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Abstract 

 

Chemical Vapour Deposition (CVD) diamond detectors were modelled for dosimetry 

of radiotherapy beams.  This was achieved by employing the EGSnrc Monte Carlo 

(MC) method to investigate certain properties of the detector, such as size, shape 

and electrode materials.  Simulations were carried out for a broad 6 MV photon 

beam, and water phantoms with both uniform and non-uniform voxel dimensions.  A 

number of critical MC parameters were investigated for the development of a model 

that can simulate very small voxels.  For a given number of histories (100 million), 

combinations of the following parameters were analyzed: cross section data, 

boundary crossing algorithm and the HOWFARLESS option, with the rest of the 

transport parameters being kept at default values.  The MC model obtained with the 

optimized parameters was successfully validated against published data for a 1.25 

MeV photon beam and CVD diamond detector with silver/carbon/silver structure with 

thicknesses of 0.07/0.2/0.07 cm for the electrode/detector/electrode, respectively.  

 

The interface phenomena were investigated for a 6 MV beam by simulating different 

electrode materials: aluminium, silver, copper and gold for perpendicular and 

parallel detector orientation with regards to the beam.  The smallest interface 

phenomena were observed for parallel detector orientation with electrodes made of 

the lowest atomic number material, which was aluminium.  The simulated 

percentage depth dose and beam profiles were compared with experimental data.  

The best agreement between simulation and measurement was achieved for the 

detector in parallel orientation and aluminium electrodes, with differences of 

approximately 1%. 

 

In summary, investigations related to the CVD diamond detector modelling revealed 

that the EGSnrc MC code is suitable for simulation of small size detectors.  The 

simulation results are in good agreement with experimental data and the model can 

now be used to assist with the design and construction of prototype diamond 

detectors for clinical dosimetry.  Future work will include investigating the detector 
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response for different energies, small field sizes, different orientations other than 

perpendicular and parallel to the beam, and the influence of each electrode on the 

absorbed dose. 
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Chapter I 
 

 

Introduction 
 

 

Cancer is a major cause of mortality in developed countries.  “Cancer is New 

Zealand’s leading cause of death, according to the latest New Zealand Health 

Information Service (NZHIS) official figures” [1].  There are three different modalities 

of cancer treatment.  One is radiotherapy, with the other two being surgery and 

chemotherapy. 

 

1.1 Radiotherapy 

 

Radiation therapy has been used as a cancer treatment for over 100 years.  

Radiation therapy is referred to as radiotherapy, radiation oncology or therapeutic 

radiology.  It is a proven method for controlling malignancies and for prolonging the 
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life of individuals who would otherwise die from their cancer.  Radiation therapy is 

used in more than half of all cancer treatments, and in some cases it is the preferred 

and most effective treatment of all.  In other cases, it is used in combination with 

chemotherapy or surgery.  Radiotherapy treatment can cure some cancers and can 

also reduce the chance of a cancer returning after surgery.  It also can be used as a 

palliative to reduce cancer symptoms.  Radiotherapy works by destroying the cancer 

cells in the treated area with high energy x-rays or high energy electrons [2].  The 

ionizing radiation damages the cells’ DNA, blocking their ability to divide and 

proliferate.  All the cells suffer from radiation, but healthy cells can adapt over 

successive regenerative cycles.  Malignant cells do not possess this adaptation 

mechanism and thus do not survive. 

 

Radiation treatment involves four basic steps: initial consultation and diagnosis; 

simulation for tumour and critical structure localization; treatment planning, and 

treatment delivery.  Radiation therapy can be delivered externally from a high 

energy machine and/or internally using brachytherapy, by implanting radioactive 

sources in or near the cancerous tissue.  

 

1.1.1  Importance of accurate dose calculation 

 

The ideal radiotherapy treatment delivers a high dose of radiation to the tumour and 

a minimal dose to the surrounding normal tissue.  To obtain full advantage of the 

radiation therapy treatment, it is essential that the absorbed dose delivered to all the 

irradiated tissues is predicted accurately.  This can be achieved with exact radiation 

dosimetry.  Radiation dosimetry represents an important aspect of cancer treatment 

as the human body consists of different tissue densities, cavities and in some cases 

foreign materials such as metallic prostheses [3]. 

 

Optimal therapeutic benefits can be reached by increasing the dose to the target 

volume and minimizing the dose to the normal tissues.  Some high dose treatments 

are limited by the radiation toxicity capacity of healthy tissues which lie close to the 

target tumour volume.  In this case it is difficult to increase the prescribed dose to 



Chapter I  Introduction 
 

  3 

improve tumour control without increasing adjacent tissue complications.  This is 

illustrated in Figure 1.1. 

 

 

Figure 1.1 Dose response curves for tumour and normal tissue 

 

Optimization of the dose response requires correct localization of the cancerous 

tissues and of the sensitive normal tissues, as a small change in dose can have a 

large negative impact on the normal tissue and on tumour control. 

 

Significant progress in imaging technology in the last two decades has influenced 

the ability to recognize and localize the critical volumes and determine their 

densities.  Moreover, radiation therapy treatment delivery systems have advanced, 

and target volumes can be irradiated with very high accuracy.  The combination of 

superior imaging procedures and beam modulation (aperture and intensity) 

techniques allows the radiation dose to be precisely conformed around the targeted 

tissue [4].  

 

1.2 Dosimetry for modern radiotherapy 

 

High precision radiotherapy techniques, such as intensity modulated radiotherapy 

(IMRT), stereotactic radiotherapy (SRT), stereotactic radiosurgery (SRS) and 
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tomotherapy involve the superposition of several uniform but narrow beams.  These 

techniques require very firm immobilisation of the patient and incorporation of 

radiological examination in the treatment planning for precise definition of the target.  

Modern radiotherapy techniques use modulated beams in terms of dimensions, 

intensity and/or energy [4].  

 

The IMRT concept is to produce a dose distribution that matches closely to the 

planned target volume and limits damage to normal tissue, reducing toxicity and 

increasing the dose delivered, which improves tumour control and survival.  

Comparative planning investigations demonstrate that superior dose distribution can 

be achieved using IMRT for various tumour sites, such as the prostate, the breast, 

the reproductive system, the head and the neck [5]. 

 

In IMRT, the dose intensity varies within each of the many conformal fields, allowing 

highly individualised dose gradients throughout the treated volume.  To deliver the 

planned dose distributions, intensity profiles are commonly translated into various 

multileaf collimated segments using multileaf collimators (MLC).  Delivery of small 

segments with at least one dimension smaller than 2 cm is regularly required in the 

IMRT technique.  To be able to calculate dose distribution and monitor units (MUs) 

for such small segments accurately, high-resolution absolute and relative dosimetry 

is important [2]. 

 

In the “step and shoot” IMRT technique, the exact position of the MLCs depends on 

the penumbra calculated by the IMRT planning engine for segments.  An inaccurate 

calculation of the penumbra can result in cold and hot spots between two adjacent 

segments.  Thus, it is important to provide an IMRT planning engine with accurate 

dosimetric data [6].  

 

The aim of stereotactic radiotherapy (SRT) and stereotactic radiosurgery (SRS) 

techniques is to deliver a reasonably large radiation dose to an intracranial volume, 

in precisely the right place.  SRT and SRS are important clinical tools for the 
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treatment of small lesions in the brain, including arteriovenous malformations 

(AVMs) and pituitary adenomas.   

 

Radiation beams with a diameter of 4 cm or less are normally used in SRT/SRS to 

deliver a single large dose fraction to a small target volume with steep dose 

gradients around the target periphery.  Correct determination of the penumbra of 

radiosurgery profiles is critical to avoid complications in organs at risk adjacent to 

the tumour.  For SRT/SRS beams, lateral electronic equilibrium does not exist in a 

large proportion of the beam; hence, accurate dosimetry plays an important role in 

reaching modern radiotherapy’s aim of delivering a high dose to the target volume 

by limiting damage to the normal tissue [6]. 

 

Dose measurement of small beams is more difficult and complicated than that for 

conventional beams because of two factors: the lack of equilibrium in lateral charged 

particles which leads to steep dose gradients in the penumbra region, and the 

relationship between detector size and field dimension [7]. 

 

Adequate dosimetry gives the assurance that the planned dose is the same as the 

delivered dose to the patient.  For example, the consequences of inaccurate 

measurements of the penumbra can result in errors of determining the field edge of 

the treatment and delivered dose [8].  Consequently the most problematic issues 

encountered are related to the inaccuracy of the penumbra measurements which 

can result in errors when shaping the treatment field edge and delivered dose. 

 

One of the most important criteria in the choice of detector in narrow field dosimetry 

is the detector’s size [9].  It must be small enough to minimize perturbations of the 

particle fluence, but large enough to be subjected to a large number of interactions 

so that it will yield a signal with a high signal-to-noise ratio.  In the case of an 

inappropriate detector or experimental geometry, there might be a significant dose 

fall off within the sensitive volume from the centre to the periphery of the detector.  

This complicates the interpretation of central axis measured dose values [7]. 
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Additionally, when making measurements away from the central beam axis, the 

detector might not be able to resolve correctly the existing steep dose gradient 

because of lateral electronic disequilibrium [9].  The choice of the detectors depends 

on the quantity that needs to be measured, and that quantity can be either central 

axis dose measurements or beam profiles dose distributions [10]. 

 

Beam profiles and central axis dose measurements are required as input data for 

the treatment planning computer.  Accurate determination of these parameters leads 

to accurate determination of the three dimensional dose distribution produced by the 

treatment planning system.  As mentioned above, lateral electronic disequilibrium 

and steep dose gradients are characteristics of small SRT beams.  

 

The existence of the lateral electron disequilibrium has consequences.  One is that, 

as the field size is reduced, the output drops dramatically, and the cross beam 

profile may be flat only over a small fraction of the full width at half maximum 

(FWHM).  Another consequence is that the dependence of the output, or dose rate 

at a point on the central axis, on the source to point distance (SPD) may not follow 

the inverse square law for large values of SPD.  Thus, the dose rate on the central 

axis decreases more rapidly with SPD than the inverse square law would predict.  

 

In the published literature, most data acquisition for a small field size is based on 

diodes, photographic and photochromic films, and partially on thermoluminescence 

dosimetry (TLDs) [11]. 

 

Typical radiation detectors, such as the 0.6 cm3 Farmer type ion chambers, are 

inappropriate for performing dosimetry for small radiation fields because of their 

relatively large sensitive volumes, particularly when electronic disequilibrium exists 

across the whole field [12].  Therefore, small chambers with sensitive volumes 

smaller than 0.1 cm3 are generally used for absolute dose verification.  Film 

dosimetry could be a preferred technique in the dosimetry of these very small fields, 

but film is energy dependent and also suffers from variations in the film coating and 

processing conditions which make it unreliable.  The use of radiochromic films may 
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overcome some of the problems associated with conventional radiographic films. 

Better tissue equivalence, higher spatial resolution, and room light handling are the 

main advantages of radiochromic films.  The disadvantage of these films is 

nonlinearity of the response for doses in the clinical range.  To achieve acceptable 

precision (+/- 2%), much higher doses are necessary (around 100 Gy).  Silicon 

diodes, because of the very small size of the sensitive volume (60 μm thickness and 

2.5 mm width), are the common choice in dosimetry of SRT beams [12, 13].  

However, energy, dose rate, and directional dependence of response are negative 

factors in this application. 

 

Diamond detectors, because of the near tissue equivalence of carbon, should act as 

suitable detectors, although their dose rate dependence could affect the result.  If 

corrected, they produce better results than the more commonly used diode and film 

dosimetry techniques [14].  The diamond detector is considered to be an improved 

alternative to the above detectors used for small field dosimetry [15]. 

