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Abstract—Optical diffusion tomography is a technique for
imaging a highly scattering medium using measurements of trans-
mitted modulated light. Reconstruction of the spatial distribution
of the optical properties of the medium from such data is a difficult
nonlinear inverse problem. Bayesian approaches are effective, but
are computationally expensive, especially for three-dimensional
(3-D) imaging. This paper presents a general nonlinear multigrid
optimization technique suitable for reducing the computational
burden in a range of nonquadratic optimization problems. This
multigrid method is applied to compute the maximuma posteriori
(MAP) estimate of the reconstructed image in the optical diffusion
tomography problem. The proposed multigrid approach both
dramatically reduces the required computation and improves the
reconstructed image quality.

Index Terms—Bayesian image reconstruction, multiresolution
image reconstruction, nonlinear multigrid optimization, optical
diffusion tomography.

I. INTRODUCTION

OPTICAL diffusion imaging is a technique for recon-
structing the optical parameters in highly scattering

media such as tissue, polymer composites, sea ice, and
aerosols, based on measurements of the scattered and attenu-
ated optical energy. For tissue imaging, this technique presents
significantly lower health risks as compared to X-ray imaging,
and is instrumentally much less expensive than X-ray CT or
MRI. Moreover, the potential of optical diffusion imaging has
been successfully demonstrated in biomedical applications
[1]. However, a major difficulty with this approach is that the
relationship between the unknown scattering and attenuation
coefficients and the optical measurements is highly nonlinear
and described by a partial differential equation; so reconstruc-
tion poses a challenging nonlinear inverse problem.

Inversion approaches for optical diffusion tomography based
on the Born or Rytov approximations [2] produce significant er-
rors in the reconstruction for realistic material parameters due
to linearization errors of the forward model. To overcome these
drawbacks, iterative techniques have been investigated. Usually,
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the Newton–Raphson (NR) method has been used with a Lev-
enberg–Marquardt procedure. A Levenberg–Marquardt method
for a variational formulation of the diffusion equation has been
applied to the time-domain problem as well as the frequency-do-
main problem [3], [4]. However, the constraint used in these ap-
proaches [3], [4], which imposes a penalty on thenorm of
the new update at each iteration, tends to over-smooth edges
in the image or produce excessively noisy images, depending
on a control parameter value. A fundamental drawback of these
methods is that the penalty term for the new update is not a
form of regularization in the Tikhonov sense [5], but is instead
a “trust region” constraint designed to insure monotone conver-
gence of the optimization criterion [6], [7].

The artifacts due to poor regularization can be reduced by
incorporation of prior information using a Bayesian framework.
Recently, Bayesian (and other regularization) methods have
been applied to nonlinear inverse problems such as microwave
imaging and optical diffusion imaging [3], [8]–[12]. The
individual approaches have differed both in terms of the prior
model (or stabilizing functional) used and the optimization
algorithms employed to compute the reconstruction. For ex-
ample, Paulsen and Jiang added a quadratic regularization term
to their previous formulation [3] to stabilize the reconstruction
[8]. In this case, each iteration of the optimization performed
a linearization (similar to the Born approximation) followed
by a full matrix inversion to solve the linearized problem. The
computational complexity of this method is very high since

complex multiplications are required at each iteration,
where is the number of image pixels. Saquib, Hanson,
and Cunningham proposed a more computationally efficient
algorithm for the time-domain diffusion problem in which each
iteration alternates a linearization step with a single step of a
conjugate gradient algorithm [9], [13]. This work drew on the
concept of adjoint differentiation [14] for efficient computation
of the gradient. Arridge and Schweiger applied this gradient
method to frequency domain optical diffusion imaging [10],
[15]. However, the complexity of the line search [7] required
in a conjugate gradient algorithm is an important factor in the
total computational burden for both approaches.

More recently, Bayesian approaches based on iterative
coordinate descent (ICD) optimization have been investigated
[11], [12]. The ICD method is a fast implementation of the
Gauss–Seidel method that is well-suited for tomography
applications [16], [17]. In particular, we have developed an
ICD/Born method that provides high quality reconstructions
and is computationally efficient when compared to the con-
ventional iterative Born approximation methods [12]. Since
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the photon paths are not restricted to a plane, practical and
accurate optical diffusion imaging will require inversion for
three-dimensional (3-D) images, with a concomitant increase
in the number of unknowns. The computational complexity of
the ICD/Born method is still prohibitive for such problems.

