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Nonlinear Multigrid Algorithms for Bayesian Optical
Diffusion Tomography
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~ Abstract—Optical diffusion tomography is a technique for the Newton-Raphson (NR) method has been used with a Lev-
imaging a highly scattering medium using measurements of trans- enberg—Marquardt procedure. A Levenberg—Marquardt method
mitted modulated light. Reconstruction of the spatial distribution for a variational formulation of the diffusion equation has been

of the optical properties of the medium from such data is a difficult lied to the ti d . bl Il as the f d
nonlinear inverse problem. Bayesian approaches are effective, but appliedto the ime-domain probliem as well as the irequency-ao-

are computationally expensive, especially for three-dimensional Main problem [3], [4]. However, the constraint used in these ap-
(3-D) imaging. This paper presents a general nonlinear multigrid proaches [3], [4], which imposes a penalty on fhenorm of
optimization technique suitable for reducing the computational the new update at each iteration, tends to over-smooth edges
burden in a range of nonquadratic optimization problems. This ;1 the image or produce excessively noisy images, depending

multigrid method is applied to compute the maximuma posteriori
(MAP) estimate of the reconstructed image in the optical diffusion O & control parameter value. A fundamental drawback of these

tomography pr0b|em. The proposed mu|t|gr|d approach both methods is that théQ pena|ty term for the new update is not a
dramatically reduces the required computation and improves the form of regularization in the Tikhonov sense [5], but is instead

reconstructed image quality. a “trust region” constraint designed to insure monotone conver-
Index Terms—Bayesian image reconstruction, multiresolution gence of the optimization criterion [6], [7].

image reconstruction, nonlinear multigrid optimization, optical The artifacts due to poor regularization can be reduced by

diffusion tomography. incorporation of prior information using a Bayesian framework.

Recently, Bayesian (and other regularization) methods have
been applied to nonlinear inverse problems such as microwave
imaging and optical diffusion imaging [3], [8]-[12]. The
O PTICAL diffusion imaging is a technique for recon-jngividual approaches have differed both in terms of the prior
 structing the optical parameters in highly scatteringyodel (or stabilizing functional) used and the optimization
media such as tissue, polymer composites, sea ice, &Morithms employed to compute the reconstruction. For ex-
aerosols, based on measurements of the scattered and attgmrﬂe, Paulsen and Jiang added a quadratic regularization term
ated optical energy. For tissue imaging, this technique presegisheir previous formulation [3] to stabilize the reconstruction
significantly lower health risks as compared to X-ray imagingg). |n this case, each iteration of the optimization performed
and is instrumentally much less expensive than X-ray CT @rjinearization (similar to the Born approximation) followed
MRI. Moreover, the potential of optical diffusion imaging hag,y 4 full matrix inversion to solve the linearized problem. The
been successfully demonstrated in biomedical applicatiog@mputationm complexity of this method is very high since
[1]. However, a major difficulty with this approach is that they( 3) complex multiplications are required at each iteration,
relationship between the unknown scattering and attenuatigfere & is the number of image pixels. Saquib, Hanson,
coefficients and the optical measurements is highly nonlinegiq Cunningham proposed a more computationally efficient
and described by a partial differential equation; so reconstrygeyorithm for the time-domain diffusion problem in which each
tion poses a challenging nonlinear inverse problem. iteration alternates a linearization step with a single step of a
Inversion approaches for optical diffusion tomography bas%@njugate gradient algorithm [9], [13]. This work drew on the
on the Born or Rytov approximations [2] produce significant egoncept of adjoint differentiation [14] for efficient computation
rors in the reconstruction for realistic material parameters dge the gradient. Arridge and Schweiger applied this gradient
to linearization errors of the forward model. To overcome theggethod to frequency domain optical diffusion imaging [10],
drawbacks, iterative techniques have been investigated. Usuarliyg]_ However, the complexity of the line search [7] required
in a conjugate gradient algorithm is an important factor in the
, _ _ total computational burden for both approaches.
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the photon paths are not restricted to a plane, practical dechs. This approach greatly simplifies the application of multi-
accurate optical diffusion imaging will require inversion folgrid to our problem.
three-dimensional (3-D) images, with a concomitant increaseSection Il describes the forward diffusion equation model and
in the number of unknowns. The computational complexity séviews the Bayesian cost function in this context. Alternating
the ICD/Born method is still prohibitive for such problems. estimation of the data term noise variance and the updated image
Multigrid algorithms are a specific form of multiresolu-is then described as a means to vary the degree of regularization
tion algorithm that can be used to reduce the computatior@dld improve convergence. The multigrid algorithm we develop
requirements of large numerical problems [18]-[20]. Theder nonquadratic optimization is presented in Section Ill. Sec-
algorithms work by recursively moving between differention IV presents a complexity analysis of the multigrid and fixed
resolutions, thereby propagating information between coa@éd algorithms. In Section V we present the results of simula-
and fine scales. Multigrid methods have been primarily usd@ns using our multigrid method in comparison with a fixed grid
for solving partial differential equations [21], but more recentllgorithm. Concluding remarks are made in Section VI.
they have been applied to a variety of imaging problems such
as image analysis [22], [23] and anisotropic diffusion [24]. [l. BAYESIAN FRAMEWORK FOR OPTICAL DIFFUSION

Perhaps surprisingly, multigrid algorithms have not been TOMOGRAPHY

widely applied in tomography problems. In earlier work, In this section, we develop the Bayesian framework that
Bouman and Sauer [25] used multigrid algorithms to solve th#e use for reconstructing the material parameters of highly
nonquadratic optimization problems resulting from projectiogcattering media from measurements of scattered light. In Sec-
tomography applications such as computed tomography (Cfipn 11-A we develop the forward model based on the diffusion
and photon emission tomography (PET). While this formulaquation, and in Section 1I-B, we use this model to formulate
tion used nonlinear multigrid, it was based on a conventiongle maximuma posteriori(MAP) optimization problem.
nonlinear multigrid PDE solver. Other research by McCormick

and Wade [26] used multigrid algorithms for impedancé. Forward Model for Optical Diffusion Tomography

tomography problems. This work linearized the impedance|n a highly scattering medium, it is useful to look only at
tomography problem, and therefore used a standard linggé intensity of the electromagnetic wave. Here, photons are
multigrid equation solver. Bhatiet al. [27] and Zhuet al.[28]  treated as particles which elastically scatter through the random
used wavelet methods to solve linear or linearized tomograpiédium. The theoretical framework for this model is Boltzmann
problems. transport theory [29], which applies conservation of energy for

