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Abstract of a thesis submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

Characterising genetic loci associated with loss

of apomixis in Hieracium

by Andrew S. Catanach

Most plant species strictly utilise sexual reproduction to generate genetically diverse seed

to ensure adaptation of their descendents to the changing demands of their environment.

Some species, however, have largely dispensed with sexual reproduction, opting instead to

propagate clonally via apomixis, and maintain genotypes that are presumably already

sufficiently adapted. Researchers of apomixis have long been attracted to the phenomenon

as a ~iological curiosity, but more significant investigative attention is now being paid to it

due to its ability to fix heterosis and therefore enable the economic production of high

yielding hybrid varieties ofthe world's major crops.

Despite the strong motivation to integrate apomixis into seed-production systems, previous

attempts to introgress the trait from wild apomictic relatives, or to induce it via

mutagenesis, have yet to produce commercial apomictic varieties. It now appears likely

that the successful transfer of apomixis into sexual crops will first require the elucidation

of themolecular mechanisms, employed by native apomicts, that enable the avoidance of

key components of sexual reproduction that otherwise serve to generate genetic diversity.

The Apomixis Programme at Crop & Food Research, Lincoln, aims to elucidate the

genetics and molecular mechanisms of apomixis in Hieracium subgenus Pilosella. Two

major deviations from sexual reproduction are required: the avoidance of meiosis, or

apomeiosis, and the avoidance of fertilisation, or parthenogenesis. Segregating populations

demonstrate independent segregation of apomeiosis and parthenogenesis. However,

conventional mapping approaches towards determinants of apomixis in other species have

often encountered significant difficulties posed by suppressed recombination at their loci.

Alternative genetic resources ofHieracium were therefore generated using T-DNA and

transposon mutagenesis, and deletion mutagenesis.

The present research focused on identifying and generating molecular maps of apomixis

loci by screening deletion mutant panels of two genotypes, H. glaciale and H. caespitosum

with secondary digest amplified fragment length polymorphism (SDAFLP). Identified loci
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were verified by their associations with apomixis in segregating populations, and SDAFLP

markers were sequenced and converted into sequence characterised amplified regions

(SCARs). The utility ofthe SCARs for the future isolation ofBAC clones was detennined

by their presence or absence in key mutants.

The identification and characterisation of three loci whose loss was associated with loss of

-parthenogenesis in H. glaciale are described in Chapter 3. One locus transmitted to hybrid

progeny as a detennining locus and the other two transmitted as modifying loci. AT-DNA

mutant of the H. glaciale background, which was included in the mutant panel, was found

to carry a deletion at the detennining locus. Findings that indicate that T-DNA insertions

are not linked to the deletion are set out in Chapter 4, and somaclonal variation is

suggested as an alternative cause of the deletion. Chapter 5 describes the use of deletion

mutagenesis to identifiy two loci in H. caespitosum: one is associated with loss of

apomeiosis (LOA) and the other with loss of parthenogenesis (LOP). Key mutants were

screened with SDAFLP to obtain high densities of markers at LOA and LOP and markers

that were predicted to be nearest the detenninants were sequenced and converted into

SCARs. One sequenced marker at LOP is likely to partially code for a regulatory gene.

LOA and LOP segregated independently among hybrid progeny in strong association with

apomeiosis and parthenogenesis respectively. Segregation distortion was characteristic of

both loci, while recombination did not appear to be suppressed. Chapter 6 discusses how

the findings of this research may be used to investigate the evolution of apomixis and to

isolate its genetic detenninants. It also discusses some challenges that might be

encountered in the future during the engineering of apomixis in commercial crop species.

Keywords: Apomeiosis, apospory, amplified fragment length polymorphism (AFLP),

deletion mutagenesis, embryogenesis, mapping, meiosis, molecular markers,

parthenogenesis.
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Chapter 1 Introduction

1.1 Overview
Apomixis, or clonal seed formation, although not common, is a character widely

distributed throughout the plant kingdom. A notable apomict is Taraxacum officinale, the

common dandelion, found throughout New Zealand, but very likely originating from a

single apomictic accession. Other apomicts include many cultivated varieties of citrus,

mango and blackberries. Although apomixis is found in a number of species of the grass

family Poaceae, it is present in no cereal crops of economic significance. Several authors

have proposed that the introduction of apomixis into important crop species would have

profound benefits to crop production worldwide (Koltunow et aI., 1995a; Toenniessen,

2001). The commercial use of high-yielding hybrid crops is currently economically

pro4ibitive for many cereal, forage grass, fibre and forestry crops due to the expense of

existing hybrid seed production systems. Apomixis would enable hybrid lines with fixed

heterosis to be grown through successive generations without any need to control

pollination. Furthermore, apomixis may allow the commercial production of seed from

one-off sports with useful attributes, leading to more rapid and economic development of

new varieties.

Species that undergo an apomictic mode of reproduction are diverse, and, to some extent,

so too are the known processes of apomixis. Sporophytic apomixis is the formation of

somatic embryos directly from ovular tissue outside of the embryo sac, and is utilised by

Citrus sinensis (Koltunow et aI., 1995b). The endosperm, which is derived from the

embryo sac, is necessary for the maturation of the adventitious embryos. This can result in

their competing against zygotic embryos for this resource. The more common

gametophytic apomixis is characterised by apomeiotic formation of unreduced embryo

sacs which then develop into embryos without fertilisation. Gametophytic apomixis, which

is the major focus of this review, is most prevalent in the families Poaceae, Asteraceae and

Rosaceae. It is under investigation mainly in genera ofPoaceae, including Poa (Matzk,

1991; Barcaccia et aI., 1998), Tripsacum (Leblanc et aI., 1995a), Brachiaria (Lutts et aI.,

1994; Pessino et aI., 1997) and Pennisetum (Dujardin and Hanna, 1984; Ozias-Akins et aI.,

1993), and in genera of Asteraceae including Taraxacum (Richards, 1970; Tas and van

Dijk, 1999; van Dijk et aI., 1999), Erigeron (Noyes and Rieseberg, 2000) and Hieracium
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(Bicknell and Borst, 1994; Bicknell et aI., 2001). Other well documented apomicts include

Hypericum (Matzk et aI., 2001) and Ranunculus (Nogler, 1984).

Gametophytic apomixis can be further categorised into diplospory and apospory. Both of

these forms of gametophytic apomixis include the development ofunreduced apomeiotic

embryo sacs. The derivations of the embryo sacs, however, differ in each. In diplosporous

systems; megaspores that have avoided meiotic reduction develop into embryo sacs with

unreduced ploidy. Apospory is characterised by the formation of one or more aposporous

initial cells derived from nearby nucellar tissue, which develop into unreduced aposporous

embryo sacs displacing the reduced sexual megaspore. A minority of gametophytic

apomicts, including Hieracium, autonomously produce endosperm but most, including

those of the family Poaceae, require fertilisation ofthe central cell for endosperm

development.

The·effect apomixis has on progeny was observed by Mendel, and was documented at least

as early as the first decade ofthe 20th century (Ostenfeld, 1906; Rosenberg, 1907; Nogler,

2006), but the phenomenon generally remains poorly understood. More recently, with its

promise to revolutionise seed production, and to some extent due to the capabilities offered

by molecular biology, apomixis has moved from a biological curiosity to an important

topic of mainstream research undertaken from a number of different approaches. Attempts

to introgress the trait into maize (Savidan, 2001) and pearl millet (Dujardin and Hanna,

1989) via wide crossing with apomictic relatives were undertaken with only limited

success. Another approach is to induce apomixis in non-apomicts by mutation. Genes were

found in Arabidopsis, that, when mutated, enabled aspects of seed development to proceed

without fertilisation (Ohad et aI., 1996; Chaudhury et aI., 1997; Grossniklaus et aI., 1998),

but only to abort later. These genes play key roles in sexual as well as apomictic

reproduction, and additional key regulators are likely to be required for apomixis.

However, the mutant Arabidopsis lines were not apomictic per se. It is apparent, therefore,

that for apomixis to be successfully introduced into commercially important crop species,

the gene sequences and genetic mechanisms utilised by native apomicts need to be

revealed. Histological investigations into gene expression differences between sexual and

apomictic ovules in Arabidopsis and Hieracium indicate that the two modes of

reproduction are essentially parallel processes (Tucker et al., 2003). There are, however,

two key deviations: avoidance of meiosis and avoidance of fertilisation. Regulatory
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elements uniquely expressed inapomicts at these points in embryo development are yet to

be identified.

Attempts to isolate regulatory elements for apomixis via gene expression studies (Vielle­

Calzada et al., 1996; Leblanc et al., 1997; Chen et al., 1999; Pessino et al., 2001; Rodrigues

et al., 2003) have typically yielded low numbers of verifiable expression differences,

providing further evidence that apomixis and sexuality share developmental pathways.

Differences that were found in these studies are yet to be shown to play criticalroles in

apomixis; instead they may be genes whose expression is regulated downstream from

expression ofmajor determinants. A number of attempts towards the isolation of genetic

detenninants of native apomicts have also been made via linkage mapping. Almost all of

these mapping studies revealed apomixis detenninants to be resident at large

non-recombinant loci. Finer genetic mapping of non-recombinant loci using segregating

populations is not possible, and more novel approaches are required to isolate the residing

genetic determinants.

The aim of this research was to identify genetic loci associated with apomixis using

deletion mapping. Deletion breakpoints for molecular mapping are analogous to

recombinational breakpoints, and their utility for mapping genomic regions with

suppressed recombination in plants has been previously demonstrated (Marais, 1992;

Liharska et al., 1997). Two panels of gamma-irradiation induced Hieracium deletion

mutants with loss of apomixis were generated. Secondary digest amplified fragment length

polymorphism (SDAFLP) (Knox and Ellis, 2001) was applied as a molecular comparative

screening technique to the panels alongside wild type control plants, to identify DNA

markers that were frequently absent in association with loss of apomixis. Progeny analyses

demonstrated co-segregation of the identified markers with apomixis, or with the

components of apomixis, apomeiosis and parthenogenesis. The focus was placed on

gaining DNA sequence as close as possible to genetic determinants involved in apomixis,

while characterising the genomic nature of the apomixis loci, and their respective effects

on aspects of the trait.

1.2 Literature Review

1.2.1 Apomixis in Hieracium in the context of sexual reproduction
Species ofthe genus Hieracium subgenus Pilosella (referred to more simply as Hieracium

in this thesis) are dicotyledonous perennials, of which most are polyploid and apomictic.



4

There are, however, some diploid and polyploid sexual species and many hybridise readily

with their apomictic counterparts. Most apomictic Hieracium are facultative, that is, they

undergo some level of sexual reproduction (Koltunow et aI., 1998). Furthermore, sexual

development proceeds alongside apomictic processes at a low level, and, as outlined

above, many developmental genes and processes are shared between the two pathways

(Tucker et aI., 2003). Apomictic development may therefore be viewed in the context of

sexual reproduction. The flower ofHieracium consists of a capitulum made up of multiple

bisexual florets arranged radially as a flattened disk on a floral receptacle. A mature floret,

as discussed in detail by Koltunow et aI. (1998), is composed of an inferior and terminal

ovary, and, protruding from an external tube of fused petals, a style terminating with a

stigma surrounded by a fused ring of lineate stamens (Fig. 1.1).

Stamens---

Style ----'<--I-ITI

Ovary

.......... Petals

Fig. 1.1 A single floret of a Hieracium capitulum (adapted

from Koltunow et aI., 1998).

During early stages of floral development a single ovule is formed from undifferentiated

cells of the ovary wall and a megaspore mother cell differentiates within. The integument

of the ovule grows, surrounding the nucellar lobe that contains the megaspore mother cell.

During this time the ovule becomes anatropous and the megaspore mother cell undergoes

meiosis, resulting in a megaspore, and three micropylar spores (Fig. 1.2 a) which

degenerate. The megaspore undergoes the mitotic divisions of megagametogenesis

(Fig. 1.2 b) and differentiation into a mature embryo sac of a polygonum type (Fig. 1.3).

The development of the reproductive structures of different florets of a single capitulum is

initially largely synchronous, but loses synchronicity as the florets mature, with those of

the outer whorls of the flower opening first.

Apomictic Hieracium utilise apospory and are autonomous with no requirement of

fertilisation for endosperm development. The process has been described histologically in

detail in two species of the genus, H aurantiacum and H piloselloides, and compared with

embryo development of sexual H pilosella (Koltunow et aI., 1998). Development of
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apomictic gametophytes is similar in the three species. In each, sexual embryo sacs

initially develop before being out-competed by aposporous initial cells derived from

nucellar tissue (Fig.l.4).

Megaspore 1st 2nd 1st 2nd 3rd Mature
mother cell meiotic meiotic mitotic mitotic mitotic embryo

division . division division division division sac

0) ~ C)Q

~
~

\.... ./ \.......---v --V

a. Megasporogenesis b. Megagametogenesis

Fig. 1.2 Megasporogenesis (a) and megagametogenesis (b) of the development of a sexual embryo sac.

Fig. 1.3 Stylised ovule containing a

mature embryo sac of the polygonum

type.

Funiculus

&T.~-:---t--Antipodal cells

Micropyle ---~~.<:;'

Integument

Nucellus --H-t-l ---+-+--I-.-I---Central cell

Synergid cells===,~~~1)ttl-Egg cell

Details of the timing of initiation of aposporous development, and the extent to which

sexual development proceeds, vary in each species studied. In H aurantiacum, aposporous

initial cells form early in ovule development; therefore meiotic structures are rarely

observed. By contrast, sexual embryo sac development in H piloselloides proceeds

similarly to that of sexual species, and meiosis is observed before degeneration of most

meiotic embryo sacs with the later appearance of aposporous initial cells. These expanding

cells develop into umeduced embryo sacs occupying the space that would otherwise be

occupied by a meiotic embryo sac. Embryogenesis and endospermy then proceed
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autonomously but otherwise analogously to sexual meiotic embryo sacs that have

undergone fertilisation.

Aposporous initial ....-

lA'I--------jl---- Megaspore

Nucellus ---'1.----4.!l1!mN:

Fig. 1.4 Appearance of an aposporous initial

. during megaspore development (meiotic

tetrad is shaded)in apomictic H. piloselloides

(adapted from Koltunow et aI., 1998).

Apomixis is not the only way that Hieracium can reproduce asexually. Plants typically

have a low lying sprawling habit, and many members reproduce readily from stoloniferous

growth. Hieracium is very successful at utilising asexual reproduction and can form large

clonal populations, having become a pernicious weed throughout high country ofNew

Zealand and North America. However, it is likely that the on-going success ofHieracium,

and many apomicts, is dependent to some extent on low levels of sexual reproduction to

retain population diversity and to enable adaptation when required. Sexually derived

progeny may result from fertilisation ofboth reduced meiotic and unreduced apomeiotic

embryo sacs. Using terminology that is now most prevalent in apomixis literature (Harlan

and De Wet, 1975), progeny derived from reduced and unreduced embryo sacs are termed

n+n and 2n+n hybrids respectively. Hybrid progeny may be apomictic upon the

transmission of genetic control elements of apomixis via reduced or unreduced embryo

sacs, or via pollen.

1.2.2 Genetics of apomixis: Allelism, genes involved, and their
relationship with sexual processes

The inheritance of apomixis has been investigated in both monocotyledonous and

dicotyledonous species, usually by crossing an apomict with a sexual relative and

observing transmission of the trait in Fl progeny. Inheritance studies require the

homologous pairing and crossing-over of chromosomes during meiosis. Apomixis itself

overrides meiotic megasporogenesis; therefore obligate apomicts cannot be used as

maternal parents. Facultative apomicts may be used as maternal parents, but this requires a

method to distinguish meiotically derived hybrid progeny (n+n), that are required for

analysis, from a background of clonal (2n+O), and less commonly, non-meiotically derived
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hybrid (2n+n) progeny. Apomicts are often uncompromised in their ability to produce

meiotically reduced pollen. Inheritance studies have therefore focused largely on the

transmission of the trait through pollen via one-way crosses using a sexual relative as the

pistillate parent. This strategy has been used to determine transmission of a wide variety of

apomictic processes within diverse lineages, including diplospory in dicotyledonous

Taraxacum officinale (van Dijk et al., 1999) and monocotyledonous Tripsacum dactyloides

(Leblanc et al., 1995b), and apospory in dicotyledonous Ranunculus (Nogler, 1984), and

monocotyledonous Pennisetum squamulatum (Ozias-Akins et al., 1993).

Inheritance studies have indicated that in many species the trait segregates as a single

dominant locus. After hybridising a sexual and an apomict, followed by successive

back-crossing to the sexual parent, Nogler (1984) concluded that apospory in Ranunculus

resides as an allele of a gene that is possessed by sexual plants. Nogler further postulated

that. the gene may ordinarily activate a cascade of genes required for the differentiation of

the embryo sac from the megaspore, while the allele that gives rise to apomixis could act

as an activator of similar genes in a cell of nucellar origin. Consistent with this hypothesis

is the direct association of the penetrance of apospory in Ranunculus with the proportion of

alleles that confer the trait. The proportion of alleles for apospory is in tum affected by the

ploidy. For example, a triploid that is simplex for the apospory allele A+ (A+A-A-) has

greater penetrance of apomixis conferred than a tetraploid that is simplex (A+A-A-A-),

which in tum has greater penetrance conferred than a pentaploid (A+A-A-A-A-). This

implies that while apospory is dominant over the sexual condition, the allele that confers

sexuality has a suppressing or competing effect. Nogler observed histologically a reflection

of inter-allelic competition in the timing of aposporic development relative to meiosis in

this species. Early induction of aposporous processes results in a greater suppression of

meiotic embryo sac development resulting in a greater proportion of ovules undergoing

aposporous development.

It is possible that apospory in Hieracium is initiated by alternative alleles of one or more

regulatory genes that ordinarily induce embryo sac development in a megaspore mother

cell. Such alternative alleles may result in developmental competition between aposporous

and sexual processes. Observations in Hieracium have indicated a dilution of penetrance in

plants with higher ploidy levels (Bicknell, 1997). Furthermore, it appears that two variable

aposporic mechanisms, each utilised by different species, are allelic, a conclusion drawn

from a 5: 1 segregation ratio of the trait among hybrids of triploid apomictic parents that
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were simplex for the trait (Bicknell et aI., 2000). This has important implications for future

research as it raises the possibility of using markers isolated in this study to help locate

components of apomixis in other Hieracium species.

Whether key determinants of apomixis and sexuality are allelic in Hieracium is not certain.

Analysis of genes involved in sexual reproduction, however, indicate that instead of

utilisingaltemative regulatory pathways,aposporyshares functional expression of at least

some genes that are important for sexual processes (Tucker et a1., 2003). Genes

investigated included the FIS (FERTILISATION INDEPENDENT SEED) class genes, that

were identified from mutations ofArabidopsis plants that exhibited features of apomixis.

The FIS class genes, MEDEA (Grossniklaus et aI., 1998), FIS2 (Chaudhury et aI., 1997)

and FIE (FERTILISATION INDEPENDENT ENDOSPERM) (Ohad et aI., 1996) are of the

Polycomb group and are believed to form a multimeric repressor complex. The expression

oftq.ese genes within embryo sacs, embryos and endosperm ofboth sexual and aposporous

derivation were spatially and temporally equivalent. Another gene investigated was SERK

(somatic embryo receptor kinase) discovered as a marker gene expressed in carrot

competent and embryogenic cells (Schmidt et al., 1997). In Arabidopsis, AtSERKl has a

role in the transition to somatic embryogenesis in culture, and is expressed during

megasporogenesis, in the megaspore, and during embryogenesis until the heart stage

(Hecht et al., 2001). Expression of a homologous Hieracium SERK-like (HpSERK-L)

transcript marks competency of somatic cells, both meiotic and apomeiotic, to form

embryo sacs (Tucker et al., 2003). SERK genes from different species show a high level of

homology with respect to one another, and HpSERK-L is likewise strongly similar.

An apomeiotic embryo sac ofHieracium may accept the entry of a pollen tube and the

transfer of sperm nuclei to participate in a hybridisation event, as if it were meiotically

derived. This suggests that apomeiotic embryo sac formation is uncoupled from

parthenogenesis, and that apomixis may therefore be determined by more than one gene.

Apospory (apomeiosis) and parthenogenesis were uncoupled in Fl progeny at low levels in

Poa pratensis (Albertini et aI., 2001). More recent evidence indicates that five major genes

playa role in apomixis in that species, including determinants that initiate apospory and

parthenogenesis with modification from genes that are dominant in sexual genotypes that

prevent each of the two components (Matzk et aI., 2005). The uncoupling of diplospory

and parthenogenesis was similarly evident in Taraxacum, and an incidence of autonomous

endospermy without parthenogenesis indicates further uncoupling of those components of
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. the trait (van Dijk et aI., 1999). InH. caespitosum apomeiosis and parthenogenesis

segregate independently indicating that each resides at a different locus.

InPennisetum, no separation of the components of apomixis has been found (Ozias-Akins

et aI., 1993; Ozias-Akins et aI., 1998). This may be a reflection of linkage between

determinants of the different components of the trait. It remains possible that apomixis may

.. be under multigenic control by complexnon-recombinantloci in many species in which

the trait appears to be monogenic. While in H. caespitosum apomeiosis and

parthenogenesis segregate as unlinked determinants, the genetics of the two components of

apomixis in other Hieracium species is less clear.

1.2.3 Gametophytic apomixis has a close association with
polyploidy

Despite a variety of forms and its presence in diverse lineages of angiosperms,

ganietophytic apomixis is rarely found in diploid plants. Exceptions to this rule are limited

primarily to experimentally derived plants, including accessions of an apomictic

Ranunculus hybrid (Nogler, 1984) and an accession from H. aurantiacum (Bicknell, 1997).

Both of these examples were polyhaploids derived from polyploids and were likely

products of parthenogenetic development ofmeiotically reduced embryo sacs (n+O).

Polyhaploids are often less vigorous than their polyploid counterparts and have other

perturbations such as male sterility and low seed set, although Nogler (1984) reported

examples ofRanunculus polyhaploids that were male fertile and effectively set seed.

While polyploidy is not an absolute requirement for apomixis, there is little evidence of

diploid apomicts that have thrived and competed effectively against polyploid counterparts

in the wild. The reason for the close association of apomixis with polyploidy is unclear and

is a topic of some debate. It is hypothesised that apomixis may have evolved as an escape

from sterility - caused by a breakdown of synchrony in gene expression necessary for

sexual reproduction - after hybridisation between distant taxa (Carman, 2001). That many

apomicts are allopolyploids from inter-specific hybridisation (Asker and Jerling, 1992)

lends support to this hypothesis. There are, however, a number of examples in which the

use of apomixis cannot be explained purely as an escape from sterility. One such example

is the allotetraploid apomict Hyparrhenia diplandra, a facultative apomict, which produces

low levels of sexual seed (Durand et aI., 2000). Furthermore, some well-characterised

apomicts show tetrasomic inheritance and therefore appear to be autopolyploids (Haldane,

1930). Apospory segregates by tetrasomic inheritance in Pennisetum (Ozias-Akins et aI.,
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1998); no markers were found linked in repulsion to the ASGR, and tetrasomic inheritance

was observed in the diplosporous Tripsacum (Grimanelli et aI., 1998b), indicating that

these species are autopolyploids.

Apomixis has advantages over sexual reproduction in some respects as there is no cost of

meiosis and well-adapted populations can quickly prevail. However, models suggest that if

apomixis were to be active at a diploid as well as at a polyploid level, a population would

be rapidly invaded by apomixis and sexuality would disappear (Marshall and Brown,

1981). Apomixis would effectively lead a species to an evolutionary dead end. Dysfunction

of apomixis in diploid plants may be an adaptive mechanism that ensures that sexuality at a

low level can occur. Nogler observed that the determinant for apomixis could only be

transferred in sperm nuclei in a heterozygous and diploid or polyploid state. Polyhaploid

Ranunculus could produce fertile pollen but none contained the determinant for apospory.

Lik~wise, apospory was only transmitted maternally through unreduced embryo sacs that

developed parthenogenetically (2n+0) or as hybrids (2n+n). Haploid gametes produced

only sexual progeny. Nogler suggested that apomixis is gamete-lethal in the haploid state.

Apomicts ofRanunculus were therefore incapable of forming apomictic diploid hybrids,

and their ability to produce maternal seed was diminished compared to their polyploid

counterparts. Nogler did, however, suggest that occasional diploid apomicts might feature

in the microevolution of polyploid apomicts, as they can hybridise to form 2n+n or 2n+2n

hybrids, providing a mechanism of genetic reassortment.

A similar elimination of the genomic region of diplospory from haploid gametes of

maize-Tripsacum hybrids is also postulated to protect sexual diploid populations from the

invasion of apomixis (Grimanelli et aI., 1998a). The authors propose a mechanism

whereby the transmission of apomixis to reduced female gametes is restricted by a lethal

factor that acts in trans and is incompletely penetrant, features consistent with a meiotic

drive mechanism. A recessive lethal factor appears to cause segregation distortion of

apospory in female gametes ofPennisetum (Ozias-Akins et aI., 1998), and to cause

gametophytic selection against parthenogenesis in Erigeron (Noyes and Rieseberg, 2000).

Diplospory appears to be excluded from haploid gametes ofErigeron (Noyes and

Rieseberg, 2000) by univalent inheritance, whereby segregation ofthe chromosome with

dip10spory into a diploid gamete is strongly favoured. Alternative models, such as

incomplete penetrance of apomixis in diploids due to insufficient dosage (Mogie, 1988),
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and sterility induced by allelic ratios higher than 0.25 (Noirot, 1993), are not commonly

supported by current molecular marker data.

The mechanisms that have evolved to preserve sexuality in diploid populations may be

many and varied. Lethality and meiotic drive appear to be common mechanisms in the

apomicts investigated so far. In the case of an Hieracium apomictic polyhaploid, both

pollen and female sterility were demonstrated (Bicknell, 1997), suggesting the presence of

a mechanism that prevents further introduction of apomixis into sexual diploid populations.

The mechanism that prevents apomixis from invading diploid populations appears to be

zygotic lethality in Hieracium, rather than gametic lethality. Factors for apomixis were

found to be transmitted effectively by haploid gametes to contribute towards functional

triploid zygotes (2n+n). By contrast, functional diploid zygotes (n+n) were not seen to

develop (Bicknell et aI., 2000).

1.2.4 Molecular mapping: what do apomixis loci look like and how
have they evolved

Early efforts towards mapping apomixis loci were conducted on apomictic grasses using

populations generated while introgressing apomixis into related crop species.

Cosegregating restriction fragment length polymorphisms (RFLP) markers were identified

from an Fl population of maize-Tripsacum hybrids (Leblanc et aI., 1995c). RFLP and

randomly amplified polymorphic DNA (RAPD) markers were traced through backcross

generations of pearl millet carrying apospory introgressed from Pennisetum squamulatum

(Ozias-Akins et aI., 1993), and two markers were found to strictly co-segregate with the

trait. The mapping ofmarkers cosegregating with apomixis and components of apomixis

has since progressed using Fl segregating progeny in members of the Poaceae including

Poa pratensis (Barcaccia et aI., 1998), Brachiaria decumbens (Pessino et aI., 1997; Pessino

et aI., 1998), and members of the Asteraceae including Erigeron annuus (Noyes and

Rieseberg, 2000), and Taraxacum officinale (van Dijk and Bakx-Schotman, 2004).

All species of known apomictic grasses used for mapping are pseudogamous. Fertilisation

of the central cell via pollination is therefore required for endosperm development, and

segregating progeny are frequently scored for apomixis using cytoembryological analysis

to detect apomeiotic structures. By contrast, endospermy is autonomous in Hieracium and

most other apomictic members of the Asteraceae; apomixis may therefore be scored by

assessing the production of germinable seed in the absence of fertilisation. Markers often

demonstrate strict cosegregation with apomixis indicating that determinants commonly
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reside at large non-recombinant regions of genomic DNA. This is invariably the case for

all grass species investigated. By contrast, however, while the locus associated with

diplospory in the asterid Erigeron annuus is believed to reside on a non-recombinant

univalent chromosome, no significant suppression of recombination was reported at the

locus associated with parthenogenesis (Noyes and Rieseberg, 2000). Similarly, no

suppression was evident at the DIPLOSPORYlocus of Taraxacum officinale (Vijverberg et

aI.,2004).

A continued effort to map apospory in P. squamulatum resulted in the identification of 22

linked RAPD markers, ofwhich 11 were converted into sequence characterised amplified

regions (SCARs) (Ozias-Akins et aI., 1998). Five ofthe 11 SCAR markers and one

sequence tagged site, ugt197, identified from previous work (Ozias-Akins et aI., 1993),

hybridised as low copy number sequences. Four of the six low copy markers were found to

be hemizygous within apomictic progeny (and completely absent in sexual progeny). This

reflects partial hemizygosity of this region, and implies that it is non-allelic to any region

of a homologous chromosome. This partially hemizygous region was termed the

apospory-specific genomic region (ASGR).

Loci for apospory in related grasses demonstrate a high level of conservation. Two markers

linked to the ASGR in P. squamulatum, the SCAR marker OPC04 and the sequenced

tagged site ugt197, are both linked to apospory respectively in a total of 3 and 8 out of 11

diverse aposporous species ofPennisetum surveyed. Neither marker showed hybridisation

to DNA of any of 8 sexual species (Lubbers et aI., 1994). Furthermore, five of the 12

markers tightly linked to the ASGR in P. squamulatum were also tightly linked to

apospory in Cenchrus ciliaris, a related apomict, and one other marker segregated from the

trait at a low frequency. That markers linked to apospory are shared between Pennisetum

species indicates that they share a common genomic region specific for apospory. The

partial hemizygosity shared by the loci of different species is not consistent with apospory

evolving repeatedly on multiple occasions. Therefore, the common genomic region for

apospory implies a single ancestral origin. If this was the case, apomixis has not precluded

interspecific hybridisation events between apomictic species and between apomicts and

sexuals. Retention of physically distant markers during hybridisation required that the

region be transmitted through many generations as non-recombinant DNA, which is

consistent with the non-recombinant natures ofthe loci that are seen today.
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Unexpectedly, the SCAR marker OPC04 is also linked to apospory in Brachiaria

brizantha (Pessino et aI., 1997). Whether the similarity between the apospory loci of

Pennisetum and Brachiaria is more extensive indicating common origins is not known.

However, more general sequence similarity and synteny among grass species enabled the

use of RFLP probes from maize to generate markers linked to apospory in Brachiaria.

Sexual and apomictic bulks ofF1 progeny were probed with 90 genomic and cDNA clones

of maize. The approach proved successful with a total of 61 of the probes hybridising

successfully. Probes from a duplicated linkage group on maize chromosomes 1L and 5S

were found in linkage with apospory.

Diplosporous Tripsacum is the closest known apomictic relative ofmaize. RFLP probes

from maize were therefore ideally suited to identify molecular markers linked to

diplospory. Three probes that detected RFLPs linked to diplospory are from a duplicated

li~age group on maize chromosomes 6L and 8L (Leblanc et aI., 1995c; Leblanc et aI.,

1995b; Grimanelli et aI., 1998a). Intriguingly, one probe from maize chromosome 5, which

had detected polymorphisms associated with apospory in Brachiaria (Pessino et aI., 1997),

mapped to the chromosome carrying diplospory in Tripsacum. However, no additional

sequence similarities between the two modes of apomixis were apparent.

It may be speculated that diplospory and apospory evolved as mutations of ancestral

genomes. Under this scenario it is possible that such mutated genes are recessive lethals in

their simplex or homozygous form. Pessino et aI., (1997) suggested candidate genes

located within identified linkage groups in maize that may conceivably, in mutated forms,

be determinants of apospory. However, lack of success in inducing apomixis in sexual

plants complicates the explanation of determinants as alleles of sexual genes. Furthermore,

hemizygosity of markers in Pennisetum suggests that if allelism through mutation did

occur, significant divergence that has since occurred has resulted in a molecular basis of

the trait of far greater complexity.

Apomixis has evolved multiple times in a range of species as a very successful

reproductive strategy. It is likely that it has occurred by exploiting different processes, and

produced variable advantages, including an escape from hybridisation-induced sterility.

Some species may possess genetic and physiological predispositions that enable the ready

adaptation to an apomictic way of life. In Hieracium, allelism between apomixis loci of

different species (Bicknell et aI., 2000) indicates either that apomixis evolved once and

radiated through speciation, or that it arose repeatedly from multiple events, with the genus
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being genetically and physiologically amenable to the reproductive transfonnation, and

able to exploit the advantages that apomixis brings.

1.2.5 Difficulties of mapping apomixis determinants at very large
non-recombinant loci

The common suppression of recombination of apomixis loci places them alongside similar

notable examples including the self-incompatibility (S) locus ofBrassica (Boyes et aI.,

1997) and the extreme case of the mammalian Y chromosome. Similarly, the univalent

chromosome ofErigeron on which the detenninant of diplospory resides is expected to be

under suppression of recombination to the extent of the whole chromosome. Suppressed

recombination ofless extensive regions may involve the presence of the trait on a

mini-chromosome, a centromeric region, or a hemizygous region with localised suppressed

recombination.

Map based cloning strategies towards isolating molecular detenninants for apomixis have

encountered significant difficulties due to suppressed recombination. In genomic regions

where recombination readily occurs, molecular markers that show complete cosegregation

with a trait are often a relatively small physical distance from a detennining gene.

However, when clusters of markers show no segregation from each other or from the trait,

the utility of meiotic recombination for the mapping of linked markers is markedly

reduced. The SCAR marker OPC04, which is shared by Pennisetum and Brachiaria, was

apparently found to segregate at a low frequency from apospory in Brachiaria (Pessino et

aI., 1997), but no recombination between that marker, or any other linked marker, and the

trait, was detected in Pennisetum (Ozias-Akins et aI., 1998).

The lack of meiotic recombination at the ASGR in Pennisetum necessitated a unique

approach towards the isolation of genetic detenninants of the ASGR. It was reasoned that

genetic detenninants may feature as regions of high conservation of the ASGR that are

retained between related species (Roche et aI., 2002). To identify regions of high

conservation, the microcolinearity or microsynteny between bacterial artificial

chromosome (BAC) contigs spanning the ASGR from two sources was investigated. Two

BAC libraries were generated: one from genomic DNA of a polyhaploid derived from a

cross between the sexual P. glaucum and the apomictic P. squamulatum, and the other

from the close relative Cenchrus ciliaris. The probing of each library with six low copy

SCAR markers yielded 28 positive BAC clones from each library, which were arranged

into 12 contigs of between two and six clones each, with seven singletons remaining. None
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of the identified clones or contigs carried two markers. On this basis, it was estimated that

the ASGR was at least several hundred kilobase pairs (kbp) in size. The true extent of the

ASGR, however, was revealed by means of fluorescence in situ hybridisation of the

isolated BAC clones to pachytene chromosomes. It was found to be approximately 50

megabase pairs (Mbp) (Akiyama et aI., 2004). The ASGR is therefore extensive,

approximately a quarter of a chromosome, making the tasks of assembling a BAC contig,

annotating the sequence, and identification and testing of candidate genes quite formidable.

However, this process may be assisted by the discovery ofmicrosynteny between the

ASGRs ofP. squamulatum and C. ciliaris, and the rice genome, which may be used as a

reference and a source ofmarkers to assist the physical mapping ofBAC contigs.

Furthermore, if apospory did evolve as a mutation of a gene or genes involved in sexual

reproduction, annotated sequence of the rice genome may provide candidate genes

(Gualtieri et aI., 2006).

The microsynteny based approach of positional cloning of apomixis determinants in

Pennisetum provides a possible alternative to recombination-based mapping of the ASGR.

In the light of the difficulties encountered by this programme, further alternative

approaches have been suggested that include insertional mutagenesis and deletion

mutagenesis (Ozias-Akins et aI., 1998) and radiation hybrid mapping (Goel et aI., 2003), to

identify the smallest unit required for functional apospory.

1.3 Background to the methodology

1.3.1 Generation of deletion mutants and deletion mapping
Deletion mutagenesis has proved to be a very effective technique to generate genetic

resources for breeding programmes and to identify molecular markers linked to genes of

interest. It has been used successfully in a variety of plant species including wheat (Marais,

1992) and Arabidopsis (Vizir et aI., 1994), and specifically to map a centromeric region

with little recombination in tomato (Liharska et aI., 1997). Deletion mutagenesis was

therefore seen as an alternative means to generate resources to map apomixis loci. In

addition to its potential to provide a resource to map regions with suppressed

recombination, its use in an apomict was seen as is particularly suitable; mutants are of an

isogenic background, therefore marker screening is simplified. Assessing phenotypes may

also be simplified as no complicating factors are brought in from a sexual parent, an

inevitable consequence of a conventional mapping approach.
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There are two commonly utilised forms of ionising radiation used for generating deletions

in genomic DNA; gamma irradiation from a 60Co or l37Cs source(Marais, 1992; Vizir et

al., 1994), and irradiation from fast neutrons (Okubara et al., 1994). Ionising radiation in

higher plants causes internal or terminal deletions (Vizir and Mulligan, 1999), and

sometimes inversion or translocation of chromosomal segments (Grosovsky et al., 1986).

