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ABSTRACT 

Following vestibular schwannoma excision, a subset of cases has been reported in which 

hearing is present immediately after surgery, but is lost in the early postoperative period. 

Such cases have rarely been reported, and the postoperative audiological data collected from 

patients in these cases lacks the time resolution necessary to determine the pathophysiological 

mechanism responsible for the pattern of hearing loss. The present study aimed to more 

clearly define delayed hearing loss by collecting detailed data documenting changes in 

behavioural and electrophysiological auditory responses following vestibular schwannoma 

surgery. In particular, we aimed to use this data to determine the time course of changes in 

auditory function and to identify whether the site of impairment was cochlear or neural.  

Preoperative and daily postoperative monitoring of auditory function was performed in 19 

patients undergoing vestibular schwannoma excision via the retrosigmoid approach at 

Christchurch Public Hospital. The pre- and postoperative assessment battery included pure-

tone and speech audiometry, tympanometry, tone decay, distortion product otoacoustic 

emissions (DPOAEs), and auditory brainstem response (ABR) measurement. Intraoperative 

ABR was performed in four cases in which clear preoperative waveforms were present. 

Transtympanic electrocochleography (ECochG) was carried out if wave I was lost in the 

early postoperative period.  

Thirteen of the 19 patients suffered immediate anacusis following surgery and six had 

measurable hearing postoperatively. The behavioural and electrophysiological data collected 

in each case is discussed with regard to the likely pathophysiology of pre- and postoperative 

hearing loss.  

No patients demonstrated behavioural evidence of delayed hearing loss, however a gradual 

deterioration of ABR in the early postoperative period was observed in Case 16. ECochG and 

DPOAEs in this case indicated the presence of cochlear function although the patient 

presented with immediate postoperative anacusis in the ipsilateral ear. These results are 

consistent with postoperative retrograde degeneration of the cochlear nerve.  
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1.      INTRODUCTION 

 

The characteristics of the typical patient presenting with a vestibular schwannoma have 

changed as advances in diagnosis have enabled the detection of very small extracanalicular 

and intracanalicular tumours (Dornhoffer, Helms, & Hoehmann, 1995). As a result of 

diagnostic techniques such as magnetic resonance imaging (MRI) with gadolinium contrast, 

patients are presenting with smaller tumours and better preoperative hearing. Intraoperative 

facial nerve monitoring has also improved postoperative nerve function and is now 

considered a standard of care for vestibular schwannoma surgery (Glasscock, Hays, Minor, 

Haynes, & Carrasco, 1994). These changes have resulted in a shift towards attempting to 

preserve residual hearing where possible. However, the most common outcome for patients 

that undergo vestibular schwannoma excision with attempted hearing preservation is anacusis 

on the affected side (Gardner & Robertson, 1988; Kaylie, Gilbert, Horgan, Delashaw, & 

McMenomey, 2001; Lassaletta, Fontes, Melcon, Sarria, & Gavilan, 2003; Magnan et al., 

2002; Moffat, da Cruz, Baguley, Beynon, & Hardy, 1999; Samii & Matthies, 1997). 

Postoperative anacusis following vestibular schwannoma excision may result from dissection 

of the cochlear nerve during surgery, or occur in the presence of anatomical preservation of 

the cochlear nerve  (Colletti, Fiorino, Carner, & Tonoli, 1997). Anacusis in spite of 

preservation of the cochlear nerve is thought to result from direct mechanical damage to the 

cochlea or cochlear nerve, or to the vascular supply of either structure (Colletti et al., 1997). 

In addition to reports of hearing preservation or immediate postoperative anacusis, there is a 

subset of cases reported in which hearing is demonstrated immediately postoperatively, but 

lost in the early postoperative period (Fahlbusch, Neu, & Strauss, 1998; Neu, Strauss, 

Romstock, Bischoff, & Fahlbusch, 1999; Palva, Troupp, & Jauhiainen, 1985; Strauss et al., 

2001; Strauss et al., 1991). Surgeons at Christchurch Public Hospital have provided anecdotal 

reports of this phenomenon of apparent preservation of hearing immediately after vestibular 

schwannoma excision, followed by a rapid hearing deterioration in the early postoperative 

period (P. Bird, personal communication, December 19, 2007).  

Intraoperative monitoring of electrophysiological responses has been used to identify patterns 

of responses correlated with delayed postoperative hearing loss (Neu, Strauss, Romstock, 

Bischoff, & Fahlbusch, 1999; Strauss et al., 2001; Strauss et al., 1991). Although this 
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intraoperative data offers some insights into the possible mechanisms of the pattern of 

hearing loss, postoperative electrophysiological and behavioural data documenting patterns of 

change in responses is rare. The absence of sufficiently detailed postoperative data limits the 

inferences that can be drawn from the extant literature regarding the likely pathophysiological 

mechanism of delayed hearing loss.  

The present study aimed to closely monitor patterns of responses from the cochlear and 

cochlear nerve intraoperatively and during the early postoperative period following vestibular 

schwannoma excision. Behavioural tests of auditory function were also used to monitor 

changes in hearing postoperatively. All assessments were also performed preoperatively to 

provide baseline data from which to assess the degree of change in responses following 

surgery. Documenting patterns of changes in electrophysiological and behavioural responses 

postoperatively provided detailed information regarding the time course of damage, the 

possible site(s) of impairment and the pathophysiological mechanisms responsible for hearing 

loss following vestibular schwannoma removal. In particular, we aimed to use the data 

collected to determine whether the site of impairment leading to delayed hearing loss is 

cochlear or neural. The determination of the cause(s) of early postoperative delayed hearing 

loss offers the possibility of improving surgical techniques or postoperative therapies to 

improve the rates of postoperative hearing preservation.    

 

1.1. The peripheral auditory pathway 

The anatomy of the afferent and efferent auditory pathways is critical in interpreting the 

cause of auditory dysfunction in cases of vestibular schwannomas. Therefore, an overview of 

the anatomy and physiology of the peripheral auditory system is provided here. 

 

1.1.1.      Afferent auditory transmission 

 

The first step in the afferent auditory pathway is the transmission of airborne vibrations 

through the external auditory canal to the tympanic membrane. Sound waves vibrate the 

tympanic membrane and pass through the middle ear, where they are converted from acoustic 

energy to mechanical energy. Movement of the stapes footplate at the oval window in the 

middle ear provokes a longitudinal wave in the cochlear fluids that causes a transverse 
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travelling wave on the basilar membrane (Von Bekesy, 1960). This wave propagates from the 

base to the apex of the cochlea, with the place of maximum displacement obtained at the base 

of the cochlea for high-frequency stimuli and at the apex for low-frequency stimuli. This 

tonotopic arrangement is the result of the structural characteristics of the cochlea, in 

particular the stiffness gradient along the basilar membrane (Von Bekesy, 1960). A schematic 

of the peripheral auditory system is shown in Figure 1. 

  

Figure 1. The peripheral auditory system. Sound waves travel through the external auditory canal and the 

middle ear to the cochlea. The cochlea performs mechanoelectrical transduction to create a signal that is 

transmitted to the brain via the cochlear nerve (adapted from 

http://www.virtualmedicalcentre.com/anatomy.asp?sid=29&title=Ear). 

 

Displacement of the basilar membrane causes a radial shearing of the outer hair cell (OHC) 

stereocilia, allowing an influx of potassium ions from the endolymph in the scala media into 

the hair cell (Pickles, 2008). Sound is an alternating stimulus that causes mechanically gated 

ion channels in the OHC stereocilia to open and close as the basilar membrane moves upward 

and downward. The alternating current (AC) of potassium ions into the cell results in an AC 

receptor potential which causes active contractions of the OHC, which acts to partially cancel 

the friction of the travelling wave, thereby improving hearing sensitivity and frequency 

selectivity for low intensity stimuli (Brownell, Bader, Bertrand, & de Ribaupierre, 1985; 

Dallos, 1992). The driving force for auditory transduction is the +95 mV endocochlear 

potential, which is generated by the stria vascularis, a highly vascular pumping epithelium in 

the lateral wall of the cochlea (Tasaki & Spyropoulos, 1959).  
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The inner hair cell (IHC) stereocilia do not touch the tectorial membrane and are believed to 

move due to fluid flow between the reticular lamina and the tectorial membrane caused by 

the movement of OHC cilia (Hu, Evans, & Dallos, 1999). Shearing of the IHC stereocilia 

results in a depolarisation of the IHC which triggers the release of glutamate and initiates an 

action potential in the primary afferent cochlear nerve fibres that innervate the IHCs (Pickles, 

2008).  

The afferent innervation of the cochlear consists of two distinct types of nerve fibres 

(Spoendlin & Schrott, 1989). Type I fibres are thick and myelinated fibres that constitute 90 

to 95% of all the afferent cochlear nerve fibres. These fibres innervate primarily the IHCs, 

with each IHC receiving innervation 20 to 30 type I fibres (Liberman, Dodds, & Pierce, 

1990) The remaining 5 to 10% of cochlear nerve fibres, termed type II fibres, are 

unmyelinated and therefore thinner in diameter than the type I fibres (Hurd, Hutson, & 

Morest, 1999). Type II fibres connect with the OHCs, with each nerve fibre typically 

connecting with multiple OHCs (Simmons & Liberman, 1988).  

 

1.1.2.    Efferent auditory transmission 

In addition to the afferent innervation, the cochlea receives an efferent input from the 

olivocochlear bundle. In comparison to the afferent auditory system, the anatomy of the 

efferent system has not been well defined and some ambiguity still surrounds its function. 

The efferent auditory pathway begins at the primary auditory cortex and association areas and 

follows a similar course as the afferent auditory pathway, (but in an opposite direction) 

through the medial geniculate body (Rasmussen, 1946, 1960). Upon leaving the brainstem, 

the efferent fibres proceed laterally around the vestibular nerve root and course with the 

vestibular fibres through the IAC to enter the cochlea via the habenula perforata (Liberman & 

Brown, 1986). The key component of the efferent system is the olivocochlear bundle (OCB); 

a complex of descending fibres that originates in the superior olivary complex (SOC) 

(Hashikawa & Kawamura, 1983). The OCB consists of two anatomical subsystems:  

The lateral olivocochlear system (LOC): 

The LOC fibres are thin, unmyelinated fibres arising from the lateral superior olive 

complex and its surrounding area. These fibres travel from the SOC, through the IAC to 
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enter the cochlea between its first and second turns and terminate on the dendrites of the 

type I nerve fibres beneath the IHCs, and to a much lesser extent, the IHCs themselves 

(Warr, 1980; Warr & Guinan, 1979). In humans, the LOC pathway to the cochlea is 

predominantly ipsilateral (Warr, 1980). 

The medial olivocochlear system (MOC): 

The MOC system consists primarily of myelinated fibres that are larger in diameter than 

the lateral efferent fibres (Warr & Guinan, 1979). The medial efferent pathway originates 

in medial, ventral, or peripheral olivary zones (Rasmussen, 1946; Warr, 1980) and is 

predominantly a crossed system, with approximately 60%-70% of the neurons crossing 

the brainstem to innervate the contralateral ear (Guinan, Warr, & Norris, 1983; Warr, 

1980, 1992). The crossed MOC fibres combine with the fibres in the LOC bundle and 

course to the contralateral cochlea. Once in the cochlea, the majority of the medial 

efferents synapse directly to the lower part of the OHCs (Kimura & Wersall, 1962).  

Although originally considered as principally an inhibitory system, recent evidence suggests 

that the efferent system is also involved in excitatory processes (e.g. Groff & Liberman, 

2003; Le Prell, Halsey, Hughes, Dolan, & Bledsoe, 2005; Le Prell, Shore, Hughes, & 

Bledsoe, 2003). The extant evidence therefore indicates that the efferent auditory system 

plays a role in modulating excitatory and inhibitory interactions within the auditory system 

(Musiek & Baran, 2007).  

Medial efferent activation via electrical stimulation inhibits auditory nerve action potentials 

evoked by brief sounds in a quiet background (Desmedt, 1962; Galambos, 1956). However, 

introducing masking noise to the contralateral ear activates the MOC pathway and has an 

excitatory effect on the auditory nerve (Dolan & Nuttall, 1988; Fex, 1962, 1963; Folsom & 

Owsley, 1987; Kawase & Liberman, 1993). The inhibitory effects of the medial efferent 

system result from a frequency-dependent reduction of the amplitude of mechanical vibration 

of the basilar membrane (Dolan, Guo, & Nuttall, 1997). Contralateral stimulation of the 

MOC pathways evokes changes in cochlear potentials by increasing the conductance of outer 

hair cells and changing current flows within the cochlea (Fex, 1967). The suppressive effects 

of the efferent system on the cochlea and auditory nerve may function to help decrease neural 

activity to protect the cochlea from damage by intense noise (Darrow, Maison, & Liberman, 

2007; Kujawa & Liberman, 1997; Maison & Liberman, 2000; Reiter & Liberman, 1995). 
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Selective disruption of the LOC system is difficult to achieve, therefore it has been more 

challenging to isolate the effects of the LOC system (Kujawa & Liberman, 1997; Liberman, 

1991). Recent evidence suggests that the LOC pathway comprises two functional 

subdivisions, capable of eliciting slow excitation or suppression of auditory nerve responses 

(Groff & Liberman, 2003). Several studies have indicated that the dominant result of 

destruction of the LOC pathway is a decrease in the amplitude of the auditory nerve 

compound action potential, indicating that the primary effect of LOC activation is excitatory 

(Le Prell et al., 2005; Le Prell et al., 2003). However, Darrow and colleagues recently found 

the opposite effect of selective LOC disruption in mice (Darrow et al., 2007). 

 

1.2.     The internal auditory canal and the vestibulocochlear nerve 

The ganglion cells of the cochlear nerve leave the cochlea through the habenula perforata, 

converge in Rosenthal‟s canal, and are gathered in a twisted bundle to form the trunk of the 

modiolus (Pickles, 2008). These bundled axons of the type I and type II afferent neurons 

form the cochlear branch of the eighth cranial nerve, known as the vestibulocochlear nerve. 

The cochlear nerve is partially myelinated, proximal to the habenula perforata (Spoendlin & 

Schrott, 1989). Like the cochlea, the cochlear nerve is organised tonotopically; high-

frequency fibres are located on the outside of the nerve trunk and low frequency fibres are in 

the core (Sando, 1965). The tonotopic arrangement of the cochlea and cochlear nerve is 

preserved throughout the auditory system (Romani, Williamson, & Kaufman, 1982). 

Functionally, the cochlear nerve relays information about the intensity, frequency, and timing 

of a sound to the brain (Ruggero, 1992).  

These cochlear and vestibular nerves exit the inner ear together through the internal auditory 

canal (IAC), located on the posterior surface of the petrous part of the temporal bone. The 

vestibular nerve, the second branch of the cochleovestibular nerve, consists of two branches; 

the inferior and superior vestibular nerves, and transmits balance information from the 

vestibular end organs of the inner ear to the brain (Baloh & Honrubia, 1990). The IAC also 

houses the seventh cranial (facial) nerve and the internal auditory artery (IAA), which 

supplies blood to the vestibulocochlear nerve and the cochlea. Four individual nerves exist 

only in the most lateral portion of the canal. The inferior and superior vestibular nerves 

combine into a single nerve approximately 1 to 2 mm from the falciform crest at the lateral 
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end of the IAC (Rubinstein, Sandberg, & Cajade-Law, 1996). The vestibular nerve and 

cochlear nerve fuse to form the vestibulocochlear nerve approximately 3 to 4 mm from the 

lateral end of the IAC (De Ridder et al., 2004; Spoendlin & Schrott, 1989). The efferent 

auditory fibres also constitute part of the vestibulocochlear nerve. 

The vestibulocochlear nerve in the human adult ranges in length from approximately 22 to 

26 mm (Møller, 2000). Jerger (1960) suggests that the vestibulocochlear nerve can be viewed 

as an auditory bottleneck because all auditory information being transmitted from the cochlea 

to the brain must travel through the vestibulocochlear nerve fibres. In the cochlea and beyond 

the vestibulocochlear nerve, activity is spread throughout the structure. Jerger (1960) 

suggests that this is why what appears to be slight damage to or compromise of the structure 

of the vestibulocochlear nerve may result in major auditory dysfunction in some patients.  

Within the IAC, the cochlear nerve is located beneath the facial nerve and adjacent to the 

vestibular nerves, as shown in Figure 2. The nerves within the IAC rotates ninety degrees 

clockwise as they approach the brainstem, therefore the spatial relationship between nerves 

changes as they course through the IAC. Most medially, the cochlear portion is located 

caudally with respect to the vestibular portion, and in the most lateral portion of the IAC the 

cochlear portion of the vestibulocochlear nerve is located anteriorly to the inferior vestibular 

nerve (Silverstein, Norrell, Haberkamp, & McDaniel, 1986).  

 

Figure 2. The normal anatomic relationship of the right internal auditory canal (from Wilson, Hodgson, 

Gustafson, Hogue, & Mills, 1992). 

As they leave the IAC, the  vestibulocochlear and facial nerves course through an anatomic 

space between the cerebellum and the pons, known as the cerebellopontine angle (CPA), to 
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enter the brainstem at the level of the cochlear nucleus on the latero-posterior aspect of the 

caudal pons (Pickles, 2008). At this point, neural impulses from the peripheral nervous 

system are conveyed to the central nervous system. 

 

1.3.     The vascular supply to the cochlea and vestibulocochlear nerve 

The vascular supply to the cochlea and vestibulocochlear nerve is a complex system that 

contributes to metabolism and fluid homeostasis in these structures (Axelsson & Ryan, 2001). 

The IAA constitutes the vascular supply for eighth cranial nerve, the cochlea, the vestibular 

system, and the facial nerve (Portmann, Sterkers, Charachon, & Chouard, 1975). As shown in 

Figure 3, the IAA branches either directly from the basilar artery or, more commonly, arises 

from the anterior inferior cerebellar artery (AICA), a branch of the basilar artery 

(Waddington, 1974). From the point of branching, the IAA proceeds into the inferior (caudal) 

half of the pons then courses laterally across the CPA and into the IAC (Axelsson & Ryan, 

2001; Sugita, Masutani, Moriguchi, Matsunaga, & Nakai, 1991; Waddington, 1974).  

Figure 3. Schematic drawing of the vascular supply to the labyrinth (from Baloh & Honrubia, 2001). 

Within the IAC, the IAA branches into the vestibular artery and into the common cochlear 

artery near the site where the cochlear nerve penetrates into the modiolus (Axelsson & Ryan, 

2001; Portmann et al., 1975). The common cochlear artery then gives rise to the spiral 

modiolar artery, which ascends spirally around the modiolus to primarily supply the apical 
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portion of the cochlea, and to the vestibulocochlear artery, which supplies the lower basal 

turn of the cochlea. The spiral modiolar and vestibulocochlear arteries progressively branch 

to form a network of arterioles that supply most of the cochlea. The main radiating arterioles 

emerge from the area of Rosenthal‟s canal, to supply the limbus, tectorial membrane, and 

organ of Corti. There is also a particularly extensive vascular network supplying the stria 

vascularis (Axelsson & Ryan, 2001). The amount of vascularisation is greater in the base than 

the apex of the cochlea, consistent with greater physiological activity of the cochlea at its 

base (Axelsson & Ryan, 2001). 

A detailed study of the vascular anatomy of the peripheral auditory system by Matsunaga, 

Kanzaki, and Hosoda (1996) confirmed the findings of Fisch, Dobozi, and Greig (1972) that 

the IAA and its main branches are typically found on the surface of the eighth cranial nerve 

within the IAC. In addition, Matsunaga and colleagues found that the main branch of the IAA 

was frequently found within the endoneurium of the cochlear nerve. The vestibulocochlear 

nerve has a dual vascular system consisting of extrinsic vessels and intrinsic microvessels, 

which are connected by anastomosing vessels (Axelsson & Ryan, 2001; Matsunaga et al., 

1996). The extrinsic vascular system consists of many arterioles and venules that run 

longitudinally along the outside of the sheath of vestibulocochlear nerve. The intrinsic 

microvascular system is contained within the endoneurium, and consists of many capillaries 

and postcapillary venules arranged in a longitudinal direction. The microvascular supply to 

the peripheral portion of the vestibulocochlear nerve consists of sparse and large 

microvessels, with many anastomoses, which represents an effective system for maintaining 

the ionic and osmotic balance of the endoneurial fluid (Matsunaga et al., 1996). In contrast to 

the peripheral portion, the microvasculature of the central portion of the cochlear nerve is 

sparse and irregularly distributed (Matsunaga et al., 1996). 

A disruption or alteration to the vascular supply of the peripheral auditory system is likely to 

damage and compromise the function of the tissue dependent on this blood supply (Reisser & 

Schuknecht, 1991). Vascular abnormalities, such as vessel occlusion, vasospasm, and 

haemorrhage can cause irreversible damage to the vestibulocochlear nerve and the cochlea 

(Baloh, 1995; Goodhill, 1979). Occlusion of the IAA or one of its main branches initially 

results in necrosis and eventually leads to ossification of the membranous tissue in the inner 

ear (Baloh, 1995). Temporary ischemia, caused by a disruption to the vascular supply to the 

cochlea or cochlear nerve, depending on its severity and duration, may cause permanent 
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damage to the nerve, or the inner ear structures (Perlman, Kimura, & Fernandez, 1959). In 

particular, reduced blood supply to the stria vascularis may result in compromise of the 

metabolic function of the organ of Corti (Martini & Prosser, 2003). The increased demand for 

blood supply at the basal end of the cochlea may make it more susceptible to damage 

following reduced blood flow than other portions of the cochlea (Axelsson & Ryan, 2001; 

Morawski et al., 2004). 

 

1.4.     Vestibular schwannomas 

Vestibular schwannomas are histologically benign tumours originating from the vestibular 

portion of the eighth cranial nerve. These tumours arise from the Schwann cells in the myelin 

sheath of the nerve (Sterkers & Bowdler, 1987). The incidence of vestibular schwannomas in 

the general population is approximately 0.9/100 000 annually (Tos, Charabi, & Thomsen, 

1999) and they account for approximately 80% of tumours of the CPA (Brunori, Scarano, & 

Chiappetta, 1997; Grey, Moffat, & Hardy, 1996). Clinical symptoms typically present 

between the ages of 40 and 60 years, and rarely appear in individuals before puberty 

(Schuknecht, 1993).  

The majority of vestibular schwannomas (95%) are unilateral (Moffat, Baguley, Von 

Blumenthal, Irving, & Hardy, 1994; Nestor, Korol, Nutik, & Smith, 1988). The exception is 

neurofibromatosis type II, which is an extremely rare condition of the nervous system 

resulting from a mutation in the NF2 gene on chromosome 22. The mutation in this gene 

typically results in unfettered cell proliferation, leading to multiple tumours, including 

bilateral vestibular schwannomas (Callan, Lasky, & Fowler, 1999; Da Cruz, Hardy, & 

Moffat, 2000; Nager, 1985).  

In most cases, the tumour grows within the IAC and gradually advances into the CPA as it 

enlarges (Perre, Viala, & Foncin, 1990). Therefore, the tumour consists of two portions: the 

intracanalicular portion, and an extracanalicular portion in the CPA, as depicted in Figure 4 

(Nager, 1985). Rarely, tumours are confined to the CPA, with no intracanalicular portion 

(Nager, 1985). As the vestibular schwannoma grows within the IAC it directly compresses 

the vestibulocochlear nerve, presumably causing degenerative changes to the nerve, and 

resulting in balance disturbance, and sensorineural hearing loss and tinnitus on the affected 

side (Perre et al., 1990; Selesnick, Jackler, & Pitts, 1993). By disrupting the IAA, a vestibular 
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schwannoma can also directly impair the cochlea. The tumour may press against the facial 

nerve causing facial numbness or weakness (Avezaat & Pauw, 1998). As the tumour grows 

larger it extends towards the brainstem and protrudes from the internal auditory canal into the 

CPA (see Figure 4).  

If the tumour continues to enlarge it will eventually grow into the pontomedullary junction of 

the brainstem, compressing the brainstem and cerebellum producing serious morbidity or, 

rarely, death (Kentala & Pyykko, 2001). Compression of the fourth ventricle may produce an 

increase in intracranial pressure and lead to an internal hydrocephalus (Nager, 1985). Due to 

their close proximity, a tumour growing within the CPA can also affect adjacent cranial 

nerves including cranial nerve V (trigeminal), IX (glossopharyngeal), X (vagus), and XI 

(spinal accessory) (Avezaat & Pauw, 1998). Vestibular schwannomas are typically slow 

growing lesions, with mean growth rates reported as 0.7 ± 1.4 mm per year (Battaglia, 

Mastrodimos, & Cueva, 2006). In a meta-analysis of published studies reporting the growth 

rate of untreated vestibular schwannomas, Battaglia and colleagues (2006) found that 82% of 

tumours grew less than 1 mm per year, whereas 18% grew 1 mm or more per year.  

MRI is now used as the standard diagnostic test for vestibular schwannomas (Stangerup et al., 

2004). Typically, patients are referred for MRI based on the presence of clinical symptoms. 

As schwannomas are benign tumours that respond poorly to classical chemotherapeutic 

Figure 4. A schematic depiction of a vestibular schwannoma growing within the IAC and expanding out 

into the CPA. In this case the brainstem is compressed by the tumour. The intracanalicular (IAC) portion of 

the tumour is outlined in red, and the extracanalicular or CPA portion of the tumour is indicated by the blue 

box  (adapted from http://www.neurosurgery.ufl.edu/Patients/acoustic.shtml). 
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regimes, tumour excision with microsurgery, stereotactic radiation, or conservative 

management with serial monitoring with MRI and audiometry are the current treatment 

options (Bird & MacFarlane, 2007). The morbidity and mortality associated with surgical 

tumour removal has diminished significantly with improvements in surgical techniques, 

postoperative care and intraoperative monitoring. Therefore, surgical excision is often the 

first choice for the management of vestibular schwannomas when symptoms are significant 

enough to reduce the advantages of watchful waiting (Battaglia et al., 2006). 

 

1.5.     Electrophysiological techniques 

In the present study, the primary methods used to objectively assess the functional status of 

the auditory system following vestibular schwannoma surgery were electrophysiological in 

nature; therefore a discussion of these techniques is warranted here. It is important to note 

that no electrophysiological technique can replace pure-tone audiometry as a measure of 

hearing sensitivity. Pure-tone audiometry is dependent on the status of the middle ear, 

cochlea, eighth cranial nerve, central auditory system, and auditory processing abilities 

(Vinck, Van Cauwenberge, Leroy, & Corthals, 1999). Thus, pure-tone audiometry offers a 

more comprehensive evaluation of hearing sensitivity than electrophysiological responses 

that do not reflect all of these elements collectively. It has been demonstrated that the absence 

or gross abnormality of electrophysiological responses, can occur in the presence of normal 

pure-tone thresholds (Legatt, Arezzo, & Vaughan, 1988). However, normal pure-tone 

thresholds do not guarantee normal hearing either, as demonstrated in cases of auditory 

neuropathy (Starr, Sininger, & Pratt, 2000). For this reason, speech discrimination testing to 

determine whether complex signals are processed to the point that they can be understood, is 

a necessary adjunct to measuring pure-tone thresholds. Electrophysiological methods of 

assessing auditory function must therefore be used in conjunction with behavioural tests to 

accurately assess a patient‟s hearing ability. 

 

1.5.1.      Auditory Brainstem Response 

The Auditory Brainstem Response (ABR) is currently the most commonly used technique to 

monitor auditory function during vestibular schwannoma surgery. The ABR is a non-invasive 
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and objective method of assessing the functional integrity of the cochlea and ascending 

auditory brainstem pathways (Beattie, Garcia, & Johnson, 1996).  

ABR is composed of seven voltage deflections occurring within 10 ms of an abrupt stimulus 

onset (Jewett, Romano, & Williston, 1970). These deflections are far-field representations of 

synchronous activity generated by the auditory nerve and subsequent fibre tracts and nuclei 

within the auditory brainstem pathways, in response to the onset of an acoustic stimulus 

(Hall, 2006). The most popular system of nomenclature is to label the positive voltage peaks 

with Roman numerals: waves I to VII (Jewett et al., 1970). Wave I arises from the distal 

portion of the auditory nerve in the cochlea, and wave II from the proximal portion of the 

auditory nerve as it enters the brainstem. Waves III to V are believed to be the complex sum 

of the activity of several nuclei in the auditory brainstem (Hall, 2006). Of the seven peaks, 

waves I, III, and V are sufficiently robust to be used clinically (Junius & Dau, 2005), as 

shown in Figure 5.  

 

Figure 5. The Auditory Brainstem Response (ABR) to click stimuli at increasing intensities in a normal hearing 

subject (from Gorga et al., 2006). 

Broadband acoustic stimuli, such as clicks, are commonly used to evoke ABR (Hall, 2006). 

There is also strong evidence that the „chirp‟ may become the stimulus of preference, due to 

its ability to generate larger amplitude responses by producing a synchronous response from a 

larger portion of the basilar membrane than the click (Dau, Wegner, Mellert, & Kollmeier, 

2000; Fobel & Dau, 2004). However, many commercially available evoked auditory response 
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measurement systems are not yet equipped with the chirp stimulus. Click stimuli have a rapid 

onset and broadband spectrum, therefore elicit a response from a large number of neurons 

almost synchronously and are likely to produce a robust response when measured from the 

scalp (Don & Kwong, 2002). Although the pure-tone audiometric threshold that the click-

evoked ABR threshold best correlates with is not certain, the majority of research agrees that 

the region most closely associated with ABR evoked by a moderately intense click is 2 kHz 

and above (Gorga, Kaminski, Beauchaine, & Jesteadt, 1988; Kulecki, Terlemez, Ciprut, & 

Akdus, 2007; Picton, Durieux-Smith, & Moran, 1994). More apical regions of the cochlea are 

activated by the click stimulus, but these regions do not usually contribute to the ABR due to 

the phase cancellation of activity generated from more apical regions of the cochlea by earlier 

activity from the more basal, high-frequency regions (Don & Kwong, 2002).  

The primary measurement parameters of ABR are the latency and amplitude of its peaks 

(Hall, 2006). Latency refers to the time interval between the stimulus onset and a particular 

peak of the waveform. Peak latencies are determined by a number of mechanical and 

physiologic processes, including the delay in the cochlea to the site of activation; the synaptic 

delay between the inner hair cells and the auditory nerve; and the neural conduction time and 

any intervening synaptic delays to the point in the brainstem pathway responsible for the peak 

activity (Don & Kwong, 2002). In addition, factors including the transducer type, stimulus 

intensity, and gender can affect the absolute latency of ABR waves in young, normal hearing 

adults.  In normal hearing young female subjects tested using click ABR at 70 dB SL, the 

latency of wave I should occur approximately 1.6 ms after stimulus onset, wave III at about 

3.7 ms and wave V at approximately 5.6 ms (Hall, 2006). The absolute wave latencies for 

males are approximately 0.3 ms longer than those recorded from female subjects (Hall, 

2006). Due to the effects of the aforementioned factors thar can influence wave latencies, 

absolute latencies should be used with caution in inter-patient comparisons and interaural 

comparisons of both absolute latencies and interpeak intervals are considered more robust 

measures of retrocochlear status (Hall, 2006). An interaural latency difference or interaural 

interpeak interval difference (between waves I-III, III-V, or I-V) of 0.2 ms or greater is 

indicative of retrocochlear pathology (Selters & Brackmann, 1977).  

The amplitude of an ABR waveform is defined as the voltage difference between a peak and 

its subsequent trough. The amplitude of a given waveform reflects the amount of 

synchronous neural activity contributing to the response, and therefore is determined by the 
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amplitude of responses from individual neurons, the number of neurons responding to the 

stimulus, and the degree of synchronisation of the responding neurons (Don & Kwong, 2002; 

Don, Ponton, Eggermont, & Masuda, 1994). ABR amplitude rarely exceeds 1.0 μV, therefore 

interference or artefact may seriously interfere with, or preclude, accurate identification of 

ABR components (Don & Kwong, 2002). In particular, ABR can be negatively affected by 

the presence of large amplitude, low-frequency artefact, usually related to patient movement, 

or small amplitude, high-frequency electrical or myogenic artefact. Conventional signal 

averaging is used to extract and enhance auditory evoked responses embedded within 

background noise (Hall, 2006).  Amplitude can be an unreliable diagnostic measure, as it is 

highly influenced by between-subjects factors such as electrode placement, EEG activity 

level, and muscle artefact (Don & Kwong, 2002). Within-subject amplitude measures may 

also be affected by variation in levels of background noise and electrical interference (Don & 

Elberling, 1994). 

 

1.5.2. Electrocochleography 

Electrocochleography (ECochG) is a method of recording the auditory evoked potentials of 

the cochlea and auditory nerve (Ferraro, Best, & Arenberg, 1983). ECochG provides 

information on a more peripheral part of the auditory pathway than ABR, and is used to 

record synchronous neural activity generated in response to sound stimuli by the cochlea and 

the distal portion of the cochlear nerve (Hall, 2006). ECochG is particularly useful in 

evaluating cochlear and cochlear nerve function because it is comprised of three distinct 

potentials, as shown in Figure 6: the cochlear microphonic (CM), the summating potential 

(SP), and the compound action potential (CAP) (Ferraro et al., 1983; Hall, 2006; Lenarz & 

Ernst, 1992). The CM reflects OHC function, whereas the CAP reflects activity of the distal 

portion of the cochlear nerve, therefore analysis of the ECochG makes it possible to 

distinguish between cochlear and neural sites of impairment. The neural response that is 

measured in ECochG occurs within the first two to three milliseconds following the 

presentation of an abrupt auditory stimulus, whereas the hair cell components last for the 

duration of stimulus presentation (Hall, 2006). The ECochG action potential reflects the 

neuronal activity of only the most distal part of the cochlear nerve therefore is poorly 

sensitive to disturbances to the proximal part of the cochlear nerve.  
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The cochlear microphonic (CM) is an alternating current (AC) electrical potential 

that reflects the instantaneous displacement of the OHC stereocilia (Patuzzi, Yates, & 

Johnstone, 1989). The CM represents the summation of the responses from a large 

number of OHCs from across the basilar membrane, with a small contribution from the 

IHCs (Chertoff, Amani-Taleshi, Yuqing, & Burkard, 2002). The frequency response of 

the CM mimics that of the stimulus, and the amplitude increases linearly with stimulus 

intensity up to moderate levels, then saturates in response to higher intensity stimuli 

(Dallos, 1973). 

The summating potential (SP) is a sustained direct current (DC) response that 

reflects the asymmetry of the IHC receptor potential (Tasaki, Polley, & Orrego, 1954). 

Like the CM, the SP reflects the stimulus waveform, however in the case of the SP a 

rectified, DC version of this pattern more representative of the stimulus envelope is 

displayed (Dallos, Schoeny, & Cheatham, 1972). The polarity of the SP is determined 

by an interactive effect between stimulus parameters and the location of the recording 

Figure 6. The human electrocochleogram evoked by click stimuli. The top trace displays responses to 

rarefaction (R) and condensation (C) polarity clicks. The middle trace shows the addition of R and C responses, 

which enhances the Summating Potential (SP) and Action Potential (AP). Subtracting R and C responses 

(bottom trace), enhances the Cochlear Microphonic (CM) (from ASHA, 1988, based on data from Coats, 1981). 
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electrode (Dallos et al., 1972; Durrant, Wang, Ding, & Salvi, 1998; Tasaki et al., 1954; 

Whitfield & Ross, 1965). 

The compound action potential (CAP) represents the summed response of the 

synchronous firing of afferent auditory nerve fibres in the distal part of the cochlea 

nerve. The CAP is the first neural response and is made up of three components, N1, 

P1, and N2. N1 represents the major component of the CAP at suprathreshold stimulus 

intensities and is indicative of the functional status of the distal cochlear nerve, but not 

of the central part of the nerve where it enters the brainstem (Lambert & Ruth, 1988). 

Recent studies have provided evidence suggesting that the cochlear CAP is a 

stationary potential generated across the dura mater (Brown & Patuzzi, 2008).  

The most effective method of obtaining and measuring the stimulus-related potentials of the 

cochlea and vestibulocochlear nerve is to position the recording electrodes as close as 

possible to the generators of the response. When recording the ECochG response, the 

recording electrode is located i) on the round window, ii) on the promontory wall of the 

middle ear or iii) in the external ear canal. The most frequently used invasive ECochG 

electrode is the transtympanic needle, which is generally placed on the promontory wall of 

the middle ear, near the round window niche (Ruth, Lambert, & Ferraro, 1988). This 

technique produces ECochG recordings that are generally very robust and stable, due 

primarily to the magnitude of the AP, which when recorded with the transtympanic electrode 

is approximately 20 to 40 µV at higher stimulus intensities and can typically be observed 

down to stimulus levels approximating hearing threshold (Ruth et al., 1988).  

