen polygon, inverse distance, inverse square distance, isohytal and krigging 
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(Abtew et al., 1993 and, Singh and Chowdhury, 1986). Some of them are very simple 

with limited applicability while others involve complex mathematical frameworks and 

needs large number of data points to obtain a reasonable level of accuracy. This 

chapter is intended to examine the validity and applicability of a spatial correlation 

model in estimating weekly rainfall in the Dry zone of Sri Lanka. 

5.2 Modelling the spatial correlation structure 

Spatial continuity exists in the most earth science data sets and two data sets close to 

each other are expected to have closer values than those that are far apart (Isaaks and 

Srivastava, 1989). A function can be developed to describe the continuity of the 

relationship between the value of one variable at a point and the value of the same 

variable at another point, a given distance away (Abtew et aI., 1993). Correlation, 

covariance and variogram functions have been used to express the spatial continuity 

of a random variable. Similar assumptions have been made about rainfall phenomena 

over an area, and estimation methods used in earth science have been applied to 

rainfall data to estimate the values of ungauged sites. 

The spatial correlation models for rainfall have been presented in inverse power and 

exponential forms (Yevjevich and Karplus, 1973): 

Y ab = (1 +ad)-C 

-ad 
Yab = e 

where, 

[5.1] 

[5.2] 

Y ab = spatial correlation coefficient between two stations 

(A and B) 

a. = a coefficient 

c = a power coefficient 

d = distance between the pair of stations 

The spatial correlation coefficient Y ab between two locations can be determined using 

contemporaneous observation pairs from the two locations. Using the calculated Y ab 
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and the distance between the two locations, the coefficient (ex.) of equation [5.2] can 

be found. 

In'Yab =-ad 

In'Yab 
ex. =---

d 
[5.3] 

The spatial correlation coefficient values between the two sample stations and the 

third station ('Y ae and 'Y be ) where the point estimation is to be done can be calculated 

from equation [5.2]. Let the unbiased 1 linear estimator for the normalised rainfall at 

the third station (C) be: 

where 

R* = estimated normalised rainfall at station C c 

R* = observed normalised rainfaII at station A a 

R* = observed normalised rainfaII at station B b 

Wa = weight assigned to the station A 

Wb = weight assigned to the station B 

[5.4] 

The least squares regression for equation [5.4] can be written in matrix notation: 

c 

'Y ab 
1 

1 

W = 'Y 

1] [wa] ['Yae] 
1 Wb = Y be 

o Jl 1 

[5.5] 

The matrix C consists of the covariance value of rainfall between the two sample 

locations. The vector 'Y consists of the covariance values of rainfall between two 

sample locations and the location where we need the estimation. The vector W 

consists of the weight given to the each location and the Lagrange parameter Jl 

(Isaaks and Srivastava, 1989). To solve for the weights, mUltiply equation [5.5] on 

both sides by C -I. 

I weights add upto one 
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C w = "( 

(3-1 C W = (3-1 "( 

I w = (3-1 "( 

W = (3-1 "( [5.6] 

The estimated mean and the standard deviation of the station C can be calculated 

using following linear estimation: 

R, ~AC[R'.:nR; ] 

cr c =AC[ cr a.:ncr b ] 

where 
A 

Rc = estimated mean rainfall at station C 

Ra = observed mean rainfall at station A 

Rb = observed mean rainfall at station B 

A 

cr C = estimated standard deviation of rainfall at station C 

cr a = observed standard deviation of rainfall at station A 

cr b = observed standard deviation of rainfall at station B 

AB = distance between stations A and B, km 

AC = distance between stations A and C, km 

[5.7] 

[5.8] 

Having determined all those parameters, equation [5.4] can be used to estimate the 

rainfall in an ungauged location given the corresponding rainfall data from two 

neighbouring stations. 

5.3 Prerequisites of spatial interpolation models 

Rain storms vary greatly in space and time. The annual amount of rainfall that a 

particular location may receive depend mainly on controlling factors of geography 

such as latitude, distance from the coast, elevation, slope, shape of the terrain, 

orientation of the ground and exposure (Linacre, 1992). Thus, it is obvious that 

rainfall in a large area could be different from one location to another, with no 
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correlation among them, owing to the complexity of the geographical features of the 

area. This requires spatial interpolation of rainfall to be applied only when the 

geography of the area under consideration is homogeneous. That is, the area has no 

marked diversity in topography, so that range in altitude is small and hence variation 

in rainfall amounts is minimal. A further important prerequisite of spatial correlation 

models of rainfall is isotropy. This implies that there should be no directional 

influence for the covariance of rainfall between the two stations. There are some 

instances where anisotropy could be present. For example, when either of the two 

stations is more closer to the sea while the other is more towards the interior of the 

region, the rainfall at the coastal location tends be higher than that. of the interior 

location due to the effect of the sea causing specific increased or decreased rainfall in 

one direction. 

5.4 A spatial correlation model for the Dry zone of Sri Lanka 

In this study, two distinctive regions of the Dry zone were considered, the north­

central part and the southern part of the Dry zone (Figure 5.1). Both regions exhibit 

fairly similar physiography of gently-undulating to rolling, with 3 to 4 per cent slopes. 

However, some geographical features are not alike. The north-central part of the Dry 

zone, abbreviated NCDZ, where the other stochastic models of this study were 

focussed is a inland region. The southern part of the Dry zone, abbreviated SDZ, 

resembles an area that is more closer to the ocean. Therefore, the amount of water 

vapour in the atmosphere, what is available to become cloud with the chance of 

subsequently becoming rain, may not be comparable in the two regions. Thus, 

correlation structure of the rainfall process may be different at the two regions. This 

necessitates the evaluation of the spatial correlation model for the two regions 

separately to meet the assumptions made on the isotropicity and homogeneity. The 

selected rainfall recording stations from the NCDZ region are located at Maha­

llluppallama (MI), Pelwehera (PWR) and Maradankadawala (MDK). Out of these 

three stations MDK which lies in between other two stations was considered as the 

location where rainfall values to be estimated. The areal distance from MDK to MI 

and MDK to PWR is 17 km and 25 km respectively while areal distance between MI 
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and PWR is 38 km. From the SDZ region which represents a coastal area, 

Angunakolapellessa (ANK), Ambalantota (AMB) and Wirawila (WWL) locations 

were selected for the study. In this region, Ambalantota (AMB) which lies in between 

other two stations was considered as the location where the rainfall values to be 

estimated. The areal distance from AMB to ANK and AMB to WWL is 15 km and 

27 km respectively while the areal distance between ANK and WWL is 38 km. In the 

selection of the rainfall recording stations, care was given to select the locations with 

reliable data with maximum number of record lengths to be on par with the guidelines 

stipulated by the Hydrology and Water Resources Program, Department of Civil 

Engineering, Colorado State University (Tabios and Salas, 1985). The said guidelines 

prescribe the data records with more than 30 years to be used. But most of the time, 

the available length of the records from the selected locations were twenty years. 

Although there are some other locations in the Dry zone which have minimum of 30 

years of records, a large number of missing data and unreliability of the measurements 

forced not to select them for the study. 

5.5 Model validation 

The validity and applicability of the foregoing interpolation model was examined by 

comparing the model output with the observed data from the two locations. In 

addition, a further comparison of the model output was made with the other two 

interpolation techniques, local mean and inverse distance method. Use of local mean 

or the arithmetic mean in spatial interpolation is the most simplistic approach. It 

assumes that equal weight from all nearby sample locations, using the sample mean as 

the estimate. Inverse distance method is a technique which gives more weight to the 

closet samples and less to those that .are fathest away instead giving naively equal 

weight to all samples. Thus, weight for each sample is inversely proportional to its 

distance from the point being estimated: 

n 1 
I-Vi 

R = i=1 d i 

n 1 I-
i=1 di 

[5.9] 
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where 

" R = estimate of rainfall for ungauged location 

Vi = observed value at the ith location 

d = distance from each location to the point being estimated 

5.5.1 Comparison of estimated and observed rainfall at the two 

regions 

Figure 5.2 and 5.3 show the mean estimated and observed rainfall in each week for 

Maradankadawala (MDK) and Ambalantota (AMB) respectively. Typically, we want 

a set of estimates that comes as close as possible to the true values. Thus, we would 

prefer the results shown in Figure 5.2 and 5.3. There was no significant difference 

between the observed values and the estimated values at both locations. The 

standard deviations of the observed sequences of rainfall were comparable with the 

estimated sequences of rainfall from the exponential model (Table 5.1 and 5.2). 

However, the variability of the estimated values from the exponential model was less 

than that of the observed variability in general. This trend was more apparent at 

Ambalantota in the SDZ region. Reduced variability of estimated values is often 

referred to as "smoothing" and is a consequence of combining two or more sample 

values to form an estimate (lsaaks and Srivastava, 1989). As more sample values are 

incorporated in a weighted linear combination, the resulting estimates generally 

become less variable. Overall, the results show that means of the both stations are 

well preserved. However, the discrepancy between the observed and the estimated 

values at MDK is less than the same at AMB. The correlation of rainfall between any 

two locations is highest for places, which are close to each other, in flat country away 

from the coast (Linacre, 1992). The areal distance between the two sample locations 

at both regions are almost equal. The topography of the two regions also comparable 

each other. Thus, closeness to the coast could be the main determining factor for the 

small discrepancy between observed and estimated values at AMB in the SDZ region. 
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Table 5.1 Standard deviations of the observed and the estimated rainfall 

from the exponential model during major rainy seasons at 

Maradankadawala (MDK) and Ambalantota (AMB) in the 

Dry zone of Sri Lanka. 

Standard week Maradankadawala Ambalantota 
No. 

Observed Estimated Observed Estimated 
Yalaseason 

12 16.0 14.5 14.6 12.6 
13 31.6 17.2 19.8 14.9 
14 31.3 33.8 14.6 21.0 
15 30.8 37.1 26.9 24.7 
16 57.8 54.8 22.0 29.5 
17 43.8 50.1 14.8 19.9 
18 48.4 43.6 18.3 14.7 
19 25.7 18.7 23.2 25.8 
20 29.7 33.0 27.1 21.0 
21 27.0 29.7 20.2 28.7 

Maha season 
40 42.8 51.6 17.1 16.2 
41 49.6 57.6 18.5 16.3 
42 49.4 44.4 26.5 26.2 
43 58.7 62.2 50.3 26.2 
44 62.8 51.4 39.1 28.9 
45 39.9 38.0 40.9 26.0 
46 60.8 59.5 62.6 49.0 
47 52.2 56.6 29.0 24.4 
48 50.9 47.3 37.1 26.0 
49 27.0 31.3 18.5 17.6 
50 34.0 30.6 30.2 24.6 
51 60.5 63.3 14.4 19.6 
52 33.4 30.9 16.6 10.9 
1 52.3 47.9 26.3 20.1 
2 51.6 45.8 19.5 15.1 
3 21.3 33.5 30.6 35.2 
4 10.5 11.6 4.3 8.1 
5 21.6 14.7 4.6 7.4 
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Table 5.2 Standard deviations of the observed and the estimated rainfall 

from the exponential model during major dry periods at 

Maradankadawala (MDK) and Ambalantota (AMB) in the 

Dry zone of Sri Lanka. 

Standard week Maradankadawala Ambalantota 
No. 

Observed Estimated Observed Estimated 
First dry period 

6 21.5 27.0 20.7 19.8 
7 27.4 31.5 19.1 33.1 
8 15.5 14.3 16.2 13.1 
9 41.6 45.0 21.2 14.0 
10 40.6 55.3 29.1 19.5 
11 13.4 10.1 13.3 17.0 

Second dry period 
22 30.9 14.6 26.9 24.6 
23 4.2 5.5 12.6 11.1 
24 6.4 5.1 16.2 11.6 
25 0.9 2.5 27.8 13.7 
26 1.8 4.2 10.6 9.0 
27 10.9 11.7 12.6 7.1 
28 28.6 29.0 15.2 10.0 
29 25.5 23.5 18.2 17.0 
30 21.6 10.1 10.5 8.1 
31 4.6 11.3 11.9 7.8 
32 28.2 18.8 26.4 16.2 
33 1.4 2.3 16.1 9.5 
34 15.4 13.6 11.9 5.4 
35 9.5 4.2 26.6 11.1 
36 5.7 7.9 8.5 6.3 
37 38.2 38.7 19.5 17.9 
38 35.3 23.5 21.2 16.0 
39 33.7 44.3 22.2 17.5 
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5.5.2 Comparison between different interpolation methods 

The results of the other two interpolation methods described in the Section 5.4 were 

compared with the outcome of exponential correlation model. As the first criteria for 

comparing the different methods, the means in each week were computed. Figure 5.4 

and 5.5 show the means of weekly interpolated rainfall values from the three methods 

for MDK and AMB locations respectively. It may be seen that practically all of the 

interpolation techniques reproduce the means well. None of these means were 

significantly different from each other and also from the observed mean values. The 

estimated mean values from all three models at MDK are almost identical (Figure 

5.4). At AMB, though it is not significant, a small discrepancy between estimated 

values from the three models is noticeable during the two dry periods and during the 

first rainy season, Yala (Figure 5.5). 

Another way of checking the appropriateness of the model is to calculate the 

correlation coefficient between the observed and the estimated values. It is a good 

index for summarising how close the points on a scatter plot come to falling on a 

straight line, and therefore can make use to compare different estimation models. A 

value 0.70 was considered as the threshold level of the correlation coefficient. 

Chatfield and Collins (1992) suggested the same value of the correlation coefficient to 

be considered as a reasonably "large" correlation. 

During the two rainy seasons, Yala and Maha, all the three models were performed in 

a similar manner at MDK where the exponential model resulted 10 weeks with a 

correlation coefficient value less than the threshold value. The inverse distance and 

local mean models also had 11 and 10 weeks respectively which were poorly 

correlated with the observed values (Table 5.3). The estimated values at AMB with 

each model during the rainy seasons were not well correlated with the observed data. 

There were 19 weeks with low correlations between the simulated and observed 

values with each model at this location (Table 5.3). 
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Table 5.3 Correlation coefficients between observed and estimated values 

from the three models during the major rainy seasons at 

Maradankadawala (MDK) and Ambalantota (AMB) in the· 

Dry zone of Sri Lanka. 

Standard Week Exponential Inverse distance Local mean 
No. model model model 

MDK AMB MDK AMB MDK AMB 
Yalaseason 

12 0.37 0.58 0.36 0.58 0.35 0.58 
13 0.74 0.42 0.74 0.21 0.73 0.09 
14 0.66 0.55 0.67 0.56 0.70 0.54 
15 0.64 0.11 0.65 0.10 0.65 0.12 
16 0.60 0.41 0.68 0.41 0.70 0.42 
17 0.81 0.31 0.80 0.36 0.77 0.33 
18 0.89 0.87 0.89 0.88 0.86 0.86 
19 0.63 0.11 0.63 0.12 0.63 0.06 
20 0.93 0.17 0.94 0.17 0.94 0.17 
21 0.91 0.58 0.91 0.60 0.94 0.58 

Maha season 
40 0.96 0.86 0.95 0.86 0.95 0.86 
41 0.87 0.64 0.93 0.68 0.93 0.60 
42 0.68 0.67 0.66 0.68 0.66 0.66 
43 0.70 0.53 0.71 0.56 0.71 0.60 
44 0.70 0.68 0.68 0.66 0.68 0.69 
45 0.62 0.28 0.59 0.28 0.56 0.27 
46 0.83 0.95 0.83 0.95 0.83 0.93 
47 0.93 0.66 0.93 0.66 0.95 0.69 
48 0.79 0.51 0.76 0.50 0.76 0.51 
49 0.68 0.75 0.57 0.74 0.57 0.71 
50 0.65 0.88 0.72 0.87 0.72 0.86 
51 0.90 0.91 0.89 0.90 0.89 0.92 
52 0.28 0.73 0.27 0.74 0.27 0.72 
1 0.93 0.81 0.95 0.79 0.95 0.76 
2 0.94 0.65 0.94 0.66 0.94 0.65 
3 0.94 0.87 0.93 0.87 0.93 0.88 
4 0.76 0.56 0.63 0.45 0.63 0.53 
5 0.72 0.49 0.84 0.52 0.84 0.39 
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During the two dry periods, perfonnance all the three models were similar at both 

locations. At MDK, there were 10 weeks on which correlation coefficient value was 

less than the threshold level with the exponential model. The inverse distance and 

local mean models resulted 10 and 8 weeks respectively with low correlations with 

the observed values. At AMB, a similar pattern was observed where the exponential 

model resulted eight weeks with the correlation coefficient value less than 0.70. 

There were six and five weeks with such low correlations with the inverse distance 

and local mean models respectively (Table 5.4). 

In general, individual estimations during the dry periods are reasonably accurate 

whereas during the rainy seasons their deviations from the observed values are 

substantial. This trend is common for all the three models tested. This assertion, 

however, does not undermine the usefulness of the models as they are well capable of 

estimating the mean rainfall situations in the Dry zone. 

The above analyses show that the perfonnance of all the three models are similar at 

both locations in the Dry zone. Thus, if one is interested only in mean weekly rainfall, 

as is often the case in climatological applications, then there is no particular advantage 

in computing complex exponential correlations; rather a simple local mean or inverse 

distance method will suffice. 

5.6 Summary 

In this chapter, an exponential spatial correlation model was developed to estimate the 

weekly rainfall amount in ungauged locations of the Dry zone. Results were validated 

against the historical observations. The estimated values from the exponential model 

were compared with the estimated values from other two methods, local mean and 

inverse distance methods. 