Multigrid algorithms are a specific form of multiresolu-
tion algorithm that can be used to reduce the computational
requirements of large numerical problems [18]–[20]. These
algorithms work by recursively moving between different
resolutions, thereby propagating information between coarse
and fine scales. Multigrid methods have been primarily used
for solving partial differential equations [21], but more recently
they have been applied to a variety of imaging problems such
as image analysis [22], [23] and anisotropic diffusion [24].

Perhaps surprisingly, multigrid algorithms have not been
widely applied in tomography problems. In earlier work,
Bouman and Sauer [25] used multigrid algorithms to solve the
nonquadratic optimization problems resulting from projection
tomography applications such as computed tomography (CT),
and photon emission tomography (PET). While this formula-
tion used nonlinear multigrid, it was based on a conventional
nonlinear multigrid PDE solver. Other research by McCormick
and Wade [26] used multigrid algorithms for impedance
tomography problems. This work linearized the impedance
tomography problem, and therefore used a standard linear
multigrid equation solver. Bhatiaet al. [27] and Zhuet al. [28]
used wavelet methods to solve linear or linearized tomography
problems.

In this paper, we develop a multigrid optimization method
suitable for solving general nonquadratic optimization prob-
lems; and we apply this method to the problem of optical
diffusion tomography. Multigrid algorithms are well suited to
this problem for three reasons. First, our simulations indicate
that our multigrid algorithm converges much faster than fixed
grid algorithms. This is particularly important for the optical
diffusion tomography problem since it is inherently 3-D.
Second, multigrid algorithms are well suited for implementa-
tion of positivity constraints because the optimization at each
grid resolution is done in the space-domain where positivity
constraints are easily enforced. In general, positivity can be
important for improving reconstruction quality, particularly
when the problem is underdetermined. In the optical diffusion
tomography problem the physical parameters being inverted
can have only positive values. Finally, multigrid algorithms
tend to better avoid local minima, or tend to find a better local
minimum, in the functional being optimized. Since the diffu-
sion tomography problem results in a nonconvex optimization
problem, this robustness to local minima helps insure that a
good solution is reached.

A key innovation of our work is the direct formulation of the
multigrid algorithm in an optimization framework. Historically,
multigrid techniques were developed for solving linear or non-
linear elliptic PDEs [18]. While they can be used to solve opti-
mization problems, this is generally done by differentiating the
cost function, and using multigrid algorithms to solve the re-
sulting equation. In contrast, we have derived expressions for the
direct application of multigrid methods to optimization prob-

lems. This approach greatly simplifies the application of multi-
grid to our problem.

Section II describes the forward diffusion equation model and
reviews the Bayesian cost function in this context. Alternating
estimation of the data term noise variance and the updated image
is then described as a means to vary the degree of regularization
and improve convergence. The multigrid algorithm we develop
for nonquadratic optimization is presented in Section III. Sec-
tion IV presents a complexity analysis of the multigrid and fixed
grid algorithms. In Section V we present the results of simula-
tions using our multigrid method in comparison with a fixed grid
algorithm. Concluding remarks are made in Section VI.

II. BAYESIAN FRAMEWORK FOR OPTICAL DIFFUSION

TOMOGRAPHY

In this section, we develop the Bayesian framework that
we use for reconstructing the material parameters of highly
scattering media from measurements of scattered light. In Sec-
tion II-A we develop the forward model based on the diffusion
equation, and in Section II-B, we use this model to formulate
the maximuma posteriori(MAP) optimization problem.

A. Forward Model for Optical Diffusion Tomography

In a highly scattering medium, it is useful to look only at
the intensity of the electromagnetic wave. Here, photons are
treated as particles which elastically scatter through the random
medium. The theoretical framework for this model is Boltzmann
transport theory [29], which applies conservation of energy for
the photon density scatter and source mechanisms. A common
approximation to the Boltzmann transport equation is the dif-
fusion equation [29], [30], which assumes that the flux has a
weak angular dependence, that all photons travel at the same
speed, that the sources are isotropic, and that the photon cur-
rent density changes slowly with time, relative to the mean col-
lision time [29]. The diffusion approximation is accurate in soft
tissue over the 650–1300 nm wavelength range where scatter
dominates absorption [31]–[33], and provides a computation-
ally tractable forward model for tissue imaging.