Gamma irradiation ofArabidopsis diploid pollen was found to cause deletions of an

average size of 160 kb to 280 kb (Vizir et al., 1994).

To screen for suitable mutants from mutagenesis using pollen, the female parent needs

recessive morphological markers linked to the trait of interest. The phenotypes ofthese

markers become pseudodominant when the dominant allele of irradiated pollen is lost

(Vizir et al., 1994; Liharska et al., 1997; Vizir and Mulligan, 1999). Alternatively, high­

throughput assays may be utilised to isolate mutations in irradiated pollen from a male

parent that is homozygous for a dominant allele of the trait. This technique was used to

generate mutants for loss of downy mildew resistance in lettuce (Okubara et al., 1994).

While the irradiation of pollen presents an ideal means of generating genomic deletions

and apomixis is transmitted through pollen, homozygosity is required for loss of the trait

through deletion in the M1 to be distinguishable from the sexual condition through

segregation. No Hieracium genotypes are known that are homozygous for determinants of

apomixis. Hieracium genotypes were instead selected in which determinants for apomixis

were believed to be in simplex. In the simplex condition, loss of critical determinants on

irradiation of seed results in readily observable phenotypes. By contrast to the irradiation

of pollen, however, the irradiation of seed results in chimeric plants due to the multicellular

nature of the embryo. Loss of apomixis, detected as empty seed heads, was expressed by

some flowers but not by others of the same mutant plant. Paradoxically, the chimeric

nature of mutants resulting from irradiation of seed presents an advantage, as each mutant

carries multiple opportunities to express loss of apomixis on any inflorescence. To gain a

plant of unicellular origin, subtending tissue ofmutant flowers was taken and regenerated

via tissue culture.

1.3.2 A model of deletion-based mapping of loci associated with
apomixis

As determinants of apomixis in H glaciale and H caespitosum appear to segregate as

dominant loci in simplex, a model predicting how deletions of the locus are represented

within the mutant panel may be developed. The model is based on the assumption that
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gamma-induced deletions occur between random double strand breaks. Only deletions

(rather than inversions, translocations and point mutations) are considered, and the locus

and its associated deletions are assumed to be internal rather than terminal. Deletions of

any size up to a maximum are assumed to occur at the same frequency. A maximum

deletion size of 10 "deletion units" is imposed on the basis that few individuals are

expected to survive large deletions. Polyploid plants may have greater tolerance of deletion

than diploids. However, lethality from gamma irradiation is expected to be the result of

extensive deletion or chromosome loss. Therefore, the model allows for a deletion to lie

across the locus, or from the locus centre to anywhere up to 10 deletion units either side.

Within these assumptions, a panel of virtual "mutants" is generated. For each deletion of

each mutant two parameters based on arbitrary physical (not genetic) units are randomly

(but conditionally) set; length (l), the length of the deletion, and distance (d), the distance

that the centre of the deletion is from the determinant whose deletion causes the mutant

phenotype. The parameters are generated by the following equations or functions:

• Equation 1: I RANDO X (10 - 1) + 1

RANDOX9+ 1

• Equation 2: d RANDO X «(1/2) - (-1/2)) + (-1/2)

RANDO X 1- 1/2

where RANDO is a function that returns a randomly distributed number between 0 and 1.

Equation 1· generates a deletion which has a length ofbetween one and 10 units. Equation

2 places the centre of the deletion at a location between - l/2 and l/2 units from the

determinant (at "0" units), which fulfils the requirement that the determinant that is critical

to the function of interest is deleted. When these equations are run 100 times to reflect a

mapping panel of 100 deletion mutant plants, the results can be arranged into a 100 X 20

matrix (100 columns of mutant panel members, and 20 rows of chromosomal locations or

"markers" at the locus). The frequencies at which different locations are deleted within the

mutant panel can be calculated and represented as a histogram (Fig. 1.5).

Frequent loss of a DNA marker by members of the panel indicates that it is close to the

controlling locus. Conversely, a marker lost less frequently is more distal from a

controlling locus. Markers can therefore be ordered from those positioned centrally (most

frequently lost), outwards towards distal markers that are occasionally lost. Whether two

occasionally lost markers are on the same side, or on opposite sides, of the central marker

depends on the frequency of deletion breakpoints between them. For example, iftwo
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markers A and B are considered, the frequency of plants that have lost marker B in

addition to marker A is expected to be related to the physical distance between A and B.

This is analogous to conventional mapping, in which two molecular markers are more

likely to segregate if they are physically more distant.
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Fig. 1.5 Frequencies of deletion of chromosomal locations neighbouring a genetic determinant, as

predicted by a model of deletion based mapping using a "virtual" panel of 100 mutants. The model

generates a binomial distribution of cumulative deletions over the region of DNA, with those locations

most proximal to the determinant being most commonly deleted.

1.3.3 Molecular analysis of mutants
The strategy of irradiating clonal seed ensures that deletions are detected against a uniform

genetic background. Two strategies may be employed to detect deletions in genomic DNA:

one is genomic subtraction and the other is systematic screening of molecular markers. The

former was originally developed to isolate probes corresponding to the human Y

chromosome (Lamar and Palmer, 1984). An excess of randomly-sheared DNA from a
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female was used to drive hybridization ofSau3A-cleaved DNA from a male; male DNA

fonned heteroduplexes with female DNA ifit came from any chromosome other than the

Y chromosome. DNA from the Y chromosome self-annealed, fonning Sau3A overhangs

which could be selectively cloned into a vector with a Sau3A acceptor site. A variation on

this approach was made for isolating DNA corresponding to deletion mutants (Straus and

Ausubel, 1990), by repeatedly annealing melted biotinylated DNA from a mutant to melted

non-biotinylated DNA from a wild type individual, and using avidin coated beads to

extract the bound DNA. Unbound DNA ofthe wild type, which should reflect DNA absent

in the mutant, was cloned. Representational difference analysis (RDA) is a more recently

developed technique based on similar principles (Lisitsyn et aI., 1993; Lisitsyn et aI.,

1994). The mutant is referred to as the driver and the wild type as the tester. Tester DNA

has adaptors ligated prior to melting and annealing with excess melted DNA from the

driver. Only fragments of tester DNA that have reannealed and have adaptors at both ends

are amplifiable by peR.

Subtraction between wild type and mutant pools of cDNA could be employed to isolate

genes whose expression is lost in mutants. This technique has the potential to provide

enlightening data; however, there are two significant reasons why it can only be employed

with significant risk. The first is that the timing ofmRNA capture from developing floral

buds would be critical for success. The second reason is that the primary cause of mutation

may be the loss of expression of a gene that occurs in the wild type at only low levels, such

as a repressor. Such a mutation may be very difficult to detect, particularly if it results in

many changes of expression of downstream secondary genes. Investigation of well­

characterised mutants using cDNA subtraction at a later date may be more appropriate, for

dissection of biochemical pathways of the trait.

While subtraction techniques theoretically provide a rapid route to cloned sequences, they

are not ideal as a method for characterising deletions associated with the loss of apomixis

in Hieracium. A bulked sample of a number of mutants of the panel is unsuitable, as

different deletions of different mutants will likely complement each other so none will be

detectable. Cloned differences between single deletion mutants and their wild type

counterpart will include sporadic deletions that are alternative to loci of interest, and these

would only be distinguishable through further investigation. RDA effectively detects only

large deletions of unique DNA; deleted sequence of the mutants maybe well represented

elsewhere in the genome, making the deletions difficult for RDA to detect. Furthennore,
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any markers that are successfully obtained from genomic subtraction techniques will

require further downstream analysis to determine marker order and relative proximity to

genetic determinants, effectively negating the potential expediency of the technique.

A systematic screen to isolate molecular markers that were commonly lost among the

mutants was therefore used. By generating markers present in control samples but absent in

mutants, the deletions within eachomutant were molecularly characterised, enabling plants

with the most informative deletions to be identified. The most informative deletions were

usually small as their breakpoints lay near putative determinants. Those mutants carrying

informative deletions were selected for further analysis to more finely map the region. A

number of different marker classes were available for a systematic marker screen. Some

such as RFLP are labour intensive and, as with the use of microsatellites, require prior

knowledge of the genome. Two classes ofmarkers, random amplified polymorphic DNAs

(RA'pDs) (Williams et al., 1990) and amplified fragment length polymorphisms (AFLPs)

(Vos et al., 1995), are more recently developed classes ofmarkers that do not require any

prior sequence information of the genome. RAPD analysis was used to successfully

identify and isolate markers linked to the ASGR ofP. squamulatum (Ozias-Akins et al.,

1998). The technique has a low labour requirement and produces markers that are easily

isolated and of a reasonable length (300-1200 bp). Isolated markers in this size range are

more likely to be useful for downstream analysis, and, for this reason, RAPD analysis was

an option for this research.

The labour required for AFLP is well rewarded with the generation of approximately 170

scorab1e markers per reaction, and it is a readily automatab1e technique using a DNA

analyser. However, preliminary screens of deletion mutant panels using conventional

AFLP by other members of the apomixis programme gave confounding results, probably

due to variable methylation states of their genomic DNA. Conventional AFLP is

susceptible to the effects of methylation, due to the methylation sensitivity of the

restriction endonuclease Pstl which is used to digest genomic DNA simultaneously with

the restriction endonuclease MseI. Using the alternative technique of SDAFLP (Knox and

Ellis, 2001), genomic DNA is initially digested with the methylation insensitive MseI.

Following digestion, MseI adaptors are ligated followed by PCR amplification between

MseI adaptors. The resulting amplicons, now free of methylation, are able to be digested

consistently by PstI, which is followed by ligation ofPstI adaptors, and subsequent

amplification between MseI and PstI adaptors.
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1.4 The Apomixis Programme at Crop & Food Research
The Apomixis Programme at Crop & Food Research, Lincoln was initiated by Dr Ross

Bicknell in 1992. I joined the programme early in 1996 and it has since been the main

focus ofmy professional career. Investigations have focussed largely on Hieracium, with

some peripheral work on other species. More recently a formal collaboration has been

established with Prof. Anna Koltunow's group of CSIRO Plant Industry in Adelaide,

Australia. Research in the programme has progressed from establishing suitable apomictic

and sexual species to investigate the genetics of the trait, through to conducting strategies

to isolate linked or implicated gene sequences. Work prior to this doctoral research

focussed on two broad streams: the development and introduction of an

Activator/Dissociation (AciDs) transposable element system, and the generation and

characterisation of segregating populations. Both of these approaches resulted in resources

that continue to be integral in the research of the programme. The generation ofAdDs

insertion lines has produced mutants whose characterisation have been a recent focus of

mine in the programme, and segregating populations continue to be used to assess the

different components of apomixis and associated molecular markers.

1.4.1 Hieracium as a model apomict
Hieracium species have haploid genome sizes of approximately 1.8 X 109 bp spanning

nine chromosomes. Some key species have been described regarding their mode of

reproduction, ploidy, and transmission of apomixis, and utilised in experiments and

breeding schemes. Sexual biotypes of the species H pilosella occur in both diploid and

tetraploid forms. A tetraploid form, P4, is used extensively as a pistillate parent in

segregation studies. Accessions of the apomict H aurantiacum have been studied

including aneuploid (A3.4) (Bicknell et aI., 2000) and tetraploid forms (A4). Other

apomicts utilised are the triploid H piloselloides (D3) (Bicknell et aI., 2000), the

pentaploid H glaciale (G5), and the tetraploids H caespitosum (C4D) and H praealtum

(R4) (Bicknell et aI., 2001).

While possessing fundamental features of suitable model species such as easy propagation

and a short generation time, Hieracium has further characteristics that are beneficial for

crossing experiments. Sexual species are largely self-incompatible; therefore the

emasculation of florets prior to pollination is not necessary. Furthermore, apomictic

species are autonomous so fertilisation is not necessary for endosperm development, and

parthenogenesis can be readily scored. Stamens and stigmas of unopened flower heads can
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be easily removed, which precludes any opportunity of sexual gamete fusion while

allowing maternally derived seed to develop (Koltunow et aI., 1995a). By contrast,

apomictic grasses under study are invariably pseudogamous and the trait is scored more

laboriously with cytoembryological analysis (Ozias-Akins et aI., 1993), test-crossing

(Ozias-Akins et aI., 1998), and flow-cytometric analysis (Matzk et aI., 2000).

Most species ofHieracium can be transformed by T-DNA integration (Bicknell and Borst,

1994). Transformation has expedited genetic investigations and enabled the use of an

insertional mutagenesis strategy towards tagging genes involved in apomixis. In the future

it is envisaged that transformation will enable attempts to induce apomixis by the transfer

of candidate genes, or to knock out the phenotype with RNA interference (RNAi). Use of

the negative selectable marker codA, that confers sensitivity to the nucleotide analogue

5'-fluorocytoseine, enabled the detection and measurements of meiosis as a function of

eli~inationof the gene through reduction (Bicknell et aI., 2003). More recently, selection

under codA has enabled the isolation of a population of meiotic polyhaploids from

apomictic H. caespitosum.

1.4.2 Locating apomixis loci: insertional mutagenesis
Insertional mutagenesis by integration of a transposable element is a strategy that has

resulted in the successful isolation of gene sequences in both animal and plant species

including Drosophila (Cooley et aI., 1988), zebrafish (Gaiano et aI., 1996), maize (Athma

et aI., 1992), and Arabidopsis (Grevelding et aI., 1992). This strategy was attractive for

gene tagging of apomixis determinants in Hieracium as tagging could bypass difficulties

associated with a possible lack of recombination within the apomixis locus. The chosen

system for an insertional mutagenesis approach was the AciDs system from maize, which

has been utilised successfully for gene tagging in the past ofmany heterologous species,

including Arabidopsis (Grevelding et aI., 1992) and rice (Izawa et aI., 1997).

1.4.2.1 The T-DNA mutant loss of apomeiosis 1 (/oa1)
Loa] is a mutant from an early population of transformants generated by Ross Bicknell to

assess Ds transposition in A3.4. This plant has lost almost all ability to produce apomictic

seed from a cut head; only 0.02% of seeds germinated to form unreduced maternally

derived progeny, and 0.09% of seeds germinated to form polyhaploid progeny. However,

on fertilisation, 3.39% of seed resulted in hybrid progeny (Okada et aI., 2007).

Cytoembryological analysis of this plant revealed that the mutant retains processes of
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sexual reproduction found in wild type A3.4. Differentiation of a megaspore mother cell

within an ovule, followed by its usual degradation prior to meiosis was observed, as

previously reported by Koltunow et aI. (1998). Aposporous initial cells of this mutant

demonstrate a loss of directional growth towards the sexual apparatus and show features of

reduced megaspores, including possession of a callose wall and expression of the HDMCl

(Hieracium homologue of disrupted meiotic cDNA 1), which is specifically expressed in

meiotic cells (Takashi Okada, CSIRO Plant Industry, pers. comm.). As this plant was

derived from a transformation experiment, I investigated whether T-DNA integration was

the cause of the mutation by isolating and sequencing genomic DNA neighbouring the

right borders of two T-DNA insertions. A complex rearrangement of integrated T-DNA,

which segregates as a single linkage group, is now well described, but no evidence of any

knock-out of a gene was found (Okada et aI., 2007).

1.4~2.2 Transposon tagging in H. glaciale
For insertional mutagenesis of determinants of apomixis, Ross Bicknell and I constructed

two vectors for each component ofthe system (Bicknell et aI., 2001). The first vector,

pAC?, contains a Ds element with a reporter gene that expresses on integration close to a

gene promoter or an enhancer (see Chapter 4, section 4.1.1 for details). The Ds element is

capable of excision and reinsertion only on introduction of the second vector that expresses

transposase. We generated 218 transformants from tissue ofH glaciale and assessed them

for T-DNA copy number by Southern analysis. As AciDs elements preferentially excise

and reintegrate to linked locations, we planned to isolate transformants that contained T­

DNA inserts that mapped close to key loci. To develop probes to find T-DNA inserts

linked to components of apomixis, junctions between T-DNA right borders and genomic

DNA from 22 members of this population were isolated by thermally asymmetric

interlaced PCR (TAIL-PCR) (Liu et aI., 1995) and sequenced for use as probes to detect

linkage between a T-DNA insert and apomixis.

1.4.2.3 The T-DNA mutant loss ofparthenogenesis 1 (lop1)
The T-DNA mutant, lopl, carries three copies ofpAC7, and had lost the ability to produce

parthenogenetic seed. No genomic sequences bordering T-DNA inserts showed significant

homology to candidate gene sequences, although one showed homology to a polyprotein of

a retrotransposon. Whether the mutations of loal and lopl reflect losses of two distinct

components of apomixis was tested via the possibility of complementation upon
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hybridisationofthe two mutants. Loa] was used to pollinate lop] and a population of 43

progeny was generated. Many ofthe progenywere found to be 2n+n hybrids, but 14 were

found to be n+n hybrids, which were used for the analysis. Three progeny plants that

demonstrated restoration of apomixis were recovered.

This mutant was included in the G5 mutant panel for deletion screening. The cause of loss

. of parthenogenesis in lop] was later found to be deletion ofa critical determinant of the

trait, which is described in Chapter 3. Sequence data ofT-DNA/genomic DNA junctions

enabled PCR tests for segregation of each insert within the progeny, and investigation of

their role in causing the deletion. This is described in Chapter 4.

1.4.2.4 A common genomic junction sequence flanks T-DNA right borders
T-DNA integration in Arabidopsis and rice occurs in genomic locations semi-randomly,

with some bias towards gene rich areas (Chen et aI., 2003). On this basis, T-DNA/genomic

DNA junctions of transformed Hieracium would be expected to be unique. However, five

T-DNA/genomic DNA junctions of the H glaciale T-DNA insertion panel, including one

of lop], were found to have genomic regions with a high degree of sequence similarity, but

the precise points ofT-DNA integration varied within a 30 base pair (bp) region. Beyond

the 30 bp region of integration, genomic regions showed 100% identity between three of

the five T-DNAjunctions. Genomic regions ofthe other two junctions showed 90%

identity. PCR analysis ofthe remainder of the T-DNA insertion panel revealed a further

three plants that possessed similar T-DNA/genomic DNA junctions. The eight plants in

total that carry these similar DNA junctions amount to almost 4% of the population.

Southern analyses ofHindUI digested DNA ofH glaciale and H praealtum indicated that

15-20 copies ofthe common genomic sequence are present in these species, and PCR

analysis indicated its presence in H aurantiacum and H pilosella. While the common

genomic sequence appeared to be present in all four Hieracium species tested (H glaciale,

H praealtum, H aurantiacum and H pilosella) it was not detected in the relatives

Taraxacum officinale and Hypochoeris radicata.

TAIL-PCR was used to determine upstream sequence displaced on T-DNA integration in

the wild type genome ofH glaciale. Two unique sequences were amplified from H

glaciale. The presence of these two upstream regions was confirmed by PCR in the other

three species ofHieracium tested: H praealtum, H aurantiacum and H pilosella.

However, the juxtaposition of the upstream regions with the common genomic region was
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restricted to H glaciale. Interestingly, the points at which the upstream sequences started

were within the approximately 30 bp region within which T-DNAborders were found.

Therefore, wild type genomic sequences bordered the common genomic region in a very

similar way that T-DNA was found to.

As this sequence bordered one of the T-DNA inserts of the mutant lop], it was investigated

further. Association of a specific region with T-DNA integration has not been reported in

the literature and it remains possible that it is involved with the trait. The present data

suggests that different juxtapositions of the common genomic region with other genomic

regions are unique to individual species, and at least one is in simplex in H glaciale.

Therefore, species-specific markers, and potentially mapping markers, can be designed

based on the common genomic region. It is striking that this region is associated with

distinct regions within Hieracium genomes of different species. It appears to attract new

regi?ns, such as T-DNA, to integrate nearby and to recombine with native sequences to

form new genomic arrangements. It may be a sequence of hyper-recombination.

Alternatively it may be a transposable element in its own right, exploiting the process of

integration ofT-DNA for integration of itself.

1.4.3 Segregating populations and molecular mapping
The acquisition of a collection of different species and individuals ofHieracium with

different modes of reproduction has enabled analysis of the trait through segregating F1

populations (Bicknell et aI., 2000; Bicknell et aI., 2003). Emasculation prior to

hybridisation is not normally necessary due to the high degree of self-incompatibility and

hybrid progeny are relatively easily identified by unique morphological characteristics of

the male parent. Two segregating F1 populations were used for this doctoral research for

marker verification and to assess the segregation behaviour of components of apomixis.

Both were resources that were previously developed by Ross Bicknell. A small population

of 28 segregants was generated from multiple pollinations of an inbred sexual accession of

P4 by the apomictic 05 (termed "PO"). A significant problem encountered when

generating this population was a high incidence of selfing, likely to be due to the

breakdown of the sporophytic self-incompatibility system caused by a mentor effect (Mraz,

2003) by the aneuploid pollen of 05. A second population of approximately 500 progeny

was generated from routine crosses between P4 and C4D (termed "PC"). A subset of 101

segregants was selected for closer analysis. PC progeny demonstrate the independent

segregation of the two components of apomixis, apomeiosis and parthenogenesis.
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1.4.4 Generation of deletion mutant panels and preliminary
analysis

Two panels ofHieracium mutants based on G5 and on C4D were generated by Suzanne

Lambie, Ellen Podivinsky and Sylvia Erasmuson at C&FR. Preliminary analysis of the G5

mutant panel by Sylvia Erasmuson established common loss of markers among 22 deletion

mutants and lop] when compared to wild type control samples. The current research

commenced with the resources of the deletion mutant panels and the segregating

populations established.
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Chapter 2 Materials and Methods

2.1 Plant Material
The apomictic Hieracium species under investigation were the pentaploid H glaciale (G5)

and the tetraploid H caespitosum (C4D). Other accessions used in this study were the

apomictic tetraploid H aurantiacum (A4) as a pollen parent to produce hybrid progeny

from sexual plants, and the sexual H pilosella (P4), used as a female parent for the

production of segregating populations. The T-DNA mutants loal and lopl are derived

from the aneuploid accession ofH aurantiacum (A3.4) and from G5 respectively.

2.1.1 Plant propagation and maintenance
All plants were maintained in a greenhouse at between 16° C and 28° C in summer and

12° C and 20° C in winter, on gravel beds with seasonally adjusted automated watering.

Flowering of mature plants was encouraged during winter months by supplementary

lighting between the hours of 2 am and 9:30 am. Pollinations were made by gently

brushing stigmas of open flowers with open flowers of the pollen parent. Seeds were

collected from mature heads and dried for at least one week before they were surface

sterilised by shaking in sterilising solution (0.96% sodium hypochlorite and approximately

2% TWEEN® 20 (BDH)) for 50 minutes, rinsed with sterile dH20 and sown on

agar-solidified rooting medium containing MS salts (Murashige and Skoog, 1962), Bs

vitamins (Gamborg et aI., 1968), and 3% sucrose. Seedlings were raised at 21-23° C with a

daily light period of 16 hours, and were ex-flasked at approximately the four leaf stage into

a mist unit for approximately 3 days before placing in the greenhouse.

Plant accessions were propagated via single rosette cuttings placed in potting mix and

allowed to take root in a mist unit. Alternatively, for in vitro storage, young leaves were

picked and sterilised with sterilising solution for 10 minutes before rinsing with sterile

dH20 and placing on agar-solidified regeneration medium containing MS salts, Bs

vitamins, 3% sucrose, 2 mg/l benzyladenine (BA), 0.5 mg/l indole-3-butyric acid (IBA),

and 200 mg/l glutamine. Regenerated shoots were placed on agar-solidified rooting

medium.
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2.2 Mutant panels
Two mutant panels were utilised for this research: a panel of 77 mutants derived from 05

and a panel of79 mutants derived from C4D. Dry collected seeds from emasculated heads

of propagated material were exposed to 400 gray ofy-irradiation from a 60CO source at the

National Radiation Laboratory (l08 Victoria Street, Christchurch, New Zealand).

Irradiated and non-irradiated control seeds were surface sterilised and germinated on

agar-solidified rooting medium and grown as Ml plants to flowering in the greenhouse as

described above. Assessment for loss of apomixis was made by visual detection of reduced

seed set on sectors ofMl plants. To generate stable non-chimeric mutants, tissue

subtending seed heads expressing reduced seed-set was harvested and surface sterilised,

and placed on agar-solidified regeneration medium as described above. Regenerated shoots

were placed on agar-solidified rooting medium to form roots prior to ex-flasking to a

greenhouse and growing to flowering. Mutants that continued to demonstrate reduced

seed-set of a non-chimeric nature were selected for on-going analysis.

2.3 Segregating populations
Two segregating populations, PO and PC, were generated prior to this research by Dr Ross

Bicknell. A population of 28 PO segregants was generated from pollinations of an inbred

sexual accession of P4 by the apomictic 05. Further crossing was attempted to enlarge the

PO population but no further hybrids were obtained. A second population of approximately

500 PC segregants was generated from pollinations between P4 and C4D. A subset of 101

segregants was selected for closer analysis.

2.4 Phenotype assessment
Plants subject to phenotype assessment were first scored for parthenogenesis and then for

apomeiosis. To assess seed production and parthenogenesis of a plant, seed was harvested

from mature seed heads and left in open Wheaton vials to dry at room temperature for

between 7 and 21 days. Hieracium is generally self-incompatible but to ensure that a plant

was scored correctly as parthenogenetic, stigma and anthers of at least one capitulum

destined for seed harvest and scoring, were removed at approximately stage five when

floral heads are well developed but prior to anthesis (Koltunow et al., 1998). Stigmas and

anthers were removed by transversely excising the top half of the unopened floral head.

Dark seed, associated with successful development of endosperm, (Koltunow et al., 1998)

were counted. Seed was sown on rooting medium and assessed for germination, evidenced
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by fonnation of a seedling or of callus, at approximately five weeks after sowing. Plants

that produced seed with no fertilisation were scored as parthenogenetic.

Apomeiosis was assessed as a function of nuclear DNA contents of progeny relative to

those of their parents. Plant nuclei were released by finely chopping leaf tissue from

between one and six seedlings in 0.4 ml extraction buffer (21 gil citric acid, 0.5%

TWEEN® 20), stained by adding 0.6 ml DAPI staining solution (4', 6-diamidino-2­

phenylindole at 2.25 mgll in a saturated solution of dibasic sodium phosphate), and filtered

using a 30 ~m CellTrics® disposable filter (Partee). DAPI fluorescence, as a function of

nuclear DNA contents, was measured using a Partee PAIl flow cytometer. Parthenogenetic

progeny were scored as 2n+0 or n+O, being derived from unreduced and reduced female

gametes respectively (Harlan and De Wet, 1975). Hybrid progeny, obtained after

pollination of non-parthenogenetic plants with A4 as the pollen donor, were similarly

sco~ed as 2n+n or n+n, being derived from unreduced and reduced female gametes

respectively. Plants were scored as positive for apomeiosis ifthey produced any progeny

from unreduced megagametes and negative for apomeiosis if they consistently produced

progeny from reduced megagametes. For most plants, at least six progeny were tested.

Some plants produced low numbers of progeny suitable for analysis from multiple heads.

To be certain of the origin of progeny from parthenogenetic plants, only maternal progeny

were used for the scoring of apomeiosis, despite the low numbers of maternal progeny

available in some instances. The possibility remains that some plants are falsely scored as

negative for apomeiosis, but it is unlikely that any plants are falsely scored as positive for

apomeiosis.

2.5 Histology
Histology was conducted on ovaries ofmutants of the H glaciale mutant panel. Floral

capitulae were collected, prepared and serially sectioned as previously described

(Koltunow et al., 1998). Capitulae were collected at stages 2, 3, and 4 to investigate

fonning aposporous initials, stage 6 to view fully fonned embryo sacs, and stages 8 and 10

to view embryogenesis. Capitulae were halved (or quartered if at stages 8 and 10)

longitudinally and fixed in fresh (made within 48 hours) 3.1 % glutaraldehyde in 0.1 M

sodium cacodylate buffer (pH 7.2-7.4) under vacuum overnight at room temperature. The

buffer was replaced the following day, in which tissue was stored at 4° C until use.



30

Except for stage 2 capitulae, stigmas, stamens and petals were removed so that only a

small section of stamen filaments and associated structures remained attached to ovaries,

which were then dissected from the floral receptacles. To assist with dehydration and

infiltration of ovaries at stage 5 or higher, the ovary walls were carefully pierced with a

sharp pin. Dissected ovaries were placed in sieves and dehydrated using a graded series of

20-30 minute acetone washes at room temperature, starting at 15% and ending at 100%

with gradations of approximately 15%, and then infiltrated with 1:1 acetone/Spurr's resin

(Spurr, 1969) overnight under vacuum at -70 kPa at room temperature. Ovaries were then

placed in 100% Spurr's resin in molds which were allowed to polymerise overnight at 65­

70° C. Blocks were trimmed and serially sectioned at 2 Ilm using a Reichert lung

microtome. Sections were stained in 0.1 % toluidine blue in 0.02% sodium carbonate and

were photographed under bright field optics using a Leica DM R microscope.

2.6 SDAFLP analysis
Total DNA was isolated from approximately 100 mg of fresh young Hieracium leaves,

either from greenhouse or in vitro stocks, using a DNeasy Plant Mini Kit (Qiagen). DNA

was quantified using a GeneQuant RNNDNA calculator (Pharrnacia) and by comparing

with known standards on an ethidium bromide-stained 1% agarose gel. Preparation of

SDAFLP template was based on the method previously described (Knox and Ellis, 2001).

Adaptors and primers for template preparation are listed in Table 2.1. Approximately

0.5 Ilg of genomic DNA was digested with 5 U ofMseI (New England Biolabs) in 50 III

reactions containing 1X restriction/ligation (RL) buffer (10 mM Tris-acetate pH 7.5,

10 mM magnesium acetate, 50 mM potassium acetate, 5 mM DTT) and 100ug/ml bovine

serum albumen (BSA, New England Biolabs) at 37° C for 16 hours. The digested genomic

DNA was diluted with 10 III of ligation mixture containing IX RL buffer, 50 pmol of

annealed MseI adaptor 1 and MseI adaptor 2, 12 nmol of ATP and 1 U ofT4 DNA ligase

(Roche) and incubated at 37° C for 4 hours, followed by incubation at 4° C for 16 hours.

The resulting template was diluted with 440 III of TO. IE (10 mM Tris, 0.1 mM EDTA)

pH 8.0 and 2 III was used in 20 III PCR reactions containing IX supplied reaction buffer

(Roche), dNTPs at 200 IlM, 7.5 pmoles ofMseI adaptor 1 as non-selective MseI primer,

and 1 U of Taq polymerase (Roche). PCR conditions (hereby referred to as AFLPPRE)

were as previously described (Vos et aI., 1995) for primers with no or one selective base

(20 cycles of the following profile: 94° C for 30 seconds (s), 56° C for one minute, 72° C

for one minute) using an EppendorfMaster Cycler. Following amplification, 5 III of
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preamplification product was digested with 20 U ofPstI (New England Biolabs) in 50 j..tl

as described above for MseI digestion, followed by dilution with· 10 j..tl of ligation mixture

containing 5 pmol of annealed PstI adaptor 1 and PstI adaptor 2, as described above for

MseI adaptor ligation. Following ligation, template was diluted with 440 j..tl of TO. IE

pH 8.0 and 4 j..tl was amplified by PCR in 25 j..tl reactions containing IX supplied reaction

buffer (Roche), each dNTP at 200 j..tM, and primers PstI+N and MseI+N (where N

represents A, C, G orT as selective bases) at 2.5 ng/j..tl, using the cycling regime

AFLPPRE. As many as 16 preamplified SDAFLP templates were generated for each

sample, each with a different combination of the selective bases.

Table 2.1 The oligonucleotide adaptors and primers used for the preamplified SDAFLP template

preparation.

Oligonucleotide name Oligonucleotide Sequence

MseI adaptor 1 GACGATGAGTCCTGAG

Ms"eI adaptor 2 TACTCAGGACTCAT

PstI adaptor 1 CTCGTAGACTGCGTACATGCA

Pst! adaptor 2 TGTACGCAGTCTAC

MseI+N GACGATGAGTCCTGAGTAAN

PstI+N GACTGCGTACATGCAGN

*A, C, G orT

2.6.1 SDAFLP selective amplification and visualisation using
[y.33p] ATP

PstI+N oligonucleotide primers were end~labelled at a concentration of 5 ng/j..tl in reactions

containing IX supplied kinase reaction buffer, [y)3p] ATP (Amersham) at 1.5 j..tCi/j..t1 and

0.2 U T4 polynucleotide kinase (New England Biolabs) incubated at 37° C for 1 hour.

Templates generated by amplification with the respective PstI+N and MseI+N were used

in 12 j..tl reactions essentially as previously described (Vos et aI., 1995), with some minor

modifications. Amplification reactions contained IX supplied PCR reaction buffer

(Roche), each dNTP at 200 j..tM, 0.75 j..tl of end labelled PstI+N reaction, 1.25 ng of

unlabelled PstI+N, 1.5 ng ofMseI with three selective bases (MseI+NNN, either

GACGATGAGTCCTGAGTAANNN or GATGAGTCCTGAGTAANNN) and 0.75 U Tag

polymerase. A modified cycling profile (AFLPSELE) for selective AFLP reactions was

based on that previously described for AFLP selective amplifications (Vos et aI., 1995), as

follows: 94° C for 2 minutes, 9 cycles of 94° C for 30 s, 65° C for 30 s (reducing by 1° C

per cycle), 72° C for 1 minute, followed by 24 cycles of 94° C for 30 s, 56° C for 30 sand

72° C for 1 minute, with a final strand extension of 72° C for 10 minutes.
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Amplified selective SDAFLP products were separated by electrophoresis on a 6%

denaturing polyacrylamide gel. The gel matrix solution was made by dissolving urea to a

final concentration of7.67 M in 6% acrylamide/bisacrylamide (29:1, Biorad) and IX TBE.

50 ml of gel matrix solution at 4° C was mixed with 50 III of

N,N,N',N'-tetramethylethylenediamine (TEMED, Biorad) and 500 III of freshly made 10%

ammonium persulphate and cast in plates of a S2 gel rig (Life Technologies) between

035 mm spacers with the smaller gel plate coated in Sigmacote® (Sigma). After

polymerising overnight, the gel was pre-run with parameter maxima set at 120 Watts,

75 mAmps, 2400 Volts and 45° C. Once the gel plate reached 45° C, SDAFLP products

were mixed with 6 III STR loading buffer (95% formamide, 10 mM sodium hydroxide,

0.05% bromophenol blue and 0.05% xylene cyanol), denatured at 95° C for 4 minutes

before quenching on ice. Approximately 5 III of each sample was loaded into a 64-lane

comb. The gel was run with the parameter maxima described above, until the dye fronts

had run the optimal distance, dependent on the length of the marker(s) in question. The gel

apparatus was dismantled so that the gel remained attached to the large plate. A piece of

3MM paper was lightly pressed onto the damp gel which adhered to the paper so that it

could be lifted from the plate. The gel was dried under vacuum for 2 hours at 80° C and

exposed to auto-radiographic film for 3 days followed by additional exposure to new film

for 10 days. Exposed film was developed using an Agfa Curix 60 automatic developer.

2.6.2 SDAFLP selective amplification and analysis using the DNA
analyser

Products of SDAFLP selective amplification were generated in 12 III reactions containing

IX supplied reaction buffer (GeneCraft), each dNTP at 200 IlM, 15 ng of one of the

fluorescently labelled primers PstI+A+FAM, PstI+G+FAM, PstI+C+HEX, or

PstI+T+HEX (GeneWorks), 18 ng of one ofMseI+NNN selective primers, 1.2 III of the

respective PstI+N, MseI+N template, and 0.6 U of Taq polymerase, using the cycling

profile AFLPSELE. Profiles were visualised by adding 1 III of labelled reaction to 10 III of

HiDi formamide (Applied Biosystems), denaturing as described above, and running on an

ABI PRISM® 3100 Genetic Analyser fitted with a 36 em array filled with POP4 polymer.

Data was analysed by the software package GeneMapper™ (Applied Biosystems) and

scorable markers were identified visually.
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2.6.3 SDAFLP selective amplification and visualisation using
silver staining

Products of SDAFLP selective amplification were generated in 12 Jll reactions as

described for generating products for visualisation using the DNA analyser, except non­

labelled PstI+N primers were used. Products were separated by electrophoresis on a 6%

denaturing polyacrylamide gel, as described above, except the larger plate was coated with

6 Jll ofmethacryloxypropyltrimethoxysilane (Sigma M-6514) in a solution of2 ml of 0.5%

acetic acid in 95% ethanol. Following electrophoresis, the gel plates were dismantled with

the gel firmly attached to the larger plate. With the gel on the underside, the plate was

submersed in four litres of the following solutions in a photographic development tank,

rotating at approximately 30 rpm. First the gel was fixed in 10% acetic acid for 30 minutes.