The exponential correlation model is a promising candidate for estimating the mean 

weekly rainfall parameters in the Dry zone. Its perfonnance was equally comparable 

at both tested geographical regions of the Dry zone with the criteria used herein. 
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Table 5.4 Correlation coefficients between observed and estimated values 

from the three models during the major dry periods at 

Maradankadawala (MDK) and Ambalantota (AMB) in the 

Dry zone of Sri Lanka. 

Standard Week Exponential Inverse Local mean 
No. model distance model model 

MDK AMB MDK AMB MDK AMB 
First dry period 

6 0.92 0.86 0.91 0.84 0.92 0.86 
7 0.59 0.96 0.53 0.95 0.60 0.96 
8 0.88 0.81 0.88 0.73 0.86 0.80 
9 0.82 0.38 0.82 0.38 0.82 0.38 
10 0.80 0.77 0.80 0.80 0.80 0.76 
11 0.63 0.75 0.67 0.74 0.70 0.71 

Second dry period 
22 0.56 0.81 0.66 0.84 0.75 0.84 
23 0.93 0.76 0.94 0.79 0.94 0.78 
24 0.89 0.84 0.90 0.85 0.86 0.82 
25 0.81 0.96 0.81 0.98 0.82 0.97 
26 0.58 0.87 0.58 0.81 0.58 0.82 
27 0.73 0.10 0.76 0.09 0.74 0.03 
28 0.73 0.88 0.74 0.92 0.75 0.91 
29 0.80 0.88 0.73 0.88 0.79 0.87 
30 0.63 0.63 0.49 0.63 0.44 0.63 
31 0.68 0.43 0.42 0.48 0.37 0.47 
32 0.84 ·0.64 0.91 0.75 0.88 0.72 
33 0.20 0.70 0.24 0.75 0.19 0.72 
34 0.63 0.41 0.64 0.42 0.60 0.29 
35 0.14 0.93 0.23 0.93 0.21 0.94 
36 0.75 0.79 0.79 0.75 0.79 0.77 
37 0.71 0.55 0.72 0.56 0.67 0.55 
38 0.38 0.88 0.41 0.88 0.45 0.88 
39 0.85 0.68 0.85 0.78 0.85 0.74 
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The less sophisticated local mean and inverse distance methods rate quite well along 

with the exponential model. Thus, there is no particular basis to claim that the 

exponential model is significantly better than the other two methods tested, although 

in a given situation it might be preferable to other methods. 
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Chapter 6 

Potential of the rainy seasons 

6.1 Introduction 

Many agronomic experiments conducted in the Dry zone for decades have taken 

only a little account of the variation in climatic potential in the region. This has led 

to a slow progress in exploiting the agricultural potential of the Dry zone. Even 

under highly erratic rainfall regimes, years with more favourable rainfall 

distribution could occur and it is necessary to strive for product-maximising 

strategies in such years. Hence, early identification of the "potential" of a season is 

very important in designing appropriate strategies for increased food production in 

the Dry zone. Recent studies of rainfall from 18 countries in Asia, Africa and 

North America suggest that prediction of the rainy season potential could be 

possible using correlation between onset and seasonal characteristics such as total 

seasonal rainfall and the time of the withdrawal of rains (Stewart, 1988). 

Nevertheless, the association between start of the rains and seasonal characteristics 

has not been specifically studied for the Dry zone's environment mainly because of 

the restricted availability of long series of historical data and high computational 

requirements of this type of studies. Both these problems may no longer exist with 

the availability of the stochastic rainfall model developed in this study. If any 

association between start of the season and seasonal characteristics is to be found, 

it could be used to predict the behaviour of upcoming seasons in advance. Such 

information has profound practical implications. For example, it enables to 

minimise the effects of drought by making the most efficient use of the scarce 
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rainfall in a poor (dry) season, but maximise the production in good seasons by 

exploiting the rainfall. 

6.2 Time of onset, ending of rains and length of the rainy 

season 

The three key parameters which characterise the rainfall season for crop 

production have been identified as time of the onset and the ending of rains, and 

the length of the rainy season for each year (Sivakumar, 1990). Various 

definitions of the onset of the rains exist in the literature depending upon the time 

scale of the data used and the geographical location of the study (Sivakumar, 

1988; Stem et aI., 1982; Benoit, 1977; Virmani, 1975 and Raman, 1974). To 

decide a criterion for the onset of the season which is favourable for 

commencement of cultivation operations, two basic requirements have to be 

satisfied (Mavi, 1986). First, that a sustained rain spell, which more or less 

represents the transition from dry season to wet season should be identified. 

Secondly, in the spell so chosen, the rain that falls should percolate into the soil 

up to a reasonable depth and also build a moisture profile therein after loss through 

evaporation. Keeping in view of the above requirements in association with the 

physical properties such as water holding capacity, expected evaporative 

conditions in the atmosphere and normal depth of seed placement of the major soil 

group of the Dry zone, RBB soils, the following criterion was chosen to define the 

onset of the seasons in terms of rainfall; a spell of at least 20 mm of rain per week 

in three consecutive weeks after pre-specified weeks for the minor rainy season 

(Yala) and the major rainy season (Maha). If three weeks criteria was not satisfied 

the condition was relaxed upto two consecutive weeks with rainfall equal or 

greater than 20 mm. This relaxation was particularly important for the Yala 

season where the continuity of the rains is always uncertain. In the literature, 

criterion for the onset does not consider continuity upto two or three weeks. For 

example Raman (1974) defined the growing season in Maharasta, India as the first 

appearance of a week with cumulative rainfall of 25 mm without considering the 

post-conditions. But under Dry zone's conditions where the rainfall is patchy and 
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intermittent in nature, an evaluation of the continuity upto two to three weeks is 

necessary to avoid false start of the seasons. Similarly, the first occurrence of long 

dry spell, three consecutive weeks after a pre-specified week with less than 20 nun 

of rainfall, was used as the criterion for the end of a season. Length of the season 

was taken as the number of weeks between the end of the season and the onset of 

the season. Using these criteria, onset and withdrawal of the rainy season and the 

amount of the rainfall within each season were determined from the model with 

1000 simulation runs. Such a large number of simulation runs were made to 

ensure the inclusion of all possible extreme values of the rainfall process. 

6.3 Relationship between the onset of rains and the length of the 

seasons 

6.3.1 Yala season 

The average time of onset of rains for the minor rainy season (Yala) with 1000 

simulation runs was in late March, standard week 13, while end of the season was 

in late April (between standard weeks 18 and 19). The average length of the 

season was around 5 weeks. (Table 6.1). The coefficient of variation of the start 

and end of the seasons are 0.30 and 0.27 respectively. Thus, the variability of the 

start and end of the Yala season are almost similar. With the data of 1000 

simulation runs, a significant positive correlation was evident (equation [6.1]) 

between the onset and the withdrawal of the Yala season rains (r2 = 0.64). 

E = 4.70 + 1.05 S 

where, 

E = standard week number of the end of the season 

S = standard week number of the start of the season 

[6.1] 

This relationship confirms the underlying trend that would account average of five 

weeks period for the end of the season from the start of the season. The 

correlation between the start of the season and the length of the season was very 

poor (r2 = 0.003; Figure 6.1). This indicates that irrespective of the start of the 
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Table 6.1 Descriptive statistics of the Yala season rainfall in the Dry zone, 

Maha-Illuppallama, Sri Lanka after 1000 simulation runs. 

Mean SD CV Minimum Maximum 

Onset 13.0 3.8 0.30 0.0 22.0 

(week No.) 

End 18.2 5.1 0.27 0.0 25.0 

(week. No.) 

Length of the season 5.3 3.1 0.58 0.0 19.0 

(weeks) 

Amount of rainfall 265.3 165.4 0.62 0.0 1022.9 

(mm) 

SD = standard deviation CV = coefficient of variation 
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season, the Yala rains pause around five to six weeks from the onset. The 

relationship between the seasonal rainfall during the Yala season and the onset of 

the rains was also very weak (r2 = 0.02; Figure 6.2), implying that the onset time 

can not be used for predicting the seasonal rainfall. The probabilities of different 

weeks to be the onset week was calculated using simulated data (Table 6.2). It 

shows that even the average start of the Yala season, the standard week 13, has 

only 18 % probability to be the onset week. The following week also has a similar 

chance to be the onset week. There is also 4% probability of not having a Yala 

season at all and 20% probability to season become extremely late, after the 

standard week 16 (Table 6.2). There is a cumulative probability of 18% to season 

become effective as early as in standard weeks 11 and 12. The above analysis 

suggests that agricultural planning in the Dry zone during the Yala season can not 

be formulated from the alternatives based on the agro-meteorological relationship 

between the onset time of the Yala rains and the post -onset seasonal 

characteristics. 

6.3.2 Maha season 

The computed average onset of rains in the Maha season was around mid October, 

the standard week number 42, and these rains remain effective until late January of 

the following year, the standard weeks 4 and 5 (Table 6.3). The coefficient of 

variation of the onset of the Maha rains (CV = 0.06) was relatively lower than that 

of the onset the Yala rains (CV = 0.30). The relationship was opposite for the end 

of rains where the withdrawal of the Maha rains (CV == 0.53) was more variable 

than the Yala rains (CV = 0.27). The highest probability of the occurrence of 

onset was on the standard week 40· while the cumulative probability of the weeks 

40 and 41 accounted 44 per cent (Table 6.4). Thus, unlike the Yala season, it is 

certain that Maha season should start within the first couple of weeks of October. 

This can be further confirmed by comparing the coefficient of variation values of 

the onset during two seasons. The coefficient of variation of the Yala onset is 0.30 

whereas the corresponding figure for the Maha season is only 0.06 (Tables 6.1 and 

6.3). Average length of the season was around 14 weeks exhibiting a fairly longer 
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Table 6.2 Probability of a week being the onset of the Yala season 

in the Dry zone, Maha-I1luppallama, Sri Lanka. 

Onset week Probability 

Absence of a season 0.042 

On or before the week number 8 0.071 

Week number 9 0.016 

Week number 10 0.010 

Week number 11 0.084 

Week number 12 0.098 

Week number 13 0.180 

Week number 14 0.192 

Week number 15 0.093 

Week number 16 0.066 

On or after the week number 17 0.148 
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Table 6.3 Descriptive statistics of the Maha season rainfall' in the Dry zone, 

Maha-Illuppallama, Sri Lanka after 1000 simulation runs. 

Mean SD CV Minimum Maximum 

Onset 42.0 2.9 0.06 3.0 50.0 

(week No.) 

End 4.2 2.2 0.53 1.0 20 

(week. No.) 

Length of the season 14.2 3.5 0.25 1.0 43.0 

(weeks) 

Amount of rainfall 800.0 278.8 0.35 24.4 1937.4 

(mm) 

SD = standard deviation CV = coefficient of variation 
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Table 6.4 Probability of a week being the onset of the Maha season 

in the Dry zone, Maha-IUuppallama, Sri Lanka. 

Onset week Probability 

Absence of a season 0.000 

On or before the week number 38 0.031 

Week number 39 0.031 

Week number 40 0.234 

Week number 41 0.204 

Week number 42 0.146 

Week number 43 0.123 

Week number 44 0.118 

Week number 45 0.024 

On or after the week number 47 0.089 
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season compared to the Yala season. The amount of Maha seasonal rainfall was 

less variable than the rainfall in the Yala season. These comparative statistics 

between the Yala and Maha seasons confIrm the general rule of KaIma et al. 

(1991); rainfall variability is the highest, and its reliability least, where the total 

rainfall is the lowest. 

Unlike in the Yala season, any signifIcant correlation between onset of the rains 

and its withdrawal was not evident in the Maha season (r2 = 0.001). However, the 

suggested regression equation consists a constant, the intercept, of 5.1 which was 

highly signifIcant (P < 0.000). This again confIrms that the end of the season 

should occur after the standard week 5, last week of January, and it is common for 

any year irrespective of the onset time of the Maha rains. The relationship 

between the onset and the length of the Maha season was interesting (equation 

6.2) and it was significant (r2 = DAD; P < 0.000). 

L = 46.7 - 0.776 S [6.2] 

where, 

L = length of the season in weeks 

S = starting standard week 

The above relationship suggests that later the onset the shorter the season's length 

because the end of the season is almost constant in any year. But, the correlation 

of determination (r2) of this relationship was only 0.40 which implies that the 

strength of the relationship is 0.63. ChatfIeld and Collins (1992) reported that any 

relationship having a correlation coefficient value greater than 0.70 is only 

worthwhile to consider for any predictive purposes because it can explain at least 

50% of the total variation. Hence, as the correlation is weak, the onset time of the 

Maha rains can not be used for pred.icting the duration of the Maha season without 

wide margins of error. 

The Figure 6.3 shows the relationship between the onset of the Maha season and 

the total rainfall during the season. There was no evidence to suggest that onset of 

season has an impact on the amount of rainfall received during the Maha season. 

The correlation coefficient between the two parameters was only 0.44 which is not 
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strong enough to draw any meaningful conclusions. This implies that even a late 

season could produce as same rainfall as early seasons. A similar conclusion was 

made by Stewart (1988) for the Dry zone of Sri Lanka. But he did not put 

forward a meaningful explanation for this unusual behaviour of the Dry zone's 

rainfall compared to the other tropical countries in the world. Thus, one can 

hypothesise that: 

- late seasons always bring heavy down pours causing seasonal average to 

push towards the long term seasonal average; 

- early seasons may have fluctuations in rainfall which causes seasonal 

average to fluctuate around the long term seasonal average; and, 

- late seasons bring moderate amount of rainfall consistently through out 

the season making the average closer to the long term seasonal average. 

To test whether any of the above scenarios is causing the fairly equal rainfall 

amounts in every year irrespective of the start of the Maha season, the model was 

run for 1000 times while tracking the occurrences of different arbitrary very high 

and very low values of rainfall with every run of the model. The correlations were 

determined between the onset of rains and the occurrences of such very high and 

low rainfall events. These correlations are given in the Table 6.5 and none of them 

were significant at the 5% probability level indicating that occurrence of very low 

values or very high values may not be the cause to end up with a fairly equal 

amount of rains in every year irrespective of the onset time of the Maha season. 

Figure 6.4 depicts the changes of the average seasonal weekly rainfall for the 

seasons with different weeks of onset for the Maha season. If the season is early, 

either week 37 or 38, the associated average seasonal weekly rainfall seems to be 

lower than that of average seasonal. weekly rainfall when the onset is on its most 

probable periods (standard weeks 40 and 41). The variation between average 

values when the onset is after the standard week 39 is not highly distinct. This 

suggests that early start of the rains may bring some extreme rainfall events, 

possibly some low rainfall weeks during the season, that causes the average weekly 

seasonal rainfall to approach a lower value and then ending up with a same long 

term seasonal average. But, it should be cautioned that this explanation is neither 
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Table 6.5 Correlation coefficients of onset of the rains and the occurrence 

of extreme rainfall events in the Maha rainy season of the Dry 

zone, Maha-llluppaUama, Sri Lanka. 

Extreme value (mm) 

High - 40 > 

- 50 > 

- 80 > 

Low - 5 < 

- 10 < 

- 15 < 

Correlation coefficient (r) 

-0.29 

-0.26 

-0.20 

-0.16 

-0.19 

-0.23 
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complete nor definitive, but is simply intended to describe the extraordinary 

behaviour of rainfall in the Dry zone. 

6.4 Influence of the global meteorological phenomenon on the 

seasonal rainfall in the Dry zone 

The need for prior information about the seasonal rainfall is remained important 

since a sustainable development of the Dry zone requires a risk management 

strategy, adjusting agricultural practices with anticipated seasonal characteristics. 

Despite the use of long time series of data by means of a stochastic simulation 

model, the possibility of foreseeing the upcoming seasons in the Dry zone using 

the onset time of the seasonal rains was not clearly evident in this study. 

Therefore, the most obvious next alternative is to look for possible deterministic 

predictability of the seasonal characteristics of the Dry zone. 

Climate prediction for agriculture began in the Indian sub-continent in early 1990s 

by developing rainfall prediction equations using selected variables. Subsequently, 

with the addition of more data, it was found that these relationships are less 

promising than originally thought (Das, 1986). In recent years, there has been 

increasing recognition that some components of the atmospheric and oceanic 

circulations vary only slowly and have teleconnections with rainfall and other 

climatic parameters. The best known of these are the southern oscillation and the 

EI Nino episodes. 

The Southern Oscillation phenomenon is the see-saw pressure pattern between the 

Indian-western Pacific (Indonesian low) and central-east Pacific oceans (south 

Pacific sub-tropical high). On average, pressure is low, relative to the zonal mean, 

over the Indian-western Pacific oceans and tends to be high over the central east 

Pacific ocean (Behrend, 1987). A simple index, the Southern Oscillation Index 

(SOl), is often used to study these pressure variations. This index is the difference 

between normalized monthly mean atmospheric pressures at Darwin (12°S, 

131°E), normally low, and Tahiti (180S, 150CW), normally high. Extreme 
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anomalies in this pattern involve dislocations of the rainfall distribution in the 

tropics, bringing drought to some regions and torrential rains to others (Nicholls, 

1991). 

EI Nino events occur during periods when sea surface temperatures (SSTs) are 

wanner and the trade winds are weaker than the nonnal in the central and eastern 

Pacific, and SSTs are cooler than nonnal in the eastern Indian ocean and western 

Pacific oceans (Philander, 1990). The opposite extreme, when the east Pacific is 

cool and pressure there are higher than the nonnal, is called anti-ENSO events or 

La Nina episodes. The two phenomena, the southern oscillation and the El Nino, 

are often referred to jointly as the ENSO phenomenon. The SOl is negative 

during the ENSO events and positive during the anti-ENSO events. 