Let the scalar quantity be the photon density (with the
dimensions of energy per unit volume) at position due to
a point source of light at position , where is the do-
main of interest. Then, the photon flux is defined as

, with being the speed of light in the medium. The
photon flux , which describes the optical power den-
sity as a function of position and time, satisfies the time domain
diffusion equation

(1)

where is the time varying photon source density, and
is the diffusion constant given by

(2)

with the absorption coefficient, and the reduced
scattering coefficient. The reduced scattering coefficient is de-
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Fig. 1. Geometry used for simulation of optical diffusion measurements. The
12 detectors and 12 sources are uniformly spaced around the perimeter of the
object.

fined by where is the scattering
coefficient and is the mean cosine of the scattering angle.

Practical systems based on time domain measurements have
been implemented [34], [31], but these systems tend to be ex-
pensive and noise sensitive. In order to circumvent these prob-
lems, we adopt a frequency domain approach to the optical dif-
fusion problem [35], [3]. To do this, we assume that the light
source is amplitude modulated at a fixed angular frequency

, so that , where is the modu-
lation depth. At the detector, the complex modulation envelope
is then measured by demodulating the in-phase and quadrature
components of the measured sinusoidal signal, which is propor-
tional to . This technique allows low noise narrow-band
heterodyne detection of the modulation envelope [36],
which is denoted as the complex quantity . By taking the
Fourier transform of (1), the partial differential equation that
governs the complex modulation envelope, , becomes

(3)

In the frequency domain imaging approach, (3) is used as the
forward model, and the energy measured by a detector is then
proportional to the photon current [29].

Fig. 1 shows a two-dimensional (2-D) imaging domain with
interspersed source and detector points uniformly distributed
around the boundary. We will use this as a representative experi-
mental scenario for optical diffusion tomography. The region to
be imaged is denoted byand is surrounded by point sources
at positions and detectors at positions . In
general one could image both the absorption and scattering co-
efficients as a function of position. However, here we consider
the absorption imaging problem where we determine the values
of from the measured values of , while assuming

known.
Using the same notation as in [12], measurements of the

complex envelope for source and detector are
denoted by . We also organize these measurements as a
single column vector of length where denotes
the number of sources, and denotes the number of detectors,
i.e.,

(4)

The domain is discretized into pixels, where the position of
the th pixel is denoted by for . The set of unknown
absorption coefficients is denoted by the vector, where

(5)

In order to formulate this problem in a Bayesian framework,
we require the data likelihood . With the detectors oper-
ating at a sufficiently low temperature, photon detection can be
modeled using shot noise statistics [12], which has its origin in
Poisson statistics [36]. With sufficiently large, i.e., with
an adequate number of detected photons, the measurements are
independent complex Gaussian random variables, and the data
likelihood is given by [12]

(6)

where is the parameter related to the noise variance,is the
diagonal covariance matrix, , and the complex
vector valued function represents the “exact” value of the
photon flux for the assumed value of the absorption coefficient

. More specifically, , where denotes expec-
tation, is given by

For our problem, the measurements are statistically independent
with the variance of each measurement equal to its mean; so
is diagonal. For our simulations, we make the assumption that

where (7)

This approximation results from the assumption that the DC and
modulated light undergo the same loss, which is approximately
true for low modulation frequencies [12].

B. Formulation of the Bayesian Optimization Problem

Bayesian methods provide a natural framework for incor-
porating prior information about the behavior of the unknown
quantity . The MAP estimate of given the measurement
vector is

(8)

where is the prior density for the image and maximization
over enforces the required positivity constraint, i.e., that

, as required for the physical problem. As in [12], we use
the generalized Gaussian Markov random field (GGMRF) prior
model [37]

(9)

where is a normalization hyperparameter and con-
trols the degree of edge smoothness, with corresponding
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to the Gaussian case. This prior model enforces smoothness in
the solution while preserving sharp edge transitions.

We adaptively estimate during the reconstruction proce-
dure. Initially, the estimated value of is large when is far
from its true value. In this case, the strong prior term restricts
the solution to be smoother. As the optimization proceeds, the
value of decreases, making the data term more important and
consequently reducing the relative importance of the regulariza-
tion term. We have found that this progression offrom large
to small values increases the robustness of convergence to the
minimum. This is particularly important because is highly
nonlinear, so the computation of the MAP estimate can become
trapped in local minima.

