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Abstract

Multiple input multiple output (MIMO) systems are now a proven area in

current and future telecommunications research. MIMO wireless channels, in

which both the transmitter and receiver have multiple antennas, have been

shown to provide high bandwidth efficiency. In this thesis, we cover MIMO

communications technology with a focus on cellular systems and the MIMO

broadcast channel (MIMO-BC).

Our development of techniques and analysis for the MIMO-BC starts with

a study of single user MIMO systems. One such single user technique is that of

antenna selection. In this thesis, we discuss various flavours of antenna selec-

tion, with the focus on powerful, yet straightforward, norm-based algorithms.

These algorithms are analyzed and the results of this analysis produce a pow-

erful and flexible power scaling factor. This power scaling factor can be used

to model the gains of norm-based antenna selection via a single signal-to-noise

ratio (SNR)-based parameter. This provides a powerful tool for engineers in-

terested in quickly seeing the effects of antenna selection on their systems. A

novel low complexity power allocation scheme follows on from the selection

algorithms. Named “Poor Man’s Waterfilling” (PMWF), this scheme can pro-

vide significant gains in low SNR systems with very little extra complexity

compared to selection alone.

We then compare a variety of algorithms for the MIMO-BC, ranging from

selection to beamforming, to the optimal, yet complex, iterative waterfilling

(ITWF) solution. In this thesis we show that certain algorithms perform better
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in different scenarios, based on whether there is shadow fading or not. A power

scaling factor analysis is also performed on these systems. In the cases where

the user’s link gains are widely varying, such as when shadowing and distance

effects are present, user fairness is impaired when optimal and near optimal

throughput occurs.

This leads to a key problem in the MIMO-BC, the balance between user

fairness and throughput performance. In an attempt to find a suitable balance

between these two factors, we modify the ITWF algorithm by both introduc-

ing extra constraints and also by using a novel utility function approach. Both

these methods prove to increase user fairness with only minor loss in through-

put over the optimal systems.

The introduction of MIMO systems to the cellular domain has been ham-

pered by the effects of interference between the cells. In this thesis we move

MIMO to the cellular domain, addressing the interference using two different

methods. We first use power control, where the transmit power of the base

station is controlled to optimize the overall system throughput. This leads

to promising results using low complexity methods. Our second method is a

novel method of collaboration between base stations. This collaboration trans-

forms neighbouring cell sectors into macro-cells and this results in substantial

increases in performance.
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Chapter 1

Introduction

The radio and wireless systems have revolutionized the modern era ever since

the invention of the radio telegraph by Guglielmo Marconi in 1895 [1]. Over

110 years later, wireless technology is still a broad area of ongoing research. In

this modern era researchers are trying to improve on the current systems due

to high consumer demand, both military and civilian, for faster transmission

speeds and higher throughput. One area of current research that promises vast

improvements over legacy systems is the use of multiple antennas. A particu-

larly effective form of multiple antenna system is when multiple antennas are

employed at both the transmitter and receiver. Such a system is referred to

as a multiple-input multiple-output (MIMO) system and is the focus of this

thesis.

1.1 Overview of MIMO systems

Wireless services have found their niche in mobile devices due to the inher-

ent lack of availability of traditional wireline services in these devices. Mobile

devices can range from vehicular radio to smaller handheld devices, such as

cellphones and PDAs. In the past the computing power required for technolo-

gies such as MIMO was not available in these small devices. However, in the

last decade, there have been advances in two key areas: VLSI electronics and

nanotechnology, and computing and digital signal processing. These advances

1
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now allow complex algorithms and coding schemes, vital for modern mobile

communication, to be viable in small devices. This technological growth has

led to rapid market growth of wireless systems and equipment on a global scale.

Today there are increasing demands for faster wireless speed and greater band-

width as companies, such as cellular network providers, try to get an edge on

their competitors. Now and in the near future the drivers behind increased

performance requirements are multimedia applications such as streamed audio

and high-quality video. To achieve the network capacity needed for the future,

higher spectral efficiency is required. Not surprisingly, this field of wireless

research is a very hot topic in the field of communications engineering and

is now part of a wide range of present and future standards [2]. However,

researchers must overcome the many challenges of the wireless environment,

including limited bandwidth, multi-path propagation, interference and signal

fading.

