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ABSTRACT

The envelope problem in macromolecular x-ray crystallogra-
phy involves determining the boundary of a molecule from
measurements of amplitudes of x-rays diffracted from a crys-
talline specimen. This represents a highly underdetermined
image reconstruction problem with a large number of degrees
of freedom. We regularize the problem by applying binary
and connectivity constraints to the image, and seek the solu-
tion using the method of iterated projections. However, since
the constraints are highly non-convex, the usual methods of
generalized projections are not effective. We use the differ-
ence map projection algorithm and show that this is effective
with simulated diffraction data from a protein envelope.

Index Terms—X-ray crystallography, phase retrieval, it-
erative projection algorithms, image reconstruction

1. INTRODUCTION

X-ray crystallography is a technique for determining the
atomic structures of molecules, i.e. the positions of the
constituent atoms, from measurements of the amplitudes
of x-rays diffracted from a crystalline sample [1]. This is
achieved by reconstructing the three-dimensional electron
density function of the molecule, from which the atomic
positions can be inferred. The complex amplitude of the dif-
fracted x-rays is the Fourier Transform (FT) of the electron
density function so that, in principle, the former can be calcu-
lated from the latter by inverse Fourier Transformation (IFT).
However, there are two practical difficulties. Firstly, only the
magnitude, but not the phase, of the diffracted x-rays can be
measured, thus the IFT cannot be calculated directly. This
is an example of what is commonly referred to as a phase
problem [2]. Secondly, since the specimen is crystalline, i.e.
periodic, the Fourier transform is sampled, and its magnitude
is undersampled, relative to the Nyquist rate, by a factor of
two in each of the three dimensions [2]. The problem is
therefore highly underdetermined. For large biological mole-

cules, referred to as macromolecules, a variety of methods
are used to solve this problem, most of which entail the col-
lection of additional experimental data. Examples include the
methods of multiple isomorphous replacement and molecular
replacement [1]. An important intermediate step in struc-
ture determination is locating the region within the unit cell
(one period of the crystal) that is occupied by the molecule,
a process known as envelope determination. The molecular
envelope is usually determined from preliminary electron
density functions, calculated using experimentally-derived
phases. However an alternate method for envelope deter-
mination exists, termed contrast variation, which may have
advantages in certain circumstances (e.g. in the determination
of large and complex macromolecular structures).
The protein molecules in a crystal are surrounded by sol-

vent molecules that vary in position from unit cell to unit cell
and so behave as a uniform electron density. It is possible,
by the addition of salt to a crystal, to modify the electron den-
sity of the solvent. By making diffraction measurements from
crystals with at least three different solvent electron densities,
it is possible to calculate the amplitudes that would be dif-
fracted by the molecular envelope, i.e. a function that is con-
stant in the region occupied by the protein molecule and zero
elsewhere [3]. However no general method exists for phas-
ing these amplitudes, and recovering the molecular envelope.
This is the problem that is addressed in this paper.
Our objective is to use a priori information, or constraints,

in image space, i.e. the crystal, to compensate for the lack
of information, due to undersampling and the loss of phase,
in Fourier space. There are two main constraints. The first
results from the envelope being a two-valued function, i.e.
a voxel is either inside, or outside, the envelope. We refer
to this as a binary constraint. The second constraint results
from the molecule, and thence the envelope, being a single,
connected domain. We refer to this as a connectivity con-
straint. Our approach to solving the reconstruction problem
is the use of iterative projection algorithms (IPAs), which are
algorithms for finding functions that are subject to a number
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of disparate constraints [4]. In particular, we use the dif-
ference map (DM) algorithm [5], a variant of IPAs that is
resistant to being trapped in limit cycles, a common problem
if any of the constraints are non-convex (as they are in the
problem considered here).
IPAs are described in the next section. Constraints and

projections for the molecular envelope problem are described
in the next two sections. Results from simulations are de-
scribed in the next section, and concluding remarks made in
the final section.

2. ITERATIVE PROJECTION ALGORITHMS

Image reconstruction problems with incomplete data can of-
ten be solved by combining the data with constraints on the
image [4, 6]. However, in many practical problems the image
has many degrees of freedom, and finding the solution can be
extremely difficult. An effective approach for solving such
problems is the method of iterative projections [4, 5].
It is convenient to represent the image as a point x in an

N -dimensional Euclidean vector space RN where N is the
number of degrees of freedom (number of pixels) in the im-
age. The full data, denoted by the vector y, is related to the
image x by

y = Kx, (1)

where K is some “forward” operator (which may be linear
or non-linear). In general, the data y are not sufficient to
uniquely determine x.
If we have a priori information on valid images x, then

the set of valid images, denoted A, is a subspace of RN , i.e.
A ⊂ RN . Furthermore, we can define another subspace of
RN , denoted B, as the set of all images that are consistent
with the data y, i.e.