 

The measurement of the dosimetric characteristics of small diameter radiation 

beams requires the use of a small volume detector but there is no general 

agreement on which detector should be used [16].  A recent comparative dosimetry 

study of small photon beams has been completed for PinPoint ionization chambers, 

solid state detectors such as Si-diode, MOSFET, and diamond.  It was reported that, 

by applying a linear sensitivity correction, all the above detectors offer the same 

signal for a field size equal to or larger than 8 mm [16]. 

 

Dose measurement of small beams is more difficult and complicated than for 

conventional beams [17].  To obtain an accurate dose delivery, the dose at any point 

inside the patient needs to be calculated and related to the calibration dose. 

Therefore, the dose at specific locations in the radiation field has to be measured in 

a phantom prior to treatment for verification of the treatment plan and quality 

assurance. 
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1.2.1  Diamond detector 

 

Diamond detectors are used in small field dosimetry as reported in different studies, 

and they are considered to provide reliable data [8, 18, 19].  However, natural 

diamonds with good, reproducible electrical properties are difficult to find and this 

makes them very expensive.  The alternative is the synthetic diamond produced by 

means of Chemical Vapour Deposition (CVD) [20, 21]. 

 

The main characteristics of the natural diamond are [22]: 

 large band gap which ensures low dark currents and low noise; 

 high carrier mobility which permits a fast dynamic response; 

 high sensitivity that gives small dimensions and high resolution; 

 strong atomic bonding which indicates radiation hardness; 

 it is chemically inert, non-toxic, and has a low atomic number; 

 tissue equivalence which implies no need of correction for dose 

determination; 

 the ability to detect all types of radiation. 

 

The main drawbacks of the natural diamond detector are the time consumed in the 

selection of the right diamond stone, cost, as well as the poor intersample 

reproducibility [20]. 

 

The influence of the impurities naturally implanted in the sensitive volume is clear. 

Some impurities are necessary in order to increase the signal linearity with the dose 

rate of the detector [20].  However, an excess of impurities can decrease detector 

sensitivity, and increase the polarization effect.  The polarization effect is caused by 

impurities which act as traps and create an electric field that is opposite to the 

applied bias voltage [23].  This is the main cause of the natural diamond detector's 

nonlinear dose rate dependence.  
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Consequently only natural diamonds with low concentration of nitrogen can be used 

for dosimetry.  This adds to the lack of immediate availability, and cost increase [21]. 

 

1.2.2  Chemical Vapour Deposition (CVD) diamond  

 

Synthetic diamonds can be produced by two methods: High Pressure High 

Temperature (HPHT), and Chemical Vapour Deposition (CVD).  HPHT is more 

widely used because of its low cost compared with the CVD method.  The CVD 

process creates plasma on the top of a silicon substrate.  Carbon atoms are 

deposited on the substrate to form a diamond structure.  CVD diamonds can be 

grown with different thicknesses and dimensions by changing the growth 

parameters.  CVD diamond films are produced with similar electrical and thermal 

properties as the natural diamonds. 

 

It has been demonstrated that the CVD diamond has sufficient sensitivity to be used 

as a dosimeter, when compared with other commercially available devices [13].  In 

the CVD method, the grain size, layer thickness and level of impurities can be 

controlled.  A well controlled growth of a CVD diamond with desired properties can 

be achieved at low cost. 

 

The main advantage of the CVD diamond films over the current and commercial 

dosimeter materials is the biological compatibility with human tissue (Zeff = 6.0, close 

to Zeff = 7.5 of human tissue) [24].  At the same time, the CVD diamond is non toxic, 

and can be grown at low cost and with features suitable for dosimetric use.  CVD 

films have shown promising dosimetric properties and the possibility of their clinical 

use is growing [25].  

 

Other advantages of the CVD diamond are: high resistance to radiation damage, 

high sensitivity and stability, good time resolution and low leakage current, electrical 

insulation properties, stability and robustness and the fact that they can be produced 

in a small size [24]. 
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These characteristics illustrate very good reasons for synthetic diamonds to be used 

as dosimeters.  However, the synthetic films also have some drawbacks.  These are 

[24]:  

 dynamic response (pumping effects, slow rise and decay times); 

 linear energy transfer (LET); 

 dose rate dependence. 

 

During the investigation of CVD diamonds, it was found that they have a slow 

dynamic response, of around few seconds.  The speed of the dynamic response can 

be increased by controlling the impurities in the growth phase, optimising the 

electrode contact’s material and thickness, as well as improving the process of 

deposition by filling superficial traps by preirradiation [20, 26].  

 

The CVD diamond detector, like the natural diamond, is not very easy to use.  It 

requires preirradiation [24], it can lose the equilibrium condition if it is not used for a 

long time, and has a dose rate dependence that needs to be accounted for [26]. 

Futher analysis of the CVD diamond detector is needed.  Cirrone et al. [24] 

concluded that the following should be investigated: current-voltage characteristics, 

preirradiation effects, stability, dose dependence, dose-rate dependence, and 

energy dependence. 

 

Due to its small size, the CVD diamond detector can be designed to introduce 

negligible perturbations to the radiation field and the dose distribution in the 

phantom, but detector construction materials need to be carefully selected as they 

may bring in severe fluence perturbation and angular dependence, resulting in 

erroneous dose readings. 

 

In a significant piece of research, Gorka et al. investigated interface phenomena 

between high and low atomic number materials using MC code PENELOPE [27].  

 



Chapter I  Introduction 
 

  11 

The aim of this work was to use MC methods to develop a model to further 

investigate the properties of the CVD diamond detector. 

 

1.3 Research motivation  

 

Research has revealed the necessity of a detector with small dimensions, tissue 

equivalence, high sensitivity, and good spatial resolution for regions of large dose 

gradients. 

 

A team of scientists and students from the University of Canterbury has developed a 

synthetic diamond detector for clinical use [28, 29].  The first prototypes developed 

are in a sandwich-like structure (metal, diamond, metal).  The electrode material 

was deposited on the diamond film using thermal evaporation.  Investigations of the 

electric and dosimetric characteristics of these devices are in progress.  The aim 

was to design a detector with the above characteristics, which also provides a linear 

response to an absorbed dose and has no, or minimal, dependency on dose rate, 

energy and orientation. 

 

A fundamental aspect of the diamond detector design is the selection of optimal 

structural materials (electrodes, wires, contacting glue and encapsulation) [27].  

These structures can introduce significant fluence perturbations and angular 

dependence that can result in inaccurate dose readings.  Interface phenomena 

between high and low atomic number materials are produced between metallic 

electrodes and diamond films.  The direction of the radiation field can influence the 

detector signal.  

 

Knowledge of fluence perturbation and its influence on the signal of the detector are 

relevant to the construction of an energy independent, tissue equivalent CVD 

diamond detector and quantification of the fluence perturbation correction.  Good 

knowledge will give an accurate theoretical representation of the dose distribution 

for the purpose of validating the performance of the detector. 
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Advances of computer technology in recent years have provided very fast 

computers at low cost [9].  This makes the use of the MC method widely available 

for investigations.  

 

The aim of the work presented in this thesis was to investigate the CVD diamond 

detector’s physical and dosimetric characteristics using the MC technique.  The 

EGSnrc/BEAMnrc code was chosen to investigate the following characteristics:  

 dimensions of the detector and electrodes, 

 electrode materials, 

 orientation of the detector in the photon radiation beam, 

 depth dose and profiles, 

for a better understanding of CVD diamond detector design and behaviour. 

 

The MC method is widely accepted as more accurate in comparison with 

deterministic or analytical calculations.  It provides information which is not 

extractable from physical measurements and offers a “virtual” experimental platform.  

 

1.4 Outline of approach 

 

The next chapter includes a brief history and description of the MC method, its use 

in radiation therapy, the basics of the method considered in this project, as well as a 

short description of the dose calculation code and other user codes used in this 

work.  

 

The steps involved in the development of a Monte Carlo model for the simulation of 

a small size CVD diamond detector with thin electrodes are presented in Chapter III.   

 

Validation of the CVD diamond detector simulations is done in Chapter IV by 

comparison with experimental data for absorbed dose at different depths inside a 

water phantom, and by lateral beam profile evaluation.   
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The conclusions to this work are presented in Chapter V, together with sugestions 

for future work. 
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Chapter II 
 

 

Monte Carlo 
 

 

2.1 Brief history  

 

Monte Carlo methods have been used since the second half of the nineteenth 

century, but only in the past few decades has the technique gained the status of a 

numerical method capable of addressing the most complex applications [30]. 

 

The Monte Carlo method is designed to solve problems consisting of many 

independent smaller ones (like the spin of a roulette wheel, or toss of dice at a 

casino), using a random number generator.  Its core idea is to use random samples 

of parameters or inputs to explore the behaviour of a complex system or process.  
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The method’s name was adopted from the Monte Carlo casino which was one of the 

best known venues for roulette and games of chance in Monaco.  The fair roulette 

wheel is one of the earliest random number generators.  The use of randomness 

and the repetitive nature of the Monte Carlo process are analogous to the activities 

conducted at a casino. 

 

In the early part of the twentieth century the method was used for teaching and 

confirming verification (the technique was employed to test previously understood 

deterministic problems) and very rarely in research of original discoveries [31]. 

 

In the 1930s Enrico Fermi used a random method to calculate the properties of the 

newly-discovered neutron, and later designed the FERMIAC, an inspired analogue 

device to implement studies in neutron transport [32].  

 

In the 1940s a formal foundation for the Monte Carlo method was developed by 

John von Neumann, who established the mathematical basis for probability density 

functions (PDFs), inverse cumulative distribution functions (CDFs), and 

pseudorandom number generators.  The work was done in collaboration with the 

mathematician Stanislaw Ulam.  In 1947 von Newmann outlined the possible 

statistical approach to solving the problem of neutron diffusion in fissionable material 

based on Ulam’s concept of “lucky numbers”.   

 

Monte Carlo methods formed the core of the simulations required for the Manhattan 

Project.  Applications resulting from this project included the design of shielding for 

reactors [30].  

 

In the 1950s Monte Carlo was used in the early work at Los Alamos as a research 

tool in the development of the hydrogen bomb, the work involving direct simulations 

of the probabilistic problems concerned with random neutron diffusion in fissile 

material [32].  
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The scientists faced physics problems, such as models of neutron diffusion that 

were too complex for an analytical solution, so they had to be evaluated numerically. 

However, their models involved so many dimensions that exhaustive numerical 

evaluation was extremely slow.  Monte Carlo simulation proved to be effective at 

finding solutions to these problems [32]. 

 

Around 1970, the newly developing theory of computational complexity started to 

provide a precise and convincing basis for the use of the Monte Carlo method [33]. 

Simulation time has been shortened, the charged particle transport simulation using 

the Monte Carlo method being possible to be accomplished within reasonable time 

frames [32]. 

 

Since that time, Monte Carlo methods have been applied to an exceedingly diverse 

range of problems in science, engineering, finance and business applications, in 

almost every industry [34]. 

 

2.2 The Monte Carlo method 

 

The Monte Carlo method provides solutions to mathematical problems by 

performing statistical sampling experiments on a computer.  

 

The main components of the Monte Carlo method are [33]:  

 the probability distribution functions describing the physical system; 

 the random number generator which is a source of uniformly distributed 

random numbers; 

 the sampling rule which is a recommendation for sampling the probability 

distribution function; 

 the variance reduction techniques, which are methods for reduction of the 

computational time for Monte Carlo simulation; 
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 the scoring (or tallying), which represents the outcomes of the interest 

quantities. 

 

Monte Carlo has the ability to simulate the tracks of individual particles for radiation 

transport problems.  This is done by sampling appropriate quantities from the main 

probability distributions of the individual physical processes.  Quantities such as 

particle fluence, energy spectrum and absorbed dose distribution can be calculated 

by simulating a large number of particle histories [33].  