It was then rinsed three times with dHzO for 2-3 minutes each rinse. The gel was then

stained for 40 minutes in silver stain (1 gil AgN03, 0.05% formaldehyde). This was

followed by a very brief (3-5 seconds) submersion in dHzO, followed by immediate

transfer to fresh developer at approximately 6° C (30 gil NaC03, 0.05% formaldehyde,

2 mg/l sodium thiosulfate (NazSz03.5HzO). Development proceeded for 5-10 minutes until

the desired level of band intensity was achieved. The gel was fixed in 10% acetic acid for

5-6 minutes, rinsed in dHzO for 2-3 minutes, and air dried overnight. Scoring ofbands was

made either directly from the gel on a light box or from an image on exposed and

processed APC film (Promega).

2.6.4 Marker identification and data analysis
The criterion for a putative marker associated with loss of apomixis was its absence in

three or more mutants. For the H glaciale mutant panel, putative markers were given two

letter identifiers, starting with Aa, then Ab etc. Markers of the H caespitosum mutant

panel were identified using a genetic analyser and were given identifiers with the locus and

the marker size. Commonly lost markers were scored in mutant-by-marker matrices with 0

for absence, 2 for presence and 1, if necessary, for ambiguous presence. The markers were

scored for loss and clustered by sorting in Microsoft Excel. Ordering ofmarkers was

conducted empirically within clusters into the order that best reflected the expected

continuous nature of deletions as previously described in Chapter 1, section 1.3.2. Markers

that were found to be commonly lost in the mutant panel, and that were able to be easily

identified in the hybrid background, were scored for their presence or absence in members

of the the PG segregating population.
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2.7 Band isolation and analysis
Bands corresponding to markers of importance were isolated, sequenced and characterised,

and converted into SCAR markers.

2.7.1 Mini-sequencing of markers
Mini-sequencing was conducted essentially as described previously (Brugmans et aI.,

2003). SDAFLP amplification products ofmutant and control samples were diluted 1:120

in ddH20, and re-amplified in 12 reactions in which the MseI selective primer was

replaced by one of 12 mini-sequencing primers. Each of the 12 mini-sequencing primers

contain between three and five degenerate bases followed by an additional selective base at

the 3' end (Table 2.2). Mini-sequencing products were visualised using polyacrylamide gel

electrophoresis (PAGE) or the DNA analyser, as described above.

Table 2.2 MseI mini-sequencing primer sequences.

Oligonucleotide name Oligonucleotide Sequence
MseI+3N+A CGATGAGTCCTGAGTAANNNA
MseI+3N+C CGATGAGTCCTGAGTAANNNC
MseI+3N+G CGATGAGTCCTGAGTAANNNG
MseI+3N+T CGATGAGTCCTGAGTAANNNT
MseI+4N+A CGATGAGTCCTGAGTAANNNNA
MseI+4N+C CGATGAGTCCTGAGTAANNNNC
MseI+4N+G CGATGAGTCCTGAGTAANNNNG
MseI+4N+T CGATGAGTCCTGAGTAANNNNT
MseI+5N+A CGATGAGTCCTGAGTAANNNNNA
MseI+5N+C CGATGAGTCCTGAGTAANNNNNC
MseI+5N+G CGATGAGTCCTGAGTAANNNNNG
MseI+5N+T CGATGAGTCCTGAGTAANNNNNT

2.7.2 SDAFLP using Msel primers with extended selective bases
Extended MseI primers were designed composed of the core sequence

5'-ATGAGTCCTGAGTAA-3', followed by the three selective bases of the MseI primer

from which the marker was generated, and then by two or three bases detected by mini­

sequencing. Only bases that were mini-sequenced with good confidence were included in

these extended primers. Profiles were generated and visualised as described above.
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2.7.3 Marker band excision and cloning
Bands were isolated from SDAFLP profiles that were generated by amplification using

labelled or unlabelled PstI+N primers and standard MseI+3N primers, mini-sequencing

primers, or MseI primers with extended selective bases. Profiles were separated by PAGE

and visualised as described above. Bands of [y)3p] ATP-Iabelled profiles were located by

aligning common locating holes of the gel and the developed autoradiograph that were

punched prior to exposure, enabling accurate excision of the band with a scalpel through

the autoradiograph. Alternatively, silver-stained bands were excised directly from the

developed gel adhered to the plate.

The gel slice containing a band was suspended in 30-50 III of 50 mM Tris pH 9.0, and

incubated at room temperature for 1-2 hours with intermittent vortexing before being

placed at 4° C overnight. Each band was reamplified from 3-5 III of eluate in 60 III

rea~tions containing IX supplied buffer (GeneCraft), each dNTP at 200 IlM, 75 ng of

oligonuleotide primers and 2.5 U of Taq polymerase, using the cycling regime AC55

(94° C for 2 minutes; 40 cycles of 94° C for 30 seconds, 55° C for 30 seconds and 72° C

for 1 minute; 72° C for 7 minutes). Products were visualised by electrophoresis of 5 III on

an ethidium bromide-stained 1% agarose gel and either gel purified using a QIAquick®

Gel Extraction Kit, or purified directly using a QIAquick® PCR Purification Kit (Qiagen),

and eluted in 30 III of supplied elution buffer, according to the manufacturer's protocol.

Purified products were visualised and quantified on a 1% agarose gel and cloned into

pGem®T or pGem®T-Easy (Promega) in 10 III reactions, according to the manufacturer's

protocol, excepthalf ofthe recommended quantities ofvector and T4 DNA ligase were

routinely used. Generally, 3 III of purified product was used as insert DNA. Ligation

reactions were incubated at 4°C overnight before transferring 3 III for transformation of

sub-cloning efficiency competent cells (Invitrogen). Transformation proceeded according

to the manufacturer's protocol except 25 III of cells instead of 50 III of cells were

transformed followed by the addition of 475 III of LB instead of 950 Ill. After incubation of

transformed cells for expression, the cells were centrifuged at 1500 X g for two minutes

and 300 III of LB was removed. The cells were resuspended and plated onto agar-solidified

LB containing 100 Ilg/ml ampicillin overlaid with 800 Ilg of 5-bromo-4-chloro-3-indolyl­

beta-D-galactopyranoside (X-gal) and 800 Ilg isopropyl thiogalactoside (IPTG), and

incubated overnight at 37° C. Four white colonies were picked with a flame sterilised

inoculating loop and re-streaked onto agar-solidified LB containing 100 Ilg/ml ampicillin.
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2.7.4 Marker sequencing
Single colonies from re-streaked transformed cells were picked with a 200 jll pipette tip,

touched three times onto the bottom of a microplate well containing 15 jll ofPCR mix (1 X

supplied reaction buffer (GeneCraft), each dNTP at 200 jlM, primers M13Forward

(5'-GTAAAACGACGGCCAG-3') and M13Reverse (5 '-CAGGAAACAGCTATGAC-3')

at 600 nM and 0.75 U Taq polymerase), and then washed into 700 jll ofLB with 100 jlglml

ampicillin. Cloned inserts were amplified using the cycling regime AC55 and the

respective LB inoculations were incubated at 37° C overnight rotating at 600 rpm, before

adding 300 jll of glycerol for long-term storage at -80° C.

Successful amplification of PCR products of appropriate sizes was confirmed by

electrophoresis of 5 jll of each product on a 1% agarose gel. Each product was purified for

sequencing by incubating a second 5 jll aliquot with 2.5 U exonuclease I and 0.5 U shrimp

alk~line phosphatase in 10 jll reactions, at 37° C for 30 minutes, and then at 80° C for 15

minutes (Werle et aI., 1994). Extension products were generated using the BigDye®

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems), with some adjustments to

the manufacturer's protocol; 3 jll of purified product was added to 7 jll containing 0.5 jll

Ready Reaction Premix, 1.75 fll 5X buffer, and 25 ng primer, and amplified using the

cycling regime ACSEQ50 (96° C for 1 minute, followed by 50 cycles of 96° C for 10

seconds, 50° C for 5 seconds, and 60° C for 4 minutes). The products were purified using

the EthanollEDTA precipitation method, according to the manufacturer's protocol, and

sequenced on an Applied Biosystems ABI PRISM 3100 Genetic Analyser fitted with a

36 cm array filled with POP4.

2.7.5 Marker sequence characterisation
To accurately reflect sequence of genomic origin, marker sequences were trimmed of

primer sequence and bases were added to restore genomic marker restriction sites.

Potential open reading frames (ORFs) were predicted using the online ORF finder

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html). Predicted ORFs that occupied a significant

proportion of the sequence or that were bounded by one or both of the sequence margins,

and stop codons were noted. Exons were predicted using the GENSCAN web server

(http://genes.mit.eduiGENSCAN.html).

Genomic Markers were tested for similarity with known sequences of GenBank using the

algorithms blastn, blastx and tblastx (http://www.ncbi.nih.gov/BLAST) (Altschul et aI.,
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1990). Any sequences from which significant matches were detected were further tested

for similarity against the "non-redundant" (m) peptide sequence database of GenBank

using the algorithm blastx. All searches were made using the default parameters, except

that the low complexity filter was disabled and any influence of low complexity on the

significance of the result was detennined manually.

2.7.6 SCAR marker design
For conversion of SDAFLP markers identified from the H glaciale mutant panel into

SCAR markers, oligonucleotide primers for PCR were designed from each sequenced

marker with melting temperatures (Tms) of approximately 60° C from sequenced SDAFLP

markers. For SCAR markers ofthe H caespitosum panel, many primers were designed

using the web-based programme Primer3 using SDAFLP marker sequences as input

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi). The parameters used for

primer design were those given by default, with the exceptions of the Tm requirements set

at a minimum of 60° C and a maximum of 67° C, with an optimal Tm of 64° C, and the

primer length to be between 20 and 27 bases with the optimal length set at 24 bases.

Primers were only accepted if they lay internal to the SDAFLP primers inclusively. Other

primers were designed to exploit the regions of polymorphism that generated SDAFLP

markers (Pst! and MseI restriction sites, followed by the variable bases of the selective

primers). These primers therefore contained either PstI or MseI restriction sites at their 5'

ends, followed by marker sequence to a length that gave each primer a Tm ofbetween

64° C and 66° C.

2.7.7 SCAR marker amplification
The SCAR markers were tested for their utility as single copy markers by PCR using

approximately 100 ng of genomic Hieracium DNA as template in 15 ~l reactions

containing 1 X supplied reaction buffer (Geneworks), each dNTP at 200 ~M, each

oligonucleotide primer at 600 nM and 0.6 U of Taq polymerase. Oligonucleotide primers

of SCAR markers derived from SDAFLP markers of the H glaciale mutant panel were

tested using the cycling profile of AC58 (94° C for 2 minutes; 40 cycles of 94° C for 30

seconds, 58° C for 30 seconds and 72° C for 1 minute; 72° C for 7 minutes), AC64 and

AC68, which had primer annealing temperatures of 64°C and 68° C respectively. SCAR

markers derived from H caespitosum were amplified using the cycling regime AC64. All

SCAR markers were run on a 1% agarose gel.



2.8 Data analysis
The inheritances of traits and markers were tested using exact one sample binomial tests

(Arimitage and Berry, 1994) under GenStat (GenStat-Committee, 2002).

38
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Chapter 3 Detection of loci associated with
parthenogenesis in Hieracium glaciale

3.1 Introduction
Apomixis is now widely agreed to utilise sexual processes to generate functional seed, but

with up to three key modifying components: apomeiosis, parthenogenesis and, in cases of

autonomous apomicts, autonomous endospermy. Only when all components are present is

clonal seed successfully formed. Within a typical ovule ofH aurantiacum or H

piloselloides, sexual processes proceed at least to some extent. However, apomictic

processes soon predominate with the formation of apomeiotic aposporous initial cells

followed by their expansion towards the nucellar lobe. Sexual structures that were under

development normally degrade in deference to aposporous initial cells so that unreduced

em1}ryo sacs may form. Possessing the genetic complement of the parent, the unreduced

embryo sacs may then undergo parthenogenetic development that often proceeds prior to

anthesis (Bicknell, 1997; Koltunow et aI., 1998).

Some seed in Hieracium, however, is derived from ovules in which sexual processes

predominate. The resulting minor progeny classes may develop from combinations of

sexual and apomictic processes, or entirely from sexual processes that have escaped

subversion by apomictic ones (Bicknell, 1997). The extent of sexuality varies between

different Hieracium species, and is related in part to the penetrance of apomixis. How

effectively apomictic processes predominate is likely to result from delicate interactions,

both temporally and spatially, between major determinants of apomixis, genes that playa

role in both apomixis and sexuality, and possibly other genetic and epigenetic modifying

elements.

The mutation of genes associated with sexual reproduction has produced some tantalising

semblances of features of apomixis. However, it now appears that the use of apomixis for

fixation of heterosis will require the isolation and characterisation of key genes for the trait

followed by extensive characterisation of their action on downstream genes and

pre-existing sexual processes. The difficulties ofmap based cloning using segregating

populations associated with lack of recombination were circumvented with a marker screen

of the H glaciale (G5) deletion mutant panel. This enabled the identification and

characterisation ofmarkers linked to three loci whose loss was accompanied by loss of

apomixis. The roles that each locus played in apomeiosis, parthenogenesis, autonomous
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endosperm formation and also the suppression of sexuality associated with apomixis were

then assessed in H pilosella X H glaciale (PG) segregants.

3.2 Generation of the H. glacia/e deletion mutant panel
and phenotype assessment

The H glaciale deletion mutant panel was generated and assessed for loss of apomixis by

other members ofthe apomixis group prior to this research. The panel of 73 mutants was

derived from mutant sectors that showed reduced seed set from approximately SOOO

irradiated seed. All mutants showed substantial or entire loss ofparthenogenesis, and 44

showed reduced potential for apomeiosis.

3.2.1 Histological evidence of loss of apomeiosis and loss of
parthenogenesis

Serial sections of ovules at approximately stage 4 (Koltunow et al., 1998) from two

deletion mutants, GSy20 and GSy47 were generated. Ovules from these mutants were

selected at stage 4 on the basis that meiosis is complete in the sexual P4 and in apomicts,

aposporous initials are often visible at at this stage. In the apomict H piloselloides, meiotic

tetrads in addition to aposporous initials are visble at this stage (Koltunow et al., 1998).

While GSy20 and GSy47 both showed loss of parthenogenesis, they differed with respect to

the derivation of hybrid progeny. The testing of nuclear DNA contents of progeny relative

to those of the parents indicated that GSy20 had retained apomeiosis, while GSy47

demonstrated loss of apomeiosis. Histological evidence of the presence or absence of

aposporous initial cells in stage 4 ovules from these mutants was consistent with the

phenotypes attributed from the relative nuclear DNA contents of progeny. Aposporous

initials were evident in stage 4 ovules of GSy20 (Fig. 3.1 a). By contrast, meiotic tetrads

were visible in ovules of GSy47 with no evidence of aposporous initial cells (Fig. 3.1 b).
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a.

Fig. 3.1 Histological sections of Stage 4 ovules from florets of GSy20 (a) containing two developing

vacuolar aposporous initials (AI), compared with the denser spores of a meiotic tetrad (MT) in GSy47

(b), a mutant in which apomeiosis is absent.

a.

Fig. 3.2 Stage 10 ovules of florets from wild type GS (a) and GS147 (b). The wild type (a) shows

successful development of a globular embryo (Em) and formation of the endosperm (ES). In an

unfertilised ovule of the mutant (b), the endothelium (ET) of the embryo sac has collapsed and

endosperm development has not proceeded. Integument cells (It) appear to be degrading.
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Parthenogenetic embryos at the globular stage and endosperm are seen in serial sections of

ovules at stage 10 of wild type H glaciale. (Fig. 3.2a). To view the effects ofloss of

apomixis on embryo and endosperm development, serial sections were generated from

unfertilised floral buds ofthe mutant G5y47 (Fig. 3.2b). This mutant shows loss-of­

apomeiosis and loss-of-parthenogenesis phenotypes but produces 2n hybrid progeny when

fertislised (Sylvia Erasmuson, pers. comm.). By contrast to wild-type ovules, there was no

evidence of embryos in the mutant. The embryo sac and the surrounding endothelium had

collapsed and integument cells appeared to have undergone degradation. A collapsed

embryo sac and degrading integument cells was observed at this stage in unfertilised stage

10 ovules of sexual H pilosella (Koltunow et aI., 1998).

3.3 SDAFLP analysis of the mutant panel for the
detection of commonly lost markers

To test the use of SDAFLP for the detection of commonly lost markers, SDAFLP using the

primer PstI+A paired with 16 MseI+CNN and 16 MseI+GNN primers was conducted on an

intitial subset of 22 mutants of the G5 mutant panel, chosen due to their clear phenotypes,

alongside a wild type control. This work was conducted by Sylvia Erasmuson of the

Apomixis Programme at Crop & Food Research. The T-DNA mutant lop] was included

for SDAFLP analysis due to its expression of a loss-of-parthenogenesis phenotype very

similar to those members of the deletion mutant panel. This screen generated 34 commonly

lost markers that fell into two clusters that were predicted to be associated with two loci.

From this initial screen, seven primer combinations (PstI+A paired with MseI+CCA, CCT,

CGA, CGC, CGG, CGT, and CTA) were selected on the basis of the quality and yield of

the 18 markers which they detected. The presence or absence of each of the 18 markers

was assessed by me in the remaining 51 mutants of the G5 mutant panel, alongside three

irradiated controls with no loss of apomixis, and six mutants from the subset of 22 mutants

that were previously screened, to assess SDAFLP consistency and to assist with marker

identification.

3.3.1 Marker loss associated with loss of apomixis
The SDAFLP profiles showed almost complete consistency within and between batches,

demonstrating that the SDAFLP is highly replicable. There were occasional variations in

relative band intensities between batches, and bands occasionally showed batch-specific

presence or absence which appear to be due to variations in gel-running conditions and
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exposure times. All of these outliers were easily distinguished from scorable markers that

showed absence across the two batches. Each of the 18 markers that were scored from the

first batch were scorable in the second. One further marker, Dz, was identified from the

second batch. This marker was scorable in only some members of the first batch. A second

further marker, Ea, was identified in the PO segregating population, and was

retrospectively scored in both mutant batches. Therefore, a total of 20 commonly lost

markers were scored across the complete panel of 73 mutants.

All of the panel except 05y61 were found to have lost at least one of the 20 commonly lost

markers. These markers fell into three clusters that are postulated to be groups ofmarkers

linked to three loci. The loci are hereby termed Locus 1, defined by 11 markers, Locus 2

defined by five markers and Locus 3, defined by four markers (Fig. 3.3). Thirty, nine and

13 mutants carry deletions detected at Locus 1,2 and 3 respectively, and 20 mutants carry

deletions in two or more of the three loci. The extent of deletions ranged from the loss of a

single marker, to the loss of an entire locus. With the exception ofmutants that carry

deletions of entire loci, all mutants were included in the analysis to assign marker order.

The most parsimonious marker order, based on the principle that deletions are most likely

continuous segments of chromosomal DNA, is given in Fig. 3.3. The T-DNA mutant lop]

was found to be a single locus mutant with loss of all the markers associated with Locus 3

(see Fig. 3.3).

As described in Chapter 1, section 1.3.2, the proximity of each marker to a determining

locus is expected to be directly related to the frequency at which each marker is lost within

the mutant panel. This principle holds only when deletions that span determinants and

therefore cause mutant phenotypes are considered. Those mutants with multiple deletions

were therefore excluded from the calculations of marker loss frequencies, as no single

deletion carried by these mutants could be confidently attributed as the cause of the mutant

phenotype. Based on frequencies ofmarker loss from single-locus deletion mutants, the

central markers are likely to be Cw of Locus 1, Cu and Cy of Locus 2, and Dl of Locus 3.

Each of these central markers is absent in all mutants that have single deletions within the

locus to which the marker belongs. It remains possible that some mutants classed as single

locus mutants might carry additional deletions at other loci that are not detectable at the

resolution of this SDAFLP screen. Any failure of detection of small deletions is not

expected to have occurred frequently enough to have a profound effect on the

interpretation of these data.
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Fig. 3.3 Marker presence and absence scored in a wild-type (WT), 73 H. glaciale loss-of­

parthenogenesis deletion mutants and the T-DNA mutant lopI. Each column represents a different

plant while each row represents a different marker. Cells coloured yellow indicate marker presence

while those in grey indicate marker absence. The mutants were sorted into three classes depending on

three putative loci from which markers are lost: Locus 1, Locus 2, Locus 3, and multi-locus.

The marker order illustrated in Fig. 3.3 is predicted on the basis that deletion breakpoints

occur randomly and that determinants lie proximal to markers that are most commonly

lost. Under this model, the determinant at Locus 3 has markers flanking only one side.

Similarly, the determinant at Locus 1 is flanked by all except one marker, Cz, on one side.

The maps of these loci suggest that the determinants lie at termini of chromosome arms. It

is possible however that "hotspots" exist near the markers Cz and Dl that incur y­

irradiation-induced breakages at high frequencies. If this were the case, determinants might

actually lie nearer the centromeres than the data suggest.

Each SDAFLP primer combination yielded approximately 170 bands. Therefore, as

markers were generated from seven primer combinations, approximately 1190 potential

markers were estimated to be under consideration. This may be an overestimate, however,

as bands that result from the amplification of sequences that are replicated throughout the

genome are not potential single locus markers. However, if the estimation of 1190

potential markers is considered, and given a 5X genome size of9 X 109 bp, a physical

distance of approximately 7.6 Mbp between markers may be estimated. The 20 markers at
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the three loci are approximately 1.7% of the total markers estimated. Therefore, the

mapped regions may collectively be estimated to occupy 1.7% of the total genome.

One mutant, G5y61 , had no discernible deletion, yet was scored as a

loss-of-parthenogenesis mutant. It is possible that this mutant carries a deletion that was

not detected at the resolution obtained using only seven primer combinations. With this

mutant as the exception, the estimation of the large physical distances between markers

indicates that most deletions of this mutant panel are substantial. The extent of deletions

reported from previous studies in plants varies considerably. Deletions of at least 1.8 Mbp

were generated in chromosomal DNA of lettuce seeds using a fast neutron source. More

substantial deletions were likely to have been generated as well; however, any that caused

significant perturbations in development were selected against by generating M2 progeny

(Okubara et aI., 1994). In tomato, terminal deletions of considerable portions of a

chromosome arm were generated by irradiation of pollen (Liharska et aI., 1997). By

contrast, deletions generated by mutagenesis ofArabidopsis pollen were believed to

average less than 160 kb (Vizir et aI., 1994), although it is possible that this relatively

small average deletion size represents a wide range of deletions that includes some that are

extensive.

The polyploid status of G5 may offer gene redundancy that reduces the likelihood of

dominant lethality, making large deletions more recoverable. Large deletions in

chromosomal DNA of pollen were found to be more successfully recovered when diploid

eggs were fertilised instead of haploid eggs (Vizir and Mulligan, 1999). In summary, it

appears that deletions in the G5 mutant panel are substantial, and the limit of the resolution

offered by the panel may almost have been reached. A large deletion, however, may in rare

cases offer an informative breakpoint that is located proximal to determinants at the locus

centre.

3.4 Marker isolation and sequence characterisation
Mini-sequences were obtained from five markers; gel isolation and sequencing was

achieved for four of these and one other marker for subsequent characterisation.

3.4.1 Mini-sequencing of markers
Mini-sequence profiles were generated from SDAFLP products of wild type G5 compared

with G5y19, and wild type G5 compared with G5y39, amplified by the primer pairs PstI+A
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and MseI+CCA, and PstI+A and MseI+CGC respectively. G5y19 had lost all markers of

Locus 1 and G5y39 had lost all markers of Locus 2 and Locus 3. Mini-sequencing of

profiles from these two primer combinations enabled the generation of mini-sequences of

up to six markers, although the marker Ds was not able to be mini-sequenced due to its low

molecular weight.

The profiles given by each mini-sequencing primer contained a subset of the bands of the

SDAFLP profiles thereby reducing the risk of contamination of the band of interest from

neighbouring bands on excision (see Fig. 3.4 for example). However, the reduction in

profile complexity down to 25% was not achieved. The mini-sequencing profiles often

contained additional bands that were not visible in the original SDAFLP profile from

which they were amplified. This is believed to be due to their low original abundance in

the SDAFLP profile; they became more abundant in the absence of competition by more

effectively amplified bands.

Mini-sequences were generated for the markers Ck, Cm, Cn, Cy and Cx (Table 3.1 and

Fig. 3.4). Three markers, Ck, Cyand Cx, gave ambiguous mini-sequences at one position

due to their amplification from multiple selective mini-sequencing primers (see Fig. 3.5 for

marker Ck as an example). Ambiguous mini-sequences may be due to non-specific

annealing of mini-sequencing primers. An alternative cause is the presence of genomic

duplications, either allelic, linked or unlinked, that carry single nucleotide polymorphistlls

(SNPs) at the ambiguous bases ofthe mini-sequences, to which alternative mini­

sequencing primers can anneal. Given that the H glaciale genome is tetraploid and is

known to be rich in retrotransposons and repetitive DNA, this is considered to be a likely

cause.

Table 3.1 Mini-sequences of three bases following the selective bases, of markers amplified with

primers MseI+CCA and MseI+CGC. Bases in brackets indicate ambiguity at that location of the

mini-sequence.

Marker Mselprimer Locus Mini-sequence

Ck MseI+CCA 1 CC(A/C/T)

Cm MseI+CCA 1 AGA

Cn MseI+CCA 1 TIC

Cy MseI+CGC 2 G(A/G)A

Cx MseI+CGC 3 CG(A/G)
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3.4.2 Gel isolation and sequencing of markers
Markers Ck, Cm, Cy, and Cx were successfully isolated from mini-sequence profiles and

Di, DI and Dh from standard SDAFLP profiles, followed by cloning and sequencing. Most

sequences were of a high quality and their sequence lengths approximated the expected

lengths estimated from gel migration. The exceptions were sequences of Dh and DI, which

required alignments to more than one sequence read to generate composite sequences.

These sequences were unlikely to be the correct sequences for these markers because the

PstI+A primer sequence was not found on the sequence ofDh and the sequence of 01

appeared to be an amplification product of only the MseI+CGG primer. They were

therefore not characterised further by bioinformatic analyses.

P+A,
M+CCA

wty

--

P+A, M+3N+: P+A, M+4N+: P+A, M+5N+:
ACGTACGTACGT
wtYlwtYlwtYlwt y wtYI wtYlwtYlwt y wtYlwtYlwtYlwt y

-

Fig. 3.4 Standard SDAFLP (P+A, M+CCA) and mini-sequence profiles of wild type GS (wt) and GSy19

(y). Arrows indicate amplification of two markers; Ck the lower of a band doublet, and Cm.

Amplification of the third base of Ck has occurred from three mini-sequence primers causing

ambiguity of the mini-sequence.
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3.4.3 Bioinformatic analysis of marker sequences
All marker sequences contained extensive regions that were predicted as open reading

frames (ORFs) indicating possible coding sequences (Table 3.2). Only the ORF of Ck was

predicted by GENSCAN to be an exon, indicating that GENSCAN is a more conservative

predictor of gene characteristics. Notable exceptions were predictions oflarge exons in Cx

by GENSCAN that were not predicted to be ORFs by ORF Finder. These inconsistencies

may result from variable codon usage between the two packages. Alternatively,

GENSCAN may compensate for potential sequence errors that disrupt an ORF by adding

weight to other features such as putative splice sites.

Table 3.2 ORFs predicted by ORF Finder and exons predicted by GENSCAN. ORF Finder outputs

orientation, frame, start, and stop codons. GENSCAN predicts the type of exon and orientation and

calculates a probability rating. A high probability rating indicates a high chance of a correct

prediction.

ORFs predicted by Exons predicted by GENSCAN
ORFfinder

Marker Genomic ORF ORF ORF Exon Exon type and
Sequence predictions length features prediction probability
Lene:th (frames) (strand) ratin!!

Ck 568 182-451 (-3) 270 Stop at 182 451-182 (-) Single exon gene,
243-503 (+3) 261 Stop at 503 0.676
1-118 (-3) 118
241-354 (-1) 114 Stop at 241

Cm 234 2-205 (+2) 204 Stop at 205 None

Cy 280 2-118 (+2) 117 Stop at 118 None
173-279 (+2) 108 Stop at 279
1-93 (-2) 93 Start at 93
1-66 (+1) 66 Stop at 66
1-59 (-3) 59
218-271(-1) 54 Start at 271,

stop at 218
Di 407 205-330 (-3) 126 Stop at 205 None

2-127 (-2) 126 Start at 127
69-182 (+3) 114 Stop at 182
150-257 (-1) 108 Stop at 150
318-392 (-1) 75 Stopat318
1-63 (-3) 63

Cx 291 1-148 (-3) 148 223-26 (-) Internal, 0.341
1-140 (-2) 140 248-26 (-) Internal,0.224

223-39 (-) Internal,0.115
248-39 (-) Internal,0.138
47-205 (+) Internal, 0.054
47-209 (+) Tenninal,0.023
223-83 (+) Internal,0.037
248-83 i-) Internal 0.043

No markers showed slml1anty (E<O.05) when the blastn algonthm (nucleotide query

compared with nucleotide database) was used. On using the tblastx algorithm (translated

nucleotide query compared with translated nucleotide database), only Cx showed

significant similarity to known genomic sequences. The most significant similarity was to

a Ty3-gypsy type LTR retrotransposon sequence of Stevia rebaudiana, included as part of



49

a genomic sequence that contained a kaurene oxidase gene and pseudogene. The marker

also showed similarity to Ty3.;.gypsy type LTR retrotransposon sequences of Oryza sativa

and Cicer arietinum (Table 3.3). A search for peptide sequences with similarity to ex

using the blastx algorithm resulted in a large number of hits with expect values as low as

0.002 to Gag proteins (Table 3.4), which are typical oflong terminal repeat (LTR)

retrotransposons (Havecker et aI., 2004).

The similarity of Cx to a retrotransposon sequence of Stevia rebaudiana is intriguing.

Stevia, like Hieracium is of the family Asteraceae, and has apomictic species including S.

rebaudiana (de Oliveira et aI., 2004). It is postulated that retrotransposons in asexual

populations become inactivated over time due to host level selection ofpopulation

members with fewer deleterious effects ofthe elements (Docking et aI., 2006). Conversely,

retrotransposons are reported to have accumulated in asexual Hypericum species more than

the~ have in sexual species (Matzk et aI., 2003). From the data available it cannot be

ascertained whether Cx is from an active retrotransposon or from a remnant of an inactive

element. The similar retrotransposon sequence of S. rebaudiana was not described in the

peptide database and, based on the weakness of the similarity it has with other

retrotransposons, it appears to be a remnant of an inactive element. However, the

conservation at the peptide level between Cx and the sequence of S. rebaudiana across

most of the marker indicates functional conservation implying that Cx may be part of an

active retrotransposon. Active retrotransposons are likely to be abundant in Hieracium;

however, definitive evidence that Cx is an active retrotransposon within a region of

suppressed recombination can only be found from analysis of sequence beyond the

margins of Cx.

Table 3.3 Sequences found with similarity to ex from a tblastx search of nucleotide sequences of

GenBank. The E-value is the likelihood that the similarity occurred due to chance alone.

GenBank Accession Organism E-value Gene/region description
AY995178 Stevia rebaudiana 1e-19 Kaurene oxidase (K02) and KO pseudogene *
(17509-17234)
AY995178 Stevia rebaudiana 1e-19 Kaurene oxidase (K02) and KO pseudogene *
(14766-14524)
NM 195999 Oryza sativa 4e-4 Putative 22 kDa kafirin cluster; Ty3-Gypsy

type (OSJNAb0075K12.33), mRNA
Various, including Medicago 0.001 Unannotated sequences of various BAC library
AC146704 truncatula clones
Various, including Lotus 0.002 Unannotated sequences of various BAC library
AP006128 corniculatus clones
CAR411813 Cicer arietinum 0.002 Ty3-gypsy like retrotransposon and partial gag

gene for gag polyprotein, LTR and PBS, clone
104-20

* slmtlanty shown to a Ty3-gypsy hke retrotransposon
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Table 3.4 Sequences found with similarity to ex from a blastx search of peptide sequences of

GenBank.

GenBank Accession Orj~anism E-value Gene/region descrintion
AAP53268 Oryza sativa 0.002 Putative retrotransposon protein, Ty3-gypsy

subclass
ABE89851 Medicago 0.004 Retrotransposon gag protein

truncatula
AAD27902 Arabidopsis 0,005 Retrotransposon gag protein

thaliana
ABD28759 Medicago 0,005 Retrotransposon gag protein

truncatula
CAC44110 Cicer arietinum 0.006 (Jagpol~rotein

3.5 SCAR marker design and amplification
Primer pairs designed from the sequences of four SDAFLP markers, Ck, Cm, Cy and Cx,

were tested for their amplification of single-locus SCAR marker derivatives. PCR tests

were conducted on DNA from wild type Hglaciale and mutant counterparts with

deletions of entire loci. Only the SCAR marker of Cm demonstrated utility as a

single-locus SCAR marker. This marker was absent in mutants when a primer annealing

temperature of 58° C was used. This marker had no mini-sequence ambiguity (see Table

3.1), which is consistent with the possibility that markers with no mini-sequence ambiguity

are more likely to be single-locus sequences. The utility ofthe Cm SCAR marker was

demonstrated further by its segregation in eight PG segregants, which was later found to

correspond with the segregation ofthe SDAFLP marker from which it was derived.

The other three SCAR primer pairs gave amplification products from all deletion mutant

DNA samples. Amplification from mutant samples also occurred when the primer

annealing temperature was raised to 64° C, and ceased from any sample including the wild

type control when the primer annealing temperature was raised to 68° C. These

observations indicate that for the potential SCAR markers of Ck, Cy and Cx, the primers

were annealing to non-deleted genomic duplications, which may be allelic, non-allelic or

both, and potentially highly repeated throughout the genome.

The lack of specificity of the SCAR markers is unlikely to be due to the isolation and

sequencing of incorrect SDAFLP bands. Most bands were isolated from mini-sequencing

lanes in which the band of interest was often of a high intensity and was not in close

proximity to potentially-contaminating bands. It remains possible that the SCAR markers

contained polymorphisms that could be detected using alternative assays that are more

sensitive than agarose gel electrophoresis. Size polymorphisms that are detectable by

PAGE, or single strand conformation polymorphisms (SSCPs), may exist in the
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amplification products of SCAR primers that enable them to be used as single-locus

markers. No attempt was made to exhaust the possible detection ofpolymorphisms as at

this point in the research it was decided that a BAC library would not be constructed for H

glaciale. SDAFLP markers were instead used for downstream applications.

3.6 Verification of association of markers with apomixis
The common absence ofmarkers in association with the absence of parthenogenesis was

verified by the corresponding presence of the markers in association with the expression of

parthenogenesis in a segregating population. Correspondence with other components of

apomixis such as autonomous endosperm formation, apomeiosis and the suppression of

sexuality were also explored.

3.6.1 The segregating population
Associations ofmarkers with traits were tested in the 28 segregants of the PG segregating

population. Attempts to enlarge the numbers ofPG (H pilosella X H glaciale) segregants

under analysis were made by making crosses using a non-inbred accession ofH pilosella

as the pistillate parent and H glaciale as the pollen parent. Several crosses were made but

they only yielded inbred H pilosella progeny. This is likely to be due to a breakdown of

the sporophytic self-incompatibility system caused by a mentor effect (Mraz, 2003),

possibly by the aneuploid pollen ofH glaciale. A similar mentor effect of aneuploid

pollen was seen to cause a similar breakdown of sporophytic self-incompatibility in

Taraxacum (Tas and van Dijk, 1999).

3.6.2 Assessment of parthenogenesis
All segregants were assessed for parthenogenesis by assessing the ability and frequency of

production of dark seed and of germinable seed from at least four seed heads. Dark seed

was produced at rates of between 0 and 60 per head. Twelve ofthe 28 segregants (43%)

produced dark seed at rates between 13 and 60 per head, of which between 0.2 and 25.5

per head germinated. Most of the other 16 segregants, which produced no germinable seed,

produced dark seed at rates between 0 and 6 per head (Fig. 3.5, Table 3.5). One segregant,

PG2, produced dark seed at higher rates with none germinating; however, much of the seed

was small and brown in colour and was not likely to contain functional endosperm. The

transmission frequency for parthenogenesis in this population was 0.43 which is similar (P

= 0.45) to the 1:1 transmission ratio expected for a single-locus trait.
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_ Mean black seed
_ Mean germination

Segregant

Fig. 3.5 Mean numbers of dark seed production and seed germination per floral head, of seed heads

harvested from PG segregants.