Claude E. Shannon first postulated the term channel capacity as the high-

est rate possible for error-free communication [3]. In [3], Shannon derived the

classic formula, based on information theory ideals such as mutual informa-

tion, which gave capacity as a function of both signal-to-noise-ratio (SNR)

and bandwidth. This naturally leads to increasing either or both of these two

factors as a direct means of improving capacity. However, in today’s mar-

ket, increasing these factors is impractical. Firstly, modern mobile devices are

power-limited due to battery size and lifetime. Also, regulations can place a

limit on transmit power in many circumstances. Secondly, similar regulatory

restrictions on spectrum usage prevent the modern engineer from increasing

system bandwidth to gain increases in capacity. Due to these factors, designers

must now increase spectral efficiency, defined as the bit rate per unit of band-

width, through techniques such as advanced modulation and coding. Another,

now tremendously popular technique, is utilizing the spatial degrees of freedom

of multi-antenna systems. This is now regarded as one of the most promis-

ing techniques for next generation wireless communications [4]. In particular,
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MIMO systems, where multiple antennas occur at both the transmitter and

receiver, have been shown to increase coverage and reliability without the use

of extra power or bandwidth [5], [6].

In general, multiple antenna systems can be split into two types1. The

first is a diversity system, where multiple copies of the same signal are sent

out from the transmitter and then combined at the receiver [8]. The purpose

of diversity is to reduce the error rate in the system and thus the system

reliability. Signal combination at the receiver can be done by simply taking

the signal with the highest SNR or by using maximal ratio combining, where

the signals are weighted by their SNRs and then summed together. Certain

coding techniques also use the spatial degrees of freedom of multiple antenna

systems to increase diversity. These include space-time trellis codes [9] and

space-time block codes [10].

The second type of multiple antenna system is one which employs spatial

multiplexing. The aim of spatial multiplexing is to send different signals from

each transmitter in order to increase system throughput. An example of a spa-

tial multiplexing system is BLAST2 coding [11]. Spatial multiplexing systems

are the focus of this thesis.

Modern MIMO systems fall into four distinct categories: Single-User Single-

Cell, Multiple-User Single-Cell, Single-User (per Cell) Multiple-Cell andMultiple-

User (per Cell) Multiple-Cell. These categories are discussed as follows:

• Single-User Single-Cell: This is the generic point-to-point MIMO link.

A single transmitter (TX) communicates with a single receiver (RX)

using multiple antennas. Work in this category is covered in Chapter 3

of this thesis, which covers antenna selection. Benchmark work on the

single-user (SU) MIMO link can be found in Winters [12], Foschini and

Gans [13] and Teletar [14]. A good tutorial paper on MIMO in general

1However, there are some systems which exploit both diversity and multiplexing gains.
An example of such a system is given in [7].

2Bell Laboratories Layered Space-Time.
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is given by Gesbert et al. [15].

• Multiple-User Single-Cell: This is a point-to-multipoint MIMO link. In

this case a single transmitter, usually called a base station (BS), trans-

mits over multiple antennas to a number of receivers, called mobile sta-

tions3 (MS), each equipped with multiple receive antennas. There are

two major systems for this case: the Broadcast Channel (BC), which

is a model for the TX-RX downlink, and the Multiple-Access Channel

(MAC), which models the uplink from the RXs to the single TX. This

category is covered in depth in Chapters 4 and 5. In Chapter 4 we study

the MIMO-BC and provide a detailed set of results on performance and

fairness in a shadowing environment. In Chapter 5 we derive modifica-

tions to the benchmark Iterative Waterfilling (ITWF) algorithm [16,17].

Another benchmark paper for this category is by Goldsmith et al. on

the duality between the BC and MAC channels [18]. Other work in this

category includes [19–22].

• Single-User (per Cell) Multiple-Cell: This is a collection of single-user

MIMO links which are in close proximity to one another. This causes

interference between cells which is detrimental to communication. In

certain cases, collaboration between transmitters can be achieved and

this case can be modeled as a Multiple-User (MU) Single-Cell system.

This category and the next category are the heart of modern cellular

communications. In Chapter 6 we discuss BS power control in an attempt

to mitigate this interference. A good summary of methods to combat

the effects of other cell interference is given in [23]. Other work in the

literature on this category includes [24–27].

• Multiple-User (per Cell) Multiple-Cell: This is a collection of multiple-

user MIMO links which are in close proximity to one another. Although

3Also referred to as mobile terminals.
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not explicitly discussed within this thesis, certain cases can be modeled

as Multiple-User Single-Cell by accounting for cell positions and base

station collaboration in the modeling. Although not directly addressed

in this thesis, this category relates closely to the others and work from

any of the chapters can be relevant here. Examples of work in this

category include [23, 28–31].