If we consider unknown, referring to (6) and (9), the opti-
mization problem (8) can be re-written as

(10)

Viewing (10) as a cost function, and setting the derivative with
respect to equal to zero, we obtain the closed form expression

(11)

By substituting (11) into (10), the optimization problem (10) is
converted into

(12)

where is an estimate of the unknown. After neglecting con-
stant terms, we can define the log posterior probability as

(13)

The log posterior probability (13) is used as a criterion for the
convergence in our experimental results. For computational sim-
plicity, we maximize by alternately maximizing with re-
spect to and using the following two equations:

(14)

(15)

Equation (14) is a straightforward computation, but (15) is a
computationally expensive optimization problem, especially for
large images . To circumvent this problem, we employ multi-
grid optimization algorithms to efficiently compute (15). At the

Fig. 2. Pseudo-code specification for the optimization procedure. Each
iteration of the procedure estimates the parameter�̂, recomputes the Born
approximation, and then applies the multigrid optimization of Section III.

beginning of each multigrid iteration the nonlinear functional
is first linearized using a Taylor series expansion as

(16)

where , and represents the Fréchet deriva-
tive of at . Note that the Taylor series expansion of (16)
turns out to be exactly the same as would result from a Born
approximation [38]–[40]. The details of how the matrix is
computed for this problem are given in Appendix A. Using (16),
an approximate cost function for the original problem (15) is

(17)

where

Our overall strategy for the optimization of (10) is listed in
the pseudo-code of Fig. 2 and is illustrated in Fig. 3. Each it-
eration of our algorithm starts with an update ofusing (14),
followed by a new linearization (17). This results in a nonlinear
optimization problem that we then solve using either V-cycle or
full multigrid. This sequence is repeated until the desired level
of convergence is reached.

III. N ONLINEAR MULTIGRID INVERSION ALGORITHM

In this section, we derive a general algorithm for multigrid
optimization of any functional, and we also derive the specific
expressions for optimization of the cost functional in (17). Our
approach is unique because it is formulated directly in an opti-
mization framework. This is in contrast to conventional multi-
grid algorithms which are formulated to solve differential or in-
tegro-differential equations [19], [21], [22], [25], [26]. To derive
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(a)

(b)

Fig. 3. Multigrid inversion algorithms. Each iteration alternates a Born
approximation step with a single iteration of a nonlinear multigrid algorithm.
(a) V-cycle inversion algorithm, and (b) full multigrid inversion algorithm.

our method, we start with the two-grid case, and then generalize
this solution using standard recursions for the V-cycle and full
multigrid cases [41].

A. Two Grid Algorithm

For the two grid algorithm, we first consider optimization
without the positivity constraint. We then discuss the addition
of the positivity constraint in Section III-B.

Let denote the finest grid absorption image, and let
be a coarser scale representation of with a grid sam-

pling period of times the finest grid sampling period. In gen-
eral, may be computed from by some linear trans-
formation where is an

decimation matrix for the 2-D case. The corresponding
linear interpolation matrices are denoted by .

Assume we need to minimize a cost functional at
scale . Also assume that we have an initial solution which
approximately minimizes the cost functional, i.e.,

(18)

Our objective is to compute the solution at the next coarser grid,
, and then use this solution to improve or correct the fine

grid solution. This fine-grid correction may be done using the
formula

(19)

In order to compute the coarse grid solution, , we must
formulate a corresponding coarse grid optimization problem.
To do this, we first choose a coarse grid cost functional,

, which we believe to be a good approxima-
tion to . Of course, the particular choice of this
functional is very important and depends on the details of the
problem being solved. However, for now, simply assume that

reasonably approximates the finer grid cost

functional. To correct for possible discretization errors, we then
solve an adjusted coarse scale optimization problem

(20)
where is a constant row vector which may be used to ad-
just for errors in the cost function. This row vector is equivalent
to the so-called residual term used to partially correct errors be-
tween coarse and fine grids in conventional multigrid [41].

The question remains as to how we should choose the residual
term . Ideally, we would like the following approximate
equality to hold for all values of :

(21)

The left hand side of (21) is the corrected coarse scale cost func-
tion, while the right hand side is the fine grid cost function eval-
uated using the corrected result of (19). If these two functions
are equal, within a constant, then their minimum will occur for
the same value of .

In the general case, the difference between the left and
right hand sides of (21) is not linear, so no choice of the
row vector can achieve equality. However, we can
choose to match the derivatives of the two sides when

. This condition results in the following

key expression for

(22)
where denotes the row vector formed by the gradient of
the functional .