In this paper, we develop a multigrid optimization methothe photon density scatter and source mechanisms. A common
suitable for solving general nonquadratic optimization prolapproximation to the Boltzmann transport equation is the dif-
lems; and we apply this method to the problem of opticélision equation [29], [30], which assumes that the flux has a
diffusion tomography. Multigrid algorithms are well suited toveak angular dependence, that all photons travel at the same
this problem for three reasons. First, our simulations indicag¢peed, that the sources are isotropic, and that the photon cur-
that our multigrid algorithm converges much faster than fixe@nt density changes slowly with time, relative to the mean col-
grid algorithms. This is particularly important for the opticalision time [29]. The diffusion approximation is accurate in soft
diffusion tomography problem since it is inherently 3-Dtissue over the 650-1300 nm wavelength range where scatter
Second, multigrid algorithms are well suited for implementatominates absorption [31]-[33], and provides a computation-
tion of positivity constraints because the optimization at eadatly tractable forward model for tissue imaging.
grid resolution is done in the space-domain where positivity Let the scalar quantit¥; (r) be the photon density (with the
constraints are easily enforced. In general, positivity can bémensions of energy per unit volume) at positioa 2 due to
important for improving reconstruction quality, particularlya point source of light at positios, € €2, where{? is the do-
when the problem is underdetermined. In the optical diffusianain of interest. Then, the photon flux is defined/agr, ¢) =
tomography problem the physical parameters being invertetf; (), with ¢ being the speed of light in the medium. The
can have only positive values. Finally, multigrid algorithmghoton flux<,(r, t), which describes the optical power den-
tend to better avoid local minima, or tend to find a better locaity as a function of position and time, satisfies the time domain
minimum, in the functional being optimized. Since the diffudiffusion equation
sion tomography problem results in a nonconvex optimization
problem, this robustness to local minima helps insure that a = — +5.(r, t) — V - (D(r)Vhi(r, ) + pa(r)or(r, t)
good solution is reached. ¢ 8_t S(6)8(r — s1) 1)

A key innovation of our work is the direct formulation of the "
multigrid algorithm in an optimization framework. Historically,whereS(¢) is the time varying photon source density, dn@-)
multigrid techniques were developed for solving linear or noiis the diffusion constant given by

linear elliptic PDEs [18]. While they can be used to solve opti- 1
mization problems, this is generally done by differentiating the D(r) = m ()
cost function, and using multigrid algorithms to solve the re- Ha Hs

sulting equation. In contrast, we have derived expressions for thigh 1., (r) the absorption coefficient, ang,(r) the reduced
direct application of multigrid methods to optimization probscattering coefficient. The reduced scattering coefficient is de-
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PR S S S S The domair2 is discretized intdV pixels, where the position of
| theith pixelis denoted by; for 1 < ¢ < N. The set of unknown

o Q 8, Source absorption coefficients is denoted by the vectpwhere

X Lacation

5 8 p Detectar X = [/vLa(Tl)v Ty Ha (TN)]T' (5)

Location In order to formulate this problem in a Bayesian framework,

* E we require the data likelihoog{y|x). With the detectors oper-

a a ating at a sufficiently low temperature, photon detection can be
modeled using shot noise statistics [12], which has its origin in

S W, AR SR G Poisson statistics [36]. Wit (d,,, ) sufficiently large, i.e., with
an adequate number of detected photons, the measurements are

Zero Flux Boundary independent complex Gaussian random variables, and the data

_ _ _ o likelihood is given by [12]
Fig. 1. Geometry used for simulation of optical diffusion measurements. The
12 detectors and 12 sources are uniformly spaced around the perimeter of the

- 1 ly — £(=)II3
object. p(y|X) = W exp |:_—A

(%

} ©)

fined by i (r) = (1 — g)us(r) wherep,(r) is the scattering wherex is the parameter related to the noise variarcis the

coefficient andy is the mean cosine of the scattering angle. diagonal covariance matrifw]|2 = w* Aw, and the complex
Practical systems based on time domain measurements hay&or valued functiorf(x) represents the “exact” value of the

been implemented [34], [31], but these systems tend to be @moton flux for the assumed value of the absorption coefficient

pensive and noise sensitive. In order to circumvent these prabviore specificallyf(x) = E[y], whereE[ -] denotes expec-
lems, we adopt a frequency domain approach to the optical dtion, is given by

fusion problem [35], [3]. To do this, we assume that the light

source is amplitude modulated at a fixed angular frequetiey f(x) =[f1(x), f2(x), - -, fr(x)]
0), so thatS(¢) = Re[l + fexp(—jwt)], whereg is the modu- =[p1(d1, %), $1(dz, %), -+ -,
lation depth. At the detector, the complex modulation envelope T
is then measured by demodulating the in-phase and quadrature $1(dar; %), d2(d, %), -, dre(dar, X7

components of the measured sinusoidal signal, which is proppg; o problem, the measurements are statistically independent
tional toy.(r, ¢). This technique allows low noise narrow-bangy it the variance of each measurement equal to its meah; so

het_ero_dyne detection of the modulann_enveIWér, t_) [36], g diagonal. For our simulations, we make the assumption that

which is denoted as the complex quantity(r). By taking the

Fourier transform of (1), the partial differential equation that Ao 1 wherei = M(k— 1) +m )

governs the complex modulation envelopg(r), becomes " yrml’ )
VA(D(r)Vor(r)+(—pa(r)+iw/c)pr(r) =—B6(r—si). (3) This approximation results from the assumption that the DC and

modulated light undergo the same loss, which is approximately

In the frequency domain imaging approach, (3) is used as tfage for low modulation frequencies [12].