The relationship between EI Nino events and/or SOl and rainfall in Sri Lanka has 

been subjected to a limited number of studies during the recent past (Suppiah, 

1997; Philander, 1990; Suppiah, 1989 and Ramusson and Carpenter, 1983). Most 

of these studies have concentrated only the meteorological aspects such as upper 

level wind velocities and movement of the Inter Tropical Convergence Zone 

(ITCZ), or have focussed the rainfall considering Sri Lanka as a single geographic 

unit. The influence of the SOl and EI Nino events on the agriculturally important 

aspects of the rainfall in the Dry zone has not been adequately addressed. 

Therefore, the main purpose this part of the study was to ascertain the possibility 

of foreseeing the Yala and Maha rains, the onset and the seasonal rainfall, with 

respect to their teleconnections with the SOl, the El Nino and the La Nina events 

of the global circulation. 

The rainfall data at Maha-llluppallama, the same data used for other part of this 

thesis, were used to represent the Dry zone. The status of each year, either EI 

Nino or La Nina, during the period from 1945 to 1995 was identified using 

published infonnation and was verified against the SOl data taken from the Bureau 

of Meteorology, Australia (1997). A year has been considered from March of the 
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current year to February of the subsequent year. This period includes the peak 

months of the El Niiio and La Niiia events during October to December. 

Although some of the relationships between the SOl and climatic fluctuations are 

not linear, it has been reported that the linearity assumption seems to work well for 

many areas in the world (Ropelewski and Halpert, 1989). Assuming such a linear 

relationship, the association between the SOl and the normalized monthly rainfall 

of both Yala and Maha seasons were determined by simultaneous correlation and 

lag-correlation analysis. The long term mean and the standard deviation used for 

normalization of the monthly rainfall was calculated only using rainfall in neutral 

years, excluding the years with extreme phases of the SOl. 

6.4.1 Relationship between the Yala season rainfall and the SOl 

Table 6.6 shows the correlations and lag-correlations between the rainfall of each 

month in the Yala season and the SOl. The strongest correlation observed was a 

positive correlation of 0.24 between the rainfall in March with the SOl of 

December. The correlations of April rainfall with the SOl of December were also 

showed an almost similar strength. All the other correlations were very weak. 

Above correlations reveal that only the SOl of December carries a reasonable 

"memory" of the monthly rainfall of the following Yala season. But, the observed 

correlations between monthly rainfall of the Yala season and SOl of December 

were small in magnitude. Therefore, they are of little use in predicting the Yala 

season rainfall. This is in agreement with the observation made by Suppiah (1989). 

He reported that the relationship between the first-intermonsoon rains, Yala rains, 

and the SOl was not clear when Sri Lanka is considered as a single unit. 
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Table 6.6 Correlation coefficients between monthly normalized rainfall of 

the Yala season and the SOl, Maha-IIIuppallama, Sri Lanka. 

March rainfall April rainfall May rainfall 

SOl 

October 0.06 

November 0.09 0.10 

December 0.24 0.22 0.12 

January 0.05 0.04 0.09 

February 0.16 0.16 0.17 

March -0.07 0.01 0.02 

April 0.04 0.05 

May -0.08 
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6.4.2 Relationship between the Yala season rainfall and the 

EI Nino and La Nina episodes 

Even in areas where the correlation between the Sal and the rainfall is quite small, 

if the Sal is substantially different from the average, extreme phases of the Sal, 

the rainfall also can be expected to depart from the average. Under these 

circumstances, use of extreme phases of the Sal, EI Nino and La Nina events, as a 

predictor and frequency of rainfall in three climatologically-equiprobable 

categories namely, below normal, normal, and above normal, as predictands can 

provide easily understandable and potentially useful results (Nicholls, 1991). 

On the basis of EI Nino and La Nina years given in Table 6.7, monthly normalized 

rainfall anomalies of the Yala season in the Dry zone were determined for EI Nino 

and La Nina events and are shown in Figure 6.5. The effect of EI Nino episodes 

on the monthly rainfall of the current Yala season was not clear and may appear as 

random having both positive and negative anomalies. This trend was evident in 

each month of the Yala season (March, April and May). The weak association 

between the Yala season rainfall and the EI Nino events was further evident when 

the mean rainfall of the entire Yala season in neutral years was compared with the 

corresponding means of the EI Nino Years. The average mean of the Yala season 

rainfall in neutral years was 289 mm whereas in EI Nino years it was 302 mrn. The 

difference between these two means was not significant at the 5 % probability level. 

The lack of any link between the occurrence of EI Nino events and the seasonal 

rainfall of the Yala season in the Dry zone could be attributed to the fact that EI 

Nino events are at their early stages of the development in the east and central 

Pacific oceans when the Yala season is effective in Sri Lanka. The magnitude of 

the increased sea surface temperature over the Pacific ocean with a newly 

developed EI Nino event is rather small. Such a small increase of sea surface 

temperature would not be strong enough to influence global weather patterns. 

Nevertheless, the influence of occurrence of EI Nino episodes on the following 

year reveals a coherent pattern. The anomalies of a Yala season which has been 
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Table 6.7 EI Nino and La Nina years used in the comparisons. 

EI Nino years 

1946 19511953 1957 1963 

19651969197219761982 

1986 1991 1992 1994 

La Nina years 

1949 1955 1964 1970 

1973 1975 1988 
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preceded by an EI Nifio event in the previous year have often been negative. The 

14 EI Nifio events during the study period caused below nonnal monthly rainfall in 

11 years in March, 12 years in both April and May at Maha-llluppallama (Table 

6.8). Thus, it is highly likely that decaying stages of EI Nifio events cause 

abnonnal dry spells during the Yala season of the Dry zone. This indicate a clear 

forecasting possibility of five to six months in advance so that, farmers and policy 

makers can be geared themselves for any short tenn impact of the drought. But, 

when the whole Yala season is considered there was no difference between the 

neutral Yala seasons and the Yala seasons preceded by an EI Nifio event. The 

mean rainfall in the Yala season preceded by an EI Nifio event in the previous year 

was 307 mm and it was not significantly different from 289 mm of mean rainfall of 

the Yala seasons in neutral years. 

The influence of La Nifia years on the monthly rainfall of the current Yala season 

was not clear having both below and above nonnal rainfall in every month (Figure 

6.5). The average Yala season rainfall of the La Nina years was 320 mm and this 

was not significantly different from 289 mm, the mean of neutral years. But, there 

was a distinct link between La Nina years and the monthly rainfall of the next Yala 

season. Out of seven La Nina events occurred during the study period, six events 

caused below nonnal monthly rainfall during the Yala season of the following year 

(Table 6.8). However, since the number of La Nina events during the study period 

were small, seven events compared to 14 EI Nino events, insufficient data were 

available to obtain an unbiased estimate. Therefore, strong conclusions cannot be 

drawn until further data become available. 

Table 6.9 shows the relative time of the onset of the Yala season during EI Nino 

and La Nina years. During the period of 1945 to 1995, no dependency was found 

between the time of onset of the Yala season and the appearance of EI Nino 

episodes in the Pacific ocean. Out of 14 EI Nino years, 10 years caused the onset 

of the Yala season to occurred in its most probable time (standard weeks 12 

through 14). Three EI Nino years resulted late onsets, after the standard week 15. 

There was an EI Nino year in 1963 which resulted an early onset of the Yala 
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Table 6.S Number of years with below normal monthly rainfall in EI Nifio 

and La Nina years during the Yala season at Maha-Illuppallama, 

Sri Lanka. 

EI Nino years • La Nina years * • 

Current Yala Next Yala Current Yala Next Yala 

March 7 11 4 6 

April 9 12 5 6 

May 9 12 5 6 

* No. ofEl Nino years = 14 ** No. of La Nina years = 7 
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Table 6.9 Change of onset time of the Yala season of the Dry zone 

during El Nino and La Nina years. 

EI Nino 

years 

La Nifia 

years 

Early onset 

1963 

1964 

Late onset 

1951, 1972, 

1993 

Normal onset 

1946, 1953, 1957, 

1965, 1969, 1976, 

1982, 1986, 1991, 

1994 

1949, 1955, 1970, 

1973, 1975, 1988 
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season, before the standard week 11. The recent intense EI Nino events occurred 

in 1982, 1986 and 1994 caused nonnal onsets of the Yala season indicating that 

influence of the developments of EI Nino conditions in the Pacific ocean is least on 

the start of the Yala season. There was no evidence of link between EI Nino 

conditions and the onset of the Yala season in the following year. Out of 14 EI 

Nino events, seven events caused nonnal onsets in the Yala season of the 

following year. There were three Yala seasons with early onsets and four Yala 

seasons with late onsets. Any change of the time of onset of the Yala rains with 

the La Nina events was also not evident. Out of seven La Nina years occurred in 

the study period, a nonna! start of the Yala season has been reported in six years. 

There was an early start in the season in 1964 La Nina event. The most recent 

strong La Nina event that occurred in 1988 also resulted a usual onset of the Yala 

rains. The influence of the La Nina episodes on the onset of the Yala season in the 

next year was also not evident. 

In conclusion, the influence of the EI Nino and La Nina episodes on the rainfall of 

current Yala season is varied having both negative and positive anomalies. Their 

influence on the start of the Yala season was also not detectable. Irrespective of 

the EI Nino, the La Nina or neutral years, the start of the season is more likely to 

occur in its most probable time. The influence of the decaying stages of EI Nino 

episodes on the Yala season of the following year is substantial which shows a 

below nonnal seasonal rainfall more often, but not exclusively. 

6.4.3 Relationship between the Maha season rainfall and the SOl 

The correlation coefficients between the SOl and the nonnalized monthly rainfall 

of the Maha season is given in the Table 6.10. Among the four months in the 

period concerned, October and November months are under the influence of the 

second intennonsoonal convectional rains, the wettest months in Sri Lanka. 

December and January experience the northeast monsoon rains. The Table 6.10 

reveals that neither the intennonsoonal convectional rains nor the northeast 

monsoon rains are well correlated with the SOl of previous months, upto -7 lags. 
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Table 6.10 Correlation coefficients between monthly normalized rainfall of 

the Maha season and the SOl, Maha-Illuppallama, Sri Lanka. 

Rainfall 

SOl October November December January 

March 0.14 

April 0.05 0.05 

May -0.17 -0.12 -0.07 

June -0.05 -0.07 -0.16 0.09 

July 0.08 0.06 -0.01 0.07 

August 0.12 0.14 0.09 0.03 

September 0.04 0.07 0.08 0.02 

October 0.01 0.02 -0.06 0.16 

November 0.16 0.11 0.18 

December 0.11 0.28 

January 0.09 

February 
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The strongest observed correlation for October rainfall was -0.17 with the SOl of 

May. The highest correlations for November rainfall was reported with its 

concurrent SOl values indicating a limited possibility of foreseeing the rainfall. 

The observed highest correlation for December was -0.16 with the SOl of June. 

The rainfall of January and the SOl of December was linked with a correlation of 

0.28, the highest reported correlation in the Maha season. Thus, though the 

rainfall in October, December and January months of the Maha season showed a 

teleconnection with the SOl values of previous months, the strength of those 

associations was rather low. Therefore, use of the SOl in predicting the Maha 

season rainfall in any month is not possible in the absence of strong correlations 

and reasonable time lags. These results contradict the findings of Suppiah (1989). 

He reported that a negative correlation of -0.50 for the entire intermonsoonal 

convectional rainy periods in the Dry zone, October to November, with the 

average SOl of August through October. The possible cause for this discrepancy 

could be attributed to the fact that the use of mean rainfall of the entire island for 

normalisation process in his study. Although the second intermonsoonal rains are 

the wettest months for the entire island, a considerable spatial variation exists 

across the island owing to the minor changes in atmospheric circulation at meso­

scales (20-200 km). Such changes can occur due to the local variability of soil 

moisture, vegetation and albedo across the land. However, his findings were in 

agreement with the observations between the northeast monsoon rainfall of the 

Dry zone and the SOl where the association was found weak (Table 6.10). 

6.4.4 Relationship between the Maha season rainfall and the 

EI Nino and La Nina episodes 

Figures 6.6 and 6.7 depict the anomalies of monthly rainfall of intermonsoonal 

convectional and northeast monsoonal rains respectively within the Maha season 

during EI Nino and La Nina years. The association between EI Nino events and 

the intermonsoonal convectional rains of October was not strong. Out of total 14 

of EI Nino years, there were seven years with above nonnal rainfall during October 

resulting similar number of below normal rainfall. However, in November there 
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was 10 years with above nonnal rainfall. This trend was true for the first month of 

the northeast monsoon rains, December, where 12 years of above nonnal rainfall 

were reported during the EI Nino years (Figure 6.6). In January there was only six 

years with above nonnal rainfall with EI Nino years. Thus, it is clear that the 

influence of EI Nino events is higher in November and December where the EI Nino 

events are in their peak.. Nevertheless, despite 160 mm of difference, the mean 

rainfall of the whole Maha season was not significantly different between neutral and 

EI Nino years. This could be attributed to the fairly high standard deviation 

associated with the Maha season rainfall in EI Nino years. The standard deviation of 

the Maha season rainfall with EI Nino years was 416 mm with a mean of 966 mm 

whereas in neutral years it was 216 mm with a mean of 806 mm. 

In the case of La Nina events, October, November and December months were 

associated with above nonnal rainfall (Figures 6.6 and 6.7). October and November 

months were linked to five and six years of above nonnal rainfall respectively out of 

seven La Nina years during the study periods. The rainfall in December was always 

above the nonnal during La Nina years. However, the association was weak in 

January where only three years was above the normal rainfall while four years with 

below normal rainfall. It is worthwhile to note that the most recent intense La Nina 

event occurred in 1988 have resulted an above nonnal rainfall during October, 

November and December months where as the rainfall in January was below the 

normal. The trend was similar even for the immediate previous La Nina event 

occurred in 1975. However, as mentioned in the section 6.5.3, the remarks with La 

Nina years are inconclusive since the number of La Nina episodes available for 

comparison are small. 

The temporal pattern of the onset of the Maha season with respect to the EI Nino and 

La Nina years on is given in the Table 6.11. As in the case of the Yala season, any 

link between the EI Nino events and the onset of the Maha rains was not evident 

during the period of 1945 to 1995. Out of 14 EI Nino years, 10 years caused the 

onset of the Maha season to occurred in its most probable time, standard weeks 39 

through 41. Two EI Nino years resulted late onsets, after the standard week 42 and 

similar number of years resulted early onsets of the Maha season. The recent three 
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Table 6.11 Change of onset time of the Maha season of the Dry zone 

during EI Nino and La Nina years. 

Early onset Late onset Normal onset 

El Nino 1951, 1994 1957, 1991 

years 

La Nina 1955, 1970, 1949 

years 1973 

1946, 1953, 1963, 

1965, 1969, 1972, 

1976, 1982, 1986, 

1992 

1964, 1975, 1988 
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El Nino events occurred in 1991, 1992 and 1994 caused the onset be occurred at 

three different times indicating that the influence of the El Nino episodes is least on 

the start of the Maha season (Table 6.11). Departures of the onset time from its most 

probable time did not show a clear association to the appearance La Nina events. Out 

of seven La Nina years occurred in the study period, a normal start of the Maha 

season has been reported in three years while there was similar number of years with 

early onset of the season. There was a late start in the season in 1949 La Nina event. 

It is likely that neither El Nino events nor the La Nina events show a clear link to the 

start of the Maha season. 

In conclusion, the association of monthly rainfall of the Maha season with the SOl 

was not enduring though some trends were apparent. These trends are not all 

exactly the same, and the statistical significance of any relationship tends to be low. 

The Maha season rainfall was positively linked to the El Nino and La Nina events 

especially during the last two months of the year, November and December. 

Nevertheless, the influence of these two events on the start of the rains of the Maha 

season was not clear. 

6.S Summary 

In this chapter, the relationship between onset of the both Yala and Maha seasons and 

their seasonal characteristics were examined using 1000 years of simulated data. In 

general, onset time of the rains as a predictor for amount of rainfall or the duration of 

the season in both Yala or Maha seasons was not clearly evident in this simulation 

study despite its well known practical importance. At the absence of any predicability 

of the both seasons in relation to their respective time of onsets, the observed data 

were compared with the SOl data and its two extreme phases, El Nino and La Nina 

events. The EI Nino events seem to be foreseeing the Maha season rainfall and the 

Yala season of the following year. Although some trends were evident with the La 

Nina episodes, they should remain inconclusive as the number of La Nina events 

occurred during the study period were small. The observed trends in this study could 

use to develop precautionary awareness among the farmers and other relevant 

authorities. 
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Chapter 7 

Growing seasons characteristics with 

different agro-climatic indices 

7.1 Introduction 

In the Chapter 6, the detennination of onset and end of the growing seasons in the 

Dry zone was solely defined on the basis of weekly amount of rainfall. It is 

recognised that the amount of rainfall cannot by itself provide a good index of the 

productivity of the season, because the potential evapotranspiration or water loss, and 

the soil's water holding capacity dictate the fraction of rainfall which is available for 

crop growth. The mean amount of rainfall can provide a general understanding of the 

season for generalised applications. But, more often the problems of persistency and 

the adequacy of rainfall to meet the crop needs are not adequately accounted. 