3.6.3 Association of autonomous endospermy with
parthenogenesis

Endosperm formation in Hieracium is autonomous and appears to be associated, either

genetically or mechanically, or both, with parthenogenesis. In the PG segregating

population, the formation of endosperm without fertilisation was evidenced as dark seed

(Koltunow et aI., 1998), and offered an initial indication of the plant's parthenogenetic

potential. Sexual segregants generally produced low numbers of dark seed, with the

exception being PG2 noted above.

The possibility of pseudogamy among segregants was considered but then deemed

unlikely. If any segregants scored as sexual, were actually apomictic and pseudogamous,

n+O and 2n+O progeny after fertilisation would be expected, derived from pseudogamic

development of meiotic and apomeiotic eggs respectively. Following pollination of

segregants that failed to produce germinable seed spontaneously, a total of 246 seedlings

were tested, and none were found to be n+O as indicated by their relative nuclear DNA
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contents. All seedlings had nuclear DNA contents that indicated they were either n+n or

2n+n hybrids.

3.6.4 Assessment of apomeiosis
A total of 19 of the 28 segregants, both parthenogenetic and sexual, were found to produce

at least some progeny from apomeiotic embryo sacs (Table 3.6). The frequency of

transmission of apomeiosis was therefore 0.68, a ratio that has a low probability of

reflecting Mendelian segregation of apomeiosis as a monogenic trait (P = 0.17). It is

possible that the trait is conferred by a single gene in duplex or two genes in simplex (P =

0.55). Other more complex gene combinations may have caused a distorted transmission

ratio, or alternatively, if apomeiosis is conferred by a single locus, its segregation may be

influenced by a meiotic drive mechanism, which has been implicated to act on the

segregation of apospory in maize-Tripsacum hybrids (Grimanelli et aI., 1998a). To

ascertain a transmission ratio distortion and what mechanism might be causing it would

require a larger number of segregants to be assessed.

3.6.5 Association of reduced sexuality with apomeiosis
The frequency of germinable seed set per head following pollination varied significantly

between sexual segregants with means between two and 29. This indicates that a

segregant's potential for sexuality is not necessarily restored in the absence of

parthenogenesis. Instead, the restoration of sexuality appears to occur to a greater extent in

the absence of apomeiosis. Apomeiotic and meiotic segregants of the sexual class set

germinable seed on pollination with means at between two and eight per head, and at

between four and 29 per head respectively (Fig. 3.6). Thus while apomeiotic embryo sacs

are able to be fertilised to form 2n+n hybrids, these data suggest greater fertility within

meiotic segregants. The numbers of seed set were highly variable although some

relationship between dark seed and germinable seed numbers was apparent within meiotic

segregants. On pollination, PG2 produced increased numbers of dark seed from those it

produced without pollination, but few seed germinated. Intriguingly, PG10, which

produced no dark seed without fertilisation, produced large numbers of dark seed on

fertilisation, but few germinated.
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Table 3.5 Seed heads of PG segregants, with anthers and stigmas removed, were harvested, and mean

numbers and variances (standard deviations, SD) of dark seed and seed germination were scored.

Calculations of the percentages of dark seed that germinated were made. Segregants were scored

according to whether or not parthenogenesis was detected.

Seed Dark seeds/head Germination/head
heads

PG: n Mean SD Mean SD % dark Partheno-
seeds genesis
germinated detected

1 9 0.11 0.33 0.00 0.00 0.00% No

2 6 44.5 32.64 0.00 0.00 0.00% No

5 3 0.33 0.58 0.00 0.00 0.00% No

6 8 6.13 6.73 0.00 0.00 0.00% No

8 4 1.00 2.00 0.00 0.00 0.00% No

9 7 4.14 4.41 0.00 0.00 0.00% No

10 5 0.00 0.00 0.00 0.00 n/a No

11. 8 32.63 8.83 0.25 0.71 0.77% Yes

12 5 44.40 22.60 9.40 8.91 21.17% Yes

16 7 17.71 5.82 2.29 1.80 12.90% Yes

21 4 38.25 17.52 7.00 2.94 18.30% Yes

22 5 1.20 1.79 0.00 0.00 0.00% No

24 6 13.00 5.76 2.00 2.45 15.38% Yes

28 10 24.60 12.66 0.70 1.57 2.85% Yes

30 13 55.15 16.82 21.00 10.46 38.08% Yes

32 6 0.00 0.00 0.00 n/a n/a No

35 14 28.71 16.84 0.43 1.09 1.49% Yes

38 8 0.00 0.00 0.00 n/a n/a No

39 6 0.67 0.82 0.00 0.00 0.00% No

40 5 56.20 17.31 2.00 1.41 3.56% Yes

43 6 27.83 12.88 8.17 4.88 29.34% Yes

54 1 2.00 n/a 0.00 n/a 0.00% No

68 2 60.00 14.14 10.50 0.71 17.50% Yes

104 6 50.83 11.86 17.00 3.63 33.44% Yes

105 13 0.00 0.00 0.00 n/a n/a No

106 6 0.00 0.00 0.00 n/a n/a No

108 5 2.60 5.27 0.00 0.00 0.00% No

117 5 0.40 0.89 0.00 0.00 0.00% No
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Table 3.6 Open floral heads of non-parthenogenetic PG segregants were crossed with A4 as a pollen

donor and the mean numbers and variances of dark seed and germination per head were scored.

Nuclear DNA contents of either maternal or hybrid progeny were measured from which scores for

apomeiosis were based.

* Only one 3n was found, all others were 2n. The possIbIlIty eXIsts that the sole 3n was derIved from pollmatIon of a meIOtic

embryo sac with 2n pollen. # 4n progeny found, probably the result of endoreduplication.

Crosses Dark seeds/ Germination/ Seedlings
made head head

PG: Parthen- n Mean SD Mean SD Tested Ploidy Apomeio-
ogenesis: sis

detected:
1XA4 No 6 11 5.37 6 3.66 Hybrid 2n,3n Yes

2XA4 No 5 80 12.79 5 3.87 Hybrid 2n,3n Yes

5XA4 No 5 20 10.37 6 6.66 Hybrid 2n No

6XA4 No 9 24 12.70 7 6.78 Hybrid 2n,3n Yes

8XA4 No 10 17 14.26 5 4.53 Hybrid 2n No

9XA4 No 5 19 15.53 12 10.11 Hybrid 2n No

10XA4 No 1 92 n/a 7 n/a Hybrid 2n,3n Yes

llXA4 Yes -- -- -- -- -- Maternal n,2n Yes

12XA4 Yes -- -- -- -- -- Maternal n,2n Yes

16XA4 Yes -- -- -- -- -- Maternal n No

21XA4 Yes -- -- -- -- -- Maternal 2n Yes

22XA4 No 7 27 14.82 4 3.98 Hybrid 2n No

24XA4 Yes -- -- -- -- Maternal n,2n Yes

28XA4 Yes -- -- -- -- -- Maternal n,2n Yes

30XA4 Yes -- -- -- -- -- Maternal n,2n Yes

32XA4 No 4 7 6.75 7 6.03 Hybrid 2n,3n Yes

35XA4 Yes -- -- -- -- -- Maternal n No

38XA4 No 6 26 14.94 19 15.41 Hybrid 2n No

39XA4 No 6 26 21.83 4 4.79 Hybrid 2n,3n* Yes

40XA4 Yes -- -- -- -- -- Maternal 2n,4n" Yes

43XA4 Yes -- -- -- -- -- Maternal n,2n Yes

54XA4 No 4 6 2.22 2 1.26 Hybrid 2n,3n Yes

68XA4 Yes -- -- -- -- -- Maternal 2n Yes

104 XA4 Yes -- -- -- -- -- Maternal 2n Yes

105 XA4 No 4 33 18.45 29 16.27 Hybrid 2n No

106XA4 No 1 11 -- 8 -- Hybrid 2n,3n Yes

108XA4 No 6 12 6.53 5 3.56 Hybrid 2n No

117XA4 No 2 7 0 4 0.71 Hybrid 2n,3n Yes
...
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Fig. 3.6 Dark seed and germinable seed set per head of sexual segregants fertilised with pollen from

A4, grouped as apomeiotic and meiotic.

The potential for sexual reproduction by parthenogenetic segregants PGs 11, 24, 28 and 35

was assessed from increases in dark seed and seed germination on pollination by H.

aurantiacum (Table 3.7). These segregants show only low levels of parthenogenetic

reproduction (~ germinable seed per head). All four segregants showed small to moderate

increases (1.1-1.97 fold) in production of dark seed per head. PGs 11 and 28, showed

small increases in germination per head of 1.27 and 1.66 fold respectively and a moderate

3.34 fold increase was observed from PG24. These three segregants express apomeiosis.

The meiotic segregant PG35 showed a 13 fold increase in germinable seed set on

pollination. While this observation is limited to one plant, it does lend support to the

possibility that female fertility is reduced in the presence of apomeiosis. Pollination was

similarly not observed to increase partial seed set in apomictic Taraxacum, indicating that

the partial seed set is due to partial sterility (Tas and van Dijk, 1999). Thus, apomeiosis

may suppress sexuality or induce partial sterility in apomeiotic plants.
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Table 3.7 Increases in dark seed and germinable seed per head after pollination. Floral heads of four

parthenogenetic PC segregants were fertilised with pollen from A4. The mean numbers of dark seed

and germination per head were calculated and the fold increases of dark seed and germination from

decapitated heads, and the nuclear DNA contents of seedlings are given.

PC: Number of Mean Fold Mean Fold DNA
heads dark seed increase germination increase in content of
tested per head in dark per head germination seedlings

seed
11 2 40 1.22 0.5 1.27 2n
24 4 25 1.97 7.25 3.34 2n
28 7 27.14 1.1 1.86 1.66 n,2n
35 5 40.2 1.4 5.6 13.00 2n

Suppression of sexuality in the presence of apomeiosis may simply reflect that meiotic

embryo sacs are more predisposed to fertilisation than apomeiotic embryo sacs. Under this

scenario, given a lack of parthenogenesis, the fertility of florets that containapomeiotic

emoryo sacs is less than those that contain meiotic embryo sacs. In evolutionary terms, it is

adaptive for a plant to preserve the integrity ofboth forms of reproduction, utilising

meiotic embryo sacs in the sexual pathway and apomeiotic embryo sacs for the

parthenogenetic pathway. Those progeny classes derived from fertilisation of apomeiotic

embryo sacs (2n+n), and conversely, parthenogenetic development ofmeiotic embryo sacs

(n+O), have little to contribute to an agamic complex, except in rare circumstances

whereby they serve as an intermediate for gene flow into more functional fully apomictic

or fully sexual forms.

In Ranunculus, suppression of sexuality via the production of aposporous initials was in

tum found to be dependent on the timing of the production of aposporous initials relative

to meiosis; the less meiosis is allowed to proceed the greater the chance of successful

displacement of meiotic structures by those apomeiotic (Nogler, 1984). This is not

necessarily the case in Hieracium. H piloselloides and H aurantiacum have different

timings of appearances of aposporous initials; in the former they appear after the initiation

of meiosis whereas in the latter meiosis was never observed. By contrast to Nogler's

findings in Ranunculus, the Hieracium species with early formation of embryo sacs has a

slightly lower rate of production of apomictic seed (Koltunow et al., 1998). The timings of

the formation of aposporous initials were not investigated in the PG population, but a

segregating population's more uniform genetic background may be suitable to investigate

any promotion of apomeiotic embryo sac formation by early aposporous initial formation.

The preference ofmode of development (sexual versus parthenogenetic) of each respective
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fonn of embryo sac (meiotic versus apomeiotic), and how any associated suppression of

sexuality imposed by apomeiosismight act, deserve further investigation. This may be

implemented by the testing of the derivations of progeny under conditions of emasculation

and pollination.

3.6.6 Testing of marker segregation
All markers that were detected by screening the deletion mutant panel were tested on the

PG segregating population, along with the parents and G5y9, 19,25,26,46 and 57 as

controls to assist with marker identification. The presence of additional markers

transmitted from the female parent precluded the scoring of six markers: Dj, Ck, Ds and

Cn of Locus 1, Co of Locus 2 and Cx of Locus 3. For similar reasons, Dz of Locus 1 and

Cu of Locus 2 were not scored with high confidence in some segregants. All other markers

were scored in characterised segregants with confidence (Fig. 3.7).

In general, marker co-segregation in this population confinned the pattern ofmarker

linkage inferred from analysis ofthe deletion mutant panel. There is also evidence of

linkage between Locus 2 and Locus 3 indicating that these loci may reside on the same

chromosome. Segregation between markers of Locus 1, and of Locus 3 was seen,

demonstrating recombination at these loci. All markers of Locus 2 showed complete co­

segregation, suggesting that they may be closely linked or that male-meiotic recombination

at this locus is suppressed. As previously noted, suppression ofmeiotic recombination of

loci associated with apomixis is commonly reported (Grimanelli et aI., 1998b; Ozias-Akins

et aI., 1998; Noyes and Rieseberg, 2000). The analysis of a larger population is required to

ascertain if suppression of recombination is a feature of Locus 2.

3.6.7 Association of the loci with parthenogenesis
A group of six segregants possessed all markers of the three loci. Segregants of this group

produced parthenogenetic seed with rates of gennination at between seven and 21 seeds

per head. A second group of six segregants was characterised by a lack of Locus 1. All

contained Locus 2 and at least some markers of Locus 3. Rates of gennination of

parthenogenetic seed in this group were noticeably lower at 0.25 to 2.29 per head.

Furthennore, these plants more frequently showed perturbations among parthenogenetic

seedlings such as delayed gennination occurring up to 4 weeks after sowing, seedlings

being small and weak and seedlings which fonned callus. There was also a greater
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incidence of polyhaploidy among these seedlings which is discussed in more detail below

(see section 3.6.8).
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Fig. 3.7 Phenotypes and genotypes of the PG segregating population. Yellow indicates a score of

presence and grey indicates a score of absence of either phenotype or marker. Phenotypes for

parthenogenesis in blue indicate seed set at very low rates, and in some cases, perturbed growth of

seedlings.

The apparent need for all three loci to be present for reasonable levels of parthenogenetic

seed to develop indicates that each locus has a role in the t:xpression of the trait in

H. glaciale. Locus I appears to act as a modifying locus. Its presence is not required for

apomixis to occur but the parthenogenetic production of g rminable seed is significantly

reduced in its absence. Further evidence of a modification role of Locus I is seen in the

total lack of apomixis in segregants that carry Locus I but do not carry Locus 2 and Locus

3. The presence of Locus 2 in three segregants (PG5, PG106 and PG 117) with no

detectable parthenogenesis indicates that Locus 2 is also a modifying locus and not a key

enabling locus. The presence of markers of Locus 3 is closely associated with expression

of parthenogenesis, indicating that it may be a key enabling locus. Furthermore, only one

segregant (PGS) carrying the marker DI of Locus 3 failed to express parthenogenesis. This

segregant shows recombination between markers DI and Df, indicating that an enabling

determinant may lie between these markers. Close linkage of the marker DI with a

determinant at Locus 3 is supported by the deletion of GSyl 7. This mutant has lost only the

marker DI, indicating that Dl is the most proximal marker to the determinant of Locus 3.
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3.6.8 Association of the loci with apomeiosis
Although the segregation data suggest some role of the three loci in the expression of

apomeiosis, the natures of their roles are less clear than they are in the expression of

parthenogenesis. Some association of apomeiosis with parthenogenesis is apparent as only

two parthenogenetic segregants, PGs 35 and 16, failed to produce apomeiotic eggs.

Furthermore, the six segregants that carryall three loci each demonstrated expression of

apomeiosis. Which of the loci, however, are directly involved cannot be determined from

the current data, although they indicate that the combined presences of Locus 1 and Locus

2, or of Locus 2 and Locus 3, are each insufficient for the expression ofapomeiosis. There

are no data from this population to deduce any combined effects of Locus 1 and Locus 3.

While it is possible that all three loci detected in this study may in combination induce the

expression of apomeiosis, it is clear that at least one alternative locus is able to induce this

trait. Many segregants that produced no parthenogenetic progeny were still able to produce

apoineiotic eggs, including PG6 which possesses none of the three loci.

Locus 1 may have a modifying effect on apomeiosis that is similar to the positive effect it

appears to have on parthenogenesis. The locus is not necessary for apomeiosis to occur;

however, when it is present in its entirety, both apomeiosis and parthenogenesis together

appear to be more penetrant, providing the plant with more fully functional apomixis.

Within parthenogenetic segregants of this population, those that carry Locus 1 produced

mostly, but not entirely, seedlings derived from apomeiotic eggs. Conversely, segregants

that do not carry Locus 1 produced mostly, but not entirely, seedlings derived from

reduced meiotic eggs. This observation, along with the increased penetrance of

parthenogenesis in segregants that carry Locus 1, implies that the locus may assist in some

way with the coupling of the two traits that together promote the effective use of apomixis

as a reproductive mode.

The segregant PG40 carries only a recombinant section of Locus 1, with absence of

markers Cz to Dg and presence of markers Dz to Cm. The recombination within this locus

is accompanied by a low penetrance of parthenogenesis. This observation corresponds with

evidence of loss of a modifying determinant for parthenogenesis accompanied by loss of

markers Cz and Dg in the deletion mutant panel. While PG40 demonstrates only low levels

of parthenogenetic seed production, it demonstrates a high penetrance of apomeiosis, with

the seedlings being mostly derived from apomeiotic eggs. Although this observation is

restricted to one segregant, it implies that the section of Locus 1 between Dz and Cm may
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include a modifying detenninant for apomeiosis. If this is the case, any promotion of the

coupling of parthenogenesis with apomeiosis by Locus 1 may be mediated by two different

modifying detenninants, each residing at a different region of the locus and acting

separately on the two traits.

3.7 Concluding remarks
The use of deletion mutagenesis in G5 proved successful for the identification of three loci

whose loss is associated with loss ofparthenogenesis in this species. Deletion mutagenesis

proved to be an ideal technique to identify genetic loci of apomicts as abundant quantities

of clonal seed are available as material for mutagenesis, and the unifonn background

between panel members led to the ready identification of commonly lost markers. One

marker was successfully converted into a SCAR marker, and maY,in principle, be used for

BAC clone identification. The distance between markers, however, may be as far as 7.6

Mbp, which may reflect the potential distances between detenninants and their most

proximal markers. Therefore, while the principle of deletion mutagenesis for the isolation

of detenninants of apomixis appears sound, taking advantage of this technique requires the

analysis of more mutants with more infonnative deletion breakpoints, so that markers near

detenninants can be used as starting points to readily build BAC contigs.

The PG segregating population, although small, served to verify the data obtained from the

mutant panel, by demonstrating a close association of the three identified loci with

parthenogenesis. The population showed variable ranges of phenotypes that indicated that

Locus 2 is necessary for the expression of parthenogenesis while Locus 1 and Locus 3

enhanced the levels of parthenogenetic seed produced. Further interpretation of the

segregation data, however, could only be made tentatively. Associations between

parthenogenesis and autonomous endospenny, and between apomeiosis and suppression of

sexuality, are suggested by the data. Whether these associations are the result of genetic

linkage or of pleiotropy may only be answered on analysis of far greater progeny numbers.

The two mapping approaches, based on deletion mutagenesis and meiotic segregation, may

therefore serve to complement each other. The potential of deletion mutagenesis to avoid

any difficulties of conventional mapping of apomixis loci caused by suppressed

recombination, and the use of a segregating population for the analysis of the action of

each identified locus, were both demonstrated. The use of G5 for the isolation of

detenninants of apomixis, however, may be limited. Efficient and co-ordinated expression
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ofboth apomeiosis and parthenogenesis appears to occur with the presence of all three

loci, but the two components of apomixis otherwise appear to be unlinked in this genotype.

The minimum requirements for the expression of apomeiosis are not shown by the current

data.

Given the complex genetics of apomixis in G5, the pentaploid genome, and the difficulty

generating segregants, further efforts towards isolation of genetic determinants were

deferred to the genotype C4D. This genotype is a tetraploid and an efficient pollen parent,

whose progeny show clear segregation between apomeiosis and parthenogenesis. With the

benefits of this clear segregation, and of experience gained from the G5 mutant screen, the

C4D mutant screen was conducted so that mutants with loss of apomeiosis as well as loss

ofparthenogenesis were identified. The use of the C4D deletion mutant panel and the PC

segregating population towards isolation ofmarkers proximal to determinants of

apo~eiosisand parthenogenesis is described in Chapter 5.
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Chapter 4 Chromosomal DNA deletion in the T-DNA
mutant lop1

4.1 Introduction
Apomeiosis and parthenogenesis together enable facultative apomixis in H glaciale (G5).

As seen in Chapter 3, two lines of evidence show that these two components of apomixis

are unlinked. First, separation ofthe two components was evident among Fl progeny of

G5. Second, parthenogenesis is able to be mutated with no associated loss of apomeiosis.

The T-DNA mutant lop], derived from the G5 background, demonstrates loss of

parthenogenesis but retention of apomeiosis. This phenotype is similar to those ofmany of

the mutants of the G5 deletion mutant panel. As lop] shares the genetic background of its

deletion mutant counterparts, it was easily screened alongside the G5 deletion mutant panel

for loss of SDAFLP markers.

Surprisingly, lop] was found to have a deletion of Locus 3, a key determining locus for

parthenogenesis (see Chapter 3). Deletions and other major chromosomal rearrangements

associated with T-DNA integration have previously been found to occur in Arabidopsis

(Nacry et aI., 1998; Kaya et aI., 2000) and may in fact be more common than is suggested

by the literature. This chapter presents the evaluation ofT-DNA insertion as the cause of

deletion in the mutant lop]. It will begin with a brief introduction outlining prior work

during which lop] was generated and three T-DNA inserts were identified and partially

characterised. The chapter will then describe the utility of the prior work in the

investigation, as a component ofthis doctoral research, of linkage ofT-DNA inserts with

the deletion of lop] at Locus 3.

4.1.1 Generation of the mutant lop1
Lop] is a member of the G5 pAC7 T-DNA insertion panel generated by Dr Ross Bicknell,

with assistance from myself and others of the Crop & Food Research Apomixis

Programme. The vector used for transformation, pAC7 (Fig. 4.1) was developed jointly by

myself and Ross Bicknell. The primary feature ofpAC7 is a Ds element (Federoff et aI.,

1983) that is located between a 35S promoter and the selectable marker gene aada. On

excision ofthe Ds element, the 35S promoter is brought into proximity with aada thereby

conferring resistance to spectinomycin. An uida gene, which confers expression of

glucuronidase, with a minimal promoter, was cloned within the Ds element. Successful
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reintegration of the Ds element into the genome at close proximity with a native promoter

or enhancer of the host then allows expression of uida; The presence of hpt driven by a

2'35S promoter on the Ds element confers hygromycin resistance, providing a selectable

marker for both the presence of the Ds element and for transformation. The construct is

located between right and left T-DNA borders. The development ofpAC7 and the

generation of the G5 pAC7 T-DNA insertion panel were made prior to the PhD research.

TATA

Fig. 4.1 Schematic diagram of the vector

pAC7 which was used to generate the H.

glaciale T-DNA insertion panel. Vector

components are not drawn to scale.

4.{2 T-DNA/genomic DNA junctions of lop1
Southern analysis using a probe that spans the right border ofpAC7 indicated that lop]

carries three inserts. To determine if one ofthe T-DNA fragments had caused the

loss-of-parthenogenesis phenotype, TAIL-PCR (Liu et aI., 1995) was conducted using

primers designed from each border ofpAC7 (pAp04RB1, pAp04RB2 and pAp04RB3, see

Table 4.1). Three junction fragments were isolated: two derived from right border

junctions (pGem33, later extended to include additional sequence, and pGem74) and one

from a left border junction (pGem66, see Fig. 4.2). This work was done prior to the PhD

research.

4.1.3 Segregating populations
Two populations were generated by Dr Ross Bicknell using lop] as the pistillate parent.

Each population had different aneuploid accessions ofH aurantiacum (A3.4) as pollen

parents; one was the wild type A3.4 (lop] X A3.4) and the other was the A3.4 T-DNA

mutant loa] (lop] X loa]) that carries a complex multiple insert ofpSLJ2591 (Yang et aI.,

1993; Okada et aI., 2007). Both n+n and 2n+n progeny formed from these crosses,

presumably derived from fertilisation of meiotic and apomeiotic embryo sacs respectively.

As apomeiosis results in gametes in which no cross-over has occurred, 2n+n progeny were

excluded from the analysis.
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4.1.4 Development of peR markers for T-DNA inserts
PCR tests fortheT-DNA inserts were designed using the T-DNA borders and flanking

genomic DNA as priming sites. Preliminary screening for the inserts in both lopl X A3.4

and lopl X loal segregating populations demonstrated cosegregation of the sequences of

pGem66 and pGem74, indicating that they are left-border and right-border junctions of the

same T-DNA insert or oflinked T-DNA inserts. The PCR test of pGem33 showed no co­

segregation with other junction PCR tests. Two of the three T-DNA inserts were therefore

identifiable by PCR.

Some segregants did not inherit any detectable junction but were positive when PCR tested

for aada. This indicated the presence of a third insert in lopl, as previously indicated by

Southern analysis, for which no T-DNA border junction had been identified. However, a

PCR specific for the distal region of the left border was found to uniquely identify this

ins~rt. The lack of detection of the distal regions of either of the left borders of the other

two inserts indicated that they had undergone truncation on insertion. The PCR for the left

border ofT-DNA could therefore be used to uniquely detect inheritance ofthis insert.

Segregation data indicated that no other T-DNA inserts were present in lopl. The three

inserts were designated loplA, loplB and lopIC, detectable by PCRs that uniquely

detected the right border junction sequences pGem33 (using primers pAp04RB2 and

pGem33rev), pGem74 (using primers pAp04RB2 and pGem74rev), and a region adjacent

to the T-DNA left border (using primers 35SPR1 and Ds5.2), respectively (Table 4.1, Fig

4.2). This work was done by me prior to the PhD research.

Table 4.1 Primers used for the isolation of T-DNA junction fragments of the mutant lop] and their

subsequent detection. The T-DNA right border primers pApo4RB1, pApo4RB2 and pApo4RB3 were

used for TAIL-PCR from the right border of inserts of pAC7 of the mutant lopl. The primers

pGem33rev and pGem74 rev were designed from genomic DNA sequence of two TAIL-PCR products

adjacent to the right borders of two individual inserts, and amplify specific PCR products when paired

with a right border primer. The primers 35SPR1 and Ds5.2 amplify a region close to the left border

region of pAC7.

Primer name Primer sequence
pApo4RBl CCTTAGGCGACTTTTGAACG
pApo4RB2 ACGCGCAATAATGGTTTCTG
pApo4RB3 AGTTCCAAACGTAAAACGGC
pGem33rev CAATGGTCGGATAATAGAAATGAC
pGem74rev GCTGAATTAAGTATATTCTTCC
35SPRl TAAGGGATGACGCACAATCCCACTATCC
Ds5.2 CGTTCCGTTTTCGTTTTTTAC
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4.2 Testing for linkage between SDAFLP markers and
T-DNA inserts

The following approach described in Section 4.2 was carried out by me as part of this PhD

research. To test the possibility of a T-DNA insert being the cause of the deletion of lopi,

Fl progeny of the lopi X A3.4 and lopi X loai segregating populations were tested for

linkage between the T-DNA inserts and markers linked to the deletion. As lopi shows loss

of all markers ofLocus 3, no markers at this locus were available to test for linkage

between T-DNA inserts and the deletion. However, the PG segregating population

indicates partial linkage between Locus 2 and 3, so markers Di and Cy at Locus 2 were

used as markers putatively linked to the deletion in lopi.

Jop1A

Jop1B

Jop1C
lB

-+ +­
!

pGem33
-+ ...

pGem74
-+ ...

!

Fig. 4.2 Schematic diagrams ofthe three T-DNA inserts indicated by Southern analysis that are

carried by the mutant lopl. The inserts are termed loplA, loplB and loplC. Each insert is detectable

respectively by the marker PCRs based on pGem33, pGem74 and left border sequence respectively.

4.2.1 Segregation of T-DNA junctions: variable segregation
distortion of T-DNA inserts

A total of 22 lopi X A3.4 and 14 lopi X loaisegregants were tested for the presence of

each of the three T-DNA inserts in lopi. PCR amplification of the three inserts in lopi X

A3.4 segregants is illustrated in Fig. 4.3. The segregation of each insert, the SDAFLP

markers Di and Cy, and the T-DNA insert of loai (pSLJ2591) among segregants of the

two populations, are summarised in Fig. 4.4 a and b. The results indicate that the three

inserts of lopi (topIA, lopiB and lopiC) segregate independently and are therefore not

linked. Both populations showed some segregation distortion of T-DNA insertions lop IA

and lopiR The lopi X A3.4 population showed significant segregation distortion against

inserts lopIA (14% inheritance, P< 0.001) and lopIB (23% inheritance, P= 0.017). By

contrast, the lopI X loai population showed slight segregation distortion towards insert

lopiA (79% inheritance, P= 0.057) and lopiB (64% inheritance, P= 0.424). Significant

segregation distortion of insert lopiC was not observable in either the lopI X A3.4

population (46%, P= 0.832) or the lopi X loaI population (29%, P= 0.18).
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Fig. 4.3 PCR detection of T-DNA inserts lop1 A, lop1B and lop1C in a selection of segregants of the

lop1 X A3.4 population.
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Fig. 4.4 T-DNA insert and marker segregation (coloured) in the lop1 X A3.4 (a) and lop1 X loa1 (b)

populations. The presence of the T-DNA insert of loa1 is indicated by the marker "2591".

The variable segregation distortions in these populations suggest that the locus of the

T-DNA insert loplA acts with linked lethality in combination with the wild type paternal

A3.4 genotype, but acts as if under meiotic drive in combination with the mutant loal
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paternal genotype. This is possibly the result of embryonic lethality caused by maternal

alleles in specific combinations with paternal alleles that are transmitted by wild type A3.4,

but not by the mutant loal. While there has not previously been any reason to suspect

paternal genes having a role in segregation distortion in Hieracium, this possibility has not

been thoroughly investigated. The use of enlarged populations would be necessary for a

more thorough investigation of these hypotheses, which was not pursued as part of this

investigation.

4.2.2 Segregation of T-DNA junctions and SDAFLP markers: no
evidence of T-DNA as a cause of deletion

As observed in the PG population, the markers Di and Cy cosegregated in all progeny of

the lopl X A3.4 and lopl X loal populations. The markers showed no segregation

distortion in either population. No significant co-segregation of any insert with SDAFLP

markers closely linked to the deletion was found. There is therefore no evidence that any of

the T-DNA inserts detected in lopl were the cause of the deletion. This test, however, does

not completely eliminate the possibility. It remains possible that aT-DNA

insertion/genomic DNA deletion event was accompanied by translocation of either

genomic DNA carrying the SDAFLP markers or carrying the T-DNA involved. An inter­

chromosomal reciprocal translocation associated with a significant deletion caused by T­

DNA insertion was found in Arabidopsis (Nacry et aI., 1998). If this occurred in lopl,

markers at Locus 2 might cease to be linked to a T-DNA-induced deletion of Locus 3. A

more extensive chromosomal analysis would be necessary to characterise such an event.

4.2.3 Somaclonal variation as a possible cause of deletion
An alternative cause ofthe genomic DNA deletion of lopl is somaclonal variation. The

phenomenon has been implicated as a cause of variation following tissue culture and plant

transformation involving de-differentiation ofplant tissue. Somaclonal variation is often

attributed to epigenetic modification such as genomic DNA methylation (Kaeppler et aI.,

2000). However, chromosomal changes that include deletions have also been implicated.

The extent of DNA polymorphism as a result of in vitro processes appears to relate to the

transformation method in a manner that is dependent on the length of time of in vitro

culture (Labra et aI., 2001). Transformation ofArabidopsis via the floral dip method,

which imposes no in vitro cell culture, results in little genomic modification, whereas

untransformed plants derived from callus show significant variation (Labra et aI., 2004).
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Previous studies have implicated chromosomal aberrations to be associated with

somadonal variation to the extent of changes in chromosome number and meiotic

alterations (Pontaroli and Camadro, 2005), and deletions and duplications (Kharabian and

Darabi, 2005).

In conclusion, while the current data do not rule out T-DNA insertion as the cause of the

deletion of lop], it is equally likely that the deletion occurred during the callus phase of the

transformation process, independent of transformation events.
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Chapter 5 Deletion mapping of genetic regions
associated with apomeiosis and
parthenogenesis in Hieracium caespitosum

5.1 Introduction
The successful-production of a clonal seed through gametophytic apomixis requires the

formation of an unreduced embryo sac via apomeiosis followed by its autonomous

development into an embryo via parthenogenesis. Depending on the species, endosperm

formation may be autonomous or pseudogamous. It is therefore now widely agreed that

gametophytic apomixis is not a simple trait and may instead be viewed as a "composite"

trait that universally consists of apomeiosis and parthenogenesis. The genetic nature,

however, of each trait is still under debate. Data from molecular marker studies in grass

species have suggested that both apomeiosis and parthenogenesis are controlled by a single

dominant locus (Pessino et a1., 1997; Barcaccia et a1., 1998; Grimanelli et a1., 1998b;

Ozias-Akins et a1., 1998). Whether parthenogenesis is a pleiotropic effect of apomeiosis

(Mogie, 1988), or the locus is a complex one that carries determinants for both apomeiosis

and parthenogenesis (Grimanelli et a1., 1998b), has also received some discussion.

More recent data from Poa pratensis indicates that determinants of apomeiosis and

parthenogenesis may segregate (Albertini et a1., 2001; Matzk et a1., 2005). Apomictic

species of Asteraceae demonstrate regular segregation of apomeiosis and parthenogenesis

and are therefore controlled by separate loci (van Dijk et a1., 1999; Noyes and Rieseberg,

2000). Fl progeny of the cross between the sexual H pilosella (P4) and the apomictic

tetraploid H caespitosum (C4D) show clear segregation between apomeiosis and

parthenogenesis. The progeny types therefore fall into four classes: two classes consist of

progeny that inherit the parental characters of either sexuality or apomixis, and two

intermediate classes consist of progeny that inherit either apomeiosis or parthenogenesis.

Segregants that inherit apomeiosis but not parthenogenesis produce progeny that include

2n+n hybrids from apomeiotic embryo sacs that require fertilisation. Conversely,

segregants that inherit parthenogenesis but not apomeiosis produce n+O progeny from

parthenogenetic development of reduced embryo sacs. The latter segregant class may be

less common; previous observations have indicated cases in which parthenogenesis has a

contingency on apomeiosis (Albertini et a1., 2001; Noyes, 2005). Interestingly, plants

whose reproductive strategies are of the form of either intermediate class of segregants,
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that are capable of either apomeiosis or parthenogenesis, but not both, are essentially

evolutionary dead ends, either through repeated polyploidisation, or haploidisation.

The independent segregation between apomeiosis and parthenogenesis indicated that C4D

possesses an ideal genetic background for a forward genetics approach towards identifying

their determining loci. This chapter presents a strategy towards isolating determinants of

. apomeiosis and parthenogenesis of C4D,.which is based on the deletion mutagenesis

strategy conducted on the H glaciale (G5) deletion mutant panel described in Chapter 3.

The previous screen ofthe G5 mutant panel was successful for the identification ofkey

and modifying loci for parthenogenesis. However, there was no clear association between

the identified loci and apomeiosis. In C4D, the identification ofmutants with loss of

apomeiosis was facilitated by an associated reduction in seed set. Skeletal maps of two loci

whose loss was associated with loss ofapomeiosis or with loss of parthenogenesis were

gen~rated using a small number ofprimer combinations to screen a large number of

mutants. To generate markers at high densities as proximal as possible to key determinants

of the traits, small subsets of the panel were then screened for markers until the maps

consisted of markers generated from a total of 256 primer combinations. Selected markers

were tested for linkage in the PC segregating population, and proximal markers were

isolated and their suitability as SCAR markers and probes of a BAC library was assessed.

5.2 The composition of the H. caespitosum mutant panel
The C4D mutant panel was generated largely by the work of Sylvia Erasmuson and Pam

Fletcher. The panel comprised of a total of 86 members. Mutant sectors of chimeric M1

plants were initially detected by a visible reduction in seed set when compared to the wild­

type. Tissue from mutant sectors was regenerated in tissue culture to obtain non-chimeric

mutant members of the panel. Assessment of nuclear DNA contents of parthenogenetic and

hybrid progeny of panel members revealed 27 mutants with loss of apomeiosis (Loa-).

These mutants were able to produce limited quantities of germinable seed from unfertilised

heads but nuclear DNA contents of seedlings indicated that they were derived entirely

from reduced meiotic embryo sacs. The decline in seed set associated with the loss of

apomeiosis was often accompanied by an apparent restoration of meiosis. Therefore, while

low numbers of polyhaploid progeny were produced parthenogenetically, most Loa­

mutants readily produced n+n hybrid progeny after fertilisation. A second group of 32

mutants showed loss of parthenogenesis (Lop-), producing no germinable seed from



72

unfertilised heads. Analysis of nuclear DNA contents ofhybrid progeny indicated that

these mutants were able to produce 2n+n hybrids on fertilisation, indicating retention of

apomeiosis. A third group of 27 mutants showed loss of apomeiosis and parthenogenesis

(Loa-/Lop-), producing only n+n hybrids, essentially reverting to being sexual plants

producing n+n hybrid progeny.