There are a number of observations to be made about (22).
The expression holds for general choices of the cost functionals,
the interpolating operators, and the decimating operators. It is
interesting to note that the interpolation matrix, , actually
functions as a decimation operator in equation (22) because it is
being multiplied by the gradient vector from the left. Perhaps the
most important observation is that the exact solution to (18) is
a fixed point to this two grid update procedure. More precisely,
the following theorem is proved in Appendix B.

Theorem: Let and be strictly
convex continuously differentiable functionals on and ,
respectively, where , and let be the global
minimum of . Furthermore, consider the two grid update
formed by applying (20) followed by (19) using the residual
calculation of (22). Then the exact solution, , is a fixed
point of the two grid update.

B. Recursive Formulations of Multigrid Inversion

Multigrid optimization is implemented by recursively ap-
plying the two-grid update of the previous section. In particular,
we use the two recursions known as V-cycle and full multigrid
[41]. The pseudo-code recursions for V-cycle (MultigridV) and
full multigrid (FMG) with the use of positivity constraints are
shown in Figs. 4 and 5. Each of these algorithms moves back
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Fig. 4. Pseudo-code specification of the proposed multigrid optimization
method using the V-cycle recursion and a positivity constraint on the solution
x.

Fig. 5. Pseudo-code specification for the full multigrid optimization algorithm
using a positivity constraint on the solutionx.

and forth through coarse and fine resolution in characteristic
patterns as shown in Fig. 3(a) and (b).

The V-cycle algorithm is a straightforward generalization of
the two grid algorithm. In Figs. 4 and 5 V-cycle algorithm, the
fine grid optimization problem is solved by calling the recursive
MultigridV subroutine starting at the finest grid resolution. Each
subroutine call starts by applying iterations of a fixed grid op-
timizer. TheMultigridV subroutine, then recursively calls itself
for the next coarser resolution in order to compute a coarse grid
correction to the current fine grid solution. At each coarsening
grid resolution, iterations are performed using the residual,

, for that level. Finally, the solution is further improved by

Fig. 6. Pseudo-code specification for the specific V-cycle multigrid inversion
algorithm used for the optical tomography problem.

TABLE I
COMPUTATIONAL COMPLEXITY OF THE FIXED GRID ICD/BORN AND THE

MULTIGRID INVERSION ALGORITHMS IN TERMS OFNUMBER OF COMPLEX

MULTIPLICATIONS PER FULL ITERATION.M = NUMBER OFDETECTORS;K =

NUMBER OF SOURCES; F = NUMBER OF ITERATIONS REQUIRED FOR THE

LINEAR FORWARD PDE SOLVER; N = NUMBER OF PIXELS; � = NUMBER OF

THE ICD OPTIMIZATIONS FOR EACH GRID

TABLE II
ESTIMATES OF THECOMPLEX MULTIPLICATIONS REQUIRED FOREACH

ITERATION OF THELISTED INVERSION ALGORITHMS

applying iterations of a fixed grid optimizer at each refine-
ment step, using the residuals from the coarsening steps and the
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(a)

(b)

Fig. 7. Two-dimensional8 cm � 8 cm phantom used for simulation. (a)
Gray scale image showing the spatial variation of absorption coefficient and
(b) contour plot showing absorption coefficient with units of cm.

decimated solution for the coarser grid. This recursive structure
causes the algorithm to move from fine to coarse grids, and then
back to fine grids, as shown in the “V”’ pattern of Fig. 3(a).

The V-cycle algorithm of Fig. 4 includes specific steps to en-
sure positivity of the result. In particular, the coarse grid correc-
tion (Step 5) can potentially result in anwith negative values.
Therefore, the pixel values are limited to a minimum value of
0. We have found this method of enforcing positivity to be very
effective in our experiments. However, we note that this step
complicates the analysis of the algorithm since it violates the
assumptions of our fixed point theorem.

The full multigrid algorithm of Fig. 5 is based on recursive
calls of both the full multigrid and V-cycle subroutines. This
structure causes the algorithm to initially move to the coarsest
grid. The resulting coarsest grid solution is interpolated to the
next finer grid and used as the initial condition for the corre-
sponding fixed grid optimization problem, which is then solved
by a multigrid V-cycle. This process is repeated, until the final
solution is obtained on the finest level.

C. Multigrid Optimization for the Optical Diffusion Problem

For the optical diffusion tomography problem, we use the
ICD optimization method [16], [17], [11], [12] as the fixed grid
optimizer at each resolution. The ICD algorithm is a good choice
for optimization problems because it has fast convergence at
high spatial frequencies [16].