Therefore, it is important to characterise growing seasons of the Dry zone 

considering crop water demand and probability concepts to relate climatic data more 

closely to agricultural problems such as crop growth, land use planning and zonation 

of homo-climates. 

7.2 Characterisation of growing seasons 

To characterise the growing seasons of the Dry zone, a system model was developed 

with respect to the major soil group of the region, RBE soils, by integrating the 

rainfall (Chapter 3) and soil water balance (Chapter 4) sub-models. The system 

model was designed in such a way that the growing seasons could be defined using 
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five different ago-climatic indices; two conventional approaches, mean rainfall method 

and probability method, moisture availability index method, MAl, (Hargreaves, 

1975), ratio of actual to potential evapotranspiration, AETIPET, (Chang, 1968) and 

soil moisture satisfaction index method, SMRI, after desired number of simulation 

runs. 

7.2.1 Mean rainfall method 

The unsuitability of mean rainfall as a measure of crop production potential of a 

region has already been mentioned in a preceding section. However, much of the 

early studies on rainfall climatology of the Dry zone have been based on the mean 

amount of rainfall. This could be attributed to the fact that large number of data 

arrays that must be manipulated with the use of advanced techniques yet with the 

primitive computing power that was available in those days. Although the recent 

climatological studies hardly use simple average of rainfall as a measure of 

agricultural potential of an area, in this study, it was taken to consideration as a 

reference to the previous studies. Considering the fact that Dry zone has an average 

PET of 3 mmlday, 20 mm of weekly rainfall was considered as the cut-off value in 

determination of seasonal characteristics in the Dry zone assuming that the 

evapotransipiration is maintained at the potential rate to avoid any soil moisture stress 

for the crops. 

7.2.2 Probability method 

The uncertainty of water availability caused by the large variability of rainfall in the 

Dry 'zone could be quantified upto some extent by determining the likelihood of 

receiving a given amount rainfall with any specified degree of reliability. The level of 

the reliability, in other words the probability, required is a function of the rainfall 

regime as well as the nature of the crop water requirements. In Sri Lanka, 75 per 

cent probability is considered sufficient for most agricultural purposes and is used as 

the basis for agricultural planning and management decisions. The rainfall at 75 per 

cent probability level is also referred as the dependable rainfall (Hargreaves, 1975) 
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and, it is the rainfall that may be expected to occur three out of four years. A 

dependable rainfall value of 10 mm or more per week has been considered as the 

threshold value in many studies to decide the growing season characteristics 

(Weerasinghe, 1989 and Department of Agriculture, 1979) and therefore, the same 

value was used to define the boundaries of growing seasons in this model. 

7.2.3 Moisture availability index (MAl) method 

Rainfall, solar radiation, temperature and humidity are the most important climatic 

elements which affect the crop growth. Under the prevailing Dry zone climatic 

conditions, temperature, solar radiation and humidity do not play any significant role 

in agricultural production except in some extreme cases. The most dominant stress 

which affect the crop growth in the Dry zone is intensity and duration of the soil 

moisture stress. 

Hargreaves (1975) proposed a classification of climate on the basis of degree of 

moisture adequacy or deficit for agricultural production. He defined the moisture 

availability index (MAl) as the ratio between amount of rainfall at 75 per cent 

probability level and potential evapotranspiration. According to Hargreaves, the MAl 

value of 0.33 could be considered as the lower cut-off point for rainfed crops. Sarker 

et aI., (1978) used the weekly MAl to estimate the agricultural potential in Rajastan, 

Maharashtra and Gujarat of India. They also used the same value of the index as the 

threshold value to define the boundaries of the growing seasons. Mavi (1986) 

reported that major limitation of this method, especially with short time intervals, is 

need for long series of historical data to account the real year to year variability. But 

with the availability of the stochastic rainfall sub-model, this problem no longer exists. 

In this model, the limits of the growing seasons were identified when the MAl value is 

greater than or equal to 0.33. 
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7.2.4 Ratio of actual to potential evapotranspiration (AETIPET) 

Irrespective of the fact that only an insignificant part of the water that passes into a 

crop is utilised for photosynthesis, moisture stress seriously retards the rate of 

photosynthesis in crops. When the actual evapotranspiration falls short of the 

potential, the actual yield will also be less than the maximum because photosynthesis 

become limited when water stress occurs due to closing of stomata and reduction in 

other activities in the plant (Hanks and Ramussen, 1982). The choice of the threshold 

soil water content at which crops suffer drought stress sufficiently to appreciably and 

irreversibly reduce the growth cannot be easily defined. It depends on both of the soil 

physical properties of the soils and the ability of the crop to extract the water 

(Jamieson, 1985). In fact crops appear to suffer, to some extent, any reduction in soil 

water below maximum water holding capacity, but may survive increasing stresses 

right down to the permanent Wilting point. Relationship between evapotranspiration 

and yield in the field may or m~y not be linear. This is partly because the fraction of 

evaporation that does not contribute to the plant growth varies throughout the crop 

life cycle (Chang, 1968). However, for practical purposes, a linear relationship 

between yield and actual evapotranspiration (AET) is often used to predict the yield. 

These relations have been widely used for managing water deficient areas as a guide 

to planting (Hanks and Ramussen, 1982). Chang (1968) reported the significance of 

ratio of actual evapotranspiration (AET) to potential evapotranspiration (PET) as an 

index of cropping potential in an area. He reported that the AET/PET ratio between 

0.75 to 1.00 represents conditions of relatively adequate soil water for crop growth 

and yields are at or near maximum assuming no restrictions due to other deficiencies. 

When this ratio drops from 0.75 to 0.40 the expected yield vary widely between 10 to 

75 per cent depending on the stage of the crop at which the stress occurs. Values less 

than 0.40 could be expected to be associated with low yields or some times complete 

crop failures under rainfed farming. In this model, an index value greater than or 

equal to 0.75 was considered as the threshold value to define the limits of the growing 

seasons. 
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7.2.5 Crop water Satisfaction Index (CWSI) 

All the above agro-climatic indices have been defined to measure and compare the 

agricultural potential of a season in quantitative terms. When critically examined, it is 

clear that these indices do not account some of the important characteristics of the 

rainfall of the Dry zone. The mean rainfall approach does not account the likelihood 

of rainfall. Although, the probability approaches including moisture availability index 

could overcome such problems, much of the details about extremes of rainfall are lost 

in the. calculation process. The extreme rainfall values play a major role in 

determining the limits of the distribution of the crop plants (Mavi, 1986) and such 

rainfall events are common in the Dry zone during the convectional and cyclonic 

rainfall regimes. The indices based on soil moisture status give more practical agro­

climatic indices. However, the lack of basic data on soil physical characteristics such 

as permanent wilting point and field capacity, and changing canopy characteristics as 

the season progresses, may hinder their use in large scale delineating studies. 

While there seems to be an inverse relationship between the total amount of seasonal 

rainfall and its variabilityl, the weekly 95% confidence interval band of the observed 

weekly amount of rainfall suggests that such a generalisation is less obvious with 

weekly intervals (Figure 7.1). The both Yala and Maha season have shown a wider 

band width compared to the inter-seasonal dry period, May to September, indicating 

a more variability associated with rainfall during the wet seasons. As an alternative 

measure of this variability, the mean rainfall can compare with the dependable rainfall. 

When a week consists several high rainfall values in its time series, wet extreme, the 

magnitude of the difference between the mean rainfall and the dependable rainfall 

becomes large. If those high values were replaced by small values, dry extreme, the 

difference become small. In either case the changing parameter is the mean and the 

dependable rainfall is less sensitive to the occurrence of extreme values. Taking this 

phenomenon into consideration, an index was defined using mean rainfall, dependable 

rainfall and the potential evapotranspiration. 

1 seasonal coefficient of variations are 0.60 and 0.48 for the Yala and Maha seasons respectively 
with 51 years of observed data. 
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Figure 7.1 The 95% confidence interval band width for 
observed weekly rainfall at Maha-lIIuppaliama 
in the Dry zone of Sri Lanka. 
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CWSI = RF - DRF 
PET 

where, 

CWSI = crop water satisfaction index 

RF = weekly mean rainfall in mm 

DRF = weekly dependable rainfall in mm 

PET = weekly potential evapotranspiration in mm 

[7.1] 

This index is capable of capturing the extreme rainfall events and the probable water 

supply in a definite proportion of years such as three out of four years through the 

inclusion of the dependable rainfall into the index calculation. Apart from that, the 

index also accounts the potential water demand of the crops through the PET. The 

rainy seasons which are conductive for crop production carries a reasonable 

variability of the rainfall amounts. This intermediate state of the index could be 

termed as "Hydro-neutral" where the soil moisture is neither limiting nor deficit for 

the crop growth. When the variability of weekly rainfall is high as a result of 

occurrence of several stormy rainfall events, the index approaches large values. This 

situation of the index could be termed as "Hyper-hydral" where the excess soil 

moisture may hamper the crop growth. The less variability of rainfall amount and the 

high evaporative demand which is the case in dry periods result small index values. 

This situation could be termed as the "Hypo-hydral" where the crops are under soil 

moisture stress. The classification of the index is as follows: 

o - 0.75 Hypo-hydral (too little moisture) 

0.75 - 2.50 Hydro-neutral (ideal moisture for most of the crops) 

above 2.50 Hyper-hydral (excess moisture) 

Before being used in the model, the CWSI was tested with an another location of the 

Dry zone, Angunakolapellessa, where both relevant meteorological data and 

published information on the onset of the growing seasons are available. The analysis 

showed that the boundary values set in CWSI are capable of identifying the onset of 

the two growing seasons that occurs during the standard weeks 17 and 42 in Yala and 

Maha seasons respectively (Joshua, 1985). However, the reported excess soil 

moisture conditions that occur during the five weeks period between standard week 
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43 and 48 at Angunakolapellessa was not properly signalled by the CWSI although 

values were in the upper range of the hydro-neutral conditions. 

7.3 Description of the system model 

The schematic diagram of the system model has shown in the Figure 7.2. It is 

essentially a simple water balance model that run on a weekly basis. User supplied 

values of location specific transitional probabilities, distribution parameters of rainfall 

and pan evaporation and soil properties were used as input to the system model. 

After the number of simulation runs specified by the user, the model calculates the 

number of climatic indices discussed in the previous section, soil moisture storage of 

the root zone and the probability of each week of the year being dry. To avoid any 

false starts of the growing season and to make sure its subsequent continuity, each 

index was evaluated for three consecutive weeks. If the three week criteria was not 

fulfIlled the pre-conditions were relaxed upto two consecutive weeks. The end of the 

growing season was set as the immediately following week where the continuity 

ceases. As the ripening stage of crop growth does not require much moisture, it is 

reasonable to set the end of the season as one week after the threshold value is 

reached. This will facilitate more room for long age crops or varieties in the 

cropping program. All these climatic indices were then used to define the onset, 

withdrawal and length of the growing seasons within a year. 

7.4 Implementation 

The system model was coded in SIMSCRIPT 11.5, a general programming language 

containing the capabilities for building discrete event, continuous or combined 

simulation models. It is English like that makes simulation programs easy to read and 

almost self-documenting. The source code is given in the Appendix 4. The 

accompanying diskette contains the executable program of the system model that runs 

on a Windows 3.1 operating system with a C compiler. The data fIles containing the 

transition probabilities and distribution parameters of each week of the year are also 

supplied. 
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Figure 7.2 Simplified flow chart showing the inter-relationships of the 

system model. 
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As this simulation study aims to develop a model to characterise the growing seasons 

of the Dry zone using all possible notable yet infrequent rainfall events, 1000 

simulations runs were made to ensure the inclusion of maximum number of extreme 

events. The outcome of the model was compared with the previous published 

information on the Dry zone's seasonal characteristics that have used real time data of 

both rainfall and soil moisture. 

7.5 Characteristics of the two major growing seasons with 

different climatic indices 

7.5.1 Mean rainfall method 

Figure 7.3 shows the weekly mean rainfall after 1000 simulation runs along with the 

reference line at 20 mm of rainfall which serves as the threshold value that defines the 

growing seasons. The results suggest that the most probable onset of the Yala season 

is on the standard week 11 while the end of the season is on the standard week 21 

resulting a 11 weeks longer growing season. The simulation results the onset of the 

Maha season as on the standard week 40 which continues to receive 20 mm or more 

rainfall upto the last week of January of the following year, the standard week 5, 

resulting a 18 weeks longer season. Simulation also shows that the first half of the 

Maha season, between the second week of October and the second week of 

November, would receive ample amount of rain, above 60 mm (Figure 7.3). 

7.5.2 Probability method 

The onset of the Yala season with respect to the dependable rainfall method where 

the threshold value is 10 mm or more per week at 75 per cent probability, was in the 

standard week 14, the first week of April. The predicted end of the season falls on 

the standard week 20, the second week of May resulting a seven weeks longer 

season. However, three weeks after the onset, reliability of the rain diminishes with a 

subsequent increase at latter part of the season, early May (Figure 7.4). Thus, with 
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Figure 7.3 Mean weekly rainfall after 1000 simulation runs. 
The broken line represents the threshold rainfall value. 
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respect to the dependable rainfall, a proper Yala season can not be identified. The 

boundaries of the Maha season were identified as standard weeks 41 and 1 as onset 

and end of the season respectively (Figure 7.4). However, the length of the season is 

only 13 weeks, a remarkable drop compared to the mean rainfall method. During the 

Yala season, the dependable rainfall of each week never exceeds the total potential 

evapotranspiration of the week. Therefore, it can be concluded that the probability of 

low moisture stress expectancy during the Yala season is quite low. However, during 

the Maha season, especially during the first phase of the season, convectional rains, 

the dependable rainfall was well above the potential evapotranspiration. This was 

evident even with the mean rainfall method which showed an ample amount of rainfall 

during the first phase of the season. 

7.5.3 Moisture availably index (MAl) 

The boundaries of the growing seasons were determined when the MAl equals or 

exceeds the value of 0.33. The onset of the Yala season was in the standard week 13, 

the last week of March. After the standard week 20, the second week of May, the 

MAl value started to decline indicating the end of the season thus leaving eight weeks 

for the season length (Figure 7.5). The model suggests that the Maha season start 

would be on the standard week 41. The MAl value was well above the threshold 

value until the last week of January in the following year, standard week 5. Thus, 

there are 17 weeks for the total growing season. During the period from standard 

weeks 43 to 52, the MAl was over 1.00 most of the time. This indicates that soil is 

wet and there is hardly any risk to crop cultivation due to the soil water stress. 

However, excess water may pose problems with some cultivation practices such as 

weeding and application of agro-chemicals and even outright crop failures due to the 

poor aeration of the root zone. Such a catastrophic situation could appear in 

standard weeks 44 and 45 where the convectional rains are in their peak and also in 

late December due to the formation of cyclonic depressions in the Bay of Bengal 

(Figure 7.5). Unlike in the Maha season, the Yala season MAl values are always 

between 0.3 and 0.6 which implies marginal soil water storage. Also, the standard 

week 17 showed a decrease in MAl value below the threshold value (Figure 7.5). 
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Therefore, cultivation of drought sensitive crops during this season could be 

impossible unless supplementary irrigation is provided. 

7.5.4 Ratio of actual to potential evapotranspiration (AETIPET) 

The ratio of actual to potential evapotranspiration, better known as AETIPET ratio, 

between 0.75 to 1.00 can be regarded as a condition of adequate soil moisture for the 

crop growth (Chang, 1968). At this level of the ratio, yield is at or near maximum for 

a given environment assuming no limitation due to other deficiencies. According to 

the AETIPET ratio, the model suggests that the onset of the Yala season occurs on 

the standard week 13 while the end of the season is on the standard week 20. The 

length of the season is eight weeks. During the Yala season, the value never reaches 

1.00 which is the maximum (Figure 7.6). This indicates that the crop never receives 

its full water requirement during the Yala season. 

The Maha season starts on the standard week 41, the first week of October and the 

ratio continues to be around 1.00 as the season progresses. The soil moisture 

becomes limiting for the crop growth from the standard week 5 onwards resulting a 

17 weeks longer season (Figure 7.6). It is interesting to note that two weeks after the 

onset of the Maha season, the ratio reaches its maximum phase and remains at the 

same level until the first week of January. Thus, during this period crop growth is 

hardly affected by the soil moisture stress. 

7.5.5 Crop water satisfaction index (CWSI) 

The newly defined crop water satisfacHon index in the model shows that the start of 

the Yala season is on the standard week 13, the last week of March. The critical 

value of 0.75 or above, the hydro-neutral condition, was observed upto the standard 

week 20 resulting a eight weeks longer season. However, two weeks after the onset, 

the standard week 15, the value of the ratio dropped well below the critical value 

which showed a hypo-hydral condition according to the definition (Figure 7.7). Thus, 

crops are likely to have a moisture deficit on this week. Such a early stage drought, 
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shortly after the establishment may cause high seedling mortality, and hence reduced 

plant population. 

The model simulates that the start of the Maha season is on the standard week 40 

while the end of the season is on the standard week 6 which signals the end of the 

hydro-neutral state of the index. The resulting length of the Maha season is 19 weeks 

.which is well suited for crops taking 120-140 days to mature. The value of the CWSI 

on the standard week 4 was just below the hydro-neutral condition. However, by this 

time of the season, the crops have reached the harvesting time. . Therefore, such a 

short dry spell does not hamper the crop performance. Nevertheless, the hyper-hydra! 

conditions that may prevail in standard weeks of 41, 46 and the last three weeks of 

December may curtail the crop growth due to the excess soil moisture (Figure 7.7). 

During the whole Maha season CWSI is well within the hydro-neutral state. 