 

A number of publications, i.e. [35-37], have shown that the Monte Carlo method has 

many applications in medical radiation physics, especially in radiation therapy 

physics.  The Monte Carlo techniques have accurately accounted for the density 

and atomic number variations within the medium, back scatter or scatter 

perturbations.  Monte Carlo simulation of radiation transport is more accurate than 

deterministic or analytical calculations particularly under conditions of electronic 

disequilibrium, mainly due to the complexity of electron transport.  

 

In radiotherapy Monte Carlo provides a virtual experimental platform of various 

beam configurations on a virtual phantom or patient, and facilitates detailed 

understanding of radiation physics, for example stages of radiation detection in a 

detector [38].  The major drawbacks of the Monte Carlo for radiation transport 

modeling technique are the computing time and the need for a detailed knowledge 

of the incident radiation beam [34]. 

 

2.3 Physics theory of Monte Carlo technique  

 

The physics of photon and electron interactions in matter are known, but there is no 

logical expression to describe particle transport within a medium.  Electrons can 

create both photons (for example Bremsstrahlung) and secondary electrons.  

Photons can produce both electrons and positrons through Compton scattering and 

pair production.  Any given particle moving through a material has a probability of 

undergoing each of the interactions, with a range of possible outcomes.  Particles 
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produced by one interaction undergo subsequent changes, until all the energy of the 

incident radiation is absorbed by the target material.  Monte Carlo models the 

particles and their subsequent changes by sampling every undertaken event, and 

discarding the particles either with energies below the cutoff level or which are 

outside the simulation, as shown in Figure 2.1. 

 

 

Figure 2.1 Steps of a typical analogue transport process of primary and secondary 
particles for regular geometry.  The analogue transport samples every single 
event explicitly.  Simulation of the photons is usually done in this way [39]. 

 

Monte Carlo techniques are extensively used in radiation therapy applications 

because they can precisely simulate the transport of photons and electrons in 

matter, and they use scattering models for different interaction processes and for a 

large range of energies.  Numerical tabulated values and calculated cross sectional 

data are combined in the scattering models [40]. 
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Photons undergo a limited number of interactions before they are absorbed and the 

interaction processes are properly described, which makes it easy to simulate all 

interactions directly [38]. 

 

On the other hand, high energy electrons lose a very small part of their energy in 

each interaction, and as a consequence electrons can undergo a very large number 

of interactions before being totally absorbed.  Therefore, given that the number of 

Coulomb interactions with atomic nuclei is so large, direct Monte Carlo simulation for 

electron beams is less practical than the simulation of photon beams [40]. 

 

2.4 Monte Carlo modelling in radiotherapy 

 

The Monte Carlo method is widely accepted as the most accurate method for 

modelling radiotherapy treatments [40-42] and has started to become more 

accesible since technological advances have made very fast computers available at 

low cost.  Parallel processing can increase the CPU power and shorten simulation 

times.  

 

Several Monte Carlo programs have been used for radiation therapy simulations, 

including Monte Carlo N-Particle eXtended (MCNPX) [43], XrayVoxel Monte Carlo 

(XVMC) [44], GEometry ANd Tracking (GEANT) [45] and Electron Gamma Shower 

(EGS) [38]. 

 

2.4.1 EGSnrc code 

 

The first version of the EGS Monte Carlo code was written in the early 1960s, and 

later on developed into EGS4 which further developed into EGSnrc for the Linux 

operation system platform and then EGSnrcMP by the group of National Research 

Council (NRC) Canada, where MP stands for multi-platform [38]. 

 



Chapter II  Monte Carlo 
 

  20 

The EGSnrc code uses similar sets of subroutines as EGS4.  It has been designed 

to simulate the particles’ (electron/photon) various interactions through the matter for 

the electron energy range of 10 eV to 100 GeV and for photon energies of 1 eV to 

100 GeV [38].  EGSnrc V4 has the power to calculate exactly what the user needs 

by applying variance reduction techniques that considerably speed up the simulation 

[46], and was used throughout all the simulations in this project. 

 

2.4.2 BEAM user code 

 

Monte Carlo modelling of radiotherapy systems involves two phases: simulation of 

the linear accelerator head using BEAM code, and simulation of the patient/phantom 

using DOSXYZ code.  BEAM was designed to model all types of radiotherapy 

accelerators, as well as Co60 units and X-ray units.  The code is written in 

MORTRAN3, a Fortran 77 pre-processor which is used for the EGS4 system [38].  A 

complete EGS/BEAM run includes the linac head simulation, dose delivered to the 

patient/phantom simulation, and the analysis of the dose distribution. 

 

The BEAMnrc code can be used to simulate the linear accelerator models for 

various vendors and allows the simulated information of the particles from the linear 

accelerator to calculate doses in voxel based water or CT phantom. 

 

Given that the accelerator head includes several different components: the target, 

the flattening filter, the ion chamber, the mirror, the field definition system and the 

crosshair, as shown in Figure 2.2, the BEAM user code has to provide a variety of 

component modules (CMs) for the simulation of the linac’s head.  Some of the CMs 

generally employed are: SLABS, FLATFILT, CHAMBER, JAWS, CONS3R, 

MIRROR, which allow the reproduction of complicated head geometries.  These 

modules are predefined for linear accelerator components but they are customizable 

and can also be used for other purposes.  

 

The BEAM code models the therapy source with the Z axis taken as the beam axis 

and usually the origin is defined as the centre of the beam as it exits from the 
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accelerator.  Each component module is contained between two planes which are 

perpendicular to the Z axis, and which cannot overlap.  

 

The simulation of the linear accelerator model is vendor specific.  In the modelling 

process the information of the linear accelerator components which includes 

materials, positions, shape and dimensions is required from the manufacturer [9].  

 

 

 

Figure 2.2 Schematic diagram of the linear accelerator in Monte Carlo modelling with 
the CVD diamond detector at an arbitrary position in a water phantom 

 

The input file contains the details about the accelerator, for example: the number of 

scattering foils, their location (specifying the relative distances), and the thicknesses 

and materials from which they are made.  Moreover, it contains all the parameters 
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that control the radiation transport modelling, and also selects and controls the 

various variance reduction techniques to be used [41].   

 

The steps used in linear accelerator simulations by using BEAMnrc are shown in 

Figure 2.3.  

 

BEAM has three major forms of output: the listing file, the phase space data file, and 

the graphics output file.  The final step of the linac simulation is the output analysis, 

especially of the raw phase space file. 

 

 

 

Figure 2.3 The steps involved in using BEAMnrc system, from reference [42].  To 
specify an accelerator means to define an ordered set of component 
modules (CMs) to be used in the simulation. 
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The phase space data file contains information about each individual particle 

crossing the scoring planes, such as position, direction of motion, energy or 

momentum, charge, and history tag.  It can be produced at any specified plane in 

the model.  This file is usually the most important output.  Scoring planes are at the 

back plane of a CM perpendicular to the Z axis and they contain scored particle 

fluences, average energies and average angles, as well as the dose.  The 

information from the phase space file can be re-used by the BEAM code itself in 

further calculations.  It also can be used as an input file to determine the dose 

distribution in a model built from the CT scan of the patient, or used to characterize 

the beam in a more compact way. 

 

The BEAM code used for the simulation of the accelerator whose phase space file 

output was employed in this research was developed as an EGS4 user code that is 

capable of complex linac geometric coding [42] by the National Research Council of 

Canada (NRCC), originally part of the OMEGA (Ottawa Madison Electron Gamma 

Algorithm) project.  The phantom was simulated with the DOSXYZ code, part of the 

same EGS4 OMEGA project.  

 

The actual accelerating waveguide and associated beam line components are not 

usually modelled. Electron beam characteristics may fluctuate, and this can 

influence the physical characteristics of the final photon or electron beams used in 

treatment, consequently controlling the dose distribution in the patient. 

 

Christchurch Hospital Monte Carlo group members have previously modelled their 

linear accelerators for different energies.  The particle transport through the 

accelerator components have been stored in phase space files set at Z = 100 cm 

from the linac head [37] (Figure 2.2).  The phase space file contains information 

concerning particles including position (x, y, z), direction (X, Y, Z), energy, charge, 

weighting, and origin, and serves as the source for the water phantom simulations 

using DOSXYZ.  
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2.4.3 DOSXYZnrc user code 

 

DOSXYZ is a general purpose Monte Carlo EGS user code for 3D absorbed dose 

calculations.  During this work, the 6.6 version of DOSXYZ was used.  This is the 

DOSXYZnrc version, part of the EGS4 OMEGA project previously mentioned. 

 

DOSXYZnrc simulates the transport of photons and electrons in a cartesian volume 

and scores the energy deposition in the designed volume element (voxel).  

DOSXYZnrc was employed to calculate the dose distribution in a water phantom 

made of customizable voxles based on 3D cartesian coordinates, and to simulate 

dose delivered to the CVD diamond detector. 

 

To obtain the absorbed dose in DOSXYZnrc, the modelling requires a 3D phantom 

and a radiation source.  Extension of the 3D phantom file name is .egsphant.  The 

geometry of the phantom is composed of a linear volume with the (XZ) plane on the 

page, X to the right, Z down the page and the Y axis out of the page, as shown in 

Figure 2.2.  Voxel dimensions are completely variable in all three directions.  Each 

voxel can be specified to be of a particular material. 

 

DOSXYZnrc has several important and unique features, such as dose component 

calculations, a wide variety of source configurations and beam reconstruction 

techniques, correlated sampling, use of CT phantom (conversion of CT data to CT 

phantom via ctcreate), restart capabilities, phase space redistribution, as well as 

other features as detailed in [47]. 

 

The code can use energy spectrum, simplified monoenergetic diverging or parallel 

beams, phase space data generated by a BEAMnrc simulation, or a multiple source 

model. 
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DOSXYZnrc requires an input file which can be a phase space file or other source of 

particles, and a phantom file.  The user can manually specify phantom parameters 

from within the DOSXYZnrc interface.  There are a number of input parameters that 

are significant in the reduction of the simulation calculation time, like electron cutoff 

energy (ECUT), number of histories used, the voxel size and phantom size.  These 

input parameters determine the output of the whole run.  At the same time they play 

a significant role in the duration of the run, and can save important computing time 

when wisely chosen.  The output of the DOSXYZnrc is an array of voxels and the 

dose deposited in each of them [47]. 

 

When the global electron cutoff energy (global ECUT), an EGSnrc input parameter, 

is smaller than electron cutoff (ECUT) or is missing from the input file, the ECUT is 

used as global cutoff energy, which strongly influences the simulation time [47]. 

 

Once the total energy of an electron is lower than the cutoff energy ECUT, the 

electron history is terminated, and all its energy is deposited in the present region.  

A high energy electron can undergo many interactions before it can be ignored.  

That is why the choice of the ECUT is difficult and depends on the type of process to 

be simulated.  In order to ensure that the electron energy is transported and 

deposited into small voxels correctly, the range of electrons at ECUT is usually set 

to less than 1/3 of the voxel size [48]. 

 

Setting up a simulation involves specification of a large number of DOSXYZnrc 

variables and options.  Some options and settings are well documented in the user 

interface help buttons or entries in the electronic manuals.  However, other options 

are less well documented.  

 

The extension of the output file in the DOSXYZnrc simulation procedure is .3ddose 

and some interfaces have been made by the NRC group along with the DOSXYZnrc 

to extract and visualize the dose information from the .3ddose file.  The names of 

those interfaces are STATDOSE and DOSXYZ_SHOW [49], respectively.  
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STATDOSE interface 

 

During this research STATDOSE user code was used to analyse the dose 

distribution in the CVD diamond detector as it gives a better visualisation of dose 

distribution as percentage depth dose (PDD), and profiles.   

 

STATDOSE is an interactive command line interface computer program for 3D dose 

analysis, and it plots 2D dose distributions using the Xvgr/Xmgr plotting package.  

Its functions include normalization, plotting, and analysis of the dose distributions. 