B = {x : y = Kx}. (2)

The image reconstruction problem then is to find an image x∗
in the intersection of A and B, i.e. x∗ ∈ A ∩ B.
An IPA attempts to find a point x∗ in A ∩ B as follows.

An initial estimate of the image x0 is adjusted to conform to
the image space constraints and then adjusted to satisfy the
data, forming the next iterate x1, and the process repeated.
The minimum change to xn is made at each stage by mini-
mizing the Euclidean distance. The adjustments are referred
to as a projection onto the relevant constraint set, which we
denote by PA and PB for the sets A and B, respectively. The
projection operators are then

PAx = argmin
x′∈A

‖x′ − x‖ (3)

and similarly for PB .
The simplest IPA, that alluded to above, takes the form

xn+1 = PBPAxn. (4)

This is variously referred to as the error reduction (ER), pro-
jection onto convex sets (if the constraint sets are all convex),
or generalized projection (if at least one of the constraint sets
is non-convex), algorithm. The ER algorithm converges to a
point in A ∩ B if both A and B are convex. Unfortunately,
the constraint sets in most image reconstruction problems are
not convex and the ER algorithm often fails to converge to a
point in the intersection, which is often referred to as stagna-
tion. A number of different projection algorithms have been
developed that can help avoid stagnation [4]. A particularly
effective and versatile algorithm is the DM algorithm, defined
by the iteration [5]

xn+1 = xn + β[PA((1 + 1/β)PBxn − (1/β)xn)
−PB((1 − 1/β)PAxn + (1/β)xn)], (5)

where β �= 0 is a parameter. The final solution is obtained by
projecting the iterate xn onto A or B. This is the algorithm
that we use.

3. CONSTRAINTS

There are three constraints used in the problem at hand: (1)
the Fourier magnitude constraint, (2) the binary constraint,
and (3) the connectivity constraint. Note that the ER and
DM algorithms are based on two constraint sets. Therefore,
although we discuss the binary and connectivity constraints
separately, we combine these as a single constraint when they
are implemented in the IPAs. The nature of these constraints
is described in the following subsections.

3.1. Fourier magnitude constraint

The Fourier magnitude constraint represents satisfaction of
the x-ray diffraction amplitude data. The magnitude data are
sampled and so exist on a lattice in 3D Fourier space which
is referred to in crystallography as the reciprocal lattice. For
computational purposes, the electron density is represented
on a 3D grid in image space and the reciprocal lattice co-
incides with the corresponding grid generated by taking the
3D Discrete Fourier Transform (DFT) of the sampled electron
density. A practical consideration is that the diffracted x-ray
amplitudes cannot be measured at low resolution close to the
undiffracted beam, i.e. close to the origin of Fourier space.
Also, diffraction data out to a maximum isotropic resolution
are usually measured. Therefore, although the reciprocal lat-
tice may occupy a cuboid domain, the Fourier magnitude con-
straint is applied within a spherical shell, which we denote by
Q.

3.2. Binary and fill fraction constraint

Since the x-ray magnitude data have been collected from a
solvent contrast series and appropriately processed, they rep-
resent the FT of the molecular envelope, i.e. a two-valued
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function. With appropriate scaling of the magnitude data the
electron density can be reduced to a binary function equal to 1
within the envelope region and 0 in the solvent region. We re-
fer to this as the binary constraint and it significantly restricts
the solution space. The fraction of the unit cell that is occu-
pied by the protein molecule, or the envelope, denoted f , is
rather easily determined experimentally and therefore offers
an additional constraint. We refer to this as the fill fraction
constraint.

3.3. Connectivity constraint

Protein molecules are globular structures that are held to-
gether by chemical bonds and non-bonding interactions. The
individual molecules, and therefore also their envelopes, then
form a single connected domain. Furthermore, the integrity
of the crystal itself is supported by intermolecular contacts
so that connectivity also exists between the molecules within
the crystal. We refer to this as the connectivity constraint
which is satisfied if all voxels of the envelope form a single
connected domain, with connectivity defined in terms of an
appropriately defined neighbourhood of each voxel. Connec-
tivity is a well-defined but rather weak constraint. Protein
molecules are also reasonably compact in the sense that they
do not form highly tenuous connected structures. Compact-
ness is not easily defined but some degree of compactness
is incorporated with the connectivity constraint as described
below.

4. PROJECTIONS

The DM algorithm requires two constraint sets. Here we de-
velop two projection operators; one for the Fourier magni-
tude constraint, denoted PM , and one for the image space
constraint, denoted PI . The projection PI is based on two
projections, denoted PB and PC , that incorporate the binary
and connectivity constraints, respectively. The three projec-
tion operators are described in the following subsections.