A panel of 79 mutants including 24 with 10ssofapomeiosis, 30 with loss of

parthenogenesis, and 25 that had lost both traits was selected on the basis ofthe mutants'

clear phenotypes with no mutations characteristic of gametic or zygotic lethality. These

underwent molecular characterisation with SDAFLP screening alongsidetwo control

samples. One (C4Dy102) was derived from an irradiated seed which showed no loss of

apomixis, and the other (C4D107) was derived from a non-irradiated seed.

5.3 An initial survey of marker loss in the H. caespitosum
mutant panel

Profiles of fluorescently labelled SDAFLP amplification products in the form ofpeaks

captured by the genetic analyser were found to be very similar to profiles of radio-labelled

products separated by PAGE in the form of bands, with respect to the sizes and relative

intensities of amplification products. Notwithstanding the similarities, the DNA analyser

appeared to generally offer greater sensitivity enabling confident scoring of peaks oflow

amplitude, although there was evidence of a relative decline in amplitude of high

molecular weight peaks. This was likely to be due to a relative inefficiency of

electroelution by the genetic analyser of high-molecular-weight products for DNA

analysis.

SDAFLP profiles from the entire panel of79 mutants under analysis, along with the

control sample C4Dyl02, were amplified using eight primer combinations, yielding 39

commonly lost markers, all of which grouped into one of two clusters strongly associated

with either loss of apomeiosis or loss of parthenogenesis. In accordance with conventional

nomenclature of genetic loci identified by mutation, these loci have been termed LOSS OF

APOMEIOSIS (LOA) and LOSS OF PARTHENOGENESIS (LOP), whose mutant alleles

loa and lop result in the phenotypes Loa- and Lop-.

Markers were tabulated into three mutant-by-marker matrices, each composed of one of

the three classes of mutants (Loa-, Lop- and Loa-/Lop-). The most parsimonious marker

order of each locus - using the principle that the deletions are most likely to be losses of
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continuous segments of chromosomal DNA - is given in Fig. 5.1. The order of two pairs of

markers at LOP could not be resolved due to a lack of any discerning deletion breakpoints

between them. Markers were assigned identifiers according to the locus at which they

reside and the estimation of their length in base pairs, given on analysis. The most

frequently lost markers, loa300 and lop184, are likely to be the markers most proximal to

key determinants that reside at the LOA and LOP respectively.
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Fig. 5.1 Mutant-by-marker matrices generated by the scoring of markers commonly lost from the C4D

mutant panel of 79 mutants. Each column represents either a wild-type control plant (l02) or a mutant

plant of three classes, Loss of Apomeiosis, Loss of Parthenogenesis, or Loss of Both. Each row

represents either a phenotype or a SDAFLP marker. SDAFLP markers were generated by the

screening of the mutants with eight SDAFLP primer combinatio s. Yellow cells represent presence

and grey cells represent absence. Asterisks indicate markers who e presence or absence was not

determined. Blocks of markers that could not be ordered with re pect to each other are in brackets.

Deletions were detected at LOA in all 24 Loa- mutants and in 23 of 25 Loa-/Lop- mutants.

One Loa-/Lop- mutant showed no deletion. By contrast, five of the 30 Lop- mutants and 12

of the 25 Loa-/Lop- mutants showed no detectable deletions at LOP. Another six mutants

of the Loa-/Lop- class had deletions that did not span the putative central region of LOP. It

was possible therefore that loss of parthenogenesis might have had additional causes other

than deletions at LOP, such as deletions at alternative loci, or in some cases, deletions at



74

LOA. At this point of the SDAFLP screening, it was assumed that Lop- mutants with no

visible deletions possessed small deletions that might be detected when screened with

further primer combinations thereby increasing the resolution of the screen.

The number ofpeaks on an SDAFLP profile averages approximately 170, therefore the

yield of the eight primer combinations utilised at this stage of the screen was 1360

potentiaLmarkers. The 39 markers spanning both loci as a component of the 1360-potential

markers may be calculated as representing approximately 2.9% of the genome. Given that

C4D has a genome size of7.2 X 109
, the physical distance between markers maybe

estimated at 5.3 Mbp.

5.4 A strategy of further marker generation
A reduced panel of 36 of the potentially most informative panel members was assembled

tha~ included nine Loa-, 14 Lop-, and 13 Lop-/Loa- mutants. The reduction in the panel

size was achieved by generally eliminating less informative members that possess larger

deletions with breakpoints that are distal from the central regions ofthe loci. SDAFLP

screening ofthis panel alongside the non-mutagenised control C4D107, with a further 20

primer combinations, yielded 13 new commonly lost markers which were added to the

map. The mutant-by-marker matrices ofthis reduced mutant panel are given in Fig. 5.2.

Most ofthe new markers mapped centrally at the two loci, thereby increasing marker

density proximal to determinants.

With 20 primer combinations yielding 13 additional markers, the average marker yield at

this point was reduced to 0.65 markers for each primer combination. The new markers are,

however, expected to be more densely located at LOA or LOP. Given approximations of

170 scorable bands generated from each primer combination, and a genome size of C4D of

7.2 X 109
, a total of 4760 potential markers may be estimated to be spaced approximately

1.5 Mbp apart throughout the genome.

The Lop- mutants C4Dyl15, C4Dy133, C4Dy136, and C4Dy179 showed no deletions at

LOP. Similarly, the Loa-/Lop- mutant C4Dy164, showed a deletion at LOP but not at LOA.

These mutants were assumed to possess deletions that were not detectable at the resolution

of the screen at this time.
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Fig. 5.2 Mutant-by-marker matrices

generated by the scoring of markers

commonly lost from a reduced panel

of 36 mutants, screened with a

further 20 primer combinations.

The 13 new markers detected from

this screen are highlighted in yellow.

Asterisks indicate markers whose

presence or absence was not

determined. Blocks of markers that

could not be ordered with respect to

each other are in brackets.

5.5 Increasing the densities of marker at LOP and LOA
and their proximity to determinants

The focus of the SDAFLP screening was maintained on gaining markers at a high density

as proximal as possible to the LOP and LOA determinants. At this point of the marker

screening, 28 primer combinations had been used. A total of 256 PstI+N/MseI+3N primer

combinations were available. Therefore, a subset of the mutant panel was required to

screen the remaining 228 primer combinations for markers. The strategy initially employed

was essentially a reiteration of the previous screen, with a reduction of the mutant panel to

those members with the most informative breakpoints. A panel of 12 members was

selected, composed of 10 mutants with small deletions, one non-irradiated positive control,

and, as a negative control to assist to identify potential markers, one mutant with

significant deletions in both loci.

While this reduced panel was expected to offer high resol tion with respect to the

proximity of markers to putative determinants, it was found to have low power with

respect to marker detection. This problem might have been compounded by the lack of
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duplication of the positive and negative controls. Markers that were present in the positive

control, and absent in the negative control, could only be verified against members with

small deletions. Therefore only the most proximal markers might readily be detected,

resulting in very few markers being generated from this panel. A change in strategy was

necessary to prevent any chance ofmarkers being overlooked. The data generated from

screening this panel, however, was utilised at a later time to assist with the ordering of

markers that were identified using a more powerful panel, as described below.

5.5.1 Raising the throughput of SDAFLP screening with greater
marker detection: a "sieve and bin" strategy

The low frequency of detection ofmarkers on SDAFLP screening indicated that the

mutants chosen for further screening carried small deletions. Therefore, to ensure the

detection of as many potentially useful markers as possible, a panel ofmutants was

selected that contained members with deletions that spanned a larger region. This panel

consisted of8 samples: two wild type controls, C4Dyl02 and C4DI07, the Loa-/Lop­

mutants C4Dy166 and C4Dy168 which carry moderate deletions at both loci, the Loa­

mutants C4Dy125 and C4Dy165 which respectively carry small and intermediate deletions

at LOA, and the Lop- mutants C4Dy138 and C4Dy143 which respectively carry small and

intermediate deletions at LOP, (see Fig. 5.3 a and b for deletion profiles ofthese mutants).

This panel enabled the identification of potential markers (by their presence in C4Dyi 02

and C4DI07 and absence in C4Dy166 and C4DyI68), and, depending on the pattern of

their presence and absence in the Loa- and Lop- mutants, their locus and general

proximity.

After screening this panel with 96 SDAFLP primer combinations, it was apparent that

many primer combinations yielded no markers. To raise the throughput of primer

combinations, the panel was split into two mini-panels. The remaining 132 primer

combinations were first used to screen a "marker-detection" mini-panel of four samples

consisting of the wild type controls C4Dyl02 and C4DI07, and the Loa-/Lop- mutants

C4Dy166 and C4Dy168. Having detected a total of 121 potential markers absent in both

Loa-/Lop- mutants (and therefore likely to be positioned within the deletions ofC4Dy166

and C4Dy168 at either locus, Fig. 5.3 a), each marker was then assessed for presence and

absence in a second "marker-location" mini-panel composed ofC4Dy125 and C4Dy165

(Loa-), and C4Dy138 and C4Dy143 (Lop-) (Fig. 5.3 b). Based on the presence and absence



Phenotype:
Apomeioais

Phenotype:
Parthenogenesis

a) Marker Detection
Wlld.type \IS

double mutants

121 mo.ke•• detected,
tested further to find
marker location

b) Marker location and proximity
Small and medium deletions
at either locus

-+ -=r:J 'mo.ke•• p••ximo' to LOA

-+ CITI 14 markers di'nolto LOA

It rrm 11 mo.ke•• unknown location

12 marker. proximal to LOP

.- rn=JI 11mo.ke.sdi,JtoltoLOP

77

Fig. 5.3 The two stage "sieve and bin" strategy for high-throughput screening of mutants with further

SDAFLP primer combinations to detect further markers located at LOP and LOA. Each column

represents the phenotypes and the deletions at LOA and LOP of a plant. Groups of four squares

represent presence and absence patterns of putative markers. a) A mini-panel of two wild-type plants

(C4Dy102 and C4D107) and two Loa-/Lop- mutants (C4Dy166 and C4Dy168) with relatively large

deletions at both loci were screened with 228 primer combinations. A total of 121 potential markers

were detected by their presence in both wild type and their absence in both Loa-/Lop- mutants. b) The

primer combinations that detected the 121 potential markers were then used to screen a second mini­

panel oftwo Loa- mutants with small and medium deletions (C4Hy125 and C4Dy165 respectively) and

two Lop- mutants with small and medium deletions (C4Dy138 and C4Dy143 respectively). The

presence and absence patterns of each marker in this mini-panel enabled assignment of markers to a

locus and an approximate distance from the locus centre, proximal or distal. Markers absent from

either both Loa-, or both Lop- mutants of this mini-panel are expected to be more proximal to

determinants than markers lost only in one mutant. Markers that are lost in no mutants of this mini­

panel are at unknown locations.
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pattern, 43 of the 121 potential markers were assigned to a locus (either LOA or LOP) and

given a relative position (proximal or distal). The other 78 markers showed no absence in

the marker-location mini-panel, indicating that they were positioned beyond the deletions

of the mini-panel members.

5.5.2 The bias of C4Dy138 and C4Dy143; further screening with
C4Dy116

The screening of the marker location mini-panel produced 12 further markers proximal to

LOP (absent in both Lop- mutants) and 11 markers distal to LOP (absent in only

C4DyI43). Eight and one of the proximal and distal markers respectively, were mapped.

Mapping of the markers indicated that the deletions of the Lop- mutants C4Dyl38 and

C4Dy143, lay with a bias to one side of the locus. The biased deletions of these mutants

therefore caused a bias of the location of identified markers to that side of the locus centre

(putatively located near the marker 10pllO). The deletions of mutants C4Dy138 and

C4Dyl43 and how they lie relative to the most central marker ofLOP detected at this point

of the SDAFLP screen, are illustrated in Fig. 5.4.

Fig. 5.4 The bias of new markers (highlighted in yellow) towards one

side of LOP. Putatively the most central marker is lopllO, which was

the marker most adjacent to the breakpoints of the deletions of

mutants C4Dy138 and C4Dy143.
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To raise the density of markers located at the opposite side of the centre of LOP, mutant

C4Dy116, with a deletion biased to that side (see Fig. 5.4), was screened for the absence of
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the 78 markers of unknown location, and the 11 markers scored as distal to LOP (Fig. 5.5).

Of those markers, a total of 19 were found to be absent in C4Dyl16 and therefore likely to

be positioned within its deletion at LOP.

CD

Pllenotype: ::
Parthenogenesis.

78 markers, .....
lInknownlocation ...,

11 markers,
distal 10 LOP

_ • 17markels

_ 0 61markels

-+ • 2 markel S

_ 0 9markels

Fig. 5.5 The screen C4Dy116 with markers of

unknown location, and scored as "distal to LOP", for

their presence or absence in the mutant C4Dy116. Of

the 78 markers of unknown location, and the 11

markers distal to LOP, 17 and two markers

respectively were found to be absent in C4Dy116, and

were putatively located in the region of the mutant's

deletion.

5.5.3 Mapping of identified markers
The mapping of the identified markers was deduced by testing each marker for its presence

or absence in 20 additional mutants with informative breakpoints. Testing was restricted to

markers that were proximal to putative loci centres, and were able to be scored with

confidence. Table 5.1 summarises the mapping of markers that were placed in categories

according to their approximate locations based on the results of the "sieve and bin"

screening. The final mutant-by-marker matrices are illustrated in Fig. 5.6. Some primer

combinations were tested against only a subset of the 20 additional mutants if the data

points could not assist with mapping (noted as not determined). The markers most

frequently absent in association with loss of the traits, loa223 and loa300 of LOA and

lop 11 0 of LOP, are most likely to be most proximal to dererminants.
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Fig. 5.6 Mutant-by-marker matrices generated by the mapping of markers detected by the "sieve and

bin" strategy, at LOA and LOP, based on their presence and absence in 26 key mutants. Newly

discovered markers are highlighted in yellow. Asterisks indicate markers whose presence or absence

was not determined. A significant block of markers, lopl51 through to lop242, could not be ordered

with respect to each other. Other blocks of markers that could nOit be ordered with respect to each

other are in brackets.
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All Loa- mutants and all except one Loa-/Lop- mutant showed corresponding deletions at

LOA. Conversely, however, the Lop- mutant C4Dy157 carries a deletion at LOA that

mapping indicates is likely to include a putative determinant, yet assessment of nuclear

DNA contents of its progeny indicates the production of 2n+n hybrids from unreduced

embryo sacs. The cause of this outlier is unknown. Fertilisation of reduced eggs by

unreduced pollen, which produces progeny whose nuclear DNA contents resemble those

derived from unreduced embryo sacs, is unlikely, as unreduced pollen from H

aurantiacum (A4) is rare. Although possible, it is also unlikely that a determinant for

apomeiosis has been retained despite a significant deletion that includes flanking markers.

This would require the deletion to be non-contiguous sparing the determinant. Verification

of the phenotype and genotype of this mutant is therefore required, by reanalysis of the

nuclear DNA contents of its progeny and verification of the source of material for DNA

analysis.

Table 5.1 A summary of the mapping of markers identified from screening using the "sieve and bin"

strategy. Identified markers that were readily scorable went on to be mapped by screening for their

presence or absence in 26 key members of the mutant panel (*denotes markers that were later found to

be absent in C4Dy116).

Marker Category Markers Markers mapped
identified

Proximal to LOA 6 5
Distal to LOA 14 6
Proximal to LOP 12 8
Distal to LOP 11 1 (+2*)
Additional LOP markers absent in 19 17
C4Dy116
Unknown 61 0

While the two central LOA markers, loa223 and loa300, are frequently absent in

association with loss of apomeiosis, the central LOP marker, lop110, is more commonly

retained despite loss ofparthenogenesis. Two Lop- mutants, C4Dy133 and C4Dy179, have

no deletions at LOP detected. The phenotypes ofboth mutants were distinctively

loss-of-parthenogenesis; no alternative gametic or zygotic lethality was evident as both

produced substantial quantities of germinable n+n and 2n+n hybrid seed on fertilisation

(data not shown). The apparently intact copies ofLOP in these mutants when

parthenogenesis is lost raises the probability that mutations at other loci might be involved.

Data from the G5 mutant panel and the PG segregating population indicate that deletions at

any of three loci are able to cause significant reductions in parthenogenetic seed set, with
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one locus acting as a key determinant and two additional loci acting as modifiers.

Modifiers are similarly likely to playa role in parthenogenesis in C4D, and it is possible

that C4Dy133 and C4Dy179 carry deletions ofmodifying loci. It remains possible,

however, that mutation at LOP has occurred in these mutants. The two mutants may still

possess deletions that are too small for resolution by the current screen. The deletions of

C4Dyl15 and C4Dy136, defined by one and two markers respectively, were resolved with

the most recently identified markers ofthis screen, and further resolution ofundetected

deletions at LOP may be possible with further primer combinations. Alternatively it is

possible that the y-irradiation has caused chromosomal inversions or translocations that

have resulted in a loss of function of the genetic determinant(s) but no accompanying

marker loss. Similarly, if mutations in genes of trans-acting factors involved in epigenetic

changes, resulted in the loss of apomixis, an accompanied common marker loss detectable

by this screen may not occur. A previous marker screen, undertaken by others of the Crop

& Food Research Apomixis Group, using methylation sensitive AFLP, indicated that

Hieracium mutants with loss of apomixis had genomes with variable methylation states.

It is interesting to note that the Loa-/Lop- mutants C4Dy160 and C4Dy16l both show

deletion of one of the most recently identified markers 10p92, where deletions were not

previously detected. Deletions at LOP cannot easily be fully attributed as the causes of loss

of parthenogenesis in Loa-/Lop- mutants as loss of the trait may conceivably be a

pleiotropic effect of the deletions ofLOA. In the cases ofC4Dy160 and C4Dy16l, there is

no additional data to verify whether the deletions oflop92 caused loss ofparthenogenysis.

However, they do provide a tentative indication that a determinant of parthenogenesis lies

between 10pllO and 10p92, rather than between 10pllO and 10p102 (see Fig. 5.6).

A total of 256 primer combinations were used, and there were approximately 170 scorable

bands generated from each primer combination. Therefore, a total of approximately 43500

candidate markers were assessed over the course of the screen. Given an approximate

genome size of C4D of 7.2 X 109 bp, the average distance between each marker may be

estimated at 165 kb. It should be noted, however, that this may be an under-estimation of

the average inter-marker distance. Bands of repetitive sequences are not necessarily

scorable and therefore cannot be fairly considered as candidate markers. Accurate

estimations ofphysical distances between markers will be made on gaining BAC tiling

paths that contain multiple markers.
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The mapping validated the sieve and bin approach that was taken: first identifying markers

with a few mutants with key deletions, then mapping of the identified markers with further

mutants with informative breakpoints. The Loa- mutants C4Dy125 and C4Dy165 have

deletions that span the putative central markers ofLOA, loa223 and loa300, with little

biases towards either side ofthe locus. The deletions of the Lop- mutants C4Dy138 and

C4Dy143, however, showed significant biases towards one side ofLOP, but these were

adequately compensated for by screening for absence of identified markers in C4Dy116.

Markers identified due to their absence in this mutant included the centrally located

markers lop102 and lop379, and these markers provided resolution between the proximal

breakpoints of C4Dy138 and C4Dy143, which were previously unresolved.

5.6 Marker isolation
The effort towards the isolation of markers for their use as probes and SCAR markers for

BAC library screening was focussed towards markers proximal to determinants at LOA and

LOP. Other markers that shared primer combinations with key markers were able to be

isolated for sequencing and characterisation with little additional effort.

5.6.1 Mini-sequencing of markers
Mini-sequencing was limited to markers over 100 bp in length. For mini-sequencing, each

sample requires the analysis of a series of 12 mini-sequence profiles. For accurate

identification of the peaks, a control series ofprofiles was required in which the peaks for

mini-sequencing were absent. The mini-sequencing was therefore performed on the L6a­

mutant C4Dy140 and the Lop- mutant C4Dy129 (see Fig. 5.1). Each mutant was able to

serve as a control for the other, as they each possessed large deletions at either LOA or

LOP. This enabled markers from either or both loci to be mini-sequenced from the same

mini-sequencing profiles. Using the mini-sequencing profiles of these two mutants, a total

of 45 markers were subject to mini-sequencing of which mini-sequence ofbetween one

and three bases was generated from 25 LOA and 18 LOP markers (Table 5.2 columns 1-3).

Some mini-sequences gave more than one base at one or more of the three mini-sequenced

bases, a characteristic common with some markers of the G5 mutant panel (see Table 3.1

of Chapter 3). This is believed to be due similarly to the presence ofSNPs within the mini­

sequenced bases at linked DNA duplications.
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5.6.2 Design of Msel primers with additional selective bases
In an effort to reduce the complexity of electrophoresed SDAFLP profiles for band

isolation while increasing the intensity of marker bands, 14 extended MseI selective

primers were designed using the mini-sequence data as two or three additional selective

bases. Each primer was tested as the MseI selective primer for SDAFLP using templates

from the wild type control C4DI07 and the Loa-/Lop- mutant C4Dy166. Ten markers were

successfully amplified from the wild type template while showing absence of amplification

from the mutant template, thereby confirming the utility of each primer for band isolation,

and the mini-sequence data from which they were designed (Table 5.2 columns 4 and 5).

5.6.3 Marker band isolation
Band isolation of a total of 15 and 11 proximal markers at LOA and LOP respectively was

attempted from profiles generated from PstI primers combined with conventional and

extended MseI primers. Initial attempts at isolation of the 26 markers were made from

conventional SDAFLP profiles of two wild type samples (C4Dyl02 and C4DI07)

electrophoresed alongside profiles from two Loa-/Lop- mutants (C4Dy166 and C4Dy168)

as negative controls. From these standard profiles, five central markers were successfully

isolated. Three additional markers distal to LOP (lop428, lop450 and lop302) were isolated

due to their virtue of being amplified by primer combinations in common with those of

proximal markers. All markers that were not successfully isolated and for which extended

MseI+5N/6N primers had been designed were then amplified using their PstI primers

combined with their MseI+5N/6N primers and electrophoresed enabling isolation of a'

further nine marker bands (Table 5.3).

Amplification ofmarkers using their MseI+5N/6N primers generally proved successful in

reducing the complexity of the SDAFLP banding profiles and lifting the intensities of the

bands. In some cases the use ofMseI+5N/6N primers was necessary for band visibility.

There was also evidence that band intensity was enhanced by increasing the concentration

ofthe primers. Most marker bands, including some that amplified only faintly, were

successfully isolated directly from silver-stained gels. Fig. 5.7 illustrates partial SDAFLP

profiles containing four markers that were isolated. The use of radio-labelled SDAFLP

profiles, which are generally more intense than silver-stained profiles, was considered for

the isolation of fainter bands but it was decided not to proceed. Radio-labelled profiles

depend on indirect band isolation from gel locations deduced from autoradiographs,

thereby raising the risk of incorrect band isolation.
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Fig. 5.7 Examples of markers within gel sections of profiJes amplified using MseI+SN/6N primers.

ProfiJes of two wild type samples (C41}yl02 and C4DI07) and two Loa-/Lop- samples (C41}y166 and

C4D')'168) were electrophoresed and silver-stained and bands were excised from each wild type sample.

The markers loa27S, loa343 and lop379 have amplified as doublets that are believed to be due to

variable A tailing.

Some markers were unexpectedly apparent as doublets or even triplets (see Fig 5.7), while

sequences of each band of a doublet or triplet were identical or showed close to 100%

similarity. Microsatellites within linked duplications of marker sequences might be

expected to cause a pattern of multiple banding but no similar evidence of microsatellites

was evident in standard SDAFLP profiles. The multiple banding may be due to A tailing of

the products throughout amplification giving rise to different species of the markers with

variable lengths. This may only have occurred in profiles for band isolation due to their

increased primer concentrations, a step that was taken to raise the intensity of bands.

In the cases of four markers, initial attempts at isolation resulted in the final sequences

being shorter than expected. This suggested that alternative bands were being isolated. The

profiles from which these bands were isolated were consistent with this possibility. Very

strongly amplified bands that preceded the bands of interest in the lanes on the gels often

ran on the gel with a trailing streak, which possibly contaminated the gel slice containing

the band of interest. This was a significant issue; due to their lower molecular weights and

the efficiency at which they were amplified by peR, these contaminating bands were

preferentially re-amplified and later cloned during the isolation process. For loa223, a band

of the expected length could not be isolated despite repeated attempts. This was the result

of persistent contamination by a lower molecular-weight insert.
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Table 5.2 Mini-sequence data of selected markers with confidence scores assigned on the basis of the

clarity of each mini-sequence peak. Confidence scores range from 1 to 5, with 5 representing the

highest confidence, for each base-position of the mini-sequence. MseI+5N/6N primers for some central

markers with mini-sequences of high confidence were designed. The primers were tested for successful

amplification of their respective SDAFLP markers.

Marker Mini-sequence Confidence (bases 1,2 MseI+5N/6N Amplification using
and3 primers MseI+5N/6N primers

loa395 CAG 555

loa571 TIC 544

loa344 A1TAA 444

loa29 I CAA 544

loa439 GTC 433

loa116 GGG 444

loa292 ?CA -44

loa326 CTI 255

loa219 CGG 444 y y

loal70 CCA 233

loal41 GCC 555 Y

loa275 TAT 555 Y Y

loa223 CTI 444 y

loa300 GAA 545 y y

loa343 CAT 553 y y

loa267 GTC 554 y y

loal59 ATA 555 y y

loa250 ACC 235

loa235 GG/TC 333

loal94 AGT 433

loa352 GCG 455

loa304 TCC 444

loa310 GAT 554

loa318 ACC 555

loa409 CCT 555

lop50 AG 44

lop76 ATC/G/T 433

lop309 A1CCT 444

lop455 GG 53 Y

lop515 CCC 555 y y

10pi1O CCA 555 Y Y

lop379 GTG 553 Y Y

lop235 AAC 545 Y Y

lop295 GGA 425

lopll1 AAITA 553 Y

lop365 ??T --4

lopl29 ?T? -5-

lop450 G 5

lop184 TGG 544

lop151 G?G 3?5

lop248 GTI 543

lop125 GTG 555

lop299 GAA 542
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Table 5.3 Isolation of markers at LOA and LOP, from SDAFLP profiles that were generated using

either standard or extended-MseI+5N/6N primers and electrophoresed.

Marker Isolated from MseI+3N Isolated from MseI+5N/6N

10al92

10a292

10a306

10a326

10a219 y

10a170

10a141

10a275 y

10a223

10a300 y

10a343 y

10a267 y

10a159 y

10a482 y

10a250

10p428 y

10p309

10p455 y

10p299 y

10p515 y

10pllO y

lop102 y

10p379 y

10p235 y

10p278 y

10p295

10plll

10p450 Y

10p302 Y

5.6.3.1 Amplification and isolation of additional markers
The MseI+5N/6N primers were designed specifically for individual markers, resulting in a

high degree of specificity. Surprisingly, three additional markers were amplified from wild

type samples using MseI+5N/6N primers, while showing distinct absence in the

Loa-/Lop- mutants C4Dy166 and C4Dy168. None of the three markers showed any

amplification using the less specific MseI+3N primers. For example, a 418 bp product that

was strongly amplified using MseI+CCAATA showed no amplification using MseI+CCA,

which intuitively would be expected to have occurred. It is possible that the three

additional markers were amplified in standard SDAFLP profiles using MseI+3N primers,
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but only at levels that were not detectable. If this were the case, it highlights the

competitive nature of AFLPand SDAFLP where the absence-of amplification of some

bands results in the increased amplification of others.

5.7 Marker sequencing and characterisation
In general, for each marker, three or more sequences were generated from two isolated

bands, to help verify that the correct bands were isolated, and to gain a consensus

sequence. The sequences included a direct sequence from the band excised from the lane

of sample C4Dyl02 and two individual colonies with inserts of cloned fragments of

C4D107. Finished sequence was derived whenever possible from consensus sequences

derived from isolated bands ofC4D107, as this plant was not subject to any

mutation-causingy-irradiation. In the case of lop278, the fragment proved difficult to clone

and therefore the direct sequence from C4Dyl02 was used. Based on the consensus

between sequences and sequence length, sequenced markers were attributed confidence

scores on being correct bands and being correct sequence (Appendix 7.2). Some variation

between the lengths of the markers as predicted by the genetic analyser and the lengths of

the corresponding marker sequences were observed. In most cases this was attributable to

the different primer positions of the MseI+3N and the Mse+5N/6N primers.

5.7.1 Bioinformatic analysis of marker sequences
Significant ORFs predicted by the ORF finder and exons predicted by GENSCAN in the

15 central markers with finished sequences are listed in Table 5.4. Predictions of exons

showed general consistency with predicted ORFs. As expected, the exon prediction of

GENSCAN appeared to be more conservative; only three ORFs, the major ORFs of

loal59, loa482 and lop379, were predicted as exons by GENSCAN and only the ORF of

loa482 was predicted to be an exon in its entirety. All of the predicted exons corresponded

with the largest ORF of each marker. However, this does not eliminate the possibility of

partial exons at either boundary of some markers.

While many of the marker sequences contain extended potential ORFs characteristic of

coding sequences, only two showed similarity to nucleotide sequences of the nr database of

GenBank. No markers showed significant similarity to known sequences at the nucleotide

level. However,at the peptide level (using the tblastx algorithm), markers lop299 and

lop379 showed significant similarity (Expect ::;;0.0001) to known sequences. Lop299

contains two extensive potential ORFs, one spanning almost the entire marker sequence.
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While the sequence shows no significant similarity at the nucleotide level to known

sequences, part of the ORF shows low-level similarity at the peptide level to genomic

sequence ofLactuca sativa (lettuce) and of Stevia rebaudiana, with Expect values of

4 X 10-5 and 0.002 respectively. Both species, like Hieracium, are from the Asteraceae

family, and, as described in Chapter 3, apomixis has been reported in Stevia rebaudiana

(de Oliveira et al., 2004). Conservation at the peptide level, when divergence has occurred

at the nucleotide level, implies escape from mutational decay, and therefore implies a

possible function. Attribution of function cannot be made as the similarity extends only

over approximately 60bp. It is likely, however, that Hieracium, Lactuca and Stevia share

descendents of ancestral transposable elements. The similarity that lop299 has with

genomic sequence ofLactuca and Stevia may reflect the marker's derivation from a

transposable element, whose functionality iflost, has only been lost recently in

evolutionary time.

Ofmore interest were the similarities that marker lop379 showed with plant protein

kinases. At the nucleotide level, these similarities were restricted to two short regions of

lop3 79. The sequence of the marker between bases 211 and 280 showed similarity to a

kinase gene ofArabidopsis with an Expect value of 8 X 10-5
. A second region between

bases 251 and 275 showed similarity to sequences from a diverse range of genomes. This

region, including four repeats of a CAC trinucleotide microsatellite, is a sequence oflow

complexity, and local similarity with sequences that contain simple repeats occur readily

by chance.

While blastn searches for similarities between the query sequences and the non-redundant

(nr) nucleotide database of GenBank, tblastx and blastx translate the query into all 6

possible peptide sequences prior to conducting similarity searches of translated nucleotide

and peptide databases. The translations result in more sensitive searches as they allow for

the redundancy of codon triplets that causes nucleotide sequences to diverge sufficiently to

limit the detection of similarity by blastn. Similarity searches conducted using tblastx and

blastx to search the nr nucleotide and peptide databases gave much more significant

results. Similarities at the peptide level were found that spanned the entire length oflop379

with Expect values as low as 6 X 10-38
. The proteins that showed similarity to lop379 were

predominantly with receptor protein kinases or (Pto-like) serine/threonine kinases from a

wide range of plant species including Arabidopsis and rice. Interestingly, the four repeats

of the trinucleotide CAC that are present within the microsatellite described above predict
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the presence of four histidine residues, which were not common in any similar sequence.

These extra residues may be due to slippage at the DNA replication fork that occurs at

microsatellites, or they may represent a unique functional feature of the gene sequence of

lop379.

Table 5.4 Summary of open reading frames, predicted by the ORF Finder, and exons, predicted by the

GENSCAN, of sequences of markers at LOA and LOP.

Output from ORF Finder Output from GENSCAN

Marker Genomic ORF ORF ORF Exon Exon features
Sequence predictions length features prediction and probability
Length (frames) (strand)

loa219 194 3-164 (-1) 162 None
38-190 (+2) 153 Stop at 190
2-133 (-2) 131

loa275 252 2-199 (+2) 198 Stop at 199 None
60-251 (+3) 193
54-194 (-2) 141

loa300 281 1-108 (-3) 108 None
3-77 (+3) 75 Stop at 77
1-66 (+1) 66 Stop at 66
3-59 (-1) 57
219-272 (-1) 54 Stop at 219

loa343 319 80-318 (-1) 240 Stop at 80 None
37-195 (-2) 159 Stop at 37
213-317 (-3) 105 Stop at 213

loa267 243 1-197 (-2) 197 None
104-242 (+2) 140
18-155 (+3) 138 Stop at 155

loa159 136 26-121 (+2) 96 Start at 26, 26-102 (+) Initiation, 0.96
1-68(-3) 68 Stop at 121 26-92 (+) Initiation, 0.016
2-58 (-1) 57

loa482 462 56-442 (-3) 387 Stop at 56 442-56 (-) ATG-Stop, 0.918
26-316 (+2) 291 Stop at 316 409-56 (-)
309-395 (+3) 87 Stop at 395
401-461 (+2) 62
406-461 (-1) 57 Stop at 406

lop455 436 294-435 (+3) 143 No more None
found

lop299 275 3-263 (-1) 261 None
15-245 (+3) 231 Stop at 245

lop515 496 213-494 (-3) 282 Stop at 213 None
1-179(-3) 179
1-111 (+i) 111 Stop at 111

lop110 88 2-87(-1) 87 None
1-72 (-2) 72
3-59 (+3) 57 Stop at 59

lopl02 74 1-54 (-3) 54 No more None
found

lop379 357 1-327 (-1) 327 324-48 (-) Initiation, 0.3
210-356 (+3) 148 324-30 (-) Initiation, 0.011

324-39 (-) Initiation, 0.298
327-39 (-) Initiation, 0.188
327-48 (-) Initiation 0.188

lop235 205 28-204 (+1) 177
2-163 (+2) 162 Stop at 163
1-125 (-3) 125

lop278 255 28-117 (+1) 90 Stop at 117
11-94 (+2) 84 Stop at 94
1-82 (-3) 82
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Despite the uncommon histidine residues and the low levels of similarity that lop379 has

with known gene sequences at the nucleotide level, it is highly likely that the marker codes

for an actively expressed protein kinase, and is not part of a pseudogene. A domain search

for conserved peptide domains against the CDD database ofNCBI (Marchler-Bauer and

Bryant, 2004) indicated that the sequence oflop379 codes for part of a catalytic domain

with similarity to those ofTyrosine kinases and Serine/Threonine protein kinases.

Furthermore, lop379 contains all invariant residues ofthe protein kinase catalytic domain,

highlighting the conservation of function in the sequence that has occurred (Stone and

Walker, 1995).

5.7.2 Potential role in parthenogenesis of the gene at lop379
Protein kinases catalyse the transfer of the y-phosphate from ATP to amino acid side

chains of proteins, thereby reversibly changing the conformation ofthe downstream

protein. The regulation of protein kinases is mediated via a variety of signals, including

second messengers such as cyclic nucleotides and calcium, or by phosphorylation by

protein kinases upstream in a phosphorylation cascade. Some protein kinases possess

transmembrane domains and are activated by extracellular signals. Protein kinases feature

in mediating signal transduction for many processes in response to both environmental

stimuli and endogenous signals and may often play essential roles in conferring traits

(Stone and Walker, 1995).

The functional roles ofprotein kinases are diverse; therefore no function can be attributed

solely on the basis of nucleotide sequence. However, the marker's proximity to the central

region ofLOP attracts further investigation into its potential role in parthenogenesis. To

change the state of an embryo sac from quiescence to the activation of the cell division of

embryogenesis in the absence of fertilisation requires signal transduction that is likely to

involve one or more protein kinases. Pivotal roles ofprotein kinases in aspects ofplant

reproduction are well documented, including ovule development (Benjamins et aI., 2001;

Chevalier et aI., 2005) and megagametogenesis (Pischke et aI., 2002). Most interestingly,

the genomic sequence of lop3 79 showed significant similarity at the peptide level to SERK

and the SERK-like family of genes of a number of species ranging from Arabidopsis to

maize. As outlined in Chapter 1, SERK was discovered as a marker gene expressed in

carrot competent and embryogenic cells (Schmidt et aI., 1997). In the context of

parthenogenesis, SERK has attracted a great deal of interest. Its role in parthenogenetic cell

types, however, resembles that in sexual reproduction (Tucker et aI., 2003). Its expression
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is therefore likely to be in response to upstream signals that have unique roles and unique

expression patterns associated with either sexuality or parthenogenesis.