forward model, and the energy measured by a detector is then

proportional to the photon curredt= —DV¢(r) [29]. B. Formulation of the Bayesian Optimization Problem

Fig. 1 shows a two-dimensional (2-D) imaging domain with Bayesian methods provide a natural framework for incor-

interspersed source and detector points uniformly distribut grating prior information about the behavior of the unknown
around the boundary. We will use this as a representative exp U’antityx The MAP estimate ofk given the measurement
mental scenario for optical diffusion tomography. The region ctory is.

be imaged is denoted yand is surrounded bi point sources

at positionss;, € €2 and M detectors at positions,,, € €2. In Knap = argmax{log p(y|x) + log p(x)} (8)
general one could image both the absorption and scattering co- x20

efficients as a function of position. However, here we ConSidWherep
the absorption imaging problem where we determine the vah&;e

of pa(r) from the measured values ¢f(dx,), while assuming e > 0, as required for the physical problem. As in [12], we use

1s(r) known. _ _ he generalized Gaussian Markov random field (GGMRF) prior
Using the same notation as in [12], measurements of the 4 [37]

complex envelopep(d,,) for sourcek and detectorn are

denoted byy,... We also organize these measurements as a 1 1

single column vectoy of length? = KM whereK denotes  p(x) = —~ 7 exp | —— Z bijlzi —z; P (9)
the number of sources, add denotes the number of detectors, o 2(p) po? (i, T1eN

i.e.,

(x) is the prior density for the image and maximization
rx > 0 enforces the required positivity constraint, i.e., that

wheres is a normalization hyperparameter ang p < 2 con-
Y = [Y11, Y12, ** s YiM, Y21, 0 YK M| - (4) trols the degree of edge smoothness, with 2 corresponding
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to the Gaussian case. This prior model enforces smoothnes

. . . .. main {
the solution while preserving Sharp edge transitions. 1. Initialize X with a background absorption coefficient estimate.
We adaptively estimate: during the reconstruction proce-| 2. Repeat until converged: {
dure. Initially, the estimated value of is large whenx is far (a) & — plly —f&)la -

. . . . b) Compute the Fréchet derivative f/(X) using (34), (35), (36).
from its true value. In this case, the strong prior term restric Ec)) Comgute the following: ®

the solution to be smoother. As the optimization proceeds, t
value ofa decreases, making the data term more important a z — y-fER)+R%
consequently reducing the relative importance of the regulari: A« (¥

tion term. We have found that this progressioradirom large

. (d) Apply a multigrid optimization algorithm to minimize (17).
to small values increases the robustness of convergence to

minimum. This is particularly important becauie) is highly %« MultigridV(%,r =0,z,A,k =0)
nonlinear, so the computation of the MAP estimate can becol or
trapped in local minima. % < FMG(%r=0,zAk=0)

If we considera unknown, referring to (6) and (9), the opti- }
mization problem (8) can be re-written as 3. Stop.

. }
2
ALg IAX MAX | — lly — f(x)||3 — Ploga

Fig. 2. Pseudo-code specification for the optimization procedure. Each
iteration of the procedure estimates the paraméterecomputes the Born

_I% Z bi—j |xz —x; |p 4 const approximation, and then applies the multigrid optimization of Section Ill.
iy beginning of each multigrid iteration the nonlinear functional
(10) f(x) is first linearized using a Taylor series expansion as
Viewing (10) as a cost function, and setting the derivative with
respect tax equal to zero, we obtain the closed form expression ly — £(x)|A ~ ||y — f(%) — f'(%)Ax]|]2 (16)
1 2
“=P lly = £Go)lIa- (1) whereAx = x — %, andf’(x) represents the Fréchet deriva-
By substituting (11) into (10), the optimization problem (10) isive of f( - ) atx. Note that the Taylor series expansion of (16)
converted into turns out to be exactly the same as would result from a Born
1 approximation [38]-[40]. The details of how the matfixx) is
X = arg max ¢ —P — Plog <f lly — f(X)II%) computed for this problem are given in Appendix A. Using (16),

an approximate cost function for the original problem (15) is

1 1 1
" por Z bi—jlzi — =[P (12) e(x) = 5 |z — Ax||3 + prs Z bi_jlz, — ;P (A7)
{i,5}eN {t,J}eN

wherex is an estimate of the unknown After neglecting con-
stant terms, we can define the log posterior probabifity as ~ where

I(x) =—Plog|ly — f(x)|

(3 = =Plog Iy — 1)} AP

= por Z bijlawi — 2], (13) z =y —f(X) + f'(R)%.
{i, 5 eN

The log posterior probability (13) is used as a criterion for the Qur overall strategy for the optimization of (10) is listed in
convergence in our experimental results. For computational sitRe pseudo-code of Fig. 2 and is illustrated in Fig. 3. Each it-
plicity, we maximizel(x) by alternately maximizing with re- eration of our algorithm starts with an updatecotising (14),
spect toor andx using the following two equations: followed by a new linearization (17). This results in a nonlinear

&= 1 Iy — £ (14) optimization problem that we then solve using either V-cycle or
P A full multigrid. This sequence is repeated until the desired level
1 of convergence is reached.
% = argmax { —— ||y — £(x)|IA
X = argmaxq — = [ly A

[1l. NONLINEAR MULTIGRID INVERSION ALGORITHM

1 In this section, we derive a general algorithm for multigrid

~ po? > bijlei—xl” ¢ . (15)  optimization of any functional, and we also derive the specific

{i,5}eN expressions for optimization of the cost functional in (17). Our

Equation (14) is a straightforward computation, but (15) is@pproach is unique because it is formulated directly in an opti-
computationally expensive optimization problem, especially fonization framework. This is in contrast to conventional multi-
large images. To circumvent this problem, we employ multi-grid algorithms which are formulated to solve differential or in-
grid optimization algorithms to efficiently compute (15). At theegro-differential equations [19], [21], [22], [25], [26]. To derive
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O estimation O estimation O estimation functional. To correct for possible discretization errors, we then
Born approx. Born approx. Born approx. . L
§ solve an adjusted coarse scale optimization problem
& o £ fine
. - T %0+ — are min {c(k+1) (x(k-i—l)) _ r(k—l—l)x(k-l—l)}
x(k+1)
l (20)
wherer**+1) is a constant row vector which may be used to ad-

coarse  just for errors in the cost function. This row vector is equivalent

(€Y to the so-called residual term used to partially correct errors be-
o estimation o estimation tween coarse and fine grids in conventional multigrid [41].
Born approx. Born approx. The question remains as to how we should choose the residual