Therefore, the more flexibility there is in farming systems such as wider choice of 

crops and cultivars, and higher likelihood achieving economic returns from the inputs. 

7.6 Comparison of indices 

The growing seasons characteristics are varied with the index used. For example, 

some indices apparently suggest existence of moisture stress within the season either 

in the form of deficit or excess while others have shown no such stress periods. As 

one of the major objective of the system model was to identify a generally acceptable 

agro-climatic index for quantifying agricultural potential of the growing seasons, there 

is evidently a need to determine a more practically suitable index. The Table 7.1 

summarise the characteristics of both Yala and Maha seasons with different indices. 

The time of onset of the Yala season has been simulated as the last week of March, 

standard week 13, with three indices out of five indices used in the model. The mean 

rainfall method has predicted an early onset of the Yala season. There was an one 

week delay of the onset when the weekly dependable rainfall amount was used as the 

index for defining the seasonal characteristics (Table 7.1). The prediction of standard 

week number 13 as the most probable onset week of the Yala season is comparable 

with the previous studies that have been based on extensive field verifications 
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Table 7.1 Comparison of growing seasons characteristics of the Dry zone 

with different agro-climatic indices. 

Yala Maha 

Criteria Start End Length Start End Length 

Rainfall 11 21 11 40 5 18 

DRF* 14 20 7 41 1 13 

MAl 13 20 8 41 5 18 

AETIPET 13 20 8 41 7 19 

CWSI 13 20 8 40 6 19 

*DRF = Dependable rainfall 
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(Kannangara, 1989 and Somasiri, 1978). The second week of May, standard week 

20, has been found to be the end of the Yala season with four indices. Again, mean 

rainfall method has predicted a late end of the season causing season become longer 

(Table 7.1). The reported end of the Yala season in previous field studies is also the 

standard week number 20 (Kannangara, 1989 and Somasiri, 1978). Thus, other than 

the mean rainfall method, all other indices are well capable of identifying the effective 

end of Yala season. 

In the Maha season, the predicted onset of the season is on the standard week 41, the 

second week of October, when the dependable rainfall method, MAl and AETIPET 

ratio are the determining indices. The predicted onset was one week earlier, standard 

week 40, when the mean rainfall method and the newly defined CWSI were used. 

The previous studies have shown that the standard week 40, the first week of 

October, is a reliable choice of sowing time for the region (Panabokke and 

Walgama, 1974). This has been further confirmed with the follow up studies 

(Kannangara, 1989). Withdrawal of the Maha season was variable with different 

indices. The dependable rainfall method has predicted that the end of the season is on 

the first week of January as a result of high uncertainty of rainfall at the tail end of the 

season. All other indices have suggested that the end of the growing season is either 

in late January or early February. The AETIPET ratio which takes into account the 

soil moisture status has lengthen the season upto the standard week 7, the second 

week of February. In general, the cease of the Maha season does not make 

substantial influence to the crop production if it occurs after late January. The 

general cropping practice during the Maha season in the Dry zone is sowing for crops 

that take l20-130 days to mature. If the sowing has done with the early showers of 

the Maha rains, by late January crops should be completed its active growth phases. 

The only remaining phase would be perhaps the late maturity or ripening phase which 

does not need much moisture other than a life saving amount. Such a small amount 

of rainfall could be expected during January in every year. Therefore, to define the 

end of the Maha season, all the indices could be used other than the dependable 

rainfall method. 
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Mean rainfall and the dependable rainfall are the simplest indices that have been used 

widely in the past to characterise the moisture regime of a region. These two indices 

can be a useful local indication of production potential. However, the foregoing 

discussion suggests that both the mean rainfall method and the dependable rainfall 

method do not yield meaningful seasonal characteristics in both seasons in the Dry 

zone. Out of other three indices which predicted both onset and end of the seasons 

on par with the previous published infonnation, both MAl and CWSI indices reserved 

special consideration. The AETIPET ratio depends exclusively on the basic soil and 

plant characteristics such as field capacity, pennanent wilting point, crop coefficients, 

stage of the crop growth and rooting depth. In view of the variability of soils and 

crops over a region particularly where there are marked diversity of crops grown on 

soil catenal sequence, it may not be worth using AETIPET ratio as an index in broad 

scale climatological studies though may be of academic interest. But, MAl and CWSI 

indices use only the meteorological data and do not depend much on the soil physical 

data of the location yet accounts the plant water demand through the PET 

component. Parry (1991) reported that a prospective agro-climatic index should not 

demand large amounts of detailed data, and can therefore be employed for assessment 

of agricultural potential of a large area based on the mean climatic data across a 

network of climatological stations. In addition, these two indices are capable of 

tracking the excess soil moisture conditions which could be a crucial problem during 

the Maha season in the Dry zone. Therefore, their usefulness as indices to represent 

the agricultural potential of the Dry zone was highly evident in this simulation study. 

However, it should be worthwhile to note that compared to the AETIPET ratio, these 

two indices do not reflect the true nature of the moisture deficit for the purpose of 

crop production but they do give infonnation regarding the degree of aridity which is 

an important criterion for crop and land use planning. 

7.7 Summary 

This chapter presents a stochastic model to characterise the two major growing 

seasons of the Dry zone using five different agro-climatic indices namely, mean 

rainfall, dependable rainfall, MEl, AETIPET and CWSI. The major inputs to the 
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model were rainfall, open pan evaporation and, the soil and plant characteristics such 

as field capacity, permanent wilting point, rooting depth and crop coefficients. Upon 

input of the model parameters, 1000 runs were made. This had the advantage of 

allowing a wider range of conditions to be examined than would be possible using 

only observed data. 

The output of the model was compared with the published information of growing 

seasonal characteristics of the Dry zone. Comparable results were obtained between 

the observed and the simulated characteristics of the both Yala and Maha seasons 

mainly with three indices, AETIPET, MAl and CWSI. The simulated seasonal 

characteristics of the both Yala and Maha seasons with respect to the mean rainfall 

and the dependable rainfall were not acceptable. 
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Chapter 8 

The use of the model, overall summary 

and future directions 

8.1 Introduction 

The results presented in the previous chapters confinn that the system model 

developed in this study is characterised by its analogical approach to crop water 

demand in the Dry zone and by the use of readily available inputs to derive the simple 

yet infonnative agro-c1imatic indices while accounting the stochasticity of the 

meteorological variables. Apart from that, the model is also capable of deriving some 

more . useful basic infonnation such as temporal variation of soil moisture, 

probabilities of dry spells and crop failures. These infonnation are quite useful in 

agricultural planning and decision making in the Dry zone of Sri Lanka. This chapter 

discusses such complimentary infonnation that can be derived from the system model 

and possible use of such infonnation in assessing the agricultural potential and some 

specific management options. 

Also in this chapter, the work of the thesis is summarised in relation to the objectives 

given in the Chapter 1. The important scenarios against which the models developed 

here should further tested have also been suggested in this chapter. 
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8.2 Use of the models 

8.2.1 Delineation of agro-ecological zones in the Dry zone 

An agro-ecological zone is defined as a major area of land that is broadly 

homogeneous in its rainfall regime and is made up of a grouping of soils that reflect 

broad similarities in the profile development. The probabilistic estimates of assured 

rainfall amounts have been used to identify the homogeneous rainfall regimes in the 

Dry zone that would reflect the water availability for crop growth. However, in 

practical situations, it would be more realistic to demarcate the homogeneous regions 

in relation to the potential water demand and the water availability of the soils in the 

region. Virmani et al. (1982) have concluded that the classification using rainfall and 

PET as inputs have a definite advantage because these are the two parameters of 

primary importance in the evaluation of climatic water adequacy. The two indices 

shown to be promising in the model, MAl and CWSI, do consist both rainfall and the 

PET as parameters. Thus, when compared with the monthly rainfall at 75% 

probability level, the methodology which used for assessing the water availability for 

crop growth in the current agro-ecological map of Sri Lanka, the model appears to 

be a promising alternative to employ in evaluating the water aspects of crop growing 

for future agro-ecological delineation studies. This could be done by grouping sub­

zones within the Dry zone either by making use of the simple climatic indices in the 

model or by grouping areas together which have similar seasonal characteristics as 

predicted by the model. 

8.2.2 Dry spells 

In the Dry zone where the soil moisture availability is the most important determinant 

of crop productivity, it is essential to match the planting and crop phenology with the 

dry spells. Therefore, information on dry spells is a useful guide to select the crops 

andlor varieties for the seasons. Figure 8.1 depicts the probability of a week being 

dry with 1000 simulation runs. These probabilities have been calculated after re-
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defining "dry' state with threshold levels of 10 and 20 mm, compared with the 

original threshold of 7 mm used in the model development. Note that the model 

does not have to re-designed to obtain these results. The rational of choosing 20 rnm 

has been discussed in the Chapter 7 and 10 mm was chosen to represent more 

drought conditions. At the prevailing average potential evaporative demand of 21 

mm per week especially when the canopy is fully developed, 10 mm of rainfall per 

week would not suffice to maintain the metabolic activities of any crop in the Dry 

zone. 

It is important to asses the true nature of probabilities of dry spells at the tail end of 

the growing season when the crops are generally in the reproductive phase. 

Therefore, immediate attention was given to the month January where the Maha 

season crop are in their grain filling or early maturity phase. Figure 8.1 reveals that 

the each week of January carries 40-60% probability of being dry with the threshold 

level of 20 mm or less rainfall. When the extreme situation is considered, rainfall of 

10 mm or less, still the probability ranges from 30-45 per cent. This concludes that 

there is a likelihood of one out of every two years in January to be a moderately dry 

month while one out of every three years a more worsen situation. A crop that fails 

in January not only makes the whole investment in Maha season un-productive but 

often discourages and holds back a farmer from proceeding with his Yala season 

cultivation which comes after another two months time. This could make a 

devastating effect on the domestic economy and therefore an adequate attention 

should be given in agronomic research and policy planning to minimise the effect of 

possible drought conditions in January. 

Again in the standard week 49, there is a 45% of probability of being moderately dry 

and a 30% of probability of aggravated dry conditions (Figure 8.1). This is a more 

crucial situation as the following week does carry a 35% probability, a reasonably 

high level of being dry. The possibility of both weeks becomes dry, first-order 

conditional probability, is 16 per cent. Thus, in long run, it is likely that one to two 

out of every 10 years, the Maha season may experience a 14 days dry spell starting 

from the first week of December. Such a long dry spell is strong enough to affect the 
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crop growth. Therefore, selection of the crops/cultivars for the Maha season could 

be an important management decision and hence, care should be given not to coincide 

these two weeks with panicle initiation or flowering stages of crops. These two 

phenological phases of crops are very sensitive to the drought stress. 

Being a weak rainy season in the Dry zone, the whole Yala season resembles a high 

probability of being dry with a range of 30 to 50 per cent with 1000 simulation runs 

(Figure 8.1). This implies that the Yala season cultivation is a risky venture in view 

of the high uncertainty of the water availability unless supplementary irrigation is 

provided through a major irrigation project. However, rational use of available 

physical resources such as conservation of residual moisture from the preceding Maha 

season (Section 8.2.3) and the use of ground water could minimise the possible crop 

failures during the Yala season while maximising the use of direct rainfall with 

reduced pressure on the irrigation water resources. 

The probabilities of dry spells after the standard week 21, mid-May, to the standard 

week 39, last week of September, are almost 90 per cent except in a few weeks 

(Figure 8.1). It is usual to have this dry season in the Dry zone as none of the rainfall 

governing mechanisms in Sri Lanka are effective over the Dry zone during this 

period. Therefore, it would be almost impossible to establish or maintain any shallow 

rooted annual crops during this period. 

8.2.3 Temporal variation of available soil moisture 

The figure 8.2 shows the variation of weekly available soil moisture content in the top 

60 cm of the RBE soils in the Dry zone of Sri Lanka with 1000 simulation runs. The 

horizontal line which goes through 150 rom point represents the 50% of available soil 

moisture in RBE soils. Although the Maha season is ceased by late January, standard 

week 5, the soil moisture remains well above the 50% of the available soil moisture 

during the dry month, February, before the next Yala season starts. According to the 

simulation, this situation prevails at least nine out of every ten years. This signals a 
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possibility of an alternative strategy to increase the cropping intensity, a second crop, 

possibly a short age variety, that may be established after the harvesting of the Maha 

season crop with supplementary irrigation. An another option is to conserve these 

moisture to be used for the upcoming Yala season. This may include harvest the crop 

as soon as practical after physiological maturity, uprooting remaining plant materials 

and spread them out on the soil as a mulch. Such a conservation of residual soil 

moisture could be used by subsequent crops in the Yala season or may be sufficient to 

permit early and more timely tillage and seed bed preparation in the next Yala season. 

Only a portion of available soil moisture is readily available to the crop and, in RBE 

soils it is considered as 75% of the total available soil moisture (Chapter 4). The 

Figure 8.2 also reveals that during the whole Yala season, available soil moisture level 

is below the critical point of 75% of total available soil moisture, 167 mm160 cm. 

When the available soil moisture is below the critical point, it can affect the crop 

yields substantially depending on the magnitude of the stress and development stage 

of the crop. Simulation reveals that every week of the Yala season, except the 

standard week 14, bears more than 70% of probability being available soil moisture 

less than 167 mm160 cm (Table 8.1). Therefore, any crop in this season should have 

the capability of withstanding high soil moisture tensions in any time of the life cycle. 

During the Maha season the probability of week being below the critical soil moisture 

level is quite low except during early weeks of the season and the tail end of the 

season (Table 8.1). The possibility of having mid-season drought during the Maha 

season is highly unlikely. However, from the third week of January, there is more 

than 30% chance of soil moisture become below the critical point, 167 mm160 cm. 

The same was evident, but for whole January, when the dry spell was defined in terms 

of less than 20 mm of rainfall per week (Section 8.2.2). Nevertheless, from the stand 

point of available soil moisture, the possibility of crops being subjected to a moisture 

stress at the first two weeks of January is rather low, less than 20 per cent. But, since 

the probabilities are still reasonably high from the third week of January onwards, the 

discussion in the section 8.2.2 regarding the dry spells in month January is still 

worthwhile to be considered. Hence, a delayed cultivation with the anticipation of 

rains towards the end of the Maha season should not be done. 
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Table S.l Probability of available soil moisture being less than 167 mm/60 em 

for each week of the two growing seasons with 1000 simulation runs. 

Yala Maha 

Week Probability Week Probability 

12 0.89 40 0.78 

13 0.78 41 0.51 

14 0.67 42 0.52 

15 0.71 43 0.52 

16 0.70 44 0.17 

17 0.77 45 0.13 

18 0.72 46 0.11 

19 0.76 47 0.11 

20 0.90 48 0.12 

21 0.99 49 0.23 

50 0.14 

51 0.03 

52 0.02 

1 0.03 

2 0.13 

3 0.29 

4 0.41 

5 0.59 

6 0.98 
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8.2.4 Crop failures 

The possibility of complete crop failures in both seasons of the Dry zone was 

investigated using simulated soil moisture results with the following assumptions. 

First, planting or sowing may take place with the simulated onset time. Second, a dry 

week, available soil moisture below 50 per cent, immediately after the sowing or 

planting may dry out the top soil and produce a failure to germinate or seedlings to 

wither. After the second week, when the plants are well established, their roots have 

capacity to absorb moisture from deeper layers and therefore can survive upto further 

two weeks under dry conditions. Any soil moisture depletion below the 50% 

available soil moisture level which lasts more than two consecutive weeks causes a 

complete crop failure. The model was run for 10 times with different random number 

streams, each simulates 1000 years. The objective was to account as much as 

possible the randomness of the rainfall. The Table 8.2 shows the probability of 

complete crop failures in the both growing seasons of the Dry zone with 10 different 

runs. Results indicate that crop failure probabilities are converging to the values of 

0.10 and 0.02 for the Yala and Maha seasons respectively. Thus, at least one out of 

every ten years there would be a complete crop failure during the Yala season. 

However, occurrence of complete crop failures during the Maha season would be 

only one year out of fifty years. 

8.3 Overall summary 

In this thesis, a system model was developed which is capable of simulating the 

growing seasonal characteristics of the Dry zone of Sri Lanka. It consists of two 

major sub-models; rainfall model and soil water balance model. 

The suitable rainfall sub-model was chosen out of three Markovian models studied; 

the first-order discrete time Markov model, the second-order discrete time Markov 

model and the continuous time Markov model. Out of them, the first-order discrete 

time Markov model was integrated into the system model as it was a reasonable 

representation of the weekly rainfall process in the Dry zone on the basis of statistical 
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Table 8.2 Probabilities of a complete crop failure during the two major growing 

seasons in the Dry zone of Sri Lanka. 

Probabilities of crop failures in the season 

Run Yala Maha 

1 0.11 0.03 

2 0.10 0.01 

3 0.10 0.02 

4 0.10 0.02 

5 0.10 0.02 

6 0.09 0.03 

7 0.07 0.02 

8 0.11 0.01 

9 0.11 0.02 

10 0.09 0.02 
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performances and practical ease. The soil water balance sub-model was a single-layer 

water balance model which treated the entire root zone as a reservoir for soil water. 

Simulated values from these both sub-models were in reasonable agreement with the 

observed data collected from a representative location of the Dry zone. 

The system model used five agro-climatic indices to define the two major growing 

seasons in the Dry zone out of which four indices are already in use in the literature. 