While it is possible that the gene at lop379 plays a role in parthenogenesis, the deletion

mutant panel has five Lop- mutants that possess lop379, and are therefore likely to possess

the full gene sequence. This implies that there are additional requirements for

parthenogenesis to be expressed. An epistatic system whereby a number of genes act,

perhaps as an operon of a high number of single dose alleles at a single locus, has been

proposed for apospory in Pennisetum (Ozias-Akins et aI., 1998), and it is possible that an

operon exists at LOP. Whether an operon is present at LOP, and whether lop379 is part of

such an operon, will be investigated further by the Apomixis Programme at Crop & Food

Research.

5.8 SCAR marker design and amplification
Sequence analyses of isolated fragments of genomic DNA, during the present study and

during previous investigations, indicate that genomes ofHieracium species are rich in

active and remnant transposable elements, resulting in genomes that are composed largely

ofmoderately to highly replicated DNA. Given a highly repetitive genome, the use of

isolated SDAFLP markers as probes for BAC clone filters is expected to result in

hybridisation to a large number of non-specific clones that possess broadly similar

sequences of repetitive DNA. SCAR marker detection within BAC clone pools is

potentially a more discerning technique than hybridisation of probes to BAC colony filters,

as the tolerance ofbase-to-base mismatching during primer annealing is much less than

base-to-base mismatching during probe hybridisation.

Primers were designed based on the sequences of the SDAFLP markers and were tested for

amplification of single-locus SCAR markers. At least one primer pair based on each of the

15 central sequenced markers was tested. Primer pairs were initially tested as SCAR

markers on the wild type C4DI07 and the Loa-/Lop- C4Dy166 which carries large

deletions at both LOP and LOA. A total of six SCAR markers (loa275, loa300, loa267,

lop379, lop235 and lop278) showed no amplification or differential amplification in

C4Dy166, providing initial indications that they amplified from the genomic locations of

their SDAFLP counterparts. Interestingly, the SCAR ofloa300 showed amplification in

both C4DI07 and C4Dy166. An additional band, however, of approximately 550bp was
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amplified in the wild type but not in the mutant (data not shown). Fig. 5.8 shows a

representative gel image of SCAR marker PCR testing.

Fig. 5.8 Representative PCR tests

of DNA from the wild type

C4D1 07 (wt) and the Loa-/Lop­

mutant C4Dy166 (-/-), using

SCAR marker primers. Of the

SCAR markers illustrated, lop235,

loa275 and lop455 showed

discernment between the wild type

and the mutant, with their

respective presence and absence.

The six discerning SCAR marker primer combinations were then used for amplification of

16 samples including one wild type control, seven Loa- mutants, seven Lop- mutants, and

one Loa-/Lop- mutant. The results of the testing of four markers are illustrated in Fig. 5.9.

The six SCAR markers amplified in correspondence with the SDAFLP data in most

samples. Exceptions included amplification of SCARs loa235, loa267 and loa275 from

mutants C4Dy156, C4Dy134 and C4Dy125 respectively, which showed loss of the

corresponding SDAFLP markers. Two additional exceptions included amplification of

SCAR markers lop379 from C4Dy143 and loa267 from C4Dy144 at much reduced

efficiencies. Apart from amplification of loa275 from C4Dy125, all exceptions were

markers that were predicted to be located at the margins of deletions. The additional 550bp

product amplified with loa300 was tested for its presence in a similar group of mutants by

Takashi Okada (CSIRO Plant Industry, Adelaide), and was found to amplify in mutants in

which the SDAFLP marker was found to be absent. This marker, while linked to LOA, is

therefore not likely to correspond directly to the SDAFLP marker from which it was

derived.

It is possible that the inconsistent presence and absence patterns of the two marker types

are due to extraneous SCAR amplifications at linked duplications that were discernable by

SDAFLP but not by SCAR amplification. This explanation, however, requires expansion

to be sufficient. With the exception ofloa267, the SCAR marker primers contained the

same restriction sites and selective bases that served as polymorphisms for the generation

of the SDAFLP markers. It is therefore reasonable to believe that the two marker types

should amplify at the same genomic locations. However, it is possible that mismatching
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between the 5' ends of the SCAR primers and the genomic sequence is tolerated at highly

similar sequence duplications enabling the extraneous amplification to occur. The

sequences of the 5' ends of the SCAR primers serve as restriction sites for SDAFLP

markers which is likely to be a more reliable form of polymorphism detection.

\\1
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10a275
Fig. 5.9 Amplification of

two LOA and two LOP

SCAR markers to test for

their correspondence with

their SDAFLP marker

10a267
counterparts. Samples

amplified were lane 1,

C4DI08; lanes 2-8, seven

Loa- mutants (C4DyI34,

C4Dy125, C4Dy165,

C4Dy152, C4Dy146,

10p278 C4Dy135, C4Dy132); lanes

9-15, seven Lop- mutants

(C4DyI79, C4Dy138,

C4Dy143, C4Dy116,

C4Dyl71, C4Dy144,

10p235
C4Dy156) and lane 16,

Loa-/Lop- mutant,

C4Dy168.

An alternative explanation for the inconsistencies between the marker types is that the

proposed linked duplications that are amplified by SCAR primers possess small insertions

or deletions (in/dels). These would result in length polymorphisms within the SCAR

products that are not resolvable on an agarose gel. If this were the case, SDAFLP profiles

would be expected to contain markers of different lengths derived from linked duplications

that are deleted together. This sometimes occurred; the SDAFLP marker loa267 amplified

as a doublet and was deleted as a doublet, except in the case ofC4Dy134, which retained

one of the doublet peaks, and which showed SCAR amplification. An extreme case of an

insertion is evident from the additional 550bp product amplified by the loa300 SCAR
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. primers, which was found to contain an insertion of255bp (Takashi Okada, pers. comm.).

More subtle length polymorphisms between duplications may only be resolved using

PAGE or capillary based DNA analysis. Using more discerning methods of analysis for

resolution of length polymorphisms may be worthwhile for later utility of the SCAR

markers for BAC clone isolation.

5.8.1 Genomic representation of marker sequences
The quality of the 15 markers for use as probes for BAC colony hybridisation was assessed

by hybridising the probes to Southern blots ofH caespitosum genomic DNA. This was

undertaken by Takashi Okada. Table 5.5 compares the results of the Southern analysis of

the probes with the use ofthe derived SCAR markers. Four out ofthe five successful

SCAR markers are based on probes that hybridise as medium to high copy markers. This

indicates that the marker is hybridising to duplications that are discernable by the SCAR

primers. Surprisingly, those markers that hybridise to a single band have shown a low rate

of successful conversion to SCAR markers. It is likely then that these sequences are

represented more than once in the genome, possibly as alleles, or alternative duplications,

that are not discernable as RFLPs. The exception is the marker lop379, which hybridised as

a single copy probe and was successfully converted into a SCAR marker. This suggests

that this marker may be hemizygous; however, evidence of a hemizygous state oflop379

requires its use as a probe against DNA of a segregating population, in order to

demonstrate segregation in linkage with the trait and with the SDAFLP marker derivative.

In Pennisetum, 11 of 15 sequenced RAPD markers were successfully converted into SCAR

markers (Ozias-Akins et aI., 1998), a much higher success rate than the six out of 15

SDAFLP markers from LOA and LOP that were successfully converted. It is possible that

the higher success rate of conversion of the RAPD markers of Pennisetum is due to the

proposed hemizygous nature of the ASGR (Ozias-Akins et aI., 1998). An additional reason

might be that SCAR markers, derived from RAPD markers, might be expected to be more

stringent than those derived from AFLP markers, when sequences that include the original

polymorphisms are incorporated into the primers. RAPD primers are decamers therefore,

assuming the primers anneal with no mismatches, the markers reflect 20 bp ofunique

nucleotide sequence. SDAFLP markers reflect 14 bp of unique nucleotide sequence

composed oftwo restriction sites (one 6 bp and the other 4 bp)and 4 selective bases.
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Table 5.5 Ten of the 15 SDAFLP markers used as probes against H. caespitosum DNA to test for

approximate copy number. The behaviour of each probe is compared with its behaviour as a SCAR.

*Loa300 gives a SCAR of approximately 550bp.

Marker Southern Single-locus
hybridisation pattern SCAR

loa219 Single band N

loa275 Smears Y

loa300 Faint hybridisation y*

loa343 Faint smear and 2-4 N
distinct bands

loa267 Intense smear Y

loa159 N

loa482 Intense smear N

lop455 N

lop299 N

lop515 N

lop110 Single band N

lopl02 N

lop379 Single band Y

lop235 Smear Y

lop278 Smear Y

5.9 Phenotype segregation and marker association in a
segregating population

To test segregation ratios of apomeiosis and parthenogenesis, a population of 101 H

caespitosum X H pilosella segregants was selected for phenotype characterisation. Four

markers from each locus, LOA and LOP, were scored for their presence or absence in a

random selection of 44 segregants to test for cosegregation of each locus with apomeiosis

and parthenogenesis, and recombination at the loci.

5.9.1 Characterising phenotypes of the segregating population
Scores for dark seed production and parthenogenesis ofthe 101 segregants are given in

Appendix 7.3, and for apomeiosis are given in Appendix 7.4. For the scoring of dark seed

and parthenogenesis, seed was assessed from both decapitated floral heads and from non­

decapitated heads. Only one incidence ofputative pollination due to lack of decapitation

was found; PC28 yielded two dark seeds from 17 non-decapitated buds of which one
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germinated. This is most likely to have been a n+n selfor hybrid as the result of

inadvertent pollination, as the very low rate of dark seed production (0. 12/head) indicates

that parthenogenesis is absent. Furthermore, three decapitated buds yielded only one dark

seed which did not germinate. Some segregants gave unexpectedly lower means of

numbers of dark seed and germination from decapitated heads than from non-decapitated

heads. This may be due to damage to reproductive structures during the decapitation.

However, noting the exception of PC28, the respective data from decapitated and

nondecapitated buds provided the same scores for parthenogenesis for all other PC

segregant. The data from decapitated and nondecapitated buds were therefore compiled for

the purposes of this analysis.

The ratios of the four classes of segregants based on the detection (or lack of detection) of

apomeiosis and parthenogenesis are given in Table 5.6. Production of endosperm, as dark

seec;l, was also assessed. Many Lop+ segregants produced small numbers of seed from cut

heads that germinated only to form very small masses of callus, some with a single stunted

root. The amounts of tissue available were often too small to test for nuclear DNA

contents; however those that were tested were found to be derived from either meiotic or

apomeiotic embryo sacs.

Table 5.6 Rates of transmission of apomeiosis and parthenogenesis amongst 101 H. pilosella X H.

caespitosum segregants. Numbers in parenthesis are proportions of segregants that fall into each

phenotypic class.

Apomeiosis detected Apomeiosis not detected Total
Parthenogenesis 15 (Loa+/Lop+) 55 (Loa-/Lop+) 70 (0.69)
detected
Parthenogenesis not 10 (Loa+/Lop-) 21 (Loa-/Lop-) 31 (0.31)
detected
Total 25 (0.25) 76 (0.75) 101

5.9.2 Segregation distortion of LOA and LOP
Segregation distortion against LOA and apomeiosis was evident in the PC segregants with

inheritance by only 25% ofthe progeny. Mapping via segregation assumes that all mega­

and micro-gametophytes have equal chances of survival, and, following fusion, that all

zygotes are equally likely to survive. In tetraploids, an allele in simplex is expected to

segregate I: 1, similarly to the heterozygous condition in diploids. Distortion from the

expected 1:1 ratio implies either that simple Mendelian inheritance does not apply to the

trait (due to a duplex condition or to additional genes operating) or that certain gametic or

zygotic genetic combinations have reduced chances of survival.



98

Segregation distortion of apomixis is often noted in the literature, and linked gametic

lethality is commonly proposed as a cause. Linked gametic lethality may be caused by the

apomixis allele itself or by a linked mutant allele of a housekeeping gene necessary for

gamete (either egg or pollen or both) development. Segregation of a gametic lethal factor

to haploid gametes precludes their development. When gametes are diploid, segregation

distortion may become apparent if gene dosage is important, or when the apomixis allele is

in combination with other alleles that lower gamete fitness. A linked gametic lethal factor

was proposed to cause transmission of the ASGR in Pennisetum to F1 hybrids through the

male germ-line at rates less than 1: 1 (Ozias-Akins et aI., 1998). A similar linked factor is

proposed to cause segregation distortion of apomixis in maize-Tripsacum hybrids. The

distortion in this case was not seen to occur in the F1 progeny. Instead, a very profound

segregation distortion of sexuality to apomixis of 16:1 was observed from a subsequent

backcross between maize-Tripsacum hybrids with maize. The female hybrid parents of this

cross possessed only a diploid complement of Tripsacum chromosomes; therefore the

distortion occurred on attempting to transmit the apomixis factor in the haploid condition

(Grimanelli et aI., 1998a). The authors have suggested that rare crossovers between the

apomixis factor and the lethal factor enable infrequent "escapes" of the apomixis factor in

the simplex condition. Of additional interest in this case was that the distortion of the

apomixis factor was observed on testing transmission through the female germ-line. Most

studies test for segregation of apomixis factors through the male germ-line and are likely to

reflect lethality towards male gametes. In Ranunculus segregation distortion was not

reported, but the apospory factor was found to be lethal to microgametes in the

homozygous condition (Nogler, 1984). In Taraxacum, DIPLOSPORYin simplex

undergoes Mendelian transmission through diploid pollen, (van Dijk and Bakx-Schotman,

2004), whereas transmission by haploid pollen shows severe segregation distortion (van

Dijk, 2003).

In the present study ofHieracium segregants, the low inheritance of apomeiosis indicates

gametic lethality of a linked factor. The rate of inheritance may reflect a low frequency of

crossover between LOA and a linked gametic lethality factor, and thus the genetic distance

between the two. However, as in Pennisetum, the distortion occurred when the gametes

were diploid. Recessive lethality may affect diploid gametes less than haploid gametes,

except when gene dosage plays a role. An altemative cause of the distortion may be more
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simply the detrimental expression of gene products of apomixis/apomeiosis factors in the

context of a reduced gamete, causing some gametes to be lost.

The transmission frequency of apomeiosis of 0.25 is half the 1: 1 ratio expected and

suggests the involvement of an additional factor. However, the strong association between

apomeiosis and LOA demonstrates that LOA is sufficient for expression of the trait (see

. section 5.10). It may be speculated instead that an additional factor is required for the

survival of gametes carrying LOA. Hypothetically, this may be either one of the three

alternative loa alleles, or an alternative gene in simplex, that acts as a "balancer" to

counteract gametic lethality ofLOA (Fig. 5.10). Such a mechanism would make itself

apparent in the form of pseudo-linkage between LOA and the hypothetical balancer locus

and could be tested with a more directed marker screen of the PC population.

Fig. 5.10 Hypothetical segregation of

LOA and the wild alleles loa*, loa' and

loa" in male gametes that give rise to

the PC segregants. The allele loa* acts

as a balancer for gametic lethality of

LOA, which is not fulfilled by the other

two wild alleles loa' and loa". A single

allele at an alternative locus that acts as

a balancer would induce the same

segregation ratio of LOA.0.25 0 0 0.25 0.25 0.25

The common observation of segregation distortion against apomixis (or apomeiosis) that is

apparent in the literature suggests that the phenomenon is somehow related to apomixis per

se. However, the distortion is often attributed to linked gametic lethality. A widespread

presence of a factor that is linked to a variety of modes of apomixis functioning in

disparate species suggests a selective advantage. Selection of a linked mechanism for

gametic lethality may ensure the sustained survival ofthe agamic complex. Grimanelli et

al. (1998b) noted that should apomicts and sexuals of an agamic complex be of the same

ploidy, then apomixis would predominate, sexuality would disappear, and a "blind alley of

evolution" would eventuate with no source of new genetic variation to be drawn from. A

linked gametic lethality whose effect is almost certain in haploid gametes may serve to

protect diploid sexuals from invasion of apomixis loci, thereby sustaining a source of

genetic variability, and might explain the exclusive domain of polyploids for apomixis.
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While segregation distortion against apomeiosis was observed in the PC segregants,

distortion in favour of parthenogenesis was evident, with inheritance by 68% of the

progeny. A similar segregation distortion towards parthenogenesis from a cross between

diploid sexual H pilosella and triploid H piloselloides was reported previously (Bicknell

et a1., 2000). Complicating factors associated with the triploid nature of the male parent

might have influenced these data, although transmission of the factor for parthenogenesis

through both diploid and haploid pollen was observed. Segregation distortion towards a

locus indicates that meiotic drive may be acting whereby small regions of the genome

preferentially segregate under influence of a trans-acting driver locus (Mroczek et a1.,

2006). Alternatively, parthenogenesis may be in linkage to a factor that confers gametic

advantage to the pollen for functions such as pollen germination or pollen tube growth. It is

also possible that one of the alternative alleles ofLOP is gametic or embryonic letha1. If no

other factors influence segregation ofLOP, lethality of an alternative allele would

theoretically result in transmission ofLOP to approximately 66% of segregants (Fig. 5.11).

Fig. 5.11 Hypothetical segregation of

LOP and the wild alleles lop*, lop' and

lop" in male gametes that give rise to

the PC segregants. The allele lop*

confers either gametic or embryonic

lethality, resulting in segregation of

LOP to approximately 66% of the

progeny.

o 0.33 0.33 0 0 0.33

Both hypotheses given for the segregation distortion ofLOA and LOP may be tested with

the use of allele specific markers such as microsatellites.

5.10 Marker testing of segregants
Nine and eight markers ofLOA and LOP respectively were tested in 44 of the

characterised segregants. Segregant-by-marker matrices representing segregation of these

markers and the phenotypes is illustrated in Fig. 5.12. The most central markers tested

(loa300 and lop102) segregated with the respective traits in all except two segregants,

which possess the markers but no corresponding phenotypes were observed. PC3, a Lop­

segregant, carries LOA, yet on fertilisation, only n+n hybrids were found, indicating the

utilisation of solely meiotic embryo sacs. It is possible, however, that LOA has very low
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penetrance in this segregant and further crossings would yield 2n+n progeny. The second

non-corresponding segregant, PCl07, has LOP but was characterised as typically sexual;

few dark seed and no genninable seed fonned on uncut heads while abundant genninable

seed was produced when floral heads were pollinated with A4 pollen. The reason for the

outlying non-correspondence between genotype and phenotype of this segregant is unclear

and closer investigation is required to discount a labelling error or greenhouse pot-to-pot

contamination. Despite the outliers, the data offer strong validation of the deletion

mutagenesis approach towards identifying markers in linkage with apomeiosis and

parthenogenesis, and indicate that no other major loci are necessary for their expression.
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Fig. 5.12 Segregant­

by-marker matrices

illustrating

segregation of nine

and eight markers of

LOA and LOP

respectively, in 44

segregants

characterised into

four classes, from the

fully apomictic

(Loa+/Lop+) to the

fully sexual (Loa­

/Lop-), with the two

intermediate classes,

Loa+/Lop- and Loa­

/Lop+. Markers

highlighted in yellow

were tested while the

scoring of all other

markers was inferred

from the data and is

indicative only.

Orange horizontal

lines indicate the

most central

markers.
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5.10.1 Apomeiosis and parthenogenesis and their associated loci,
LOA and LOP, segregate independently

Apomixis until recently was widely proposed to be conferred by a single dominant locus.

Monogenic inheritance of apospory was reported in Ranunculus (Nogler, 1984),

Pennisetum (Ozias-Akins et aI., 1998) and Tripsacum (Grimanelli et aI., 1998b). The

genetics of parthenogenesis as a distinct component of apomixis has received less direct

investigation. Some authors have hypothesised parthenogenesis to be a pleiotropic

consequence ofapomeiosis due to the shortening ofmegasporogenesis associated with

apomeiosis (Grimanelli et aI., 1998b; Grimanelli et aI., 2001). Parthenogenesis inH.

aurantiacum and H piloselloides was reported as a monogenic dominant trait (Bicknell et

aI., 2000), but no measure ofmeiosis was taken at that time.

More recent evidence suggests that monogenic inheritance of apomixis is over-simplified

and that each component may be conferred independently by dominant genes.

Recombination between apomeiosis and parthenogenesis has been reported in Taraxacum

(van Dijk et aI., 1999) and in Poa (Albertini et aI., 2001; Matzk et aI., 2005). In the present

study, no evidence of linkage between LOA and LOP is apparent in the segregation data of

the PC population. There is also no evidence of linkage in repulsion between the two loci,

therefore it is assumed that LOA and LOP are independent. Furthermore, there is no

compelling evidence of either apomeiosis or parthenogenesis having any contingency on

the other.

The segregation between apomeiosis and parthenogenesis gives rise to genotypes that.are

evolutionary dead ends, either through repeated polyploidisation or haploidisation. It may

be speculated then that natural selection will select in favour of occasional combinations

(e.g. through genomic translocations) of apomeiosis and parthenogenesis that are in

linkage, implying that the evolution of apomixis in C4D is recent. While linkage between

apomeiosis and parthenogenesis may be favoured over time, apomixis itself offers close

"linkage" between all genes of a genotype, which may serve to neutralise the advantage of

linkage thereby causing sluggish selection of the linked state.

5.10.2 Meiotic recombination within LOA and LOP
Previous studies of model apomicts have indicated that loci that confer apomixis and

particularly apomeiosis are often located at large non-recombinant hemizygous regions of

chromosomal DNA (Ozias-Akins et aI., 1998; Noyes and Rieseberg, 2000). Traits appear

to cosegregate with large marker blocks in most segregants. However, by contrast to the
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ASGR in Pennisetum, recombination at LOA and LOP does not appear to be suppressed.

These data provide evidence of viable meiotic recombination occurring between markers

ofLOA and LOP in eight and two of the 44 segregants, respectively. The highest level of

recombination at LOA, however, were blocks of no fewer than four and perhaps as many as

15 markers. Likewise, neither of the two examples of recombination at LOP is likely to be

a block of a small numbers ofmarkers. Although only 44 segregants were assessed for

recombination, it appears from the current data that a large number of meioses would need

to be screened to gain the marker resolution that was gained using deletion mutagenesis.

Severe restriction of recombination caused some degree of sequence divergence at the

ASGR locus in Pennisetum from the rest of the genome which has resulted in a large

partially hemizygous region of chromosomal DNA. Of 12 markers linked to the ASGR, six

markers hybridised to genomic DNA as low copy number sequences. In the present study,

three out of 15 markers at LOA and LOP hybridised as low copy number sequences, and all

others hybridised as moderately to highly represented sequences (see Table 5.5). There is

therefore little evidence that LOA and LOP are regions that have undergone sequence

divergence that might have resulted from suppressed recombination.

Asexual species of older lineages of the genus Hypericum possess significantly larger

genomes than sexual species, probably due to an increased propensity to accumulate

retrotransposons that are not subjected to elimination via unequal homologous

recombination at meiosis (Matzk et aI., 2003). Logically, the accumulation of

retrotransposons in asexual species may be expected to be compounded at loci that confer

apomeiosis due to their strong association with suppressed meiotic recombination. The

expression of apomeiosis itself suppresses recombination of the locus that confers it in the

female germline, and in many species investigated, recombination has become suppressed

in the male germline as well. Sequence divergence, however, due to the lack of

recombination, may be countered by inward migration of retrotransposons, and the

associated genome shuffling and proliferation caused by retrotransposon activity.

5.10.3 Association of autonomous endospermy with
parthenogenesis

In addition to the lack of germinable seed, only seven (10%) Lop- segregants produced any

dark seed on either cut or uncut heads. Dark seed in H piloselloides and H aurantiacum is

associated with successful development of endosperm, which acts as the primary

nutritional source of parthenogenetic embryos (Koltunow et aI., 1998). The rate of dark
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seed production of Lop- segregants was always very low, ranging from 0.1 to 0.4 seeds per

head, which corresponds with the significant reduction in dark seed observed in Lop­

deletion mutants. Therefore, the association of autonomous endospermy with

parthenogenesis in C4D is very tight. A similar association was also observed in G5 (see

Chapter 3). Genetic linkage between parthenogenesis and autonomous endospermy may

confer a selective advantage, as seed requires the presence of functional endosperm to

germinate. Production of endosperm that provides no benefit to a functional embryo is

likely to be costly to the plant and therefore be selected against. Alternatively,

parthenogenesis and autonomous endospermy may be pleiotropic effects ofLOP, perhaps

resulting from the two processes being interrelated and occurring in positive response to

the same mechanism. Autonomous endospermy at very low rates is apparently still

possible in some Lop- segregants. This suggests that LOP is not required for the capacity

of autonomous endospermy, but may instead provide a molecular trigger of a downstream

event, which may infrequently occur spontaneously.

Fig. 5.13 shows a semi-log scatter plot of mean dark seed versus mean germination per

seed head of Lop+ segregants. Dark seed is an indicator of successful endosperm

development in H piloselloides and H aurantiacum. However, an embryo is not always

present alongside successful endosperm development (Koltunow et aI., 1998). Although

not tested directly, non-germinable dark seeds of the Lop+ PC segregants are also likely to

lack embryos. While only a proportion of dark seed are germinable, the logarithmic

relationship between dark seed and germination implies that the greater the numbers of

dark seed per head, the greater the chance of each seed being occupied by an embryo. If

LOP carries a determinant that is a trigger simultaneously for parthenogenesis and for

autonomous endospermy, the threshold of expression of the determinant may be lower for

expression of autonomous endospermy than for expression ofparthenogenesis. Under this

hypothesis once the level of expression of the determinant at LOP is high (reflected by

higher quantities of dark seed), embryogenesis is promoted. Conversely, those segregants

whose ratios of germination to darkseed show deviation from the logarithmic relationship

may possess modifiers that act on either trait individually.
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5.10.4 Is apomeiosis a modifier of parthenogenesis?
Parthenogenesis is a gametophytic gene

The mean dark seed and germination per head of Loa+/Lop+ are compared with those of

Loa-/Lop+ segregants in Table 5.7. While LOA and LOP can act independently and their

expressed traits have no contingency on each other, LOA appears to have an effect on the

per-head rates of dark seed set and germination. This effect enabled LOA to be discovered

as part of the deletion mutant screen as Loa- mutants showed a significant reduction in

seed set. Of Lop+ segregants, dark seed set and germination per head is on average higher

in Loa+ segregants than in Loa- segregants. In addition, the average ratio of germination

per dark seed is higher in Loa+ segregants than in Loa- segregants; any dark seed that is

produced by a Loa+ segregant has a 35% chance of germinating while a dark seed of a

Loa- segregant has a 19% chance of germinating (see Table 5.7). Fig 5.14 illustrates

parthenogenetic PC segregants placed in frequency ranges of germinable seed produced

per head. None of 55 Loa-/Lop+ segregants produced on average more than 9 germinable

seed per head whereas approximate!y half of the 15 Loa+/Lop+ segregants produced on

average more than 9 germinable seed per head. Two of the 15 Loa+/Lop+ segregants

produced 24 or more germinable seed per head, although it should be noted that for PC221

only one head was assessed. It is also notable that all six H pilosella X H glaciale (PG)

segregants that gave good apomictic seed set were apomeiotic. However, the establishment
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of a similar modification of parthenogenesis by the presence of apomeiosis in that

population was not possible due to the low population size and due to the high inheritance

of apomeiosis among parthenogenetic and non-parthenog netic segregants alike (see

Chapter 3).

While the present data show an apparent modification of arthenogenesis by LOA, the

increase in seed set associated with apomeiosis in the PC segregants is better explained by

LOP being a gametophytic gene. The requisite inheritance of LOP for parthenogenetic

development was inferred from a population of n+O polyhaploids that were shown to

consistently possess LOP (Ross Bicknell and Sylvia Erasmuson, Crop & Food Research,

pers. comm.). Given that LOP carries a gametophytic gene, the locus is inherited more

frequently by gametes of apomeiotic PC segregants than by those of meiotic segregants,

and seed set would correspondingly occur at a higher frequency, and the data suggests that

this is the case.

Table 5.7 Average rates of dark seed set, germination, and ratio of germination per dark seed

produced by Loa+ and Loa- parthenogenetic (Lop+) PC segregants.

Loa+ (n=15) Loa- (n=55)

Mean SD Mean SD Ho: Loa+ = Loa-

Dark seed/head 35.6 10.38 20.8 8.02 t(68) = 4.33, P < 0.00 I

Germination 11.1 7.13 3.8 2.14 t(l4.7) = 3.91, P = 0.001

Germination/dark seed 0.35 0.19 0.19 0.09 t«14) = 5.93, P < 0.001

13
16
19
21

25_ 22
24
30
34
35

20 56
57 9
65 12
70 29

~ 79 36 _Loa.
C 15 92 51 loa-
~ 93 52
cr 95 69
~ 102 104 15
U. 108 121 17

10_ 131 140 18
132 146 129
141 170 149
165 179 166
169 180 203

5 188 183 233

iii••••••
-' -' N N

owcn~~~~~~
:... :.... :.... • I I , • •

;...,~~N'"cD~~~

Mean Germinable Seeds per Head

Fig. 5.14 Parthenogenetic PC segregants placed in

frequency range according to their mean germinable

seed per head. Those segregants highlighted in dark

green are Loa+/Lop+ while those in light green are

Loa-/Lop+.
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It is interesting to note that apomixis showed some features of control by a gametophytic

gene in maize-Tripsacum hybrids (Grimanelli et a1., 1998a). Sexually derived backcross

derivatives generated by pollinating a maize-Tripsacum hybrid with maize (n+n) were

exclusively sexual, while apomictic development from the same hybrid (n+O) resulted in

some apomictic polyhaploid plants, and some sterile plants. Therefore, only those progeny

that were parthenogenetically produced were found to be capable ofparthenogenesis. This

observation is consistent with a gametophytic status of genes for parthenogenesis in

Tripsacum, which may be more widespread among apomictic genera.

5.11 Concluding remarks
It is likely that the successful transfer of apomixis to economically important crops may

only be undertaken once the genetic determinants of the trait and their co-ordinated actions

are understood. Investigations into native apomicts have often aimed to isolate proximal

markers as a step towards the isolation of the genetic determinants themselves, but

suppressed recombination at apomixis loci has presented considerable challenges for the

ordering and utility of cosegregating markers. By using a marker screen of the

H. caespitosum deletion mutant panel, these challenges have been overcome. This research

has demonstrated that all determinants that are required for apomixis are present at two key

loci: LOA that enables apomeiosis, and LOP that enables parthenogenesis coupled with

autonomous endosperm development. The generated markers at LOA and LOP, together

with the BAC library of the H. caespitosum genome, now provide a real opportunity to

identify genetic determinants at LOA and LOP, and elucidate the molecular mechanisms of

apomixis. With that knowledge we may progress towards our goals of fixed heterosis, and

large yield gains for global agriculture.
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Chapter 6 Future prospects

6.1 Variations of apomixis in Hieracium: an evolutionary
perspective

The presence of apomixis in a wide variety of forms in disparate and related species

indicates that it has evolved several times independently utilising pre-existing mechanisms

of sexual reproduction. Independent evolution of apomixis is likely with the utility of

apospory and diplospory in the related subgenera Pilosella and Hieracium respectively.

However, it remains possible that a recent secondary adaptation of an ancestral form of

apomixis may have generated the variations of apomixis that are visible in the two

subgenera today. Similarly, the utilisation of apospory and diplospory within the genus

Poa (Gron, 1955) may reflect two independent evolutionary events or alternatively, more

recent occurrences of secondary evolution. In Hypericum, apomixis appears in two

sections, and is suggested to have evolved in one secondarily from a sexual intermediate

species (Matzk et aI., 2003). By contrast, conservation of the ASGR is evidence of

radiation of the locus within Pennisetum and its relatives.

There are features of apomixis in Hieracium subgenus Pilosella that indicate that the trait

evolved once followed by radiation during speciation. Apomixis in the subgenus Pilosella

is exclusively apospory, and determinants ofparthenogenesis in the apomicts

H aurantiacum and H piloselloides are likely to be allelic, or at least at linked locations

(Bicknell et aI., 2000). The forms of apospory between species, however, are quite variable

(Koltunow et aI., 2000), and the present study suggests variable genetic mechanisms for

both apomeiosis and parthenogenesis in G5 and C4D. It is possible therefore that apospory

evolved in Hieracium more than once, each time utilising a predisposition to apospory

based on genetic and mechanistic features of sexual forms.

How apomixis evolved in Hieracium, and why apospory evolved as the mode of apomixis,

are questions that may require a multifaceted approach to answer. A preliminary

investigation into sequence similarity between the determining loci of G5 and C4D may be

made by assessing whether the species share any cosegregating markers. Tests may also be

made for allelism by generating G5 X C4D hybrids that carry markers of determining loci

from both parents, and testing those markers for their segregation among test-cross

progeny. Allelism indicates radiation of apomixis after its evolution, but it does not

exclude the possibility that apomixis evolved more than once from similar pre-existing
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genetic conditions of sexual plants. Full characterisation of key determinants at LOA and

LOP, and their mechanism of signal transduction, will elucidate genetic differences and

similarities of apomixis between G5 and C4D. Comparisons of the genetic mechanisms of

apomixis may be extended to other species as well. The key genetic features that

distinguish tetraploid apomictic and sexual genotypes of the species in which both occur

such as H pilosella may also enable insight into the likely mechanism of evolution of

apomixis in Hieracium.

6.2 Utility of markers for the isolation of SAC clones
The successful sequencing ofLOA and LOP and the characterisation ofthe genetic

determinants that they contain requires the construction ofBAC contigs that span the two

loci. The efficiency of this task will in part depend upon the accuracy of the marker data

and the density of the markers at the proximal regions of the two loci. It will also depend

upon the genomic representation of the DNA sequences of the most proximal markers. The

representation of the markers will in tum influence their utility for the accurate

identification, with few false positives, of the BAC clones that they represent. High

densities of markers at LOA and LOP should reduce the numbers of BAC clones between

markers and that are required to span the genomic regions that contain the determinants. In

addition, higher marker density raises the chances that two or more markers are located on

the same BAC clones, providing immediate verification of the marker orders generated by

deletion mapping.

The estimation of the average physical distance between markers is 165 kb. Takashi Okada

has recently constructed BAC contigs using the SCAR markers loa300, loa275 and loa267

of300 kb, 150 kb and 240 kb respectively. None ofthe contigs contain more than one of

these three markers, which was not an unexpected result as they are not neighbouring

markers. However, the contig constructed using loa267 was found to contain the

neighbouring SCAR markers loa159 and loa343. This suggests that the physical distance

between these markers may be between 100 kb and 200 kb, close to the estimation of the

average distance of 165 kb between markers. The level of saturation ofmarkers at LOA

and LOP achieved using 256 primer combinations appears to be sufficient to expedite the

assembly ofBAC contigs, with few extensive gaps between markers to be filled.



110

6.2.1 Further strategies towards clone isolation
The genome ofH caespitosum is moderately large, and being polyploid, there is a high

quantity of duplicated nuclear DNA. Furthermore, preliminary data indicates that

Hieracium genomes have accumulated a large amount of repetitive DNA composed largely

of retrotransposons. It is possible that the utilisation of apomixis as a primary form of

reproduction, with little recombination due to meiosis, has provided ideal conditions for

the accumulation of repetitive DNA. Furthermore, ifLOA and LOP are regions of reduced

recombination, the local accumulation of retrotransposons may be compounded. A high

density of markers allows some attrition of markers composed of highly repetitive

sequences that are difficult to use as hybridisation probes, but recent experience shows that

moderately repetitive sequences can also hybridise to a large number of extraneous clones.

More discerning methods of BAC clone isolation will almost certainly need to be used.

Unexpectedly, SCAR markers that were based on the sequenced SDAFLP markers, and

that included the PstI and MseI restriction sites in their primers, did not always offer the

same resolution as their corresponding SDAFLP markers. This implies that the annealing

of the SCAR primers, probably at their 5' ends which anneal to the restriction sites, is not

as stringent as the recognition of the sites by the restriction enzymes themselves.

More discerning analyses of SCAR marker amplification may detect polymorphisms that

enable the distinction between BACs that carry the genuine SDAFLP marker and those

that carry duplicated sequences that cause falsely positive amplification. Examples include

single strand conformation polymorphisms (SSCP), cleaved amplified polymorphic .

sequences (CAPS) and short sequence repeats (SSRs). All of these techniques require

preliminary analysis of each marker to establish any discerning polymorphisms, which

may be difficult to find within markers that are composed ofhighly repetitive sequence.