1.2 Research Framework

In this section we describe the main objectives and motivations of this thesis.

Also presented is a summary of the contributions.

1.2.1 Motivations and Contributions

Since the advent of MIMO systems, antenna selection for these systems has

become a hot topic [32–38]. One of the more notable antenna selection methods

is based on the column or row norms of the channel matrix. However, this

algorithm has yet to be analyzed in depth. In this thesis we carry out an

in depth analysis of this algorithm and other simple algorithms and provides

a powerful equivalent SNR model for the gains of these algorithms. Also,

we extend the norm-based approach to a proportional power approach, which

shows considerable promise in low-SNR regions.

Recent work on the MIMO broadcast channel (MIMO-BC) has mainly

focussed on achieving maximum throughput [18,39] and algorithms to achieve

this [17], [16]. Other work has been focussed on achieving user fairness, as in

the work by Jindal et al. [40]. Only a small amount of work has looked into

the balance between these two important yet competing factors. In this thesis

we add to the work in this area by looking at the MIMO-BC and its dual,

the MIMO multiple access channel (MIMO-MAC) [19], and considering the

balance between fairness and throughput over a variety of algorithms.
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A large amount of work on the MIMO-BC has focussed on achieving opti-

mality without any restrictions on the complexity of the algorithms required.

However, in real-world systems, processing power may be limited and other

less complex methods may need to be used. In this thesis, we cover a number

of less complex methods which are shown to approach the optimal throughput

in certain cases and at certain SNRs.

Recent work on the MIMO-BC has generally assumed a Rayleigh flat-fading

channel [16–22]. However, in practical systems, the effects of shadowing and

the mobile user’s position are extremely important. Some research has con-

sidered the impact of shadowing [41, 42]. However, the joint effects of both

shadowing and path loss do not appear to have been evaluated before in the

context of the MIMO-BC. Hence, we develop a model for user position within

a cell and takes into account both distance attenuation and shadowing effects.

The effects of these phenomena on factors such as throughput and fairness are

covered in detail within the thesis.

In an attempt to provide user fairness, researchers have proposed subopti-

mal algorithms which provide fairness at the expense of throughput [40]. The

effect of such techniques on capacity can appear to be slight in the Rayleigh

fading case. When shadow fading and distance effects are included, it is shown

in this thesis that to achieve the desired fairness levels, the drop in throughput

in these systems will be quite significant. In an attempt to balance fairness

with throughput, we develop algorithms based on modifying the optimization

problem from which the common waterfilling algorithm is derived [14]. Some

similar modifications have been investigated in the literature. For example,

waterfilling with a minimum rate constraint appears in [16, 17], however not

in the MIMO multiuser (MIMO-MU) domain. In this thesis we provide min-

imum power and novel maximum power constraint modifications which have

a variety of applications from MIMO-MU to orthogonal division frequency

multiplexing (OFDM) systems. We also include an analysis of these methods
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which indicates that the loss in throughput over the optimal waterfilling sys-

tems is based on two factors. The first is the amount of gain in fairness levels

and the second is the (un)fairness of the original system. As a result, these

methods have shortcomings in shadowing environments where the variation

between link gains is severe. In an attempt to address this problem we develop

a novel utility function approach which provides a different balance between

fairness and throughput.

One of the main target uses for MIMO technology is in cellular environ-

ments [2, 23]. However, placing MIMO systems in adjacent cells without fre-

quency reuse creates a large amount of intercell interference [24,26,27]. In an

attempt to remedy this, researchers have proposed base station collaboration

to effectively turn a cellular system into a giant MIMO-BC [28–31]. The draw-

back with this approach is the large amount of feedback required to ensure

every BS has full network channel state information (CSI). Thus, in this thesis

we focus on varying the power at the BS in order to mitigate the intercell

interference which requires far less network CSI. The concept of power control

in cellular systems is well-known [43, 44], but the majority of this work has

been based on single antenna links. Here we consider power allocation in the

MIMO case and for the MIMO-BC in particular. Our approach to the power

control problem is built upon the twin single antenna link optimization in [45].

This twin single antenna link refers to two separate single-input single-output

systems that interfere with each other. Note that this optimization leads to

the simplified solution of turning base stations on or off. Also, we derive a

practical algorithm to effectively perform the optimization.