A new index, crop water satisfaction index (CWSI) was defined using mean rainfall, 

dependable rainfall and potential evapotranspiration. Considering the stochasticity of 

weather variables especially the rainfall, the system model was run for 1000 times to 

provide a better estimate of the frequency of extreme events. The predicted growing 

season characteristics were compared with the published information on growing 

seasons characteristics of the Dry zone. It revealed that the model can predict the 

growing season characteristics of both Yala and Maha seasons of the Dry zone with a 

reasonable agreement with the real time data. The newly defined crop water 

satisfaction index (CWSI) in this study rate quite well with the other mostly 

recognised agro-climatic indices such as AETIPET ratio and moisture mvailability 

index (MAl) in defining the growing seasons in the Dry zone. Furthermore, the study 

bared some useful seasonal characteristics such as probabilities of dry spells, temporal 

variation of available soil moisture and crop failures with the extended temporal 

variation through the simulation. 

The system model is capable of determining the correlation between onset of the 

season and seasonal characteristics on request. The onset time of the seasonal rains 

as a predictor for amount of rainfall or duration of the both Yala or Maha seasons 

was not clearly evident in this simulation study though such links have been apparent 

in other monsoonal areas of the tropic. The deterministic predictability of the rainfall 

in the Dry zone was also examined using the Southern Oscillation Index (501) and its 

two extreme phases, EI Nino and La Nina episodes. The observed data signalled the 

influence of the EI Nino events on the both Yala and Maha seasons indicating a 

possibility of forecasting the upcoming growing seasons. The link between La Nina 

events and the seasonal rainfall of the Dry zone was inconclusive at the absence of 
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enough data. The importance of the SOl as a predictor of the seasonal rainfall of the 

Dry zone was not evident. 

An additional model was also developed to estimate the missing or ungauged data of 

weekly rainfall in the Dry zone assuming spatial continuity of rainfall between two 

neighbouring locations are exponentially correlated. This model could provide 

missing or unavailable data in a rainfall time series when they are needed for 

parameter estimation of the stochastic rainfall models or for any other relevant uses. 

Although the individual estimated values of weekly rainfall from the developed model 

were not well represented the observed weekly rainfall values, its performance of 

estimating mean weekly parameters was excellent. 

8.4 Future directions 

8.4.1 Rainfallmodels 

The ability of stochastic model to reproduce or preserve the statistical properties of 

historical data is the main evaluation criterion for stochastic models. The validation 

has shown that both first-order and second-order discrete time Markov rainfall 

models are capable of producing time series of weekly rainfall of arbitrary length for 

future studies. We have concentrated only the Dry zone of Sri Lanka. An important 

extension of this study would be to test for neighbouring regions especially the Wet 

zone. One aspect being to determine whether the simple order chain is appropriate at 

other regions of the Sri Lanka. 

Although the continuous time Markov model does not seem to be promising for the 

intended purpose, it does show a potential in modelling weekly rainfall during the wet 

periods of the year. Therefore, it may be worthwhile to do a rigorous and 

comprehensive study to investigate its potential especially with a more shorter time 

base because parameters of the continuous model then would relate more or less 

directly to the time frame of physical mechanisms that govern the rainfall. 
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8.4.2 Soil water balance model 

Many alternate water balance models are available and use in today and several have 

been mentioned in the Section 4.2. The model presented here is a simple one that 

treat the entire root zone as a reservoir for soil water, and includes various 

assumption about the water movement in the soil and availability to crops. The 

complex models that consider instantaneous root growth and portioning 

evapotranspiration into its components, evaporation and transpiration, are 

substantially better than the model presented here. Time and data availability have 

not permitted comparisons of the model with more complex models, but such 

comparisons need to be made. 

The water balance model presented here assumes that the entire Dry zone is 

completely occupied by the RBE soils. However, there is a wide range of soil groups 

in well drained soils in the Dry zone such as Non-Calcic Brown soils (Haplustalt) and 

Red-Yellow Latosols (Haplustox). These two major soil groups do not contain the 

characteristics gravel layer of the RBE soils. In addition, their textural classes also 

differ from the RBE soils. Both these deviations from the RBE soils can have a 

significant effect on the water movement within the soil ,and the extraction by the 

crops. Therefore, more comprehensive field studies are required to generalise the 

applicability of the soil water balance sub-model for the entire Dry zone. 

8.4.3 Spatial interpolation model 

The spatial interpolation model developed in this thesis allows an expanded spatial 

source of rainfall data for parameter· estimation in stochastic models or any other 

climatological applications. Although, it appears to be no real advantage in 

exponential correlation model developed here over the simpler models such as local 

mean and inverse distance method under the Dry zone's environment, its use in 

complex topographical situations like the Wet zone environment could be more 

appropriate over the simple models. Therefore, an extensive validation of the 

exponential correlation model should be undertaken with the Wet zone rainfall data. 
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In particular, validations are required at·transitional areas between Dry and Wet zones 

where the rainfall data are meagre so that the model can provide the extended spatial 

data for delineation of the smooth boundaries of transitional zones. 

8.4.4 System model 

The ultimate intended application· of the system model was simulation of growing 

season characteristics in the Dry zone. At present, the model accomplish this task 

using only the rainfall and crop water demand. The other two climatic factors that 

may influence the crop growth in the Dry zone of Sri Lanka are high temperature 

regimes during flowering and grain flIling, and the incidence of diseases as a result of 

high humidity. Thus, to be most useful, the model will need to have the temperature 

and saturation deficit as input variables. Unfortunately, the increase of number of 

weather variables in the model would result in unreasonably large parameter set. One 

possible method is to use the Fourier series or other periodic functions such as 

polynomials to represent the variability of parameters of these two variables through 

the year. As the temporal changes of temperature and saturation deficit in the Dry 

zone are fairly uniform in the absence of abrupt changes, such a generalisation would 

not diminish the performance of the model. 

The system model does not contain any component of the productivity. The next 

major step in the model development is to include a simplified representation of crop 

physiology, a deterministic approach, to predict the crop yields. Such a combination 

of stochastic and deterministic models should help to understand how different 

amounts of rainfall or irrigation can impact On the crop production in the Dry zone. 

8.4.5 Programming language 

The entire model has been written in SIMSCRIPT 11.5. As the SIMSCRIPT is a 

highly specific language, a common object oriented programming language may be 

more appropriate to enable the wider usage of the model. However, this may lead to 

re-coding some of the routines as common programming languages may not carry 
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some specialised algorithms available in the SIMSCRIPT that have been used in the 

system model developed in this study. 
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Appendix 1 

The conditional probabilities in continuous Markov chain 

mid-April to mid-July; 

!(Pl) = - 0.06748t4 - 0.09551t 3 + 0.405t2 - 0.60t 

where 

!(Pl) =Pm ( Wi I Wi-I) -1 

!(Pl) = _ 0.06748t3 + 0.09551t2 + 0.405t - 0.60 
t 

As t--70 

!(PI) = - 0.60 
t 

If !(P2) = Pm ( Wi I Di-I), 

!(P2)=0.02269lt5 
- 0.04646t4 + 0.356t3 -1.245t2 + 1.78t 

!(P2) =0.022691t4 - 0.04646t3 +0.356t2 -1.245t+ 1.78 
t 

As t--70 

!(P2) = 1.78 
t 

The intensity matrix A; 

A = [all a12 ] = [-0.6 1.78] 
a21 a22 1.78 - 0.6 

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

Together with the initial probability vector (0.90,0.50), the transition probabilities 

satisfy the Kolmogorov forward equation; 

a i,j (t) N 
'P _ Lpi,k(t)ak,j = 0 

at k=1 
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By solving the differential equation with the initial value of 0.90 

P = 0.747899 - 727.4814e-2.381 

That is 

Pm (W;IW;-t)= 0.747899 -727.4814e-2.381 

Similarly, with the initial value of 0.50, 

Pm (W;IDi- t )= 0.747899 - 1185.6741e-2.381 

mid-July to the end of the year 

!(PI) = - 0.0007035t4 + 0.0901t 3 + 0.04426t2 - 0.644985t 

where 

!(Pt) =Pm ( Wi I Wi-I) -1 

!(Pt) = _ 0.0007035t3 + 0.0901t2 + 0.04426t - 0.644985 
t 

As t--70 

[7] 

[8] 

[9] 

[10] 

[11] 

[12] 

!(Pt) = _ 0.644985 [13] 
t 

If !(P2) = Pm ( Wi I D j _I ), [14] 

!(P2)=0.0006806t5 -0.02619t4 + 0.3707t 3 -2.276t2 +5.137t [15] 

!(P2) =0.0006806t4 -0.02619t 3 +0.3707 2 -2.276t+5.137 
t 

As t--70 

5.137 [16] 
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The intensity matrix A; 

A = [an a12 ] [-0.644985 5.137] 
a21 a22 - 5.137 -0.644985 

Together with the initial probability vector (0.30,0.10), the transition probabilities 

satisfy the Kolmogorov forward equation; 

a'Pi.i(t) N 
-=------'--'- - L pi,k (t) ak,j = 0 

at k=1 

=p l1 (-0.644985 + p I2 (5.137) 

= pn (-0.644985) + 5.137(1- pll ) 

By solving the differential equation with the initial value of 0.30 

p = 0.8885237 - 0.6977568 x 10 17 e-5.7815t 

That is 

Pm Of; Iw;-I ) = 0.8885237 - 0.6977568 x 1017 
e-5.7815t 

Similarly, with the initial value of 0.10, 

Pm (W;IDi- I )= 0.888601 - 0.9317955 x 10 17 
e-5.78It 

[17] 

[18] 

[19] 

[20] 
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Appendix 2 

The standard weeks 

Week No. Dates Week No. Dates 

1 January 1 - 7 27 July 2-8 
2 8 - 14 28 9 - 15 
3 15 - 21 29 16 - 22 
4 22 - 28 30 23 - 29 
5 29 -4 31 30 - 5 

6 February 5 - 11 32 August 6 - 12 
7 12 - 18 33 13 - 19 
8 19 - 25 34 20- 26 
9 26 - 4* 35 27 - 2 

10 March 5 - 11 36 September 3-9 
11 12 - 18 37 10 - 16 
12 19 - 25 38 17 - 23 
13 26 - 1 39 24 - 30 

14 April 2-8 40 October 1 - 7 
15 9 - 15 41 8 - 14 
16 16 - 22 42 15 - 21 
17 23 - 29 43 22 - 28 
18 30 - 6 44 29 - 4 

19 May 7 - 13 45 November 5 - 11 
20 14 - 20 46 12 - 18 
21 21 - 27 47 19 - 25 
22 28 - 3 48 26 - 2 

23 June 4 - 10 49 December 3-9 
24 11 - 17 50 10 - 16 
25 18 - 24 51 17 - 23 
26 25 - 1 52 24 - 31'1' 

* In a leap year the week No.9 will be 26th February to March 4th March. 
'¥ The last week will have 8 days. 
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Appendix 3 

Relationship between soil moisture availability and relative 
evapotranspiration (AETIPET) 

1.0 ................................... .,. ---------:----

AETIPET 

0.0 
PWP ASM CP 

Let ASM = Available soil moisture at a given point 
CP = Available soil moisture at the critical point 

FC 

PWP = Soil moisture content at the permanent wilting point 
FC = Field capacity 

AET = Actual evapotranspiration 
PET = Potential evapotranspiration 

y, Y2 ---'--- = ----='---
ASM - PWP CP - PWP 

Y - 1 2 -

AET (Cp - PWP) = ASM - PWP 
PET 

.. AET = PET[ASM-PWP] 
CP-PWP 
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Appendix 4 

SIMSCRIPT 11.5 source code of the sytem model 

preamble 

define EFFRF, RAINFALL, "rainfall values 
SCALE, SCALEI, SHAPE, SHAPEI, " used for prob. distribution parameters 

PI, P2, PBI, PB2, ALPHA, 
LALPHA, BETA, I_BETA, "used in transition probabilities 

MEAN.EFFRF, MEAN.EV APOR, MEAN.AET, MEAN.PET, MEAN.RF, 
MEAN.ASM " mean values after completing the simulation 

PET, AET, REFEV AP, ASM, SIMASM, MAl, RAINY ALVE, 
" values required to calculate the required criteria 

CRITLEVEL, INPUT.CRITL VL and INDEX as real variables 
" critical levels of the selected criteria 

define ASM.LEVEL as a real variable "ASM probability value 
define ASM.COUNT, Y ALA.CROP.FAll...COUNT and MAHA.CROP.FAll...COUNT as integer 

variables 
define ASM.ARRA Y as a 2-dimensional real array "weekly ASM data 
define CROP.FAll.. as a text variable" crop failure statistics wanted or not 

define CODEI," code for the prob. distributions with rainfall 
CODE, " code for prob. distribution with evaporation 

SIM.NO, I, NUM.RUN, NO.SIM, "simulation counters 

WEEK.ORA VERAGE, MAHA.OR Y ALA, RF.ORAETPET, 
" selection criteria methods 

COUNT, COUNTI, K, J and WEEK.NO as integer variables" loop counters 

define ASM.STATISTICS and ONSET.CORR as integer variables 
" at the user inteface decide whether these 
" two statistics are to be determined 

define DRYWEEK.CALC,CROP.FAll...PROB 
and PARTICULAR.WEEKRF as integer variables 

" whether dryweek probs are wanted 

define DRYTHRESHOLD as a integer variable" specify the threshold value to 
" consider week as a dry one 

define DRYWEEK.COUNT.ARRA Y as a 2-dimensional integer array 
" counts of initial, W IW , DIW , WID , DID conditional counts 

define REQ.WEEK as an integer variable" user entered value of week to be examined 
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define WEEKLY.DATAREQUIRED as a text variable 
" whether a particular weeks RF data is wanted 

define CRIT,CRITERIA as text variables 

define WEEKL Y.RF.ARRA Y as a 2-dimensional real array 
" stores weekly RF data for each run 

define INDEXl.ARRAY as a 2-dimensional real array 
" stores mean data for the selected criteria 

define RAINPROB as a I-dimensional real array 
" used to calculate 75% rainfall prob value 

define MARA CHAR, Y ALA.CHAR as 2-dimensional real arrays 
" arrays to store season start,finish, length and RF values 

define WEEKLY. DATA ARRAY as a 2-dimensional real array 
" stores the weekly selceted criteria data for each run 

define RAINV ALUE.ARRA Y as a I-dimensional real array 
" stores 75% rainfall values 

define RFV ALUE.ARRA Y as a I-dimensional real array 
" stores RF values for a week if user needs 

end 

main 

ASM.LEVEL=O 

Call SELECTCRITERIA "criteria to determine the 
" seasonal characteristics using average of simulations 

reserve INDEX1.ARRAY as 7 by 52 " array to store average characteristics 
reserve WEEKL Y.RF.ARRA Y as NUM.RUN by 52 

" storing RF or AETIPET of each simulation run 
reserve RAINPROB as NUM.RUN " store the RF, but this is purely to 

" calculate the 75% probability 
reserve WEEKLY.DATAARRAY as NUM.RUN by 52 
reserve RAINY ALUE.ARRA Y as 52 "storing 75% weekly rainfall values 
reserve RFV ALUE.ARRA Y as NUM.RUN "rf value array 
reserve ASM.ARRA Y as NUM.RUN by 52 "stores weekly ASM data 
reserve DRYWEEK.COUNT.ARRA Y as 5 by 52 "stores initial and conditional dryweek counts 

Pl=O.8667 " initial probabilities 
P2=O.1333 " ditto 

PWP = 114.6 " Available water at PWP 
CP = 167.3 "availble water at critical point, 75% of total ASM 
FC= 184.9 "Available water at FC 
ASM = FC " availble water at the begining of the year 

open unit 9 for output, File name is "Output.dat" 
use unit 9 for output 
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open unit 2 for input, file name is "Evapdist.txt" 

open unit 3 for input, file name is "Midist.dat" 

open unit 8 for input, file name is "Mitrrnat7.dat" 

for WEEK.NO =·1 to 52 
do 

use unit 2 for input 
read CODE,SCALE, SHAPE "reading evaporation distribution parameters 

use unit 3 for input 
read CODEl,SCALEl, SHAPEI "reading rainfall distribution parameters 

use unit 8 for input 
read ALPHA, l_ALPHA,BETA,CBETA" reading elements of transition matrix 

PB 1 = (PI * ALPHA + P2*BETA) "calculating unconditional probabilty of week being wet 
PB2 = (PI *CALPHA + P2*1_BETA) " week being dry 

Pl=PBl 
P2=PB2 

MEAN.EFFRF = 0 
MEAN.AET =0 
MEAN.PET ",,0 
MEAN.ASM =0 
ASM.COUNT = 0 

for SIM.NO = 1 to NUM.RUN 
do 
Cal1 MarkovRF given PI yielding EFFRF and RAINFALL 
Cal1 Evaporation yielding EV APOR 

compute MEAN.RF as the mean of RAINFALL 
compute MEAN.EFFRF as the mean of EFFRF 
compute MEAN.EV APOR as the mean of EV APOR 

WEEKL Y.RF.ARRA Y(SIM.NO,WEEK.NO)=RAINFALL "storing weekly rainfal1 
RAINPROB(SIM.NO)=RAINFALL "storing rainfal1 to calculate 75% value 

Cal1 CROPFACTOR yielding CROPFACT" crop coefficients across the season 

PANFACT = 0.8 "Pan factor Kp 
REFEVAP = EV APOR * PANFACT" calculating Ref.Et, EtO 
PET = CROPFACT * REFEV AP "calculating PET 