A recent attempt to improve the discernment ofBAC clone screening, undertaken by Ross

Bicknell, Sylvia Erasmuson and Saira Wilson (Crop & Food Research, Lincoln), was the

use of SDAFLP to screen BAC clone pools for the presence of the markers detected by the

screen of the mutant panel. This technique shows some promise. However, the efficiency

of SDAFLP amplification of a marker of interest depends not only on its own

representation in the sample, but also on the representation of other competing sequences.

The sequence most highly represented in BAC pools is bacterial sequence; each pool

contains 384 different BAC clones therefore the representation of bacterial DNA is

potentially higher than that of insert DNA.
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Modifications that raise the specificity ofSDAFLP screening ofBAC pools are therefore

proposed. It is clear that the higher specificity ofMseI+5N/6N primers resulted in

SDAFLP profiles with reduced complexity and raised the relative intensities of the desired

bands (see Chapter 5, section 5.6.3). The similar use ofMseI+5N/6N primers for SDAFLP

BAC pool screening may offer similar improvements to those profiles. This principle of

increasing the specificity of the selective primers for SDAFLP selective amplification may

be taken to the degree that the primers are specific to the sequence of the marker of

interest. By using internal primers as selective SDAFLP primers, the specificity of the

preamplification process is combined with the specificity of internal SCAR primers.

Verification ofBAC pools and clones detected in this way may be gained by repeating

with a different set of internal marker primers. It is hoped that this form of SDAFLP

screening will result in the highly specific detection ofBAC clone pools.

6.3 Does H. caespitosum carry additional genes
associated with apomixis?

While it appears that LOA and LOP together fulfil the genetic requirements for apomixis to

occur in Hieracium, two PC segregants carryall markers tested at either LOA or LOP with

no expression of the corresponding traits. Further investigation is required to establish the

reasons for their non-expression, but low levels of expression may be detected with further

testing. It remains possible, however, that these plants do not carry critical modifiers

necessary for effective expression of their traits. It should also be noted that whether LOA

and LOP are single gene loci or complex loci will only be revealed once they are

sequenced and extensively characterised.

Wild type apomictic Hieracium species are able to produce functional meiotic embryo sacs

in addition to those that are apomeiotic. Meiotic embryo sacs may undergo parthenogenetic

development to form n+O progeny, or undergo fertilisation to form n+n hybrids. This

facultative mode of apomeiosis was largely conserved during transmission ofLOA into

segregating progeny. The occurrence of reduced meiotic embryo sacs in the presence of

LOA was very common; exclusive utilisation of apomeiotic embryo sacs was observed in

only two of the 17 Loa+/Lop+ segregants and one of the 11 Loa+/Lop- segregants. While

complete penetrance of apomeiosis in these segregants may only be ascertained by testing

the nuclear DNA contents of large numbers of their progeny, this result does suggest a

variable penetrance of apomeiosis.
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The screen of the C4D deletion mutants did not yield any additional modifying loci. It is

likely, however, that modifiers are involved in determining the expressivity of both

apomeiosis and parthenogenesis. The mutant screen of G5 led to one principle locus and

two modifying loci that together, strongly promote parthenogenesis. It is possible that the

detection of three loci in that genotype reflects an alternative genetic mechanism for

apomixis. Alternatively, the mutant screen of C4D might have been more stringent

resulting in a focus towards principle loci. Extensive quantitative scoring of apomeiosis

and parthenogenesis and molecular mapping using an extended segregating population

may offer a means to locate any quantitative trait loci (QTL) associated with apomeiosis

and parthenogenesis. The current BAC library will enable BAC clone isolation and

sequencing of the QTL. An alternative approach may lie in the analysis of transduction of

the signal yielded by the key determinants carried by LOA and LOP. Of additional interest

is the observation of dominant alleles for genes that prevent apomeiosis and

parthenogenesis carried by sexual genotypes ofPoa pratensis (Matzk et aI., 2005). The

potential presence of genes that prevent apomixis in the sexual P4 may also be investigated

in this population, or, alternatively, with enhancer/suppressor screens of apomictic hybrids.

6.4 Downstream analysis: signal transduction
The sequencing ofBAC contigs spanning LOA and LOP will provide a large amount of

data that will need to be screened for candidate genes. This may initially take a form of in

silico screening and annotation of gene sequences within the sequence data, using a

programme such as GENSCAN to screen for open reading frames and splice sites, and

then comparing the putative gene sequences with unigene sets using Blast for assignment

of putative gene function. Candidate genes may include regulatory genes that code for

molecules such as transcription factors or protein kinases.

There are a number of avenues available for the analysis of signal transduction. Recent

efforts have been made towards the transformation of deletion mutants with binary vectors

that carry inserts as large as 100 kb. If this technique is successful it may then be possible

to transfer BAC inserts in an attempt to restore function in deletion mutants. Alternatively,

candidate genes may be tested for function using RNA interference (RNAi) to see if a

"knockdown" of apomeiosis or parthenogenesis is obtained. Successful gain and/or loss of

function tests will be followed up by full characterisation of expression patterns using

northern and in situ hybridisation, and promoter/reporter gene fusions.
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The protein kinase that is coded by lop379 is a candidate gene for a role in

parthenogenesis. However, Lop- deletion mutants in which lop379 remains intact indicate

that alternative genes are likely to be primary determinants of parthenogenesis. This

protein kinase, however, may playa role in signal transduction that is downstream from

any key determinant. For this reason, analysis of this protein kinase will not proceed until

LOP is more fully characterised. Analysis of signal transduction will best proceed with

knowledge of all candidates, beginning with the analysis ofthose most likely to be

candidate primary determinants.

6.5 The potential role of epigenetic regulation
Prior to the sequencing ofLOA and LOP and the testing of candidate genes, the types of

genes that control apomixis may only be subjects of speculation. However, apomixis in

Hieracium appears to be a process that harnesses the mechanisms of sexual reproduction,

but with altered gene regulation to enable the avoidance ofmeiosis and fertilisation

(Tucker et aI., 2001; Tucker et aI., 2003). It may be expected then that genes controlling

apomixis in some way regulate gene expression in the aposporous initial cell and the

parthenogenetic egg cell, to take identities and the competencies normally reserved for the

megaspore and the zygote respectively. It has been proposed that this altered gene

regulation occurs by means of epigenetic control, to explain how apomeiosis,

parthenogenesis and autonomous endospermy evolved simultaneously when any

component in isolation is disadvantageous (Koltunow and Grossniklaus, 2003). Epigenetic

control of apomixis may occur in Hieracium. However, the multi-locus nature of apomixis

in the present study suggests that any epigenetic control of apomixis is not mediated by a

single locus in Hieracium. Apomeiosis and parthenogenesis can occur independently.

Therefore global epigenetic control of apomixis in Hieracium is unlikely. Epigenetic

control, if it is involved, is likely to instead be mediated downstream of the loci that confer

each trait.

In mammals, fertilisation is necessary for embryogenesis in part because of critical

gender-specific epigenetic modification that occurs via the imprinting of each genome

during gametogenesis. It was found that successful parthenogenesis of a reconstructed

mouse oocyte with two haploid maternal genomes could occur providing there was an

increased expression of the gene for the growth factor IGFII (Igf2) and mono-allelic

expression of the non-coding RNA H19. These modifications together led to appropriate
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expression of a wide range of genes so that development could proceed to term (Kono et

aI., 2004). Hi9 and Igf2 are normally imprinted reciprocally in the egg and the sperm to

achieve differential maternal expression ofHi9 and paternal expression of Igf2 (Ferguson­

Smith and Surani, 2001).

It is now well established that gender-specific imprinting is reflected in the 2m: 1p

"balance" of maternal to paternal genome contributions to the endosperm, that is obtained

on fertilisation ofthe 2n central cell ofthe embryo sac (Grant-Downton and Dickinson,

2005). In most angiosperm species, the 2m: 1p ratio is critical to endosperm development;

greater maternal or paternal genome contributions lead to abnormal development of the

endosperm, and often abortion ofthe seed (Lin, 1984; Spielman et aI., 2001). It appears,

however, that similar gender-specific epigenetic information is not essential for plant

embryo development. While paternal expression of many genes in early plant embryos is

lower than maternal expression (Vielle-Calzada et aI., 2000; Weijers et aI., 2001), any

complete dependence of plant embryogenesis on gender-specific imprinting is yet to be

seen. Furthermore, it is argued that the multiple ways that an asexual embryo can form

suggest that gender-specific epigenetic information from either parent is hon-essential for

embryo development (Gehring et aI., 2004). Successful rescue of embryos from their

deficient endosperms following interspecific or intergeneric crosses adds support to this

view.

Embryonic differential imprinting may not hold the key to initiating parthenogenesis in

plants in the way that it apparently does in the mouse. However, it is conceivable that .

components of apomixis may operate via epigenetic mechanisms, and non-coding RNA

molecules have been implicated. A notable mammalian example of epigenetic regulation is

X chromosome inactivation. The random inactivation of one X chromosome in every cell

requires the X inactive specific transcript gene (XIST) that codes for a 15 to 17 kb RNA

molecule that coats and triggers cytosine methylation and heterochromatin assembly

(Morey and Avner, 2004). RNA-directed DNA methylation is well characterised in plants

for silencing of viruses and transposons(Mathieu and Bender, 2004) and the roles of short

interfering RNA in aspects ofplant development, including floral development, are well

documented (Achard et aI., 2004; Grant-Downton and Dickinson, 2005). Bioinformatic

screens for candidate determinants therefore cannot be limited to those that are dependent

on the presence of features of structural genes such as open reading frames and intron
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splice sites. Additional bioinformatic screens for any non-coding RNAs (Weinberg and

Ruzzo, 2006) present at LOA and LOP will also be conducted.

6.6 The mechanism of autonomous endosperm
development

Autonomous endosperm development is prevalent in apomictic Asteraceae, and is

consistently the case in the well described family members Hieracium (Koltunow et aI.,

1998), Taraxacum (Richards, 1970) and Erigeron (Noyes, 2000). This contrasts with the

apomictic grasses, which are predominantly pseudogamous requiring fertilisation of the

central cell to initiate endosperm development. Some pseudogamous apomicts have

employed mechanisms to maintain the 2m: 1p parental genome ratio in the endosperm

including the use of only one unreduced polar nucleus as the central cell, or utilising both

pollen for fertilisation, resulting in a 4m:2p ratio. Others have relaxed the requirements of

the genome ratio, but still need at least some paternal contribution (Spielman et aI., 2003).

Successful endosperm development is considered to be a critical hurdle in the engineering

of apomixis - one that may be the last to be surmounted. Almost all autonomous apomicts

are found in the Asteraceae. How apomictic genera of the Asteraceae are able to undergo

autonomous endosperm development is therefore an important question. If there is no

requirement ofpaternal genes for endosperm development, the maternal imprints of

paternal genes may be absent. It has therefore been proposed that genomic imprinting may

have become attenutated in the family (Vinkenoog and Scott, 2001). This hypothesis holds

up well given that interploidy crosses (which generally result in abortive seed in species

that require the 2m:lp genome balance) readily occur in Hieracium (Bicknell et aI., 2000),

Taraxacum (Tas and van Dijk, 1999; van Dijk and Bakx-Schotman, 2004) and in Erigeron

(Noyes, 2000). The lack ofpseudogamous mutants in the mutant panels is consistent with

this hypothesis, and indicates that endosperm development does not depend on additional

genetic information to be autonomous. Autonomous endospermy, given the presence of

LOP, appears to instead be the default mechanism. The relationships between autonomous

endospermy, the relaxation of parental genome contribution requirements, and attenuation

of imprinting or its effects, all deserve focus in the future.

As discussed in Chapter 5, the phenotypic data of the PC segregants suggest that

parthenogenesis and autonomous endospermy are either closely linked traits, or that they

are pleiotropic effects ofLOP, perhaps with modifiers that affect each trait. The production
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of dark seed (which is correlated with the presence of endospenn) is generally restricted to

Lop+ segregants. Autonomous endospenny therefore does not occur needlessly in a Lop­

background. However, in a Lop+ background, only a fraction ofthe dark seeds genninate.

The production of non-genninable dark seed suggests that endospenn may develop in the

absence of an embryo, indicating some independence of the regulation of autonomous

endospenny, from that of parthenogenesis. This question will almost certainly be answered

while exploring signal transduction of detenninants at LOP. Preliminary investigations

however, may be made into the prevalence of embryos within dark seed. It is possible that

a compromised embryo may serve as a signal for autonomous endospenny, but may fail to

develop sufficiently for the seed to be genninable. Ifthis is the case then an embryo­

endospenn interaction may operate.

6.7 The engineering of apomixis in sexual species
Attempts at the engineering of apomixis in sexual species have until now focussed on

introgression of the trait by wide-crossing, or on deregulation of sexual processes via

mutation. Both of these approaches are yet to prove successful. It now remains to be seen if

a detailed knowledge of the genetic and mechanistic processes, followed by genetic

engineering of the process into economically important species will fare better.

What fonn would an engineered apomict take? This may well depend on native

predispositions of the target species, implying that a full understanding of the pre-existing

sexual processes may be an additional pre-requisite. The first engineered apomict may,

therefore be derived from a sexual species that is well described rather than one that is

economically important. Intuitively, it may be sunnised that diplospory, rather than

apospory, may be more readily engineered. Diplospory demonstrates the utility of

pre-existing meiotic components. By contrast, apospory depends on the production of new

cell types, and may be more likely to lead to polyembryony. A number ofArabidopsis and

maize mutants that show hallmarks of non-reduction or nuclear restitution of megaspores

indicate that it may be possible to induce diplospory via mutation. These mutations,

however, result in high levels of sterility. If additional regulation by dominant genes is

required - which appears to be the case for native diplosporous apomicts such as

Taraxacum (van Dijk and Bakx-Schotman, 2004) - the apparent advantages over apospory

may not be so clear. Whether diplospory or apospory is utilised, and in which fonn, may

be more dependent onthe amenability ofthe crop to either system.
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The ideal engineered system will be inducible to allow incorporation of the engineered

apomict into breeding programmes, and will be highly penetrant once induced. Like

apomeiosis, parthenogenesis also needs to be highly penetrant for efficient setting of

quality seed. The trigger for parthenogenesis may be a more universal process shared by

different native apomicts, although future analyses of native apomicts will establish if this

is indeed the case. By contrast, endospermy is likely to take a range of forms, and may be

difficult to engineer in some systems. Some crops may be amenable to the engineering of

autonomous endospermy but in others a pseudogamous mechanism may be required. It is

very likely that in many systems, obstacles concerning gender-specific imprinting may

need to be surmounted. In others, the imprinting requirements for endosperm may be able

to be relaxed. The ability ofArabidopsis to form differentiated endosperm under the

combined loss ofFIE function and maternal hypomethylation (Vinkenoog et al., 2000)

suggests how relaxation of imprinting requirements may be implemented.

The mechanism of apomixis will one day be fully elucidated. It is possible that this will be

achieved in one species, or different components will be elucidated from different species.

Comparative descriptions of similar and more distinctive mechanisms in other species will

quickly follow, which will provide a mechanistic "palette" from which components of the

process may be taken for the successful transfer of apomixis into species of agronomic

importance.
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Chapter 7 Appendices

7.1 Glossary and abbreviations
• A3.4: an aneuploid (triploid plus 4 chromosomes) apomictic accession of

Hieracium aurantiacum.

• . A4: a tetraploid apomictic accession ofHieracium aurantiacum.

• AFLP: amplified fragment length polymorphism, a PCR based technique of

generation of multiple dominant markers.

• Apomeiosis: avoidance ofmeiosis resulting in an unreduced embryo sac.

• Apomixis: asexual reproduction through seed.

• Apospory: apomeiotic embryo sac development from cells of nucellar origin.

• ASGR: apospory-specific genomic region.

• BAC: bacterial artificial chromosome. A BAC vector contains an insert of

exogenous genomic DNA of approximately I aOkb.

• BAC contig: a series of contiguous overlapping BAC clones.

• Band: a fragment of DNA electrophoresed on a gel from which markers are

identified.

• blastn: an algorithm/programme that searches for similarities between a query

nucleotide sequence and a database of nucleotide sequences.

• blastx: an algorithm/programme that searches for similarities between a query

nucleotide sequence that is translated into all six possible translation frames ana a

database ofpeptide sequences.

• bp: base pairs.

• C4D: a tetraploid apomictic accession ofHieracium caespitosum.

• CAPS: cleaved amplified polymorphic sequence, a polymorphism detectable by

the presence of an internal restriction site.

• cDNA-AFLP: AFLP that generates profiles of gene expression utilising cDNA as

template.

• Diplospory: apomeiotic embryo sac development from a megaspore mother cell.

• Embryo sac: the female gametophyte which contains the egg cell and the central

cell.
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• Expect value: a level of significance attributed to a similarity hit of a blast search

based on the number of hits with the same level of similarity that are expected to

occur by chance.

• G5: a pentaploid apomictic accession ofHieracium glaciale.

• Gametophyte: the phase of a plant that produces gametes.

• y: gamma.

• In sitico: by computer, e.g. bioinformatics.

• kb(p): kilobase (pairs)

• LOA or loa: loss of apomeiosis.

• LOP or lop: loss of parthenogenesis.

• Marker: a band or peak that may be attributed a genomic location.

• Mbp: mega-base pairs

• Megaspore: the selected spore that, following meiosis, undergoes mitotic divisions

to develop into an embryo sac.

• Megaspore mother cell: a cell within the ovule that undergoes differentiation and

meiosis to become a haploid megaspore and three minor spores.

• Microcolinearity or microsynteny: conservation between species at a level of

DNA sequence.

• Microgamete: male gamete as a pollen grain and the pollen tube that grows from it.

• nr: non redundant, refers to the comprehensive database of DNA sequence at

GenBank.

• Nucellus: the central tissue of an ovule that surrounds the embryo sac.

• ORF: open reading frame.

• P4: a tetraploid sexual accession ofHieraciumpilosella.

• PAGE: polyacrylamide gel electrophoresis.

• Parthenogenesis: autonomous development of the embryo without fertilisation.

• peR: polymerase chain reaction.

• Polyhaploid: a plant derived from parthenogenetic development of a meiotic

embryo sac.
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• Pseudogamous: refers to an apomictic plant that requires fertilisation of the central

cell for endosperm development.

• QTL: quantitative trait loci, loci detected by their quantitative effects ona trait.

• RAPD: randomly amplified polymorphic DNA, PCR generation of multiple

dominant markers from 10 base primers that anneal throughout the genome.

• RFLP: restriction fragment length polymorphism, detected by hybridising a probe

to digested and electrophoresed genomic DNA.

• RNAi: RNA interference, a technique of post transcriptional gene silencing

mediated by short double stranded RNA molecules with complementary sequence.

• SDAFLP: secondary digest AFLP, a methylation insensitive form of AFLP.

• SCAR: sequence characterised amplified region, a dominant marker that is

detectable as a PCR product.

• SNP: single nucleotide polymorphism, based on a change of a single base.

• Sporophyte: the phase of the plant that produces spores.

• SSCP: single stranded conformation polymorphism, a technique of resolving

discrete polymorphisms that alter conformations of single stranded DNA.

• SSR: short sequence repeat, a repeat ofbetween approximately two and five bases

at which slippage occurs at the DNA replication fork generating a polymorphism.

• TAIL-peR: thermally asymmetric interlaced PCR, enables the amplification of

unknown sequence that borders known sequence.

• tblastx: an algorithm/programme that searches for similarities between query and

database nucleotide sequences, each translated into all six possible translation

frames.

• Tm: melting temperature.
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7.2 Band and sequence confidence scores of markers at
LOA and LOP

In general, a direct sequence was obtained from C4Dy102 (irradiated wild type) and two

cloned sequences were obtained from C4D107 (non-irradiated wild type). Confidence

scores were given for the bands and sequences of markers. Band confidence scores (1-5)

were based on: the intensity of the bands on the gel, the ease with which they were excised,

the consensus between sequences from independent isolations (from C4Dy102 and

C4D107) and from independent colonies, and from consensus between the sequence length

and the marker length predicted by the genetic analyser. Sequence confidence scores were

based on sequence consensus between samples and clones, and sequence quality.

Marker Isolated Match Match Band Sequence Notes
from betw. betw. confidence confidence
mini- C4DI02 C4DI07
sequence and clones

C4DI07

10a219 Y With one Match 5 5 Sequence of clone with
C4D107 (except consensus with direct
clone SNP) sequence

10a275 Y With one No 4 5 functioned as a SCAR
C4D107 match
clone

10a300 Y Match Match 5 5

10a343 Y Match Match 5 3 Sequence contains SNPs
but with
SNPs

10a267 Y Match Match 5 5 Functioned as a SCAR

10a159 Y No match No 3 5 Band homology with band of
match previous isolation attempt

10a482 N Match Match 5 4 Region of dubious sequence
due to short sequence runs

10p455 N Match Match 4 4

10p299 N Match No 3 5 Verification based only on
match size

10p515 y Match Match 5 4 Lower case denotes areas of
dubious sequence

10pllO y Match Match, 5 5
except
SNP

10pl02 N With one No 4 5 Sequence of clone with
C4D107 match consensus with direct
clone sequence

10p379 y Some Match 5 5 Functioned as a SCAR
matches

10p235 y Match Match 5 5

10p278 Y n/a n/a 4 4 Sequence only obtained from
direct sequence (however
functioned as a SCAR).



Plant Decapitated floral heads Non-decapitated floral heads Total deacapitated and non-decapitated
Dark Mean dark Mean Dark Mean dark Mean Dark Mean dark Mean Germ. I dark

PC# Lop+ Loa+ Heads seed Germ. seed aerm. Heads seed Germ. seed aerm. Heads seed Germ. seed Igerm. seeds
23 2 2 0 0 0 0.0 0.0 2 49 13 24.5 6.5 2 49 13 24.50 6.50 0.27
31 2 2 6 236 92 39.3 15.3 0 0 0 0.0 0.0 6 236 92 39.33 15.33 0.39
49 2 2 1 27 20 27.0 20.0 3 77 54 44.5 32.0 4 104 74 26.00 18.50 0.71
66 2 2 3 91 38 30.3 127 0 0 0 0.0 0.0 3 91 38 30.33 12.67 0.42
71 2 2 0 0 0 0.0 0.0 8 113 71 30.1 19.4 8 113 71 14.13 8.88 0.63
88 2 2 0 0 0 00 00 5 182 43 74.2 17.2 5 182 43 36.40 8.60 0.24

101 2 2 0 0 0 0.0 0.0 5 166 75 33.2 15.0 5 166 75 33.20 15.00 0,45
114 2 2 0 0 0 0.0 0.0 8 266 90 33.3 11.3 8 266 90 33.25 11.25 0.34
135 2 2 1 23 13 230 130 2 30 9 15.0 4.5 3 53 22 1767 733 042
154 2 2 1 23 4 23.0 4.0 7 143 41 20.4 5.9 8 166 45 20.75 5.63 0.27
172 2 2 4 98 12 245 3.0 5 163 23 32.6 4.6 9 261 35 29.00 3.89 0.13
218 2 2 0 0 0 0.0 0.0 6 254 20 42.3 3.3 6 254 20 42.33 3.33 0.08
221 2 2 1 49 24 49.0 24.0 0 0 0 0.0 0.0 1 49 24 49.00 24.00 0.49
224 2 2 3 148 70 49.3 23.3 2 95 51 47.5 25.5 5 243 121 48.60 24.20 0.50
350 2 2 5 147 7 29.4 1.4 0 0 0 0.0 0.0 5 147 7 29.40 1.40 0.05

9 2 0 1 7 6 70 60 6 94 25 31.0 8.0 7 101 31 14.43 4.43 0.31
12 2 0 3 64 16 21.3 5.3 3 32 5 16.0 2.5 6 96 21 16.00 3.50 0.22
13 2 0 0 0 0 0.0 0.0 4 51 8 25.5 4.0 4 51 8 12.75 2.00 0.16
15 2 0 5 123 37 246 74 6 168 50 58.4 14.0 11 291 87 26.45 7.91 0.30
16 2 0 1 4 0 4.0 0.0 5 79 11 15.8 2.2 6 83 11 13.83 1.83 0.13
17 2 0 0 0 0 0.0 0.0 5 164 42 62.7 16.0 5 164 42 32.80 8.40 0.26
18 2 0 0 0 0 on nn 3 96 25 610 155 3 96 25 32.00 8.33 0.26
19 2 0 1 10 3 10.0 3.0 3 34 9 11.3 3.0 4 44 12 11.00 3.00 0.27
21 2 0 0 0 0 0.0 0.0 7 98 6 14.0 0.9 7 98 6 14.00 0.86 0.06
22 2 0 4 72 9 18.0 2.3 1 17 1 17.0 1.0 5 89 10 17.80 2.00 0.11
24 2 0 4 92 11 230 28 2 33 4 16.5 2.0 6 125 15 20.83 2.50 0.12
29 2 0 1 31 6 31.0 6.0 1 21 6 21.0 6.0 2 52 12 26.00 6.00 0.23
30 2 0 3 24 4 8.0 1.3 6 73 15 24.3 5.0 9 97 19 10.78 2.11 0.20
34 ? n 1 33 3 330 30 1 22 2 220 20 2 55 5 2750 250 009
35 2 0 0 0 0 0.0 0.0 7 271 18 74.4 5.3 7 271 18 38.71 2.57 0.07
36 2 U 3 48 18 16.0 6.0 0 0 0 0.0 0.0 3 48 18 16.00 6.00 0.38
51 2 0 0 0 0 0.0 0.0 4 100 15 25.0 3.8 4 100 15 25.00 3.75 0.15
52 2 0 6 138 34 23.0 5.7 0 0 0 0.0 0.0 6 138 34 23.00 5.67 0.25
56 2 0 4 55 6 13.8 1.5 0 0 0 0.0 0.0 4 55 6 13.75 1.50 0.11
57 2 0 4 49 8 12.3 2.0 2 21 6 10.5 3.0 6 70 14 11.67 2.33 0.20
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Plant Decapitated floral heads Non-decapitated floral heads Total deacapitated and non-decapitated
Dark Mean dark Mean Dark Mean dark Mean Dark Mean dark Mean Germ. I dark

I-'C# Lop+ Loa+ ~ds seed Germ. seed germ. Heads seed Germ. seed aerm. Heads seed Germ. seed aerm. seeds
Fi5 2 0 3 29 7 97 23 1 8 2 BO 20 4 37 9 925 225 024
69 2 0 5 88 26 17.6 5.2 3 53 15 17.7 5.0 8 141 41 17.63 5.13 0.29
70 2 0 0 0 0 0.0 0.0 9 148 26 16.4 2.9 9 148 26 16.44 2.89 0.18
79 2 0 0 0 0 00 0.0 8 109 18 13.6 2.3 8 109 18 13.63 2.25 0.17
92 2 0 0 0 0 0.0 0.0 12 212 35 17.7 2.9 12 212 35 17.67 2.92 0.17
93 2 0 3 65 6 21.7 2.0 1 21 5 21.0 5.0 4 86 11 21.50 2.75 0.13
95 2 a 3 33 12 11.0 4.0 2 18 0 9.0 0.0 5 51 12 10.20 2.40 0.24

102 2 0 0 0 0 0.0 0.0 7 221 18 31.6 2.6 7 221 18 31.57 2.57 0.08
104 '2 0 6 121 36 20 '2 60 0 a 0 00 00 6 121 36 20 17 600 030
108 2 0 0 0 0 0.0 0.0 4 40 2 20.7 0.7 4 40 2 10.00 0.50 0.05
121 2 0 6 162 30 27.0 5.0 2 60 11 30.0 5.5 8 m 41 27.75 5.13 0.18
129 2 0 0 0 0 00 00 5 188 32 695 10.3 5 188 32 3760 640 017
'131 2 a 5 118 0 23.6 0.0 3 39 10 13.0 3.3 8 157 10 19.63 1.25 0.06
132 2 0 0 0 0 00 00 8 76 11 9.5 1.4 8 76 11 9.50 1.38 0.14
140 2 a 3 63 18 210 6.0 0 0 0 0.0 0.0 3 63 18 21.00 6.00 0.29
141 2 0 6 202 15 33.7 2.5 1 35 2 35.0 2.0 7 237 17 33.86 2.43 0.07
146 2 0 3 57 2 19.0 07 5 180 34 63.8 10.0 8 237 36 29.63 4.50 0.15
149 2 a 1 35 7 35.0 7.0 0 0 0 0.0 0.0 1 35 7 35.00 7.00 0.20
165 2 0 0 0 0 0.0 0.0 5 144 14 28.8 2.8 5 144 14 28.80 2.80 0.10
166 2 0 10 215 67 215 67 2 46 12 23.0 60 12 261 79 21.75 6.58 030
169 2 0 7 140 9 20.0 1.3 2 45 2 22.5 1.0 9 185 11 20.56 1.22 0.06
170 2 0 3 55 15 10 ~ 5.0 1 19 2 19.0 2.0 4 74 17 18.50 4.25 0.231""; • ....1

179 2 a 0 0 0 0.0 0.0 5 97 28 19.4 5.6 5 97 28 19.40 5.60 0.29
180 2 0 4 E)6 15 16.5 3.8 0 0 0 0.0 0.0 4 66 15 16.50 3.75 0.23
183 2 0 0 0 0 0.0 0.0 7 167 37 23.9 5.3 7 167 37 23.86 5.29 0.22
188 2 a a 0 0 0.0 0.0 6 79 3 13.2 0.5 6 79 3 13.17 0.50 0.04
189 2 0 4 78 21 19.5 5.3 1 14 1 14.0 1.0 5 92 22 18.40 4.40 0.24
203 2 0 0 0 0 00 00 2 63 14 31.5 7.0 2 63 14 31.50 7.00 0.22
207 2 0 6 46 15 7.7 2.5 0 0 0 0.0 0.0 6 46 15 7.67 2.50 0.33
209 2 0 4 B6 15 21.5 3.8 1 23 2 23.0 2.0 5 109 17 21.80 3.40 0.16
225 2 0 0 0 0 00 00 3 87 8 29.0 2.7 3 87 8 29.00 267 0.09
233 2 0 0 0 0 0.0 0.0 5 151 40 30.2 8.0 5 151 40 30.20 8.00 0.26
237 2 0 5 120 12 24.0 2.4 2 52 9 26.0 4.5 7 172 21 24.57 3.00 0.12
378 2 0 0 0 0 0.0 0.0 10 197 65 19.7 6.5 10 197 65 19.70 6.50 0.33
413 2 0 3 16 2 5.3 0.7 5 85 14 34.7 6.2 8 101 16 12.63 2.00 0.16

tv
W



Plant Decapitated floral heads Non-decapitated floral heads Total deacapitated and non-decapita1ed
Dark Mean dark Mean Dark Mean dark Mean Dark Mean dark Mean Germ. I dark

PC# Lop+ Loa+ Heads seed Germ. seed Igerm. Heads seed Germ. seed germ. Heads seed Germ. seed laerm. seeds
37 0 2 2 0 0 0.0 0.0 4 1 0 0.3 0.0 6 1 0 0.17 0.00
45 0 2 0 0 0 0.0 0.0 10 a 0 0.0 0.0 10 0 0 0.00 0.00
54 0 2 0 0 0 00 00 4 1 0 0.3 0.0 4 1 0 025 000
60 0 2 0 0 0 0.0 0.0 11 0 0 0.0 0.0 11 0 0 0.00 0.00
89 0 2 1 0 0 0.0 0.0 7 0 0 0.0 0.0 8 a 0 0.00 0.00
94 0 2 6 0 0 0.0 0.0 2 0 0 0.0 0.0 8 0 0 0.00 0.00
96 0 2 4 0 0 0.0 0.0 2 0 0 0.0 0.0 6 0 0 0.00 0.00

151 0 2 3 0 0 00 00 0 0 0 0.0 0.0 3 0 0 0.00 0.00
168 0 2 5 0 0 0.0 0.0 3 0 0 0.0 0.0 8 0 0 0.00 0.00
175 0 2 12 0 0 0.0 0.0 0 0 0 0.0 0.0 12 a 0 0.00 0.00

2 0 0 5 0 0 0.0 0.0 3 0 0 0.0 0.0 8 0 0 0.00 0.00
3 0 0 0 0 0 0.0 0.0 5 a 0 0.0 0.0 5 0 0 0.00 0.00
4 0 0 0 0 0 00 00 6 0 0 0.0 0.0 6 0 0 0.00 0.00

11 0 0 2 0 0 0.0 00 3 0 0 0.0 0.0 5 0 0 0.00 0.00
25 0 0 1 0 0 0.0 0.0 5 0 0 0.0 0.0 6 0 a 0.00 0.00
28 0 0 3 1 0 0.3 0.0 14 1 1 0.1 0.1 17 2 1 0.12 0.(6
40 0 0 0 0 0 0.0 0.0 8 0 0 0.0 0.0 8 0 a 0.00 0.00
44 0 0 0 0 0 0.0 0.0 5 a 0 0.0 0.0 5 0 0 0.00 0.00
53 0 0 6 0 0 0.0 0.0 4 5 0 1.3 0.0 10 5 0 0.50 0.00
55 0 0 3 0 0 0.0 0.0 0 0 0 0.0 0.0 3 0 0 0.00 0.00
73 0 0 1 0 0 0.0 0.0 4 0 0 0.0 0.0 5 0 0 0.00 0.00
80 0 0 4 0 0 0.0 0.0 2 1 0 0.5 0.0 6 1 a 0.17 0.00
91 0 0 1 0 0 0.0 0.0 5 a 0 0.0 0.0 6 a a 0.00 0.00
97 0 0 0 0 0 0.0 0.0 18 2 0 0.2 0.0 18 2 0 0.11 0.00

107 0 0 4 0 0 0.0 0.0 3 1 0 0.3 0.0 7 1 a 0.14 0.00
117 0 0 2 0 0 00 00 1 0 0 00 0.0 3 0 0 000 0.00
128 0 0 2 0 0 0.0 0.0 2 0 0 0.0 0.0 4 0 0 0.00 0.00
148 0 0 8 0 0 0.0 0.0 3 a 0 0.0 0.0 11 a 0 0.00 0.00
158 0 0 a 0 0 0.0 0.0 4 0 0 0.0 0.0 4 0 0 0.00 0.00
161 0 0 0 0 0 0.0 0.0 5 2 0 1.0 0.0 5 2 a 0.40 0.00
193 a 0 0 0 0 00 00 5 2 0 0.4 0.0 5 2 0 0.40 000
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7.4 Apomeiosis scores for PC segregants
Nuclear DNA contents of seedlings derived from decapitated heads of parthenogenetic

segregants and from crossed heads of non-parthenogenetic segregants were measured by

flow cytometry. Relative DNA contents indicate whether seedlings are derived from

meiotic or apomeiotic embryo sacs. The formation ofparthenogenetic seedlings that are

2n, or hybrid seedlings that are 3n, indicate that the parental plant is capable of apomeiosis.