 

STATDOSE is run from a terminal to extract numerically absorbed dose data from a 

.3ddose file for plotting depth dose curves and beam profiles.  The program is used 

to call the xmgrace software to display data as graphs.   

 

The xmgrace is an independent software customized on BEAMnrc for three 

dimensional plots.  Once a .3ddose file is selected, it must be assigned one of the 

two numbered temporary files, which allows the .3ddose files to be compared for 

analysis. Then data is normalised, plotted and saved in ASCII format. The ASCII file 

can be retrieved from xmgrace plot files or saved files. Dose distributions can be 

compared statistically and graphically.  

 

DOSXYZ_SHOW interface 

 

Dose distribution results simulated with DOSXYZnrc can be viewed graphically by 

using the DOSXYZ_SHOW interface [49].  

 

DOSXYZ_SHOW is a graphical visualization interface, which requires the dose 

distribution .3ddose file, as well as the .egsphant file containing the phantom 

geometry, both of which are dose distribution simulation DOSXYZnrc output files 
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(the other four files generated by DOSXYZnrc are .egsinp, .egsdat, .egslst, and 

.errors).  

 

The DOSXYZ_SHOW code is also part of the OMEGA project, and it is used for the 

representation of the isodose curves of the dose distribution.  The code illustrates 

the density distribution in a specific plane (XY), (XZ) or (YZ) in a grey scale with the 

corresponding isolines and/or in a colour wash version.   

 

Isodose lines calculation is completed by using linear interpolation between the grid 

dose points.  For simulation efficiency, the isodose lines are approximated with 

straight line segments from one voxel to the other.  

 

DOSXYZ_SHOW offers the user several options for viewing the geometry: changing 

the slice, selecting the view plane, zoom in, zoom out, dose normalization, isoline 

levels, image expansion, point dose values, colour wash representation and density 

range. 

 

2.4.4 PEGS DATA code 

 

In addition to the previously presented user codes, the EGS4 package includes 

PEGS4, a code which allows calculation of the cross section data of the media.  In 

EGSnrc/BEAMnrc an interface also has been made to execute the PEGS4 

execution file and generate the cross section data which are known as PEGS data.  

In EGSnrc, BEAMnrc and DOSXYZnrc, any user defined materials/medium can be 

simulated by using the corresponding PEGS4 data.  

 

PEGS4 can be used to simulate impurities inside different media, including the 

synthetic diamond detector.  The code can virtually vary the diamond detector 

material by just changing the type and fraction of the impurities, allowing the 

researcher to find the best diamond structures for different applications. 

 



Chapter III  Development of a Monte Carlo model 
 

  28 

 

 

 

 

 

 

 

 

 

 

 

Chapter III 
 

 

Development of a Monte Carlo model  
 

 

3.1 Introduction 

 

This chapter describes the steps involved in the development of a Monte Carlo 

model for the simulation of a small (sub-millimeter) size CVD diamond detector with 

thin electrodes.  Investigations of the non-uniform voxels in the uniform voxeled 

water phantoms for the simulation of very small voxels are outlined, as it is the 

exploration of the EGSnrc/DOSXYZnrc code capacity to simulate small voxels for 

modelling the diamond detector’s components, diamond film and electrodes.  

Finally, the obtained Monte Carlo model is validated against a model from the 

literature and experimental results. 
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3.2 Materials and methods  

 

The Monte Carlo simulations in this project were run using a computer with a dual 

core Xenon processor of 2.2 GHz speed for each core.  The Debian-based Ubuntu 

6.06 version operating system and a Fortran g77 compiler were used in the 

installation of the Monte Carlo code.  The Monte Carlo code EGSnrc [38] and the 

user codes BEAMnrc and DOSXYZnrc were used in this work. 

 

In EGSnrc/BEAMnrc and DOSXYZnrc, a beam can be modelled in three different 

ways: from the energy spectrum, from the multiple source model, or from the phase 

space file [42].  Initial investigations to model the CVD detector and its Monte Carlo 

parameters were done by modelling the beam from the energy spectrum produced 

by Mohan et al. [50]. 

 

The DOSXYZnrc code was employed to simulate a water phantom and the CVD 

diamond detector components (electrodes and diamond layer) and to calculate the 

dose distribution inside the detector.  The water phantom was simulated by using 

water voxels of the same dimension throughout the phantom, with the exception of 

the detector (always modelled with voxels smaller than the ones used for the 

phantom).  Simulation of the detector, located at different positions inside the 

phantom, was achieved by using very small size voxels and different materials for 

the detector core and the electrodes.  The materials used to model the layers of the 

detector and the water medium were taken from the default list of materials of the 

cross section data files. 

 

The input file for the DOSXYZnrc contains information related to the water phantom 

dimensions, the voxel dimensions used to define the phantom, the CVD diamond 

detector characteristics (diamond thickness, electrode thickness and composition), 

and the description of the source data file and EGSnrc parameters. 
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The STATDOSE code was used to analyze DOSXYZnrc dose data .3ddose output 

files.  DOSXYZ_SHOW displays the density distribution output in a given plane, and 

shows with grey or colour wash representation the dose distribution and the 

corresponding isodose lines.  Xvgr/Xmgr were used for analysis and plotting. 

 

3.2.1 Initial simulations  

 

Figure 3.1 shows the most common diamond radiation detector, in the form of two 

terminal electronic devices with a metal-insulator-metal (MIM) structure.  A high 

sensitivity diamond is sandwiched between two metal electrodes connected to an 

external voltage to provide an electric field across the device.  Free carriers are 

generated by the absorbed radiation inside the diamond.  These free carriers 

interact with the electric field generating a current in the external circuit. 

 

 

 

Figure 3.1 Schematic diagram showing a diamond MIM detector, from reference [14] 

 

Initial investigations were related to the water phantom and voxel dimensions in 

order to facilitate the simulation of a small CVD diamond detector.  The modelled 

CVD detector dimensions and properties are in analogy with a prototype detector 

being developed by other members of the research group, as shown in Figure 3.2.  

The experimental set up can be seen in Figure 3.3. 
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Figure 3.2 a) Samples of the CVD diamond film used at Canterbury University for the       

design of the CVD diamond detector 

b) Side view of the diamond structure 

c) Diamond film and electrode configuration used in the construction of the  

CVD diamond detector for different diamond film thicknesses 

d) Prototype of the encased CVD diamond detector [29] 

 

To simulate the real setup situation for a phantom and diamond detector exposed to 

the photon beam (Figure 3.3), the following initial DOSXYZnrc parameters were 

chosen:  

 cross section data file 700icru.pegs4, which is generally recommended for 

high energy photons and contains the information about the materials used 

in the simulations; 

 global electron cutoff energy (ECUT) of 0.7 MeV, which means that if the 

energy of an electron drops below 0.7 MeV the electron is no longer tracked 

and its energy is deposited in the current region [42]; 
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 global photon cutoff energy (PCUT) of 0.01 MeV, the recommended value, 

which means that all Bremsstrahlung events are simulated as discrete 

events [42]. 

 

Figure 3.3 Experimental setup of the CVD diamond detector in the water phantom for  

a 6 MV photon beam 

 

The source type chosen for the initial simulations was parallel beam from the front 

along the Z direction.  The beam was modelled from the 6 MV energy spectrum 

produced by Mohan et al. [50] which is usually stored in the HEN_HOUSE directory, 

the home directory tree of the EGSnrc system.  In all the simulations, a 10 × 10 cm2 

field size perpendicular to the Z direction (Figure 2.2) was used.  The water phantom 

and the detector materials were created using the PEGS4 code which allows the 

calculation of the cross section data of the media used in simulations.  The material 

selected to define the phantom was water, and the detector was defined with a 

carbon core and metal electrodes.  

 

The CVD diamond detector with metal/carbon/metal structure is illustrated in Figure 

3.4.  The carbon core and the electrodes were modelled as having square shapes, 

closely approximating the real geometry of the detector. 
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Figure 3.4 a) Illustration of the CVD diamond detector (diamond film and electrodes) at  

10 cm depth in the water phantom, and detector’s dimensions and  

orientation in the photon beam  

b) Lateral view of the CVD diamond detector showing the metal electrode 

 

Initial simulations were run with all the EGSnrc parameters kept as default, with the 

exception of the number of histories which were given different values to obtain a 

balance between minimising the statistical error and not having an extremely long 

simulation run time (the larger the number of histories, the longer the simulation run 

becomes, and the lower the statistical error). 

 

3.2.2 Comparison between uniform and non-uniform voxels in 

water phantom simulations  

 

By using DOSXYZnrc, phantom structures can be simulated either with similar voxel 

sizes (uniform water phantom), or with voxels of different dimensions (non-uniform 

water phantom).  Both are described below as an explanation to why the non-

uniform water phantom option was preferred.  Note that in this section the 

composition of each voxel in the different groups was water. 
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In MC simulations, calculation time and statistical errors depend on the number 

(implicitely the size) of the voxels.  Simulation of the CVD diamond detector with an 

electrode thickness of 0.1 µm is challenging because of the big differences in the 

size of the voxels used for the detector, the electrode and the water phantom.  The 

results of each individual simulation include different statistical uncertainties caused 

by the different dimensions of the voxels used in that simulation.  Statistical errors in 

bigger voxels are less than the errors shown in the very small voxels representing 

the detector core and the electrodes. 

 

The impact of the different non-uniform voxel sizes of the CVD and electrodes with 

respect to the voxel size of the water phantom were investigated in this work.  Water 

was considered for all of the different sized voxels as the medium for the transported 

particle.   

 

Uniform water phantom 

 

At the beginning of the simulations, the water phantom was defined using uniform 

voxels throughout its entire volume.   

 

The size, and hence number of voxels necessary to define the water phantom 

depends on the minimum thickness structure that needs to be simulated, in this 

work the electrodes of the detector.  To simulate very thin electrodes, voxels of the 

required dimension needed to be defined.  

 

The maximum number of voxels that can be simulated using the standard 

DOSXYZnrc code is limited by the default number of voxels for the X, Y, and Z 

directions (128 × 128 × 56).  The number of voxels also depends on the phantom 

size, thus by decreasing the overall size of the water phantom the number of voxels 

per unit length can be increased.  However, the size of the water phantom is 

dictated by the size of the radiation field, i.e. the phantom has to be larger than the 

radiation field.  Therefore, one way of increasing the number of uniform voxels to the 

number that facilitates the simulation of very small electrode thicknesses, would be 
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to decrease the radiation field size.  Due to practical considerations this approach 

did not suit the requirements for the simulation.   

 

The lowest standard geometry the radiation field could be set to was of 4 × 4 cm2, 

and the voxel size could not be reduced enough.  For smaller field sizes, the 

phantom became too small and did not resemble the real setup.  Voxels with 

dimensions in the range of millimeters would be obtained.  This size range is much 

larger than the desired electrode thickness of 0.1 μm.  

 

Another way to increase the maximum number of voxels, in order to enhance the 

DOSXYZnrc code capabilities, is to change the number of voxels in the DOSXYZnrc 

file dosxyznrc_user_macros.mortran, and recompile to make the file effective.  The 

number of voxels in the Mortran file was changed from 128 × 128 × 56, to 300 × 300 

× 200 for the X, Y and Z directions.  By using this file, all the voxels in the 20 × 20 × 

20 cm3  uniform water phantom could be modelled as having a dimension of 0.1 × 

0.1 × 0.1 cm3. 

 

Non-uniform water phantom 

 

In these simulations the same voxel dimension was used for the phantom, while the 

detector voxel size was changed.  The very thin detector electrodes needed to be 

simulated with voxels of very small dimensions.  

 

As previously explained, results gathered and analyzed at the beginning of the work 

showed that the standard number of voxels had to be increased.  However, the 

increased number of 300 × 300 × 200 voxels was still not enough to model the 

whole 20 × 20 × 20 cm3  water phantom by using only voxels of a thickness of 0.1 

mm (the thickness of the CVD detector). 