SIMASM= -«ASM+EFFRF+«PET*PWP)/(CP-PWP)))/(-l-(PET/(CP-PWP)))) 
" calc. ASM for each run,MAPLE 

if SIMASM < PWP "setting lower boundary condition 
SIMASM=PWP 

always 

if SIMASM > FC "setting upper boundary condition 
SIMASM=FC 

always 
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if SIMASM < CP "calculating AET when soil is under tension (soil moisture stress) 
AET = PET*«SIMASM-PWP)/(CP-PWP» 
else 
AET = PET " AET is at its potential rate when there is no soil moisture stress 

always 

if ASM.LEVELoO 
if SIMASM<ASM.LEVEL " calculating prob < ASM critical level 

ASM.COUNT=ASM.COUNT+l 
always 

always 

ASM.ARRA Y(SIM.NO,WEEK.NO)=SIMASM "storing weekly ASM in array 

compute MEAN.AET as the mean of AET 
compute MEAN.PET as the mean of PET 
compute MEAN.ASM as the mean of SIMASM 

select case CRITERIA" storing data to enable season determination 
case "Mean Rainfall Method" 

case "75% Probability Method" 
WEEKLY.DATAARRAY(SIM.NO,WEEKNO)=RAINFALL 

case "MAl Method", "CWSI Method" 
WEEKLY.DATAARRAY(SIM.NO,WEEKNO)=PET 

case "AETIPET Method" 
WEEKL Y.DAT AARRA Y(SIM.NO,WEEK.NO)=AETIPET 

endselect 

if WEEKNO=REQ.WEEK and PARTICULAR.WEEKRF 0 0 
" if rainfall data required for a particular week number 

RFV ALUE.ARRA Y(SIM.NO)=RAINFALL 
always 

loop "Sim.No loop 

ASM = MEAN.ASM 

Call SORTRAIN "getting 75% RF value 

RAINV ALUE.ARRA Y(WEEK.NO)=RAINV ALUE 

INDEXl.ARRA Y(1,WEEK.NO)=MEAN.AET "writing mean AET into the array 
INDEXl.ARRA Y(2,WEEK.NO)=MEAN.PET "writing mean PET into the array 
INDEXl.ARRAY(3,WEEK.NO)=MEAN.ASM "writing mean ASM into the array 
INDEXl.ARRA Y(5,WEEK.NO)=MEAN.RF 
INDEXl.ARRA Y(6,WEEK.NO)=RAINV ALUE 
INDEXl.ARRA Y(7 ,WEEK.NO)=ASM.COUNTINUM.RUN 

select case CRITERIA "is to get the desired criteria for season definition 
case "Mean Rainfall Method" 
INDEXl.ARRA Y(4,WEEK.NO)=MEAN.RF 

case "75% Probability Method" 
INDEXl.ARRA Y(4,WEEK.NO)=RAINV ALUE 

case "MAl Method" 
INDEX1.ARRA Y(4,WEEKNO)=RAINV ALUE/MEAN.PET 

case "AETIPET Method" 
INDEXl.ARRAY(4,WEEKNO)=MEAN.AETIMEAN.PET 
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case "CWSI Method" 
INDEXl.ARRA Y(4,WEEK.NO)=(MEAN.RF-RAINV ALUE)/MEAN.PET 

endselect 

loop" Week.No loop 

close unit 2 
close unit 3 

for K = 1 to NUM.RUN 
do 

for J = 1 to 52 
do 

select case CRITERIA" storing the detennined index value using specified index 
case "Mean Rainfall Method", "AETIPET Method" 

case "75% Probability Method" 
WEEKLY.DATA.ARRAY(K,J)=WEEKLY.DATA.ARRAY(K,J)-RAINVALUE.ARRAY(J) 

case "MAl Method" 

WEEKL Y.DATA.ARRA Y(K,J)=WEEKL Y.RF.ARRA Y{K,J)IWEEKL Y.DATA.ARRA Y(K,J) 
case "CWSI Method" 
WEEKL Y.DATA.ARRA Y(K,J)=(WEEKL Y.RF.ARRA Y(K,J)­

RAINV ALUE.ARRA Y{J»IWEEKL Y.DATA.ARRA Y(K,J) 
endselect 

loop 
loop 

print 6 lines with NUM.RUN and CRITERIA as follows 

Characteristics of Agro-climate at Maha-Illuppallarna with **** Simulation runs 

Week No Mean RF 75% RF Mean AET MEAN PET Mean ASM ASM PROB 

*************************** 
======= ======== ====== ======== ======== ======== ======== 

=========================== 

for COUNT= 1 to 52 "printing average of each criteria for each week 
do 

print lline with COUNT, INDEXl.ARRAY(5,COUNT), 
INDEXl.ARRA Y(6,COUNT),INDEXl.ARRA Y(1,COUNT),INDEXl.ARRA Y(2,COUNT), 

INDEX 1. ARRA Y(3,COUNT), INDEXl.ARRA Y(7 ,COUNT) and 
INDEXl.ARRA Y(4,COUNT) thus 

*** *** * *** * *** ** *** ** *** * ** ** *** ** 
loop 

WEEK.ORAVERAGE=l "a condition for case statement 
" use the average conditions to characterise the seasons 

1=35 "printing seasonal characteristics, maha should start afeter week 35 
Call FINDSTART yielding MAHA 
I=MAHA+l 
Call FINDEND yielding MAHAEND 
I=MAHAEND+ 1 
Call FINDSTART yielding Y ALA 
if Y ALA> 14 " setting 2 weeks criteria to start the yala season 
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II if 3 weeks criteria fails 
WEEK OR. A VERAGE=2 
I=MAHAEND+ 1 
Call FINDSTART yielding Y ALA 
always 

I=YALA+l 
Call FINDEND yielding Y ALAEND 

Call SEASONCHARAC given Y ALA,Y ALAEND,MAHA,MAHAEND 

Call ONSETCORRELATION 

Call CROPFAILURE 

close unit 8 

close unit 9 

II printing rf values of the specified week to a file 

Call WEEKLYDATA 

II printing initial and conditional probabilities to a file 

Call DRYWEEK 

end 

Routine CROPFACTORyielding CF 

select case WEEKNO II crop factor detennination 
case 10,11,12,13,38,39,40,41 CF=0.7 
case 14,15,16,17,42,43,44,45 CF= 1.1 03 
case 18,19,20,21,46,47,48,49 CF=0.967 
case 22,23,50,51,52,1,2,3,4,5 CF=0.74 
case 6,7,8,9,24,25,26,27,28, 

29,30,31,32,33,34,35,36,37 CF = uniform.f(.54,O.85,6) 
endselect 

return 
end 

Routine CROPFAILURE 
II detennining the probability of crop failure when ASM is < the 50% ASM soon after 
II the onset or 3 consecutive weeks < 50% ASM for the yala and maha seasons 

define Y ALA.START.WEEK and MAHA.START.WEEK as integer variables 
define CRIT.ASM.LEVEL as a real variable 
define FAILED.CROP as a text variable 

II boolean variable to ensure that the crop only fails once in a season 
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open unit 7 for output, file name is "CROPFAIL.DAT" 
use unit 7 for output 

if CROP.FAIL.PROB = 0 "if specified by user 
print 3 lines as follows 

This option was not selected 

else 
if CRITERIA="75% Probability Method" or CRITERIA="MAI Method" 

print 3 lines with CRITERIA thus 

The crop failure probabilities can not be determined using 

the ************************ 
else 

Y ALA.CROP.FAIL.COUNT=O 
MAHACROP.FAIL.COUNT=O 
CRIT.ASM.LEVEL=150 "50% ASM 

for SIM.NO = 1 to NUM.RUN " crop failure during yala season 
do 

FAILED.CROP="NO" "initialising varaible 
Y ALA START. WEEK = Y ALACHAR(1,SIM.NO) 

" getting yala start week from the array written in season charac 

if YALA.START.WEEK=O "when no yala season is encountered 
Y ALA.CROP.FAIL.COUNT= Y ALA.CROP.FAIL.COUNT + 1 
FAILED.CROP="yes" 

always 

if ASM.ARRA Y(SIM.NO,Y ALA.START.WEEK+ l)<CRIT.ASM.LEVEL and 
FAILED.CROPo"yes" 

" checking the ASM level in the first week of the growing season 
Y ALA.CROP.FAIL.COUNT= Y ALA.CROP.FAIL.COUNT + 1 
FAILED.CROP="yes" "crop can only fail once in a season 

always 

until FAILED.CROP="yes" or (YALA.CHAR(2,SIM.NO)-YALA.START.WEEK)<2 
do " looking at 3 consecutive weeks 

if ASM.ARRA Y(SIM.NO,Y ALASTART.WEEK)<CRIT.ASM.LEVEL and 
ASM.ARRA Y(SIM.NO,Y ALASTART.WEEK+ l)<CRIT.ASM.LEVEL 

and ASM.ARRA Y(SIM.NO,YALA.START.WEEK+2)<CRIT.ASM.LEVEL 
Y ALA.CROP. FAIL. COUNT=Y ALA.CROP.FAIL.COUNT + 1 
FAILED.CROP="yes" 
always 

YALA.START.WEEK=YALA.START.WEEK+ 1 
loop 

loop 

for SIM.NO = 1 to NVM.RUN " crop failure during maha season 
do " comments same as above 
FAILED.CROP="NO" 
MAHA.START.WEEK = MAHACHAR(l,SIM.NO) 
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ifMAHASTART.WEEK=O or MAHA.START.WEEK<35 "or start week early in the year 
MAHA.CROP.FAIL.COUNT=MAHA.CROP.FAIL.COUNT+l 
FAILED.CROP="yes" 
always 

if ASM.ARRA Y(SIM.NO,MAHASTART.WEEK+ l)<CRIT.ASM.LEVEL and 
FAILED.CROPo"yes" 

MAHA.CROP.FAIL.COUNT=MAHA.CROP.FAIL.COUNT+l 
FAILED.CROP="yes" "crop can only fail once in a season 
always 

until FAILED.CROP="yes" or (MAHACHAR(2,SIM.NO)-MAHA.START.WEEK)<2 or 
MAHA.START.WEEK>50 

do 
if ASM.ARRA Y(SIM.NO,MAHA.START.WEEK)<CRIT.ASM.LEVEL and 

ASM.ARRA Y(SIM.NO,MAHA.START.WEEK+l)<CRIT.ASM.LEVEL 
and ASMARRA Y(SIMNO,MAHA.START.WEEK+2)<CRIT.ASM.LEVEL 

MAHA.CROP.FAIL.COUNT=MAHA.CROP.FAIL.COUNT+l 
FAILED.CROP="yes" 
always 

MAHA.START.WEEK=MAHA.START.WEEK+l 
loop 

loop 

" printing results 

Print 41ine with YALACROP.FAIL.COUNTINUM.RUN and 
MAHA.CROP.FAIL.COUNTINUM.RUN thus 

The probability of crop failure in the yala season is *. ** 
The probability of crop failure in the maha season is *. ** 

always 
always 

close unit 7 

return 

end 

Routine DRYWEEK 
" finding probability of each week being dry, as well as conditional probabilities 
" and printing results to a file 

define H,I and PREVWEEK as integer variables 

for WEEK NO = 1 to 52 
do 
for H=1 to NUM.RUN 

do 
ifWEEKNO=1 "looking at week-l for week 1 

PREVWEEK=52 
else 
PREVWEEK=WEEKNO-l 

202 



always 

if WEEKL Y.RF.ARRA Y(H,WEEK.NO) < DRYTHRESHOLD "initial prob. 

DRYWEEK.COUNT.ARRA Y(1,WEEK.NO)=DRYWEEK.COUNT.ARRA Y(1,WEEK.NO)+1 
always 

if WEEKL Y.RF.ARRA Y(H,WEEK.NO) > DRYTHRESHOLD and 
WEEKL Y.RF.ARRA Y(H,PREVWEEK) > DRYTHRESHOLD 

"P(WIW) 

DRYWEEK.COUNT.ARRA Y(2,WEEK.NO)=DRYWEEK.COUNT.ARRA Y(2,WEEK.NO)+ 1 
else 
if WEEKL Y.RF.ARRA Y(H,WEEK.NO) < DRYTHRESHOLD and 

WEEKL Y.RF.ARRA Y(H,PREVWEEK) > DRYTHRESHOLD 
" P(DIW) 

DRYWEEK.COUNT.ARRA Y(3,WEEK.NO)=DRYWEEK.COUNT.ARRA Y(3,WEEK.NO)+ 1 
else 
if WEEKL Y.RF.ARRA Y(H,WEEK.NO) > DRYTHRESHOLD and 

WEEKL Y.RF.ARRA Y(H,PREVWEEK) < DRYTHRESHOLD 
" P(W/D) 

DRYWEEK.COUNT.ARRAY(4,WEEK.NO)=DRYWEEK.COUNT.ARRAY(4,WEEK.NO)+1 
else 
if WEEKL Y.RF.ARRA Y(H,WEEK.NO) < DRYTHRESHOLD and 

WEEKL Y.RF.ARRA Y(H,PREVWEEK) < DRYTHRESHOLD 
" P(D/D) 

DRYWEEK.COUNT.ARRA Y(5,WEEK.NO)=DRYWEEK.COUNT.ARRA Y(5,WEEK.NO)+ 1 
always 

always 
always 

always 

loop 
loop 

open unit 11 for output, file name is "condprob.dat" 
use unit 11 for output 

if DRYWEEK.CALC = 0 
Print 3 lines as follows 

This option was not selected. 

else 

print 6 lines with NUM.RUN thus 

Probabilities after ***** simulation runs 

WEEK P(Dry) P(WetlWet) P(DrylWet) P(Wet/Dry) P(Dry/Dry) 
==== ====== ========== ========== ========== ========== 

for 1= 1 to 52 
do 
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print 1 line with I, DRYWEEK.COUNT.ARRAY(1,I)INUM.RUN, 
DRYWEEK.COUNT.ARRA Y(2,I)INUM.RUN, 

DRYWEEK.COUNT.ARRA Y(3,I)INUM.RUN, DRYWEEK.COUNT.ARRA Y(4,I)INUM.RUN 
and 

DRYWEEK.COUNT.ARRA Y(5,I)INUM.RUN thus 
** * ** * ** * ** * ** * ** 
loop 

always 

close unit 11 

return 

end 

Routine EV APORA TION yielding EV AP 

ifCODE=1 
EV AP=Gamma.f(SCALE*SHAPE,SHAPE,8) 

else 
ifCODE=2 

EV AP=Weibull.f(SHAPE,SCALE,3) 
else 
ifCODE=3 

EV AP=Log.nonnal.f(SHAPE,SCALE,4) 
else 
EV AP=Nonna1.f(SHAPE,SCALE,9) 

always 
always 

always 

return 

end 

Routine FINDEND yielding SEASEND 
" finding the seasons end 

define INDICATOR,M as an integer variable 

INDICATOR=O " only a boolean variable 

" M is used to check whether it has been gone through whole 52 weeks 
" so that the number weeks (either 2 or 3) can be changed 

M=I 

until INDICATOR=1 " loop to detect the season end 
do 

ifI=51 " resetting to week 1 
1=1 

always 

select case WEEK.OR.A VERAGE " whether to characterise by weekly data or 
" by mean weekly data after the total number of 
" simulations (average) specified 
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case 1 " using average (3 week) conditions 

ifINDEXl.ARRAY(4,I)<CRI1LEVELandINDEXl.ARRAY(4,I+l)<CRI1LEVEL 
and INDEXl.ARRA Y(4,I+2)<CRI1LEVEL 

SEASEND=I 

INDICATOR=l 
always 

case 2 " using average (2 week) conditions 

if INDEXl.ARRA Y(4,I)<CRI1LEVEL and INDEXl.ARRA Y(4,I+ l)<CRI1LEVEL 
SEASEND=I 

INDICATOR=1 
always 

case 3 "finding season end using weekly data (3 week criteria) 
select case CRITERIA 

case "Mean Rainfall Method" "rainfall 
if WEEKL Y.RF.ARRA Y(NO.SIM,I)<CRI1LEVEL and 

WEEKL Y.RF.ARRA Y(NO.SIM,I+ l)<CRI1LEVEL 
and WEEKL Y.RF.ARRA Y(NO.SIM,I+2)<CRI1LEVEL 
SEASEND=I 
INDICA TOR= 1 
always 

ifI=M-l "changes to 2 week criteria 
WEEK. OR. A VERAGE=4 
I=M 

always 

case "MAl Method", "AETIPET Method", "CWSI Method" 
" MAI,AETPET,SMRI 

if WEEKL Y.DAT AARRA Y(NO.SIM,I)<CRI1LEVEL and 
WEEKL Y.DATAARRA Y(NO.SIM,I+ l)<CRI1LEVEL 

and WEEKL Y.DATAARRA Y(NO.SIM,I+2)<CRI1LEVEL 
SEASEND=I 
INDICATOR=1 
always 

if I=M-l "changes to 2 week criteria 
WEEK. OR. A VERAGE=4 
I=M 

always 
endselect 

case 4 "finding season end using weekly data (2 week criteria) 
select case CRITERIA 

case "Mean Rainfall Method" "rainfall 
if WEEKL Y.RF.ARRAY(NO.SIM,I)<CRI1LEVEL and 

WEEKLY.RF.ARRAY(NO.SIM,I+1)<CRI1LEVEL 
SEASEND=I 
INDICATOR=l 
always 

ifI=M-l 
SEASEND=O 

always 
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case "MAl Method", "AETIPET Method", "CWSI Method" "MAI,AETPET,SMRI 
ifWEEKLY.DATA.ARRA Y(NO.SIM,I)<CRITLEVEL and 