K Tacs fine termr+1  |deally, we would like the following approximate
W f T equality to hold for all values ag(*+1):

l ) (x(k"'l)) — DD 4 const
g /\ ; § ; ) (&(k) n "E’l:)ﬂ) (X(k-l—l) _ ugz;'l)&(k))) . (21)

coarse
(b)

Fig. 3. Multigrid inversion algorithms. Each iteration alternates a Bor;{—he left _hand S'_de of (21) IS_ th? corre_cted C_Oarse Scale_COSt func-

approximation step with a single iteration of a nonlinear multigrid algorithntion, while the right hand side is the fine grid cost function eval-

(a) V-cycle inversion algorithm, and (b) full multigrid inversion algorithm.  ated using the corrected result of (19). If these two functions
are equal, within a constant, then their minimum will occur for

our method, we start with the two-grid case, and then generalf€ same value at+ L), _

this solution using standard recursions for the V-cycle and full In the general case, the difference between the left and

multigrid cases [41]. right hand sides of (21) is not linear, so no choice of the
row vector r**1 can achieve equality. However, we can
A. Two Grid Algorithm chooser*+1) to match the derivatives of the two sides when

: k1) A (% . . . .
For the two grid algorithm, we first consider optimizationx(Hl) - "E’_v )X(k)k' 11'h|s condition results in the following
without the positivity constraint. We then discuss the additidfEy expression for(k+1)
of the positivity constraint in Section I1I-B. &) (o) 1)
Letx(®) = x denote the finest grid absorption image, and let ¥ g~ VE (X ) Vi)
x*) pe a coarser scale representationx@® with a grid sam- * (22)

pling period of2* times the finest grid sampling period. In genwhereVe(x) denotes the row vector formed by the gradient of
eral,x**1) may be computed from*) by some linear trans- the functionak:(x).

(k+1) — yelk+1) (x)

. ‘ k+1)_(k k1) < .

formationx®+) = 13 Fx® wherelfy " is anN/4*+1 x  There are a number of observations to be made about (22).
N /4% decimation matrix for the 2-D case. The correspondinfhe expression holds for general choices of the cost functionals,
linear interpolation matrices are denotedl ‘+1 . the interpolating operators, and the decimating operators. It is

Assume we need to minimize a cost functiond? (x*)) at intergsting to note_that.the interpolgtion ma’Fﬂ&,Zrl , actually N
scalek. Also assume that we have an initial solutigfi’ which  functions as a decimation operator in equation (22) because itis

approximately minimizes the cost functional, i.e., being multiplied by the gradient vector from the left. Perhaps the
most important observation is that the exact solution to (18) is
£®) x arg min {c(k) (x(k))} ) (18) afixed point to this two grid update procedure. More precisely,

the following theorem is proved in Appendix B.
o . _ ) k) ( (k k1) (o (k1 -
Our objective is to compute the solution at the next coarser grid, | "€orem: Let ct )(’?( )) and ct )(’F( )) E)e str|1ci}]y
%(*+1) "and then use this solution to improve or correct the firfgPNVex continuously differentiable functionals B andR™,

grid solution. This fine-grid correction may be done using tH&SPectively, v}yheréJ’ <N, and Ietx*(’“_) € R™ be the global
formula minimum ofc®)( - ). Furthermore, consider the two grid update

formed by applying (20) followed by (19) using the residual
R k) 4 "EZZA) (g<k+1) _ ugz;rl);((k)) ) (19) calculation of (22). Then the exact solutiaa;*, is a fixed

point of the two grid update.
In order to compute the coarse grid soluti&¥+), we must
formulate a corresponding coarse grid optimization proble
To do this, we first choose a coarse grid cost functional, Multigrid optimization is implemented by recursively ap-
k1) (x(k+1)) which we believe to be a good approximaplying the two-grid update of the previous section. In particular,
tion to ¢*(x(*)). Of course, the particular choice of thiswe use the two recursions known as V-cycle and full multigrid
functional is very important and depends on the details of ti#l]. The pseudo-code recursions for V-cydidu(tigridV) and
problem being solved. However, for now, simply assume theatll multigrid (FMG) with the use of positivity constraints are
cF+1)(x(k+1)) reasonably approximates the finer grid costhown in Figs. 4 and 5. Each of these algorithms moves back

R. Recursive Formulations of Multigrid Inversion
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MultigridV(x, r, k) { MultigridV(x, r’z.’A’k.) g b "
1. Apply v fixed grid iterations to compute: 1. Apply 11 ICD iterations with initial condition x and compute:
N (ky_ (k) |P
~ i (k) _ ke z," -z
X 2 arg min {c (x) rx} X —= argmin ¢ ||z — Ax|[3 + e Z bioj || ~rx
= x>0 oP 2k
- {i.i}eN
2. If k is the coarsest desired grid, Return(x).
3. Compute the following: 2. If k is the coarsest desired grid, Return(x).
3. Compute the following:
k+1
Xdec HEk;’ )X (k+1)
(k+1) () (5 (R Xee iy
(k+1) Vb ) — Vet (x)I
r — [} Xd .
ec (k+1) A+ AHE:LU (Equation (26))
4. x*+D)  MultigridV (xgee, r*+1), k + 1) 25D~ oz A (I - HE:lI)HE:;I)) x(®) (Equation (27))
5. Perform coarse grid correction: .
rHD) el D (x ) — Vc(k)(x)ll( ) (Equation (30))

. (k+1)
X «— x+ Hgkll)(x(k'ﬂ) = Xdec)
4, x(b+1)  MultigridV(xgee, 4D g:+D  AGHD 4 1)

x <« max{x,0} 5. Perform coarse grid correction

6. Apply vo fixed grid iterations to compute: % — x4+ ]IEIZ)H)(X(H” ~ Xaee)

X & arg m>ix(1) {c(k)(x) — rx} x «— max{x,0}
Xz

6. Apply vo ICD iterations with initial condition x and compute:

P
—rXx

7. Return(x)
1£k)_ mgk)
2k

. 4*a
X = arg)r;azlg {||z - Ax||% + Tp{igeffi—j

Fig. 4. Pseudo-code specification of the proposed multigrid optimizatic
method using the V-cycle recursion and a positivity constraint on the soluti
X.