1.2.2 Specific Contributions

The main contributions of this thesis are as follows:

• An in-depth analysis of the use of norm-based algorithms for

antenna selection: We look at various antenna selection algorithms for
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single user MIMO systems. We analyze these algorithms and develop a

powerful equivalent SNR model for the gains of these algorithms.

• Analysis and results for the effects of shadowing and distance

attenuation in a multiuser MIMO environment: We examine the

effects of large variations in link gains caused by shadowing and dis-

tance attenuation effects on the MIMO-BC. We derive an equivalent

SNR model for a variety of suboptimal algorithms, including selection

and beamforming. The thesis also contains a large number of results

comparing a range of suboptimal and optimal (ITWF) algorithms. We

then discuss these results and analyze them focussing on the balance of

performance versus fairness and the use of proportional power allocation

in suboptimal algorithms.

• Modifications to the waterfilling algorithm to promote fairness:

We consider modifications to the waterfilling algorithm based on adjust-

ing the constraints of the optimization problem. We include both mini-

mum power and maximum power constraints and provides a brief analy-

sis of the effects of these constraints on system throughput. We develop

a novel utility function based approach to modifying the waterfilling al-

gorithm to promote fairness, providing a powerful and flexible method

to increase system fairness with very little reduction in throughput.

• Optimization of transmitter power control in MIMO cellular

environments: We look at the problem of transmitter power control

in MIMO cellular environments and provide a detailed development of a

near-optimal method for controlling transmitter power to mitigate inter

cell interference. We demonstrate that the resulting algorithm provides

gains over interference limited systems with very little overhead.

• Three cell collaboration in MIMO cellular environments: We

develop a model of three collaborating sectorized cells. In this model,
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neighbouring sectors are transformed into a macro-cell structure and the

resulting system mitigates interference and increases throughput.

1.3 Thesis Outline

The rest of this thesis is organized as follows:

We begin Chapter 2 with a discussion of the single-user MIMO link. We

define the MIMO capacity and give a brief overview of mobile propagation

and fading and statistical channel models. We then discuss the effects of im-

perfect channel state information and the singular value decomposition. Next,

we cover Multiple-user MIMO systems, considering both the multiple-access

and broadcast channels. We then discuss the duality between these channels

as well as the use of beamforming in both domains. We also cover the topic

of fairness amongst users. Next, we discuss the different types of selection,

along with some straightforward results on order statistics. We also highlight

a formula for the mean capacity of a multiuser system. Next, we cover opti-

mization, especially the waterfilling algorithm and its multiuser form, iterative

waterfilling. We conclude the chapter with a brief discussion on the models

used in describing the cellular environment.

We start Chapter 3 with a discussion of various antenna selection algo-

rithms for the single-user MIMO link. Next, we analyze these algorithms and

express them in terms of a single power-scaling factor. We cover the effects of

imperfect channel state information on selection and also discuss of the com-

plexity of the algorithms. We conclude the chapter with a discussion of the

effects of small system dimension on the algorithms.

We begin Chapter 4 by introducing various performance metrics relevant

to the broadcast channel. Next, we cover a variety of algorithms and then

create single user equivalent systems for these algorithms. Then, we analyze

these algorithms. Following this, we discuss algorithm design in the BC and

MAC domains and analyze the complexity of various algorithms. We finalize
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with results and a summary of the chapter.

We begin Chapter 5 by looking at modifications to the constraints of the

optimization problem that the waterfilling algorithm stems from. We discuss

both minimum power and maximum power constraints. Next, we cover the

use of utility functions in the same optimization problem, with examples. We

then introduce power constraints and utility functions to the multiuser domain

using iterative waterfilling techniques. We conclude the chapter with results

from the algorithms and comparisons to the optimal values.

We start Chapter 6 with a discussion of multiple cell cluster models and

then follow with the optimization of the sum capacity of those systems by using

power control. We continue by explaining a practical algorithm for implement-

ing this optimization. We give an example of full collaboration between three

adjacent cells and then conclude the chapter with results.

In Chapter 7 we provide a conclusion to the thesis and also include a

discussion of possible options for future work on topics relating to the thesis.