WEEKL Y.DATA.ARRA Y(NO.SIM,I+ l)<CRITLEVEL 
SEASEND=I 
INDICATOR=1 
always 
ifl=M-l 

SEASEND=O 
always 

endselect 

endselect 

1=1+ 1 " increasing the counter to next week 

loop" until 

return 

end 

Routine FINDS TART yielding SEASONSTART 
" finding seasons start 

define INDICA TOR,M as an integer variable 

INDICATOR=O "boolean indicator 

" comments are identical to routine FINDEND 
M=I 

until INDICATOR=1 
do 

ifI=51 
1=1 

always 

select case WEEK. OR. A VERAGE 
case 1 "determining the season start using the average of the simulated years 

ifINDEXl.ARRAY(4,1»=CRITLEVEL and INDEXl.ARRA Y(4,I+1»=CRITLEVEL 
and INDEXl.ARRA Y(4,1+2»=CRITLEVEL 

SEASONSTART=I 
INDICATOR=1 

always 

case 2 "determining the season start using the 2 week average of the simulated years 
if INDEXl.ARRA Y(4,1»=CRITLEVEL and INDEXl.ARRA Y(4,1+ 1»=CRITLEVEL 

SEASONSTART=I 
INDICATOR=l 

always 

case 3 "finding season end using weekly data (3 week criteria) 
select case CRITERIA 

case "Mean Rainfall Method" "rainfall 
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if WEEKL Y.RF.ARRA Y(NO.SIM,I»=CRI1LEVEL and 
WEEKL Y.RF.ARRA Y(NO.SIM,I+ 1»=CRI1LEVEL 

and WEEKL Y.RF.ARRA Y(NO.SIM,I+2»=CRI1LEVEL 
SEASONSTART=I 
INDICATOR=1 

always 
ifI=M-1 
WEEK.OR.A VERAGE=4 
always 

case "MAl Method", "AETIPET Method", "CWSI Method" " MAI,AETPET,SMRI 
if WEEKL Y.DATA.ARRA Y(NO.SIM,I»=CRI1LEVEL and 

WEEKLY.DATAARRAY(NO.SIM,I+1»=CRI1LEVEL 
and WEEKLY.DATAARRAY(NO.SIM,I+2»=CRI1LEVEL 
SEASONSTART=I 
INDICATOR=1 
always 

ifI=M-1 
WEEK.OR.A VERAGE=4 
always 

endselect 

case 4 "finding season end using weekly data (2 week criteria) 
select case CRITERIA 

case "Mean Rainfall Method" "rainfall 
if WEEKL Y.RF.ARRA Y(NO.SIM,I»=CRI1LEVEL and 

WEEKLY.RF.ARRAY(NO.SIM,I+1»=CRI1LEVEL*O.75 
SEASONSTART=I 

INDICATOR=1 
always 
ifl=M-1 
SEASONSTART=O 
always 

case "MAl Method","AETIPET Method","CWSI Method" "MAI,AETPET,SMRI 
if WEEKL Y.DATAARRA Y(NO.SIM,I»=CRI1LEVEL and 

WEEKLY.DATAARRAY(NO.SIM,I+1»=CRI1LEVEL*O.75 
SEASONSTART=I 

INDICATOR=1 
always 

ifI=M-1 
SEASONSTART=O 
always 

endselect 

endselect 

1=1+1 

loop 

return 
end 
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Routine MARKOVRF given PROBt yielding EFRAIN and RAIN 

let X=I" random number 

until X < PROB 1 
do 
let X = random.f(6) 

loop 

ifCODE1=1 
RAIN=Gamma.f(SCALEI *SHAPE1,SHAPE1,2) 
else 
ifCODE1=2 
RAIN= weibull.f(SHAPE1,SCALE1,4) 
else 
ifCODE1=3 

RAIN= Log.normal.f(SHAPE1,SCALE1,3) 
else 
RAIN=exponential.f(SCALE1,2) 
always 

always 
always 

select case WEEK. NO "correcting for effective rainfall 

case 1,2 
let EFRAIN=0.95*RAIN 

case 3,4 
let EFRAIN=0.60*RAIN 

case 5,6,7,8,9,10,11 
let EFRAIN=0.95*RAIN 

case 12,13,14,15 
let EFRAIN=0.75*RAIN 

case 16,17 
let EFRAIN=0.65*RAIN 

case 18,19,20,21 
let EFRAIN=0.55*RAIN 

case 22,23,24,25,26,27,28,29,30,31,32,33,34, 
35,36,37,38,39 

let EFRAIN=RAIN 
case 40,41 

let EFRAIN=0.75*RAIN 
case 42,43 

let EFRAIN=0.5*RAIN 
case 44,45,46,47,48,49 
let EFRAIN=0.60*RAIN 

case 50,51,52 
let EFRAIN=0.65*RAIN 

endselect "end of case statements 

return 

end 

208 



Routine ONSETCORRELATION "detennining season's characteristics for 
" each simulated year 

reserve MAHACHAR as 4 by SIM.NO "stores the maha characteristics 
reserve Y ALACHAR as 4 by SIM.NO "store the yala charateristics 

open unit 4 for output, file name is "ONSET.DAT" 
use unit 4 for output 

if ONSET.CORR = 0 
print 3 lines as follows 

This option was not selected. 

else 
if CRITERIA="75% Probability Method" or CRITERIA="MAI Method" 

print 3 lines with CRITERIA thus 

The season characteristics can not be determined using 

the ************************* 
else 

for NO.SIM=l to NUM.RUN "loop to read each simulated year 
do 

following will produce rainfall of each simulation run 
for L=l to 52 
do 

print 1 line with NO.SIM,L,WEEKLY.DATAARRAY(NO.SIM,L) thus 

** *** *** * 
loop 

Call SEASONDETERMINATION yielding MSTART,MFIN,YSTART and YFIN 

MAHAORYALA=l "tells to which array results should be written (l=maha, 2=yala) 
Call SEASONRAINFALL given MSTART,MFIN 
MAHAORY ALA=2 
Call SEASONRAINFALL given YSTART,YFIN 

loop "loop for No. Sim 

print 7 line with CRIT as follows" printing rainfall output weekly 

Relationship between the Onset and Season Characteristics using the 

*************************** 

M Start M Fin Length RF Y Start Y Fin Length RF 

for A=l to SIM.NO 
do 

print 1 line with MAHACHAR(l,A),MAHA.CHAR(2,A),MAHACHAR(3,A), 
MAHA.CHAR(4,A),Y ALACHAR(l,A),Y ALACHAR(2,A),Y ALACHAR(3,A) and 

Y ALA.CHAR( 4,A) thus 

*** *** *** **** * *** *** *** **** * 

loop" for A 
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always 
always 

close unit 4 

return 
end 

Routine OUTPUT_FILES 
" shows a dialogue box with the name of different 
" output files 

define FORM.FIR as a pointer variable 
define FIELD.ID as a text variable 

show FORM.FIR with "output.frm" 

FIELD.ID = ACCEPT.F(FORM.PTR,O) 

ifFIELD.lD = "EXIT" 
stop 

always 
return 
end 

Routine SEAS9NCHARAC given YALAl,YALAENDl,MAHAl,MAHAENDl 

Y ALALENGTH= Y ALAEND 1-Y ALA 1 + 1 "finding the seasons length 
ifMAHAEND1<35 " when end is in the next year 
MAHALENGTH=52-MAHAl+MAHAENDI + 1 
else 
MAHALENGTH=MAHAENDI-MAHAI + 1" end is within the same year 

always 

print 20 lines with CRITERIA,YALAl,Y ALAENDl,MAHAl,MAHAENDl,YALALENGTH and 
MAHALENGTH as follows 

Season Characteristics determined using ****************************************** 

By Week No. *** soil moisture is sufficient 
for sowing of short age yala crop 

BY Week No. *** Yala season ceases 

By Week No. *** soil moisture is sufficient 
for sowing of Maha crop 

BY Week No. *** Maha season ceases 

Length of the yala season is only **** weeks 

Length of the maha season is **** weeks 

Return 
end 
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Routine SEASONDETERMINATION yielding 
MAHASTART,MAHAFIN,Y ALASTART and Y ALAFIN 

" this detennines the start and finish of both yala and maha seasons 

WEEK. ORA VERAGE=3 "condition for the case statement 
" to detennine the seasons start and end 
" using either average or each week conditions 

1=35 "look start from this week 

Call FINDSTART yielding MAHASTART 

if MAHAST ART <35 " if no start is found by week 52 
" then use a 2 week criteria 

WEEK ORA VERAGE=4 
1=35 
Call FINDS TART yielding MAHASTART 
always 

1=1 " find season end 

WEEK ORA VERAGE=3 "resetting to 3 week criteria 

if MAHASTART=O " if a maha season with zero is found, 
MAHAFIN=O "so the maha finish also zero 

else 
Call FINDEND yielding MAHAFIN 
always 

I=MAHAFIN+ 1 "yala start should be after week 5 

Call FINDSTART yielding Y ALAST ART 

I=YALASTART+1 
if YALAST ART=O "if a yala season with zero is found, 

Y ALAFIN=O " yala finish also zero 
else 
Call FINDEND yielding Y ALAFIN 
always 

if MAHAFIN> 1 0 "if maha finish is >10 then use 2 week criteria to find end 
1=1 
WEEK ORA VERAGE=4 
Call FINDEND yielding MAHAFIN 

always 

if Y ALAST ART=MAHAST ART" if yala and maha starts are equal find another 
" yala start using 2 week criteria 

I=MAHAFIN+ 1 
WEEK ORA VERAGE=4 

Call FINDSTART yielding YALASTART 

1= Y ALAS TART + 1 
Call FINDEND yielding Y ALAFIN 

always 
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" checking if there is no yala season 

ifYALASTART=MAHASTARTorMAHAFIN=YALAFINorYALASTART>MAHASTARTor 
Y ALASTART>25 

YALASTART=O 
YALAFIN=O 

always 

return 

end 

Routine SEASONRAINFALL given STARTWEEK,FINISHWEEK 
" determining the season length and its rainfall 
" for each simulated run to be used in CORRELATION routine 

define COUNTER and SEASONLENGTH as integer variables 
define TOTRAIN as a real variable 

TOTRAIN=O 

if FINISHWEEK<STARTWEEK "if the season end in next year 
SEASONLENGTH=52-STARTWEEK+FINISHWEEK 

" following 2 FOR loops will determine the RF 
furCOUNTER=STARTWEEKw52 

do 
TOTRAIN=WEEKL Y.RF.ARRA Y(NO.SIM,COUNTER)+ TOTRAIN 

loop 

for COUNTER= 1 to FINISHWEEK-l " 
do 
TOTRAIN=WEEKL Y.RF.ARRA Y(NO.SIM,COUNTER)+ TOTRAIN 

loop 

else "if end is within the same year 

SEAS ONLENGTH=FINIS HWEEK-STARTWEEK 
for COUNTER= STARTWEEK to FINISHWEEK-I 

do 
TOTRAIN=TOTRAIN+WEEKL Y.RF.ARRA Y(NO.SIM,COUNTER) 
loop 

always 

"print 1 line with NO.SIM,STARTWEEK,FINISHWEEK,SEASONLENGTH and TOTRAIN thus 

"*** *** *** *** *** * 

select case MAHA.OR. Y ALA "writing the results to array 
case 1 " for maha 
MAHA.CHAR(l,NO.SIM)=STARTWEEK 
MAHACHAR(2,NO.SIM)=FINISHWEEK 
MAHA.CHAR(3,NO.SIM)=SEASONLENGTH 
MAHA.CHAR(4,NO.SIM)=TOTRAIN 

case 2 "for yala 
Y ALA.CHAR(1,NO.SIM)=STARTWEEK 
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Y ALA.CHAR(2,NO.SIM)=FINISHWEEK 
Y ALA.CHAR(3,NO.SIM)=SEASONLENGTH 
YALA.CHAR(4,NO.SIM)=TOTRAIN 

ends elect 

return 
end 

Routine SELECTCRlTERIA 

" Using Dialog Box to get simulation requirements 

define FORM.PTR and CRITLEVEL.PTR as pointer variables 

define FIELD.lD as a text variable 

" initialising default values 

NUM. RUN= 1 00 
ASM.LEVEL=170 
DRYTHRESHOLD=7 
REQ.WEEK=O 

SHOW FORM.PTR with "input.frm" 

" setting current parameter values on form 

DDV AL.A(DFIELD.F("NUM.OF.RUNS", FORM.PTR» = NUM.RUN 
DDV AL.A(DFIELD.F("ASM.PROBABILITY", FORM.PTR» = 0 
DDV AL.A(DFIELD.F("ONSET.CORRELA TION", FORM.PTR» = 0 
DDV AL.A(DFIELD.F("CRITASM.LEVEL", FORM.PTR» = ASM.LEVEL 
DDV AL.A(DFIELD.F("CROP.FAILURE", FORM.PTR» = 0 
DDV AL.A(DFIELD.F("DRY.WEEK", FORM.PTR» = 0 
DDVAL.A(DFIELD.F("DRY.LEVEL", FORM.PTR» = DRYTHRESHOLD 
DDV AL.A(DFIELD.F("PARTICULAR.WEEK", FORM.PTR» = 0 
DDV AL.A(DFIELD.F("WEEKRF.REQ", FORM.PTR» = REQ.WEEK 

let FIELD.ID= ACCEPT.F(FORM.PTR,O) 

if FIELD.lD= "EXIT" 
stop 

always 

" setting the new parameter values 

NUM.RUN = DDV AL.A(DFIELD.F("NUM.OF.RUNS", FORM.PTR» 
CRITERIA = DTV AL.A(DFIELD.F("SEASON.METHOD", FORM.PTR» 

select case CRITERIA 
case "Mean Rainfall Method" 

CRITLEVEL=20 
case "75% Probability Method" 

CRITLEVEL=10 
case "MAl Method" 

CRITLEVEL=O.33 
case "AETIPET Method" 

CRITLEVEL=O.33 
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case "CWSI Method" 
CRITLEVEL=O.75 

endselect 

II getting dialogue box for the critical values 

SHOW CRITLEVEL.PTR with "critlevel.frrn" 
DDV AL.A(DFIELD.F("CRIT.LEVEL", CRITLEVEL.PTR» = CRITLEVEL II getting 

II default value 
let FIELD.lD= ACCEPT.F(CRITLEVEL.PTR,O) 
CRITLEVEL = DDV AL.A(DFIELD.F("CRIT.LEVEL", CRITLEVEL.PTR» 

II getting onset correlation field 

ONSET.CORR = DDV AL.A(DFIELD.F("ONSET.CORRELA TION", FORM.PTR» 
CROP.FAIL.PROB = DDV AL.A(DFIELD.F("CROP.FAILURE", FORM.PTR» 

II getting ASM field 

ASM.STA TISTICS = DDV AL.A(DFIELD.F("ASM.PROBABILITY", FORM.PTR» 
if ASM.STATISTICS <> 0 

ASM.LEVEL=DDVAL.A(DFIELD.F("CRITASM.LEVEL",FORM.PTR» 
always 

II getting onset weekly prob. calculation field 

DRYWEEK.CALC = DDV AL.A(DFIELD.F("DRY.WEEK", FORM.PTR» 
if DRYWEEK.CALC <> 0 

DRYTHRESHOLD= DDV AL.A(DFIELD.F("DRY.LEVEL",FORM.PTR» 
always 

II getting weekly Rf calculation field 

PARTICULAR.WEEKRF = DDV AL.A(DFIELD.F("PARTICULAR.WEEK", FORM.PTR» 
if PARTICULAR.WEEKRF <> 0 

REQ.WEEK = DDV AL.A(DFIELD.F("WEEKRF.REQ", FORM.PTR» 
always 

return 
end 

Routine SORTRAIN 
II This will sort the simulated RF data in an ascending 
II order and calculate the 75% probability value of 
II weekly RF 

define DONE as a text variable 
define CURRENT as a real variable 
define NEXTPOS,REMAINDER,DIVISOR and UNSORTED as integer variables 

for UNSORTED= 2 to NUM.RUN II using insertion sort of pascal language 
do II sort the data into an ascending order 

DONE=lfalse" 
CURRENT=RAINPROB(UNSORTED) 
NEXTPOS=UNSORTED 

while (NEXTPOS>l) and (DONE=lfalse") 
do 
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if RAINPROB(NEXTPOS-l»CURRENT 
RAINPROB(NEXTPOS)=RAINPROB(NEXTPOS-l) 
NEXTPOS=NEXTPOS-l 
else 
DONE="true" 

always 
loop "while 

RAINPROB(NEXTPOS)=CURRENT 
loop" for 

DMSOR=div.f(NUM.RUN+2,4) 
REMAINDER=mod.f(NUM.RUN+2,4) 

IF (REMAINDER=O) "getting RF value for corresponding position 
RAINY ALlJE=RAINPROB(DMSOR) 
else 
RAINV ALlJE=(RAINPROB (DIVISOR)+RAINPROB (DIVIS OR+ 1»/2 
always 

return 
end 

Routine WEEKL YDATA 

open unit 10 for output, file name is "WeekRf.dat" 
use unit 10 for output 

ifPARTICULAR.WEEKRF = 0 
Print 3 lines as follows 

You did not specify a week 

always 

ifPARTICULAR.WEEKRF <> 0 

Print 3 lines with REQ.WEEK thus 

The weekly simulated rainfall data for week ** 

for 1= 1 to NUM.RUN 
do 

print 1 line with RFV ALUE.ARRA Y(I) thus 

*** ** 
loop 

always 

close unit 10 

return 
end 
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