Plant Heads a~$es$ed Flow cvtometrv

Relative nuclelu
PC# LOD+ Lol'l+ cut crossed Seedlinas DNA contents

23 2 2 2 0 8 n 2n
31 2 2 6 0 12 n 21"1
49 2 2 4 0 is 2n
66 2 2 3 0 6 n 2n
71 2 2 8 0 10 n 2n
88 :2 2 5 0 12 n 21"1

101 2 2 5 0 6 2n
114 2 2 8 0 6 2n
135 2 2 3 0 4 n 2n
154 2 2 8 0 19 n 2n
172 2 :2 9 0 20 n 2n
218 2 2 6 0 7 n 2n
221 2 2 1 0 6 n2n
224 2 2 5 0 18 2n
350 2 2 5 0 6 n 2n

9 2 0 7 0 24 n
12 2 0 6 0 11 n
13 2 0 4 0 4 n
15 2 0 11 0 30 n
16 2 0 6 0 6 n
17 2 0 5 0 12 n
18 2 0 3 0 8 n
19 2 0 4 0 7 n
21 :2 0 7 0 4 n
22 2 0 5 0 7 n 2n'
24 2 0 6 0 10 n
29 2 0 2 0 10 n
30 2 0 9 0 12 n
34 :2 0 :2 0 5 n
35 2 0 7 0 10 n
36 2 0 3 0 6 n
51 2 0 4 0 10 n
52 2 0 6 0 16 n
56 2 0 4 0 5n
57 2 0 6 0 9 n
65 2 0 4 0 an
69 2 0 8 0 18 n
70 2 0 9 0 4 n
79 2 0 6 0 6 n
92 2 0 12 0 12 n
93 2 0 4 0 10 n
95 2 0 5 0 3 n

102 2 0 7 0 30
104 2 0 6 0 6n
108 :2 0 4 0 2 n

'poSSlbly one 2n seedling found



Plant Heeds assessed Flow evtometrv
Relative nuclear

PCI Lo):)+ Loa+ Cut Crossed Seedlil1(js ONA contents
121 2 0 S 0 16 n
129 2 0 5 0 90
131 2 0 8 0 13 n
132 2 0 a 0 40
140 2 0 3 0 6n
141 2 0 7 0 12 n
146 2 0 8 0 10 n
149 2 0 1 0 6n
165 2 0 5 0 7n
166 2 0 12 0 18 n
169 2 0 9 0 9n
170 2 0 4 0 8n
179 2 0 5 0 7n
180 2 0 4 0 12 n
183 2 0 7 0 4 n
188 2 0 6 0 2n
189 2 0 5 0 7n
203 2 0 2 0 7n
207 2 0 6 0 7 n
209 2 0 5 0 8n
225 2 0 3 0 4n
233 2 0 S 0 6n
237 :2 0 1 0 100
3713 2 a 10 a 7n
413 2 0 8 0 7 n
37 0 2 0 3 6203n
45 0 2 0 5 12 2n 311
54 0 2 0 1 62030
60 0 2 0 3 6 211311
89 0 2 0 5 12 203n
94 0 2 0 1 62030
96 0 2 0 5 12 2n30

151 0 2 0 1 630
168 0 2 0 2 62030
175 0 2 0 4 6 211311

2 ... 0 0 0 IJ 18 2n
3 0 0 0 5 6 2n
4 0 0 0 1 62n

11 0 0 0 4 12 2n
25 0 0 0 4 12 2n
28 0 0 0 2 S 20
40 0 0 0 B 19 2n
44 0 0 0 2 6211
53 0 0 0 ~ e ~n
55 0 {) 0 3 6211
13 0 0 0 2 8 2n
ao 0 0 0 G 13 211
91 0 0 0 1 12 2n
97 0 0 0 5 12 2n

107 0 0 0 5 12 2n
117 0 0 0 1 6 2n
128 0 0 0 9 13 20
148 0 0 0 2 6 20
158 0 0 0 6 7 20
161 0 0 0 3 620
193 0

_..-
3 6 200 0

126
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Mapping with a deletion mutant panel - two key loci found

In a deletion mutant panel,the more a marker Is absent with
the absence of a trait, the closer the marker is likely to be to
the gene that confers the trait We phenotyped 79 loss-of­
apomixis mutants into three classes: loss-of-apomeiosls; loss­
of-parthenogenesis; and loss of both traits. In an Initial screen
using eight AFLP primer combinations we identified two loci in

=

which markers are commonly lost with the corresponding loss
of either component of apomixis (Figure 3). We have termed
these loci LOSS OF APOMEIOSIS (LOA) and LOSS OF
PARTHENOGENESIS (LOP). We then focussed on Increasing
marker density around the central regions at each locus.
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o

Increasing marker density, sequencing and SCARs

Figure 3 Graphical representation 01 marker loss In three classes of H. C88spitosum mutants. Columns represent plants and rows represent marker foci
The gold boundaries indicate regions of mosl common marker loss whi:h were focussed on tor increased marker density (s" Figure 4)

have sequenced 15 of the most central markers from both
loci. and one sequence shows similarity to known genes.
It Is likely. however. that other genes are involved. as some
Lop- mutants have retained this marker. Five markers were
successfully converted into SCARs that show amplification In
close correspondence with their source AFLP markers.
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Increaslng marker density at LOA and LOP should
correspondingly increase marker proximity to key determinants.
Another 246 more AFLP primer combinations were used to
screen subsets of the panel composed of mutants with centrally
located deletion breakpoints.This enabled many new markers
to be placed at the centres of LOA and LOP (Figure 4). We

Some plants naturally produce
clonal seed with apomixis.
A classical example of an
apomict is the dandelion. We
are working with a number
of apomictic species of the
fellow composne Hieracium. to
isolate genetic determinants
of apomixis and elucidate the
mechanism.

If wheat and rice (and other Inbreeding crop species)
produced clonal seed faithfully through successive
generations,lt would be economic to produce hybrid
seed of these major crop species, which could be
grown with the substantial yield advantages of
hybrid vigour.

Figure 1 Sex = meiosis. fertilisation

The biology - apomixis in
Hieracium

The ultimate goal - clonal
propagation through seed

Comparison of Sex and Apomixis

SAC clone isolation

We are now using the proximal markers to build BAC
contigs which will be screened in silicofor candidate genes.
We Intend to test candidate sequences via transformation
of the mutants and assessing for complementation.

SCAR.
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Figure 4 GraphIcal representation ot LOA and LOP atter screening WItt· a total 01
256 AFLP primer combinations Markers that are in grey were Identified during the
initial screen The gold boundarl9s Indicate central regions where key detnrmlnanls
are likely 10 lie Rtleell maril:ers were sequenced alld ollhose live were &U x:esstully
converted into SCARs

2" donailoMdIlng

Parthenogenesis

Embryogenesis

Unreduced epome:lotlc egg

Figure 2 Apomixis K avoidanoe 01 meiosis
+ avoidance of lertilisation

Apomictic Hisf8cium avoid each component of sexual reproduction with
two over-riding processes

1.Apom"OIII: To produce an unreduced 2n egg.

2.~.: Spontaneous embryogenesis 01 a 20 egg wilh no
lerti'saUa"
The &eedling is 2" and clonal.

R___ 2nhybrld _Ing

Sexual reproduction has two 8ssenllal components:

1. MeIosIs: To produce reduced 1" gametes (egg and polen), with half
of the genome d the perents.

2. FertflfNtJon: Union of 8 10 egg wrth 8 10 potIen which trigge(s
8lTbryogenesis.

The seedling is a 2" hybnd
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Identification of key loci associated with
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Andrew Catanach, Ross Bicknell, Sylvia Erasmuson and Pam Fletcher.

Figure 4b Defetion8 that
re8ult in 1068 of apospory
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Figure 3b Mutants with loss of apospory
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24 ioss-of·apospory Hieracium caespitosum mutants, in
terms of commonly lost AFlP markers. (Fig. 3). The most
useful mutants are those that have deletion breakpoints
ciose to determinants. To date we have screened either the
whoie panel, or subsets of the panel, with 256 AFlP primer
combinations and have identified 62 markers.

Figure 48 Deletions
that result in IOS8 of
parthenogenesis

Figure 3. Graphical representation of marker IOS6 in loss--of~parthenogenesis(a) and loss-of-apospory
(b) mutant panels. Plant phenotypes ale represented in the header rows. Each column represents a
control or mutant plant and each row r't'presents a merteer. Plants 102 and 107 are wild-type controls.

wr 143 171 116 117 156
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Mapping with a deletion mutant panel

In a segregating population, the more a molecular marker is
present wnh the presence of a frait, the closer that marker
is likely to be to the gene that confers that tran. Similarly,
in a deletion mUlant panel, the more a molecular marker Is
absent with the absence of a trait, the closer that marker Is
to the gene that confers that trait. We have characterised
chromosomal deletions of 30 loss·of·parthenogenesis and

Figure 3a Mutants with loss of parthenogenesis

Figure 4. Graphical representation 0' genomic deletions with breakpoints close to c:tetenninants for a} parthenogenesis and b)
apospory. The areas coloured yellow span regions where putative determinants are expected to lie.

1
Markers

Parthenogenesis

Embryogenesis

Some plants naturally produce
clonal seed with apomixis. A
classical exampie of an apomict
is the dandeiion. We are working
wnh a number of apomictic
species of the fellow composite
Hieracium, fa isolate genetic
determinants of apomixis and
elucidate the mechanism.

Figure 2. Apomixis = avoidance of meiosis + avoidance of
fertilisation

Apomixis = clonal propagation
through seed

If wheat and rice (and other inbreeding crop species)
produced clonal seed faithfully through successive I!
generations, it would be economic to produce hybrid ,I
seed of these major crop species, which could be grown I
with the substantial yield advantages at hybrid vigour,

The ultimate goal

Aoduc:od __ egg 2" tlyl>rld _log

Sexual reproduction has two essential components.

1. MeiosIa: To produce reduced ,n gametes (egg and polen), with haW
ol the genome of the parenlS.

2. Fertillaatlon:Union of a In egg with 8 10 pollen which triggers
embryogenesis
The seedling Is 8 2n hybrid.

Comparison of Sex and Apomixis
Figure 1. Sex =meiosis + fertilisation

Isolation of AFLP markers and Probing of a SAC library
Unndueod apolpOri<; _

ApomictIC Hieracium avoid each component of sexual reproduction wfth
two oyer-riding processes'

1.Apospory: To produce an unreduced 20 egg.

2.ParthMlog....al.: Spontaneous embryogenesIs 01 8 2n egg WIth no
fertilisation

The seedling is 2n and clonal

We have generated a BAC library with 5X coverage of the
tetraploid Hieracium caespttosum genome, The next step
is the isolation and sequencing of the most proximal AFlP

markers for use as probes for the isolation of clones from
the BAC library. The clones will then be sequenced and
assessed for candidate genes.
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A chromosomal region associated with parthenogenesis
in Hieracium is deleted in a T-DNA mutant

Figure 4.
The genomic region associated with

~~~:~~~s,J;ei~~~-~:U~hg:~~a~e
(a). This region is extensively deleted in
mutant 110 (b).

Figure 5.
Results of genetIC analysis to determine if any of T-DNA inserts
a. b or c. is associated with the delenon of mutant 110. f1

:~gr~~~~a~g~~~(X~):~~~~~I~tnl~~r:~t~~~S~~~fe~~nt
Coloured cells indicate posilive detection of each T-DNA insert
(a, band cJ and AFLP mar1<ers 0; and Cy.
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Figure 2.
a} --hree developing aposporous initial cells (arrowed) within an ovule of Wild-type

11. glaciale. Aposporous embryo sacs normally undergo parthenogenetic development
l'1to 2n maternal seedlings.

b) Aposporous initials (arrowed) within an ovule of mutant 110. demonstrating similar
development to those of the wild-type. No parthenogenetic development of aposporous
embryo sacs 01 mutant 110 is observed but they may be fertilised to form 3n hybrid
~edllngs.

c) Meiotic telrad within an ovule of mutant 110. The megaspore is arrowed. The descendent
11mbryo sac. when fertilised, gives rise to a 2n hybrid seedling.

110XA3lJ15

F1.: 110XA3llll8

110XA3l12

Figure 3.
Thre3 T-DNA inserts detected in m..rtant 110 (inserts
a-e). Inserts a and b have truncated left borders
and Me detectable by PCR tram the right borders
to ne9'bouring genomic DNA. Insert c is detectable
by .."ng a left border specifIC PCR assay.

-+ +-- a. H. glac/ale b. Mutant 110

insert a Om Om

Cu Cu-- +-- Cy Cy

insert b D, 0,
0

D1 0. .. 01
0
I

insert c Dh 0
I

of the megaspore mother cell (diplospory), or by replacement of the

megaspore with an unreduced embryo sac derived from nucellar

tissue (apospory). The second deviation is avoidance of fertilisation,

with the embryo sac undergoing parthenogenetic development of the

embryo directly.

DELETION OF A GENOMIC REGION ASSOCIATED WITH

PARTHENOGENESIS
Mutant 110 was included in an AFLP screen of a panel of 73 H.
glaciale radiation deletion mutants. Surprisingly, the mutant was found

to carry a deletion of a region of genomic DNA associated with

parthenogenesis (Fig 4). This region, defined by three AFLP markers,

is deleted in 17 (23%) of the 73 radiation deletion mutants and is

linked to parthenogenesis in an F1 population segregating for the

trait (more information will be given in an oral presentation by Ross

Bicknell in session 8).

WAS T-DNA INSERTION THE CAUSE OF DELETION?

Deletion ot genomic DNA associated with T-DNA insertion has been

reported previously in Arabidopsis (Kaya et aI., 2000, Plant Cell Physiol.

41 (9), 1055-1066). As all three T-DNA inserts can be detected

independently in progeny, we assessed the possibility of T-DNA insertion

as a cause of deletion. If T-DNA insertion was the cause of the deletion,

a T-DNA insert may co-segregate with markers linked to the deletion.

We conducted interspecific crosses with mutant 110 as the maternal

parent. Hybrid progeny originating from fertilisation of reduced meiotic

embryo sacs were scored for each T-DNA insert, and for two AFLP

markers, Di and Cy, that are linked to the deleted region (Fig 5).

A LOSS OF APOMIXIS MUTANT, MUTANT 110
We have isolated a mutant of H. glaciale following Agrobac/erium ­

mediated transformation, which we named mutant 110. The mutant

shows no ability of parthenogenetic reproduction. Instead, the mutant

demonstrates increased potential for sexual reproduction via fertilisation

of unreduced aposporous or reduced meiotic embryo sacs (Fig 2).

T-DNA INSERTS OF MUTANT 110
Genetic analyses of segregants of crosses with mutant 110 as the

pistillate parent indicate the mutant has three independently segregating

T-DNA inserts. We developed PCR assays from sequenced T-DNA

vectors and TAIL-PCR products of neighbouring genomic DNA, which

enabled each insert to be detected independently (Fig 3)_

HIERACIUM GLACIALE AS A WILD-TYPE APOMICT
Hieracium glaciale is a non-obligate apomict that utilises apospory.

Most seed of the Wild-type plant is derived from parthenogenetic

development of unreduced aposporic embryo sacs. Some seed,

however, may be derived from fertilisation of either unreduced

aposporous, or reduced meiotic embryo sacs, giving rise to 3n or 2n

hybrid plants (Fig 1).

While most angiosperms utilise sex for production of seed, some

reproduce asexually, utilising apomixis to produce seed that is

genetically identical to the parental plant. The process of gametophytic

apomixis deviates from sexual reproduction at two key developmental

stages. First, maternal meiosis is avoided resulting in an unreduced

embryo sac. This may be achieved either through arrest of meiosis

CONCLUSION
While mutant 110 is aT-DNA transformantthat carries a genomic

deletion associated with parthenogenesis, significant association

between any of the three T-DNA inserts and the deletion was not

established. It is possible a deletion-causing T-DNA insert might have

been translocated, or significantly truncated and remains undetected.

Alternatively, the deletion has been caused by unknown factors,

perhaps associated with Agrobaclerium transformation.
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Although apomixis has been quoted as a technology with the
potential to deliver benefits similar in scale to those achieved with
the Green Revolution, very little is currently known of the genetic
mechanisms that control this trait in plants. To address this issue,
we developed Hieracium, a genus of daisies native to Eurasia and
North America, as a genetic model to study apomixis. In a molecular
mapping study, we defined the number of genetic loci involved in
apomixis, and we explored dominance and linkage relationships
between these loci. To avoid difficulties often encountered with
inheritance studies of apomicts, we based our mapping effort on
the use of deletion mutagenesis, coupled with amplified fragment
length polymorphism (AFlP) as a genomic fingerprinting tool. The
results indicate that apomixis in Hieracium caespitosum is con­
trolled at two principal loci, one of which regulates events asso­
ciated with the avoidance of meiosis (apomeiosis) and the other, an
unlinked locus that controls events associated with the avoidance
of fertilization (parthenogenesis). AFlP bands identified as central
to both loci were isolated, sequenced, and used to develop se­
quence-characterized amplified region (SCAR) markers. The valid­
ity of the AFlP markers was verified by using a segregating
population generated by hybridization. The validity of the SCAR
markers was verified by their pattern of presence/absence in
specific mutants. The mutants, markers, and genetic data derived
from this work are now being used to isolate genes controlling
apomixis in this system.

amplified fragment length polymorphism (AFLP) I meiosis I
parthenogenesis

A Pomixis is the asexual formation of seed. It is a process that
results in the formation of genetically uniform populations

(1, 2) and also in unique patterns of speciation (3,4). Approx­
imately 400 flowering plant taxa are recorded as apomictic,
including members of 35 diverse plant families (5, 6). Very few
crop species, however, are known to be apomictic. Among those
that are, most are tropical tree species, such as citrus and mango,
or tropical forage grasses, such as Brachiaria and Paspalum.

It is widely reported that apomixis holds the promise of
providing significant benefits to agriculture and to overall global
welfare if it could be installed into seed-propagated crops in an
inducible format (7-11). For rice alone, an economic analysis
conducted on the scenario of free access and relatively modest
adoption rates of apomixis predicted an improvement in welfare
in excess of 4 billion U.S. dollars per annum (12). Despite this
recognized potential, very little is known about the genetic and
developmental processes that underlie the expression of apo­
mixis, in part because of the absence of apomixis in classic model
species. Some aspects of apomixis are under study in Arabidopsis,
using mutagenesis to explore possible mechanisms for convert­
ing this obligate sexual species into an apomict (13). Most
notably, this work has highlighted the critical role played by
chromatin-remodeling factors and other epigenetic factors in the
specification of early embryo and endosperm development
(14-19). Other researchers are developing apomictic species into
model systems to study the trait in its native form. Several models
are emerging, including Panicum (20, 21), Pennisefum (22),
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Paspalum (23), Tripsacum (24-26), Brachiaria (27), Poa (28, 29),
Taraxacum (30,31), Hypericum (32), and Erigeron (33).

One of the best characterized systems is Hieracium, a genus of
daisies native to Eurasia and North America (34). In Hieracium,
apomixis occur by apospory, a developmental process charac­
terized by three distinct deviations from sexual reproduction
(Fig. 1). In the first instance, a cell type develops within the ovule
that initiates embryo sac formation without first proceeding
through meiosis. This process is known as apomeiosis, and the
cell type is called an aposporous initial. Aposporous initials
typically develop near the time of meiosis at sites adjacent to the
meiotic apparatus. They then divide and enlarge in apparent
competition with meiotic products during early ovule develop­
ment (35). Ultimately, their development results in the forma­
tion of one or more unreduced (2n) embryo sacs (35). Tucker et
al. (36) monitored gene expression in the unreduced embryo sacs
of an apomictic accession of Hieracium and in the reduced
embryo sacs of a sexual accession. After initiation, the two were
seen to be very similar. This finding is in agreement with the
generally held belief that apomixis represents a modified form of
sexual reproduction (13), as illustrated in Fig. 1. The second
major deviation from sexual reproduction occurs at the level of
egg-cell fate. Within each unreduced embryo sac, an egg cell
develops. In common with meiotically derived egg cells, they may
be fertilized by a suitable sperm cell, resulting in the formation
of a zygote. Most commonly, however, the unreduced eggs of
apomicts divide spontaneously, directly initiating the processes
of embryogenesis. The spontaneous formation of an embryo is
common to all apomictic systems, and it is also recorded in many
animal systems (37). In both plants and animals, this process is
known as parthenogenesis. Finally, the endosperm of Hieracium
develops spontaneously without requiring the fertilization of
the polar nuclei, a phenomenon referred to as autonomous
endospermy.

Apomixis in Hieracium is reported to be genetically controlled
(38-40). Intriguingly, Mendel studied inheritance in this genus
(41), but apomixis would remain undescribed in these plants
until the observations of Ostenfeld (42-44) and Rosenberg (45,
46; see also ref. 47). Several authors have reported that apomixis
in Hieracium is conferred by the inheritance of dominant genetic
elements (38-40), which is also widely reported for other
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Fig. 1. Apomixis in Hieracium follows the developmental mechanism of
apospory. Three critical deviations from sexual reproduction are apparent: an
avoidance of meiosis (apomeiosis), an avoidance of fertilization before em­
bryo formation (parthenogenesis), and an avoidance of fertilization before
endosperm formation (autonomous endospermy).

Results and Discussion
The Mutant Screen. From an initial sample of =5,000 germinable
seeds, =2,400 plants reached maturity after irradiation. The
initial screen of chimeric M, plants yielded 220 with potentially
valuable mutant sectors, each of which was introduced into tissue

culture for regeneration. Ninety regenerants were found to
demonstrate deficiencies in apomeiosis and/or parthenogenesis,
and 79 of these regenerants were identified as being sufficiently
viable to be used for further study. Table 1 lists the mutant
classes and the phenotypic characteristics of each. Mutants with
a specific loss of the apomeiosis component of apomixis used
reduced (meiotic) eggs to form progeny. Because these plants
were tetraploids and they retained parthenogenesis, diploid
seedlings were frequently recovered after the suppression of
pollination (Table 1). In the apomixis literature, progeny of this
type are called polyhaploids, and they are given the descriptive
nomenclature n+O to represent the formation of a seedling from
an unreduced, unfertilized (In) gamete (56). Following agreed
conventions regarding the naming of loci identified by mutation
in Arabidopsis, we suggest the designation loss of apomeiosis
(LOA) for this locus in Hieracium. In the wild type, the dominant
allele confers apomeiosis (LOA), whereas the recessive pheno­
type is reductional meiosis.

Mutants unable to perform the parthenogenesis component of
apomixis did not form seed when pollination was prevented.
However, they readily formed hybrid seed after pollination with
the tetraploid tester plant A4Z (Table 1). Because apomeiosis
remained intact in these plants, unreduced eggs were typically
fertilized with diploid A4Z sperm cells, resulting in hexaploid­
addition hybrids. In the apomixis literature, progeny of this type
are given the descriptive nomenclature 2n+n to represen t the
fertilization of a 2n gamete with a reduced male gamete (56). We
suggest the designation loss of parthenogenesis (LOP) for this
locus in Hieracium. In the wild type, the dominant allele confers
parthenogenesis (LOP), whereas the recessive phenotype is
syngamy.

Another class of mutants was identified with deficiencies in
both apomeiosis and parthenogenesis, which re-creates the
sexual phenotype that is described by the nomenclature n+ n
(56). In many cases, these plants were weak, difficult to maintain,
and displayed large deletions, making them of limited value for
mapping. We also suspect that many of these plants represented
mutants with embryo-lethal mutations that could be recovered
by hybridization. Intriguingly, this type of mutation appears to
have been identified principally in plants also demonstrating a
loss-of-apomeiosis (loa) phenotype and not in plants that had
only lost parthenogenesis (see Fig. 2). In loa mutants, the egg cell
is reduced because of the reductional division of meiosis. Re­
cessive, deleterious alleles causing embryo lethality are therefore
more likely to be expressed in this background than in LOA
plants that form unreduced, tetraploid egg cells. Mutants with
the loa/LOP genotype form reduced eggs that can in itiate
parthenogenetic development (Table 2) to produce a polyhap­
loid (n +0) seedling. If they also carried a recessive embryo-lethal
factor, however, they would fail to complete seed formation
unless hybridization succeeded in complementing the lethality
factor. At the level of detection for the mutant screen, therefore,
these plants appeared initially to have the genotype loa/lop

Avoidance of fertilizationAvoidance of meiosis

apomicts as well (for reviews, see refs. 1 and 9). Ozias-Akins and
colleague (48-53) noted that the molecular mapping of apo­
mixis loci in the grass genus Pelll1isetum was frustrated by an
apparent repression of meiotic recombination around the site of
an apospory-specific genomic region (ASGR). The size of this
region of repressed recombination remains unclear, but it is
estimated to be in excess of 50 megabases (52). Intriguingly, this
region appears to be hemizygous in the apomicts studied because
no similar region was found in sexual relatives (50). Further­
more, a very similar ASGR has also been described in the related
apomict Cellchrus ciliaris (22, 51). Repressed recombination in
association with elements of apomixis has also recorded for
Paspalum (54, 55).

The observation that recombination is frequently repressed
around loci associated with apomixis, together with the domi­
nant inheritance of this trait in Hieracium, prompted the choice
of deletion mutagenesis as a mechanism for mapping these
elements in this system. This approach has several advantages
over mapping that uses a segregating population: it utilizes
near-isogenic mutants to define map positions; it is independent
of difficulties associated with the suppression of cross-over at
meiosis; and it simplifies marker validation because the mutants
represent genomic subsets of the wild-type plant. Hieracium is
also well suited for this approach because it can be regenerated
easily in culture from very small tissue segments. This feature
made it possible to break tissue chimerism and therefore to base
the screen at the M, level.

Table 1. Mutant classes

M utant cI ass
Progeny type(s) after bud

decapitation·
Progeny type(s) after

pollination Locus
No. of

mutants

Wild-type apomict
Loss of apomeiosis
Loss of parthenogenesis
Combined class·
Loss of autonomous endospermyt

Unreduced maternal seedlings (2n+0)
Reduced polyhaploid seedlings (n+O)
No seed forms
No seed forms
No seed forms

Maternal seedlings (2n+0)
Polyhaploids (n+O)
Unreduced hybrids (2n+n)
Reduced hybrids (n+n)
Maternal seedlings (2n+0)

WT
LOA

LOP

LOA + LOP

Unidentified

NA
24
30
25
o

Nomenclature in parentheses follows the convention of Harlan and de Wet (56) in which the nuclear state of the egg is represented on the left of the addition
sign and the nuclear state of the sperm is on the right. WT, wild-type; NA, not applicable.
*Many of the mutants in the combined class were severely compromised and/or had very large deletions that could not be used for mapping.
tpredicted mutant class that was not observed.
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loss-of-apomeiosis-and-parthenogenesis phenotype, yet it re­
tained the most centrally located markers at the LOA locus (loa
300 and loa 343). Similarly, two mutants with a lop phenotype
()'133 and )'179) retained the most centrally positioned marker
identified for this locus. We interpret these data as resulting from
mutations that are either too small to be identified by the
markers known to date or possibly because of positional changes,
such as translocations and/or inversions that are not discernable
by amplified fragment length polymorphisms (AFLP).

Seven AFLP bands were successfully converted into polymor­
phic sequence-characterized amplified region (SCAR) markers,
including four markers for the LOA locus and three markers for
the LOP locus. Fig. 4 illustrates the results for four of these
markers, tested against a panel of seven loa mutants, seven lop
mutants, one mutant demonstrating a loss of both characters,
and a wild-type plant. In all but three cases, the SCAR marker
results reflected those from the AFLP analysis. The exceptions

Fig. 3. AFLP markers in an advanced selection of mutants displaying small
deletions in either the LOA or LOP loci. Vertical columns represent mutants,
horizontal rows represent markers, a light square represents a marker that is
present, and a dark square represents a markerthat is absent. Phenotypic data
are shown in the bar at the top of each group. The control was subjected to
irradiation and regeneration, but it did not express a mutant phenotype with
respect to apomixis. Dotted lines indicate apparent midpoints for the consen­
sus deletions, and therefore they are the most probable sites of critical loci. An
asterisk represents a data point that was inferred from a previous experiment
but not directly tested. A group of 17 lop markers was mapped to a site
between markers lop 279 and lop 302. No further ordering is possible for this
group because discriminating breakpoints were not available.

Mapping. Figs. 2 and 3 illustrate our current model for marker
order in the LOA and LOP loci. The two genomic regions
identified align well with phenotypic data from the mutants
(Figs. 2 and 3), indicating that both LOA and LOP have been
correctly identified from regions of common marker loss. One
mutant, 'Y-induced mutant 164 (1'164), demonstrated a combined

Fig.2. AFLP markers in aselection of 81 mutants in which apomeiosis and/or
parthenogenesis was dysfunctional. Vertical columns represent mutants, hor­
izontal rows represent markers, a light square represents a marker that is
present, and a dark square represents a markerthat is absent. Phenotypic data
are shown in the bar at the top of each group. The controls were subjected to
irradiation and regeneration, but they did not express a mutant phenotype
with respect to apomixis.

because reduced eggs formed and fertilization was required for
seed development. We noticed, however, that they differed
critically from this genotype in the ultimate quantity of seed that
developed. Because loa/LOP plants are capable of partheno­
genesis, hybridization is a rare event in this genotype. If these
plants also carried an embryo-lethal factor requiring recovery
through complementation, seed set after pollination would also
be expected to be poor, which was observed (data not shown).
In contrast, true loa/lop plants were seen to produce abundant
seed after hybridization.

The mutant screen was also designed to detect a final expected
mutant class (Table 1). In apomictic forms of Hieracium, the
endosperm tissue forms spontaneously. In sexual forms, how­
ever, it will only form after fertilization (35). We had anticipated
a mutant class in which the embryos arose asexually but the
endosperm would need to be the product of fertilization. Many
native apomicts utilize this mechanism (known as pseudogamy);
however, for reasons that are unclear, it was not seen among the
mutants recovered. Preliminary histological results indicate that
lop mutants consistently demonstrated an inability to form either
an embryo or an endosperm without fertilization (data not
presented), indicating that the LOP locus may influence the
formation of both tissues in this system.

Table 2. Segregating population: P4 (sexual) x C4D (apomict)

Segregant class

Apomict: apomeiotic, not requiring
fertilization

Meiotic, not requiring fertilization
Apomeiotic, requiring fertilization
Sexual: meiotic, requiring fertilization

Progeny type(s) after bud decapitation

Unreduced maternal seedlings (2n+0)

Reduced polyhaploid seedlings (n+O)
No seed forms
No seed forms

Progeny type(s) after
pollination

Maternal seedlings (2n+0)

Polyhaploids (n+O)
Unreduced hybrids (2n+n)
Reduced hybrids (n + n)

Proposed No. of
genotype segregants

AaaaPppp 13

aaaaPppp 48
Aaaapppp 9
aaaapppp 22

Nomenclature in parentheses follows the convention of Harlan and de Wet (56) in which the nuclear state of the egg is represented on the left of the addition
sign and the nuclear state of the sperm is on the right.
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Fig. 4. Demonstration of SCAR marker use against the panel of mutants. In
each gel lane 1 is a wild-type plant, lanes 2-8 are seven mutants in LOA (134,
125,165,152,146,135, and 132), lanes 9-15 are seven mutants in LOP (179,
138, 143, 116, 171, 144, and 156), and lane 16 is the dual mutant 168. The
markers used are listed to the left of each gel.

were positive results for the SCARs loa 275 and loa 267 against
mutant )'125, and lop 235 against mutant )'156 (Fig. 4). In all
cases, the AFLP analysis had indicted a loss of the marker in the
given mutant. For markers loa 267 and lop 235, AFLP predicted
locations as just within the deletion regions of mutants )'125 and
)'156, respectively. For loa 275, the predicted location was more
central in mutant )'125. We suspect that some level of adjacent
sequence duplication occurs at these sites, enabling the SCAR
primers to amplify fragments, whereas the loss of critical re­
striction sites led to the loss of the AFLP markers.

The Segregating Population, Plant phenotyping for this population
also indicated the action of two loci, one associated with the
inheritance of apomeiosis and the other with the inheritance of
parthenogenesis, which is in agreement with reported observa­
tions in two other daisy genera, Taraxacum (30,31) and Erigeron
(33, 57). In a previous publication (38), we concluded that
apomixis was inherited as a monogenic trait in Hieracium. It is
now clear that this finding is not the case and that the earlier
incorrect conclusion resulted from the screen used to measure
apomixis at that time. That screen represented a score of
parthenogenesis rather than of apomixis as a whole. For both the
LOA and LOP loci, segregation distortion appeared to have
acted during the formation of the hybrid population. For LOP,
the dominant allele was inherited by 67% of the progeny,
whereas the dominant allele for LOA was only inherited by 24%
of the progeny. Roche et at. (51) noted a similar imbalance in the
inheritance of apomixis in Pennisetum, and Grimanelli et at. (25)
also reported it in Tripsacum. Nogler (58) noted that a dominant
allele for apomixis in Ranunculus auricomus appeared to be
gamete-lethal in homozygous form. In a previous study (38), we
observed a similar effect in Hieracium. In this case, however, the

Mutagenesis and Screening. Asexually derived seed of the apomict
C4D was collected from emasculated capitula (35) and mutated
by using a 60CO source. A lethality curve was constructed, and a
dose of 400 Gy (40 krad) of )'-irradiation was found to represent
an approximate LDso for fresh dry seed. Sufficient seed was
treated at this level to ensure the survival of =2,500 individual
seedlings. Assessment for loss of apomixis was initially made by
visual detection of reduced seed set on sectors of M 1 plants. This
screen took advantage of the observation that even apomictic
forms of Hieracium express sporophytic self-incompatibility

effect appeared to result from a zygote-lethal mechanism. In
either case, the effect need not be the direct result of apomixis
genes but rather the product of linkage drag, where deleterious
lethal alleles arise within regions of reduced recombination
associated with the components of apomixis (1, 59). Matzk et al.
(32) have proposed that this effect may be associated with the
accumulation of transposable elements in these regions. Factors
for apomeiosis (LOA) and parthenogenesis (LOP) segregated
independently ill this population. No significant linkage associ­
ation was apparent among the segregant classes (Table 2).

The segregation patterns of two AFLP markers, one linked to
the LOA locus (loa 300) and one linked to the LOP locus (lop
102), were determined for 37 members of the P4 X C4D hybrid
population.

For parthenogenesis, the marker and trait demonstrated ab­
solute cosegregation across all 37 of the plants tested. For
apomeiosis, all ] 1 of the plants that scored positive for apomeio­
sis had inherited the loa 300 marker. Of the plants that scored
negative for apomeiosis, 24 of 26 lacked the loa 300 marker,
indicating that the loa 300 marker lies =5 cm from the LOA
locus. We conclude that the markers used are closely linked to
the LOA and LOP loci in Hieracium. Furthermore, no evidence
was seen to indicate a role for any other major loci in the
inheritance of apomixis in these plants, although modifier loci
almost certainly influenced trait expression as previously sug­
gested (60).

In summary, two major genomic regions in Hieracium cae­
spitosum have been identified that collectively control apomixis
at the level of I he avoidance of meiosis and the avoidance of
fertilization, respectively. The mutants and markers described in
this work have become the basis of a gene-isolation strategy in
Hieracium. A BAC library for C4D has been made, and it is now
being used to isolate sequences corresponding to the LOA and
LOP loci. Ultimately, it is our hope that this information will be
used to install apomixis into target species and therefore to
advance our goal of using this technology for the improvement
of crop species to benefit global welfare.

Materials and Methods
Plant Material and Tissue Culture, A tetraploid, apomictic accession
of the species H. caespitosum (designated C4D), obtained from
Dijon, France, was used for the mutagenesis and mapping studies
reported in this work. Preliminary results indicated that this
plant was simplex for dominant alleles associated with apomixis
at both the LOA and LOP loci (Tables 1 and 2 and data not
shown). Two other plant accessions were used as pollination
partners: a tetraploid, apomictic accession of Hieracium auran­
tiacum, from Zurich, Switzerland (A4Z); and a tetraploid, sexual
accession of Hieracium pilosella, from Caen, France (P4). All
stock plants and mutants were maintained vegetatively in tissue
culture and within a glasshouse. Flowering during winter months
was encouraged by supplementary lighting to provide a 16-h
photoperiod as described in ref. 38. To ensure the best possible
representation of all progeny types, seedlings were germinated
and raised to at least the third true-leaf stage in sterile culture
as described in ref. 60.
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(61). To generate stable nonchimeric mutants, tissue segments
=2-4 mm in length, immediately subtending mutant seed heads,
were harvested and used to regenerate plants as described by
Bicknell (62).

Regenerants that continued to demonstrate a reduced-seed
set phenotype were then assessed for the components of apo­
mixis as described by Bicknell et al. (61). Briefly, for each mutant
at least five immature capitula were severed above the plane of
the developing ovaries, and the resulting progeny were assessed
for ploidy by using a flow cytometer. Only plants capable of
parthenogenetic development could set seed after this treatment
because decapitation removes both anther and style tissue before
anthesis and stigmatic receptivity. At least five capitula on each
mutant were also cross-pollinated with the orange-flowered
accession A4Z, and the progeny was assessed for ploidy and for
morphology. In this manner, it was possible to assign each
mutant into one of three classes: those that had lost apomeiosis,
those that had lost parthenogenesis, and those without either
(Table 1). To avoid any possibility of identity by decent within
the mutant population, only one mutant sector was progressed
from each chimeric M) plant.

Segregating Population. A subset of 92 seedlings was randomly
selected from a population of H. pilose/la x H. caespitosum Fl
hybrids, providing a 90% probability of detecting a mapping
distance of 2.5 cm or greater. All were assessed for the compo­
nents of apomixis as described above.

Molecular Markers and Mapping. Molecular markers were used to
identify candidate genomic regions associated with the observed
mutant classes. Because the mutants were derived from asexually
generated seed and all subsequent operations retained the
somatic genotype of the original M) plant, the mutants were
treated as near-isogenic lines. Furthermore, the deletion mu­
tants were assumed to represent genomic subsets of the wild­
type genotype. By using this feature, candidate genomic regions
associated with apomixis were defined as regions of marker loss
found to occur in at least three independent mutants. The
marker class used for this work was secondary digest-amplified
fragment length polymorph isms (SDAFLP) (63), which were
separated by PAGE (16) and visualized by using either radio­
i otope exposure to film or by silver staining, or they were
examined by using an ABI 3100 genetic analyzer (Applied
Biosystems, Foster City, CA). SDAFLP was used because it is
independent of template methylation.

Early results with simpler AFLP protocols (64) proved to be
un interpretable because the methylation status of many of the
y-irradiation-induced mutants was very different from that of
the wild type (data not shown). Discerning marker bands were
isolated from silver-stained polyacrylamide gels, amplified by
PCR, and sequenced. For most of the central marker bands
identified, minisequencing (65) was conducted to clarify band
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identification, enable the design of more specific AFLP primers,
and facilitate band isolation.

SCAR markers were developed from the sequence data and
tested against the mutants and segregant plants. A total of 256
AFLP primer combinations were tested against a panel of
mutants, the wild type, and a control plant, which was isolated
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