Chapter 2

Background and Assumptions

In this chapter we outline some required background information. Firstly,

we examine different aspects of the single-user MIMO link. Next, we discuss

the properties of the MIMO channel matrix and the SVD. Then we discuss

MIMO multiuser systems, including both broadcast and multiple-access sys-

tems. Next, we describe selection and beamforming as well as different sta-

tistical channel models and the phenomenon of fading both in the small and

large scale. We follow with some basic results on order statistics. Next, we

discuss optimization, including the powerful waterfilling algorithm. Finally,

we summarize the cellular layouts and modelling used within the thesis.

2.1 Single User MIMO Link

Consider the single-user MIMO link consisting of a transmitter with t ≥ 1

transmit antennas and a receiver with r ≥ 1 receive antennas (denoted (r× t))

spaced a distance d metres apart. In this link the transmitter sends symbols

from a complex symbol alphabet. These symbols are firstly encoded, then

modulated, up-converted and finally transmitted over the radio link. The

receiver, upon receiving these signals, firstly mixes them down to baseband,

samples them and finally passes the samples on to a decoder to extract the

original message. In this thesis, we assume that the channel response is fre-

quency independent and all received symbols are perfectly synchronized. This

11
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results in no inter-symbol interference. To model this, the channel between

the transmitter and receiver is concisely expressed by an r× t complex channel

matrix, H . Note that it is assumed, without loss of generality, that t ≥ r

unless stated. The relationship between the received signal vector, r (r × 1),

and the transmitted signal vector, s (t× 1), is given by

r =
√
ΓHs+ v, (2.1)

where Γ is the link gain and v is the t × 1 additive white Gaussian noise

(AWGN) vector. Note that the elements of v are complex Gaussian with

variance σ2, such that E{vv†} = σ2I. From (2.1), the signal-to-noise ratio for

the system is defined as SNR = E{s†s}
E{v†v}

. Without loss of generality, it will be

assumed that the noise variance σ2 = 1 unless explicitly stated otherwise.

2.1.1 Capacity for the Single User MIMO Link

For the single-user MIMO link the instantaneous capacity of the system is

given by [14]

C = log2
∣∣It + ΓH†QH

∣∣ bps/Hz, (2.2)

where Q is the Hermitian covariance matrix of the transmit vector and Γ is

the SNR of the link (also referred to as the link gain). For the most part, in

the single-user case it is assumed that the transmitter does not have access

to the CSI. Therefore, the best strategy is equal power across the transmit

antennas [1, 14]. This leads to Q = I/t. If waterfilling is used (see Sec. 2.11)

then the optimum or waterfilling capacity is obtained, where Q = QWF and

the resulting capacity is given by

CWF = log2
∣∣I t + ΓH†QWFH

∣∣ bps/Hz. (2.3)
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2.2 Singular Value Decomposition

One of the most powerful tools in the analysis of MIMO systems is the Singular

Value Decomposition (SVD) [1, p. 43]. Consider the single-user MIMO link

with m× n channel matrix H . Using the SVD, H can now be expressed as

H = UDV †, (2.4)

where U ∈ Cn×n and V ∈ Cm×m are unitary matrices and D is a diagonal

matrix whose diagonal elements (d1, d2, . . . , dℓ, 0, . . . , 0) are the singular values

ofH and ℓ = min{m,n}. Note that the non-diagonal entries ofD are 0 and its

rank is ℓ. From the SVD the eigenvalues of the instantaneous channel matrix

HH† can be found. Note that

HH† = UDD†U †, (2.5)

where DD† is a diagonal matrix containing the eigenvalues of HH†,

(d21, d
2
2, . . . , d

2
ℓ , 0, . . . , 0) and the columns of U are the eigenvectors of HH†.

We define λi = d2i . It follows that the columns of V are the eigenvectors of

H†H .

2.3 Multiuser-MIMO Systems

There are two key types of multiuser-MIMO systems. The first is the Multiple-

Access Channel (MIMO-MAC) which can model the upstream between the

mobile users and the base station [16–18]. The second is the Broadcast Channel

(MIMO-BC) which can model the downstream between the base station and

the mobile users [17, 18, 21, 22].
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Figure 2.1: MIMO multiuser channels: broadcast channel (left) and multiple-
access channel (right).