Measures of component amplitude and latency are used to interpret the ECochG. Component 

magnitudes are the most commonly analysed parameter, and can be measured from a single 

point or a baseline reference. Controversy exists regarding which is the best technique for 

determining component amplitude. The single point method is often preferred for its 

simplicity (Ferraro & Durrant, 2002). In this method, the SP and CAP measurements are 

made from their leading edge, from peak to trough. However, the single point method may be 

subject to bias from noise peaks, whereas the baseline reference method avoids this limitation 

(Ferraro & Durrant, 2002). The CM is often large and difficult to separate from stimulus 

artefact, therefore it may obscure or interfere with the recording and measurement of the SP 

and CAP. Because the CM follows the polarity of a click stimulus, summing or averaging the 
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CM response to stimuli of alternating polarity can be used to cancel out the CM and eliminate 

the interference of CM in recording the SP and CAP (Yoshie, 1971).  

N1, the first and largest of the CAP peaks, is the same response as wave I of the ABR (Møller 

& Jannetta, 1983). As with ABR, the CAP shows reductions in amplitude and latency 

prolongation in response to reductions in stimulus intensity at suprathreshold levels (Hall, 

2006). ECochG is typically recorded with the electrode placed close to the tympanic 

membrane or the round window of the cochlea, therefore the amplitude of the CAP is 

significantly larger compared to Wave I of the ABR recorded from earlobe or mastoid 

electrodes (Bauch & Olsen, 1990; Ferraro & Ferguson, 1989). The enhancement of ABR 

wave I allows visual detection of the response at lower intensities and, in cases of cochlear 

dysfunction, may allow identification of a wave I that is absent from the ABR (Lenarz & 

Ernst, 1992; Schlake et al., 2001). 

 

1.5.3.      Otoacoustic emissions 

Otoacoustic emissions (OAEs) are acoustic signals generated in the cochlea and recorded in 

the ear canal. OAEs are believed to reflect the electromotile activity of the OHCs, therefore 

their measurement constitutes are an objective non-invasive technique for assessing the 

functional status of the cochlea, and in particular, the OHCs (Brownell, 1990; Kemp, 1978). 

OAEs will not be affected by damage restricted to the afferent neurons of the cochlear nerve, 

but may be affected by disturbances to the efferent neurons, which modulate cochlear 

processes, including OHC motility (Guinan, 2006).  

There are several techniques in current clinical use to elicit and record OAEs. Distortion 

product otoacoustic emissions (DPOAEs) are low-intensity sounds emitted by the cochlea in 

response to the simultaneous presentation of two sinusoidal primary tones of different 

frequencies; f1 and f2. DPOAEs occur because the normally functioning cochlea is a nonlinear 

system, with a byproduct of this being distortion. To record DPOAEs, the primary tone 

levels, level difference, and frequency ratio are held constant while the primaries are changed 

in frequency. Sound in the ear canal in response to the presentation of the primary tones is 

recorded, and a spectral analysis of the recording is performed. DPOAEs evoked by f1 and f2 

occur at predictable frequencies that are mathematically related to the frequencies of the 

primaries (Moulin, Bera, & Collet, 1994). The largest amplitude response occurs at 2f1-f2, and 
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the presence of acoustic activity at this frequency is considered to reflect OHC function at the 

frequency equal to the geometric mean of the primary tone frequencies (Moulin et al., 1994). 

The most common method of analysis in clinical practice is to plot DPOAE level as a 

function of f2 frequency, to provide an estimation of OHC function at that frequency. 

DPOAEs have been shown to perform better at predicting the lower and upper frequency 

boundaries of the interval with hearing loss, compared with another method of recording 

OAES; transient evoked otoacoustic emissions (TEOAEs) (Avan & Bonfils, 2005). 

The parameter used for clinical detection of hearing loss is DPOAE signal to noise ratio 

(SNR), as it is considered more correlative with hearing loss than DPOAE amplitude at most 

frequencies (Gorga et al., 1997). In people with normal hearing, DPOAEs typically have a 

SNR of greater than 5 dB (Hall, 2000), however OAEs are generally not present, or are 

significantly reduced, when the level of sensorineural hearing loss exceeds 40 to 50 dB HL 

(Gorga et al., 1997; Harris, 1990). The reliability, specificity, and sensitivity of OAEs have 

been found to be high, with Gorga, Neely, & Dorn (1999) finding sensitivity approached 

100% for participants with sensorineural hearing loss greater than 40 dB HL at the frequency 

being measured. It is, however, important to note that although OAEs can reliably distinguish 

ears with normal hearing from ears with various degrees of hearing loss, they are not yet able 

to provide an accurate measure of hearing level or the degree of hearing loss in an individual 

ear (Gorga, Neely, Dorn, & Hoover, 2003).  

OHCs, and therefore OAEs, are highly vulnerable to hypoxia and ischemia (Mom, Telischi, 

Martin, & Lonsbury-Martin, 1999; Rebillard & Lavigne-Rebillard, 1992; Schmiedt & 

Adams, 1981; Widick, Telischi, Lonsbury-Martin, & Stagner, 1994). By inducing a 

temporary blockage to the IAA of rabbits, Widick and colleagues found that DPOAE 

amplitudes were highly sensitive to even temporary interruptions of cochlear blood flow 

(Widick et al., 1994), therefore transitory changes in DPOAEs may act as early warning signs 

for vascular compromise of cochlear function. Phase changes to DPOAEs may provide more 

real-time information on cochlear function, with evidence showing phase changes to 

DPOAEs within 1-5 seconds of IAA compression in rabbits (Telischi, Stagner, Widick, 

Balkany, & Lonsbury-Martin, 1998). 

DPOAEs may provide valuable information postoperatively on the cause of hearing loss in 

the presence of an intact cochlear nerve. It is hypothesised  that in some patients cochlear 

circulation becomes compromised during surgery, thus measuring DPOAEs in patients 
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postoperatively may provide useful information about the contribution of cochlear versus 

neural sources to the hearing impairment (Telischi, Roth, Stagner, Lonsbury-Martin, & 

Balkany, 1995). At present, a detailed analysis of postoperative DPOAE levels following 

vestibular schwannoma excision has not been published. 

 

 

1.6.     Preoperative hearing 

A progressive, either unilateral or asymmetric sensorineural hearing loss is found in up to 

94% of individuals with vestibular schwannomas; however, the majority of these individuals 

have some degree of measurable hearing (Harner, Fabry, & Beatty, 2000; Jackler, 2000; 

Kentala & Pyykko, 2001; Selesnick et al., 1993). Approximately 10% of patients report a 

sudden hearing loss on the tumour side (Hashimoto, Toshima, & Sakaurada, 1991; Pensak, 

Glasscock, Josey, & Jackson, 1985). High-frequency sensorineural hearing loss in the 

affected ear is the most common presenting audiometric configuration in vestibular 

schwannoma patients (Harner et al., 2000). This may be because most tumours approach the 

outside of the cochlear nerve first, therefore, due to the tonotopic arrangement of the nerve, 

the high-frequency fibres are initially compromised. In addition, the basal portion of the 

cochlea, and thus hearing at high frequencies, has also been demonstrated to be more 

vulnerable than more apical regions to disruptions of the vascular supply to the cochlea 

(Kimura & Perlman, 1958). Controversy currently exists regarding what constitutes 

serviceable hearing, however it is most commonly defined by the „50/50 rule‟ as a pure tone 

average (PTA) at 0.5, 1 and 2 kHz of less than or equal to 50 dB HL with a speech 

discrimination score of 50% or more (Brackmann, Owens, & Fayad, 2001; Gardner & 

Robertson, 1988). This definition is in agreement with the American Academy of 

Otolaryngology – Head and Neck Surgery (AAO-HNS) recommendations for classification 

of hearing following vestibular schwannoma surgery (AAO-HNS, 1995). These guidelines 

classify hearing as A, B, C or D, based on PTA and maximum speech discrimination scores. 

Classes A and B correspond to a PTA of no greater than 50 dB HL at 0.5, 1, 2 and 3 kHz, and 

a speech discrimination score of at least 50% (AAO-HNS, 1995).  

The ABR is abnormal in approximately 90% of patients with lesions of the eighth cranial 

nerve (Selters & Brackmann, 1977). Vestibular schwannomas typically cause prolonged 
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absolute latency values of all waves beyond wave I. This latency shift results in abnormally 

long I-V and I-III inter-wave intervals (see Figure 7). However, in subjects with a cochlear 

component to their hearing loss, wave I of the ABR may be reduced, distorted or absent 

regardless of the presence or absence of an identifiable wave V (Cashman & Rossman, 1983; 

Hyde & Blair, 1981). In addition, abnormally small peak amplitudes or absent waveforms are 

often seen in patients with vestibular schwannomas. These findings have been attributed to 

the tumour exerting pressure on the cochlear nerve at some point along its length leading to 

delays in neural conduction time and/or disrupting neural synchrony by slowing or blocking 

the conduction of action potentials along the axon (Badie, Pyle, Nguyen, & Hadar, 2001; 

Lightfoot, 1992). It is also possible that in some cases, invasion of the tumour cells into the 

nerve causes the reduction in the number of functional nerve fibres (Matsunaga, Kanzaki, & 

Igarashi, 1995). The disruption of neural synchrony caused by vestibular schwannomas also 

results in discrepancies with greater deficits in speech recognition thresholds than would be 

predicted based on pure-tone thresholds (Morlet, Dubreuil, Duelaux, & Ferber-Viart, 2003; 

Van Dijk, Duijndam, & Graamans, 2000).  

 

 

 

 

Figure 7. ABR traces from the right ear of a subject who underwent repeated ABRs over a 3 year period 

because of a family history of bilateral acoustic tumours. A small vestibular schwannoma was detected using 

enhanced CT scanning in 1983, around the time of the around the time of the third trace shown above. Note the 

progressively longer wave I-V interval as the tumour increases in size and the loss of amplitude of waves II and 

III (from Josey, 1987). 
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While the precise pathophysiology of the hearing loss caused by vestibular schwannomas is 

unknown, evidence suggests that vestibular schwannomas can have both neural and cochlear 

effects on hearing (Gouveris & Mann, 2004). The cause of noncochlear hearing loss is 

thought to be direct pressure on the cochlear nerve and its vasculature (Telischi et al., 1995). 

A study by Lapsiwala, Pyle, Kaemmerle, Sasse, & Badie (2002) investigated preoperative 

intracanalicular pressure (ICaP) in patients with vestibular schwannomas by inserting a 

pressure microsensor into the IAC before any tumour manipulation. These measurements 

demonstrated a direct correlation between ICaP and ABR wave V latency, indicating the 

neural component of the hearing loss in these patients may, at least in part, be the result of the 

pressure on the cochlear nerve from tumour growth within the IAC. Further evidence for this 

theory was provided by Forton, Cremers and Offeciers (2004) who conducted histological 

examinations of en-bloc removed vestibular schwannomas with evidence of cochlear nerve 

ingrowth. No significant differences were found between the clinical presentation of these 

patients and the presentation of patients documented in previous studies reviewed by the 

authors (Brackmann et al., 2000; Thomsen & Tos, 1988; Van Leeuwen, Cremers, Thewissen, 

Harhangi, & Meijer, 1995). Forton et al. (2004) assumed that these previous studies included 

cases that did not demonstrate ingrowth into the cochlear nerve. The authors interpret the 

absence of a difference between patients with and without ingrowth into the cochlear nerve as 

support for the theory that preoperative hearing impairment in vestibular schwannomas 

patients is mainly the result of compression on the vessels of the cochlea and/or on the 

cochlear nerve, rather than the degree of invasion of tumour cells into the nerve. Matsunaga 

and Kanzaki (2000) morphologically examined microvessels and nerve fibres in the 

intracanalicular portion of eighth nerve specimens attached to vestibular schwannomas. They 

found frequent mild to moderate abnormalities in myelin sheaths, and occasional 

endoepithelial hyperplasia and hypertrophy, consistent with a slight to moderate reduction of 

endoneurial blood flow in the nerves. The authors propose that the resultant ischemic 

condition in the eighth nerve is a cause of the eighth nerve conduction block in vestibular 

schwannomas. 

Cochlear dysfunction has also been reported in 57-100% of vestibular schwannoma cases in 

the literature (Noguchi, Komatsuzaki, & Nishida, 1998; Prasher, Tun, Brookes, & Luxon, 

1995; Telischi, 2000; Yokoyama, Nishida, Noguchi, & Komatsuzaki, 1999). Cochlear loss 

presumably results from the tumour restricting the vascular supply of the organ of Corti due 

to pressure exerted on the IAA, leading to cochlear atrophy (Gouveris & Mann, 2004). 
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Histological studies of the temporal bones of patients with unoperated vestibular 

schwannomas have provided definitive evidence of degeneration of cochlear structures. 

These investigations have documented significant degeneration of the hair cells, the stria 

vascularis, and the spiral ligament in the cochleae of vestibular schwannoma patients (De 

Moura, 1967; Eckermeier, Pirsig, & Mueller, 1979; Mahmud, Khan, & Nadol, 2003; Suga & 

Lindsay, 1976). 

DPOAEs are likely to be absent for subjects with a moderate hearing loss or worse, therefore 

recording the CAP and CM may be necessary to adequately assess cochlear function. Studies 

on animals have shown that vascular occlusion or cochlear nerve compression affected the 

spiral ganglion cells more in the basal turn of the cochlea than other portions (Kimura, 1986). 

Thus, a disruption to microcirculation by compression or obstruction of the cochlear nerve 

and its vascular supply can be expected to affect the high frequencies to a greater degree. 

This provides an alternative or, at least, supplementary explanation for the high frequency 

hearing loss that typically presents in vestibular schwannoma patients.  

There is potentially a contribution of the cochlear efferent system to cochlear function and 

tumour-related hearing loss in cases of vestibular schwannoma (Prasher et al., 1995). The 

vestibular nerve is the carrier of the efferent fibres to the cochlea and given that vestibular 

schwannomas arise from the vestibular nerve, disruption of the efferent fibres during tumour 

growth is likely (Ferguson, O'Donoghue, & Owen, 2001). Studies of the efferent system in 

patients with tumours of the CPA suggest that neural compression by the tumour disrupts the 

medial efferent control of the basilar membrane of the tumour ear (Ferguson et al., 2001; 

Maurer, Hinni, Beck, & Mann, 1995). Prasher et al. (1995) found that in 11 vestibular 

schwannoma patients, all patients demonstrated a reduction in the contralateral suppression of 

OAEs on the side of the tumour. The authors postulate that the loss of efferent control of 

active mechanical tuning of the cochlea may lead to loss a of frequency selectivity in the 

early stages of tumour growth and later, a loss of sensitivity (Prasher et al., 1995). 

Telischi et al. (1995) describe three distinct types of DPOAE activity associated with 

vestibular schwannomas: cochlear, noncochlear, and mixed effects. The majority (59%) of 

tumour ears studied showed cochlear effects, indicating that DPOAEs were reduced from 

normal levels in a manner that was consistent with the associated diminished hearing. 

Approximately 30% of subjects demonstrated a noncochlear relationship between DPOAE 

and hearing levels, defined as DPOAEs that are more robust than expected from the 
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corresponding hearing thresholds. DPOAE levels for the noncochlear group tended to be 

similar for the tumour and nontumour ears whereas corresponding hearing thresholds for the 

tumour ears were about 30-40 dB worse than the nontumour ear. “Mixed” DPOAE patterns 

were described for ears that had both cochlear and noncochlear patterns present in the same 

ear at different DPOAE (and respective pure-tone) frequencies. Further evidence for the 

presentation of mixed cochlear/neural hearing loss in vestibular schwannomas patients was 

provided by Morlet et al. (2003). In their study of 65 patients Morlet et al. showed that ABRs 

and TEOAEs can both be normal or abnormal or either one of the tests can be impaired. 

Collectively, these findings indicate that depending on the location and size of the lesion, 

vestibular schwannomas can lead to different types of auditory impairment caused by a 

progressive compression of the cochlear nerve and/or the vascular supply of the peripheral 

auditory system.  

 

1.7.     Tone decay 

Tone decay is a reduction in the ability to perceive a continuous tone presented at or above 

hearing threshold (Carhart, 1957; Thornton & Coleman, 1975). People with no otologic or 

neurologic abnormalities typically do not perceive a significant reduction in the loudness of a 

continuously presented tone over time. In some cases of retrocochlear hearing loss, the 

loudness of the tone progressively decreases until it becomes inaudible. This “tone decay” is 

a symptom generally associated with a vestibular schwannoma, and previous studies have 

found abnormal adaptation of 10 to 30 dB in patients with known vestibular schwannomas 

(Gerull, Morwinski, & Thoma, 1982; Hood, 1955; Morales-Garcia & Hood, 1972; Olsen & 

Noffsinger, 1974). 

The Carhart tone decay test (Carhart, 1957) is used to assess the integrity of the auditory 

pathway. It is administered through a conventional audiometer, and typically begins with the 

presentation of a continuous pure-tone (between 0.5 and 4 kHz) at the subject‟s threshold. 

The stimulus intensity is adapted by the tester according to the subject‟s responses. If the 

subject continues to hear the tone for the full 60 seconds, the test is completed. If the subject 

fails to maintain perception of the tone for the full 60 seconds, the length of the subject‟s 

response to the stimulus is noted, the intensity is increased by 5 dB, and a new 60 second 
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period begins This procedure is repeated until the subject hears the tone continuously for the 

60 seconds or the upper limit of the audiometer is reached. 

The tone decay test has been traditionally used by audiologists to differentiate cochlear from 

retrocochlear pathology. Retrocochlear pathology, such as vestibular schwannomas, is often 

associated with very high levels of rapid decay at both high and low frequencies (Gertner, 

1981; Harbert & Young, 1964; Jerger, 1960; Morales-Garcia & Hood, 1972; Ogawa, Ogawa, 

Yamamoto, Ikeda, & O-Uchi, 1991). Figure 8 shows patterns of tone decay found in patients 

with eighth cranial nerve lesions. During sustained stimulation by a pure tone, the threshold 

intensity may rise 40-50 dB in as little as 60 seconds when the vestibulocochlear nerve is 

diseased (Jerger, 1960). Subjects with cochlear pathologies typically exhibit tone decay of 

between 0 to 15 dB, with an increase in the duration of audibility with increasing tone 

intensity (Morales-Garcia & Hood, 1972; Palva, 1964). In cases of known vestibular 

schwannomas, tone decay testing may provide an indicator of whether the site of origin of the 

hearing loss is cochlear of neural. The sensitivity and specificity of tone decay testing in 

separating ears with and without retrocochlear pathologies does, however, limit the utility of 

this test. In a meta-analysis of 15 years of published data, Turner, Shepard and Frazer (1984) 

found that tone decay testing was correct in 70% of cases where retrocochlear pathology was 

present, and in 87% of cases without retrocochlear pathologies.  

 

Figure 8. The results of Carhart's threshold tone decay in eighth cranial nerve lesions. In curve A a plateau is 

reached at 50 dB, in curve B and C tone decay has reached the limits of the audiometer (from Morales-Garcia & 

Hood, 1972). 
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1.8.     Surgical intervention 

The current standard therapy for vestibular schwannomas is surgical excision. Four surgical 

approaches are presently used for vestibular schwannoma resection: the translabyrinthine, 

suboccipital, middle (cranial) fossa, and retrosigmoid approaches (Jackler & Pitts, 2008). The 

approach selected depends primarily on the surgeon‟s preference and experience, with 

consideration given to factors including the extent of preoperative symptoms, tumour size 

and tumour location (Samii & Matthies, 1997). In patients with serviceable preoperative 

hearing, the retrosigmoid or middle fossa approaches are preferred (Jackler & Pitts, 2008). 

While the middle fossa approach is only suitable for removal of tumours with limited CPA 

extension, the retrosigmoid approach uses a posterior fossa craniotomy to provide extensive 

visualisation of the CPA and provides good exposure of the IAC through drilling of its 

posterior wall (Yang et al., 2008). Through this approach, the possibility of hearing 

preservation may be afforded for tumours of all sizes (Lassaletta et al., 2003). Selecting 

candidates for a hearing preservation approach takes into account a number of factors, 

including preoperative pure tone thresholds and speech discrimination score, tumour size and 

depth of tumour penetration in the IAC, and the preferences of the surgeons (Jackler & Pitts, 

2008). The translabyrinthine approach is the most reliable for complete tumour removal as 

sufficient exposure of the CPA and brainstem is provided to permit atraumatic and complete 

tumour removal of even very large acoustic neuromas. However, this approach inherently 

sacrifices hearing in the course of the procedure (Arriaga & Chen, 2001).  

There are several critical points for hearing preservation during the retrosigmoid approach, 

including drilling of the IAC, removal of the tumour from the fundus of the IAC, lateral to 

medial tumour traction, separation of the cochlear nerve from the facial nerve, and stretching 

of the cochlear nerve (Colletti et al., 1997). In particular, changes in cochlear nerve potentials 

corresponding to postoperative hearing loss were noted during removal of the tumour within 

the IAC fundus (Colletti et al., 1997). Colletti and colleagues (1997) suggest that this 

vulnerability comes from the containment of the cochlear nerve, IAA, and the tumour, within 

a narrow space at this point. This compact arrangement means that vascular and neural 

damage may occur simultaneously during this surgical phase (Colletti et al., 1997). However, 

the authors also note that the effects of potentially damaging surgical manoeuvres are 

variable as to their impact on hearing in each patient, and are dependent on predisposing 
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factors, such as the degree of involvement of the cochlear nerve by the tumour (Colletti et al., 

1997).   

As well as the risk of permanent hearing loss, vestibular schwannoma surgery carries some 

risk of meningitis (2 to 10%), cerebrospinal fluid leak (5 to 15%) which increases the risk of 

meningitis (Selesnick, Liu, Jen, & Newman, 2004), facial weakness (4 to 15%), dizziness (5 

to 15%) (Enticott, O'Leary, & Briggs, 2005), and headache, which is persistent in 10 to 34% 

of cases (Ruckenstein, Harris, Cueva, Prioleau, & Alksne, 1996; Soumekh, Levine, Haines, & 

Wulf, 1996). Intraoperative electromyographic monitoring of the facial muscles may be used 

to detect and prevent facial nerve damage during surgery (Bozorg et al., 2005; Neff, Ting, 

Dickinson, & Welling, 2005; Prell, Rampp, Romstock, Fahlbusch, & Strauss, 2007). 

Independent of tumor size, overall rates of anatomical preservation of the facial nerve greater 

than 90% are reported (Samii & Matthies, 1997; Yang et al., 2008). Despite recent clinical 

interest and various refinements in micro-surgical technique, hearing loss is still by far the 

greatest risk factor associated with vestibular schwannoma surgery.  

 

 

1.9.       Intraoperative monitoring 

Electrophysiological measures of auditory function such as ABR, ECochG, and OAEs may 

be used to objectively assess auditory pathway function intraoperatively. On the basis of 

these tests, any surgically induced trauma, whether directly damaging the inner ear structures, 

indirectly damaging the cochlea through the compromise of the blood vessels, or damaging 

the cochlear nerve, can be detected (Telischi et al., 1999). Monitoring electrophysiological 

responses using a combination of measures both intraoperatively and postoperatively may 

allow for real-time detection of damage and the identification of the likely pathophysiological 

mechanisms of hearing loss. However, intraoperative monitoring of auditory responses is 

limited by the notoriously high electrical noise in the surgical environment (Martin & Shi, 

2006). For this reason it is often not possible to record during portions of the surgery, such as 

during drilling or cauterisation (Strauss et al., 2001).  

Numerous studies have investigated the use of real-time monitoring of electrophysiological 

responses to provide surgeons with feedback on manoeuvres that cause changes in 

waveforms, indicating potential damage to auditory structures. For example, a repositioning 
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of a brain retractor at the point of operation when a change in waveforms is noted can lead to 

a regeneration of the electrophysiological response (Lenarz & Ernst, 1992). Results of these 

studies have primarily indicated that on-line monitoring and feedback can improve hearing 

outcomes (Cohen, Lewis, & Ransohoff, 1993; Danner, Mastrodimos, & Cueva, 2004), 

however this area is still controversial (Piccirillo et al., 2008).  

The prognostic value of intraoperative monitoring during vestibular schwannoma surgery for 

postoperative hearing outcome is more widely acknowledged (Abramson, Stein, Pedley, 

Emerson, & Wazen, 1985; Brackmann et al., 2000; Dornhoffer et al., 1995; Fischer, Fischer, 

& Remond, 1992; Levine, Ojemann, Montgomery, & McGaffigan, 1984). Characteristic 

patterns have been noted that predict specific hearing outcomes: stable waves during surgery, 

in particular wave V, indicate the likelihood of hearing preservation; whereas abrupt or 

progressive irreversible loss of these waves is associated with permanent anacusis (Neu et al., 

1999; Strauss et al., 2001). Gradual reversible loss, which is described as a single or repeated 

transient absence of waves I and/or V, carries a considerable risk for postoperative delayed 

hearing loss (Strauss et al., 1991). 

 

1.10.     Nerve origins of the vestibular schwannoma 

Hearing outcome following vestibular schwannoma resection may be influenced by the nerve 

of origin of the tumour. Tumours originating from the superior (a) and inferior (b) vestibular 

nerves are depicted in Figure 4. Reports in the literature suggest that the majority of 

vestibular schwannomas originate from the inferior vestibular nerve (IVN), although the ratio 

of vestibular schwannomas arising from the superior vestibular nerve (SVN) versus the IVN 

varies considerably across studies (Jacob et al., 2007; Khrais, Romano, & Sanna, 2008; 

Komatsuzaki & Tsunoda, 2001; Slattery, Brackmann, & Hitselberger, 1997; Ylikoski, Palva, 

& Collan, 1978).  
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Figure 9. Schematic of vestibular schwannomas originating from the inferior (a) and superior (b) vestibular 

nerves (adapted from Wilson, Hodgson, Gustafson, Hogue, & Mills (1992), incidence data from Khrais et al., 

2008). 

Khrais and colleagues (2008) have published the largest series examining nerve of origin in 

vestibular schwannomas to date. In a prospective review of 200 cases of unilateral vestibular 

schwannoma, Khrais et al. found that in 152 cases, the tumour involved only one nerve at the 

fundus. From these cases, the tumour originated from the IVN in 139 cases (91.4%), and 

from the SVN in only nine cases (6%). The remaining four cases involved tumours 

originating from either the cochlear nerve or the facial nerve, therefore cannot be classified as 

true vestibular schwannomas. As the tumour size increased, so did the possibility that more 

than one nerve was involved.   

Because the cochlear nerve is immediately adjacent to the IVN in the internal auditory canal, 

more surgical manipulation is needed near the cochlear nerve to remove these tumours 

(Khrais et al., 2008). This may traumatise the cochlear nerve directly or compromise its blood 

supply. The retrosigmoid surgical approach allows a tumour originating from IVN to shield 

the anteriorly lying cochlear nerve, thus reducing the surgical trauma (Khrais et al., 2008). 

The nerve of origin is therefore more likely to be an important consideration when the middle 

cranial fossa approach is being employed, when this protection is not afforded to the cochlear 

nerve. 

The differential outcome for hearing preservation depending on the nerve or origin of the 

tumour was recently investigated by Jacob et al. (2007). A retrospective chart review of 40 

patients who had tumours removed via the sub-occipital or middle cranial fossa approaches 

(and for whom hearing outcome and nerve of origin data were available) showed that both 

a.   b.   

91.4% of cases   6% of cases   
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tumour size and nerve of origin were correlated with hearing preservation and facial nerve 

outcomes. Functional hearing (defined as < 50 dB pure tone average and >50% speech 

discrimination) was preserved in 10 of 15 patients with tumours of the SVN and seven of 25 

patients with IVN tumours. However, Fisicina, Gouveris, & Mann (2007) found that 

surgically induced damage to the cochlear nerve and/or the IAC vasculature was similar 

during the dissection via the middle fossa approach of vestibular schwannoma of either 

superior or inferior nerve origin. It is of note that the ratio of tumours originating from the 

IVN to tumours originating from the SVN was markedly less in the study of Jacob et al. 

(2007) compared to the rates reported by Khrais et al. (2008).  

 

1.11.     Postoperative outcomes 

Postoperative auditory function may be classified into three categories: permanent hearing 

preservation, permanent anacusis, and hearing fluctuation (Neu et al., 1999). Several factors 

have been demonstrated to be crucial for hearing preservation, including preservation of the 

endolymphatic fluids, preservation of the cochlear hair cells and spiral ganglion cells, 

maintenance of a fluid-filled vestibule, and preservation of the cochlear nerve and its 

vasculature (McElveen, Wilkins, Erwin, & Woldford, 1991; Schuknecht & Woellner, 1955).  

There is a wealth of literature dealing with hearing preservation during vestibular 

schwannoma surgery and there is a wide variation of reported rates of hearing preservation. 

Recently reported hearing preservation rates vary from 8 to 70%, however most estimates are 

typically in the range of  30 to 50% (Betchen, Walsh, & Post, 2005; Darwish, Bird, 

Goodisson, Bonkowski, & MacFarlane, 2005; Fischer et al., 1992; Fiscina et al., 2007; 

Frerebeau et al., 1987; Gardner & Robertson, 1988; Jacob et al., 2007; Kaylie et al., 2001; 

Lassaletta et al., 2003; Magnan et al., 2002; Moffat et al., 1999; Saleh et al., 1996; Samii, 

Gerganov, & Samii, 2006; Samii & Matthies, 1995; Samii & Matthies, 1997; Samii, 

Matthies, & Tatagiba, 1997; Sterkers, Morrison, Sterkers, & El-Dine, 1994). Studies 

reporting hearing preservation rates use a variety of different patient inclusion criteria, 

surgical procedures and criteria for determining postoperative hearing status. Therefore, the 

ability to make comparisons of outcomes between studies is limited. In addition, hearing 

classified as preserved postoperatively may not always be serviceable and is typically worse 

than hearing preoperatively (Harner et al., 2000).  
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The most common hearing outcome following surgery for patients that present with some 

degree of hearing preoperatively is permanent anacusis on the affected side immediately 

following surgery. Postoperative anacusis may occur in the presence of apparent cochlear 

nerve preservation, and is believed to be secondary to direct trauma to the cochlea or cochlear 

nerve, or interruption of the vascular supply to the cochlea and/or cochlear nerve, with 

subsequent sensorineural hearing loss (Colletti et al., 1997).  

The principle preoperative determinants of postoperative hearing outcome are preoperative 

pure-tone thresholds (Brackmann et al., 2000) and tumour size (Gjuric, Mitrecic, Greess, & 

Berg, 2007; Hecht, Honrubia, Wiet, & Sims, 1997; Yates, Jackler, Satar, Pitts, & Oghalai, 

2003). In a recent study of 110 patients, Yang et al. (2008) reported that preoperative hearing 

level at high frequencies was a stronger prognostic factor for hearing outcome than overall 

pure tone average. In patients with tumours larger than three centimetres, hearing 

preservation is particularly unlikely, and considered to be an unrealistic goal by some authors 

(Frerebeau et al., 1987; Yates et al., 2003).  

There is also evidence that rates of functional hearing preservation are higher in patients with 

tumours that partially, as opposed to completely, fill the IAC (Mohr, Sade, Dufour, & 

Rappaport, 2005). However, the importance of the degree of tumour extension into the IAC 

has been debated by some authors. In a meta-analysis of the impact of tumour size on hearing 

outcome by Satar, Yetiser, and Ozkaptan (2003), the prognostic strength of tumour size on 

hearing outcome was found to be significantly weaker when the tumour size included the 

intracanalicular portion of the tumour. Yong, Westerberg, Dong & Akagami (2008) interpret 

these findings as indicating a different relationship between the surgical risk of cochlear 

nerve injury and tumour size in the IAC and CPA compartments. However, they do not 

consider the variation in risk to the vascular supply of the cochlea. In a study of 31 patients, 

Yong et al. (2008) demonstrated that the extracanalicular length of contact between the 

cochlear nerve and the tumour within the CPA, which they propose as a measure of cochlear 

nerve stretch or extension, is a better determinant of hearing outcome than total tumour 

diameter. They suggest that IAC involvement imparts a constant risk factor for hearing loss, 

as no additional predictive value was found for the length of contact between the cochlear 

nerve and the IAC portion of the tumour (Yong et al., 2008).  

Postoperative hearing fluctuation has not been widely reported in the literature documenting 

the outcomes of vestibular schwannoma surgery (Fahlbusch, Neu, & Strauss, 1998; Neu et 
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al., 1999; Palva, Troupp, & Jauhiainen, 1985; Strauss et al., 2001; Strauss et al., 1991). 

Strauss et al. (1991) define postoperative hearing fluctuation as either reversible or delayed 

hearing loss. In cases of reversible hearing loss hearing recovers following anacusis 

immediately after surgery. Delayed hearing loss is a phenomenon where hearing is 

measurable immediately following surgery but anacusis occurs in the early postoperative 

period. The reported occurrence of delayed hearing loss in the literature ranges from 13 to 

24%, although differences between the studies make it difficult to establish the true 

prevalence (Fahlbusch et al., 1998; Neu et al., 1999; Palva et al., 1985; Strauss et al., 2001; 

Strauss et al., 1991).   

 

1.12. Early postoperative delayed hearing loss 

Delayed deterioration of hearing in the early postoperative period following vestibular 

schwannoma removal has been documented in at least five studies (Fahlbusch et al., 1998; 

Neu et al., 1999; Palva et al., 1985; Strauss et al., 2001; Strauss et al., 1991). Such a pattern 

of postoperative hearing deterioration has also been reported in single cases (Fischer et al., 

1992; Levine et al., 1984; Nadol et al., 1987). The published results of Fahlbusch et al. (1998) 

and Palva et al. (1985) document the occurrence of delayed anacusis in the early 

postoperative period, but fail to provide any electrophysiological or detailed audiological data 

that could elucidate the mechanism or time course of hearing loss.  

Strauss et al. (1991) were the first to publish a report detailing intraoperative ABR patterns 

associated with early postoperative delayed hearing loss. In their retrospective analysis of 26 

patients with medium to large vestibular schwannomas (average tumour size = 28 mm) and 

measurable preoperative hearing, Strauss et al. (1991) reviewed intraoperative ABR in each 

case to attempt to correlate intraoperative patterns of responses with postoperative hearing 

outcomes. Of the seven patients who showed early postoperative delayed hearing loss, all 

showed reversible or irreversible deterioration of ABR waves I and/or V during surgery (see 

Figure 9). This pattern was not specific to patients showing delayed postoperative hearing 

loss, and a gradual reversible loss electrophysiological pattern accounted for 46% of patients 

in whom hearing was documented preoperatively. The authors conclude that during the 

natural postoperative course in these patients who show an intraoperative pattern consistent 

with hearing fluctuation, up to two-thirds will eventually suffer from anacusis as a result of 
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tumour removal. Postoperative ABR was recorded in some, but not all cases, and the point at 

which hearing was lost postoperatively is not well documented.  

In a comparable study, Neu et al. (1999) investigated intraoperative ABR patterns in 70 

patients with preoperative hearing undergoing surgical removal of vestibular schwannomas, 

in order to identify patterns associated with postoperative hearing fluctuation. Postoperative 

audiometry revealed 12 patients with postoperative hearing fluctuation. Of the patients with 

postoperative hearing fluctuation, one recovered their hearing and 11 showed initial 

preservation of hearing, but suffered from anacusis in the affected ear in the early 

postoperative period. Consistent with the observations of Strauss et al. (1991), 32 patients 

were identified as showing reversible loss of intraoperative ABR. Intraoperatively, eight 

patients who suffered early postoperative anacusis showed a gradual loss of wave V 

accompanied by either a gradual loss or a stable wave I. Two patients experienced an abrupt 

loss of wave I and/or V. One patient did not have wave V present preoperatively but showed 

a stable wave I throughout surgery. Postoperative ABR data is not provided in this study.  