The specific multigrid expressions for the optical diffusion
imaging problem are now derived. In all cases, we choose

to be the separable extension of the one-dimensional (1-D) dec-
imation matrix

...
...

...
...

...
...

...
...

...
...

(23)

and we choose the corresponding interpolation matrix to be

(24)

The finest scale cost function, , is given in (17). At
each scale, the cost functional consists of a quadratic
data likelihood term and a nonquadratic prior term. Referring to
(19), the quadratic term of (17) can be expressed as

(25)

where

(26)

(27)

and denotes the identity matrix.
For the coarse grid prior term, we assume that the derivative

of is locally smooth [25]. In this case, the corresponding prior
term can be represented as

(28)

Note that the factor of is chosen to account for the reduced
number of terms in the sum, and the smoothness assumption jus-
tifies the approximation . Based
on (25) and (28), we then define the coarse grid cost function.

(29)
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(a) (b)

Fig. 8. Gray-scale view of (a) log magnitude and (b) phase of measurements for each source and detector pair. The numbers on the axis denote the indices for
the sources and detectors.

(a) (b)

Fig. 9. (a) Log posterior probability and (b) NRMSE as a function of CPU time.

Referring to (22) and (30), theth component of is then
given by

(30)

where
,

denotes the neighborhood of theth pixel;
is the th component of the interpolation
operator.

Fig. 6 shows the pseudo-code for the multigrid V-cycle sub-
routine that results for the optical diffusion tomography problem
using the cost functions given above.

IV. COMPLEXITY ANALYSIS

To compare the relative computational costs of the multigrid
inversion algorithms with that of the fixed grid ICD/Born algo-
rithm [12], we determine the number of complex multiplications
required for one iteration of the V-cycle or the full multigrid in-
version algorithm.

Let us assume that the grid resolutions range from to
, and that the unknown absorption images at grid resolution

are approximately of size . For simplicity, we neglect the
computational cost required for decimation and interpolation of
the absorption images. Therefore, the main computational cost
is assumed to come for the computation of the Fréchet derivative
and the multigrid optimization by the ICD algorithm. We note
that the computation of the Fréchet derivative is dominated by
solution of the PDE required in evaluating the Green’s function,
as described in Appendix A.
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(a) (b)

Fig. 10. Reconstructions by (a) the fixed resolution ICD/Born algorithm and (b) the full multigrid inversion algorithm.

The V-cycle algorithm performs a total of fixed
grid ICD optimization passes at each grid resolution, where
and are defined in Fig. 4. The number of complex multiplica-
tions required for one iteration of ICD is
[12]. This means that the total computation due to ICD itera-
tions in a single iteration of the V-cycle algorithm, is given by

. In addition, the Fréchet
derivative must be computed at the beginning of each multigrid
iteration. This adds complex multiplications for
computation of the Fréchet derivative, whereis the number of
iterations chosen for the PDE solver used in the computation of
the Green’s function [12]. A larger value of increases the ac-
curacy of the computed Fréchet derivative. We found that

was sufficient for the problems we have studied. The total per
iteration computational complexity of the V-cycle algorithm is
then listed in Table I as .

The full multigrid algorithm performs ICD iterations at
grid resolution . Therefore, the total computation of the ICD
iterations at resolution is , and the total ICD
computation is therefore bounded by

. Adding the computation of the Fréchet deriva-
tive results in the final expression of

listed in Table I.
Table II lists the estimated number of complex multiplications

required for each iteration of the fixed grid, V-cycle and the full
multigrid inversion algorithms, using typical values of parame-
ters. The point to notice here is that although the number of op-
erations per iteration is larger for the multigrid algorithms than
for the fixed grid algorithm, it is not dramatically so. We will
see later that the number of iterations required for the multigrid
algorithms is substantially less than is required using the fixed
grid algorithm, so that overall there is a dramatic decrease in the
computation required for the multigrid algorithms.