 

The answer to this problem was the simulation of the phantom and the detector by 

using different voxel sizes for each of the modelled elements.  Each of the 
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geometrical element of the simulation (the water phantom, the CVD, and the 

electrode) was modelled as having its own voxel dimension. 

 

In DOSXYZnrc voxels can be defined individually or as groups.  Attempting to model 

the water phantom voxel by voxel, with each voxel having a different size proved to 

be a much too laborious alternative because of the very small voxel insertions for 

the detector structure, and implicitly the large number of voxels involved in the 

definition of all the simulated elements. 

 

The optimum solution, both from a simulation time point of view, as well as the 

precision of the results, proved to be groups of voxels with different sizes for the 

detector film, electrodes and the phantom itself.  

 

Comparison between absorbed dose distributions for uniform and non-uniform 

voxels in water phantoms gives information about the dose variation in a specific 

voxel and consequently contributes to the improvement of the water phantom 

definition for further simulations related to the CVD diamond detector. 

 

In the first part, a simulation was done for the uniform phantom.  DOSXZYZnrc was 

used to simulate a 20 × 20 × 20 cm3 uniform water phantom with a unique voxel size 

of 1.0 × 1.0 × 0.1 cm3.  The phantom was defined using 200 voxels along the Z 

direction and 20 voxels for each of the X and Y directions.  A radiation field size of 

10 × 10 cm2 for a 6 MV photon beam was modelled to irradiate the water phantom 

using the Mohan energy spectrum stored in the Hen-House directory of 

EGSnrc/BEAMnrc tree structure.  

 

The results from this simulation were compared with the dose calculated for a non-

uniform water phantom with the same overall size (20 × 20 × 20 cm3).  A voxel size 

of 1.0 × 1.0 × 0.1 cm3 was used for the water phantom, with the exception of five 

central voxels representing the detector.  The detector orientation was perpendicular 

to the beam direction, and the whole setup was irradiated for the same field size of 
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10 × 10 cm2.  Several non-uniform voxels in the water phantom simulations were 

done, including detectors of different geometries, as detailed below. 

 

First, the geometry of the detector was simulated employing water voxels (voxels 

having the selected material as being water, not metal or carbon) with a 1/3/1 µm  

(electrode/diamond/electrode) thicknesses, located at a depth of 10 cm, 

perpendicular to the direction of the beam, as shown in Figure 3.5.  Water was 

selected as the material for the detector in order to eliminate the influence of the 

detector material on the absorbed dose. 

 

 

Figure 3.5 Schematic diagram showing the detector geometry and water voxels 
insertion at 10 cm depth in a 20 × 20 × 20 cm3 water phantom for a single 
photon beam with Mohan6.spectrum 

 

Next, simulations were carried out to analyze the influence of the detector geometry 

on the dose readings.  The physical dimensions of the detector were varied to reach 

an optimum shape. 
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Modification of the detector geometry and structure was done as follows: 

 The detector was modelled in a sandwich like structure keeping the same 

thickness Xe = Xd = 1 µm for the electrodes and the diamond, but changing 

the length and width of the electrode.  The three layers of the detector were 

modelled as having the same dimensions (length, width and thickness), as 

shown in Figure 3.6a.  

 Next, the three detector layers were combined, and the structure was 

modified to a simpler one, by considering the whole detector as having one 

layer only (Figure 3.6b). 

 Finally as shown in Figure 3.6c, the single layer of the detector structure was 

modelled at different thicknesses, of Xd = 1, 5, 9, 10 and 100 µm. 

 

 

Figure 3.6 Detector steps for the simplified structure  

a) Sandwich design structure 

b) One layer detector structure  

c) Different detector thicknesses 
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The absorbed dose was simulated for all the described geometries.  A similar setup 

(water phantom, beam orientation, source file and field size) was used for all these 

simulations.  The number of histories in DOSXYZnrc was set to 100 million, with the 

EGSnrc parameters options as default for high energy photon beams.  The results 

were compared with the dose from the uniform water phantom at the level of 

detector insertion. 

 

It was found that variation of the detector dimensions strongly influenced the dose. 

The next section describes how the Monte Carlo parameters were adjusted to 

address this issue.  For results see section 3.3. 

 

3.2.3 Determination of the Monte Carlo parameters 

 

Thin detector geometries lead to high dose variations, with a peak forming at the 

location of the detector.  The choice of the EGSnrc MC parameters needed careful 

exploration for a better understanding of the “beam distortion” through the smaller 

inserted central voxels.  Therefore, several EGSnrc parameter combinations were 

investigated.  The studied parameters were the cross section data file, the boundary 

crossing algorithm (BCA), and the HOWFARLESS option.  

 

The 700icru.pegs4 file is recommended for high energy photon simulations.  In all 

the initial simulations this cross section data file was used, as the aim was to 

simulate a high energy 6 MV photon beam.  Investigations using the cross section 

data 700icru.pegs4 and 521icru.pegs4 were undertaken to understand their 

appropriateness to calculate doses in a small voxel.   

 

The boundary crossing algorithm is one of the parameters characterizing the 

transport of radiation through the material.  PRESTA-I is the default option of the 

algorithm, and is used for efficiency reasons to shorten the iteration time.  To 

improve  precision, the EXACT option of the algorithm can be used.  The EXACT 

option requires longer simulation times.  
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The simulations made for the comparison of the uniform and non-uniform voxels in 

water phantoms were run using the PRESTA-I default option of the BCA.  This 

means that the lateral path length corrections were switched off if the perpendicular 

distance from the electron to the boundary became less than the distance given by 

the skin depth option in the boundary crossing algorithm (skin depth for BCA option).  

Once the electron reaches the boundary, a multiple scattering event is forced.  

 

The EXACT option of the BCA is recommended in simulations where charged 

particle equilibrium can not be reached (with the PRESTA-I default option) or when 

there is a “large difference in size between dose voxels and voxels making up the 

rest of the phantom” [42].  The EXACT algorithm will go into single scattering mode 

as soon as the electrons are within a certain distance from the boundary, distance 

given by the EGSnrc input skin depth for BCA, as previously explained. 

 

The HOWFARLESS algorithm can be used to increase the efficiency of dose 

calculations in a homogeneous phantom.  The parameter is recommended to be 

“off” (the default setting) in all homogeneous phantom calculations.  This allows the 

dose to be calculated inside each of the phantom voxels.  The “off” default setting of 

the HOWFARLESS option was used for the uniform and the non-uniform voxeled 

phantom simulations mentioned above.  

 

When the HOWFARLESS option is “on”, the HOWFAR and HOWNEAR subroutines 

in DOSXYZnrc only consider the extreme outer boundaries of the phantom.  The 

algorithm efficiency depends on the source type, energy, field size, phantom voxel 

size, and the boundary crossing algorithm used [42].   

 

To find the optimal Monte Carlo parameters, eight simulations were performed using 

the EGSnrc parameter combinations shown in Table 3.1. 

 

In simulations where the 700icru.pegs4 data file was used, ECUT was 0.7 MeV and 

PCUT 0.01 MeV, while in simulations using the 521icru.pegs4 data file, the ECUT 

was 0.521 MeV and PCUT 0.01 MeV.  
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These simulations were the basis for all further work in this research.  Based on the 

results which are discussed in detail in section 3.2, in all the rest of the simulations 

combination number 8 shown in Table 3.1 was selected (521icru.pegs4, EXACT 

BCA, and HOWFARLESS “off”), which showed minimum dose deviations in the 

region of the detector voxels insertion.   

 

Table 3.1 EGSnrc transport parameter combinations used for the absorbed dose 
analysis for the small water voxel size  

 

MC 
parameter 

combination 

Cross 
section data 

file 

Boundary 
crossing 
algorithm 

HOWFARLESS 
algorithm 

Number of 
histories 

(million) 

All other 
EGSnrc 

transport 
parameters 

1 700icru.pegs4 PRESTA-I on 100 
Default 

transport 
options 

2 700icru.pegs4 PRESTA-I off 100 
Default 

transport 
options 

3 700icru.pegs4 EXACT on 100 
Default 

transport 
options 

4 700icru.pegs4 EXACT off 100 
Default 

transport 
options 

5 521icru.pegs4 PRESTA-I on 100 
Default 

transport 
options 

6 521icru.pegs4 PRESTA-I off 100 
Default 

transport 
options 

7 521icru.pegs4 EXACT on 100 
Default 

transport 
options 

8 521icru.pegs4 EXACT off 100 
Default 

transport 
options 
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3.2.4 Benchmarking of the Monte Carlo model 

 

Confirmation that these EGSnrc Monte Carlo parameters would yield sensible 

results, required validation of the modelling strategy.  In this section two validations 

were done.  One was to reproduce the published results for a specific setup, and the 

other one was to verify the accuracy of the dose calculation by DOSXYZnrc for the 

MC setup by comparing simulation results with experimental data.  

 

Comparison with published results 

 

Minimization of the dose deviations through the detector was the reason for 

considering the use of the EGSnrc transport parameter combination 521icru.pegs4, 

EXACT BCA, with HOWFARLESS “off”. 

 

Work published by Gorka et al. [27] was used to validate the chosen input 

parameters.  In his work, Gorka used a different Monte Carlo code, PENELOPE, to 

study the photon energy deposition in a CVD diamond detector.  The Monte Carlo 

simulations in his study were focused on the metal/diamond interface phenomena in 

a semi-infinite planar geometry.  An illustration of Gorka’s simulation setup is shown 

in Figure 3.7a. 

 

Similar to the studies by Gorka, the simulations in this research investigated the 

absorbed dose distribution in the diamond layer of the CVD diamond detector.  

Comparison of the setup used by Gorka and the model employed in this work is 

shown in Figure 3.7.  

 

It can be seen that the setups are comparable, with the exception of the phantom’s 

depth on the Z direction (10 cm in Gorka’s work, 30 cm in this research).  The water 

phantom dimensions of 30 × 30 × 30 cm3 were chosen for a better simulation of the 

real setup geometry.  The different phantom depths are not of an issue given that in 
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both simulations the diamond detectors are located at the same depth inside the 

phantom, where the interest zone (for dose distribution comparison) is. 

 

Gorka’s semi-infinite slab geometry consisted of diamond layers of different 

thicknesses from 50 µm to 0.2 cm and two silver electrodes with thickness of 0.07 

cm each, one on each side of the diamond layer.  A 1.25 MeV monoenergetic 

photon pencil beam was applied perpendicular to the detector.  

 

Figure 3.7 a) Geometry of semi-infinite slabs used by Gorka et al.: a diamond layer with  

electrodes on both sides, taken from reference [27]  

b) Geometry of the setup used in this research 

 

For validation, the CVD diamond detector in this work was modelled in the same 

silver/carbon/silver structure with 0.07/0.2/0.07 cm thickness respectively.  The 

diamond layer was created using the PEGS4 user code to generate the CVD with a 

density of 3.51 g/cm3, which was added to the 521icru.pegs4 materials list.  A 

monoenergetic beam of Cobalt 60 mean energy 1.25 MeV along the Z direction was 

considered in the simulation.  The absorbed dose in the detector and the 

surrounding water phantom was analyzed using the STATDOSE code. 
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Verification of dose calculations for the MC setup 

 

As mentioned before, the beam can be modelled from the energy spectrum, the 

multiple source model, or from the phase space file. A comparison of PDDs 

calculated from the energy spectrum and the phase space file was done to 

investigate their difference in dose calculations.  Since all of the investigations in this 

chapter were done by modelling a beam from the 6 MV energy spectrum calculated 

by Mohan et al. [50], this comparision lead to finding the appropriate procedure for 

the modelling of the beam.  The absorbed dose through the simulated phantom was 

compared with the data commissioned from a 6 MV photon beam generated by a 

Varian 2100C linear accelerator. 