Strauss et al. (2001) conducted a prospective study of patterns of postoperative hearing loss 

in a series of 41 patients who were identified intraoperatively as having a reversible loss of 

ABR potentials, as shown in Figure 10. In a group of 20 randomly selected patients whose 

postoperative care followed the standard protocols, eight showed postoperative fluctuations 

in hearing, and all these patients eventually suffered from anacusis. In a second group of 21 

patients to whom the calcium-channel blocker nimodipine was administered postoperatively, 

two presented with delayed anacusis in the early postoperative period. 
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The documented cases of deterioration of hearing suggest a pathophysiological mechanism is 

initiated during surgery that continues postoperatively (Neu et al., 1999; Strauss et al., 2001; 

Strauss et al., 1991). Although only ABR data is provided, an analysis of these responses can 

provide some information about possible site of impairment and pathophysiological 

mechanisms that may be responsible for delayed hearing loss. The key result across the ABR 

data reported in cases of early postoperative delayed hearing loss is a gradual loss of waves I 

and/or V during tumour removal that is not necessarily associated with specific surgical 

manoeuvres (Neu et al., 1999; Strauss et al., 2001; Strauss et al., 1991). Across all three 

studies in which intraoperative ABR results are provided, all patients who suffered from 

delayed anacusis showed a single or repeated transient absence of a least one wave 

component during surgery. The most typical presentation of this ABR pattern was a gradual 

loss of wave V with relatively stable wave I (Neu et al., 1999; Strauss et al., 2001; Strauss et 

al., 1991). Although a reduction or loss of wave I was noted for some patients, this was 

Figure 10. Intraoperative ABR during vestibular schwannoma excision. Note the gradual, reversible loss 

of wave V (from Strauss et al., 2001). 
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reported less frequently (Neu et al., 1999; Strauss et al., 1991). As stated above, wave I of the 

ABR reflects only the functional status of the distal cochlear nerve, and does not provide 

information regarding the transmission of stimuli beyond this point, through the CPA into the 

brainstem. Therefore, the ABR findings reported in the extant literature implicate the initial 

site of damage to the auditory pathway in most patients as a portion of the cochlear nerve 

distal to the generator site of wave I.  

Neu et al. (1999), Strauss et al. (1991) and Strauss et al. (2001) each describe a gradual 

decrease in amplitude or abrupt loss of ABR waves I and/or V, but no changes in the latency 

of either wave. This suggests that there is a reduction in the synchrony of neurons firing, a 

delay in neural conduction, or a reduction in the number of nerve fibres responding. A 

reduction in the number of responding fibres may be indicative of severance of those fibres, 

or of a neural conduction block caused by a disruption of the continuity of the axons. The fact 

that no latency changes were observed in intraoperative ABR indicates that neural conduction 

velocity was not impaired further than the damage already caused by the presence of the 

tumour during surgery. Alternatively, changes in the integrity of the dura mater could reduce 

resistance, which would increase the velocity of the action potential without affecting latency. 

A recent study by Brown and Patuzzi (2008) demonstrated that the CAP can be altered by 

either changes in the action currents themselves, or by changes in the integrity of the dura 

mater which alters its resistance.  

On discharge from hospital, all patients in the Neu et al. (1999) study with delayed hearing 

loss showed an absence of wave I, suggesting that damage to the proximal cochlear nerve 

eventuated at some point postoperatively. The time course of the progression of damage to 

the cochlear nerve was not documented. Such data may assist in identifying the 

pathophysiological mechanism that it responsible for delayed hearing loss. 

 

1.13.     Proposed mechanisms leading to early postoperative delayed hearing loss 

The pathophysiological mechanism resulting in early postoperative delayed hearing loss is 

unknown, however, several theories have been proposed. There are two major hypotheses 

regarding the mechanisms responsible for delayed hearing loss: retrograde degeneration of 

cochlear neurons due to either direct mechanical insult or disturbances in microcirculation; 
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and obstruction or vasospasm of the IAA (Levine et al., 1984; Neu et al., 1999; Strauss et al., 

2001; Strauss et al., 1991).  

 

1.13.1.  Retrograde degeneration following direct mechanical insult to the cochlear nerve? 

The initial loss of wave V with a slow deterioration of wave I is consistent with the 

hypothesis of retrograde degeneration of cochlear neurons as the mechanism of delayed 

postoperative hearing loss (Hatayama, Sekiya, Suzuki, & Iwabuchi, 1999). This process of 

retrograde degeneration may be instigated by direct mechanical insult to the nerve during 

surgery, such as compression, manipulation or stretching of the nerve. Support for this 

hypothesis comes from animal studies investigating the effect of experimentally induced 

mechanical compression of the cochlear nerve. Shimamura, Sekiya, Yagihashi, & Suzuki 

(2002) found that following mechanical compression to the central (CPA) portion of the 

cochlear nerve in rats, neural degeneration proceeds in a retrograde fashion towards the spiral 

ganglion cells, eventually leading to disappearance of these cells. This process of 

degeneration was complete by the end of the first week after the insult, suggesting that 

cochlear nerve degeneration following compression injury progresses relatively rapidly 

following the insult.  

The mechanism by which compression of the cochlear nerve may lead to degeneration is 

through disruption of the plasma membrane of the cochlear neurons (Shimamura et al., 2002). 

Such trauma would allow glutamate to access damaged cochlear neurons directly, causing 

excessive activation of the excitatory amino acid receptors and an inevitable massive influx 

of calcium from the extracellular space into the intracellular space (Choi, 1985). Excessive 

calcium influx can induce a necrotic mechanism, leading to the degeneration of spiral 

ganglion cells (Choi, 1992; Sekiya, Yagihashi, Asano, & Suzuki, 2002). The trauma to the 

cochlear nerve would be expected to occur in the central portion of the nerve during 

vestibular schwannoma surgery. Thus, mechanical damage to the nerve during surgery can be 

expected to initially affect only ABR components beyond wave I (generated by the lateral 

portion of the cochlear nerve), in particular wave V. Retrograde degeneration of the nerve 

would necessarily proceed toward the spiral ganglion cells, and the generator site of wave I. 

Therefore, as the number of neurons that make up the cochlear nerve deteriorates, wave I can 

be expected to decrease in amplitude or increase in latency.  
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Spoendlin (1975) reports that following resection of the cochlear nerve within the IAC, type 

II neurons and the organ of Corti resist degeneration. The type I fibres, which are the afferent 

innervation of the IHCs, almost entirely disappeared following nerve resection. This means 

that essentially the afferent neurons for the OHC system resist degeneration, while the 

afferent neurons for the IHCs are vulnerable to degeneration following nerve cochlear nerve 

damage (Spoendlin, 1975).  

 

1.13.2.      Retrograde degeneration following a disturbance of neural microcirculation? 

An alternative explanation for the patterns of hearing loss observed is a disturbance to the 

microvasculature of the cochlear nerve (Strauss et al., 2001). Strauss and colleagues (2001) 

suggest that as a result of direct or indirect surgical manipulations, nerve oedema and 

vasospasm of the cochlear nerve can initiate disturbances in microcirculation in the 

endoneurial vasa nervorum, instigating hearing deterioration. As with mechanical insult to 

the cochlear nerve, disturbed microcirculation of the capillaries supplying the cochlear nerve 

can lead to massive releases of glutamate during and after nerve ischemia, which in turn can 

cause an influx of calcium into the damaged neurons, resulting in cell death (Shimamura et 

al., 2002). Sekiya & Møller (1987) found that compression injury to the cochlear nerve in 

dogs resulted in disturbances to microvasculature. Following surgical manipulations, 

histological examination of the cochlear nerve revealed petechial or confluent haemorrhages 

occurred at the compressed portions of the nerve and degeneration of the nerve fibres and the 

myelin sheath. Moreover, haemorrhagic foci were found to extend along the cochlear nerve, 

remote from the site of compression. This suggests that the effects of stretching on the vasa 

nervorum of the cochlear nerve were transmitted beyond the injured portion of the nerve. In 

particular, the vasa nervorum haemorrhaged heavily at the Obersteiner-Redlich zone; a 

relatively avascular portion of the cochlear nerve located at the margin between central and 

peripheral myelinisation of the cochlear nerve. Postoperative nerve oedema may be 

aggravated by these disturbances in the microvasculature of the cochlear nerve (Sekiya, 

Møller, & Jannetta, 1986). In the compact space of the IAC or the modiolus of the cochlea, 

nerve oedema may compromising the vasculature of the cochlear nerve, leading to ischemia 

(Sekiya & Møller, 1987).  
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1.13.3.      Collapse of the internal auditory artery? 

The same mechanisms that may compromise microcirculation within the IAC may damage 

the blood supply to the cochlea and vestibulocochlear nerve more directly through 

obstruction or vasospasm of the IAA (Levine et al., 1984; Neu et al., 1999; Strauss et al., 

1991). As described above, cochlear nerve oedema can result in the accumulation of fluid 

within the confined space of the IAC. As an alternative to disturbances in microcirculation, 

this could cause the IAA to collapse in the weeks following surgery (Sekiya et al., 1986). 

MRI changes indicative of cochlear nerve oedema have been observed during the first two 

weeks after tumour removal, supporting the hypothesis that oedema may disturb cochlear 

nerve circulation in the early postoperative period (Sekiya, Suzuki, & Iwabuchi, 1990). 

Sekiya et al. (1990) suggest that the cause of the postoperative oedema was traumatic 

disruption of the blood-nerve barrier. Vascular disruption to cochlea due to IAA obstruction 

or vasospasm is likely to manifest as an abrupt deterioration of potentials from the cochlea 

(CM and DPOAEs), auditory nerve (CAP and ABR wave I) and brainstem (wave V). 

Electrophysiological tests capable of assessing cochlea function, such as DPOAEs or 

ECochG were not carried out by Strauss et al. (1991), Strauss et al. (2001) or Neu et al. 

(1999), therefore in these studies it was not possible to draw conclusions about cochlear 

involvement in the observed patterns of delayed hearing loss.  

 

1.13.4.      Post-traumatic inflammatory reaction? 

There is evidence to suggest that a post-traumatic inflammatory reaction may play a role in 

the progression of cochlear nerve damage following vestibular schwannoma resection 

(Sekiya, Shimamura, Suzuki, & Hatayama, 2001). Sekiya et al. (2001) found a massive 

infiltration of ED-1 immunopositive macrophages into the compressed portion of the 

cochlear nerve of rats two weeks following experimentally induced nerve compression. This 

is indicative of the presence of an inflammatory reaction, one of the primary features of 

necrosis (Bartholdi & Schwab, 1995). Administration of methylprednisolone to one group of 

rats resulted in a marked reduction in the recruitment of macrophages in the cochlear nerve 

compared to a control group. The residual number of spiral ganglion cells was also found to 

be greater in the treatment group than in the control compression group, however, the link 
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between attenuated macrophage recruitment and improved spiral ganglion cell survival may 

not necessarily be direct (Sekiya et al., 2001).  

 

1.14.      Potential treatments of early postoperative delayed hearing loss 

The investigation of the effect of pharmacological effects on postoperative hearing loss 

following vestibular schwannoma resection can provide additional insights into the 

mechanisms of such loss. Anti-inflammatory and rheological substances have been used in 

several studies in an attempt to minimise inflammation, oedema, and the disturbance of the 

microcirculation of the cochlear nerve and cochlear structures that occur during or after 

removal of the vestibular schwannoma.  

Strauss et al. (2001) investigated whether vasoactive medical treatment with nimodipine, a 

calcium-channel blocker, following surgical resection of vestibular schwannomas had an 

effect on hearing preservation. Nimodipine has been successfully used to treat vasospasm 

following subarachnoid haemorrhage (Barker & Ogilvy, 1996). Based on the pattern of 

intraoperative reversible loss of potentials, 41 patients were recruited into a prospective 

randomised study. Twenty-one patients received additional intravenous medication 

nimodipine for an average of nine days. A control group of 20 patients were given no 

additional postoperative medication. Results indicated that the treated group had significantly 

better postoperative hearing outcomes (66.6% versus 30% had hearing preserved) than the 

untreated group. There were two cases of delayed hearing loss in the treated group and eight 

in the untreated group. The authors interpret these results as support for the concept of 

adjuvant medical treatment following removal of a vestibular schwannoma to minimise 

functional deterioration that would otherwise occur due to disturbed microcirculation. 

However, two patients in the treated group still exhibited delayed hearing loss, indicating that 

disturbed microcirculation may not be the mechanism of delayed hearing loss in all cases. 

 

1.15.        Aims and hypotheses 

The present study aimed to more clearly define the mechanisms responsible for early 

postoperative delayed hearing loss by closely monitoring patterns of cochlear and cochlear 

nerve responses during vestibular schwannoma excision and in the early postoperative period. 
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This study builds on an earlier study that monitored postoperative electrophysiological and 

behavioural auditory responses in six vestibular schwannoma patients. No cases of early 

postoperative delayed hearing loss were observed in those six patients. In continuing this 

study we aimed to increase the number of patients monitored in order to increase the 

probability of observing delayed hearing loss. In addition, the present study included serial 

DPOAE testing over the early postoperative period to more closely monitor any changes in 

OHC function. ABR and DPOAE testing were also continued throughout the postoperative 

period, even in cases where anacusis was apparent immediately postoperatively. This was not 

done in the earlier part of the study, but was included here in order to document changes in 

cochlea and cochlear nerve responses that may occur even in the absence of measurable 

hearing. Furthermore, the present study included the addition of intraoperative monitoring 

wherever possible.  

These detailed data on electrophysiological and behavioural responses as hearing deteriorates 

postoperatively are necessary to accurately define the phenomenon of postoperative delayed 

hearing loss and provide information about likely causal mechanisms. In particular, we aimed 

to determine if the initial site of impairment leading to delayed hearing loss is neural or 

cochlear in origin and document the time course of changes in both behavioural and 

electrophysiological responses. ECochG and DPOAE measures were included in this study to 

provide information regarding the cochlear contribution to delayed hearing loss. This is an 

important aspect in determining the mechanism of delayed hearing loss that has not yet been 

demonstrated in the literature. Strauss et al. (2001) propose that one reason that postoperative 

hearing fluctuation has been rarely observed is the difficulty of documenting hearing within 

the first days following surgery due to the patient‟s inability to cooperate immediately after 

the surgical procedure. The focus on electrophysiological recording techniques in the initial 

postoperative period therefore allows data on the integrity of the cochlea and cochlear nerve 

to be obtained even when the patient is unable to participate in behavioural testing. It was 

hoped that information collected on the patterns and time course of delayed hearing loss 

would assist in identifying the aetiology of such hearing loss, which in turn may lead to the 

development of techniques and protocols to prevent such damage occurring in the future. 

There were two primary hypotheses of the mechanisms of delayed hearing loss and the 

corresponding patterns of electrophysiological responses that would be observed: 
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1.  Retrograde degeneration of the cochlear nerve due to disturbances to 

microcirculation or mechanical injury may result in delayed hearing loss. These 

mechanisms are likely to result in gradual damage to the cochlear nerve, demonstrated 

electrophysiologically by the initial persistence then gradual loss of ABR wave I and 

CAP, and the possible preservation of DPOAEs, the CM, and SP postoperatively.  

2. Vascular impairment may cause damage to cochlea, affecting cochlear transduction 

and resulting in loss of all ABR waves and DPOAEs. Internal auditory artery 

obstruction would cause an abrupt loss of all electrophysiological responses. 
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2.     METHOD 

 

2.1.      Participants 

In the 11-month period from February to December 2008, 19 patients underwent surgical 

removal of a suspected vestibular schwannoma via the retrosigmoid approach at Christchurch 

Public Hospital. Christchurch Public Hospital employs either the retrosigmoid or the 

translabyrinthine approach for vestibular schwannoma excision. Candidacy for the 

retrosigmoid approach is determined by tumour size and the possibility of hearing 

preservation, which cannot be achieved via the translabyrinthine approach. Based on the 

preference of the surgeons at Christchurch Public Hospital (M. MacFarlane, personal 

communication, December 1, 2008), the retrosigmoid approach is used for patients with large 

tumours, even when the likelihood of hearing preservation is poor, because facial nerve 

preservation rates for large tumours are higher using this approach (Anderson, Leonetti, 

Wind, Cribari, & Fahey, 2005). All participants were recruited into the present study on the 

basis that they had some degree of measurable hearing preoperatively.  

Demographic characteristics of all participants are shown in Table 1. Of the 19 participants, 

seven were male and 12 female. One participant (participant 15) had NF2 and was 

undergoing partial removal of only the left vestibular schwannoma. All other participants 

were undergoing removal of a unilateral vestibular schwannoma. The range in age was 22 to 

75 years (mean = 49.1 years). Tumour size was classified based on the maximal diameter of 

the extracanalicular portion of the tumour on MRI:  tumours <15 mm in maximal diameter 

were classified as small, 15-29 mm as medium, and >30 mm as large. Using this 

classification system, eight participants had tumours classified as small, five as medium and 

four as large. In addition, two patients had tumours confined to the IAC. Of those patients 

with tumour extension into the CPA, tumour size ranged from 7 to 43 mm (M = 19.8 mm, SD 

= 10.3 mm). For the purposes of this study, mean tumour size was calculated based on the 

extracanalicular diameter, therefore a size of 0 mm was used for patients with intracanalicular 

tumours. The overall mean tumour size in the CPA, including those patients with 

intracanalicular tumours, was 17.7 mm (SD = 11.8). 
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Table 1. Participant demographic characteristics and tumour size 

Case Age (years) Sex Tumour 

side 
Maximum tumour 

diameter (mm) 
Tumour size 

classification 

1 67 F R 23 Medium 

2 49 F R 0 Intracanalicular 

3 60 F L 23 Medium 

4 49 M L 9 Small 

5 53 M R 13 Small 

6 41 F R 12 Small 

7 57 F R 9 Small 

8 37 F R 11 Small 

9 40 M L 30 Large 

10 40 F R 18 Medium 

11 62 M R 14 Small 

12 37 F R 37 Large 

13 22 M L 34 Large 

14 29 F R 43 Large 

    15
NF2 75 M R 20 Medium 

16 55 F L 0 Intracanalicular 

17 61 F L 14 Small 

18 62 F R 7 Small 

19 47 M L 20 Medium 
NF2 

= Case
 
of Neurofibromatosis Type 2 

 

2.2.      General Procedure  

Preoperative MRI was performed on all patients to confirm the presence of a CPA tumour 

(classified as a suspected vestibular schwannoma) and to determine the size of the tumour. 

All participants had undergone previous audiological assessment to confirm the presence of 

some degree of preoperative hearing, and thus their candidacy for surgery with attempted 

hearing preservation. The testing procedure included two to four phases: pre- and 

postoperative monitoring of auditory function was conducted for all participants, and 

intraoperative monitoring and postoperative ECochG were performed in selected cases where 

it was considered that this data could provide additional, useful information. To ensure 

consistency, all testing was performed by the author. A brief outline of all procedures is 

presented below, with more detail provided on the following pages. 

Preoperative assessment – participants underwent a preoperative audiological assessment on 

the day prior to surgery. This assessment was performed in sound treated rooms in the 

Audiology Department at Christchurch Public Hospital. The preoperative assessment battery 

included otoscopy, pure-tone audiometry, speech audiometry, tone decay testing, 
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tympanometry, DPOAEs, and ABR testing.  

Intraoperative assessment – when practically possible and when a clear ABR waveform was 

identified on the tumour side preoperatively, ABR was recorded intraoperatively at selected 

intervals throughout the surgery.  

Postoperative assessment – The first postoperative assessment of electrophysiological 

responses was performed 0.5-3 hours following the participant‟s return to the ward following 

surgery. This initial assessment included ABR and DPOAEs on the ipislateral side, and on 

the contralateral side if the participant was able to move their head to allow positioning of the 

necessary recording equipment. Otoscopy was carried out prior to testing to rule out 

significant middle ear effusion due to surgery. ABR and DPOAE testing was repeated on 

both sides approximately every 24 hours from the time of the initial assessment for the 

duration of hospitalisation (range = 4-8 days, mean = 6 days). Pure-tone audiometry and 

speech audiometry were performed as soon as the participant was able to cooperate with the 

test requirements, and were repeated at 24-hour intervals, or as often as the participant would 

allow, for the remaining period of hospitalisation. Where participant co-operation was limited 

the participant was encouraged to undergo a limited section of the test battery (either 

electrophysiologic or behavioural tests), and normal testing procedures were resumed at the 

next testing session. Contralateral ear measures acted as an internal control for the effect of 

external and internal noise on electrophysiological measures, and the effect of 

pharmacological treatment, general anaesthetic, attention, and background noise on 

behavioural measures. All postoperative testing was carried out in the neurosurgery ward of 

Christchurch Public Hospital, in the intensive care room for the first 2-3 postoperative days, 

and then in a standard six-bed room. The ambient noise levels in the ward were assessed 

using a sound level meter (IVIE IE33J, Ivie Technologies Inc., Utah, USA). On average, the 

ambient noise level was 35 dB SPL in ICU, and 40 dB SPL in standard six person rooms, and 

never exceeded 50 dB SPL in either setting. 

Postoperative electrocochleography - Transtympanic electrocochleography (ECochG) was 

carried out 12 weeks postoperatively if the patient had lost wave I of the ABR during the 

early postoperative period.  
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2.3.      Specific procedures 

2.3.1.      Pure-tone and speech audiometry  

Pure-tone thresholds in dB HL were determined using the modified Hewson-Westlake 

technique with a calibrated diagnostic audiometer (Grayson-Stadler GSI 61 audiometer for 

testing in the hospital audiology department and a portable Interacoustic AD28 audiometer 

for testing in the ward). Signals were presented to each ear using Etymotic Research ER-3A 

insert earphones or a Radioear B-71 bone conductor. Each participant‟s air conduction 

thresholds were measured in 5 dB steps at half-octave frequencies from 0.25 - 8 kHz in each 

ear. Where air conduction thresholds were 20 dB HL or greater at any frequency(s) from 0.5 

- 4 kHz, bone conduction thresholds were measured at the relevant frequency(s). Air 

conduction masking was applied using a step masking method when the difference between 

the air conduction thresholds in the non-test and test ears exceeded the minimal interaural 

attenuation values of 75 dB HL at 1000 Hz and below and 50 dB HL at frequencies above 

1000 Hz (Yacullo, 1996). Bone conduction masking was also applied using the step masking 

method when an air-bone gap of 15 dB or greater was present. 

 

Speech audiometry was performed using the New Zealand Recording of the CVC (Revised 

AB) Word Lists (National Audiology Centre, Auckland, New Zealand). Word lists were 

presented via ER-3A insert earphones using a portable compact disc player (Sony D-EJ011) 

and calibrated audiometer (Grayson-Stadler GSI 61 audiometer for testing in the audiology 

department and a portable Interacoustic AD28 audiometer for testing in the ward). The 

maximum word recognition score was established by determining the percentage of words 

repeated correctly when stimuli were presented 30 dB above the patient‟s pure-tone average 

(PTA) at 1, 2, and 4 kHz if the audiogram was relatively flat, or at the average of the best two 

thresholds at these frequencies if the audiogram was steeply sloping. If the maximum score 

obtained at this level was less than 90%, the presentation level was increased 10 dB. The 

speech reception threshold (SRT); defined as the lowest intensity at which 50% of words can 

be recognized and repeated, was then determined from a performance-intensity function 

measured in 10-15 dB HL steps. Masking noise was applied to the contralateral ear when the 

speech presentation level exceeded the best bone conduction threshold in the non-test ear by 

50 dB HL or greater. 

Hearing was classified pre- and postoperatively according to the Committee on Hearing and 
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Equilibrium guidelines for the evaluation of hearing preservation in acoustic neuroma (AAO-

HNS, 1995). Classifications under these guidelines are based on the PTA at 0.5, 1, 2 and 3 Hz 

in the ear ipsilateral to the tumour, and the maximum speech discrimination score in that ear 

at a presentation level not greater than 40 dB SL, or the maximum comfortable loudness level 

(whichever is lower). As shown in Figure 11, hearing was classified as Class A if the PTA 

was less than or equal to 30 dB and speech discrimination greater than or equal to 70%; Class 

B if the PTA was between 31 dB and 50 dB, and speech discrimination was greater than or 

equal to 50%; Class C if the PTA was greater than 50 dB and speech discrimination was 50% 

or higher; and Class D included PTAs of any level with maximum speech discrimination 

scores of less than 50%. Pure-tone average changes of ≥ 10 dB were considered significant. 

Figure 11. The AAO-HNS (1995) guidelines for classifying hearing in cases of vestibular schwannomas. Pure-

tone average at 0.5, 1, 2 and 3 kHz is shown on the vertical axis, and the maximum word recognition score is 

shown on the horizontal axis. The white boxes, A and B, indicate “serviceable” hearing. 

 

2.3.2. Tympanometry 

Tympanometry was performed preoperatively using a Grayson-Stadler GSI Tympstar 

tympanometer. The purpose of tympanometry in this study was to check for the presence of 

middle ear effusion, which causes a conductive hearing loss, thus altering results of both 
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electrophysiological and behavioural hearing measures. A 226 Hz probe tone was used, with 

a sweep rate of 50 daPa per second. The recorded traces were compared to normative data 

published by ASHA (1990). A Type A tympanogram, consistent with normal middle ear 

pressure and compliance, was classified as a trace with a static admittance between 0.3 and 

1.4 mmho, a peak pressure between -100 and +100 daPa, and an ear canal volume at 

+200 daPa of 0.6-1.6 cm
3
. Traces with normal volumes and peak pressures, and static 

admittance values above or below the normal range were classified as Type Ad and Type As 

respectively. A low peak pressure was interpreted as evidence of a retracted tympanic 

membrane. A trace with no peak and normal ear canal volume was classified as Type B, 

indicative of the presence of middle ear effusion. A flat trace with a high volume was taken to 

suggest a tympanic membrane perforation and a flat trace with a low volume as indicating 

wax blockage or positioning of the probe tip against the canal wall (ASHA, 1990).  

 

2.3.3.      Pre- and postoperative ABR  

Apparatus 

The ABR was elicited and recorded using the SmartEP evoked potential measurement system 

(Intelligent Hearing Systems, Florida, USA) and a laptop computer (Toshiba Satellite). 

Differential recordings were made between the high midline forehead (FZ) and the ipsilateral 

earlobe (A1 or A2) using self-adhesive silver/silver chloride (Ag/AgCl-) (Ambu Ltd., Xiamen, 

China) EEG surface electrodes. Earlobe placement of the inverting electrode is preferred over 

mastoid placement as wave I amplitude is enhanced (Hall, 2006). The earlobe electrode 

placement also minimised disruption of the site of surgical incision post-operatively. A 

ground electrode was attached to the lower midline forehead (Fzp) (see Figure 12). All 

participants were tested in a supine position; lying down with the head slightly raised, to 

minimise electromyogenic interference. The skin was prepared for electrode placement using 

a combination of abrasion with electrode gel and cleaning with 70% isopropyl alcohol swabs. 

It was ensured that prior to the commencement of recording, the impedance between any 

electrode pair was 3000Ω or less. Electrode impedances as low as possible minimise internal 

noise, thus increasing the common mode rejection ratio and maximising the quality of 

recordings (Hall, 2006). All possible measures were taken to minimise the electrical 

interference within the room in which recordings were made. This was achieved by 
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unplugging unnecessary equipment and turning off lights where possible. In addition, the 

participants were positioned as far away from the computer and recording equipment as 

possible.   

 

 

Figure 12. Electrode configuration for ABR recordings. Fz = high forehead, Fpz = lower forehead, A1 = left 

earlobe, A2 = right earlobe. 

Acoustic Stimuli  

The ABR was generated using rarefaction clicks with a duration of 100 µs, presented at a rate 

of 21.3 clicks per second. The purpose of the ABR in the present study was to test the 

integrity of the peripheral auditory pathway. As described above, click stimuli activate a large 

area of the cochlea, thus generating a more robust and synchronous response than ABR 

elicited with more frequency-specific tone-burst stimuli. The resulting waveforms typically 

have well-defined peaks, therefore are well suited to determining the integrity of the cochlear 

nerve. Rarefaction stimuli are preferred for click ABR as evidence suggests that the latency 

of wave I is shorter and the amplitude larger with rarefaction compared to condensation 

clicks (Emerson, Brooks, Parker, & Chiappa, 1982; Peake & Kiang, 1962). The chosen 

stimulus rate was considered optimal for obtaining high amplitude responses in the minimal 

amount of time (Paludetti, Maurizi, & Ottaviani, 1983). These parameters also allow 

comparison of the present results with the data of Neu et al. (1999) and Strauss et al. (1991). 

The air-conducted stimuli were presented monaurally through a shielded Ear Tone ABR 

insert earphone (Etymotic Research Inc., Illinois, U.S.A.). Insert earphones provide greater 

attenuation of background noise, have low stimulus artefact, and increase interaural 

 Active electrode (+) 

Ground electrode 

Fz

z Fpz 

A1 A2 

Inverting electrode Channel 1 (-) 

Inverting electrode Channel 2 (-) 

Ear Tone insert 

earphones 
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attenuation, decreasing the need for masking of asymmetric hearing losses, relative to supra-

aural headphones (Hall, 2006).  

Procedure 

Recorded activity was amplified (x 100 000) and sampled for 12 ms after stimulus onset. 

Responses were filtered using a band-pass filter with a bandwidth of 30 - 3000 Hz and a 

slope of 6 dB/octave. These filter settings were selected to preserve the morphology, 

amplitude, and latency of the waveforms, whilst reducing the influence of artefacts and noise 

on the response (Hall, 2006). In addition, a 50 Hz notch filter was used to eliminate mains 

interference. The ABR recordings for each participant were obtained using clicks presented at 

80 dB nHL in order to obtain maximum amplitude responses. If no clear waveforms were 

identified, the stimulus intensity was increased to 90 dB nHL. If it was known that the 

cochlear nerve had been transected during surgery, and patient co-operation was limited, 

testing was performed at 90 dB nHL only to quickly ascertain whether any remaining 

cochlear nerve responses were present. The ear contralateral to the tumour was always tested 

first to confirm that the equipment was working and noise levels were low enough to obtain 

clear waveforms. A replicate waveform was obtained for each stimulus intensity in each ear 

to ensure reliability of the response and confirm the presence or absence of peaks. Each 

waveform trace was the average of 1600-2000 stimulus presentations. Such averaging is 

necessary when recording ABR to see the desired response above the background EEG 

activity. When required the contralateral ear was masked by broadband noise to ensure that 

the non-test ear did not contribute to the ABR recorded from the ipsilateral ear. The criterion 

used for masking was a difference of 85 dB of greater between the presentation level of the 

click stimulus, and the best bone conduction threshold in the non-test ear. When masking was 

required, a standard masking level of 50 dB effective masking was applied. (Hall, 2006).  

Analysis 

Each ABR waveform was saved into the SmartEP software programme where the responses 

were visually inspected and evaluated by the author to determine the presence or absence of 

waveforms. A response was defined as present when the peak(s) were identified in the two 

traces collected for each condition. Where individual peaks (I, III, V) were identified, the 

absolute latencies of these peaks were determined based on the average latency of each peak 

across the two replicate tracings for each condition. Absolute latencies, interaural latency 
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differences, and interaural interpeak (waves I-V, waves I-III, and waves III-V) differences 

were compared over testing sessions. Peak latency values were compared to normative data 

published by Hall (2006). Absolute peak latency changes, interaural latency differences 

(ILDs), or interaural interpeak differences (ITI-V, ITI-III, and ITIII-V) of 0.2 ms or greater were 

considered to be significant.  

 

2.3.4.      Intraoperative ABR 

Intraoperative monitoring was performed using click-evoked ABR in four participants (Cases 

8, 13, 16 and 19) in whom a clear preoperative ABR was obtained. The stimulus parameters 

were as described for pre- and postoperative ABR testing, with the exception that each 

average consisted of 500 samples, to reduce the amount of time required to obtain responses. 

Standard self-adhesive  Ag/AgCl- electrodes (Ambu Ltd., Xiamen, China) were used to 

record the ABR in the first two participants (Cases 8 and 13), however in an attempt to 

improve the signal-to-noise ratio, Ambu Neuroline subdermal needle electrodes (Ambu Ltd., 

Xiamen, China) were used in the third and fourth participants in whom ABR was monitored 

intraoperatively (Cases 16 and 19). Stainless steel 12mm subdermal needle electrodes were 

inserted under the skin by the surgeon, to provide consistent, low electrode-skin impedances. 

Further advantages of needle electrodes are that they can be applied quickly and securely, 

take up little area on the patient, and do not require preparation of the skin surface (Martin & 

Shi, 2006). An earlobe to high-forehead electrode configuration was used, as for pre- and 

postoperative ABR recordings. The recording set-up for intraoperative ABR is shown in 

Figure 13. To reduce electrical interference in the operating theatre, all cables and recording 

equipment near the patient were shielded with aluminium foil and earthed.  

ABR was recorded from the ear ipsilateral to the tumour at selected points during surgery: 

prior to incision, after opening of the dura mater, when the tumour was exposed, during 

debulking, following removal of the CPA portion of the tumour, following completion of 

drilling into the IAC, following removal of the IAC component of the tumour, and after 

closure of the dura. These stages of the surgery were selected as representing stages at which 

the cochlear nerve and/or the IAA may have been damaged, and a change in the ABR could 

be apparent. Although investigations such as those of Strauss et al. (2001), Neu et al. (1999), 

and Strauss et al. (1991) have used continuous monitoring of ABR rather than recording at 
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selected points, the present protocol was selected to optimise ABR recordings by avoiding 

recording during periods of intense electrical interference, in particular during drilling or 

cauterisation. Such studies have used continuous monitoring of ABR to provide feedback to 

surgeons about manoeuvres resulting in a deterioration of auditory responses, which was not 

the intention of monitoring ABR in the present study. At least two replicates of each response 

were obtained during each recording phase.  

Figure 13. Photographs of set-up used for intraoperative ABR monitoring in Case 8. Part a shows the 

positioning of self-adhesive Ag/AgCl- electrodes and the transducer on the ipsilateral side. The ABR monitoring 

equipment is shown in part b. 

Recordings were contaminated by the high levels of electrical noise in the operating theatre; 

therefore all responses recorded were smoothed using a 21-point running average to facilitate 

identification of replicable ABR peaks. Responses were analysed for the presence or absence 

a. 

b. 
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of repeatable peaks, and any changes in latency compared to preoperative responses, or 

responses earlier in the surgery. 

 

2.3.5.      DPOAE measurement and analysis 

DPOAEs were evoked and recorded using a commercially available otoacoustic emission 

measurement system (Scout Otoacoustic Emission System, Bio-Logic, Illinois, U.S.A.). The 

stimuli consisted of two primary pure-tones; f1 and f2, where the ratio of the frequency of f1: f2 

was 1.22. An f1: f2 ratio of 1.22 has been shown to be optimal for producing maximal 

amplitude DPOAEs in humans (Abdala, 1996; Gaskill & Brown, 1990). The intensity level of 

f1 and f2 were kept constant at 65 dB SPL and 55 dB SPL respectively. The amplitude of 

DPOAEs is also influenced by the overall level of the primary tones, and primary tone level 

separation (L1-L2). In order to test the functional integrity of the outer hair cell‟s and identify 

cochlear hearing loss, it is necessary to elicit DPOAEs to moderate level primaries. Higher 

intensity stimuli evoke larger amplitude DPOAEs, but these responses reflect a passive 

cochlear process (Dorn et al., 2001). Evidence suggests that DPOAE amplitudes measured in 

response to primary levels, L1 and L2, of 65 and 55 dB SPL, respectively, are preferable for 

clinical use, as these levels separate normal hearing and hearing impaired ears with the 

greatest accuracy (Stover, Gorga, Neely, & Montoya, 1996).  

DPOAEs were measured in a descending order at 2.0 to 8.0 kHz by varying the frequency of 

f2 in half-octave steps. The spectrum of the noise and the response was shown for the 

condition being measured. Graphic plots of each pure-tone stimulus level (L1 and L2) and the 

amplitudes of the distortion product emission, 2f1-f2, were shown when each condition was 

completed. The amplitude and signal-to-noise ratios of DPOAEs were calculated based on a 

minimum of 50 samples, with a sample size of 1024. The stopping criteria for recording each 

condition was a minimum DP amplitude of -5 dB and a noise floor of a maximum of -17 dB, 

or 20 seconds of recording. DPOAEs were defined as present if the signal-to-noise ratio was 

greater than 5 dB and the absolute amplitude of the emission was greater than -10 dB SPL 

(Hall, 2006). The test was repeated if the DPOAE amplitude or signal-to-noise ratio was 

within 1 dB of the criteria at any f2 frequency. In cases where a repeat test was performed, 

DPOAEs were considered present only if they met the criteria for presence in both samples. 
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2.3.6.      Tone decay 

The Carhart‟s tone decay test was used to measure abnormal auditory adaptation. Carhart‟s 

tone decay procedure has been demonstrated to have greater sensitivity and specificity in 

separating sensorineural from retrocochlear pathologies than other auditory adaptation testing 

procesures, such as the automatic Bekesey tone-decay test (Gertner, 1981; Morales-Garcia & 

Hood, 1972). 