2.3.1 Multiple-Access Channel

The MIMO-MAC1 is the uplink in a wireless system, where multiple uncoor-

dinated transmitters send their information to a common receiver. It is shown

in Fig. 2.1 [19]. The MAC system equation is for a system with t base station

antennas and ri mobile antennas at user i:

yMAC =

K∑

i=1

H
†
ixi + n (2.6)

where K is the number of users, yMAC is the t × 1 received signal vector, n

is an AWGN vector with elements with zero-mean and variance σ2, xi is the

ri × 1 transmit vector from user i and H
†
i is the t× ri channel matrix for the

link between the base station and user i. It follows that the capacity of the

MAC is [16–18, 20]

CMAC = log2

∣∣∣∣∣It +

K∑

i=1

H
†
iQiH i

∣∣∣∣∣ bps/Hz, (2.7)

1Note also that MAC does not refer to the media access control layer in the network
stack but signal processing technique in the physical layer.
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where Qi is the ri × ri covariance matrix associated with user i.

2.3.2 Broadcast Channel

The MIMO-BC is the downlink in a wireless system. It is shown in Fig. 2.1 [19].

Given t base station antennas and ri mobile antennas at user i, the MIMO-BC

system equation is given by:

yi = H ix+ ni, (2.8)

where

x =

K∑

i=1

xi

is a superposition of the signals intended for the K users and yi is the ri × 1

received signal vector at user i, ni is the AWGN noise vector (at user i) with

elements with zero-mean and variance σ2, xi is the t×1 downlink transmitted

signal vector for user i and H i is the ri× t channel matrix for the link between

the base station and user i. For a system with K users the capacity is defined

as follows [17, 18, 21, 22]

CBC = log2

∣∣∣Ir +H1Σ1H
†
1

∣∣∣ + log2

∣∣∣Ir +H2 (Σ1 +Σ2)H
†
2

∣∣∣
∣∣∣Ir +H2Σ1H

†
2

∣∣∣
+ . . .

+ log2

∣∣∣Ir +HK

(∑K
i=1Σi

)
H

†
K

∣∣∣
∣∣∣Ir +HK

(∑K−1
i=1 Σi

)
H

†
K

∣∣∣
bps/Hz,

(2.9)

where Σi is the t× t transmit covariance matrix associated with user i.

2.3.3 Duality

Vishwanath et al. [19] showed that the MIMO-BC and MIMO-MAC are duals

of each other. This is a very important result and it states that if there
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exists an achievable rate RMAC for a set of H i and Qi matrices then there

exists an equivalent set of BC covariance matrices Σi such that RBC = RMAC .

This works in both directions. The key application of this result is that the

achievable rates in the MIMO-MAC domain can be computed more easily and

then converted to the MIMO-BC domain.

MAC to BC Conversion

To convert a set of MAC covariance matrices, Qi, to their BC equivalents, Σi,

the following steps are required [19]. First let

Aj ,

(
I +Hj

(
j−1∑

l=1

Σl

)
H

†
j

)
(2.10)

and

Bj ,

(
I +

∑

l=j+1

KH
†
lQlH l

)
(2.11)

where user 1 is decoded first followed by user 2 etc. Taking the SVD of

B
−1/2
j H

†
jA

−1/2
j = F jΛjG

†
j, where Λj is square and diagonal, gives:

Σj = B
−1/2
j F jG

†
jA

1/2
j QjA

1/2
j GjF

†
jB

−1/2
j . (2.12)

Note that (2.12) must be used in an iterative process with Σ1 being calculated

first, followed by Σ2, etc.

BC to MAC Conversion

To convert a set of BC covariance matrices, Σi, to their MAC equivalents,

Qi, the same procedure as above is required except that the SVD is over

A
−1/2
j HjB

−1/2
j = F jΛjG

†
j [19]. Noting that Λj is still square and diagonal,

the conversion equation is as follows:

Qj = A
−1/2
j F jG

†
jB

1/2
j ΣjB

1/2
j GjF

†
jA

−1/2
j . (2.13)
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2.3.4 Fairness

So far the achievable sum-rates in (2.7) and (2.9) have been the metrics dis-

cussed. However, in practical systems the system fairness must also be consid-

ered. A system’s fairness can be loosely defined by whether every user has a

satisfactory link or not. Fairness is a subjective issue and a variety of different

metrics are available to attempt to measure the fairness of a system. Note

here that a complete study of fairness would involve media access control layer

design [46, 47], but in this thesis we focus only on the physical layer. Some of

the metrics we use in this thesis are listed below.

1. Number of Active Users: An active user is defined as one whose rate

is above a designated lower-bound. This gives baseline results on what

percentage of users are currently active and equivalently, the percentage

of users that are inactive or in shutout.