 

A uniform 30 × 30 × 30 cm3 water phantom with a 10 × 10 cm2 radiation field was 

simulated using the Mohan6.spectrum energy file for the generation of the beam.   

 

Experimental measurements were done using a waterproof 0.1 cm3 RK ion chamber 

(Scanditronix) with interior radius of 2 mm and the polarization voltage of 250 V.  

The chamber measured the radiation dose at depths of 0 to 50 cm inside a water 

tank.  

 

3.3 Results and discussion 

 

3.3.1 Initial simulations 

 

The CVD diamond detector manufactured by chemical deposition includes 

extremely thin deposited layers, with electrodes of 0.1 µm thick.  Initial simulations 

for the uniform water phantom showed that the detector could not be modelled with 

0.1 µm thin electrodes, because of the limited number of voxels in DOSXYZnrc.  

Therefore it had to be simulated at a bigger scale.  Preliminary trials were done 
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starting with a detector using aluminium as material for the electrode and carbon for 

the detector core, each with thicknesses of 0.4 cm (see Figure 3.8).   

 

Further on, the detector layer thicknesses were reduced down, to reach minimum 

values of 1 μm for the electrodes in the final set of experiments.  This will be shown 

later in the determination of the Monte Carlo parameters. 

 

The uniform water phantom was investigated for different dimensions and different 

voxel sizes in order to obtain the simulation of a very small voxel.  As mentioned in 

sub-section 3.1.2, the water phantom dimension can not be decreased more than 

the radiation field size, and the maximum number of voxels in all directions is limited 

by the preset number of the DOSXYZnrc code.  This limitation was overcome by 

changing the preset number of voxels in the Mortran file of the code. 

 

 

 

Figure 3.8 Initial simulation of the detector, using the default MC parameters of the 
EGSnrc code  

 

It was observed that DOSXYZ_SHOW code can not display structures containing 

different size voxels.  They are displayed by the code as having the same voxel 

dimension.  This was verified by doing one simulation that included three successive 

carbon slabs with different thicknesses (0.01, 0.001, 0.0001 cm), separated by water 

voxels of identical sizes.  The simulation was done by using dissimilar voxel groups 

inside the phantom.  DOSXYZ_SHOW considered the size of the first group of 
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voxels (situated at the edge of the phantom) as default, and displayed all (water and 

carbon) voxels as having the same thickness.  Due to this limitation, STATDOSE 

code was used for proper analysis of the dose throughout the phantom and the 

detector.  The use of the STATDOSE code allowed the results to be shown as 

graphs of relative dose with depth. 

 

3.3.2 Comparison between uniform and non-uniform voxels in 

water phantom simulations  

 

Inconclusive results in the initial simulations with default Monte Carlo parameters 

required planning of further investigations, to see how the very high deviation in 

dose at detector level could be reduced. 

 

Investigation of the absorbed dose deviation in a very small voxel using the default 

EGSnrc input parameters was accomplished in parallel simulations.  The same size 

of voxels was used for the phantoms as a whole, with reduced size central voxels at 

the location of the detector for the non-uniform phantoms.  

 

Relative value of the absorbed dose as a function of phantom depth for the uniform 

and non-uniform voxels in the water phantom are shown in Figures 3.9a-b.  Figure 

3.9b shows the effect of five identical water voxels of 1 cm × 1 cm × 1 µm, in the 

phantom, at a depth of 10 cm.  

 

The relative value of the absorbed dose at the insertion level produced a peak of 2.0 

over the normal level of 0.75 determined from the uniform phantom, for a history 

number of 100 million. 

 

Further on, for the detector modelled with five water voxels (one for each electrode, 

and three for the diamond layer), a total of five non-uniform phantom simulations 

were done. The aim was to study the nature of the absorbed dose deviation at the 

level of insertion.  
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Figure 3.9 a) Relative dose in a uniform water phantom  

b) Relative dose in a water phantom with five small water voxels inserted at  

10 cm depth  

 

The five inserted voxels were positioned perpendicular to the Z direction of the 

beam, therefore the dimension simulated along this direction was the voxels’ 

thickness.  The combined results of the first three simulations with voxel dimensions 

of 1 cm × 1 cm × 1 µm, 1 cm × 1 cm × 10 µm, and 1 cm × 1 cm × 100 µm are shown 

in Figure 3.10.   

 

It was found that the thinner the five inserted voxels were, the more the dose 

deviation increased.  The dose measured through the largest five voxels, each of    

1 cm × 1 cm × 100 µm (Figure 3.10, green) was very close to the dose measured 

through the water phantom.  For a ten times decrease in the thickness of the voxels, 

from voxels of 1 cm × 1 cm × 100 µm  to voxels of 1 cm × 1 cm × 10 µm, an 

increase in the absorbed dose, of 12%, was observed (Figure 3.10, red). 

 

Because a very small voxel thickness is required for precise modelling of the CVD 

diamond detector, the thickness was further reduced ten times from voxels of 1 cm 

× 1 cm × 10 µm to 1 cm × 1 cm × 1 µm.  A 166% sharp increase in the absorbed 

a) b) 



Chapter III  Development of a Monte Carlo model 
 

  48 

dose was observed when compared with the absorbed dose in the uniform water 

phantom at the same level. 

 

 

Figure 3.10 a) Relative dose variation for different central voxel thicknesses, of 1 µm, 10  

µm, and 100 µm 

b) Magnification of the region of interest 

 

To see if the peak variation for a certain number of histories depends on the voxel 

size, when all the other parameters are kept the same, two more simulations were 

done with voxel size insertions of 1 cm × 1 cm × 5 µm and 1 cm × 1 cm × 9 µm.  The 

two combined results are shown in Figure 3.11.  As expected from the previous 

three simulations, the more the voxel thickness was increased, the lower the 

deviation became. 

 

The geometry of the detector was further simplified from five voxels, to one voxel of   

1 cm × 1 cm × 1 µm.  The results obtained from the simulation of the uniform and 

non-uniform phantoms were compared and analyzed as shown in Figure 3.12.  The 

relative doses obtained from the simulation of the uniform water phantom and the 

non-uniform water phantom matched well, apart from the section where the very 

small voxel representing the detector structure was inserted.  The non-uniform water 

phantom showed a 205% dose distortion above the relative dose at the level of the 

water voxel insertion, of 0.75. 

a) b) 
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Figure 3.11 a) Relative dose variation for different central voxel thicknesses,  

of 5 µm and 9 µm 

b) Magnification of the region of interest 

 

 

Figure 3.12 Comparison between uniform and non-uniform water phantom for the 
detector modelled with one water voxel only 

 

Deviation of the absorbed dose at the level of the detector is dependent on the 

dimension of the inserted voxel since the phantom dimensions, setup geometry and 

all other Monte Carlo parameters used in the input file were kept identical. 

a) b) 
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The peak variation for a certain number of histories depends only on the voxel size.  

Figures 3.10 to 3.12 show that for the same number of histories, a small voxel gives 

higher peak and relative high statistical uncertainties with respect to the larger 

voxels. In a phantom with non-uniform voxels, which includes a combination of 

different size voxels for the water, detector core and electrodes, statistical 

uncertainty is different for the same number of histories. 

 

3.3.3 Determination of the Monte Carlo parameters 

 

In order not to increase the number of histories to an impractical level, three EGSnrc 

Monte Carlo parameters were studied to investigate their influence on the absorbed 

dose at the level of the smallest voxel.  The parameters were the electron cutoff 

energy, the boundary crossing algorithm, and the HOWFARLESS option, presented 

in Table 3.1. 

 

a) Comparison of the absorbed dose in a small voxel using combinations 1, 2, 3 

and 4 shown in the table (for the 700icru.pegs4 cross section data) is illustrated in 

Figure 3.13. 

 

For the combination of the PRESTA-I boundary crossing algorithm, with the 

HOWFARLESS option “off”, the relative value of the dose at the level of the detector 

was of 2.55, which is 220% higher than the dose measured in the uniform water 

phantom.  

 

Identical dose values were obtained for both the EXACT/PRESTA-I boundary 

crossing algorithms, with the HOWFARLESS option “on” (red and blue).  The 

difference between the dose in both these simulations and the dose measured in the 

uniform phantom was of 11%. 
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Figure 3.13 a) Investigation of the 700icru.pegs4 cross section data for 
EXACT/PRESTA-I boundary crossing algorithm and HOWFARLESS option 
“on” / “off”  

b) Magnification of the region of interest 

 

In comparison with the simulations in which the default EGSnrc parameters were 

used, the investigation of the 700icru.pegs4 cross section data file showed that 

optimum combination of the boundary crossing algorithm and of the HOWFARLESS 

parameter can lead to a significant reduction in the absorbed dose variation at the 

level of the very small voxel. 

 

b) Variation of the absorbed dose inside the thin detector voxel using the three 

parameters combined as shown in simulations 5, 6, 7 and 8 from Table 3.1 (for the 

521icru.pegs4 cross section data), is illustrated in Figure 3.14.  The magnified graph 

shows the peak of the dose variation in each simulation.  

 

The largest variation of the dose in the detector area was observed for the 

combination of the PRESTA-I boundary crossing algorithm with the HOWFARLESS 

option “on” (blue).  The difference between the dose in this simulation, and the dose 

from the uniform phantom was of 7%. 

 

a) 
b) 
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Using the PRESTA-I boundary crossing algorithm with the HOWFARLESS option 

“off” the difference in dose between the uniform and the non-uniform water 

phantoms was 6% (green). 

 

Compared to the measurements done in the uniform water phantom, a 5% lower 

dose was observed for the selection of the EXACT boundary crossing algorithm and 

the HOWFARLESS option “on” (red). 

  

 

 

Figure 3.14 a) Investigation of the 521icru.pegs4 cross section data for 
EXACT/PRESTA-I boundary crossing algorithm and HOWFARLESS option 
“on” / “off”  

b) Magnification of the region of interest 

 

The dose closest to the one measured in the uniform phantom was obtained by 

using the EXACT boundary crossing algorithm with the HOWFARLESS option “off” 

(black). The difference between the non-uniform and uniform phantom doses was of 

only 2%. 

 

When reading the percentage values of the differences between the peak doses in 

the detector and in the uniform phantom, it becomes obvious that the better choice 

in regards to the cross section data is the 521icru.pegs4 option.  Comparison 

a) b) 
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between the results in the two cross section data scenarios is done in sub-section c, 

below. 

 

c) Absorbed dose comparison between 700icru.pegs4 and 521icru.pegs4 cross 

section data files, using the EXACT boundary crossing algorithm with the 

HOWFARLESS option switched “off” (combinations 4 and 8 in Table 3.1) is 

illustrated in Figure 3.15. 

  

 

Figure 3.15 a) Comparison of the 700icru.pegs4 and 521icru.pegs4 cross section data,  

EXACT boundary crossing algorithm and HOWFARLESS option “off”  

b) Magnification of the region of interest 

 

Figure 3.15b shows the smallest absorbed dose deviations obtained with the 

700icru.pegs4 cross section data and the 521icru.pegs4 cross section data in the 

water voxel insertion of 1 µm thick. 

 

The magnified graph illustrates that the smaller absorbed dose deviation in the 

inserted voxel is achieved for the 521icru.pegs4 cross section data file. 

 

In Figure 3.15, the use of 700icru.pegs4 high energy cross section data gave a 2% 

higher dose with higher statistical errors with repect to the use of 521icru.pegs4 low 

a) b) 
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energy cross section data.  Low energy photons generated by using the 

521icru.pegs4 cross section data lead to improvement of the statistical error in the 

small voxel.  The 700icru.pegs4 data were generated for the electron total energy of 

0.7 MeV, therefore the electrons which have the total energy below 0.7 MeV, will not 

contribute to the dose deposition procedure.  The electron kinetic energy threshold 

for 521icru.pegs4 data is lower than the threshold for the 700icru.pegs4 data.  The 

use of the 521icru.pegs4 cross section data improves statistical uncertainty for the 

low energy particle in a small voxel.  