The acoustic stimulus presented for the tone-decay test was a 1 kHz continuous pure-tone 

generated by a calibrated audiometer, and presented monaurally via insert earphones. Testing 

commenced at the participant‟s subjective air conduction threshold at 1 kHz. This frequency 

was selected over higher frequencies as the most common audiometric presentation of 

vestibular schwannomas is a high frequency loss (Harner et al., 2000). By selecting a lower 

frequency there was a greater range over which to increase the presentation level in most 

participants. Although using a frequency where hearing loss is less likely reduced the chance 

of a pathology being detected, it was hoped that the greater chance of hearing being present 

postoperatively at 1 kHz would allow postoperative tone decay testing to be conducted. The 

tone was presented continuously for 60 seconds. If the participant maintained perception of 

the tone for the duration of presentation, testing was discontinued. If the participant indicated 

that they could no longer hear the tone during the 60 second period, the intensity of the 

stimulus was increased in 5 dB increments and the 60 second timing period restarted. This 

procedure was continued until a level was reached where the tone was heard for 60 seconds 

or until the participant indicated that the presentation level was uncomfortably loud. The 

duration for which the tone was heard at each presentation level was measured using a 

stopwatch, and recorded. The contralateral ear was masked by narrow band noise when the 

presentation level to the test ear was 75 dB HL or more greater than the air or bone 

conduction threshold in the non-test ear at 1 kHz (Yacullo, 1996).  

Investigations of tone-decay using the Carhart procedure in normal hearing subjects, or 

subjects with sensorineural hearing loss, suggest that tone decay of 10 dB or less is typical for 

these populations (Gertner, 1981; Harbert & Young, 1964). Therefore, tone-decay of greater 

than 10 dB HL was considered a significant indicator for retrocochlear pathology. 

 

 



54 

 

2.3.7.      ECochG measurement and analysis  

Apparatus 

Transtympanic ECochG was performed using a commercially available Amplaid 

electrodiagnostic system (Amplaid MK15, Milan, Italy). An experienced physician 

performed placement of the needle electrode on the promontory. Following the application of 

a drop of phenol to locally anaesthetise the tympanic membrane, a sterilised Teflon-insulated 

stainless steel monopolar transtympanic needle electrode was placed through the tympanic 

membrane under microscopic guidance and positioned just inferior to the round window 

niche to rest on the promontory. The needle electrode was held in position using elastic bands 

attached to a support ring placed over the ipsilateral ear. A differential recording was made 

between the transtympanic needle electrode and a self-adhesive Ag/AgCl- surface electrode 

(Ambu Ltd., Xiamen, China) positioned on the ipsilateral mastoid. A second self-adhesive 

Ag/AgCl- electrode was placed on the low forehead to act as a ground. As for ABR, the skin 

was prepared for adhesive electrode placement with a combination of abrasion with electrode 

gel and cleaning with 70% isopropyl alcohol swabs. Prior to recording, it was ensured that 

the electrode impedance was less than 12 kΩ, which was taken to indicate acceptable needle 

placement. To minimise electromyogenic interference, the participant was tested in a supine 

position and asked to remain as still as possible during testing. Electrical interference was 

minimised by dimming the lights in the test room and unplugging any unnecessary electronic 

equipment.   

The selection of the transtympanic approach over less invasive ECochG recording methods, 

was based on the fact that this approach provides a much closer proximity between the 

recording electrode and the response generators, thus provides the greatest signal to noise 

ratio (Hall, 2006). The advantage of this is that a large amplitude response is generated with 

less signal averaging than with other recording methods (Hall, 2006). 

Acoustic stimuli 

ECochG was generated using clicks and tone-burst stimuli. Click stimuli had a duration of 

100 µs presented at a rate of 7.1 clicks per second. Like ABR, the CAP of ECochG is 

optimally elicited by an abrupt stimulus to obtain a synchronous, and therefore well-defined, 

response, by virtue of simultaneously stimulating a large population of neurons (Hall, 2006). 

For this reason a click stimulus was considered optimal in this case for eliciting a CAP when 
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the intention was to investigate the functional integrity of the cochlear nerve, rather than 

obtain frequency specific information. A stimulus presentation rate of less than 10 clicks per 

second was selected to avoid the adaptation of the CAP that may occur at higher presentation 

rates (Suzuki & Yamane, 1982). The SP and CAP may be obscured by stimulus artefact and 

the CM (Hall, 2006), therefore clicks were presented in alternating polarity to cancel out the 

phase-dependent stimulus artefact and CM.  

Tone-burst stimuli with centre frequencies of 0.5, 1, 2 and 4 kHz were used to provide a more 

accurate measurement of absolute SP amplitude (Arenberg, Gibson, Höhmann, & Mihalco, 

1992). Non-instantaneous stimuli, such as tone-bursts, produce an SP that extends beyond the 

CAP, which appears only immediately after stimulus onset and may be obscured by the CAP 

in click-evoked ECochG recordings (Ferraro, Blackwell, Mediavilla, & Thedinger, 1994). 

Each tone-burst had a duration of 10 ms with an 1 ms rise-fall time, and was shaped using a 

Blackman window to maximise the frequency specificity of the stimulus (Hall, 2006). Stimuli 

of alternating polarity were presented at a rate of 9.1 per second. 

The air-conducted stimuli were presented to the participant via supraural headphones placed 

in a metal shielded shell and attached magnetically to a support ring positioned over the 

ipsilateral ear. No contralateral masking noise was required, as ECochG responses are 

generated prior to the crossover point of the auditory pathway. 

Procedure 

All stimuli were presented at an intensity of 90 dB HL in order to obtain a response of near-

maximum amplitude (Ferraro & Durrant, 2002). Activity was amplified (x 50 000), filtered, 

and sampled for 5 ms and 15 ms after stimulus onset for click and tone-burst stimuli 

respectively. The longer sample time used for tone-burst stimuli was employed so that the 

recorded response extended beyond the stimulus envelope and the baseline pre- and post-

stimulus voltage could be seen in the recording window. All samples were filtered using 

band-pass filters to minimise stimulus artefact and noise. Filter settings for each stimulus type 

were selected to suppress this unwanted activity while maintaining the morphology of 

cochlear and neural responses (Hall, 2006). Given that the SP is a DC potential, it is likely to 

be markedly distorted in response to tone-burst stimuli unless the high-pass filter has a cut-off 

frequency below 10 Hz to admit DC activity (Ferraro & Durrant, 2006). However, evidence 

suggests that high-pass filter settings of up to 30 Hz do not distort the SP elicited by click 
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stimuli (Durrant & Ferraro, 1991). A band-pass filter between 30 Hz and 3 kHz (slope of 6 

dB/octave) was used to filter responses to click stimuli. For tone-burst stimuli, band-pass 

filters were applied with pass bands of 5 Hz to 2 kHz for 0.5 kHz stimuli, 5 Hz to 3 kHz for 1 

kHz stimuli, 5 Hz to 4 kHz stimuli, and 5 Hz to 6 kHz for 4 kHz stimuli. Two averaged 

waveforms of 1000 responses were obtained for each stimulus condition, in order to check 

for consistency in a replicate waveform. Response measurement was based on the average of 

these two waveforms for each condition.  

Analysis  

Waveforms were inspected visually to identify the CAP and SP and evaluate the morphology 

of these responses. The amplitude of the SP elicited by click stimuli was determined by 

measuring from the pre-stimulus baseline to the point of intercept between the SP and the 

CAP. The CAP amplitude was measured from the pre-stimulus baseline to the maximum 

negative peak of the response (Figure 14).  

Figure 14. Electrocochleogram elicited by click stimuli illustrating the measurement of the amplitude of the 

compound action potential (AP) and summating potential (SP) relative to a baseline value (adapted from 

Ferraro, 2000). 

The amplitude of the SP elicited by tone-burst stimuli was measured as the average voltage at 

the midpoint of the duration of the SP, compared to the pre-stimulus baseline (see Figure 15). 

This method of response amplitude measurement minimises the influence of the CAP at the 

stimulus onset, and of the decay of the SP at stimulus offset (Ferraro et al., 1994). 
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Figure 15. An electrocochleogram elicited by tone-burst stimuli. The amplitude of the summating potential (SP) 

was measured at the midpoint of response (B), with reference to the pre-stimulus baseline value (A) (from 

Ferraro et al., 1994). 

For each stimulus condition, the absolute amplitude of the SP and CAP, and the ratio of the 

SP amplitude to the CAP amplitude, were compared with published normative data (Gibson, 

1993) to estimate the degree of cochlear function.  

 

2.4.      Interpretation of results 

Electrophysiological and behavioural responses were analysed on a case-by-case basis and 

described in detail according to patterns of responses over the early postoperative period. In 

addition to the audiological data collected, information was obtained from the surgeons 

regarding events during surgery. This information included the nerve of tumour origin, 

whether complete tumour removal was achieved, and whether the cochlear nerve was 

preserved. All analysis of audiological data then took into account these factors for each 

patient. The pattern of results in each case of a postoperative hearing loss was used to draw 

conclusions regarding the likely site of impairment.  

In addition, statistical comparisons were made to assess for significant differences between 

the mean tumour sizes, and mean preoperative PTA and WRS between the groups of patients 

suffering anacusis and those with preserved hearing. Correlational analyses were performed 

to determine if there was a significant relationship between tumour size and preoperative 

PTA, and between tumour size and preoperative WRS.  
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2.5.      Ethical Considerations 

Ethical approval from the Upper South A Regional Ethics Committee was granted on 22
nd

 

May 2007 (Ref: URA/07/03/017, see Appendix A) and ethical approval from the University 

of Canterbury Human Ethics Committee was granted on 16 June 2008 (Ref: HEC 2008/44). 

Written consent was obtained from each participant prior to testing (Appendix A), and patient 

confidentiality was maintained in accordance with the conditions of ethical approval.  
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3.     RESULTS 

3.1.     Preoperative hearing and overall rate of hearing preservation 

From the series of 19 consecutive patients who underwent excision of a presumed vestibular 

schwannoma via the retrosigmoid approach at Christchurch Public Hospital, 13 patients 

suffered immediate postoperative anacusis in the ear ipsilateral to the tumour, and measurable 

hearing was preserved in the remaining six patients. Figure 16 displays pre- and postoperative 

AAO-HNS (1995) hearing classifications for the ear ipsilateral to the tumour for each patient. 

As shown, all participants had measurable pure-tone thresholds documented in the 

preoperative assessment, and all participants, except Case 6, had some degree of measurable 

speech discrimination in the affected ear. A Class A preoperative hearing status was ascribed 

to seven participants (Cases 1, 2, 8, 12, 16, 17 and 18), Class B to six (Cases 4, 5, 7, 13, 14 

and 19), Class C to 2 (Cases 9 and 10), and four participants had preoperative hearing 

classified as Class D (Cases 3, 6, 11, 15). The mean preoperative PTA across all participants 

was 39.3 dB HL (SD = 19.1 dB HL) and the mean preoperative WRS was 74.7% (SD = 

31.4%).  

Figure 16. Pre- and postoperative hearing classifications for the ear ipsilateral to the tumour according to the 

Committee on Hearing and Equilibrium guidelines (1995), for all participants. The number adjacent to each 

closed dot denotes the case to which that marker refers.  
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Statistical analyses in this study were performed using a computer-based statistical software 

package (SPSS for Windows version 17.0, SPSS Inc., Illinois, U.S.A.). A significance 

criterion of p < .05 was used for all tests. Pearson correlations were performed to assess the 

relationship between preoperative hearing parameters across all participants and the mean 

extracanalicular tumour size of 17.7 mm (SD = 11.8 mm). These correlations showed that 

there was no significant relationship between tumour size and preoperative PTA (r(19) = 

.260, p = .283), or between tumour size and preoperative WRS (r(19) = -.045, p = .851). 

The mean tumour size was 17.8 mm (SD = 13.4 mm) for patients with postoperative anacusis 

and 17.7 mm (SD = 8.5 mm) for patients with preserved hearing. Levene‟s Test for Equality 

of Variance supported the assumption of equal variance between groups for the parameters of 

tumour size, PTA, and WRS (p = -.20), therefore an independent samples t-test was 

performed to compare the means tumour size between groups. No significant difference 

between tumour sizes for each group was found (t(17) = .17, p = .987).  

Mean preoperative PTA and WRS were 38.3 dB HL (SD = 19.4 dB HL, range = 15.0-67.5 

dB HL) and 76.2% (SD = 34.0%, range = 0-100%) respectively for the postoperative anacusis 

group. These means were compared to those of the hearing preserved group of 41.7 dB HL 

(SD = 18.6 dB HL, range = 26.25-72.5 dB HL) for PTA and 71.5% (SD = 27.7%, range = 31-

97%) for WRS. Levene‟s Test of Equality of Variances indicated equal variance between 

groups for both parameters (p = .58 for PTA and p = .87 for WRS). Independent samples t-

tests showed no significant difference between group means for either preoperative PTA 

(t(17) = .35, p = .73), or preoperative WRS (t(17) = -.30, p = .77). 

According to the AAO-HNS criteria, six participants (Cases 3, 6, 9, 10, 11 and 15) did not 

have serviceable hearing preoperatively. Postoperatively, three participants (Cases 3, 8 and 

17) retained serviceable hearing (Class A or B), whereas the remaining 16 cases had a Class 

D postoperative hearing classification, as shown in Figure 16. The degree of residual hearing 

in each case will be discussed with particular regard to the likely pathophysiology in section 

3.3. 
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Table 2. Summary of pre- and postoperative data for participants who suffered from postoperative anacusis following vestibular schwannoma removal 

PTA = pure-tone average of 0.5, 1, 2 and 3 kHz 

NR = no recordable response 

CNT = could not test 

WRS = maximum word recognition score 

FN = facial nerve 

SVN = superior vestibular nerve 

IVN = inferior vestibular nerve  

? = tumour nerve of origin could not be identified 

* = No waves present at 80 dB nHL, latency given is 

from the response to 90 dB nHL stimuli 

^ = Significant tone decay

                 Preoperative                    Surgery                                                           Postoperative 

Case 

        

 

 

    

 

 

     Tumour 

size 

(mm) 

PTA  

(dB HL) 

WRS 

(%) 

Hearing 

class 

Tone 

decay 

(dB SL) 

DPOAEs 

ABR I  

ABR V 

(ms) 

Cochlear 

nerve 

intact 

Nerve of 

tumour 

origin 

Complete 

tumour 

removal 

PTA 

(dB HL) 

WRS 

(%) 

 

Hearing 

class 

 

DPOAEs 

ABR I 

ABR V 

(ms) 

1 23 15.00 84 A CNT 2-3 kHz NR 

NR 

No IVN 
Yes NR DNT D Absent 

NR 

NR 

2 IAC 12.50 100 A 0 2-8 kHz I = 1.75  

V = 5.63  

Yes SVN 
Yes NR DNT D Absent 

NR 

NR 

3 23 62.50 7 D 10 8 kHz NR 

V = 6.35 

Yes ? 
Yes NR DNT D Absent 

NR 

NR 

4 9 41.25 94 B CNT CNT CNT Yes SVN 
Yes NR DNT D Absent 

NR 

NR 

6 12 50.00 0 D >25^ 2-4 kHz NR 

NR 

No ? 
Yes NR DNT D Absent 

NR 

NR 

7 9 47.50 93 B 5 Absent I = 1.63 

V = 6.10 

Yes IVN 
Yes NR DNT D Absent 

NR 

NR 

9 30 61.25 75 C >40^ 8 kHz I = 2.20 

NR 

Yes FN 
No NR DNT D Absent 

NR 

NR 

10 18 67.50 64 C 5 8 kHz NR 

NR 

No SVN 
Yes NR DNT D 8 kHz 

NR 

NR 

12 37 25.00 97 A 0 CNT I = 1.70 

NR 

No FN 
Yes NR DNT D Absent 

NR 

NR 

14 43 40.00 90 B 10 2-8 kHz I = 2.55* 

NR 

Yes ? 
No NR DNT D Absent 

NR 

NR 

16 IAC 6.25 100 A 0 2-8 kHz I = 1.80 

V = 6.50 

Yes SVN 
Yes NR DNT D 2-8 kHz 

NR 

NR 

18 7 26.25 87 A 0 4 kHz I = 2.13 

V = 6.70 

Yes FN 
Yes NR DNT D Absent 

NR 

NR 

19 20 42.50 100 B 0 4-8 kHz NR 

NR 

No SVN 
Yes NR DNT D Absent 

NR 

NR 
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3.2.      Permanent postoperative anacusis 

Table 2 presents a summary of tumour characteristics and pre- and postoperative audiological 

data recorded from the ear ipsilateral to the tumour for the 13 participants for whom no 

postoperative behavioural audiological responses were present. Postoperative data is 

presented from the final audiological assessment during each patient‟s period of 

hospitalisation. Data presented include: 

i. Tumour size, given as the maximum diameter of the extracanalicular portion of 

the tumour; 

ii. Pure-tone threshold average (PTA) at 0.5, 1, 2 and 3 kHz (AAO-HNS, 1995); 

iii. Word recognition score (WRS), defined as the maximum speech discrimination 

score at a presentation level up to 40 dB SL, or at the maximum comfort 

loudness level, whichever was less (AAO-HNS, 1995); 

iv. Hearing class according to the AAO-HNS guidelines (1995), based on the 

results given ii and iii; 

v. Tone decay test results - the sensation level of the tone required for the patient 

to maintain perception of a 1 kHz pure-tone for 60 seconds;  

vi. Presence or absence of DPOAEs at half-octave frequencies from 2-8 kHz; 

vii. ABR peak I and V latencies at 80 dB nHL, where present; 

viii. Whether anatomic preservation of the cochlear nerve was achieved; 

ix. The nerve from which the tumour originated, where identified by the surgeons; 

and 

x. Whether total tumour removal was accomplished. 

Among the group of patients who suffered from immediate postoperative anacusis on the 

operated side extranacanlicular tumour size ranged from 0 mm (intracanalicular) to 43 mm. 

Tumour size was classified as small (0-1.4 mm) in four patients, medium (1.5-2.9 mm) in 

four patients, and large (≥ 30 mm) in two patients. The remaining two patients (Case 2 and 

16) had tumours confined to the IAC. As shown in Table 2, three of the patients (Cases 9, 12 
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and 18) included in this study on the basis of having a suspected vestibular schwannoma were 

found during surgery to have tumours originating from the facial nerve. Due to the anatomic 

course of the facial nerve with in the IAC and CPA, many of the issues regarding hearing loss 

preoperatively and preservation of hearing during and following surgery, are comparable to 

those for vestibular schwannomas. Therefore, these data collected from patients with facial 

schwannomas are presented and discussed with those from patients with vestibular 

schwannomas. Of the remaining 10 tumours, two were found to originate from the IVN, five 

from the SVN, and the nerve of tumour origin could not be determined in three cases.  

All participants in this group had type “A” tympanograms preoperatively, indicating normal 

middle ear pressure and compliance, and showed no evidence of middle ear effusion on 

postoperative otoscopy.  

According to the AAO-HNS guidelines (1995), five had Class A hearing preoperatively, four 

had class B, two Class C, and two Class D. Using the significance criterion of greater than 10 

dB SL, tone decay testing was indicative of retrocochlear pathology only in Cases 6 and 9, in 

which perception of the tone could not be maintained for 60 seconds at maximum 

comfortable test levels of 25 dB SL and 40 dB SL respectively. 

Preoperative DPOAE testing documented the presence of at least one emission from 2-8 kHz 

in 10 of the 11 participants tested in this group. In two cases preoperative DPOAE testing 

could not be completed: Participant 4 was unavailable for preoperative electrophysiological 

testing and Participant 12 had severe loudness intolerance which prohibited DPOAE testing. 

No preoperative DPOAEs were present in Case 7. Three participants (Cases 2, 14, and 16) 

demonstrated robust DPOAEs from 2-8 kHz preoperatively. Cases 2 and 16 also showed the 

presence of ABR wave I of at normal absolute latencies (1.75 ms and 1.80 ms respectively) 

when tested at 80 dB nHL. In Case 14, although DPOAEs were present at 2-8 kHz, ABR 

wave I was not evident at 80 dB nHL, and was delayed (2.55 ms) at 90 dB nHL.  

At least one reproducible ABR peak was identified in eight of the 12 cases in which ABR 

was recorded preoperatively. Wave I was absent or delayed in eight cases and present at a 

normal absolute latency in the remaining four cases (Cases 2, 16, 7, 12). Both ABR waves I 

and V were obtained at normal absolute latencies at 80 dB nHL in Cases 2 (I = 1.75 ms, V = 

5.63 ms) and 7 (I = 1.63 ms, V = 6.10 ms). Based on interaural latency differences, however, 

ABR was abnormal in Case 2 given that waves III and V were significantly delayed relative 
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to the ABR in the contralateral ear (ILD = 0.23 and 0.28 for waves III and V respectively). In 

contrast to the significant absolute interaural latency differences in Case 2, the interaural 

interpeak differences (ITI-III = 0.13 ms, ITIII-V = 0.05 ms, ITI-V = 0.18 ms) in this case do not 

meet the criteria for abnormality. In Case 7 preoperative ABR one the ipsilateral side is 

abnormal based on the ITI-V of 0.28 ms, despite the absence of significant interaural peak 

latency differences. Case 18 showed a slightly delayed wave I (2.13 ms), although no 

significant interaural latency difference was present for wave I, and significantly delayed 

waves III and V with absolute latencies of I = 4.80 and V = 6.60 ms, and ILDs of 0.62 and 

1.0 ms respectively. Interaural interpeak latency differences were also significant in Case 18 

(ITI-III = 0.50 ms, ITIII-V = 0.32 ms, ITI-V = 0.82 ms). Cases 9 and 14 (at 90 dB nHL only) each 

demonstrated a delayed wave I with no wave V, and in Case 3 a normal latency wave III and 

a delayed wave V (6.35 ms) were present in the absence of wave I. In Case 12 only a normal 

latency wave I was evident preoperatively. Reproducible ABR could not be obtained at 80 or 

90 dB nHL in Cases 1, 6, 10, or 19.  

Anatomical preservation of the cochlear nerve was achieved in eight of these thirteen cases, 

with the nerve being severed intraoperatively in Cases 1, 6, 2, 19, and 10. Incomplete tumour 

removal was achieved in Cases 9 and 14: In Case 9 the tumour was found to be a facial nerve 

schwannoma with complete tumour removal being sacrificed in order to preserve the facial 

nerve; while in Case 14 the tumour was highly vascular and subsequently difficulties 

maintaining haemostasis occurred during its excision. For this reason the surgeons elected to 

perform a subtotal removal of the tumour. 

Intraoperative ABR was recorded in Cases 16 and 19 in this group. However, in Case 19 the 

recordings were contaminated by elevated levels of high-frequency electrical noise in the 

operating theatre, which obscured the responses. These recordings are presented in Appendix 

B. Similarly, in Case 16 the recordings were subject to high noise, however a wave I could be 

identified throughout most of the surgery. These data are shown in Figure 22 and discussed 

below with the pre- and postoperative data collected in Case 16. 

Of the 13 participants who presented with immediate postoperative anacusis, 11 showed no 

measurable responses postoperatively on pure-tone audiometry, ABR, or DPOAE testing. 

Detailed pre- and postoperative results for each of these cases of postoperative anacusis with 

no postoperative electrophysiological responses are presented in Appendix B. 
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3.2.1.      Anacusis with preservation of electrophysiological responses 

In two of the cases in which patients suffered immediate postoperative anacusis on the 

ipsilateral side, DPOAEs were preserved throughout early postoperative period. Pre- and 

postoperative data for these two patients are presented in detail.  

Case 10 

Participant 10 was a 40-year old female who presented at Christchurch Public Hospital for 

removal of a medium suspected vestibular schwannoma on the right side. The patient was 

initially referred for MRI due to a sudden decrease in hearing in the right ear. The tumour had 

the following dimensions, as seen on most recent MRI, performed approximately five months 

earlier: 16 mm in maximum oblique length from the anteromedial pole to the posterolateral 

pole in a plane parallel to the face of the petrous bone; 18 mm in maximum oblique width 

from the medial pole as it indented the cerebellum to the plane of the face of the petrous 

bone; 18 mm in maximum oblique vertical height; with an intracanalicular portion with a 

maximum length of 7 mm, occupying the medial 70% of the moderately expanded high IAC.  

 

The results of the preoperative assessment for this patient are detailed in Figures 17 and 18 

Preoperative pure-tone audiometry revealed a mild to profound U-shaped sensorineural 

hearing loss extending to a moderate loss at 8 kHz in the right ear (ipsilateral to the tumour) 

(PTA = 67.5 dB HL). Speech discrimination in the right ear was poorer than would be 

predicted on the basis of the pure-tone audiogram, with a maximum word recognition score 

of 64% obtained at a presentation level of 90 dB HL. Pure-tone thresholds obtained for the 

left ear were within the normal range across the frequency range tested (PTA = 16.2 dB HL). 

Speech audiometry was also consistent with normal hearing in the left ear (WRS = 100% at 

50 dB HL). Tone decay results alone did not suggest retrocochlear pathology, with a 

presentation level of only 5 dB SL required for the participant to maintain perception of the 

pure-tone for 60 seconds. Objective measures of OHC function via DPOAEs indicated 

emissions were present at 8 kHz only in the right ear, and at 2-8 kHz in the left ear. ABR 

testing in the right ear produced no identifiable waveforms at 80 or 90 dB nHL. The ABR 

recorded from the left ear showed reproducible waves I, III, and V at normal latencies, as 

shown in Figure 17A and B (Hall, 2006). 
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During surgery, the surgeons cut the cochlear and vestibular nerves to facilitate the removal 

of the tumour from the facial nerve. The surgeon noted that the tumour originated from the 

SVN, and that both the cochlear and vestibular nerves were very thinned out. Consistent with 

the dissection of the cochlear nerve and the absence of preoperative ABR, no postoperative 

ABR was evident at the first postoperative assessment three hours following surgery, or on 

postoperative days 1 or 5. Pure-tone audiometry confirmed postoperative anacusis. As 

indicated in Figure 17C DPOAE testing throughout the patient‟s hospitalisation (discharged 

on postoperative day 6) showed the persistence of an emission at 8 kHz.  

 

Case 16 

Figures 19, 20 and 21 detail the pre- and postoperative electrophysiological and behavioural 

data for Case 16. This data was collected from a 55-year old female who presented at 

Christchurch Public Hospital for removal of a left-sided, intracanalicular, suspected 

vestibular schwannoma. The patient was first seen by an otolaryngologist for diagnosis and 

treatment of horizontal canal benign paroxysmal vertigo (BPV). Following successful 

treatment of the BPV, some non-positional disequilibrium persisted, therefore the patient was 

referred for MRI. MRI scans taken three months prior to surgery showed that the tumour was 

intracanalicular with the medial pole just projecting into the CPA. The left IAC was 

moderately expanded and the medial 90% occupied by tumour. The tumour measured 12 mm 

in maximum longitudinal length in the plane along the axis on the IAC and 8 mm in 

maximum diameter just lateral to the plane of the face of the petrous bone in the medial 

portion of the IAC.  

 

As shown in Figure 21A, Participant 16 had hearing within normal limits bilaterally, across 

the frequency range tested, however there is a slight asymmetry in hearing, with the left ear 

being poorer (left PTA = 6 dB HL, right PTA = 0 dB HL). Speech discrimination results were 

consistent with the pure-tone audiogram for both ears (left: WRS = 100% at 30 dB HL, right: 

WRS = 100% at 15 dB HL). Tone decay was negative for retrocochlear pathology, with 

perception of the tone maintained for 60 seconds at presentation levels of 0 dB SL in each 

ear. DPOAE testing showed present emissions at 2-8 kHz bilaterally. ABR recordings from 

the left ear (ipsilateral to the tumour) at 80 dB nHL showed a reproducible wave I at a normal 

latency (1.80 ms), and waves II, III, and V that were of normal morphology, but delayed 

relative to those recorded from the contralateral ear (wave II interaural latency difference 

(ILD) = 0.55 ms, wave III ILD = 0.67, and wave V ILD = 0.70 ms). Waves I, II, III and V 
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were present at normal latencies in the contralateral ear. Interaural interpeak differences were 

significant indicators of retrocochlear pathology for waves I-III (ITI-III = 0.6 ms) and waves I-

V (ITI-V = 0.63 ms). 

Complete tumour removal from the SVN with preservation of the cochlear nerve was 

achieved surgically. Intraoperative ABR recorded in this case is presented in Figure 22. 

Although noise levels are high in these recordings, it is evident that a wave I was present 

throughout surgery, but could not be recorded following closure of the dura. Wave V could 

not be identified at any point following opening of the dura, and wave III was not measurable 

following cerebellar retraction. Due to the noise and artefact in the recordings it cannot be 

determined whether the loss of these waves is due to damage to the auditory structures, or 

due to changes in noise or artefact levels obscuring parts of the response. However, these 

later waves were also absent postoperatively. 

The initial postoperative ABR assessment in the ear ipsilateral to the tumour was performed 

approximately one hour after the patient‟s return to the ward following surgery. As shown in 

Figure 19A and B, the ABR recorded in this assessment documented a replicable wave I at 

1.88 ms at 80 dB nHL, a latency not significantly different to that measured preoperatively, 

and at 1.80 ms at 90 dB nHL. No waves beyond wave I were present at 80 or 90 dB nHL. All 

DPOAEs from 2-8 kHz were also present. Robust DPOAEs across the frequency range tested 

persisted throughout the early postoperative period. The patient reported that she perceived 

she had some residual hearing in the first three days postoperatively, however, as shown in 

Figure 21A, pure-tone audiometry performed as soon as the patient was able to cooperate on 

postoperative day 2 showed no responses at the limits of the audiometer. No evidence of 

measurable behavioural thresholds was found at any time postoperatively. As shown in 

Figure 19A and B, ABR wave I was clearly identifiable at 80 and 90 dB nHL on recordings 

made on postoperative days 0-5. Over these test sessions the latency of wave I gradually 

increased to a maximum of 2.35 ms at 80 dB nHL and 2.10 ms at 90 dB nHL on 

postoperative day 5. On postoperative day 6, the final assessment before the patient was 

discharged, a reproducible wave I was not identifiable at 80 or 90 dB nHL. No significant 

changes were noted on any result from tests performed on the contralateral side during the 

early postoperative period. 

Twelve weeks after surgery, the patient underwent further audiological assessment. Pure-tone 

audiometry at this time showed that the postoperative anacusis in the left ear had persisted 
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(see Figure 21A). DPOAEs remained present at 2-8 kHz bilaterally. No replicable ABR 

waves were present in recordings evoked from the left ear. Transtympanic ECochG was 

performed as part of this assessment to determine the level of cochlear function. ECochG 

traces are presented in Figure 20A and amplitude values are shown Figure 20B. Click-evoked 

transtympanic recordings from the left ear provided evidence of cochlear function, 

demonstrating a small CAP (9.20 µV) with an SP (6.44 µV). The ratio of the amplitudes of 

the SP and CAP was 70%. ECochG elicited by tone-burst stimuli showed an SP with no CAP 

at 2 kHz and 4 kHz, and no measurable responses to stimuli of 0.5 kHz and 1 kHz. 
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Contralateral (left) peak latencies (ms) 

Day I II III IV V 

Preop 1.75 - 5.35 - 7.42 

Postop 0 Could not test 
Postop 1 2.01 - 5.15 - 7.43 

Postop 5 No identifiable peaks 

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 1 + + + + + 
Postop 2 + + + + + 

Postop 4 + + + + + 

Postop 5 + + + + + 

Ipsilateral (right) peak latencies (ms)   

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop No identifiable peaks  No identifiable peaks 

Postop No identifiable peaks  No identifiable peaks 

Ipsilateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - - - - + 

Postop 1 - - - - + 
Postop 2 - - - - + 

Postop 4 - - - - + 

Postop 5 - - - - + 

Left (NT) Right (T)

Postoperative

Day 0

Day 1

80dB nHL 90dBnHL80dB nHL

Preoperative

Day 5

0 2 6 10 12

Time (ms)
4 80 2 6 10 12

Time (ms)
4 80 2 6 10 12

Time (ms)
4 8

I

COULD NOT TEST

III

V

A. B. 

C. 

Figure 17. Case 10: Electrophysiological auditory responses collected before and after vestibular schwannoma surgery. Part A shows a time-ordered 

sequence of click-evoked ABR traces from the left and right ears; with the latencies of waves present in these traces shown in part B. Part C shows the 

serial DPOAE data collected pre- and postoperatively; + indicates present DPOAEs and – indicates their absence.  

0.2µv 

1.5µv 
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0.3µv 



70 

 

 

 

 

 

 

 

 

 

 

 

  

 

Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (NT) 15 60 

Right (T)      65 0 
 70 60 

Figure 18. Case 10: Behavioural audiological responses collected before and after vestibular schwannoma surgery. Part A shows a time-ordered sequence of results of pure-

tone and speech audiometry. The right and left ears are represented by circles and crosses respectively (filled circles and double crosses indicate the use of contralateral 

masking). Part B shows the duration of tone perception at each intensity level presented in tone decay testing. 
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Ipsilateral (left) peak latencies (ms) 

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop 1.80 3.80 4.80 - 6.50  Did not test 

Postop 0 1.88 - - - -  1.80 - - - - 
Postop 1 1.85 - - - -  1.82 - - - - 

Postop 2 1.90 - - - -  1.88 - - - - 

Postop 3 2.02 - - - -  1.98 - - - - 

Postop 4 2.18 - - - -  2.02 - - - - 

Postop 5 2.35 - - - -  2.10 - - - - 

Postop 6 - - - - -  - - - - - 

Contralateral (right) peak latencies (ms) 

Day I II III IV V 

Preop 1.73 3.25 4.13 - 5.80 

Postop 0 Could not test 
Postop 1 1.88 3.27 4.25 - 5.78 

Postop 2 1.75 3.20 4.15 - 5.94 

Postop 3 1.90 - - - 5.93 

Postop 4 1.85 - 4.15 - 5.95 

Postop 5 1.88 - 4.18 - 5.91 

Postop 6 1.85 3.23 4.22 - 5.88 

Left (T) Right (NT)

Preoperative

Postoperative

Day 0

Day 4

Day 1

Day 3

Day 2

Day 6

Day 5
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Time (ms)
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III
II
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DID NOT TEST

Week 12

A. B. 

Figure 19. Case 16: Electrophysiological auditory responses collected before and after vestibular schwannoma surgery. Part A shows a time-ordered sequence of click-

evoked ABR traces from the left and right ears; with the latencies of waves present in these traces shown in Part B. 
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Electrocochleography response amplitudes 
  Stimulus 

 
Click 

Tone burst frequency (kHz) 

0.5 1 2 4 

SP amplitude (µV) -6.44 NR NR -4.96 -4.40 
CAP amplitude (µV) -9.20 NR NR NR NR 

SP/CAP ratio 70% - - - - 

Ipsilateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 0 + + + + + 
Postop 1 + + + + + 

Postop 2 + + + + + 

Postop 3 + + + + + 

Postop 4 + + + + + 

Postop 5 + + + + + 

Postop 6 + + + + + 

Contralateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 0 Could not test 
Postop 1 Could not test 

Postop 2 + + + + + 

Postop 3 + + + + + 

Postop 4 + + + + + 

Postop 5 + + + + + 

Postop 6 + + + + + 

Figure 20. Case 16: Electrophysiological auditory responses collected before and after vestibular schwannoma surgery. Part A shows transtympanic electrocochleograms 

evoked from the left ear by tone-bursts (left panel) and clicks (right panel), 12 weeks after surgery. The amplitudes of the summating potential (SP) and compound action 

potential (CAP) in these recordings are shown in Part B. Part C shows the serial DPOAE data collected pre- and postoperatively; + indicates present DPOAEs and – indicates 

their absence.  
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 Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (T) 15 60 

Right (NT)      15 60 

Figure 21. Case 16: Behavioural audiological data collected before and after vestibular schwannoma removal. Results of pure-tone and speech audiometry are shown in Part 

A. The right and left ear are shown by circles and crosses respectively (filled circles and double crosses indicate the use of contralateral masking). Part B shows the duration 

of tone perception at each intensity level presented in tone decay testing. 
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Figure 22. Case 16: ABR recorded from the ipsilateral ear at important points during vestibular schwannoma 

surgery. The blue traces show the waveforms following smoothing using a 21-point running average, and grey 

traces show the raw data. 
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3.3.      Postoperative hearing preservation 

Table 3 presents a summary of tumour characteristics and pre- and postoperative audiological 

data collected from the ipsilateral ear for the six participants for whom measurable pure-tone 

thresholds were documented postoperatively. Postoperative data is presented from the final 

assessment before the patient was discharged from hospital. Data presented include: 

i. Tumour size, given as the maximum diameter of the extracanalicular portion 

of the tumour; 

ii. PTA at 0.5, 1, 2 and 3 kHz (AAO-HNS, 1995);   

iii. WRS, defined as the maximum speech discrimination score at a presentation 

level up to 40 dB SL, or at the maximum comfort loudness level, whichever 

was less (AAO-HNS, 1995); 

iv. Hearing class according to the AAO-HNS guidelines (1995), based on the 

results given ii and iii; 

v. Tone decay test results - the sensation level of the tone required for the patient 

to maintain perception of a 1 kHz pure-tone for 60 seconds;  

vi. Presence or absence of DPOAEs at half-octave frequencies from 2-8 kHz; 

vii. ABR peak I and V latencies at 80 dB nHL, where present; 

viii. Whether anatomic preservation of the cochlear nerve was achieved; 

ix. The nerve from which the tumour originated, where identified by the 

surgeons; and 

x. Whether total tumour removal was accomplished. 