2. Percentage of Spatial Channels Open: A multiuser system has

Kmin(m,n) spatial channels (eigenchannels) available for transmission.

The percentage of these that are used (open) is a good measure of the

spread of power throughout the system. This is also referred to in [41]

as the degrees of freedom of a system.

3. Minimum Rate: We define this as the lowest rate of an individual user.

This is a measure of the transmission quality available to the weakest

user. This can also be taken as the minimum non-zero rate, which is the

lowest rate to an active user.

4. Power Allocated to the Dominant User: This indicates whether

the allocation is one-sided or not. In some cases algorithms allocate the

majority of power to a single user, as it may have higher link-quality

than the other users.
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2.4 Selection

Selection is the process where a subset of the system or channel resources

is chosen to be utilized in an attempt to optimize the system with limited

resources. We consider two types of selection in this thesis:

1. Antenna Selection: A subset of the antennas are used. The antennas

can be either at the receive or transmit end, and a variety of methods

can be used to select them.

2. User Selection: In a multiuser system, a subset of users are chosen

to transmit to/receive from. The rates to/from the unselected users are

zero.

2.5 Beamforming

2.5.1 Broadcast Channel

In beamforming2 (BF) for the MIMO-BC, a covariance matrix, Σi, is chosen

to beamform to the ith user using H
†
iH i. Let w

(i)
k be the eigenvector corre-

sponding to the kth eigenvalue of H†
iH i (i.e. for the ith user) and si be the

t × 1 desired data vector to be sent to user i. Note that the elements of si

have unit magnitude. Thus, if we beamform across k eigenchannels, then the

signal to be sent, x (see Sec. 2.3.2), is given by

x =
K∑

i=1

xi (2.14)

2Note this is eigenbeamforming not antenna beamforming.
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where

xi =
√
β

k∑

j=1

w
(i)
j sij

=
√
β
[
w

(i)
1 w

(i)
2 . . . w

(i)
k

]




si1

si2
...

sik




(2.15)

where sib is the bth element of the vector si. Note that k ≤ n. This results in

the following covariance matrices for these signals

Σi = E
(
xix

†
i

)

= β
[
w

(i)
1 w

(i)
2 . . . w

(i)
k

]




w
(i)†
1

w
(i)†
2

...

w
(i)†
k




(2.16)

where scaling factor β is chosen to ensure
∑K

i=1Tr(Σi) ≤ P . Note that this

assumes the same power for each user and for each eigenchannel. We can easily

extend the formulation to unequal power allocations by replacing the power

scaling factor, β, with a diagonal power loading matrix, P L, i, as shown in

(2.17).

Σi =
[
w

(i)
1 w

(i)
2 . . . w

(i)
k

]
P L, i




w
(i)†
1

w
(i)†
2

...

w
(i)†
k



. (2.17)
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2.5.2 Multiple Access Channel

In beamforming for the MIMO-MAC, a covariance matrix, Qi, is chosen to

beamform H iH
†
i . Let v

(i)
k be the eigenvector corresponding to the kth eigen-

value of H iH
†
i (i.e. for the i

th user) and si be the ri×1 desired data vector to

be sent from user i. Note that the elements of si have unit magnitude. Thus,

if we beamform across k eigenchannels, then the signal to be sent from user i,

xi (see Sec. 2.3.1), is given by

xi =
√
β

k∑

j=1

v
(i)
j sij

=
√
β
[
v
(i)
1 v

(i)
2 . . . v

(i)
k

]




si1

si2
...

sik




(2.18)

where sib is the bth element of the vector si. Note that k ≤ min(ri). This

results in the following covariance matrices for these signals

Qi = E
(
xix

†
i

)

= β
[
v
(i)
1 v

(i)
2 . . . v

(i)
k

]




v
(i)†
1

v
(i)†
2

...

v
(i)†
k




(2.19)

where scaling factor β is chosen to ensure
∑K

i=1Tr(Qi) ≤ P .

Note that beamforming in either domain is not equivalent to beamforming

in the other. In the results, we perform beamforming in the MAC domain

and the resultant system is equivalent to its BC dual, which is not necessarily

the sane as beamforming in the BC domain. We do this on the grounds of

simplicity. See Sec. 4.3 for more discussion on MAC design.
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2.6 Channels

2.6.1 Rayleigh Flat-Fading Channel

The Rayleigh flat-fading channel has been studied extensively in the literature

and is considered as a baseline scenario for the majority of systems. For that

reason it is our focus in this thesis. The standard model for a Rayleigh flat-

fading channel is a channel matrix H with elements that are independent,

identically distributed (i.i.d.) circularly symmetric complex Gaussian random

variables. In this thesis, we assume that the elements of H have mean zero

and variance one.