7. Return(x)

FMG(x, 1, k) { Fig. 6. Pseudo-code specification for the specific V-cycle multigrid inversion
1. If k is the coarsest grid, go to 5. algorithm used for the optical tomography problem.
2. Compute the following:
ol TABLE |
Xdee — ]IEJ )x COMPUTATIONAL COMPLEXITY OF THE FIXED GRID ICD/BORN AND THE
- i (k) MULTIGRID INVERSION ALGORITHMS IN TERMS OFNUMBER OF COMPLEX
r(HD gkt )(xdec) ~ Vel )(X)H(Hl) MULTIPLICATIONS PER FULL ITERATION. A{ = NUMBER OF DETECTORS K =
NUMBER OF SOURCES F' = NUMBER OF ITERATIONS REQUIRED FOR THE
(k+1) (k+1) LINEAR FORWARD PDE LVER; N = NUMBER OF PIXELS; ¥ = NUMBER OF
3. x ‘_FMG(XC?“’ r 2 k+1) THE ICD OPTIMIZATIONS FOR EACH GRID
4. Perform coarse grid correction
*) eal Green’s ICD Total
X x+]I(k+1)(x( D~ xgee) function
x < max{x,0} update
Fixed 5(M+K)FN| S5MKN SMKN+5(M+K)FN

. X «MultigridV(x, r, k).

. Return(x) Grid

V-cycle 5(M+K)FN| RyvMKN| 2uvMKN+5(M+K)FN

Oy U1

Full 5(M+K)FN| 2vMKN | LuvMKN+5(M+K)FN

Fig.5. Pseudo-code specification for the full multigrid optimization aIgonthrTmultigrid

using a positivity constraint on the solutien

TABLE I

and forth through coarse and fine resolution in characteristic ESTIMATES OF THECOMPLEX MULTIPLICATIONS REQUIRED FOREACH
. . ITERATION OF THELISTED INVERSION ALGORITHMS

patterns as shown in Fig. 3(a) and (b).

The V-cycle algorithm is a straightforward generalization of Parameters Fixed V-cy(3c1e Fall
the two grid algorithm. In Figs. 4 and 5 V-cycle algorithm, the grid x10 multigrid
. ) L2 ; . . x 108 x 108
fine grl(_j opt|m|zat|9n probl_em is solv_ed by ca_llllng the recursive ;TN T R TM T
MultigridV subroutine starting at the finest grid resolution. Eachs [ 1292 | 12 | 12 | 20 | 51 71 82
subroutine call starts by applying iterations of a fixed grid op- 6 1295 12 12 | 20 | 51 135 16;
i - ; ; ; 2 1202 | 24 | 24 | 20 | 127 207 25
timizer. TheMultigridV subroutine, then recursively calls itself 511502 | 24 | 24 | 20 | 127 163 so1

for the next coarser resolution in order to compute a coarse gria
correction to the current fine grid solution. At each coarsening
grid resolution, iterations are performed using the residuahpplying. iterations of a fixed grid optimizer at each refine-

r®) | for that level. Finally, the solution is further improved byment step, using the residuals from the coarsening steps and the
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to be the separable extension of the one-dimensional (1-D) dec-
imation matrix

1 1 1
111909 0
1 1 1
oo L L1 0
_ (23)
1 1 1
00000 .--0 1L

and we choose the corresponding interpolation matrix to be

(k) (k+1)

by = @w )- (24)
S3 s7
” DS The finest scale cost functiodl? (x(?), is given in (17). At
5 s each scale, the cost functionét’ (x(*)) consists of a quadratic

data likelihood term and a nonquadratic prior term. Referring to

" (19), the quadratic term of (17) can be expressed as

D9

N $9

Dl S12 D12 Sl Dl11 S10 Dio
(b)

Fig. 7. Two-dimensionaB cm x 8 cm phantom used for simulation. (a)
Gray scale image showing the spatial variation of absorption coefficient and ) ) ) 2
(b) contour plot showing absorption coefficient with units of ch = HZ<k+1) — AR xR+ HA (25)

5M_Awgmw
A

2
_ k k) [ o(k (k) k41 (k+1) 4 (K
= || = AW (59 11 (x4 -1 X()))HA

decimated solution for the coarser grid. This recursive structuggere
causes the algorithm to move from fine to coarse grids, and then
ba;E to fine grids, ag shown !n th(_a /" pattern of Fig. 3(a). AGHD _ A<k)[|(’“) (26)
e V-cycle algorithm of Fig. 4 includes specific steps to en- (k+1)

sure positivity of the result. In particular, the coarse grid correc- ZktD) _ (k) AR (T ( _® "(k+1)) %k (27)
tion (Step 5) can potentially result in anwith negative values. (k1) (%)
Therefore, the pixel values are limited to a minimum value of
0. We have found this method of enforcing positivity to be vergnd/ denotes the identity matrix.
effective in our experiments. However, we note that this stepFor the coarse grid prior term, we assume that the derivative
complicates the analysis of the algorithm since it violates tlod x is locally smooth [25]. In this case, the corresponding prior
assumptions of our fixed point theorem. term can be represented as

The full multigrid algorithm of Fig. 5 is based on recursive
calls of both the full multigrid and V-cycle subroutines. This
structure causes the algorithm to initially move to the coarsest

Z bifj x

<m_$®f
J

%

'4
grid. The resulting coarsest grid solution is interpolated to the pe {i,5eN
next finer grid and used as the initial condition for the corre- (k) (k)
sponding fixed grid optimization problem, which is then solved Z bi_j (28)
by a multigrid V-cycle. This process is repeated, until the final {z,;}u\/

solution is obtained on the finest level.