As shown in Table 3, tumour size in this group ranged from 11-28 mm, with a mean tumour 

size of 17.7 mm (SD = 8.5 mm). The tumours of three patients were classified based on a 

preoperative MRI as small (0-14 mm) and three as medium (15-29 mm). All participants had 

type “A” tympanograms preoperatively, indicating normal middle ear pressure and 

compliance, and showed no evidence of middle ear effusion on postoperative otoscopy. 

Hearing was classified preoperatively according to the AAO-HNS (1995) guidelines as Class 
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A in two cases (Cases 8 and 17), Class B in two cases (Cases 5 and 13), and Class D (Cases 

11 and 15) in two cases. As shown in Figure 23, postoperatively, Cases 11, 13, 15, and 17 

maintained their preoperative class of hearing, whereas hearing class decreased in two 

patients: from Class B to Class D in Case 5, and from Class A to Class B in Case 8.  The 

mean change in PTA in this group of patients was 17 dB HL (range = 5 – 42.5 dB HL) and 

the mean decrease in WRS was 25% (range = -1 - 68%). 

Figure 23. Change in PTA, WRS and AAO-HNS (1995) hearing classification from the pre- to postoperative 

period in the six patients in whom hearing was preserved. Preoperative hearing is indicated by the open circle 

and postoperative hearing is indicated by the closed circle. 

 

The nerve from which the tumour originated was identified intraoperatively by the surgeons 

in four of the six cases, with three tumours originating from the SVN (Cases 8, 11 and 17) 

and one from the facial nerve (Case 15). As with the data from patients who experienced 

postoperative anacusis following the removal of a facial nerve schwannoma, Case 15 will be 

discussed together with the results of patients who retained measurable hearing following 

vestibular schwannoma removal.  
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Table 3. Summary of pre- and postoperative data for patients with measurable behavioural audiological responses following vestibular schwannoma removal. 

NF2 = Neurofibromatosis Type II 

PTA = pure-tone average of 0.5, 1, 2 and 3 kHz 

NR = no recordable response 

CNT = could not test 

WRS = maximum word recognition score 

FN = facial nerve 

SVN = superior vestibular nerve 

IVN = inferior vestibular nerve 

? = tumour nerve of origin could not be identified 

 

 

 

 

 

 

 

 

 

 

ª No response above 1 kHz, PTA calculated based on average of the patient‟s  

thresholds at 0.5 and 1 kHz only 
b No response above 2 kHz, PTA based on average of 0.5, 1 and 2 KHz only 
c No response at 0.5, 2 and 3 KHz, PTA taken as the threshold at 1 KHz 

^Significant tone decay

Case Tumour 

size 

(mm) 

                    Preoperative                 Surgery Postoperative 

                

PTA 

(dB HL) 

WRS 

(%) 

Hearing 

class 

Tone 

decay 

(dB SL) 

DPOAEs 

ABR I  

ABR V 

(ms) 

 
Cochlear 

nerve 

intact 

Nerve of 

tumour 

origin 

Complete 

tumour 

removal 

 

PTA 

(dB HL) 

 

 WRS 

(%) 

 

 

Hearing 

class 

 

Tone 

decay 

(dB SL) 

DPOAEs 

ABR I 

ABR V 

(ms)  

 

 

 

 
 

5 13 50.00 68 B 25^ Absent NR 

NR 

 Yes ? Yes  87.50ª 0 D > 40^ Absent NR 

NR 

8 11 26.25 96 A 5 CNT I = 1.88 

V = 8.85 

 Yes SVN Yes  31.25 97 B 0 3-8 kHz I = 1.95 

V = 6.00 

11 14 72.50 47 D 5 Absent I = 1.30 

NR 

 Yes SVN Yes  76.67
b
 0 D 0 Absent NR 

NR 

13
 NF2

 34 38.75 90 B 0 2-8 kHz I = 1.70 

V = 5.80 

 Yes ? No  46.25 87 B 5 2-8 kHz I = 1.70 

NR 

 

 

15 20 42.50 31 D CNT Absent NR 

NR 

 Yes FN No  85.00
c
 0 D CNT Absent NR 

NR 

 

 

17 14 20.00 97 A 5 2-4 kHz NR 

V = 6.88 

 Yes SVN Yes  25.00 94 A 5 2-4 kHz NR 

V = 7.17 
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3.3.1.      Postoperative preservation of behavioural and electrophysiological responses 

Electrophysiological and behavioural evidence of functional preservation of the cochlea and 

cochlear nerve was documented postoperatively in Cases 8, 11, 13, and 17. Pre- and 

postoperative audiological data for all of these cases, and intraoperative ABR recordings 

from Cases 8 and 13, is presented in detail below. 

 

Case 8 

Figures 24 and 25 show the pre- and postoperative auditory responses of a 37-year old female 

who underwent excision of a small suspected vestibular schwannoma on the right side. The 

patient was referred for MRI following a slight decrease in hearing on the right side, 

unilateral tinnitus, and two brief episodes of right-sided facial numbness. The tumour had the 

following dimensions, as seen on MRI scans performed approximately six months prior to 

surgery: 11 mm in maximum oblique length from the anteromedial pole in the plane parallel 

to the face of the petrous bone; 9 mm in maximum transverse width from the medial pole as it 

just indented the cerebellum to the plane of the face of the petrous bone; and 10 mm in 

maximum oblique vertical height. The right IAC was slightly expanded in its medial half and 

the medial 40% was occupied by the tumour so that the length of the tumour in the IAC was 

4 mm along the long axis of the IAC.  

Preoperatively, the patient presented with a moderate U-shaped sensorineural hearing loss in 

the right ear, with thresholds within the range of normal hearing at 1 kHz and below, and 4 

kHz and above, as shown in Figure 25A (PTA = 26.3 dB HL). Speech discrimination on the 

right side was well preserved, with a maximum word recognition score of 96% at a 

presentation level of 60 dB HL. Pure-tone thresholds measured for the left ear were within 

the normal range across the frequency range tested (PTA = 2.5 dB HL). Speech 

discrimination results were consistent with the pure-tone audiogram in the left ear (WRS = 

100% at 40 dB HL). Tone decay testing did not provide evidence of retrocochlear pathology, 

with a presentation level of 5 dB SL required for the participant to maintain tone perception 

for 60 seconds. Preoperative DPOAE testing could not be completed in the ipsilateral ear due 

to high internal noise levels. Emissions were present in the contralateral ear at 2-8 kHz. ABR 

waves I, II, and III were replicable at normal latencies in both ears, with no interaural latency 

differences for these peaks. Wave V was slightly delayed in the right ear in relation to the 
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left, with an interaural latency difference of 0.35 ms, however the peak was present at a 

latency within the normal range for both ears (see Figure 24A and B) (Hall, 2006). Interaural 

interpeak latency differences were significant for waves III-V and I-V (ITIII-V = 0.23 ms and 

ITI-V = 0.22 ms). 

During surgery, complete tumour removal from the SVN with anatomical preservation of the 

cochlear nerve was accomplished. ABR was recorded intraoperatively at important points 

during surgery. The responses recorded are presented in Figure 26. The latency and 

morphology of wave I remained stable throughout the surgery, whereas the latencies of 

waves II-V increased, beginning from the time of the retraction of the cerebellum. The 

latencies of these waves continued to increase until the CPA portion of the tumour was 

completely removed. All waves then remained stable throughout drilling of the IAC and 

removal of the intracanalicular portion of the tumour.  

The patient first underwent postoperative ABR testing in the ipsilateral ear approximately one 

hour following her return to the ward. ABR wave I was clear and reproducible at 80 and 90 

dB nHL at latencies not significantly different (less than 0.2 ms) to those measured in 

preoperative testing (Figure 24A and B). Wave III was not identifiable at 80 dB nHL, but was 

present at 90 dB nHL at a latency of 4.65 ms, 0.55 ms delayed relative to the preoperative 

ABR. Wave V also increased in latency, by 0.40 ms at 80 dB nHL and 0.52 ms at 90 dB 

nHL. ABR testing was repeated on postoperative days 1-6, with the exception of day 5, on 

which the patient was unwilling to participate. ABR was not tested at 90 dB nHL after 

postoperative day 2, as the patient became more mobile and less tolerant of longer test 

sessions. Wave I of the ABR remained stable of the early postoperative period, whereas wave 

V fluctuated, before recovering to a latency only 0.15 ms longer than that measured 

preoperatively, on the day of hospitalisation. The final ABR (postoperative day 6) showed the 

following latency increases relative to the preoperative ABR: wave I = 0.07 ms, wave II = 

0.23 ms, wave III = 0.35 ms, and wave V = 0.15 ms. Interaural interpeak latency differences 

also increased for waves I-V (ITI-V = 0.35 ms) and I-III (ITI-III = 0.39 ms), however the ITIII-V 

decreased to 0.04 ms. (DPOAEs were present at 3-8 kHz without fluctuation throughout 

hospitalisation.  

The results of pure-tone audiometry assessments conducted on postoperative days 2-6 are 

shown in Figure 25A. Across these assessments the only significant change from the 

preoperative assessment was a threshold increase of 20 dB HL at 8 kHz in the right ear. No 
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significant changes in any thresholds across the frequency range tested were observed during 

the early postoperative period. The PTA increased from a preoperative level of 26.3 dB HL to 

31.3 dB HL, shifting from a class A to a class B hearing classification. The presentation level 

of speech stimuli required to elicit a maximum word recognition score increased by 20 dB 

HL to 60 dB HL, however a speech discrimination score of 97% was found at this raised 

presentation level. Tone decay testing on postoperative day 6 remained a negative indicator 

for retrocochlear pathology, with a presentation level of 0 dB SL required for the 

maintenance of 60 seconds of tone perception. No significant changes were noted on any 

result from tests performed on the contralateral side during the early postoperative period. 

 

Case 11 

The data presented in Case 11 (Figures 27 and 28) was collected from a 62-year old male 

undergoing removal of a small suspected vestibular schwannoma from the right CPA. The 

patient was initially referred for otolaryngological assessment when an asymmetrical hearing 

loss was documented during an audiological assessment. As shown on MRI scans performed 

approximately seven months earlier, the tumour had the following dimensions: 14 mm in 

maximum oblique length from the anteromedial pole in the CPA to the posterolateral pole, in 

a plane parallel to the face of the petrous bone; 11 mm in maximum oblique width from the 

medial pole as it rested on the surface of the cerebellum to the plane of the face of the petrous 

bone; and 10 m in maximum vertical height. The right IAC was slightly expanded, the medial 

two thirds being occupied by tumour.  

As shown in Figure 28, preoperative pure-tone audiometry in Case 11 showed a moderate 

sloping to profound sensorineural hearing loss in the right ear (PTA = 72.5 dB HL). No 

thresholds were present above 4 kHz at the limits of the audiometer. Speech discrimination in 

the right ear was significantly poorer than would be predicted on the basis of the pure-tone 

audiogram, with a maximum speech discrimination score of 47% at presentation level of 85 

dB HL. The left ear showed a mild sloping to severe sensorineural hearing loss (PTA = 41.3 

dB HL), and speech discrimination consistent with this pure-tone audiogram (WRS = 97% at 

60 dB HL). Tone decay testing did not provide evidence of retrocochlear pathology, with a 

presentation level of 5 dB SL required for the participant to maintain tone perception for 60 

seconds in the ear ipsilateral to the tumour. DPOAE testing showed absent emissions at 2-8 
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kHz bilaterally. ABR testing in the right ear showed a repeatable wave I at normal latencies 

(1.30 ms and 1.35 ms at 80 and 90 dB nHL respectively) and wave III (4.15 ms) at a stimulus 

presentation level of 90 dB nHL only. It should be noted wave I increased in latency with 

increased stimulus intensity, rather than showing the expected decrease in absolute latency. 

Wave V could not be identified at either presentation level. In the contralateral ear wave I 

was absent, wave III was present at a latency within the normal range (4.13 ms) and wave V 

was present at slightly delayed latency of 6.20 ms. Interaural interpeak latency differences 

were not calculated in this case as ipsilateral and contralateral ABR were obtained with 

different stimulus intensities.  

Complete tumour removal from the SVN was achieved during surgery, with anatomical 

preservation of the cochlear nerve. The patient was not available for testing on postoperative 

day 0, therefore the first postoperative ABR assessment was conducted 24 hours after 

surgery, on postoperative day 1. No reproducible ABR waveforms were identified in the right 

ear on postoperative days 0 to 4 postoperatively. However, on postoperative day 5 wave III 

was present at a normal latency of 3.70 ms at 80 dB nHL, and waves III and V were present 

at 90 dB nHL at latencies of 3.50 and 6.02 ms respectively. ABR in the contralateral ear 

fluctuated in terms of the clarity and reproducibility of the waveforms, however, as shown in 

Figures 27A and B, the latencies of waves were essentially unchanged. No DPOAEs could be 

obtained in either ear postoperatively. Pure-tone audiometry was performed on postoperative 

days 1-5 and fluctuated only at 0.5 kHz over these test sessions. On each occasion the patient 

presented with a severe to profound hearing loss in the right ear, with no measurable hearing 

beyond 2 kHz. The threshold at 0.5 kHz was 85 dB HL on postoperative day 1 and improved 

to 70 dB HL on postoperative day 5. Speech discrimination testing documented absent 

discrimination abilities at a maximum presentation level of 100 dB HL.  Tone decay testing 

on postoperative day 5 remained a negative indicator for retrocochlear pathology, with a 

presentation level of 0 dB SL required for the maintenance of 60 seconds of tone perception. 

No significant changes were noted on any result from tests performed on the contralateral 

side during the early postoperative period. 
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Case 13 

Case 13 documents the pre- and postoperative auditory responses of a 22- year old male with 

NF2. A diagnosis of NF2 was made approximately 15 months prior to the patient‟s 

participation in this study, following referral for an MRI to investigate an asymmetry in 

hearing. This participant had undergone subtotal removal of the right vestibular schwannoma 

approximately 12 months earlier, and participated in the present study during his 

hospitalisation for subtotal removal of the left vestibular schwannoma. MRI scans taken the 

day prior to surgery showed that the tumour in the left CPA had two probable components to 

it, the smaller occupying the markedly expanded IAC and extending medially and slightly 

interiorly, the larger superimposed over the posterior and superior aspects of the slightly 

smaller tumour. As shown on the MRI, the total dimensions of these two tumours together 

were 34 mm from the anteromedial pole to the posterolateral pole in a plane parallel to the 

face of the petrous bone; 28 mm from the medial pole as it indented upon the cerebellum to 

the plane of the face of the petrous bone; and 26 mm in maximum vertical height.  

Figures 29 and 30 show the pre- and postoperative behavioural and electrophysiological data 

collected for Case 13. Preoperatively, a mild, flat sensorineural hearing loss was documented 

in the left ear (PTA = 38.8 dB HL) (see Figure 30 A). Speech discrimination in the ear was 

concordant with the pure-tone audiogram (WRS = 90% at 60 dB nHL). The right ear showed 

a U-shaped sensorineural hearing loss; mild in the low frequencies, falling to 70 dB HL at 1.5 

kHz, rising to mild again by 6 kHz, before steeply falling to 95 dB HL at 8 kHz (PTA = 48.8 

dB HL). Speech discrimination testing in the right ear showed a maximum of score of 88% at 

a presentation level of 60 dB HL, however discrimination was degraded at presentation levels 

above this, falling to 70% at 80 dB HL. Tone decay was negative for retrocochlear pathology 

in both ears, with perception of the tone maintained for 60 seconds at a presentation level of 0 

dB SL bilaterally. Preoperative ABR, as presented in Figure 29 A and B, showed clear and 

reproducible waves I, III, and V at normal latencies at 80 dB nHL in the left ear. In the right 

ear waves I and III were present at normal latencies, with no significant interaural latency or 

interaural interpeak latency differences (ITI-III = 0.15 ms), while wave V was absent. 

DPOAEs were present and robust at 2-8 kHz bilaterally.  

During surgery, sufficient of the larger tumour of the tumour complex was removed to 

achieve adequate decompression of the cranial nerves and the cerebellum. No tumour 

removal was attempted from within the IAC. ABR recorded intraoperatively (Figure 31) 
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documented the presence of wave I without any change in latency or morphology, throughout 

the surgery. Wave V was not identifiable at any point during surgery following opening of 

the skull. Wave III was present throughout the surgery up until the point when tumour 

debulking was complete. No waves beyond wave I were reproducible upon closure of the 

dura. 

Daily postoperative assessments could not be completed for this participant, due to his rapid 

discharge and subsequent unavailability for testing. ABR wave I was maintained throughout 

the early postoperative period at unchanged latencies relative to the preoperative assessment, 

however no waves beyond wave I were reproducible at any stage postoperatively (see Figure 

29A and B).  No changes were observed in DPOAEs, with emissions preserved at 2-8 kHz 

postoperatively. Postoperative pure-tone testing revealed no change in pure-tone thresholds 

across the frequency range tested at any stage during the early postoperative period. Speech 

discrimination was also preserved at preoperative levels. Postoperative tone decay testing, 

conducted on postoperative day 4, remained negative for retrocochlear pathology, with 60 

seconds of tone perception maintained at a presentation level of 5 dB SL in the left ear. No 

significant changes were noted on any result from tests performed on the contralateral side 

during the early postoperative period. 

 

Case 17 

The data documented in Case 17 was collected from a 61-year old female admitted for 

removal of a small suspected vestibular schwannoma on the left side. The presenting 

symptoms in this case were unilateral tinnitus and aural fullness. MRI scans two months 

preoperatively showed a tumour of the following dimensions: 13 mm in maximum oblique 

length from the anteromedial pole to the posterolateral pole in a plane parallel to the face of 

the petrous bone; 14 mm in maximum oblique width from the medial pole as it indented the 

cerebellum/pons junction to the plane of the face of the petrous bone; and 12 mm in 

maximum vertical height. The left IAC was slightly enlarged due to the tumour filling the 

medial 50% of the IAC. 

The preoperative assessment for this patient, as shown in Figures 32 and 33, showed a mild, 

high-frequency sensorineural hearing loss in the left ear (ipsilateral to the tumour) (PTA = 

20.0 dB HL). Speech discrimination in the left ear was consistent with the pure-tone 
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audiogram (WRS = 97% at 50 dB HL). The right ear also showed a mild high-frequency 

sensorineural hearing loss, with a slightly lower PTA relative to the left ear of 7.50 dB HL. 

Speech discrimination was in the right ear was also consistent with the pure-tone audiogram 

(WRS = 97% at 25 dB HL). Tone decay was negative for retrocochlear pathology in both 

ears, with perception of the tone maintained for 60 seconds at a presentation level of 0 dB SL 

in the right ear, and at 5 dB SL in the left ear. ABR testing at 80 dB nHL showed that only 

wave V was reproducible at a delayed latency of 6.88 ms, 1.41 ms later that wave V in the 

contralateral ear. The presentation level was increased to 90 dB nHL, at which wave V was 

further delayed, at a latency of 6.97 ms. Wave I was evident at a stimulus presentation level 

of 90 dB nHL, at a normal latency of 1.88 ms. ABR waves I, III, and V were present at 

normal latencies in the right ear preoperatively. DPOAE testing revealed present emissions at 

2-4 kHz in the left ear and at 2-6 kHz in the right ear. 

Total removal of the patient‟s tumour from the left SVN was achieved with anatomical 

preservation of the cochlear nerve. Ipsilateral ABR measurements were made two hours 

following the patient‟s return to the neurosurgery ward and are presented in Figure 32A  and 

B. The presence of wave V at both 80 and 90 dB nHL was observed in this test session, with 

a latency increase compared to the preoperative responses of 1.27 ms and 1.08 ms at 80 and 

90 dB nHL respectively. Waves I and III were not identifiable. ABR was repeated at 24-hour 

intervals for the remainder of the participant‟s hospitalisation (discharged on postoperative 

day 6). Over this period the latency of wave V gradually decreased to 7.17 ms at the final test 

session, at both 80 and 90 dB nHL. From postoperative day 2 forward, wave III was also 

evident. Over postoperative test sessions on days 2 to 6, the latency of this wave gradually 

decreased from 5.72 ms to 5.42 ms at 80 dB nHL and 5.70 ms to 5.47 ms at 90 dB nHL (see 

Figure 32A and B). No changes were observed in DPOAEs, with emissions preserved 

throughout the early postoperative period at 2-4 kHz. Postoperative pure-tone testing revealed 

no significant changes in pure-tone thresholds from preoperative levels across the frequency 

range tested at any stage during the early postoperative period. The postoperative PTA, based 

on the final audiogram produced during hospitalisation, was 25.0 dB HL, 5 dB HL greater 

than the preoperative PTA. Speech discrimination was also preserved at preoperative levels 

(WRS = 94% at 50 dB HL), therefore in this case the preoperative hearing classification of 

class A was maintained. Postoperative tone decay testing, conducted on postoperative day 6, 

remained negative for retrocochlear pathology, with 60 seconds of tone perception 

maintained at a presentation level of 5 dB SL in the left ear. No significant changes were 
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noted on any result from tests performed on the contralateral side during the early 

postoperative period. 
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Contralateral (left) peak latencies (ms) 

Day I II III IV V 

Preop 1.75 2.90 3.88 - 5.50 

Postop 0 Could not test 
Postop 1 1.80 2.85 3.85 - 

 

5.69 

Postop 2 1.79 2.83 3.80 - 5.72 

Postop 3 1.82 - 3.78 - 5.67 

Postop 4 1.74 2.85 3.80 

 
- 5.65 

Postop 6 1.77 2.92 3.81 - 5.58 

Ipsilateral (right) peak latencies (ms)   

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop 1.88 2.85 4.00 - 5.85  1.72 2.73 4.10 - 5.90 

Postop 0 1.92 - - - 6.25  1.85 - 4.65 - 6.42 
Postop 1 1.70 - 4.28 - 6.13  1.77 2.88 4.47 - 6.10 

Postop 2 1.92 2.92 4.35 - 6.08  Did not test 

Postop 3 2.00 3.10 4.33 - 6.19   Did not test  

Postop 4 1.97 - 4.34 - 6.15   Did not test  

Postop 6 1.95 3.08 4.35 - 6.00   Did not test  

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 1 + + + + + 
Postop 2 + + + + + 

Postop 3 + + + + + 

Postop 4 + + + + + 

Postop 6 + + + + + 

Figure 24. Case 8: Electrophysiological auditory responses collected before and after vestibular schwannoma surgery. Part A shows a time-ordered sequence of click-evoked 

ABR traces from the left and right ears; with the latencies of waves present in these traces shown in part B. Part C shows the serial DPOAE data collected pre- and 

postoperatively; + indicates present DPOAEs and – indicates their absence. 

Ipsilateral (right) DPOAEs 
 f2 frequency (Hz) 
Day 2000 3000 4000 6000 8000 
Preop Could not test 
Postop 1 - + + + + 
Postop 2 - + + + + 
Postop 3 - + + + + 
Postop 4 - + + + + 
Postop 6 - + + + + 
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Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (NT) 5 60 

Right (T) 10 0 
 15 60 

Postoperative Day 6 tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (NT) 5 60 

Right (T) 15 60 

Figure 25. Case 8: Behavioural audiological data collected before and after vestibular schwannoma removal. Results of pure-tone and speech audiometry are shown in Part 

A. The right and left ear are shown by circles and crosses respectively (filled circles and double crosses indicate the use of contralateral masking). Part B shows the duration 

of tone perception at each intensity level presented in tone decay testing. 
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Figure 26. Case 8: ABR recorded from the ipsilateral ear at important points during vestibular schwannoma 

surgery. The red traces show the waveforms following smoothing using a 21-point running average, and grey 

traces show the raw data. 
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Contralateral (left) peak latencies (ms) 

Day I II III IV V 

Preop - - 4.13 - 6.20 

Postop 0 Could not test 
Postop 1 1.90 - 4.25 - 6.07 

Postop 2 1.93 - 4.13 - 5.97 

Postop 3 1.88 3.02 4.11 - 6.05 

Postop 4 1.92 - 4.08 - - 

Postop 5 - - 4.22 - 6.17 

Ipsilateral (right) peak latencies (ms)   

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop 1.30 - - - -  1.35 - 4.15 - - 

Postop 0  No identifiable peaks  No identifiable peaks 
Postop 1 No identifiable peaks  No identifiable peaks 

Postop 2 No identifiable peaks  No identifiable peaks 

Postop 3 No identifiable peaks  No identifiable peaks 

Postop 4 No identifiable peaks  No identifiable peaks 

Postop 5 - - 3.70 - -  - - 3.50 - 6.03 

Figure 27. Case 11: Electrophysiological auditory responses collected before and after vestibular schwannoma surgery. Part A shows a time-ordered sequence of click-

evoked ABR traces from the left and right ears; with the latencies of waves present in these traces shown in part B. Part C shows the serial DPOAE data collected pre- and 

postoperatively; + indicates present DPOAEs and – indicates their absence. 

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - - - - - 

Postop 0 - - - - - 
Postop 1 - - - - - 

Postop 2 - - - - - 

Postop 3 - - - - - 

Postop 4 - - - - - 

Postop 5 - - - - - 

Ipsilateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - - - - - 

Postop 0 - - - - - 
Postop 1 - - - - - 

Postop 2 - - - - - 

Postop 3 - - - - - 

Postop 4 - - - - - 

Postop 5 - - - - - 

Left (NT) Right (T)

Postoperative

Day 0

Day 1

Day 4

Day 3

80dB nHL 90dB nHL80dB nHL

Preoperative

Day 5

Day 2

0 2 6 10 12

Time (ms)
4 80 2 6 10 12

Time (ms)
4 80 2 6 10 12

Time (ms)
4 8

COULD NOT TEST

I

I

I

III
V

III

II

III III
V

B. B. 
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0.4µv 

C. 
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Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (NT) 20 60 

Right (T) 55 54 
 60 60 

Postoperative Day 5 tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (NT) 25 60 

Right (T) 70 60 

Figure 28. Case11: Behavioural audiological data collected before and after vestibular schwannoma removal. Results of pure-tone and speech audiometry are shown in Part 

A. The right and left ear are shown by circles and crosses respectively (filled circles and double crosses indicate the use of contralateral masking). Part B shows the duration 

of tone perception at each intensity level presented in tone decay testing pre- and postoperatively. 
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Ipsilateral (left) peak latencies (ms)  

 80 dB nHL  90 dB nHL  

Day I II III IV V  I II III IV V 

Preop 1.70 - 3.92 - 5.88  Did not test 

Postop 1 1.70 - - - -  1.70 - - - - 
Postop 2 1.65 - - - -  1.63 - - - - 

Postop 3 1.70 - - - -  1.68 - - - - 

Contralateral (right) peak latencies (ms) 

Day I II III IV V 

Preop 1.68 - 4.05 - - 

Postop 1 1.50 - - - - 
Postop 2 1.60 - - - - 

Postop 3 1.60 - 3.93 - - 

Ipsilateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 1 + + + + + 
Postop 2 + + + + + 

Postop 3 + + + + + 

Contralateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 1 + + + + + 
Postop 2 + + + + + 

Postop 3 + + + + + 

Figure 29. Case 13: Electrophysiological auditory responses collected before and after vestibular schwannoma surgery. Part A shows a time-ordered sequence of click-

evoked ABR traces from the left and right ears; with the latencies of waves present in these traces shown in part B. Part C shows the serial DPOAE data collected pre- and 

postoperatively; + indicates present DPOAEs and – indicates their absence. 

Right (NT)Left (T)
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Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (T) 40 60 

Right (NT) 35 60 

Postoperative Day 4 tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (T) 35 0 
 40 60 

Right (NT) 40 60 

Figure 30. Case 13: Behavioural audiological data collected before and after vestibular schwannoma removal. Results of pure-tone and speech audiometry are shown in Part 

A. The right and left ear are shown by circles and crosses respectively (filled circles and double crosses indicate the use of contralateral masking). Part B shows the duration 

of tone perception at each intensity level presented in tone decay testing. 
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Figure 31. Case 13: ABR recorded from the ipsilateral ear at important points during vestibular schwannoma 

surgery. The blue traces show the waveforms following smoothing using a 21-point running average, and grey 

traces show the raw data.
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Ipsilateral (left) peak latencies (ms)   

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop - - - - 6.88  1.88 - - - 6.97 

Postop 0 - - - - 8.15  - - - - 8.05 

Postop 1 - - - - 7.83  - - - - 7.72 

Postop 2 - - 5.72 - 7.45  - - 5.70 - 7.35 

Postop 3 - - 5.58 - 7.38  - - 5.58 - 7.28 

Postop 4 - - 5.55 - 7.25  - - 5.50 - 7.22 

Postop 5 - - 5.42 - 7.17  - - 5.47 - 7.17 

Contralateral (right) peak latencies (ms) 

Day I II III IV V 

Preop 1.70 - 3.92 - 5.47 

Postop 0 Could not test 

Postop 1 1.75 - 3.92 - 5.53 

Postop 2 1.65 - 3.98 - 5.51 

Postop 3 1.57 - 3.92 - 5.55 

Postop 4 1.63 - 3.95 - 5.57 

Postop 5 1.65 - 3.87 - 5.53 

Ipsilateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + - - 

Postop 0 + + + - - 

Postop 1 + + + - - 

Postop 2 + + + - - 

Postop 3 + + + - - 

Postop 4 + + + - - 

Postop 5 + + + - - 

Contralateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + - 

Postop 0 Could not test 

Postop 1 + + + + - 

Postop 2 + + + + - 

Postop 3 + + + + - 

Postop 4 + + + + - 

Postop 5 + + + + - 

Figure 32. Case 17: Electrophysiological auditory responses collected before and after vestibular schwannoma surgery. Part A shows a time-ordered sequence of click-

evoked ABR traces from the left and right ears; with the latencies of waves present in these traces shown in part B. Part C shows the serial DPOAE data collected pre- and 

postoperatively; + indicates present DPOAEs and – indicates their absence. 
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Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (T) 10 60 

Right (NT) 20 0 
 25 60 

Postoperative Day 6 tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (T) 5 60 

Right (NT) 20 0 
 25 60 

Figure 33. Case 17: Behavioural audiological data collected before and after vestibular schwannoma removal. Results of pure-tone and speech audiometry are shown in Part 

A. The right and left ear are shown by circles and crosses respectively (filled circles and double crosses indicate the use of contralateral masking). Part B shows the duration 

of tone perception at each intensity level presented in tone decay testing. 
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3.3.2.      Postoperative hearing preservation with loss of electrophysiological responses  

In two of the six cases in which pure-tone thresholds were measurable postoperatively, 

residual hearing was limited and no replicable electrophysiological responses were present. 

The participant in Case 5 presented with a mild sloping to severe sensorineural hearing loss 

preoperatively (PTA = 50 dB HL) and experienced a loss of measurable hearing below 0.5 

kHz and above 1 kHz postoperatively. Postoperative thresholds at 0.5 and 1 kHz provided a 

postoperative PTA of 87.50 dB HL. A similar functional decrease was seen speech 

discrimination, from a maximum of 68% at a presentation level of 80 dB nHL preoperatively, 

to a complete absence of speech discrimination abilities on the ipsilateral side postoperatively. 

DPOAEs at 2-8 kHz and any reproducible ABR waves were absent on the ipsilateral side both 

pre- and postoperatively. In Case 15, hearing was classified as class D and no 

electrophysiological responses were present on the ipsilateral side either pre- or 

postoperatively. In this case, subtotal removal of the patient‟s facial nerve schwannoma was 

performed to debulk the tumour to reduce compression and preserve the facial nerve while 

minimising the trauma associated with complete tumour removal in this older patient. 

Complete pre- and postoperative audiological data for Cases 5 and 15 are presented in 

Appendix B. 
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4.     DISCUSSION 

In the present study, detailed pre- and postoperative audiological monitoring was performed 

in a series of 19 consecutive patients undergoing retrosigmoid removal of a suspected 

vestibular schwannoma in order to identify and more clearly define the phenomenon of early 

postoperative delayed hearing loss. We aimed to use this data to isolate the likely site of 

impairment resulting in delayed hearing loss, and thus determine the pathophysiological 

mechanism responsible for such loss. Ultimately, the development of methods of preventing 

delayed hearing loss from occurring in the future is dependent on identifying the putative 

mechanism responsible for this pattern of loss. From the series of 19 patients monitored, 

measurable hearing was present postoperatively in six, and immediate anacusis in the ear 

ipsilateral to the tumour was documented in the remaining 13 cases. In one of the 13 cases of 

postoperative anacusis, a pattern of ABR degeneration was observed that was similar to that 

described by Strauss et al. (1991) in cases of delayed hearing loss. This case and the possible 

causes of this deterioration of cochlear nerve function will be discussed in detail.  

Early postoperative delayed hearing loss, defined in previous studies as a loss of behavioural 

responses to auditory stimuli in the early postoperative period (Fahlbusch et al., 1998; Neu et 

al., 1999; Strauss et al., 2001; Strauss et al., 1991), was not observed in our series of patients. 

The largest series in which early postoperative delayed hearing loss is documented is that of 

Neu and colleagues (1999), who report a rate of delayed hearing loss of 16% in their 70 

patients. Strauss et al. (1991) and Fahlbusch et al. (1998) report slightly higher rates of 

delayed hearing loss of 24% (7/29) and 18% (11/61) respectively. Using the more 

conservative incidence of 16% reported by Neu et al. (1999), three cases of delayed hearing 

loss would be predicted to occur in our group of 19 patients. However, a major difference 

between the present study and those reported in the literature exists in the criteria for 

attempted hearing preservation and therefore inclusion in the study. Neu et al. (1999) included 

only patients that demonstrated measurable pure-tone thresholds and reproducible ABR wave 

I and/or V preoperatively. The application of these inclusion criteria to our patients would 

exclude six patients on the basis of an absence of preoperative ABR. This small sample size 

substantially reduces the likelihood that early postoperative delayed hearing loss would be 

expected to occur. 

The incidence of delayed hearing loss may also be influenced by factors pertinent to the 

surgical approach and surgical techniques. Differences in the precise surgical manoeuvres 
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performed between surgeons may alter the chances of the specific manipulation occurring that 

triggers the pathophysiological mechanism of delayed hearing loss. In the Neu et al. (1999) 

study, surgical manoeuvres were altered in reaction to intraoperative ABR changes. For 

example, the surgeon repositioned or temporarily removed cerebellar retractors, in response to 

being informed of a decrease in amplitude of ABR waves. ABR changes were not used to 

guide the surgeon‟s actions in the present study, and this may have increased the probability 

that hearing would be lost intraoperatively, rather than a mechanism triggered that would lead 

to delayed hearing loss. Anecdotal reports of delayed hearing loss have been made by the 

surgeons at Christchurch Public Hospital, where intraoperative monitoring is not routinely 

performed (P. Bird, personal communication, November 19, 2006), thus the intraoperative 

trigger for this pattern of loss cannot be entirely absent from the surgeries performed at 

Christchurch Public Hospital, but the frequency may be reduced. The proportion of patients 

who have experienced delayed hearing loss in the past at Christchurch Hospital has not been 

documented.  

 

4.1.      Tumour size  

An evaluation of tumour parameters in our in study is necessary in comparing our results to 

others. The mean tumour size in this study, as measured by the maximal extracanalicular 

diameter of the tumour on MRI, was 17.7 mm. There is much variability in how the tumours 

are measured, therefore comparisons of tumour sizes across studies is limited to those who 

have defined tumour size in the same way. Such a comparison indicates that the tumour size 

in our study is similar to that in other large-scale international series of surgical patients in 

which mean tumour size ranges from 12.0 mm to 22.4 mm (Slattery et al., 1997; Stipkovits, 

Van Dijk, & Graamans, 1998; Van Dijk et al., 2000). The average tumour size in our patients 

was markedly smaller than that in the studies of Neu et al. (1999) and Strauss et al. (1991), in 

which mean tumour sizes of 28 mm and 32 mm respectively were reported, however the 

measurement method is not reported by Neu et al. (1999). Strauss et al. (2001) reported a 

mean tumour size of 19.25 mm in their 41 patients; however this population was limited to 

patients who showed fluctuating ABR intraoperatively. It is important to note that differences 

in tumour sizes between groups may reflect the decisions of the surgeons on when to operate, 

rather than indicating size at the time of detection. Hearing preservation is most likely when 

surgery is undertaken when tumours are small (Massager et al., 2006; Meyer et al., 2006). 
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However, the decision to operate when tumours are small has to take into account the 

morbidity of surgery and the high risk of losing hearing intraoperatively, relative to the 

certainty that hearing will deteriorate over time without surgery (Solares & Panizza, 2008). 