4.1. Fourier magnitude projection

The image (molecular envelope) is denoted by x = (x1, x2, ...
, xn) and the DFT of x by X = (X1, X2, ..., Xn) = F [x]
where F [·] denotes the 3D DFT. The Fourier magnitude data
are denoted by {Mi : i ∈ Q}. The Fourier magnitude pro-
jection in the Fourier vector space, denoted by P̃M , is given
by

P̃MXi =

{
Miexp(jφ(Xi)) i ∈ Q

Xi i /∈ Q,
(6)

where φ(·) denotes the phase. The Fourier magnitude projec-
tion PM is then given by

PMx = F−1[P̃MF [x]]. (7)

4.2. Binary projection

The binary and fill-fraction constraints are combined and the
resulting projection is easily seen to be

PBxi =

{
0 xi /∈ S(f)
1 xi ∈ S(f),

(8)

where S(f) is the set of the fN largest values of x. The bi-
nary constraint is a set of points in the image vector space and
maps to a set of points in the Fourier vector space. As a result
of Hermitian symmetry, the Fourier magnitude constraint is
an N/2-dimensional hypersphere in the Fourier vector space.
Therefore, the binary constraint is a relatively strong con-
straint, with good noise tolerance.

4.3. Connectivity projection

For a pure connectivity constraint applied to a binary image,
the projection involves adding a network of “filaments” to
connect any disconnected regions whose distances apart are
smaller than the volume of the smallest region, and remov-
ing regions that are smaller than their distance from any other
region. Rigorously calculating this projection would be com-
putationally expensive. Furthermore, it would tend to lead to
tenuous structures as opposed to compact globular structures
and so is not appropriate for the problem at hand. An alter-
native projection is to remove all regions except the largest.
The result satisfies connectivity and will tend not to be tenu-
ous since no filaments are introduced. This is the projection
that was used and is denoted PC .
The full image space projection PI is applied by applying

PB followed by PC , i.e. PIx = PCPBx. Note that applying
PC tends to reduce the fill fraction. However, it was observed
that after a small number of iterations the image tended to
consist of one large domain and a number of much smaller
domains. Therefore, the change to the fill fraction after ap-
plying PC is rather small.

5. RESULTS

The ER and DM algorithms were implemented using the pro-
jections PM and PI as described above. The algorithms were
tested by simulation on a molecular envelope derived from
a solved protein structure taken from the Protein Data Bank
(PDB). The protein used was the Alkaline protease from P.
aeruginosa [7]. The crystal lattice is orthogonal (orthorhom-
bic) with unit cell dimensions 77.2 × 176.7 × 51.1Å. There
are four molecules in each unit cell related by crystallographic
symmetry (space group P212121). The molecular envelope
was derived using standard methods [8] with an averaging
radius of 8Å. The fill fraction is f � 0.35. The envelope
was represented on an 18 × 40 × 12 sampling grid which
gives a grid spacing of 4.3Å and approximately 9 × 103 de-
grees of freedom. The envelope within the unit cell is shown
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Fig. 1. Original (a) and reconstructed (b) protein envelopes.
The symmetry equivalent regions are represented by different
grey levels for clarity.

in Fig. 1(a). The Fourier magnitudes were calculated by the
DFT, a scale factor applied, 2% Gaussian noise added, and
the magnitude data retained within a resolution shell between
40 and 7Å. A 6-neighborhood was used to define connectiv-
ity. The algorithms were started with a random binary image
with the correct fill fraction.
The ER and DM (with β = 0.9) algorithms were run for

5 × 105 iterations, which takes about 9 hours on one core of
an Intel Q6600 CPU. The normalized squared error between
the measuredMj and reconstructed |Xj | Fourier magnitudes
was calculated at each iteration to monitor convergence. In
no case did the ER algorithm make any progress towards the
correct solution. The DM algorithm made good progress to-
wards the solution and then fluctuated around the solution.
The solution with the smallest rms error was used to calculate
the solution by applying the constraint PI . The Fourier space
normalized errors were approximately 5%, and image space
errors were approximately 7%. The reconstructed envelope
is shown in Fig. 1(b) and is seen to be a quite faithful repre-
sentation of the true envelope. The Fourier magnitude error
versus iteration is shown in Fig. 2.

6. CONCLUSIONS

The envelope determination problem in macromolecular x-
ray crystallography is highly underdetermined but the data
deficiency can be compensated for by the binary and con-
nected nature of the image. However, both the image and

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

Iterations

∑ j
(M

j
−

X
j
)2

∑ j
M

2 j

Fig. 2. Normalized Fourier transform error vs Iterations.

data constraints are non-convex, making it difficult to find the
solution. The DM IPA appears to be an effective method for
obtaining the solution. Future work will involve applying this
method to solvent contrast data.
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