 

These results are in agreement with the user manual of the Monte Carlo code, 

which indicates that the PRESTA-I boundary crossing algorithm can over-estimate 

the dose in the voxels that are much smaller than the voxels which make-up the rest 

of the phantom.  In these situations the EXACT boundary crossing algorithm gives 

more accurate results.  “The HOWFARLESS algorithm is used to increase the 

efficiency of the dose calculations in homogeneous phantoms” [47] by taking into 

account the extreme outer boundaries of the phantom.  The “off” option of the 

HOWFARLESS algorithm increases the calculation time.  However, this option 

allows accurate dose calculations to be made inside each of the phantom voxels. 

 

Therefore, the chosen EGSnrc input Monte Carlo parameters used henceforth in all 

further simulations were the 521icru.pegs4 cross section data, with the EXACT 

boundary crossing algorithm and the HOWFARLESS option turned “off”. 

 

3.3.4 Benchmarking of the Monte Carlo model 

 

Comparison with published results 

 

The results from the simulations presented so far, were used as guidance towards 

the selection of optimum Monte Carlo parameters for accurate dose measurements 

inside the diamond detector.  However, validation of the simulation strategy was 

required to make sure that further simulations in this work would generate 

reasonable results.  To accomplish this, the EGSnrc/DOSXYZnrc MC code was 
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used to model the CVD diamond detector dimensions and setup conditions, in order 

to reproduce simulations by Gorka et al. [27].  Similar to Gorka’s simulations, the 

detector was modelled with a 0.2 cm carbon thickness and two silver electrodes, 

each 0.07 cm thick.  The detector was orientated perpendicular to a 1.25 MeV 

monoenergetic photon beam, as shown in Figure 3.7. 

 

Figure 3.16 shows the dose variation in the CVD diamond detector simulated at a 

depth of 5 cm, in a 30 × 30 × 30 cm3 water phantom, with the parameters 

determined in sub-section 3.3.3.  

 

 

 

Figure 3.16 a) Relative dose in the CVD diamond detector at a 5 cm depth inside the  

water phantom for a 1.25 MeV photon beam 

b) Magnification of the region of interest 

 

The figure shows high variations in the absorbed dose at the CVD diamond detector 

level.  This is clearly illustrated in the enlarged graph showing the region of interest.  

The variations are the result of the interface phenomena between high and low 

atomic number materials.  The interface phenomena emerge when the photon beam 

crosses the detector through its three different layers (silver electrode/ carbon core/ 

silver electrode).  

a) b)
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A sharp increase in the absorbed dose can be observed when the photon beam 

reaches the first electrode.  The dose abruptly decreases while the beam crosses 

the silver electrode, just to increase again when passing through the carbon layer.  

Finally, the absorbed dose drops while penetrating the second electrode. 

 

The steep dose increase, observed before the first electrode, is the result of back 

scatter from the high atomic number (Z = 47) for silver.  The radiation is then 

absorbed into the electrode, decreasing significantly as the photon beam passes 

through.  Once the carbon layer is reached, the absorbed dose increases again as a 

result of back scatter, till it reaches the second electrode.  While passing through 

this electrode, the dose once more sharply decreases due to its absorption into the 

electrode material. 

 

The validation was accomplished by comparing this dose variation through the 

detector simulated in this work using the EGSnrc Monte Carlo code, with Gorka’s 

results achieved by making use of the PENELOPE Monte Carlo code.  Comparison 

of the results is shown in Figure 3.17. 

 

It can be seen that the relative absorbed dose through the CVD diamond detector 

has the same trend and magnitude in both Monte Carlo simulations. 

 

The result validates the use of the EGSnrc input parameters selected as shown in 

section 3.3.3.  This combination (521icru.pegs4 cross section data, EXACT 

boundary crossing algorithm, HOWFARLESS option “off”) was therefore used in 

further simulations to validate the input parameters by using commissioned data. 
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Figure 3.17 Relative value of absorbed dose distribution in a CVD diamond detector  

a) Obtained by Gorka et al., using the PENELOPE Monte Carlo code [27]  

b) Obtained during this work, using the EGSnrc Monte Carlo code 

b)

a) 
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Verification of dose calculations for the MC setup 

 

The setup of the Monte Carlo simulations in a uniform phantom needs to validate 

against the experimental data, therefore the PDDs from two simulations, where 

beams were modelled from energy spectrum and the phase space file, were 

compared with commissioned data of same energy.  

 

In the first simulation, the beam was defined by using the Mohan6.spectrum file.  As 

shown in Figure 3.18, absorbed dose values of the simulated beam (represented by 

the green curve inside the graph) were much higher than the ones found using the 

real setup (symbolized by the black curve) for most of the depths of interest.  

 

Figure 3.18 Comparison between experimental and simulated dose obtained by using 
Mohan6.spectrum file, and the phase space data file as the source file in the 
EGSnrc Monte Carlo simulations 

 

The second simulation was done for the same setup and simulation parameters, 

with the exception of the energy source generation file which was changed from the 

Mohan6.spectrum to the appropriate phase space data files obtained from in-house 

linear accelerator beams simulated with the BEAMnrc code [42].  It was found that 
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the dose curve from this simulation (the red curve) closely matched the experimental 

data. 

 

This final result confirmed that beams modelled with the phase space data file 

generate much more appropriate simulations than simulations with beams 

generated using the Mohan6.spectrum file.  Therefore all the simulations that follow 

were done using the phase space data file for beam source modelling. 

 

It should be noted that optimization of the MC parameters and investigations of the 

impact of the dose at the interface were calculated by using the beam modelled from 

the energy spectrum.  The same spectrum was used for the simulation of the base 

line values of the water phantom and the non-uniformity of the CVD voxels.  The 

beam source for the simulations presented in this chapter was the 

Mohan6.spectrum file.  For the beam generated with phase space data, similar dose 

variations at detector level are expected.
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Chapter IV 
 

 

Experimental Validation  

 

 

4.1 Introduction 

 

This chapter contains simulations of the CVD diamond detector, with the overall aim 

of showing the potential that the detector has in measuring the absorbed dose at 

different depths inside a water phantom, and in lateral beam profile evaluation.   

 

BEAMnrc code was used in previous work by Deloar et al. [51] to simulate a Varian 

2100C linear accelerator head from Christchurch Hospital for different energies.  

Validation of the phase space data file in Deloar’s work was done by comparing the 

percentage depth dose (PDD) curves and profiles of measured data at different 
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depths, with curves obtained from linear accelerator simulations for the same 

energy.  The phase space file from this work, for a 10 × 10 cm2 field size was used 

henceforth.  In all the simulations, the same beam was used for all dose 

calculations.  

 

The optimized MC parameters found in the previous chapter were utilized to 

investigate interface effects for different electrode materials by comparing the 

absorbed dose for the detector orientated perpendicular and parallel to the beam.  

Properties of the dose deposited in the CVD detector in the form of PDD and profiles 

at different depths were also investigated.  

 

4.2 Materials and methods 

 

The optimized EGSnrc input parameters used in these simulations were the 

521icru.pegs4 cross section data file and the EXACT boundary crossing algorithm, 

with the HOWFARLESS option turned “off”.  

 

The source input file was the phase space file for the Varian 2100C linear 

accelerator obtained by Deloar et al. [51].  

 

For consistency, the number of 100 million histories was kept the same.  The 

dimension of the water phantom and the detector setup are shown in Figures 4.1 

and 4.2. 

 

The results were analyzed using the STATDOSE code, and the plotting programs 

Xvgr/Xmgr.  The DOSXYZ_SHOW code was used to visualize the simulations. 
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4.2.1 Investigation of the interface phenomena  

 

For a better understanding of the interface phenomena between low and high 

atomic number materials, the detector was investigated for two orientations, 

perpendicular and parallel to the beam.  The interface effects were considered for 

detectors with electrodes made of increasing atomic number materials: aluminium  

(Z = 13), copper (Z = 29), silver (Z = 47), and gold (Z = 79).   

 

Detector perpendicular to beam direction 

 

Simulations with the detector perpendicular to the direction of the beam (Figure 4.1) 

were done at a depth of 5 cm along the central axis Z of the water phantom, for 

thicknesses of 0.07/0.2/0.07 cm for the electrode/carbon/electrode structure.  

 

The core of the detector was considered to be a homogeneous CVD carbon which 

was generated by using PEGS4 code and added to the material list of the 

521icru.pegs4 cross section data file. 

 

The water phantom was modelled using voxels of 1.0 × 1.0 × 0.2 cm3.  Smaller 

voxels were used to simulate the carbon and the electrodes (dimensions of each 

voxel being of 1.0 × 1.0 × 0.01 cm3), as well as the two regions before and after the 

detector.  These regions were modelled by using a number of 13 water voxels for 

the area before the front electrode, with another 13 water voxels used for the area 

located after the back electrode. The purpose of modelling these two areas using 

small size voxels was to allow the program to properly show the dose variation in 

these critical regions. 

 

Based on previous work by Gorka et al. [27], as well as the study undertaken in this 

research and validated against their work, complex interface phenomena for the 
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particles travelling  through the media of high to low atomic number materials were 

expected. 

 

Figure 4.1 Schematic diagram showing the detector inserted perpendicular to the 
beam, at 5 cm depth in a 20 x 20 x 20 cm3 water phantom with a phase 
space source file as photon beam source 

 

Simulation results for different electrode materials will be presented as relative dose 

levels inside the water phantom, in the media surrounding the electrodes and 

through the active area. 

 

Detector parallel to beam direction 

 

The detector was modelled at the same 5 cm depth along the central axis of the 

water phantom, parallel to the beam, as shown in Figure 4.2, with the same 

thicknesses of 0.07/0.2/0.07 cm for the electrode/carbon/electrode structure. 

 

As in simulations done for the detectors positioned perpendicularly to the beam, 

detectors with electrodes made of aluminium, copper, silver and gold were 

investigated.  Dose levels are presented as relative absorbed dose inside the water 
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phantom, as well as in the detector layers and through the two areas before and 

after the electrodes.  

 

Figure 4.2 Schematic diagram showing the detector inserted parallel to the beam, at 5 
cm depth in a 20 × 20 × 20 cm3 water phantom with phase space source file 
as photon beam source  

 

4.2.2 Comparison between simulated PDD and experimental data 

 

In this set of experiments the CVD diamond detector was simulated at different 

depths in the water phantom: 1.5 cm, 5 cm, 10 cm, and 15 cm, with the detector 

parallel to the beam direction.  The obtained PDD values were compared with 

experimental data measured with a Scanditronix waterproof 0.1 cm3 RK ion 

chamber with interior radius of 2 mm and polarization voltage of 250 V.  A 

Scanditronix RFA 300plus tank was used for scanning in water. 

 

Simulations were done for a carbon layer of 0.5 × 0.5 × 0.1 cm3, and two metal 

layers of 0.5 × 0.5 × 0.01 cm3, one for each of the electrodes made of aluminium, 

copper, silver and gold.   
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The average values of the dose deposited inside the active volume of the carbon 

were calculated for each depth, then each of the point doses were normalized 

relative to the average dose calculated for the detector at 1.5 cm.  This allowed the 

simulated doses to be compared with the PDD values obtained from the water tank.  

A similar procedure was followed for the evaluation of the dose profiles shown in the 

next section. 

 

4.2.3 Comparison between simulated dose profiles and 

experimental data 

 

Simulated dose profiles along the X direction of the water phantom were compared 

with experimental data.  For this, detectors were modelled in seven different 

locations along the X direction, at distances of 0, -25, -40, -45, -48, -49, and -50 mm 

from the centre of the beam.  Three sets of simulations at depths of 1.5 cm, 5 cm, 

and 10 cm inside the water phantom were performed. 