 

4.1.1.      The influence of tumour size on preoperative hearing 

Most studies report little relationship between tumour diameter (either including or excluding 

the intracanalicular portion) and preoperative hearing (Arriaga, Long, & Nelson, 1993; Caye-

Thomasen, Dethloff, Hansen, Stangerup, & Thomsen, 2007; Graamans, Van Dijk, & Janssen, 

2003; Rosenberg, 2000; Stipkovits et al., 1998; Tierney, Chitnavis, Sherriff, Strong, & 

Gleeson, 1998). Indeed, studies of the natural progression of conservatively managed patients 

have shown a gradual deterioration of hearing even in the absence of growth, or in cases of 

negative growth, of tumours (Graamans et al., 2003; Stipkovits, Graamans, & Van Dijk, 

2001). In contrast, Harner, Fabry and Beatty (2000) found a weak association between tumour 

size and PTA and WRS across tumour sizes, with a stronger correlation for tumours with a 

total size of greater than 50 mm. Nadol et al. (1996) reported an absence of correlation 

between hearing loss and the lateral extent of invasion of the IAC, and a relatively weak 

correlation between the maximum diameter of the tumour in the CPA and low-frequency 

hearing loss. Consistent with most previous studies, no significant relationship was found 

between tumour size and preoperative hearing parameters in our series of patients.  

Throughout the literature there is some evidence of a relationship between the degree of 

preoperative retrocochlear hearing loss and tumour size. Using electrocochleography, Tanaka 

et al. (1999) demonstrated a strong positive correlation between tumour size and the extent of 

disparity between the PTA threshold and the detection threshold of CAP or CM. This was 

interpreted as indicating that the degree of retrocochlear hearing loss has a tendency to 

increase parallel to the increase in vestibular schwannoma size. In our series of patients, no 

evidence was found of an association between tumour size and the presence of ABR wave V. 

Indeed, in Case 13, involving a medium tumour with marked IAC expansion, preoperative 

ABR showed a wave I-V latency interval within normal limits.  Caye-Thomasen et al. (2007) 

demonstrated that in a series of conservatively managed patients with vestibular 

schwannomas, the absolute volumetric growth rate, but not the maximum tumour diameter, 

correlated with the hearing deterioration rate. They interpreted this as evidence that tumour 
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pressure on the cochlear nerve induces the retrocochlear portion of hearing loss (Caye-

Thomasen et al., 2007). Further support for this hypothesis is provided by Lapsiwala and 

colleagues (2002) who documented a positive correlation between the latency of ABR wave 

V and intracanalicular pressure as measured during surgery.  

 

4.1.2.      The influence of tumour size on postoperative hearing 

A number of factors have been postulated in the literature to predict preoperatively which 

patients are likely to have their hearing preserved following vestibular schwannoma removal. 

Of these factors, tumour size appears to be one of the most significant and consistently 

reported prognostic indicators for hearing outcome. Most authors agree that smaller tumour 

size offers a greater chance of hearing preservation (Betchen et al., 2005; Cohen et al., 1993; 

Dornhoffer et al., 1995; Fischer et al., 1992; Gjuric et al., 2007; Jacob et al., 2007; Khrais & 

Sanna, 2006; Mohr et al., 2005; Nadol et al., 1992; Robinette, Bauch, Olsen, Harner, & 

Beatty, 1997; Samii & Matthies, 1997; Yang et al., 2008). However, there are some studies in 

which no relationship between tumour size and hearing outcome has been found (Brackmann 

et al., 2000; Slattery et al., 1997). It is possible that the variation in the literature arises from 

differences in patient selection criteria, in particular the maximum tumour size in which 

hearing preservation is attempted.  

No significant difference between tumour size in the group of patients in which hearing was 

preserved and the group who suffered anacusis in the present study. It is of particular note that 

the two patients with intracanalicular tumours and the three patients with extracanalicular 

tumour diameters of less than 10 mm all experienced postoperative anacusis. These results are 

not consistent with two recent, albeit much larger, studies in which patients with an 

extracanalicular tumour diameter of less than 10 mm had significantly better hearing 

outcomes than patients with tumours larger than 10 mm (Jacob et al., 2007; Yang et al., 

2008). A possible explanation is provided by Khrais and Sanna (2006), who suggest that 

tumour size is a significant predictor of postoperative hearing outcome for patients with large 

tumours only (classified as larger than 20 mm in their study). Indeed, hearing preservation 

was not achieved in our study in any of the three patients with large tumours (≥ 30 mm).  

The increased risk of postoperative anacusis associated with larger tumours has been 

hypothesised to result from a greater extension of large tumours into the IAC, which has been 



101 

 

associated with increased intracanalicular pressure and poorer hearing outcomes (Badie et al., 

2001; Lapsiwala et al., 2002; Mohr et al., 2005). Lapsiwala et al. (2002) suggest that the 

increased intracanalicular pressure may make the cochlear nerve and its vasculature, and the 

vascular supply to the cochlea, more vulnerable to surgical manipulation. However, the 

relationship between intracanalicular pressure and hearing outcomes may not be this simple. 

Lapsiwala et al. (2002) also found that the intracanalicular pressure, as measured during 

surgery, directly correlated with the latency of wave V in baseline ABR recordings. Given 

that ABR wave V is thought to be generated in the upper brainstem (Hall, 2006), it is possible 

that increased IAC pressure is a result of the same mechanism as the wave V latency increase, 

rather than the cause of the latency change. More recently, Yang et al. (2008) found no 

relationship between the degree of tumour filling in the IAC and hearing outcome. As the size 

of the tumour within the IAC was not measured in the present study, it is not possible to 

evaluate the impact of the degree of IAC involvement on hearing outcome. However, IAC 

expansion was noted in 16 cases, which provides some indication of IAC involvement. No 

relationship was evident between the degree of IAC expansion and hearing outcome. Indeed, 

hearing was not preserved in any of the three cases with no IAC expansion.  

There is an increased likelihood of invasion of the tumour into the cochlear nerve in larger 

tumours, which provides another explanation for the association between tumour size and 

hearing outcome. Light microscopy of cochlear nerve specimens removed with vestibular 

schwannomas has demonstrated that the cochlear nerve is typically separate from the tumour 

in small and medium tumours, but the limiting structure between the tumour and nerve is not 

easily identified in large tumours (Ylikoski, Collan, & Palva, 1979). Similarly, evidence 

suggests that the cochlear nerve is indistinguishable from the tumour with significantly higher 

frequency in tumours larger than 20 mm (Koos & Perneczky, 1985; Umezu & Aiba, 1994). 

Increased involvement of the cochlear nerve in the tumour would be expected to require a 

greater degree of surgical manipulation in order to completely excise the tumour, which 

would necessarily increase the likelihood of damage to the cochlear nerve and a poorer 

hearing outcome.  

 

4.2.      Preoperative auditory function  

It is likely that the rate of hearing preservation experienced in this series of patients, as well as 

the probability of observing delayed hearing loss, was influenced by preoperative hearing 
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status. The retrosigmoid approach, which conveys the possibility of hearing preservation, is 

employed by the surgeons at Christchurch Public Hospital for all patients with any degree of 

measurable preoperative hearing, and for all patients with large tumours. This provides a 

strong contrast with much of the literature on hearing preservation following vestibular 

schwannoma excision, which employs stricter criteria based on either tumour size or the 

presence of “serviceable” hearing preoperatively. Serviceable hearing is typically defined 

using the AAO-HNS criteria as a mean pure tone threshold of less than 50 dB HL, and 

maximum speech discrimination score of at least 50% (AAO-HNS, 1995).   

According to the AAO-HNS hearing grading system, Class A and Class B hearing is 

considered serviceable, whereas Classes C and D are not. Using these criteria, preoperative 

hearing may be considered serviceable in 13 of the 19 patients who underwent surgery with 

attempted hearing preservation in this study. However, it has been posited that for some 

patients, Class C hearing may be useful, since a hearing aid is likely to be of benefit in an ear 

with a discrimination score of more than 70% (Caye-Thomasen et al., 2007; Meyer et al., 

2006). If a shift in the criterion of serviceable hearing is applied, so that all patients with a 

maximum preoperative speech discrimination score of at least 70% are ascribed the status of 

serviceable hearing, 14 patients may be considered to have serviceable hearing.  

All patients in the present study had measurable hearing preoperatively, with preoperative 

assessment revealing a mean pure-tone average of 39.3 dB HL (SD = 19.1 dB HL) and a 

mean maximum speech discrimination score of 74.7% (SD = 31.3%). Preoperative pure-tone 

and speech discrimination scores vary widely in the literature, most likely as a result of 

variation in study inclusion criteria. Indeed, the absence of inclusion criteria based on 

preoperative hearing in the present study led to a wide range of preoperative hearing scores 

within our series of patients, as shown by the large standard deviations for both PTA and 

WRS data. A comparison of the mean scores in this study to the series reported by Lassaletta 

et al. (2003), in which no strict patient selection criteria was applied, shows that the mean 

preoperative hearing status of our patients was markedly better than the PTA of 54 dB HL and 

speech discrimination score of 58% found for their 65 patients.  However, Slattery, 

Brackmann, & Hitselberger (1997) documented a mean preoperative PTA of 29 dB and a 

mean speech discrimination score of 86% in their series of 151 patients for which no 

inclusion criteria is specified. Consistent with previous studies, the audiometric configuration 

in our patients tended to show worse hearing at higher frequencies in most cases (Harner et 
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al., 2000; Van Dijk et al., 2000). However a flat loss was also common, and was evident in six 

cases.  

 

4.2.1.      Causes of preoperative hearing loss 

The precise pathogenesis of hearing loss associated with a vestibular schwannoma is 

unknown, however there is a general consensus that hearing loss may be of cochlear, 

retrocochlear, or cochlear-retrocochlear origin (Morlet et al., 2003; O-Uchi et al., 1994). 

Clinical and histological studies indicate that the mechanisms responsible for the 

retrocochlear component of preoperative auditory dysfunction include destruction of cochlear 

nerve fibres by pressure atrophy or invasion, compression or stretching of the cochlear nerve 

fibres, and compression of the blood supply to the cochlear nerve (Kveton, 1990; Nadol et al., 

1996; Selesnick & Jackler, 1992). In the present study, preoperative ABR showed an absence 

or prolonged latency of wave V, or a significant interaural interwave latency difference (one 

or any of ITI-III, ITIII-V and ITI-V) in 17 cases, providing evidence of neural dysfunction. In the 

six cases of a delayed wave V, a disruption of neural synchrony, a reduction in the number of 

responsive fibres, or a delay in neural conduction time, resulting from the tumour 

compressing the cochlear nerve and blocking the conduction of action potentials is suggested. 

Histopathological studies of the human temporal bone in cases of vestibular schwannoma 

demonstrate degeneration of spiral ganglion cells as a prominent finding, which would be 

consistent with the delayed neural activation found in these subjects (De Moura, 1967; 

Eckermeier et al., 1979; Kaga, Iwasaki, Tamura, Suzuki, & Haebara, 1997; Suga & Lindsay, 

1976). Delayed neural conduction is suggestive of a conduction block caused by either direct 

pressure on the eighth nerve, or by impairment of the eighth nerve microcirculation resulting 

from tumour compression (Matsunaga & Kanzaki, 2000). In the ten subjects in whom wave V 

was absent, a greater degree of compression, or a greater loss of neurons may be indicated. 

All the participants demonstrating abnormal ABR, still presented with measurable hearing, 

suggesting a total neuronal conduction block was not responsible for the alteration of 

responses.  

Notably, tone decay testing was indicative of retrocochlear pathology only in Cases 5, 6, 9. 

Tone decay has traditionally been postulated to reflect an impairment in the auditory nerve 

fibres (Morales-Garcia & Hood, 1972), however the present results do not indicate any 

correlation between tone decay results and ABR findings, which should provide a more 
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accurate indication of auditory nerve function. It seems likely that these findings reflect a lack 

of sensitivity of tone decay testing, rather than providing any additional information about 

neural function in these patients.  

Differentiation between the cochlear and neural components of hearing loss in vestibular 

schwannoma patients has been previously accomplished by evoked OAE testing (Kim, 

Edwards, Telain, Kileny, & Arts, 2006; Morlet et al., 2003). OAEs have been shown to reflect 

normally functioning preneural OHC mechanisms, therefore their presence in an ear with 

sensorineural hearing loss suggests, by exclusion, that the hearing loss is of a primarily 

neural, as opposed to cochlear, aetiology. Twelve of the 16 patients in whom preoperative 

DPOAEs were measured in the present study demonstrated emission patterns consistent with 

an (at least partially) cochlear origin of hearing loss. This is consistent with previous studies 

that have reported 57-100% of vestibular schwannoma patients demonstrate cochlear 

dysfunction (Noguchi et al., 1998; Prasher et al., 1995; Telischi, 2000; Yokoyama et al., 

1999). Notable exceptions include Case 14, who demonstrated present emissions from 2-8 

kHz, despite a moderate sloping to severe hearing loss at these frequencies, thus suggesting 

that the hearing loss was retrocochlear in origin. An emission was elicited at 8 kHz in the 

presence of a pure-tone threshold of 85 dB HL in Case 9, again consistent with a 

retrocochlear loss. Interestingly, no emissions were present in this participant from 2-6 kHz, 

despite better thresholds at these frequencies. This indicates that cochlear losses were present 

at some frequencies and neural losses present at other frequencies. 

The reduction of cochlear active mechanisms in vestibular schwannomas has been postulated 

to be the result of cochlear hypoxic injury resulting from IAA compression by the tumour 

mass growing within the IAC or at the CPA (Gouveris, Victor, & Mann, 2007). Gouveris et 

al. (2007) suggest that there is a considerable degree of compensation within the cochlea to 

this progressive tendency for reduced cochlear blood flow, as the observed changes in 

DPOAEs are not as drastic as would be predicted by experimental findings in animals. Such 

animal studies have demonstrated a strong and immediate influence of changes in cochlear 

blood supply on the amplitudes of DPOAEs (Kimura & Perlman, 1958; Widick et al., 1994). 

Animal studies would further suggest that high-frequency OAEs would be expected to be 

affected first by a reduction in cochlear blood flow, as this region is most sensitive to vascular 

occlusion (Kimura, 1986). However, Gouveris et al. (2007) found that amplitudes of DPOAEs 

were decreased at 1-2.8 kHz compared with the non-tumour ear in participants with no greater 
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than a mild hearing loss, whereas no significant difference was found in higher frequency 

DPOAEs. DPOAEs in our series of patients did not show a consistent pattern of presence or 

absence at any frequency band, suggesting more than one mechanism could be responsible for 

the degeneration of OHCs, perhaps dependent on the location and size of the tumour. 

However, the possibility of pre-existing OHC damage due to factors such as noise exposure 

or ototoxic drugs cannot be eliminated. One mechanism by which the tumour may cause 

degeneration of OHCs may be through a reduction in the efferent control of active mechanical 

tuning in the cochlea. Damage to the efferent fibres by similar mechanisms that cause the 

damage to afferent fibres may lead to the loss of sharp frequency selectivity, and later to the 

loss of both hearing sensitivity and evoked OAEs (Ferguson et al., 2001; Prasher et al., 1995).  

In addition to OHC damage, histological investigations of temporal bones affected by 

unoperated vestibular schwannomas have demonstrated significant degeneration of the IHCs, 

the stria vascularis, and the spiral ligament (De Moura, 1967; Eckermeier et al., 1979; 

Mahmud et al., 2003; Suga & Lindsay, 1976). Evidence has also been found of 

endolymphatic hydrops and a high concentration of protein in the perilymphatic spaces 

(Eckermeier et al., 1979; Mahmud et al., 2003).  Mahmud et al. (2003) further demonstrated 

that in the temporal bone specimens from patients in whom the speech discrimination score 

had been documented below 50%, there was always degeneration of the inner ear in addition 

to degeneration of neurons. Although there is no clear evidence of a functional impairment of 

IHCs, their dysfunction may be implied from abnormalities in ABR wave I recorded from ear 

with vestibular schwannomas. In three cases in this study, the latency of wave I was 

prolonged relative to that recorded from the contralateral ear. Click-evoked ABR at high 

stimulus levels, as was employed in this study, has been shown to be generated primarily by 

the basal portion of the cochlea. In the case of impairment of the IHCs in this portion of the 

cochlea, the response would be generated by functional IHCs more apically (Hall, 2006). The 

increased travel time along the basilar membrane required for a response to be elicited from 

the apical portion of the cochlea would necessarily result in a prolonged latency of wave I. 

This hypothesis is supported by the audiometric configuration in cases that demonstrated a 

delayed wave I, which all showed poorer thresholds in the higher frequencies, suggesting that 

cochlear impairment may be greater in the basal region. Alternatively, the prolongation of 

wave I latency, and in particular the absence of wave I, as was observed in seven cases, may 

indicate impaired neural conduction in the peripheral portion of the cochlear nerve.  
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4.3.      Preoperative prognostic factors for hearing outcome 

As previously stated, ABR morphology tends to be poorer with larger tumours, indicating 

greater damage to the cochlear nerve (Moffat et al., 1999). However, in the present study no 

clear relationship was present between preoperative ABR and tumour size. The prognostic 

value of preoperative ABR for hearing outcome, irrespective of tumour size, has been 

consistently demonstrated (Brackmann et al., 2000; Colletti et al., 1997; Dornhoffer et al., 

1995; Josey, Glasscock, & Jackson, 1988; Moffat et al., 1999; Robinette et al., 1997). It has 

been proposed that the morphology of preoperative ABR is indicative of the physiological 

integrity of cochlear nerve fibres (Josey et al., 1988; Moffat et al., 1999). This theory suggests 

that ABR showing a normal morphology but increased peak latencies indicates compression 

or stretching of the cochlear nerve slowing neural conduction or disrupting synchronous 

firing, rather than invasion of the nerve by tumour cells. Tumour infiltration of the nerve 

would be expected to disrupt ABR morphology, representing an irreversible loss of neural 

fibres and predicting a poor hearing outcome (Moffat et al., 1999). In our series of patients, 

five showed normal morphology of wave V preoperatively, three of which were from the 

group of six whose hearing was preserved. This suggests some effect of ABR morphology on 

postoperative hearing results.  

Of the 12 patients in whom hearing was lost and ABR was tested preoperatively, five had no 

reproducible ABR peaks at 80 dB nHL preoperatively. Two patients who had preserved 

hearing postoperatively had no identifiable preoperative ABR however, one of these patients 

(Case 15) underwent planned subtotal tumour removal, therefore a different relationship 

between preoperative auditory function and hearing outcome would be anticipated, as will be 

discussed later. Although poor morphology of preoperative ABR is a poor prognostic 

indicator for postoperative hearing outcome, as documented in the present study, several 

studies report the maintenance of functional hearing despite absence of all ABR waves before 

and after surgery (Cacace, Parnes, Lovely, & Kalathia, 1994; Mustain, al-Mefty, & Anand, 

1992; Schlake et al., 2001). Roberson, Jackson, and McAuley (1999) reported that hearing 

preservation was achieved in seven of nine patients with an absent preoperative ABR, with 

four showing an improvement in hearing postoperatively. No objective measures of cochlear 

function were included in the Roberson et al. (1999) study; however it is probable that the 

origin of hearing loss in the patients with poor ABR and preserved hearing was primarily 

neural. The pressure on the tumour would be expected to be released following its removal in 
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these patients, resulting in an improvement in neural conduction, and thus hearing, where the 

vascular supply to the cochlea was maintained.  

Better preoperative hearing status, defined by pure-tone thresholds and maximum speech 

discrimination score, has been well established as a positive prognostic variable for hearing 

preservation (Brackmann et al., 2000; Fischer et al., 1992; Khrais & Sanna, 2006; Robinette 

et al., 1997; Samii et al., 2006; Yang et al., 2008). In particular, a strong relationship between 

preoperative speech discrimination scores and postoperative hearing has been consistently 

demonstrated (Josey et al., 1988; Nadol, 1993). This relationship possibly occurs because 

better preoperative hearing indicates a greater likelihood that the cochlear nerve is 

morphologically intact and distinct from the tumour, reducing the need for surgical 

manipulation (Umezu & Aiba, 1994). Umezu and Aiba (1994) point out that serviceable 

postoperative hearing may be retained more frequently in patients whose preoperative hearing 

is relatively good, primarily because hearing rarely improves and usually declines after 

surgery. Patients with better hearing preoperatively therefore can afford a greater degree of 

loss before hearing is no longer measurable. However, there are studies which have failed to 

find a significant relationship between pre- and postoperative hearing levels (Colletti et al., 

1997; Dornhoffer et al., 1995; Glasscock, McKennan, & Levine, 1987; Shelton, Brackmann, 

House, & Hitselberger, 1989). In the current study, there was no significant difference in 

preoperative PTA and WRS results between those patients who suffered anacusis 

postoperatively and the patients in whom hearing was preserved. Although it is quite possible 

that the small sample size in this study influenced these results.  

No relationship was evident between preoperative DPOAEs and hearing outcome in this 

study. In the group in which hearing was preserved, DPOAEs were absent at all the 

frequencies tested in three of the five patients tested preoperatively, and were present at all 

frequencies only in Case 13. In contrast, DPOAEs were absent at all frequencies tested in 

only one of the eleven patients who underwent preoperative DPOAE testing and suffered 

from postoperative anacusis. Three patients in the anacusis group had DPOAEs present at all 

frequencies tested preoperatively, indicating good OHC function. These results are consistent 

with several studies investigating the prognostic value of preoperative OAEs to hearing 

preservation following vestibular schwannoma surgery, which have failed to show any 

significant correlation between the presence of OAEs preoperatively and hearing outcome 

(Robinette et al., 1997; Stidham & Roberson, 2001). However, there is some evidence that 
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patients with TEOAEs present in all frequency bands tested (1-4 kHz) were more likely to 

have successful hearing preservation (Kim et al., 2006).  Although Kim et al. (2006) found 

that robust TEOAEs were a favourable predictor for hearing preservation, there was no 

statistically significant predictive value if responses were absent in any band. Given that 

absent OAEs indicate a hearing loss that is at least partially cochlear in origin, it would be 

expected that hearing in these cases would not recover following surgery. Patients with all 

DPOAEs present preoperatively in the present study tended to have better pure-tone 

thresholds than patients in whom all DPOAEs were absent. In the regression analysis 

performed in the Kim et al. (2006) study, present OAEs were found to have predictive value 

alone, however the authors suggest that the power may be enhanced when other variables 

such as tumour size and preoperative hearing, were factored in.  

 

4.4.      Nerve of tumour origin 

Recent studies have found that vestibular schwannomas originate from the IVN with at least 

twice the frequency of the SVN (Fiscina et al., 2007; Gjuric et al., 2007; Jacob et al., 2007; 

Komatsuzaki & Tsunoda, 2001). Our data contradicts these findings, as in the ten cases in 

which a vestibular nerve of origin could be identified, eight tumours originated from the SVN 

and two from the IVN. Jacob et al. (2007) suggest that as the cochlear nerve is immediately 

adjacent to the IVN in the IAC, tumours arising from the IVN may also infiltrate the cochlear 

nerve directly and attempts at separation can damage more auditory fibres. This theory has 

been supported by the higher rate of hearing preservation for patients with SVN tumours 

documented by Jacob et al. (2007). More data is needed to clarify the issues of the rates of 

occurrence of SVN compared to IVN tumours, and whether the nerve of tumour origin has 

any effect on hearing preservation rates following tumour removal via the retrosigmoid 

approach. 

Four tumours in the current study were found to originate from the facial nerve. 

Approximately 80% of CPA tumours have been previously reported to be vestibular 

schwannomas (Brunori et al., 1997; Grey et al., 1996), with schwannomas (as opposed to 

tumours not originating from the Schwann cells) involving other cranial nerves constituting 2-

3% of all CPA tumours (Grey et al., 1996). Cases in which the tumour originated from the 

facial nerve were included in our analyses based on the assertion that many of the risk factors 

for hearing were the same as those resulting from a tumour of the vestibular nerve. The fact 
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that three patients with facial nerve schwannomas lost their hearing immediately 

postoperatively, two in the presence of an apparently anatomically preserved cochlear nerve, 

suggests this assumption is correct.  Given the statistics on the reported rate of occurrence of 

facial schwannomas, the high prevalence of facial schwannomas in our series is unusual, and 

may have impacted overall hearing preservation results in a way not seen in other studies.  

 

4.5.      Postoperative hearing preservation 

Of the six patients in this study in whom hearing was measurable postoperatively, all 

demonstrated at least some decline in hearing from their preoperative level. This is consistent 

with the results of several large series of patients in which postoperative hearing function has 

been found to be worse than preoperative hearing in most patients, even in cases where 

hearing is considered preserved (Harner et al., 2000; Nadol et al., 1992; Samii & Matthies, 

1997). The mean decrease in PTA from the preoperative assessment to the final postoperative 

assessment for each patient was 17.0 dB HL and the mean decrease in maximum word 

recognition score was 25.2%. The mean change in PTA does not completely reflect the 

change in the audiogram of each patient, as several of the patients showed a greater loss of 

hearing in the high frequencies than at the frequencies at which the PTA was calculated. Two 

patients maintained their preoperative hearing class, whereas a drop of at least one class was 

observed in the other four patients. Further, according to the AAO-HNS guidelines, only three 

of the six patients with hearing postoperatively had what is considered serviceable hearing. 

However, hearing could be classified as serviceable in just four of the six patients 

preoperatively, the other two demonstrated Class D hearing.   

As discussed with regard to preoperative hearing, there is controversy regarding what degree 

of hearing is useful to a patient, and what constitutes “preserved” hearing. The present results 

highlight the variation that may be introduced between studies when different criteria for 

reported hearing preservation are used. In this study, the hearing preservation rate may be 

calculated as 32% if the criterion for hearing preservation is any measurable hearing, but falls 

to 16% if the criterion if only patients with serviceable hearing postoperatively. Similar 

results have been found by others when different reporting criteria are used (Magnan et al., 

2002; Samii & Matthies, 1997). For example, Lassaletta et al. (2003) found that 39% of their 

33 patients had measurable hearing postoperatively, whereas 15% demonstrated serviceable 

hearing. However, only patients with serviceable hearing preoperatively were included in this 



110 

 

study. Similarly, Moffat et al. (1999) reported that of their 50 patients, all with serviceable 

hearing preoperatively, hearing was measurable postoperatively in 18%, but was serviceable 

in only 8%. Hearing preservation rates using the retrosigmoid approach range from 8% to 

65% (Arriaga, Chen, & Fukushima, 1997; Darwish et al., 2005; Ferber-Viart, Laoust, Boulud, 

Duclaux, & Dubreuil, 2000; Harner et al., 2000; Hecht et al., 1997; Lassaletta et al., 2003; 

Magnan et al., 2002; Moffat et al., 1999; Staecker, Nadol, Ojeman, Ronner, & McKenna, 

2000), with much of the variation accounted for by variations in patient selection criteria and 

schemes for classifying postoperative hearing outcomes. These differences make it difficult to 

compare the total hearing preservation rate in our study to others, in particular due to the lack 

of other studies that are comparable in their use of the retrosigmoid surgical approach for 

patients with tumours of any size and any degree of measurable preoperative hearing.  

The decrease in hearing from its preoperative level documented in all cases of hearing 

preservation suggests that further damage to the cochlea, the cochlear nerve, or the 

vasculature of either structure, was instigated during surgery. In the two cases in which ABR 

was recorded intraoperatively and hearing was preserved, wave I was measurable throughout 

surgery, whereas deterioration of waves after wave I was documented. This suggests neural 

damage that occurred to the proximal portion of the cochlear nerve. The presence of high 

levels of noise and artefact during recording makes it impossible to determine the point at 

which these later peaks were lost, as it may be that noise obscured these waves, rather than 

that they deteriorated. 

The analysis of all auditory responses recorded from each of the patients with postoperative 

hearing provides an indication of the likely site of impairment. The exception is Case 15 in 

which the aetiology of hearing loss induced during surgery could not be determined due to an 

absence of preoperative and postoperative electrophysiological responses. In this case of 

subtotal tumour removal from the facial nerve, the patient demonstrated a complete loss of 

speech discrimination and very limited residual hearing from 0.75 to 1.5 kHz only. It is 

interesting that in this case residual hearing was confined to the mid-frequencies. High 

frequency impairments following vestibular schwannoma removal may be expected, based on 

the tonotopic organisation of the cochlear nerve making the superficial high-frequency fibres 

more vulnerable to mechanical insult (Hatayama et al., 1999). In addition, the increased 

vulnerability of the basal portion of the cochlea to transient ischemia makes high-frequency 

hearing loss more likely than low-frequency loss (Kimura & Perlman, 1958). The audiometric 
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configuration in this case is suggestive of two mechanisms of damage to hearing: one of the 

above mechanisms resulting in high-frequency loss, and another mechanism resulting in the 

low-frequency hearing loss.  

One possibility is that the decrease in thresholds at the low frequencies is the result of 

endolymphatic hydrops, which typically first affects the apex of the cochlea, and thus low 

frequency hearing. Cases of postoperative endolymphatic hydrops in the ipsilateral ear 

immediately following vestibular schwannoma removal could not be found in the literature. 

However, Walsted, Salomon, Thomsen, and Tos (1991) found a postoperative threshold 

increase in the contralateral ear in 40 of 60 their patients, which they attributed to 

endolymphatic hydrops. This hearing loss was greatest in the low frequencies in the week 

following surgery, included the high frequencies after the first week, and had normalised by 

three months postoperatively. The authors propose that this temporary endolymphatic 

hydrops, was triggered by the loss of cerebrospinal fluid (CSF) during surgery. They 

hypothesise that the loss of CSF results in a decreased CSF pressure that is transmitted to the 

perilymph via the cochlear aqueduct. Given that in normal conditions the pressures in the 

CSF, endolymph, and perilymph are equal (Marchbanks, Reid, Martin, Brightwell, & 

Bateman, 1987), the resulting perilymph depression was thought to have generated a 

compensatory expansion of the endolymphatic compartment and subsequent endolymphatic 

hydrops (Walsted et al., 1991). Presumably, a loss of CSF could affect the perilymph 

concentration in both ears, therefore this may be the mechanism responsible for the low-

frequency loss in Case 15. Histological studies have repeatedly found evidence of an 

increased protein concentration in the cochlear fluids, particularly the perilymph, which is 

often associated with endolymphatic hydrops (Eckermeier et al., 1979; Mahmud et al., 2003; 

Morrison, Gibson, & Beagley, 1976; O'Connor, Luxon, Shortman, Thompson, & Morrison, 

1982). However these studies have been performed on unoperated vestibular schwannomas 

and therefore the pathological findings are likely to be the result of preoperative tumour 

growth, rather than any surgical mechanism.  

 

4.5.1.      Neural origin of hearing deterioration 

Case 5 also presented with a pre- and postoperative absence of ABR and DPOAEs indicating 

both a cochlear and a neural origin of hearing impairment preoperatively. Although it is not 

possible to determine the cause of further deterioration in hearing based on these results, tone 
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decay testing provides some evidence that the postoperative loss of hearing was a least 

partially neural in origin. Preoperative tone decay in this case was indicative of abnormal 

auditory adaptation, with an increase in presentation level of 25 dB HL required for the 

patient to maintain tone perception for 60 seconds. Postoperatively, the patient was unable to 

maintain tone perception for 60 seconds up to a maximum presentation level of 110 dB HL 

(40 dB SL). Given that abnormal adaptation is indicative of dysfunction of the cochlear nerve 

(Gerull et al., 1982), an increase in abnormal adaptation seems to suggest that further neural 

damage was sustained during surgery. No previous studies have investigated postoperative 

tone decay in vestibular schwannoma patients; however this case suggests that tone decay 

testing may be useful in assessing the origin of hearing impairment where ABR is absent.  

Interestingly, Case 5 demonstrated preserved, although markedly decreased, hearing 

sensitivity at 0.5-1 kHz, with a profound loss of hearing at 0.25 and 1.5-6 kHz. Hearing was 

preserved at its preoperative level at 8 kHz. It is possible that the loss of neural fibres 

selectively at the low and mid-high frequencies was related to the specific location of the 

tumour. It seems likely that several mechanisms are responsible for such a pattern of loss, 

including some or all of cochlear damage, cochlear nerve damage, or endolymphatic hydrops. 

It is particularly unusual that high-frequency function appears to have been spared further 

damage during surgery, given that this was the frequency in which the greatest loss was seen 

in our other patients. Although the serial audiograms in this case appear to show some 

improvement in the low frequencies from postoperative day 1 to 2, given that the contralateral 

ear shows a similar improvement, this is most likely related to the patient‟s reduced ability to 

co-operate within the first 24 hours of surgery. 

The two cases in which the smallest drop in hearing was noted both appear to have 

experienced some reduction in hearing through trauma to the cochlear nerve or its 

vasculature, with preservation of cochlear function. In Case 13, that of a patient with NF2, 

subtotal tumour removal was performed in order to reduce the risk of brainstem compression 

while maximising the chances of preserving facial and auditory nerve function. This surgery 

was successful in that there was no change postoperatively in pure-tone thresholds at any 

frequency, or in speech discrimination abilities. In addition, DPOAEs were present at all 

frequencies tested preoperatively, indicating maintenance of OHC function and thus 

preservation of the vascular supply to the cochlea. The maintenance of cochlear function is 

further evidenced by the postoperative presence of ABR wave I with no significant change in 
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latency or morphology. Despite no change in behavioural audiological responses, there was 

an immediate postoperative loss of all ABR waves beyond wave I in this case.   

Similarly, in Case 8 injury to the cochlear nerve functioning is indicated by an increase in the 

latency of all waves beyond wave I. In this case, the only significant change in pure-tone 

thresholds was a drop of 20 dB at 8 kHz. No changes occurred to speech discrimination, 

DPOAEs, or ABR wave I latency.  However, some recovery in latency of wave V was 

documented over the early postoperative period, the cause of which will be discussed later in 

section 4.5.3. The loss or increased latency of cochlear nerve responses proximal to the 

generator site of wave I in both of these cases is consistent with impaired neural function 

resulting from damage inflicted during surgery to the cochlear nerve or its vasculature. 

Damage to the proximal portion of the cochlear nerve sustained during direct or indirect 

surgical manipulation is the most likely cause of the deterioration in postoperative ABR in 

these two cases. However, given that speech discrimination abilities did not deteriorate with 

ABR, a sufficiently synchronised auditory signal must still have been transmitted, suggesting 

that any damage to the nerve must have been relatively minor.  

 

4.5.2.      Cochlear origin of hearing deterioration 

In contrast to Cases 8 and 13, a primarily cochlear origin of hearing loss resulting from 

surgery occurred in Case 11. Although no DPOAEs were present bilaterally either pre- or 

postoperatively, wave I, which was present at a normal latency preoperatively, was lost 

immediately postoperatively. Cochlear dysfunction, depending on the severity, has been 

shown to increase the latency, attenuate, or cause the absence of ABR wave I (Legatt, 2002). 

Pure-tone testing in the case showed a decrease in hearing sensitivity from 0.25 to 2 kHz, and 

a total loss of hearing above 2 kHz. The patient had no remaining speech discrimination 

ability in the ipsilateral ear. The loss of hearing in the high frequencies is typical of transient 

cochlear ischemia (Morawski et al., 2004). Several studies have demonstrated that transient 

ischemia affects the higher frequencies more rapidly and more profoundly than the middle 

and low frequencies (Morawski et al., 2004; Morawski et al., 2003a; Morawski et al., 2003b). 

Given that the effects of ischemia on cochlear function are dependent on the severity and 

duration of the ischemic episode (Morawski et al., 2004), it seems probable that in a case such 

as this, ischemia was sufficiently brief so as to leave at least the lower frequency portions of 

the cochlea intact. Anacusis may result from the same type of damage, but a longer or more 
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severe episode. However, given the tonotopic arrangement of the cochlear nerve, with higher 

frequencies located more superficially (Sando, 1965), these frequencies are more vulnerable 

to the effects of mechanical disruption of the nerve itself during tumour removal (Hatayama et 

al., 1999). It is possible that the hearing loss in this case resulted from a combination of 

cochlear and neural effects. The improved ABR recordings by postoperative day 5
 
indicate 

improved neural conduction, most likely due to reduced pressure
 
on the cochlear nerve 

following surgery. The reason for the delay of five days in this improvement in neural 

conduction becoming apparent may be consistent with presence and then subsidence of 

cochlear nerve oedema following surgery.  