V. NUMERICAL RESULTS

Simulation results are presented here to assess the perfor-
mance of the new algorithms. Fig. 7 shows an cm phantom

Fig. 11. Estimation of� by (14) as a function of number of iterations of full
multigrid algorithm. Note the bias of the estimate from the true value of�.

used for one of the numerical experiments. The phantom is dis-
cretized on a grid and the absorption coefficient at
each grid point, including the background, is considered un-
known. The unknown background absorption coefficient is 0.02
cm , and is assumed uniform throughout with a value
of 10.0 cm . The values of the absorption coefficient for each
sub-domain are given in Fig. 7(b). Fig. 7(b) also shows the loca-
tions of the 12 sources and 12 detectors used in the simulations.
The modulation frequency is 200 MHz. The synthetic scattering
datum for the th source and the th detector pair is generated
by adding random noise with a complex Gaussian distribution
and with noise variance of resulting in SNR of [12]

(31)

where is the noise parameter in (6). This procedure is indepen-
dently performed for every source and detector pair. The value
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(a) (b)

(c) (d)

Fig. 12. V-cycle inversion results with (a)� = 2, and (b)� = 6 after 20 iterations; and full multigrid inversion results with (c)� = 2, and (d)� = 6 after 20
iterations. CPU times were (a) 352 s, (b) 436 s, (c) 663 s, and (d) 855 s. All the reconstructions are similar and quite accurate.

of is chosen so that the lowest amplitude measurement has an
SNR of 10 dB.

Fig. 8 shows the magnitude and the phase of the simulated
data measurements used in the results of Figs. 9–11. Here, the
abscissa indexes the detector location, and the ordinate indexes
the source location. The gray levels of Fig. 8(a) and (b) are pro-
portional to the log magnitude and phase (from to ), re-
spectively. Note that the magnitude peaks at the positions corre-
sponding to nearby source/detector pairs, and attenuates as the
distance between source and detectors becomes larger.

For inversion, we chose an eight-point neighborhood model
for the GGMRF prior model with normalized weights
summing to 1 for each, with for nearest
neighbors and for diagonal neighbors. We
used a fixed value of 1.1 for in all the reconstructions, which
has been found suitable for the class of problems considered
here [12]. For each iteration of the ICD algorithm, we scanned
through the points in a new randomized order. Four grid levels
were used in the multigrid algorithm, obtained by decimating
the finest grid image with a size of pixels until we
obtain a grid of pixels. All reconstructions were initial-
ized with a constant absorption coefficient of 0.02 cm, corre-
sponding to the background level.

We use the normalized root-mean-square error (NRMSE) of
the reconstructed absorption image as a measure of the quality
of the reconstructions. The NRMSE is defined as

(32)

where is the reconstructed value of the absorption coef-
ficient at mesh location and is the correct value, and
the NRMSE is computed at the finest resolution. Furthermore,
the log posterior probability (13) is used as a measure of con-
vergence of the algorithms.

Fig. 9 shows the convergence of the log posterior probability
and the NRMSE for the full multigrid inversion algorithm and
the fixed grid ICD/Born algorithm, as a function of CPU time.
Several hyper-parameter values were tested for the full multi-
grid solution and it was found that, of these,
qualitatively gave the best result. While the quality of the image
should not be a function of the optimization procedure, the con-
vergence of the fixed grid ICD algorithm with
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(a) (b)

Fig. 13. (a) Log posterior probability and (b) NRMSE as a function of CPU time. Increasing� increases both the NRMSE and the CPU time.

(a) (b) (c)

(d) (e) (f)

Fig. 14. Variety of absorption image phantoms.

was so poor that after 1000 iterations it still had not achieved a
solution close to the optimum achieved by the multigrid algo-
rithm. Therefore, to improve the convergence speed of the fixed
grid algorithm, we used a larger value of the hyper-parameter,
choosing . This value of allowed ICD to con-
verge but produced a reconstruction of somewhat lower quality.

Note in Fig. 9 the significant computational savings of the
multigrid algorithm over the fixed grid ICD/Born. With the same
hyper-parameter value ( ), the full multigrid so-
lution converges dramatically faster. Even when a larger hyper-
parameter ( ) is used in the fixed grid solution, the
multigrid approach is still about 20 times faster. Fig. 10 shows
the reconstructions produced by the fixed grid ICD/Born after
1000 iterations (8923 sec of CPU time on a Sun Ultra Sparc 30
machine), and by the full multigrid algorithm after 200 itera-
tions with (4115 s of CPU time). It is evident that the

full multigrid algorithm produces a more accurate reconstruc-
tion of the phantom. Note that the per-iteration CPU times are
8.93 seconds for the fixed grid algorithm and 20.51 seconds for
the multigrid algorithm. This is consistent with the per-itera-
tion complexity listed in Table II. The faster convergence of the
multigrid algorithm is due to the substantially fewer iterations
required.