 

All the detectors were modelled as carbon, with a size of 0.5 × 0.5 × 0.1 cm3.  Dose 

values were normalized relative to the maximum dose, which was determined 

experimentally to be at 1.5 cm. 

 

4.3 Results and discussion 

 

4.3.1 Investigation of the interface phenomena  

 

Detector perpendicular to beam direction 

 

Figure 4.3 shows the influence that the increasing atomic number of the electrode 

materials have on the dose absorbed in the media adjacent to the detector, and 

through the active area and the electrodes.  The graph shows the relative dose 
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variation when the photon beam crosses the detector, for the four different electrode 

materials.  

 

A sharp increase of the absorbed dose was measured in front of the first electrode. 

The highest values of the absorbed dose in each of the simulations were reached at 

this level of interface. 

 

While the beam passed through the first electrode, the dose dropped as the photons 

were penetrating the active layer, after which it increased again in front of the 

second electrode.  Further on, the dose has dropped almost vertically while the 

beam crossed through the second electrode, just to re-stabilize after passing the 

interface of the second electrode with the water media.  At depths beyond the 

second electrode, as the distance from the detector increases, the dose starts to 

level out at values just below those measured before its penetration.  

 

 

 

Figure 4.3 a) Percentage depth dose variation for different electrode material with the  

detector orientated perpendicular to the beam  

b) Magnification of the region of interest 

 

a) b) 
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To properly compare absorbed dose levels in the region of interest shown in Figure 

4.3b, all dose values were normalized to the dose at 1.5 cm. 

 

The rapid growth of the absorbed dose at the interface with the front electrode is 

caused by the back scatter electrons produced during the interference of the beam 

with the electrode material.  For the electrodes simulated as being made of the two 

materials having the lowest and the highest atomic numbers (Z = 13 for aluminium, 

Z = 79 for gold), the relative dose peaked at values of 3% below and 72% above the 

reference dose in water, respectively.  While the photon beam crossed the 

electrode, the absorbed dose in these two simulations decreased rapidly to 32% and 

34% below the reference dose, respectively.  

 

The absorbed dose increased again in front of the second electrode, to 14% only 

below the reference dose for aluminium, and 28% above the same dose for gold.  A 

substantial dose decrease was observed while the photon beam crossed the back 

electrode, at levels of 31% below the reference dose for aluminium and 35% below 

for gold. 

 

In all four simulations the highest dose was of 72% above the reference, with the 

lowest reading dropping as low as 37% below the same reference value.  Deeper in 

the phantom (at 6 cm and more), the relative value of the absorbed dose stabilized 

at values between 19% and 28% below the reference. 

 

Detector parallel to beam direction 

 

As shown in Figure 4.4, in simulations with the detector positioned parallel to the 

beam, the differences between the relative doses for the different electrode 

materials are much smaller than the differences observed in the previous set of four 

simulations (with the detector perpendicular to the beam). 
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The maximum variation of the relative dose for the beam crossing throughout the 

entire detector was of 21%, between 2% and 23% below the reference dose for the 

gold and aluminium electrodes, respectively (including the noise levels induced by 

the reduced detector voxel dimensions).  This dose variation is well below the 

maximum relative dose difference of 109% calculated for the perpendicular detector 

between the highest relative dose of 72% above, and the lowest value of 37% below 

the reference. 

 

 

 

 

Figure 4.4 a) Percentage depth dose variation for different electrode materials with the  

detector orientated parallel to the beam  

b) Magnification of the region of interest 

 

Due to the parallel orientation, in these simulations the interface phenomenon is 

minimized.  The differences between relative dose values are reduced, with the 

interface effects caused by the different electrode material atomic numbers being 

very small.   

 

The dose through the detector in the parallel orientation presents a more stable 

trend than the dose through the perpendicularly positioned detector.  

a) b) 
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4.3.2 Comparison between simulated PDD and experimental data 

 

In this set of simulations the variation of the absorbed dose in the form of PDD for 

the CVD detector with four different electrodes was investigated.  Due to the large 

variations in the interface phenomena for the perpendicularly positioned detector it 

has been considered that the PDDs for this orientation were not worth to investigate.  

Therefore only PDDs for the parallel detector were studied. 

 

Comparison between simulated PDDs using the parallel orientated detector with 

different electrode materials at depths of 1.5 cm, 5 cm, 10 cm and 15 cm inside the 

water phantom, and the experimental data obtained with the waterproof ionization 

chamber are shown in Figure 4.5.  The results are presented as relative values 

normalized to their corresponding dose at 1.5 cm depth.   
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Figure 4.5 Comparison between simulated percentage depth dose obtained from the 
detector for different electrode materials, and the percentage depth dose 
obtained experimentally using the ionization chamber 
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Simulated PDDs of the CVD with copper and silver electrodes appeared between 

the PDDs for the CVD with electrodes of aluminium and gold.  The deviation 

patterns of the PDDs for the four different electrodes showed as a function of the 

different material atomic number.  Simulation data closest to the experimental 

values was obtained for the detector modelled with aluminium electrodes, while the 

gold electrodes presented the highest dose deviation. 

 

The differences in the PDDs for the gold electrodes were caused by the increased 

scatter contribution emerging due to the high atomic number of the electrode 

material, and implicitly by the interface phenomenon which is amplified due to the 

increase of the back scatter particle perpendicularly incident to the internal surfaces 

of the electrodes. 

 

Validation of the simulated PDDs shows that by avoiding the high atomic number 

material in the construction of the CVD diamond detector electrodes, the interface 

phenomena and scatter effects can be minimized.  Therefore, use of electrode 

materials of a low atomic number is recommended. 

 

4.3.3 Comparison between simulated dose profiles and 

experimental data 

 

As shown in Figure 4.5, previous simulations indicated that the aluminium 

electrodes detector would produce the results closest to the experimental data 

measured with the ionization chamber. 

 

In this section, dose profiles at different depths were investigated by running three 

more sets of simulations using the detector with aluminium electrodes.  In each set, 

the detector orientated parallel to the beam was located in seven different positions 

in the (XY) plane, at depths of 1.5 cm, 5 cm, and 10 cm inside the water media.  The 

results are shown in Figure 4.6.  
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Figure 4.6 Comparison between simulated dose profiles and experimental data for 
detectors simulated at depths of 1.5 cm, 5 cm, and 10 cm inside the water 
phantom 

 

Simulated data at the maximum distance from the centre of the beam (-50 mm) is in 

good agreement with the dose measured in each of the three experiments.  As the 

distance from the detector to the centre of the beam decreases, the simulated dose 

is slightly overestimated in the region between -49 mm to -40 mm, with the highest 

variation at -45 mm.   

 

The small differences between the simulated data and the experimental results are 

attributed to the very small volume of the detector placed in the water phantom 

modelled with relatively large voxel size.  As shown in Chapter III, for the same 

number of histories in a setup with two different voxel dimensions the uncertainty of 

the calculated dose in the small voxel will be prominent. 
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Even though there are some variations of the simulated doses with respect to the 

experimental data as a whole, the simulations in each of the three depths were in 

good agreement with the experimental profiles. 

 

4.4 Summary 

 

It was found that the orientation of the detector (parallel, or perpendicular to the 

beam) has an important influence on the simulation output due to the interface 

phenomena at the face of the electrode.  Parallel orientation results in better 

readings, with less perturbation. 

 

At the same time, electrodes made of low (close to water) atomic number materials 

will provide precise readings, as the interface phenomena through these materials is 

smaller than the phenomena developed through higher atomic number electrodes.  

 

Scatter will also lead to higher dose deviations in high atomic number materials.  As 

shown in Figure 4.5, at a depth of 10 cm, a 5% higher dose was obtained for the 

gold electrodes, when compared to those made of aluminium.  

 

Data for simulations with the parallel detector at 10 cm depth (Figure 4.6) showed 

the best agreement with the experiments. 



Chapter V  Conclusions and Future Work 
 

  73 

 

 

 

 

 

 

 

 

 

 

 

Chapter V 
 

 

Conclusions 
 

 

The purpose of this research was to simulate a small dimensions CVD diamond 

detector for radiation dosimetry.  

 

The physical characteristics of the detector (overall size, electrode thickness and 

materials, and orientation relative to the beam), as well as EGSnrc code transport 

parameters (the cross section data, the boundary crossing algorithm, and the 

HOWFARLESS algorithm) were varied to see what influence they have on the 

measurements of the dose through the detector and in areas adjacent to it.  

 

The research was centred first on understanding what the capabilities of the 

DOSXYZnrc MC code are, in terms of the simulation of very small voxels.  The 
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results revealed a high variation of the absorbed dose at the level of the detector 

(with small voxels) for water voxels only and default EGSnrc parameters.  

 

In order to reduce these variations, the effect of different combinations of EGSnrc 

parameters was studied.  For a given number of histories, the best combination was 

found to be the 521icru.pegs4 cross section data, EXACT boundary crossing 

algorithm, with the HOWFARLESS option turned “off”.  This combination was used 

in further simulations to validate the model.  It was during this work that a MC 

method was developed for the optimum EGSnrc parameters which will yield 

accurate simulation results in relatively low time frames, and which is technically 

viable for the use of actual computer technology.  

 

For validation, data from simulations was compared with data from work published 

in the literature.  During this research work interface phenomena were studied for 

finite detector geometry, while simulations done previously by others used to study 

infinite slab geometry detectors.  Good agreement was found between the 

calculated doses in both geometries.   

 

Simulation results were also validated against commissioning data.  The dose levels 

calculated during the simulations were found to be in good agreement with the 

levels measured experimentally.  

 

In this research a comparative study was done for the interface phenomena effects 

for detectors orientated in two different positions, perpendicular and parallel to the 

direction of the radiation beam.  This was done for detectors with electrodes made 

of aluminium, copper, silver and gold.  It was found that the amplitude of the 

interface phenomena for the detector perpendicular to the beam is considerably 

higher than the phenomena for the detector orientated parallel to the beam direction, 

and that the lowest dose gradient in the active area of the detector corresponds to 

the electrode material having the lowest atomic number. 
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It can be advised that in order to avoid the occurrence of high interface phenomena 

and high dose gradients in the active area of the detector, the electrodes should be 

made of low (close to water) atomic number materials, and that for improved dose 

evaluation the detector should be positioned parallel to the beam direction.  

 

MC code was successfully used in the investigation of the small size radiation 

detector physical and dosimetrical properties.  The work proved that the MC method 

is an ideal modelling tool for the design of reduced dimensions dosimetry devices, 

and is part of the theoretical base for their future design.  Construction and use of 

the detectors will be partially based on the results presented herein.  

 

5.1 Future Work 

 

Having validated the model, future CVD diamond detector work should include: 

 

1. Simulation of the detector for different electrode thicknesses, by keeping the 

same thickness for the active area. This will give a better understanding of 

the influence of the electrode thickness on the absorbed dose. 

 

2. Energy dependency simulations for the investigation of the detector interface 

phenomena at different photon beam energies, i.e. 10 MV and 18 MV.  

 

3. Simulation of the detector for different diamond layer thicknesses, to 

investigate the influence this has on the absorbed dose readings. 

 

4. Modelling of the detector with geometry closer to its real configuration, i.e. 

with the detector including encapsulation and electrical connections.  

 

5. Angular dependency investigations, by simulating the detector at different 

(other than parallel and perpendicular) orientations relative to the beam. 
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6. Dose linearity investigations for different rate values (50 MU/min., 100 

MU/min., 150 MU/min., 200 MU / min. and 250 MU/min.). 

 

7. Investigations of the detectors with smaller electrodes. 

 

8. Simulations for the investigation of the detector in small radiation fields. 

 

9. Study of the detector for different doping of the carbon film. 
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