 

4.5.3.      Improvement in ABR 

A marked improvement in ABR was also seen in Case 17 (see Figure 32A and B in the 

Results section). Specifically, an improvement in the morphology of wave V and the return of 

wave III, which had been absent preoperatively, on postoperative day 2, was observed. 

However, the small wave I, which had been present preoperatively at 90 dB, was lost. No 

significant changes were documented in DPOAEs, pure-tone thresholds, or speech 

discrimination. The loss of ABR wave I suggests some damage to the cochlea, possibly 

restricted to the inner hair cells, as DPOAEs remained present from 2-4 kHz, or to the 

proximal portion of the cochlear nerve. However, this damage was insufficient to alter 

hearing sensitivity.  

The improvement in ABR morphology in Case 17 is consistent with previous reports in the 

literature of cases of improved auditory function following tumour removal (Aoyagi et al., 

1994; Cacace et al., 1994; Gardner & Robertson, 1988; Kveton, 1990). Matsunaga et al. 

(2000) suggest that if hearing loss is due to the conduction block associated with impaired 

microcirculation of the cochlear nerve, hearing may improve after pressure on the nerve is 

decreased by the tumour‟s removal. A case study described by Cacace et al. (1994) 

documented the emergence of additional ABR peaks following dural opening and 

cerebrospinal fluid drainage. The authors interpreted this as evidence that these surgical 

phases reduced tumour compression on the auditory nerve and brainstem, releasing the 

conduction block, and allowing neural transmission to occur (Cacace et al., 1994). This 

explanation seems plausible for the improvement in wave V in this case, but does not explain 

the emergence of wave III on postoperative day 2. It is possible that wave III was initially 
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blocked by the same mechanism as wave V, but was again disrupted immediately 

postoperatively due the presence of nerve oedema. The emergence and gradual increase of 

wave III over the early postoperative period may have coincided with the subsidence of this 

oedema, which Sekiya et al. (1990) have documented during the first two weeks after tumour 

removal. Recovery following compression injury to the cochlear nerve has been described 

(Hatayama et al., 1999), but this process proceeded over weeks to months, and is unlikely to 

result in such a marked improvement in ABR over five days. Hatayama and colleagues (1999) 

attribute the recovery of the nerve following compression to the resolution of a temporary 

conduction block that resulted from surgery. They suggest that for recovery to occur, the 

injury to the nerve must be mild enough that the continuity of the axons in the endoneurial 

sheath is preserved, a condition known as neuropraxia.  

 

4.7.      Postoperative anacusis 

In five cases, immediate postoperative anacusis resulted from severance of the cochlear nerve 

during surgery. In all of these cases, dissection of the cochlear nerve was necessary in order to 

achieve complete tumour removal. The rate of 73.8% for anatomical preservation of the 

cochlear nerve in this series is similar to the rate of 75.8% reported in a large series by Samii 

et al. (2006). In the four patients who presented with no reproducible ABR preoperatively and 

suffered from postoperative anacusis, the cochlear nerve had been necessarily severed in all 

cases. In the fifth case in which the cochlear nerve could not be preserved, wave I was present 

at a normal latency preoperatively and wave V was absent. In the two other cases of a 

preoperative absence of wave V in the group that suffered anacusis, subtotal tumour removal 

was necessary. These results suggest that an absence of ABR wave V preoperatively may 

have indicated greater involvement of the cochlear nerve by the tumour, possibly indicating 

infiltration of the nerve by tumour cells, increasing the likelihood that dissection of the nerve 

during surgery would be necessary. This is consistent with previous studies suggesting that 

preoperative ABR is predictive of the physiological integrity of the cochlear nerve (Josey et 

al., 1988; Moffat et al., 1999).  
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4.7.1.      Anacusis with anatomical preservation of the cochlear nerve 

In four of the cases of severance of the cochlear nerve the loss of DPOAEs indicates that 

damage to the cochlea was also sustained. The most likely explanation is that the IAA was 

damaged as the cochlear nerve was severed, interrupting the blood supply to the cochlea. 

Complete preservation of the IAA is extremely difficult when the eighth nerve is severed 

(Shimamura et al., 2002). The exception is Case 10, in which the emission present at 8 kHz 

preoperatively remained robust postoperatively, indicating that the blood supply to the 

cochlea was maintained. 

The remaining eight cases of anacusis occurred in the presence of apparent anatomical 

preservation of the cochlear nerve. The mechanisms of hearing loss despite anatomical 

preservation of the cochlear nerve are less well understood, and may result from any 

combination of direct trauma to the labyrinth or cochlear nerve, or disruption to the vascular 

supply to the labyrinth or auditory nerve (Colletti et al., 1997; Friedman, Brackmann, & 

Mills, 1998; Sekiya et al., 1986). In seven of the eight cases, all DPOAEs were absent 

postoperatively, suggesting a cochlear component to the hearing loss. Case 16, in which 

DPOAEs remained robust despite complete anacusis, will be discussed in detail later. In Case 

7, DPOAEs were absent preoperatively, and in Case 4 the patient was unavailable for 

preoperative DPOAE testing. Therefore, it cannot be determined in these cases whether the 

cochlear structures were damaged further intraoperatively. Vascular compromise to either the 

cochlea or the cochlear nerve results from rupture, occlusion, or vasospasm of the IAA or 

smaller arterial vessels, either transiently or permanently (Colletti et al., 1997; Gouveris & 

Mann, 2009). It has been demonstrated that surgical manipulations within the CPA may cause 

vasospasm or an avulsion rupture of the IAA, resulting in a sudden loss of cochlear potentials 

(Levine, Bu-Saba, & Brown, 1993; Sekiya, Iwabuchi, Kamata, & Ishida, 1985; Sekiya & 

Møller, 1987). As the branches of the IAA distal to the fundus of the IAC are fixed within the 

bony cochlea, the branches of the IAA have been found to be particularly vulnerable at the 

fundus to traction forces derived from manipulation in the CPA (Sekiya & Møller, 1987).  

In a study of the effect of various surgical manoeuvres on DPOAEs during vestibular 

schwannoma excision, Morawski et al. (2004) found that bipolar cautery close to the IAC 

structures had the greatest impact on DPOAE amplitude. The authors hypothesise that the 

cause of DPOAE reduction resulting from bipolar cautery may include vascular interruption 

from coagulation or vasospasm. Previous studies have shown that the severity of damage to 



117 

 

the spiral limbus, hair cells, and spiral ganglion cells during ischemic episodes depends on the 

degree and duration of ischemia (Morawski et al., 2003a; Morawski et al., 2003b; Perlman et 

al., 1959).  

Despite the appearance of an apparently anatomically-preserved cochlear nerve at the 

conclusion of surgery,  direct manipulation of the cochlear nerve during surgery, including 

stretching, compression, or heat injury, has been demonstrated to induce intraneural 

haemorrhage and axonal disruption (Sekiya & Møller, 1987). In all cases of anacusis, with the 

exception of Case 16, all ABR waves were absent immediately following surgery, which may 

be due to neural as well as cochlear damage. In particular, the cochlear nerve is vulnerable to 

direct damage at the Obersteiner-Redlich (O-R) zone where the central and peripheral 

portions of the cochlear nerve are connected (Sekiya & Møller, 1987; Sekiya et al., 1986). 

The microvasculature of the central portion of the cochlear nerve is sparser and more 

irregularly distributed relative to the longitudinal vessel network and rich anastomoses of the 

peripheral portion (Matsunaga et al., 1996). In addition, the central portion has a myelin 

sheath which is less compact than collagen-reinforced peripheral myelin (Lang, 1985). During 

manipulation in the CPA, the morphological differences between these sections results in 

pulling and avulsing of the nerve at the O-R zone where the sections are connected (Sekiya et 

al., 1986). The O-R zone itself is relatively avascular and therefore susceptible to ischemia 

and microtrauma (Sekiya & Møller, 1987; Sekiya et al., 1986). A series of animal 

experiments (Sekiya & Møller, 1987, 1988; Sekiya et al., 1986) and clinical studies (Fischer 

et al., 1992; Matthies & Samii, 1997; Watanabe, Schramm, Strauss, & Fahlbusch, 1989), 

suggest that cerebellar retraction may be particularly hazardous for the cochlear nerve. 

Sekiya, Møller, (1987) found that cerebellar retraction in monkeys altered auditory evoked 

potentials, leading to prolonged latency, amplitude reduction and sudden loss of potentials. In 

addition, Sekiya, Møller, and Jannetta (1986) found that compression of the cochlear nerve 

caused intraneural haemorrhaging and loss of the ultrastructural integrity of the nerve fibres, 

through disintegration of the myelin sheath.  

It is of note that anacusis was the result in two of the four cases of subtotal tumour removal in 

this study. The goal of a planned subtotal tumour resection is to relieve compression caused 

by the tumour while minimising surgical morbidity, in particular the risk of facial nerve 

damage (Rosenberg, 2000). The disadvantages include the risk of recurrence, the need for 

continued monitoring for tumour growth and possible additional surgery (Rosenberg, 2000). 
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Post, Eisenberg & Catalano (1995) point out that due to the extreme vulnerability of the 

cochlear nerve, hearing is often impaired or lost in cases of subtotal removal (Post et al., 

1995). This extreme vulnerability is illustrated in the two cases of subtotal removal and 

anacusis in this the present study. Interestingly, the two cases of anacusis were unplanned 

subtotal excisions, whereas the two cases of hearing preservation with subtotal tumour 

removal were planned. It is possible that a planned subtotal resection is approached 

differently to one that is adopted mid-surgery, thus altering the risk to hearing. The 

preoperative decision to perform subtotal tumour removal is based on the degree of hearing in 

the contralateral ear (a particular issue in cases of NF2) and any co-morbid health problems 

the patient has that increases the risks associated with a long surgery, or may inhibit their 

recovery and rehabilitation. During surgery, a decision to leave some residual tumour is 

usually based on the inability to preserve the facial nerve if the tumour is completely removed 

(P. Bird, personal communication, September 25, 2008).   

 

4.7.1.1.      Case 16 

In contrast to the other cases of postoperative anacusis with anatomical preservation of the 

cochlear nerve, in Case 16 cochlear function was demonstrated immediately postoperatively. 

In this case, behavioural responses to auditory stimuli were absent postoperatively, beginning 

with the first test session, approximately 48 hours after surgery. The patient did report some 

self-perceived hearing in the ipsilateral ear immediately after surgery, but given that these 

reports persisted for three days, despite the audiogram showing total anacusis, it seems 

unlikely that measurable hearing was actually present. Robust DPOAEs were present 

bilaterally over the early postoperative period, and at follow-up 12 weeks later, indicating that 

OHC function was preserved. In addition to DPOAEs, ABR wave I was present at a normal 

latency immediately postoperatively, consistent with the functional integrity of the distal 

portion of the cochlear nerve. The absence of any waves beyond wave I, together with a loss 

of measurable hearing, is indicative of compromise of the proximal portion of the cochlear 

nerve during tumour removal. Sekiya and Møller (1988) propose that mechanical stress from 

CPA manipulations may injure the cochlear nerves where they pass through the fundus of the 

IAC, thus causing a nerve conduction block in the portion of the nerve that is proximal to the 

generator site of wave I, but leaving wave I intact. It is also possible that damage occurred at 

the O-R zone, which has repeatedly been shown to be a portion of the cochlear nerve that is 
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particularly vulnerable to stretching of the nerve or cerebellar retraction (Sekiya & Møller, 

1987; Sekiya et al., 1986). It is not possible to determine whether the cause of this neural 

impairment was disturbance to the microvasculature of the cochlear nerve, or damage to the 

nerve fibres themselves due to direct surgical manipulation. The hearing loss in this case does 

not appear to have a cochlear component, given that DPOAEs and ABR wave I were both 

present immediately postoperatively.  

Serial ABR recordings over the early postoperative period in Case 16 documented a gradual 

increase in the latency of wave I from a peak latency at 80 dB nHL of 1.88 ms on 

postoperative day 0, to 2.35 ms on postoperative day 5. In addition, the originally clear 

morphology of this peak also deteriorated so that it became more difficult to identify over the 

first five days postoperatively. On postoperative day 6, no reproducible wave I was present at 

80 or 90 dB nHL. ABR testing 12 weeks postoperatively showed the continued absence of 

reproducible ABR from the ipsilateral side. This gradual loss of wave I indicates that although 

the peripheral portion of the cochlear nerve was initially functional following surgery, 

damage to this portion of the nerve ultimately transpired. This deterioration of ABR is 

suggestive of retrograde degeneration of the cochlear nerve, progressing from the operative 

site to the generator site of wave I at the distal cochlear nerve. Although delayed hearing loss 

was not demonstrated behaviourally, the progressive deterioration of ABR wave I parallels 

the pattern described by Strauss et al. (1991) in cases of delayed hearing loss. As Strauss and 

colleagues (1991) proposed, this suggests that a pathophysiological mechanism, whether 

direct damage to the cochlear nerve, or to its microvasculature, was initiated intraoperatively, 

and continued in the early postoperative period. It is important to note that we have been 

unable to find any previous study has measured OAEs together with ABR to determine 

cochlear function in these patients with delayed hearing loss. In Case 16, the data provide 

evidence against vasospasm or occlusion of the IAA as the cause of a delayed loss of ABR, at 

least in this case, as such an event would be expected to result in a complete loss of responses 

from the cochlear and cochlear nerve. IAA vasospasm or occlusion should also result in a 

sudden loss of the potentials, whereas in Case 16 the loss of wave I was clearly gradual.   

In an effort to further clarify the site of impairment and mechanism responsible for the loss of 

ABR in Case 16, transtympanic ECochG was performed 12 weeks postoperatively. 

Electrocochleograms elicited to tone-burst stimuli of 2 and 4 kHz indicated the presence of 

clear SP, however this potential was not measurable in response to stimuli of 0.5 and 1 kHz. 
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This does not necessarily indicate that the inner hair cells were functioning only in the mid-

frequencies and not at lower frequencies, but may be a result of the position of the electrode 

with regard to the tonotopic organisation of the cochlea (Deans et al., 1996). Click-evoked 

ECochG showed a clear SP with a small CAP. Taken together, the ECochG results from all 

stimuli and the present DPOAEs suggest that the inner and OHCs remained functional and 

therefore an endocochlear potential and thus the blood supply to the cochlea must have been 

maintained.   

An electrocochleogram demonstrating an SP to AP amplitude ratio of 30% or more in 

response to click stimuli is considered characteristic of endolymphatic hydrops (Coats, 1981) 

(Dauman & Charlet de Sauvage, 1984; Gibson, Moffat, & Ramsden, 1977; Gibson & Prasher, 

1983; Gibson, Prasher, & Kilkenny, 1983). In this case, the SP/AP ratio of 70% is clearly 

consistent with the presence of hydrops if this criterion is used. However, as Conlon and 

Gibson (2000) point out, the SP/AP ratio is less useful diagnostically if the response 

amplitude is less than 10 µV. A response of small amplitude may indicate a reduced ability of 

the cochlea or distal cochlear nerve to generate an electrical response, rather than showing a 

bias of basilar membrane responding suggestive of hydrops (Conlon & Gibson, 2000). Conlon 

and Gibson (1999) suggest that enhancement of the SP negativity in response to a 1 kHz tone 

burst provides a closer correlation with symptomatic Ménière‟s disease than SP/AP ratio to 

click. The enhanced negative SP in cases of endolymphatic hydrops is thought to result from 

asymmetrical basilar membrane movement caused by the pressure build-up in the 

endolymphatic fluid in scala media displacing the basilar membrane towards scala tympani 

(Durrant & Dallos, 1974). This asymmetry results in a change to the operating point of the 

OHCs which is thought to add a DC shift to the OHC receptor current causing an “OHC SP” 

which, when added to the IHC SP, results in the SP enhancement seen in the ECochG 

recordings of patients with hydrops (Gibson et al., 1977).  

In Case 16, no SP was measurable in response to tone-burst stimuli of 0.5 and 1 kHz, and 

broad SPs in the absence of CAPs were elicited by 2 and 4 kHz tone-bursts. The absence of a 

detectable CAP response to a 0.5 kHz stimulus is not surprising, given that due to the slow 

travelling wave in the apex of the cochlea, the CAP arising from stimuli at frequencies below 

1 kHz are poorly synchronised and provide responses that are difficult to identify (Gibson & 

Arenberg, 1990). Electrocochleograms evoked by tone-bursts of 1 kHz are considered the 

most sensitive for detecting hydrops (Conlon & Gibson, 2000). In normal ears, the polarity of 
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the SP is dependent on the position of the active electrode relative to the portion of the 

cochlea generating the response (Deans et al., 1996). Conlon and Gibson suggest that the 

advantage of the 1 kHz tone burst results from the neutral position of the 1 kHz region of the 

cochlea relative to the electrode on the promontory. This results in a small amplitude SP in 

most normal ears (Arenberg et al., 1992), making any tendency to basilar membrane 

displacement easier to detect at this frequency (Conlon & Gibson, 2000). Given the absence 

of an SP in response to a 1 kHz tone-burst in Case 16, the presence of endolymphatic hydrops 

seems unlikely. The presence of normal DPOAEs implies normal outer hair cell function. If 

we assume that the patient in Case 16 had a solely retrocochlear pathology, and otherwise 

intact inner hair cell function, we could predict an SP amplitude of -1.9 µV and -2.3 µV at 2 

and 4 kHz respectively, based on the means provided by Gibson et al. (1993). Although the 

SP responses to 2 and 4 kHz tone-bursts in Case 16 were larger than the mean amplitude seen 

in normal ears, the response amplitudes did not reach the diagnostic criterion for 

endolymphatic hydrops, which Gibson et al. (1993) give as -9 µV. 

The most plausible explanation for the large SP/AP ratio in Case 16, given the absence of an 

enhanced negative SP to tone-burst stimuli, is that the high ratio resulted from the very small 

CAP, rather than a large SP. This is consistent with the loss of responding neural fibres 

observed through the gradual deterioration of ABR wave I in this case. As ECochG was only 

performed postoperatively, and only in the ear ipsilateral to the tumour, it is not possible to 

determine whether the SP was enhanced in amplitude or whether the response was of normal 

morphology, relative to what would be expected for this patient. Ideally, ECochG would have 

been performed for the contralateral ear, and also preoperatively, so the responses could be 

compared. Previous studies of ECochG in patients following vestibular schwannoma excision 

have demonstrated the presence of a broad negative potential, thought to consist of an 

enhanced negative SP intermingled with the CAP (Ohashi et al., 1996; Ohashi et al., 2001). 

Indeed, the ECochG response to click stimuli in Case 16 is markedly broader than responses 

recorded from normal ears using the same equipment. The amplitude of the SP in this 

response is what would be expected based on the normative data, suggesting that the shape of 

the response is most likely due to the small CAP than any other mechanism.   

As previously discussed, histological studies of unoperated vestibular schwannomas have 

provided evidence of changes in the cochlear fluid composition, in particular an increase in 

the protein concentration of the perilymph, and the presence of endolymphatic hydrops 
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(Eckermeier et al., 1979; Mahmud et al., 2003; Morrison et al., 1976; O'Connor et al., 1982). 

These changes in the cochlea may be responsible for the broadening of the ECochG response 

that has been observed in vestibular schwannoma patients. Alternatively, it has been 

hypothesised that the abnormal response is the result of impairment of the efferent system 

(Takeda, Kitahara, & Sawada, 1992). Takeda et al. (1992) found that inactivation of the 

efferent system, induced by the application of lidocaine, a local anaesthetic to the root exit 

zone of the vestibular nerve, resulted in an increase in SP amplitude and broadening of the 

waveform without altering the amplitude of the CAP. The authors suggest that the broad 

ECochG waveform observed in cases of vestibular schwannoma is caused by enhanced 

negative SP due to inactivation of efferent cochlear fibres (Takeda et al., 1992). Efferent 

fibres would be expected to be particularly vulnerable during both tumour growth and 

excision, given that they travel within the vestibular nerve. It is possible that the disruption of 

the efferent cochlear fibres, either pre- or postoperatively, in Case 16 was the mechanism 

responsible for the slightly enhanced SP to 2 and 4 kHz tone-bursts. Although, as stated 

earlier, whether these potentials are truly enhanced cannot be known without comparison to 

the response of the contralateral ear. 

As N1 of the CAP recorded in transtympanic ECochG is considered to be the response of the 

peripheral portion of the cochlear nerve (Colletti, Fiorino, Mocella, & Policante, 1998; Sabin, 

Prasher, Bentivoglio, & Symon, 1987), and wave I of the ABR is believed to be the far-field 

representation of this same response, it is interesting that a CAP was elicited in the absence of 

wave I. Similar results were found by Kaga et al. (1997), who documented the presence of a 

CAP response with mild threshold elevation despite the absence of ABR. In Kaga et al.‟s 

(1997) case study, the vestibular schwannoma had not been excised and measurable hearing 

was present. They suggest that the clear CAP recorded via epitympanic ECochG was the 

response of the distal portion of the remaining cochlear nerve within the osseous spiral 

lamina, but that the ABR was not generated due to a block of signal conduction by the 

presence of the tumour at the proximal portion of the cochlear nerve. Histological 

examination of the temporal bone following the patients death in that case supported the 

authors‟ hypothesis, showing that the majority of the central portion of the cochlear nerve 

within the IAC was replaced by the tumour and that the numbers of spiral ganglion cells and 

cochlear nerve fibres were decreased at each turn of the cochlea, most severely in the basal 

turn (Kaga et al., 1997). Ohashi et al. (2001) proposed a similar explanation for the presence 

of a CAP recorded from the promontory and the absence of ABR following vestibular 
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schwannoma removal in their patient. They posit that wave I of ABR reflects the activity of 

the medial part of the cochlear nerve whereas the CAP has a more peripheral origin, possibly 

within the cochlea (Dauman, Aran, & Portmann, 1988). Accordingly, it is assumed that a 

CAP will be recorded unless cochlear function is disrupted, most likely by damage to the 

vascular supply. 

There is also evidence to suggest that the cochlear action currents pass through the resistive 

discontinuity of the dura mater, and that the action potentials generated here are measurable 

in the cochlea as the CAP, and from the scalp as ABR wave I (Brown & Patuzzi, 2008). With 

regard to this explanation, the results of Case 16 may be interpreted as evidence of a 

progressive injury to the cochlear nerve which prevented the far-field spread of the CAP to be 

recorded as wave I. A resistive discontinuity must have been maintained, as a CAP was 

measurable from the cochlea, but this discontinuity may not have been sufficient to generate a 

response that could be measured using far-field measurement techniques.  

Given that the CAP measured in ECochG was extremely small (9.2 µV), the most 

parsimonious explanation in this case is that wave I was still present, but was buried within 

the noise of the far-field recording of ABR. Transtympanic ECochG records the response of 

the auditory nerve much closer to the generation site, therefore is able to detect even the very 

small potential that was present in this case. The magnitude of CAP- N1 recorded from the 

promontory is larger across intensities than corresponding magnitudes measured from the 

earlobe or mastoid process (Ferraro & Krishnan, 1997). The presence of a CAP without wave 

I suggests that adequate nerve fibres in the distal portion of the nerve were spared 

degeneration so as to generate a CAP, but not of a sufficient amplitude to be detected from a 

far-field recording. Similarly, electrical ABR responses recorded from the promontory have 

been documented in cases where scalp-recorded ABR and behavioural responses to sound are 

absent following vestibular schwannoma removal (Friedman et al., 1998). Spoendlin and 

Suter (1976) found that following complete transection of the eighth nerve, approximately 90 

- 95% of fibres degenerated and disappeared, leaving 5-10% that were still able to generate a 

CAP that was measurable at the promontory.  

The presence of cochlear responses in the absence of responses from the medial and central 

auditory pathways has been proposed to be due to a neural conduction block which 

disconnects the peripheral from the central auditory pathways, causing persistence of 

peripheral auditory function but a lack of propagation of the input to the brainstem (Colletti et 
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al., 1998). Several cases of persistence of cochlear responses despite absent ABR and 

anacusis following vestibular schwannoma removal have been previously reported. Levine et 

al. (1984) reported a case of a patient with anacusis in whom large CM potentials were 

obtained 75 days after tumour removal, but neither CAP nor ABR were present at any time 

postoperatively. Similarly, Friedman and colleagues (1998) observed preservation of an 

ECochG response in 8 of their 84 patients despite a complete loss of ABR and postoperative 

deafness, indicating a deafferentation of ascending auditory pathways together with an intact 

cochlea.  

 

4.8.      Retrograde degeneration of the cochlear nerve 

The preservation of the cochlea in the absence of cochlear nerve function in Case 16 is 

consistent with studies showing that retrograde degeneration of the cochlear nerve following 

surgical transection spares the organ of Corti (Schuknecht & Woellner, 1953; Spoendlin & 

Suter, 1976). Animal experiments have demonstrated that this process of cochlear nerve 

retrograde degeneration following compression damage is complete within one week of the 

injury (Shimamura et al., 2002). This time course corresponds to the postoperative week in 

which wave I deteriorated in Case 16. However, Spoendlin and Suter (1976) propose that the 

process of degeneration of the cochlear nerve in humans is much slower. Their evidence 

suggests that although the process of degeneration begins immediately, it does not cease until 

approximately two months later when 90-95% of the nerve fibres have disappeared. In our 

case, the degeneration of nerve fibres in the first week postoperatively may have been 

sufficient to make ABR wave I undetectable, even though the degenerative process was not 

complete. Serial ECochG recordings may have been more sensitive to this reduction in the 

number of fibres responding, and may have shown a gradual reduction in the amplitude of the 

CAP. 

Two hypotheses that have been proposed as possible pathophysiological mechanisms of 

retrograde degeneration in delayed hearing loss may also apply in this case of delayed loss of 

ABR. It is possible that disturbances of microcirculation of the vasa nervorum of the cochlear 

nerve due to direct or indirect surgical manipulation, may be the initial insult that triggers 

nerve degeneration (Levine et al., 1984; Neu et al., 1999; Strauss et al., 2001; Strauss et al., 

1991). Alternatively, the mechanism may be direct mechanical damage to the cochlear nerve 

resulting in a loss of continuity of the axons (Neu et al., 1999; Sekiya & Møller, 1988; Strauss 
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et al., 1991). It is not possible to determine which mechanism was responsible for the 

deterioration of ABR in Case 16. Regardless of initial insult, the disruption of the endoneurial 

vasa nervorum or plasma membrane associated with these events would have allowed a 

massive release of glutamate to enter the damaged neurons, causing an influx of calcium 

subsequent cell death (Choi, 1992; Shimamura et al., 2002).  

Evidence of a gradual process of retrograde degeneration as the mechanism responsible for 

reported cases of delayed hearing loss has incited research into pharmacological therapies to 

prevent the degeneration following the initial insult. Such interventions should be initiated 

immediately postoperatively due to the narrow therapeutic window in which treatment may be 

effective in preventing the death of neurons (Bischoff, Romstöck, Fahlbusch, Buchfelder, & 

Strauss, 2008; Gouveris, Mewes, Maurer, & Mann, 2005). Given that excessive entry of 

calcium into injured cochlear neurons results in spiral ganglion cell death, preventing this 

influx of calcium by using calcium channel antagonists has been investigated as a 

countermeasure to cell death following trauma to the nerve (Sekiya et al., 2002). In particular, 

recent studies have provided evidence that nimodipine, a calcium channel blocker, 

administered postoperatively to patients identified by intraoperative ABR as being at risk of 

delayed hearing loss, can improve hearing outcome (Bischoff et al., 2008; Strauss et al., 

2001). These studies also indicate that this treatment must be prophylactic – patients in whom 

anacusis is confirmed before treatment do not show an improvement in hearing (Bischoff et 

al., 2008). Thus intraoperative ABR is required to identify patients with a pattern of gradual 

reversible loss who are classified as at risk of delayed hearing loss, and is necessary to 

provide treatment to appropriate patients. In Case 16 we documented evidence of a gradual 

retrograde degeneration of the cochlear nerve in the week following surgery. Specifically, a 

significant change in the latency of wave I, presumably indicating that the process of 

degeneration had begun, was observed on postoperative day 3. It is possible that if treatment 

with a calcium channel blocker had been administered before day 3, this process of 

degeneration may have been halted. Although in this case, hearing would of course not have 

been preserved given the immediate postoperative anacusis, it is possible in cases in which a 

similar pattern of ABR is observed in the presence of measurable hearing, retrograde 

degeneration could be prevented.  

 

 



126 

 

5.     SUMMARY OF MAIN FINDINGS 

This study aimed to closely monitor auditory responses, using electrophysiological and 

behavioural techniques, in the early postoperative period following vestibular schwannoma 

excision. It was hoped that this data would identify patients presenting with a delayed loss of 

hearing in the early postoperative period, and thus would provide evidence as to the time 

course of hearing deterioration and whether the site of impairment responsible for this 

phenomenon is neural or cochlear in origin. It is essential that the causative mechanism of 

delayed hearing loss is identified in order to prevent delayed hearing loss in the future, either 

through alterations in surgical techniques or through postoperative pharmacological therapies. 

Unfortunately, no cases of delayed hearing loss were observed in a series of 19 patients who 

underwent removal of a vestibular schwannoma at Christchurch Public Hospital during the 11 

month period of this study. However, valuable data was collected from 13 cases of immediate 

postoperative anacusis and six cases of hearing preservation. Given the rates of delayed 

hearing loss of 13% to 24% reported in the, albeit limited, literature, it is perhaps surprising 

that no cases were observed in the current series. This suggests that the stricter patient 

inclusion criteria used in previous reports of delayed hearing loss based on preoperative 

hearing, tumour size, or both, are likely to have increased the probability of documenting 

delayed hearing loss. 

Although no patients in the present study experienced a delayed loss of behavioural auditory 

responses, one case of a delayed loss of responses from the cochlear nerve was documented. 

Case 16 demonstrated a gradual deterioration of ABR wave I over five days following 

surgery, but maintained evidence of cochlear function. A similar loss of wave I has been 

reported in cases of delayed hearing loss by Strauss et al. (1991). In contrast to Strauss et al.‟s 

(1991) study, our data includes a measure of cochlear function, and provides the necessary 

time resolution to observe the gradual loss of cochlear nerve function. The gradual 

deterioration of ABR wave I together with a functional cochlea is consistent with retrograde 

degeneration of the cochlear nerve. This degeneration may have been triggered by an initial 

insult during surgery to the microcirculation of the cochlear nerve, or to the proximal portion 

of the nerve itself. The presence of a small CAP in the electrocochleogram recorded 12 weeks 

postoperatively is consistent with the presence of some functional nerve fibres at the extreme 

periphery of the cochlear nerve, however these were insufficient to generate the far-field 

spread of neural activity necessary to record ABR wave I. The similarities between the pattern 
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of ABR recorded in this case and that reported by Strauss et al. (1991) may indicate a 

common pathophysiological mechanism causing the loss of cochlear nerve function in both 

this case, and at least some cases of delayed hearing loss. 

Of the 13 cases of immediate postoperative anacusis, five were due to transection of the 

cochlear nerve during surgery. In the remaining eight cases, hearing loss was at least partially 

due to cochlear impairment in seven cases, neural impairment in one case, and the cause of 

hearing loss could not be determined in the other two cases due to an absence of preoperative 

electrophysiological responses. The most probable cause of a loss of cochlear function is 

transient ischemia to the cochlea resulting from obstruction or vasospasm of the IAA due to 

surgical manipulation (Colletti et al., 1998). It is also possible that the integrity of the 

labyrinth was violated during drilling of the IAC, which would result in the loss of all 

potentials from the cochlea and cochlear nerve. As ABR was absent immediately 

postoperatively in seven of these eight patients, a concomitant neural origin of hearing loss 

cannot be ruled out. This may have resulted from direct or indirect trauma to the cochlear 

nerve causing a conduction block due to disruption of the continuity of the axons (Sekiya & 

Møller, 1988). 

Although measurable hearing was retained postoperatively in six cases, all patients 

demonstrated a decrease in hearing following surgery, and only three patients had serviceable 

hearing postoperatively. In one case the loss was primarily of cochlear origin, four cases 

demonstrated a decrease on cochlear nerve function, and in one case the aetiology of hearing 

loss could not be identified due to absent electrophysiological responses preoperatively. 

Although this overall rate of preservation of serviceable hearing seems low, it is consistent 

with previous studies using the retrosigmoid approach, particularly when the philosophy of 

attempting hearing preservation in all cases, regardless of preoperative hearing or tumour size, 

is considered.  

 

5.1.     Clinical implications 

The single subject design of this study prohibits generalisation of these results to clinical 

populations. It is, however, possible to draw some predictions from our data of probable 

clinical implications if our findings were replicated in a larger group study. In particular, the 

parallels between Case 16 and reports of ABR patterns in cases of delayed hearing loss by 
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Strauss et al. (1991) highlight the vulnerability of the cochlear nerve during vestibular 

schwannoma removal and the retrograde degeneration of cochlear nerve function that may 

result from intraoperative trauma to the nerve or its microvasculature. The gradual nature of 

this deterioration documented in our study is a positive prognostic factor for the success of 

vasoactive treatment in preventing the progressive spread of damage to the distal portion of 

the nerve following initial trauma. More critical than the prevention of nerve degeneration 

following surgical injury, may be the prevention of such injury occurring. This may be 

accomplished through changes in surgical techniques, or through monitoring of auditory 

function throughout surgery and using that information to provide surgeons with guidance as 

to the impact of their manipulations. Further research is needed to determine the types of 

modifications in surgical technique that may offer a greater chance of preservation of the 

cochlear nerve without compromising the primary goals of complete tumour removal with 

anatomical preservation of the facial nerve. Preservation of the anatomical and functional 

integrity of the cochlear nerve would also offer the future possibility of cochlear implantation 

in the affected ear if a hearing loss of cochlear origin was present. 

 

5.2.      Limitations 

Early postoperative delayed hearing loss has been documented as occurring up to seven days 

following tumour removal (Neu et al., 1999; Strauss et al., 2001) and may occur later in cases 

that have not been reported. Many patients in our study were hospitalised, and thus 

monitored, for only five to six days following surgery, therefore there is a possibility that if a 

patient had experienced a delayed loss of hearing later than this, it would not have been 

identified in this study. However, if a gradual deterioration of hearing is responsible for 

delayed loss, as is proposed based on the results of Case 16, it would be expected that the 

patient would have shown at least some indication of deterioration of responses within the 

period of their hospitalisation. Although this may be a consideration in future research, in this 

study no patients who had initial preservation of hearing were reported to have lost this 

hearing following discharge from hospital. Ideally, the preservation of hearing, and in 

particular whether any changes in electrophysiological responses had occurred since 

discharge, would have been verified in a follow-up assessment approximately three months 

after surgery. Unfortunately, the large catchment area that Christchurch Hospital services for 
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vestibular schwannoma removal meant that many of our participants did not reside locally 

and follow-up was not possible.  

The utility of intraoperative ABR data collected in this study was severely limited by the 

presence of high noise levels and interference in the operating theatre. Clearly, changes to the 

recording set-up, such as improved shielding of recording equipment, are needed in order to 

ensure better quality results are obtained. In many studies using intraoperative ABR, the 

monitoring forms an important function in guiding the surgeon as to when surgical 

manoeuvres are potentially damaging to the auditory structures. This may mean that 

positioning of equipment within the operating theatre is more optimal for recording clear 

responses, and the type of equipment used is better equipped to deal with this challenging 

recording environment.     

A problem inherent in research of the present type is the difficulty in collecting the desired 

data from each patient at 24-hour intervals. In this study, in some patients data collection was 

limited by their co-operation or ability to participate, particularly in the first 72 hours 

postoperatively. Despite this, data was collected with sufficient time resolution that had 

delayed hearing loss occurred, it would have been detected. Although ideally the initial 

postoperative behavioural testing would have taken place 24 hours postoperatively to verify 

that hearing was absent immediately postoperatively, and had not deteriorated by the time the 

first test was conducted 48-72 hours later, most patients were able to accurately report the 

occurrence of immediate postoperative anacusis when it occurred. Previous studies, including 

those of Strauss et al. (1991), Strauss et al (2001) and Neu et al. (1999) used a click simulator 

to provide an estimate of whether some degree of hearing was present in the intensive care 

unit immediately postoperatively. Although this cannot provide any information on the 

configuration of hearing loss, it constitutes an effective way to reduce the problems associated 

with patient ability to participate in behavioural audiometry immediately after surgery, and 

may be a useful inclusion in future research.  