Note that the factor o#* is chosen to account for the reduced
C. Multigrid Optimization for the Optical Diffusion Problem nNumber ofterms in the sum, and the smoothness assumption jus-
tifies the approximation{”’ — #'” ~ (z{*’ — (¥ /2% Based
For the optical diffusion tomography problem, we use then (25) and (28), we then deflne the coarse grld cost function.
ICD optimization method [16], [17], [11], [12] as the fixed grid
optimizer at each resolution. The ICD algorithm is a good choice

2
for optimization problems because it has fast convergence at k) (X(k)> HZ(’“) - A(k)x(k)H
high spatial frequencies [16]. (k) (k)
The specific multigrid expressions for the optical diffusion Z b, . (29)
. . . . ) i—J
imaging problem are now derived. In all cases, we chdb&z;‘é [Z JYcN
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Referring to (22) and (30), thi&h component of*) is then

given by
)
2" 2 Z b oMY - %(Hl) v
- iy K+l
op Py 2
. (k+1) (k+1) (k)
-sgn (xz - ) — Z ["(k+1)L .
; ,
(k) _ (Pt
X — Tm ¢ .
N Z bl—rn, IT Sgn (‘/E;k) - ‘/Egrl:))
meN;
where
/\{f, ) denotes the neighborhood of tfth pixel;
k
["(k+1)]i,j

operator.

10000

(30)
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Sounre

B B 0wz

1 2 3 4 5 8
Dbecior

(b)

Fig. 8. Gray-scale view of (a) log magnitude and (b) phase of measurements for each source and detector pair. The numbers on the axis denoterthe indices f

0.6 T T T
05 ‘-_‘ Fixed grid
\ ICD/Born
\ Fixed grid 0=0.04
04 \e—— ICD/Bom
w ! 6=0.1
= :
% :
03 ! Full multigrid
'; algorithm
¢ c=0.04
0.2 l e
0.1 A : . .
0 2000 4000 6000 8000 10000

CPU time (sec.)
(b)

(a) Log posterior probability and (b) NRMSE as a function of CPU time.

Fig. 6 shows the pseudo-code for the multigrid V-cycle sub-
routine that results for the optical diffusion tomography problem
using the cost functions given above.

IV. COMPLEXITY ANALYSIS

To compare the relative computational costs of the multigrid
inversion algorithms with that of the fixed grid ICD/Born algo-
rithm [12], we determine the number of complex multiplications
required for one iteration of the V-cycle or the full multigrid in-
version algorithm.

Let us assume that the grid resolutions range fiom 0 to
L—1, and that the unknown absorption images at grid resolution
k are approximately of siz&/4*. For simplicity, we neglect the
computational cost required for decimation and interpolation of
the absorption images. Therefore, the main computational cost
is assumed to come for the computation of the Fréchet derivative
and the multigrid optimization by the ICD algorithm. We note
that the computation of the Fréchet derivative is dominated by

is the(z, j)th component of the interpolation solution of the PDE required in evaluating the Green'’s function,

as described in Appendix A.

Authorized licensed use limited to: University of Canterbury. Downloaded on November 30, 2009 at 17:56 from IEEE Xplore. Restrictions apply.



YE et al. NONLINEAR MULTIGRID ALGORITHMS 917

5 [ ol

(@) (b)

Fig. 10. Reconstructions by (a) the fixed resolution ICD/Born algorithm and (b) the full multigrid inversion algorithm.

The V-cycle algorithm performs a total of= 1, + 1 fixed 10
grid ICD optimization passes at each grid resolution, where
andy, are defined in Fig. 4. The number of complex multiplica-
tions required for one iteration of ICD &\ K x (image size) 107
[12]. This means that the total computation due to ICD itera-
tions in a single iteration of the V-cycle algorithm, is given by
S rTe5MEN/4F < (20/3)vM K N. In addition, the Fréchet ~
derivative must be computed at the beginning of each multigridZS 10
iteration. This adds(AM + K)FN complex multiplications for
computation of the Fréchet derivative, whétés the number of
iterations chosen for the PDE solver used in the computation o 107
the Green’s function [12]. A larger value éf increases the ac-
curacy of the computed Fréchet derivative. We found that
20 was sufficient for the problems we have studied. The total pet 1o
iteration computational complexity of the V-cycle algorithm is
then listed in Table | ag20/3)v MK N + 5(M + K)FN.

The full multigrid algorithm performs/k ICD iterations at Fig. 11. Estimation ofv by (14) as a function of number of iterations of full
grid resolutionk. Therefore, the total computation of the ICDmultlgrld algorithm. Note the bias of the estimate from the true value.of
iterations at resolutiort is 5M K Nk/4*, and the total ICD
computation is therefore bounded By+_s SMKNk/4* <

(80/9)vM K'N. Adding the computation of the Frécr:et derivagsed for one of the numerical experiments. The phantom is dis-
tive results in the final expression B0/9)vM KN + 5(M +  ¢retized on a29 x 129 grid and the absorption coefficient at

K)FN listed in Table I. _ . each grid point, including the background, is considered un-
Table Il lists the estimated number of complex mult|pI|cat|0nF

) ) . ) . nown. The unknown background absorption coefficient is 0.02
required for each iteration of the fixed grid, V-cycle and the fuém,l and ;.. is assumed uniform throughog with a value
multigrid inversion algorithms, using typical values of baramee 10.!0 crrrls. The values of the absorption coefficient for each

ters. The point to notice here is that although the number of 901 -domain are given in Fig. 7(b). Fig. 7(b) also shows the loca-
erations per iteration is larger for the multigrid algorithms thatri1 : e

for the fixed grid algorithm, it is not dramatically so. We will ons of the 12 sources and 12 detectors used in the simulations.