Fig. 11 shows the convergence of theestimation by (14)
with respect to the number of full multigrid iterations. The esti-
mation of also converges rapidly to a constant nonzero value.
However, there is a bias in the estimate from the true value of

which was used to generate the synthetic noisy measurement
by (32). This is because the joint estimation ofand by (14)
and (15) produces a biased estimate [42].

Reconstructions using the different recursion patterns of the
multigrid inversion algorithms, as well as for different values of
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(a) (b) (c)

(d) (e) (f)

Fig. 15. Reconstructions of the phantoms shown in Fig. 14.

(the total number of ICD optimization passes for
each grid), are shown in Fig. 12. Fig. 12(a) and (b) show recon-
structions using the V-cycle inversion algorithm after 20 itera-
tions with and , respectively, and Fig. 12(c) and (d)
show the reconstructions using the full multigrid inversion algo-
rithm after 20 iterations with and , respectively. All
the reconstructions are similar and quite accurate. The log pos-
terior probability and the NRMSE versus CPU time are shown
in Fig. 13. We found that V-cycle or full multigrid with
gave slightly better results.

Fig. 15 shows reconstructions for a variety of absorption
cross sections (with the true images shown in Fig. 14). In all
cases is known and fixed at 10.0 cm , the peak values
of the absorption coefficient of the inhomogeneities are 0.08
cm , and the unknown background is .
The reconstructions are shown for 10 iterations of the full
multigrid inversion algorithm with , using and

. The NRMSE and CPU time after 10 iterations
of the full multigrid inversion algorithm given in Table III. The
reconstructions are accurate quantitatively and qualitatively,
and have a small computational burden (approximately 200
seconds). Note that the NRMSE is higher for Fig. 15(d)–(f).
This is because the original images, Fig. 14(d)–(f), have abrupt
edges while the original images in Fig. 14(a)–(c) have smoother
changes.

VI. CONCLUSION

Optical diffusion tomography attempts to reconstruct an ob-
ject cross-section from measurements of scattered and attenu-
ated light. While Bayesian approaches are well suited to this
difficult nonlinear ill-posed problem, the resulting optimization
problem is very computationally expensive.

TABLE III
NRMSE AND CPU TIME FOR THE EXAMPLES OF FIG. 14 AFTER TEN

ITERATIONS OF THEFULL MULTIGRID INVERSIONALGORITHM

We have developed a general multigrid optimization tech-
nique for solving nonlinear inverse problems. This technique in-
corporates a coarse grid correction scheme to reduce discretiza-
tion errors. A Bayesian framework has been used for the op-
tical diffusion imaging problem. The algorithm alternately max-
imizes the log posterior probability with respect to a noise pa-
rameter and the unknown image. In each iteration, the noise pa-
rameter and Fréchet derivative (calculated using a Born approx-
imation) are updated at the finest grid level. The multigrid op-
timization is then applied, updating the image by ICD at each
grid level.

Simulation results show that the multigrid algorithms dramat-
ically reduce the computational burden as well as improve the
reconstruction quality. This improved performance will be es-
sential for realistic 3-D imaging.

APPENDIX A
COMPUTATION OF THEFRÉCHETDERIVATIVE

Computation of the Fréchet derivative, for the forward
model of equation (6) is described here. The Fréchet deriva-
tive isa complexmatrixgivenby
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(33)

In [12], [40], [43], it isshownthateachelementof thematrix isap-
proximatelygivenby

(34)

where
is the pixel area;

is the current estimate of unknown absorption coef-
ficient at ;
is the Green’s function computed as the solu-
tion to

(35)

with .Note that is the
Green’s function evaluated at the receiver location. In the ac-
tual implementation, reciprocityallowsustoreducethecomputa-
tionintheevaluationsoftheGreen’sfunctionbyinterchangingthe
source location andthedetector location [2].

APPENDIX B
TWO-GRID FIXED POINT THEOREM

This appendix shows that for an initial value of , the
two-grid update does not change the solution from this initial
value, i.e., is a fixed point of the two-grid update. It is suffi-
cient toshowthattheuniqueglobalminimumofthecostfunction

(36)

occurs for thevalue ,because in thiscasethecor-

rectiontermof(19)producestheresult .Toseethatthisistrue,
notice that

where the second equality results from (22) and the third equality
results from the assumption that is the global minimum of

.Sincethefunctional isassumedstrictlyconvex,
mustthereforebeitsuniqueglobalminimum.
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