In Case 16, transtympanic ECochG was used to verify the presence of cochlear function and 

provide further information to determine the likely site of origin of hearing impairment. 

Although the procedure was successful in obtaining this data, a preoperative ECochG to use 

for comparison would have allowed us to document changes in the morphology and 

amplitude of responses. In addition, repeated ECochG would have allowed more accurate 

identification of the time course of degeneration of the cochlear nerve in Case 16, given that 



130 

 

the CAP can evidently be recorded with fewer functional nerve fibres than the ABR. 

However, given the limited availability of a physician with the appropriate expertise to 

perform electrode placement, this limitation was difficult to address in the present study. 

Clearly the absence of any cases of delayed hearing loss in the present study indicates that the 

small sample size relative to other studies that have reported delayed hearing loss was the 

primary limitation in fulfilling the aims of this study.  This was unavoidable given that all 

patients presenting for retrosigmoid excision of a vestibular schwannoma for the duration of 

this study were included. Given the prevalence rate of vestibular schwannomas, and the 

proportion of these patients that undergo retrosigmoid removal of these tumours, a study 

lasting longer than this thesis allows is necessary to collect sufficient data. The small number 

of patients in this study also limited data analysis to a single case study approach. In order to 

generalise our findings and make recommendations for clinical practice, an analysis of group 

data is essential. 

 

5.3.      Directions for future research 

As early postoperative delayed hearing loss was not observed the present study, the objectives 

of identifying the time course and pathophysiological mechanisms of this phenomenon 

remain unachieved. Future research is needed to identify and closely monitor cases of delayed 

hearing loss in order to define the cause; a necessary precursor to developing successful 

preventative measures. The case of retrograde degeneration of the cochlear nerve that was 

documented in this study provides a possible parallel to the reported instances of delayed 

hearing loss, and supports the assertion of Strauss and colleagues (2001) that the site of origin 

of such a pattern of loss is neural rather than cochlear. As suggested earlier, differences in 

patient inclusion criteria most probably contributed to the absence of delayed hearing loss in 

our series of patients. Future research will most likely benefit not only from larger patient 

numbers, but from a greater number of patients with serviceable preoperative hearing. 

Although important data can be collected from patients with Class D hearing and large 

tumours, the chance of hearing preservation during surgery is low, thus the likelihood of 

postoperative delayed hearing loss is reduced.  

Although defining the pathophysiological mechanisms of delayed hearing loss is essential in 

developing surgical techniques to reduce the occurrence of this pattern of hearing loss, it has 
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already been demonstrated that pharmacological therapies can be successful in preventing 

deterioration of hearing in a certain population of patients, even though the precise 

mechanism of such loss is unknown (Bischoff et al., 2008; Gouveris et al., 2005; Strauss et 

al., 2001).  The continuation of this research is obviously important, particularly to determine 

the most beneficial types of treatment and exactly which populations are likely to benefit. 

Intraoperative monitoring of auditory function will continue to be a vital part of research in 

this field, both in identifying the surgical manoeuvres that most often trigger delayed hearing 

loss, and in more clearly identifying the patterns of intraoperative responses that make 

patients more likely to respond successfully to postoperative therapeutic treatments. Our study 

highlights the importance of monitoring both cochlear and cochlear nerve function in order to 

gain a complete understanding of the nature of hearing loss. In this respect, ECochG may be 

the ideal intraoperative and postoperative monitoring technique as it is capable of quickly 

providing measures of both cochlear and cochlear nerve responses. As was demonstrated in 

Case 16, transtympanic ECochG is also a more sensitive test of cochlear nerve function in 

cases of a reduction in the number of neural fibres responding. 

Given the much higher proportion of patients with schwannomas originating from the facial 

nerve in this study than would be predicted based on the extant literature (Grey et al., 1996), 

further research on the prevalence of facial schwannomas appears necessary. A number of 

studies on vestibular schwannomas do not document the nerve of origin, while others note 

that in the case of large tumours several nerves are often involved making the identification of 

the initial nerve of origin impossible (Khrais et al., 2008). It may be that some of these cases 

are in reality facial nerve schwannomas. Further research in this area and the investigation of 

preoperative factors that allow a differential diagnosis to be made are necessary.  

Irrespective of their absence from this study, it is clear from the literature that cases of 

delayed loss of hearing following vestibular schwannoma excision do exist. Surgeons and 

authors of future studies need to be aware of the possibility of delayed hearing loss and 

monitor for its occurrence. This awareness is necessary in order to identify and report cases of 

delayed hearing loss so its prevalence and characteristics may be more accurately defined.  
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22 May 2007 
 
 
Mr P. A. Bird 
Dept of Otolaryngology 
Christchurch Public Hospital 
Private Bag 4710 
Christchurch 
 
 
Dear Mr Bird, 
 
Patterns of hearing loss during and following the removal of acoustic neuroma 
Investigators: Mr P Bird, Dr A Scarlett, Dr G O’Beirne, Mr M MacFarlane, Ms M Feldman 
Locality: Christchurch Hospital 
Ethics ref: URA/07/03/017 
 

The above study has been given ethical approval by the Upper South A Ethics Committee.  A 
list of members of this committee is attached. 

Approved Documents 
Information sheet and consent form version 2 dated 16 April 2007  
 
Certification  
The Committee is satisfied that this study is not being conducted principally for the benefit of the 
manufacturer or distributor of the medicine or item in respect of which the trial is being carried 
out. 
 
Accreditation 
The Committee involved in the approval of this study is accredited by the Health Research 
Council and is constituted and operates in accordance with the Operational Standard for Ethics 
Committees, April 2006.  
 
Progress Reports 
The study is approved until 1 June 2009.  The Committee will review the approved application 
annually and notify the Principal Investigator if it withdraws approval.  It is the Principal 
Investigator’s responsibility to forward a progress report covering all sites prior to ethical review 
of the project in June 2008. The report form is available on 
http://www.newhealth.govt.nz/ethicscommittees.  Please note that failure to provide a progress 
report may result in the withdrawal of ethical approval. A final report is also required at the 
conclusion of the study. 
 
Requirements for SAE Reporting 
The Principal Investigator will inform the Committee as soon as possible of the following:   

 Any related study in another country that has stopped due to serious or unexpected adverse 
events 

 withdrawal from the market for any reason 

 all serious adverse events occurring during the study in New Zealand which result in the 
investigator or sponsor breaking the blinding code at the time of the SAE or which result in 
hospitalisation or death. 

 all serious adverse events occurring during the study worldwide which are considered related 
to the study medicine.   Where there is a data safety monitoring board in place, serious 
adverse events occurring outside New Zealand may be reported quarterly. 
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All SAE reports must be signed by the Principal Investigator and include a comment on whether 
he/she considers there are any ethical issues relating to this study continuing due to this adverse 
event.  If the adverse event is local and does not have the sponsor’s report attached, an opinion 
on whether the event is thought to be related to the study should be given along with any other 
pertinent information.  It is assumed by signing the report, the Principal Investigator has 
undertaken to ensure that all New Zealand investigators are made aware of the event. 
 

Amendments 
All amendments to the study must be advised to the Committee prior to their implementation, 
except in the case where immediate implementation is required for reasons of safety.  In such 
cases the Committee must be notified as soon as possible of the change.  
 

Please quote the above ethics committee reference number in all correspondence. 

 
It should be noted that Ethics Committee approval does not imply any resource 
commitment or administrative facilitation by any healthcare provider within whose facility 
the research is to be carried out.  Where applicable, authority for this must be obtained 
separately from the appropriate manager within the organisation. 
 

We wish you well with your study. 

 

Yours sincerely 

 

 

 

 

 

Alieke Dierckx 
Upper South A Ethics Committee Administrator 

Email: alieke_dierckx@moh.govt.nz  
List of members of the Upper Region A Ethics Committee, March 2007 
 
Carolyn Mason   Ethicist/Philosopher    Female 
(Chair)    Lay member 
 
 
Carolynn Bull   Legal representative,    Female 
    Maori representative 

Lay member 
 
John Horwood   Biostatistician     Male 
    Lay member 
 
Jane Kerr   Researcher     Female 
    Health Professional Member 
 
Alison Luckey   Health Practitioner    Female 
    Health Professional member 
 

mailto:alieke_dierckx@moh.govt.nz
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Tom Marshall   Clinical Psychologist    Male 
    Health Professional member 
 
Ellen McCrae   Pharmacist     Female  
    Health Professional member 
 
Edie Moke   Maori representative    Female 
    Lay member 
 
Nicky Murray   Community Representative   Female 
    Lay member 
 
Elizabeth Richards  Consumer Representative   Female 
    Lay member 
 
 
Russell Scott   Health Practitioner    Male 
    Health Professional member 
 
 
 
Carolynn Bull and Edie Moke were not present at the meeting on 26 February 2007.  
  
 
 
 
 
            
Alieke Dierckx (Administrator)   Date 
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Ref:  HEC 2008/44  

 

 

 

 

16 June 2008 

 

 

Ms Melissa Babbage 

Department of Communication Disorders 

UNIVERSITY OF CANTERBURY 

 

 

Dear Melissa  

 

The Human Ethics Committee advises that your research proposal “Patterns of hearing loss 

during and following the removal of vestibular Schwannoma.” has been considered and 

approved.   

 

Please note that this approval is subject to the incorporation of the amendments you have 

provided in your email of 6 June 2008. 

 

Best wishes for your project. 

 

 

Yours sincerely 

 

 

 

 

 

Dr Michael Grimshaw 

Chair, Human Ethics Committee 

 



 

 

 

 

INFORMATION FORM 
 

PATTERNS OF HEARING LOSS DURING AND FOLLOWING THE REMOVAL OF 

ACOUSTIC NEUROMA 

February 2007 

 

Introduction 

You are invited to take part in this study during your surgery for removal of an acoustic 

neuroma. Your decision to take part can be made at any time between reading this form 

and the day of your operation. You do not have to take part in this study. If you do agree 

to take part you are free to withdraw from the study at any time, without having to give a 

reason and this will in no way affect your future/continuing health care. All people 

undergoing surgery to remove an acoustic neuroma with possible hearing preservation 

over the next two years will be asked to participate in this study. This will involve 

approximately 25 to 40 people.  

 

Why is this study being done? 

With the use of magnetic resonance imaging (MRI), people are presenting earlier with 

acoustic neuromas than previously. Subsequently many people still have a reasonable 

level of hearing prior to the removal of the acoustic neuroma. Unfortunately one of the 

risks of surgery includes reduction/loss in functional hearing. This study will monitor the 

patients hearing before, during and following surgery in order to determine the stage at 

which hearing is lost (if at all). The results from this study will be used to help surgeons 

understand why people can lose their hearing following acoustic neuroma surgery. If it 

can be established at which point during the operation hearing is lost (if at all), then more 

research can be aimed at changes in the techniques/approaches that surgeons use, in order 

to reduce the risks of hearing loss.  

 

What do we plan to do during the study? 

A variety of methods will be used to assess your hearing prior to surgery, all of which 

will cause no discomfort to you.  Most of the assessments are routine prior to surgery 

regardless of your involvement in the study. During the operation when you are under a 

general anaesthetic your brain will still respond to sounds the same as when you are 

awake. We can pick up this activity from your brain using “electrodes” (wires connected 

from a computer to an adhesive patch which is placed on your skin). This technique of 

monitoring hearing is not usually performed in routine removal of an acoustic neuroma. 

Following the surgery hearing assessments will be made every hour for the first six hours 

then twice daily until you are discharged from hospital. Involvement in this study will not 

delay your recovery or discharge from hospital.  Usually following surgery you would 

undergo such tests on one occasion, however for the purposes of this study, such tests 

will be repeated more frequently. Although your hearing will be monitored immediately 

following surgery, this will only require you to be involved physically in the assessments 

(eg listening for sounds etc), if you are awake and happy to participate. If your hearing is 

lost during the postoperative period, a specialized test will be carried out following the 



 

 

operation. This would involve a drop of medicine to numb a part of your ear drum and 

then a tiny needle would be inserted into the eardrum. This would detect whether the 

inner ear is picking up any sound even if you are unable to subjectively hear anything. 

This test is not usually routine.  Although no extra visits to the department will be 

required, the tests will take extra time during routine follow ups.  The hearing tests will 

be carried out by Ms Babbage, an audiology Masters student.  

 

Is there any risk to me to be involved in this study? 

We do not anticipate any increased risk from being involved in this study over and above 

the risks involved with removal of an acoustic neuroma. The only hearing assessment 

which can be slightly uncomfortable is the specialized test which requires a drop of 

anaesthetic onto the ear drum which will be done if hearing is lost in the period following 

the operation.  

 

Will this study help me? 

This study will not directly help you but may help people in the future undergoing a 

similar operation, to preserve their hearing. If we can detect when hearing loss occurs, 

methods may be developed to prevent it from occurring. 

 

Everyone who participates in this study will receive feedback as to how the study has 

gone in the future. 

 

No material which could personally identify you will be used in any reports on this study. 

 

It is a requirement that all health research data must be stored for 10 years in the case of 

adults. 

 

This study has received ethical approval from the Upper South A Regional Ethics 

Committee and the University of Canterbury Human Ethics Committee. 

 

If you have any queries or concerns regarding you rights as a participant under this study 

you may wish to contact a Health and Disability Advocate, telephone 

- South Island except Christchurch 0800 377 766 

- Christchurch   03 377 7501 

 

In the unlikely event of a physical injury as a result of your participation in this study, 

you may be covered by ACC under the Injury Prevention, Rehabilitation and 

Compensation Act. ACC cover is not automatic and your case will need to be assessed by 

ASS according to the provisions of the 2002 Injury Prevention Rehabilitation and 

Compensation Act. If your claim is accepted by ACC, you still might not get any 

compensation. This depends on a number of factors such as whether you are an earner or 

non-earner. Acc usually provides only partial reimbursement of costs and expenses and 

there may be no lump sum compensation payable. If you have ACC cover, generally this 

will affect your right to sue the investigations. If you have any questions about AC, 

contact your nearest ACC office or the investigator.  

 



 

 

 

If you have further questions or would like to discuss the research further, please do not 

hesitate to contact the researchers 

 

Phil Bird, Otolaryngologist 

Department of Otolaryngology 

Christchurch Hospital 

Private Bag 4710 

Christchurch 

(03) 355 7963 

 

Angela Scarlett 

Surgical Registrar 

RMO Unit 

Christchurch Hospital 

Private Bag 4710 

Christchurch 

(03)03640 640 

 

Martin McFarlane, Neurosurgeon 

Department of Neurosurgery 

Christchurch Hospital 

Private Bag 4710 

Christchurch 

(03)3640 640 

 

Dr Greg O‟Beirne 

Lecturer in Audiology 

03 364 2987 ext. 7085 

 

Miss Melissa Babbage 

Audiology Masters Student 

03 364 2987 ext. 7085 
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CONSENT FORM 

 

PATTERNS OF HEARING LOSS DURING AND FOLLOWING THE REMOVAL OF 

ACOUSTIC NEUROMA 

May 2007 

 

 

REQUEST FOR INTERPRETER 

 

English I wish to have an interpreter Yes No 

Maori 
E hiahia ana ahau ki tetahi 

kaiwhakamaori/kaiwhaka pakeha korero. 
Ae Kao 

Samoan Ou te manaó ia I ai se faámatala upu. Ioe Leai 

Tongan Oku ou fiema'u ha fakatonulea. Ioe Ikai 

Cook 

Island 
Ka inangaro au I tetai tangata uri reo. Ae Kare 

Niuean 
Fia manako au ke fakaaoga e taha tagata 

fakahokohoko kupu. 
E Nakai 

Mandarin 我需要一个翻译 对 不对   

Japanese 通訳の人を希望します。 はい。 いいえ。 

Korean 통역관이 필요합니다 네네 아아니오 
 

 

1 I have read and I understand the information sheet for volunteers taking part in the 

study designed to investigate patterns of hearing loss during and following the 

removal of an acoustic neuroma. I have had the opportunity to discuss this study. I am 

satisfied with the answers I have been given. 

 

2 I have had the opportunity to use whanau support or a friend to help me ask questions 

and understand the study. 

 

3 I understand that taking part in this study is voluntary (my choice) and that I may 

withdraw from the study at any time without having to give a reason and this will in 

no way affect my continuing health care 

 

4 I have had this project explained to me by the principal investigator Mr Phil Bird. 

 

5 I understand that my participation in this study is confidential and that no material 

which could identify me will be used in any reports in this study. 

 

6 I understand that the investigation will be stopped if it should appear harmful to me. 

 

7 I have had time to consider whether to take part   yes/no 

 

8 I know who to contact if I have any side effects to the study  yes/no 

 

9 I know who to contact if I have any questions about the medication or the study. 
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10 I wish to receive a copy of the results     yes/no 

 

11 I would like the researcher to discuss the outcomes of the study with me  

         yes/no 

 

12 I agree to my GP or other current provider being informed of my participation in this 

study        yes/no 

 

 

 

 

 

 

 

 

I ……………………………………(full name) hereby consent to take part in this study 

 

to investigate patterns of hearing loss during and following the removal of an acoustic 

neuroma 

 

Signature ……………………………..Date ………………….Time ……………… 

                                                                                                                                                                          

         

 

 

 

 

 

 

Study explained and consent witnessed by ……………………………………..(full name) 

 

 

Signature ……………………………..Date ………………….Time ……………… 
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APPENDIX B 

 

Pre- and postoperative behavioural and electrophysiological results for: 

Case 1 

Case 2 

Case 3 

Case 4 

Case 5 

Case 6 

Case 7 

Case 9 

Case 12 

Case 14 

Case 15 

Case 18 

Case 19 

Intraoperative ABR for Case 19 

 

Data is presented in chronological order; Case 1-19, irresepective of hearing outcome. 
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Ipsilateral (right) peak latencies (ms)   

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop No identifiable peaks  - - 4.62 - - 

Postop  0 Could not test  No identifiable peaks 

Contralateral (left) peak latencies (ms) 

Day I II III IV V 

Preop 1.77 2.75 3.90 - 5.95 

Postop 0 1.75 2.73 3.92 - 5.98 

Ipsilateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + - - - 

Postop 0 - - - - - 
Postop 3 - - - - - 

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + - - 

Postop 0 + + + - - 
Postop 3 + + + - - 
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Postoperative

Day 0

I

Left (NT) Right (T)

80dB nHL 90dB nHL80dB nHL

Preoperative III

V

III

0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8

II

COULD NOT TEST

A. 
B. 

C. 

D. 

Case 1: Pre- and postoperative audiological test results. Part A shows ABR results and Part B shows the latencies of waves present in the ABR 

traces. Serial pure-tone and speech discrimination results are shown in Part C and  Part D shows contralateral and ipsilateral DPOAES.  

A. 

C. 

0.2µv 
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Contralateral (left) peak latencies (ms) 

Day I II III IV V 

Preop 1.65 - 4.05 - 5.35 

Postop 0 1.71 

- 

- 4.08 - 5.50 
Postop 1 1.68 - 3.95 - 

 

5.45 

Postop 2 1.70 - 3.98 - 5.40 

Postop 3 1.72 - 3.89 - 5.38 

Postop 5 1.65 - 3.93 - 5.45 

Postop 7 1.66 - 3.90 - 5.34 

Ipsilateral (right) peak latencies (ms)   

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop 1.75 - 4.28 - 5.63  Did not test 

Postop  No identifiable peaks  No identifiable peaks 

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 0 + + + - + 
Postop 1 + + + - + 

Postop 2 + + + - + 

Postop 3 + + + - + 

Postop 5 + + + - + 

Postop 7 + + + - + 

Ipsilateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 0 - - - - - 
Postop 1 - - - - - 

Postop 2 - - - - - 

Postop 3 - - - - - 

Postop 5 - - - - - 

Postop 7 - - - - - 

Postoperative

Left (NT) Right (T)

Day 0

Day 1

Day 5

Day 3

80dB nHL 90dB nHL80dB nHL

Preoperative

Day 7

Day 2

III 
III 

V V 

I I

0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8

DID NOT TEST

COULD NOT TEST

COULD NOT TEST

VS

2 

VS2 

B. 

A. 

C. 

A. 

Case 2: Pre- and postoperative electrophysiological audiology test results. Part A shows ABR results and Part B shows the latencies of waves 

present in the ABR traces. Part C shows contralateral and ipsilateral DPOAES.  

B. A. 

0.2µv 



 

 163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (NT) 15 60 

Right (T)      15 60 

Case 2: Pre- and postoperative behavioural audiology test results. Part A shows pure-tone 

and speech discrimination test results and Part B shows tone decay test results. 
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 C O U L D  N O T  T E S T  
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Ipsilateral (left) peak latencies (ms)   

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop - - 3.80 - 6.35  Could not test 

Postop  No identifiable peaks  No identifiable peaks 

Contralateral (right) peak latencies (ms) 

Day I II III IV V 

Preop 1.55 - 3.70 - 5.38 

Postop  Could not test 

Ipsilateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - - - - + 

Postop 0 - - - - + 
Postop 1 - - - - + 

Postop 3 - - - - - 

Postop 4 - - - - - 

Postop 5 - - - - - 

Postop 6 - - - - - 

Contralateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + - + 

Postop 0 Could not test 
Postop 1 Could not test 

Postop 3 + + - - + 

Postop 4 + + + - + 

Postop 5 + + + - + 

Postop 6 + + + - + 

Left (T) Right (NT)

Postoperative

Day 0

80dB 80dB90dB

Preoperative

0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8

I III
VV

COULD NOT TEST

COULD NOT TEST

III

A. 

B. 

C. 

Case 3: Pre- and postoperative electrophysiological audiology test results. Part A shows ABR results and Part B shows the latencies of waves 

present in the ABR traces. Part C shows contralateral and ipsilateral DPOAES.  

B. 

0.5µv 

0.1µv 
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Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (T) 65 0 
 70 22 

 75 60 

Right (NT)      30 0 
 35 18 

 40 60 
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Case 3: Pre- and postoperative behavioural audiology test results. Part A shows pure-tone 

and speech discrimination test results and Part B shows tone decay test results. 

A. 

B. 
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Ipsilateral (left) peak latencies (ms) 

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop Could not test  Could not test 

Postop  No identifiable peaks  No identifiable peaks 

Contralateral (right) peak latencies (ms) 

Day I II III IV V 

Preop Could not test 

Postop 0 1.85 2.92 3.95 5.25 5.80 
Postop 1 1.82 2.83 3.92 5.22 - 

Postop 4 1.85 2.83 3.95 5.13 5.87 

Postop 8 1.83 2.88 4.00 5.17 5.87 

Contralateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop No data available 

Postop 0 + + + + + 
Postop 1 + + + + + 

Postop 4 + + + + + 

Postop 8 + + + + + 

Ipsilateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop No data available 

Postop 0 + - - - - 
Postop 1 + - - - - 

Postop 4 - - - - - 

Postop 8 - - - - - 

Left (T) Right (NT)

Postoperative

Day 0

Day 1

Day 8

80dB nHL 80dB nHL90dB nHL

Day 4

Preoperative
COULD NOT TEST COULD NOT TEST

I
II

III

IV
V

0 2 6 10 12

Time (ms)

4 8 0 2 6 10 12

Time (ms)

4 8 0 2 6 10 12

Time (ms)

4 8

B. 

C. 

A. 

Case 4: Pre- and postoperative electrophysiological audiology test results. Part A shows ABR results and Part B shows the latencies of waves 

present in the ABR traces. Part C shows contralateral and ipsilateral DPOAES.  

B. A. 

0.3µv 

0.7µv 

0.2µv 
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Case 4: Pre- and postoperative pure-tone and speech discrimination test results. 
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Contralateral (left) peak latencies (ms) 

Day I II III IV V 

Preop - - 4.10 - 5.70 

Postop 0 - 

- 

- 3.98 - 5.75 
Postop 1 - - 4.00 - 

 
5.72 

Postop 3 - - 3.90 - 5.85 

Postop 4 - - 4.05 - 5.80 

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + - + 

Postop 0* + + - - - 
Postop 1 + + + - + 

Postop 3 + + + - + 

Postop 6 + + + - + 

Postop 7 + + + - + 

*High noise floor during testing 

Ipsilateral (right) peak latencies (ms) 

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop No identifiable peaks  No identifiable peaks 

Postop  No identifiable peaks  No identifiable peaks 

Ipsilateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - - - - - 

Postop 0* - - - - - 
Postop 1 - - - - - 

Postop 3 - - - - - 

Postop 6 - - - - - 

Postop 7 - - - - - 

Left (NT) Right (T)

Postoperative

Day 0

Day 1

Day 4

Day 3

80dB nHL 90dB nHL80dB nHL

Preoperative

V 

III 

0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8

Case 5: Pre- and postoperative electrophysiological audiology test results. Part A shows ABR results and Part B shows the latencies of waves 

present in the ABR traces. Part C shows contralateral and ipsilateral DPOAES.  

A. B. 

C. 
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A. 
Case 5: Pre- and postoperative pure-tone and speech discrimination test results. 
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Case 5: Pre- and postoperative tone decay test results. 
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Contralateral (left) peak latencies (ms) 

Day I II III IV V 

Preop 1.70 - 3.98 5.08 5.95 

Postop 6 1.70 - 3.95 4.91 5.97 

Ipsilateral (right) peak latencies (ms) 
 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop No identifiable peaks  No identifiable peaks 

Postop 6 No identifiable peaks  No identifiable peaks 

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + - 

Postop 0 Could not test 
Postop 1 + + + + - 

Ipsilateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + - - 

Postop 0 - - - - - 
Postop 1 - - - - - 

Left (NT) Right (T)

Postoperative

Day 6

80dB nHL 90dB nHL80dB nHL

Preoperative
III

I

IV V

0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8

COULD NOT TEST

A. 
B. 

C. 

Case 6: Pre- and postoperative electrophysiological audiology test results. Part A shows ABR results and Part B shows the latencies of waves 

present in the ABR traces. Part C shows contralateral and ipsilateral DPOAES.  

B. 
A. 

0.2µv 
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Case 6: Pre- and postoperative behavioural audiology test results. Part A shows pure-tone and speech 

discrimination test results and Part B shows tone decay test results. 

A. 

B. 
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Contralateral (left) peak latencies (ms) 

Day I II III IV V 

Preop 1.73 - - - 5.92 

Postop 0 Could not test 
Postop 1 Could not test 

Postop 3 1.71 - - - 6.00 

Postop 5 1.77 - 4.45 - 6.03 

Ipsilateral (right) peak latencies (ms) 

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop 1.63 - 3.85 - 6.10  1.60 2.52 3.98 - 5.92 

Postop  No identifiable peaks  No identifiable peaks 

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + - - - 

Postop 0 Could not test 
Postop 5 + + - - - 

Ipsilateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - - - - - 

Postop 0 - - - - - 
Postop 5 - - - - - 

Left (NT) Right (T)

Postoperative

Day 0

Day 1

Day 5

80dB nHL 90dB nHL80dB nHL

Preoperative

Day 3

I I
I

II

III

III

V VV

0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8

III

COULD NOT TEST

COULD NOT TEST

COULD NOT TEST

A. 
B. 

C. 

Case 7: Pre- and postoperative electrophysiological audiology test results. Part A shows ABR results and Part B shows the latencies of waves 

present in the ABR traces. Part C shows contralateral and ipsilateral DPOAES.  B. 

A. 

0.2µv 
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 Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (T) 20 60 

Right (NT)      40 20 
 45 60 

Case 7: Pre- and postoperative behavioural audiology test results. Part A shows pure-tone and speech 

discrimination test results and Part B shows tone decay test results. 

A. 

B. 

B. 
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Ipsilateral (left) peak latencies (ms)   

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop 2.20 - - - -  2.13 - - - - 

Postop  No identifiable peaks  No identifiable peaks 

Contralateral (right) peak latencies (ms) 

Day I II III IV V 

Preop 1.67 - - - 5.80 

Postop 1 1.83 - 4.10 - 5.79 
Postop 2 1.75 - 3.98 - 5.92 

Postop 3 1.85 - 4.08 - 5.97 

Postop 5 - - 3.95 - 5.79 

Ipsilateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - - - - + 

Postop 1 - - - - - 
Postop 2 - - - - - 

Postop 5 - - - - - 

Contralateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 1 Could not test 
Postop 2 + + + + + 

Postop 5 + + + + + 

Left (T) Right (NT)

Postoperative

Day 1

Day 2

Day 5

80dB nHL 80dB nHL90dB nHL

Preoperative

Day 3

I I

I

III

V

0 2 6 10 12

Time (ms)
4 80 2 6 10 12

Time (ms)
4 80 2 6 10 12

Time (ms)
4 8

A. B. 

C. 

Case 9: Pre- and postoperative electrophysiological audiology test results. Part A shows ABR results and Part B shows the latencies of waves 

present in the ABR traces. Part C shows contralateral and ipsilateral DPOAES.  

0.2µv 
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Case 9: Pre- and postoperative behavioural audiology test results. Part A shows pure-tone 

and speech discrimination test results and Part B shows tone decay test results. 

A. 

B. 
Preoperative 
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Ipsilateral (right) peak latencies (ms)   

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop 1.70 - - - -  1.63 - 3.90 - - 

Postop 0 Could not test  No identifiable peaks 

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 0 + + + + + 
Postop 1 + + + + + 

Ipsilateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop Could not test 

Postop 0 - - - - - 
Postop 1 - - - - - 

Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (NT) 20 60 

Right (T)      30 60 

Case 12: Pre- and postoperative audiological test results. Part A shows ABR results and Part B shows the latencies of waves present in the 

ABR traces.  DPOAE presence or absence is indicated in Part C. Preoperative pure-tone and speech discrimination results are shown in Part D 

and tone decay test results are presented in Part E.  
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Postoperative

Day 0

80dB nHL 90dB nHL80dB nHL

Preoperative
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Time (ms)
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Contralateral (left) peak latencies (ms) 

Day I II III IV V 

Preop 1.99 3.00 4.10 - 5.38 

Postop 1 Could not test 
Postop 2 1.93 3.00 4.03 - 5.42 

Postop 3 1.93 3.02 4.00 - 5.53 

Postop 5 1.98 3.00 4.03 - 5.42 

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 1 + + + + + 
Postop 2 + + + + + 

Postop 3 + + + + + 

Ipsilateral (right) peak latencies (ms) 
 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop No identifiable peaks  2.55 - 5.30 - - 

Postop  No identifiable peaks  No identifiable peaks 

Ipsilateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 1 - - - - - 
Postop 2 - - - - - 

Postop 3 - - - - - 

Left (NT) Right (T)

Postoperative

Day 1

Day 5

Day 3

80dB nHL 90dB nHL80dB nHL

Preoperative

Day 2

I
III

III

V

III

0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 80 2 6 10 12

Time (ms)
4 8

COULD NOT TEST

A. B. 

C. 

Case 14: Pre- and postoperative electrophysiological audiology test results. Part A shows ABR results and Part B shows the latencies of waves 

present in the ABR traces. Part C shows contralateral and ipsilateral DPOAES.  

B. A. 
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 C O U L D  N O T  T E S T  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (NT) 25 60 

Right (T)      35 0 

 40 48 

 45 60 

Case 14: Pre- and postoperative behavioural audiology test results. Part A shows pure-tone 

and speech discrimination test results and Part B shows tone decay test results. 

A. 

B. 
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Contralateral (left) peak latencies (ms) 

Day I II III IV V 

Preop 1.77 - - - 5.63 

Postop 1 1.70 - - - 5.78 

Ipsilateral (right) peak latencies (ms) 

 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop No identifiable peaks  No identifiable peaks 

Postop  1 No identifiable peaks  No identifiable peaks 

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - - - - - 

Postop 1 - - - - - 

Ipsilateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - - - - - 

Postop 1 - - - - - 

Left (NT) Right (T)

Postoperative

Day 0

80dB nHL 90dB nHL80dB nHL

Preoperative

I

0 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 80 2 6 10 12

Time (ms)
4 8

III

A. B. 

C. 

Case 15: Pre- and postoperative electrophysiological audiology test results. Part A shows ABR results and Part B shows the latencies of waves 

present in the ABR traces. Part C shows contralateral and ipsilateral DPOAES.  

B. A. 
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 C O U L D  N O T  T E S T  

Case 15: Pre- and postoperative behavioural audiology test results. Part A shows pure-tone 

and speech discrimination test results. 

A. 
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Contralateral (left) peak latencies (ms) 

Day I II III IV V 

Preop 1.95 - 4.12 - 5.70 

Postop 1 Could not test 
Postop 2 2.02 - 4.27 - - 

Postop 3 - - 4.08 - - 

Ipsilateral (right) peak latencies (ms) 
 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop 2.13 - 4.80 - 6.70  1.98 - 4.70 - 6.55 

Postop  No identifiable peaks  No identifiable peaks 

Contralateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - + + - - 

Postop 1 Could not test 
Postop 2 - + + - - 

Postop 3 - + + - - 

Ipsilateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - - + - - 

Postop 1 - - - - - 
Postop 2 - - - - - 

Postop 3 - - - - - 

Left (NT) Right (T)

Postoperative

Day 1

Day 3

80dB nHL 90dB nHL80dB nHL

Preoperative

Day 2

0 2 6 10 12

Time (ms)
4 80 2 6 10 12

Time (ms)
4 8 0 2 6 10 12

Time (ms)
4 8

I

I

I
III

III
V

V
VIII

COULD NOT TEST

COULD NOT TEST

A. 

B. 

C. 

Case 18: Pre- and postoperative electrophysiological audiology test results. Part A shows ABR results and Part B shows the latencies of waves 

present in the ABR traces. Part C shows contralateral and ipsilateral DPOAES.  

A. 

0.4µv 
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 C O U L D  N O T  T E S T  
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Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (NT) 15 60 

Right (T)      25 60 

Case 18: Pre- and postoperative behavioural audiology test results. Part A shows pure-tone 

and speech discrimination test results and Part B shows tone decay test results. 

A. 

B. 
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Ipsilateral (left) peak latencies (ms) 
 80 dB nHL  90 dB nHL 

Day I II III IV V  I II III IV V 

Preop No identifiable peaks  No identifiable peaks 

Postop  No identifiable peaks  No identifiable peaks 

Contralateral (right) peak latencies (ms) 

Day I II III IV V 

Preop 1.60 2.73 3.60 5.05 5.70 

Postop 0 Could not test 
Postop 1 Could not test 

Postop 2 1.63 2.70 3.67 - 5.80 

Postop 4 1.65 2.69 3.63 5.13 5.85 

Postop 6 1.65 2.67 3.63 5.03 5.78 

Ipsilateral (left) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop - - + + + 

Postop 0 - - - - - 
Postop 1 - - - - - 

Postop 2 - - - - - 

Postop 3 - - - - - 

Postop 4 - - - - - 

Postop 6 - - - - - 

Contralateral (right) DPOAEs 

 f2 frequency (Hz) 

Day 2000 3000 4000 6000 8000 

Preop + + + + + 

Postop 0 Could not test 
Postop 1 Could not test 

Postop 2 + + + + + 

Postop 3 + + + + + 

Postop 4 + + + + + 

Postop 6 + + + + + 

Left (T) Right (NT)

Postoperative

Day 0

Day 1

Day 4

80dB nHL 80dB nHL90dB nHL

Preoperative

Day 6

Day 2

0 2 6 10 12

Time (ms)

4 8

I  

I

I

III

V 
V

V

II

IVIII 

0 2 6 10 12

Time (ms)

4 80 2 6 10 12

Time (ms)

4 8

COULD NOT TEST

COULD NOT TEST

A. B. 

C. 

Case 19: Pre- and postoperative electrophysiological audiology test results. Part A shows ABR results and Part B shows the latencies of waves 

present in the ABR traces. Part C shows contralateral and ipsilateral DPOAES.  

B. A. 
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Preoperative tone decay 

Ear tested Tone intensity (dB HL) Tone duration (s) 

Left (T) 45 60 

Right (NT) 15 60 
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Case 19: Pre- and postoperative behavioural audiology test results. Part A shows pure-tone 

and speech discrimination test results and Part B shows tone decay test results. 

A. 

B. 
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Dura open

Cerebellum
retracted

CPA portion 
removed

Pre-incision

Debulking
of CPA 
portion

0 2 6 10 12

Time (ms)

4 80 2 6 10 12

Time (ms)

4 8

IAC 
portion 
removed

Dura 
closed

Excision 
of IAC 
portion

Excision 
of IAC 
portion

Drilling of 
IAC

Case 19: ABR recorded from the ipsilateral ear at important points during vestibular 

schwannoma surgery. The dark traces show the waveforms following smoothing using a 

21-point running average, and light traces show the raw data 