;’dwe modulation frequency is 200 MHz. The synthetic scattering
¢

see later that the number of iterations required for the multigr tor thesth d theuth d . q
algorithms is substantially less than is required using the fix tum for theth source and the:th detector pair Is generate

grid algorithm, so that overall there is a dramatic decrease in th% 2dding random noise with a complex Gaussian distribution
computation required for the multigrid algorithms. and with noise variance ef|¢(d,.)| resulting in SNR of [12]

estimate

true 0=4.25x10""

20 40 60 80 100
lteration No.

1
SNR,,.z = 10log — |or(dpm 31
V. NUMERICAL RESULTS Rk 0810 <a | ( )|> (31)

Simulation results are presented here to assess the penfdrerex is the noise parameter in (6). This procedure is indepen-
mance of the new algorithms. Fig. 7 showstang cm phantom dently performed for every source and detector pair. The value
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154
(d)
Fig. 12. V-cycle inversion results with (&) = 2, and (b)» = 6 after 20 iterations; and full multigrid inversion results with {c}= 2, and (d)» = 6 after 20

iterations. CPU times were (a) 352 s, (b) 436 s, (c) 663 s, and (d) 855 s. All the reconstructions are similar and quite accurate.

M

©

of v is chosen so that the lowest amplitude measurement has aWe use the normalized root-mean-square error (NRMSE) of
SNR of 10 dB. the reconstructed absorption image as a measure of the quality

Fig. 8 shows the magnitude and the phase of the simulafighe reconstructions. The NRMSE is defined as
data measurements used in the results of Figs. 9-11. Here, the

abscissa indexes the detector location, and the ordinate indexes N . )

the source location. The gray levels of Fig. 8(a) and (b) are pro- Z{““(”) =~ #a(ri)}

portional to the log magnitude and phase (frem to «), re- NRMSE = | =2 ~ (32)
spectively. Note that the magnitude peaks at the positions corre- Z{“ (r)}?

sponding to nearby source/detector pairs, and attenuates as the P ¢

distance between source and detectors becomes larger.

For inversion, we chose an eight-point neighborhood modghereji,(r;) is the reconstructed value of the absorption coef-
for the GGMRF prior model with normalized weigh{s;_,} ficient at mesh locatiom; and,(r;) is the correct value, and
summing to 1 for each with b;_; = (2v/2+ 4)~! for nearest the NRMSE is computed at the finest resolution. Furthermore,
neighbors and,_; = (4/2+4)~! for diagonal neighbors. We the log posterior probability (13) is used as a measure of con-
used a fixed value of 1.1 fgrin all the reconstructions, which vergence of the algorithms.
has been found suitable for the class of problems consideredrig. 9 shows the convergence of the log posterior probability
here [12]. For each iteration of the ICD algorithm, we scannethd the NRMSE for the full multigrid inversion algorithm and
through the points in a new randomized order. Four grid levelse fixed grid ICD/Born algorithm, as a function of CPU time.
were used in the multigrid algorithm, obtained by decimatin§everal hyper-parameter values were tested for the full multi-
the finest grid image with a size aR9 x 129 pixels until we grid solution and it was found that, of these= 0.04 cm—!
obtain a grid ofl 7 x 17 pixels. All reconstructions were initial- qualitatively gave the best result. While the quality of the image
ized with a constant absorption coefficient of 0.02¢mcorre- should not be a function of the optimization procedure, the con-
sponding to the background level. vergence of the fixed grid ICD algorithm with = 0.04 cm !

Authorized licensed use limited to: University of Canterbury. Downloaded on November 30, 2009 at 17:56 from IEEE Xplore. Restrictions apply.



YE et al. NONLINEAR MULTIGRID ALGORITHMS 919

3000 . . . : 0.6
V—cycle v=2 b e
2

= 500 ' 4 05
£2000 & Veyclev=6 full multigrid v=2
o 0.4
[ r w

! [92]
21500 ! \full multigrid v=6 2
7] : % V—cycle v=06
o 0.3
3gmooo full multigrid v=2 / full multigrid v=6

500 0.2 ros wote -
V—cycle v=2
. . . 0.1 , , . .
0 200 400 600 800 1000 0 200 400 600 800 1000
GPU time (sec.) CPU time (sec.)

@ (b)
Fig. 13. (@) Log posterior probability and (b) NRMSE as a function of CPU time. Increasimgreases both the NRMSE and the CPU time.

@ (b) ©
(e) ®

Fig. 14. Variety of absorption image phantoms.

(d)

was so poor that after 1000 iterations it still had not achievedal multigrid algorithm produces a more accurate reconstruc-
solution close to the optimum achieved by the multigrid algdgion of the phantom. Note that the per-iteration CPU times are
rithm. Therefore, to improve the convergence speed of the fix8B3 seconds for the fixed grid algorithm and 20.51 seconds for
grid algorithm, we used a larger value of the hyper-parametdre multigrid algorithm. This is consistent with the per-itera-
choosings = 0.1 cnt. This value ofs allowed ICD to con- tion complexity listed in Table II. The faster convergence of the
verge but produced a reconstruction of somewhat lower qualitgultigrid algorithm is due to the substantially fewer iterations
Note in Fig. 9 the significant computational savings of theequired.
multigrid algorithm over the fixed grid ICD/Born. With the same Fig. 11 shows the convergence of thesstimation by (14)
hyper-parameter value (= 0.04 cm 1), the full multigrid so- with respect to the number of full multigrid iterations. The esti-
lution converges dramatically faster. Even when a larger hypanation ofa also converges rapidly to a constant nonzero value.
parameter4 = 0.1 cm~1) is used in the fixed grid solution, the However, there is a bias in the estimate from the true value of
multigrid approach is still about 20 times faster. Fig. 10 showswhich was used to generate the synthetic noisy measurement
the reconstructions produced by the fixed grid ICD/Born aftday (32). This is because the joint estimatiorofndx by (14)
1000 iterations (8923 sec of CPU time on a Sun Ultra Sparc @ad (15) produces a biased estimate [42].
machine), and by the full multigrid algorithm after 200 itera- Reconstructions using the different recursion patterns of the
tions withr = 2 (4115 s of CPU time). It is evident that themultigrid inversion algorithms, as well as for different values of
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(b) ()
i E
(e)

Fig. 15. Reconstructions of the phantoms shown in Fig. 14.

(d)

v = 11 + 1 (the total number of ICD optimization passes for TABLE I
each grid), are shown in Fig. 12. Fig. 12(a) and (b) show recon- NRMSEAND CPU TIME FOR FHE ExAMPLES OF Fic. 14 AFTER TEN
; . . h . . TERATIONS OF THEFULL MULTIGRID INVERSION ALGORITHM

structions using the V-cycle inversion algorithm after 20 itera-
tions with» = 2 andy = 6, respectively, and Fig. 12(c) and (d) (&) ®) (c) (d) (e) ®)

i i iarid i i . NRMSE 0.030 | 0.070 | 0.055 | 0.195 | 0.208 [ 0.217
s_how the reco_nstru_ctlons_usmg the full multigrid inversion algo CPU time | 321 ) 536 539 534 593
rithm after 20 iterations witly = 2 andv = 6, respectively. All (sec)
the reconstructions are similar and quite accurate. The log pos-
terior probability and the NRMSE versus CPU time are shown

in Fig. 13. We found that V-cycle or full multigrid with = 2 We have developed a general multigrid optimization tech-

gave slightly better results. nique for solving nonlinear inverse problems. This technique in-
Fig. 15 shows reconstructions for a variety of absorptionq 9 P : q

. . : g 4 rporates a coarse grid correction scheme to reduce discretiza-
cross sections (with the true images shown in Fig. 14). In ] AB on § K has b 4 for th
casesg.(r) is known and fixed at 10.0 cmt, the peak values lon €rrors. ayesian framework has been used for the op-

of the absorption coefficient of the inhomogeneities are 0_6’@@ diffusion imaging.problem. '.I'.he allgorithm alternately max-
cmL, and the unknown background ig () = 0.02 cm™'. Imizes the log posterior probability with respect to a noise pa-

The reconstructions are shown for 10 iterations of the fuifMeter and the unknown image. In each iteration, the noise pa-
multigrid inversion algorithm with, = 2, usingp = 1.1 and rameter and Fréchet derivative (calculated using a Born approx-

o = 0.02 cm—!. The NRMSE and CPU time after 10 iterationdmation) are updated at the finest grid level. The multigrid op-

of the full multigrid inversion algorithm given in Table IIl. The timization is then applied, updating the image by ICD at each
reconstructions are accurate quantitatively and qualitative!%f,id level.

and have a small computational burden (approximately 200Simulation results show that the multigrid algorithms dramat-

seconds). Note that the NRMSE is higher for Fig. 15(d)—(fically reduce the computational burden as well as improve the
This is because the original images, Fig. 14(d)—(f), have abrdgeonstruction quality. This improved performance will be es-

edges while the original images in Fig. 14(a)—(c) have smootti&ntial for realistic 3-D imaging.

changes.

APPENDIX A

VI. ConcLUsIoN COMPUTATION OF THE FRECHET DERIVATIVE

Optical diffusion tomography attempts to reconstruct an ob-

ject cross-section from measurements of scattered and attelﬂ
ated light. While Bayesian approaches are well suited to t

difficult nonlinear ill-posed problem, the resulting optimization

problem is very computationally expensive. f'(x) =

Computation of the Fréchet derivati(x) for the forward
8delf(x) of equation (6) is described here. The Fréchet deriva-
Veisal x N complexmatrix given by
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B 8¢1(d1, )A() 8¢1(d1, )A() 8(7)1 (dl, )A() T
83:1 83:2 a-TN
dp1(dz, X)  Op1(da, X) 1 (da, X)
8351 8.1‘2 a-I'N
[1]
Op1(dnr, X)  9¢p1(dar, %) 1 (dar, %) 2]
dx Ox» dxpn a3
Ipa(dy, X)  Opa(dy, X) dpa(dy, X)
ox1 dxo Oz N
: : : [4]
Ipx (dpr, X)  Obx(dyr, X) O (dy, X)
- 8371 8372 8a:N - [5]

(33)
In[12],[40],[43],itis shownthateach elementofthe matrixis ap- (6]

proximately given by 7]
OPr(dm, X . .
% :g(dnm Tiy X)d)k(Tiv X) [8]
—fiq (i) + jw/c}
=14+ =12 A (34
RS A 60w
where
A is the pixel area; 10
is theji,(r;) current estimate of unknown absorption coef-[ ]
ficient atr;;
g(dm, 7i, X) isthe Green'’s function computed as the solu-[11]
tion to

V- (D(r)Vg(r, ri, %) + (—fia(r) + jw/)g(r, i, X) =

—6(r—mi) (35)
with D(r) = 1/3(jia(r) + 12, (r)). Notethay(d,,, r;, X)isthe
Green'’s function evaluated at the receiver locatignIn the ac-
tualimplementation, reciprocity allows usto reduce the computa-

tioninthe evaluations ofthe Green’sfunction byinterchangingthél“]
source location; andthe detectorlocatiafy, [2]. [15]

[13]

APPENDIX B [16]

Two-GRID FIXED POINT THEOREM

This appendix shows that for an initial value =f®*), the i

two-grid update does not change the solution from this initial
value, i.e.x*(* is a fixed point of the two-grid update. Itis suffi- [
cienttoshowthatthe unique global minimumofthe costfunction |19

AR (x) — pi Dy (36)

occursforthevalug = ﬂgt;’l)x*(’“) ,becauseinthis casethecor-
rectiontermof(19)producestheresdit®) . Toseethatthisistrue,

notice that
v (c(k+1)(x) — r<k+1)x)

18]

[20]
[21]

[22]

xmt (D6

= V D ()| — kD ]

D) (k)
X I](k> X

= v (X*w)) 1)

(k+1)
—_oi®
= 0[I<k+1) =0 [25]
where the second equality results from (22) and the third equality
results from the assumption thett®) is the global minimum of

(24]

921

<" (x).Sincethefunctionaf*+Y (x)isassumedstrictly convex,
X = ﬂgz;'l)x*(k) musttherefore beits unique global minimum.
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