For this model to be an accurate representation of a channel, the following

conditions need to be met. Firstly, the received signal should be a combination

of many multipath components, usually due to large numbers of scatterers in

the environments around both the receiver and transmitter. Secondly, the

antenna arrays need to be well spaced at each end to ensure no correlation

between the channel responses. Finally, we assume that no line-of-sight (LOS)

component is present. Extensions to the model, including correlated Rayleigh

fading and Ricean fading, are described below.

2.6.2 Ricean Channel

When a LOS component exists in a Rayleigh flat-fading channel it can be

modeled by the Ricean channel model [48]. This can be expressed as:

Hrice = aHLOS + bH (2.20)

where a2 + b2 = 1, the entries of HLOS are constants with unit magnitude and

H is a Rayleigh matrix. Assuming the common model of a unit rank HLOS

matrix, then we can assume without loss of generality that all the elements of

HLOS are unity. The parameters a and b can also be expressed in terms of the
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Ricean K factor [1, p. 41], where

a =

√
K

1 +K
,

and

b =

√
1

1 +K
.

2.6.3 Partial Spatial Correlation

If spatial correlation exists either at the transmitter between the transmit-

ting antennas or at the receiver between the receiver antennas, the channel is

now correlated. If we assume that the channel is Rayleigh to begin with (see

Sec. 2.6.1), the new channel matrix, HSC can be defined as follows:

Hsc = R1/2HT 1/2. (2.21)

In (2.21), H is an i.i.d. Rayleigh channel matrix and R and T are matrices

representing spatial correlation at the receiver and transmitter respectively.

Note that this Kronecher model [1, p. 40], [49] is only one of many possibilities

for spatially correlated channels.

2.7 Channel State Information

In a real world system, knowledge of the channel matrix H at the receiver

or transmitter is never perfect. This may be due to many factors including

incorrect equalization, delays in transmitting the receiver channel information

from the receiver to the transmitter and feedback channel limitations. To

model the estimated channel, Ĥ , when imperfect CSI is assumed, we use the

well-known model [50]

H = ρ Ĥ +
√

1− ρ2 E, (2.22)
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Figure 2.2: An illustration of the multipath phenomenon.

where the correlation, ρ, is given by ρ = corr(hij, ĥij), 0 ≤ ρ ≤ 1 and E is an

error matrix which is statistically identical to H . Note that in some systems

the CSI is completely unknown to the transmitter.

2.8 Fading

In this thesis, we consider both small scale fading (i.e. multipath effects) and

large scale fading (i.e. shadowing). In the mobile environment, small scale

fading causes multiple copies of the signal to arrive at the receiver with differ-

ent delays and phases. Although the motion of the mobile unit causes Doppler

shifts on the multipath components, leading to temporally correlated fading,

for simplicity these effects are not considered in this thesis. Nonetheless, the

received signal fluctuates severely, as multipath components can combine de-

structively and constructively due to their different phases. Multipath propa-

gation is illustrated in Fig. 2.2.
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2.8.1 Shadow Fading

Also referred to in the literature as macroscopic fading or just shadowing,

shadow fading is due to the shadowing effects of large objects such as buildings

or large natural features. Shadow fading is generally slowly changing and is

the local mean of a fast fading signal. The distribution of signal power in

shadow fading was observed [1, 51] to be well modeled by a log-normal. The

corresponding normal probability distribution function (PDF) is given as,

f(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
, (2.23)

where µ and σ are the mean and standard deviation of x. Note that x, µ and σ

are all in dBm units. The mean µ is equal to the distance dependent path loss

as studied in Sec. 2.8.2. The standard deviation σ can be variable due to the

nature of the shadowers, and we use the typical value of 8 dB throughout the

thesis. Other values of σ were studied and we concluded that minor variations

of σ did not have a significant impact on the results.

2.8.2 Path Loss

In free-space, the power loss is inversely proportional to the link distance,

squared. This is expressed by [1]

Pr = Pt

(
λc

4πd

)2

GtGr, (2.24)

where λc is the wavelength, Pr and Pt are the received and transmit powers

respectively, Gr and Gt are the receiver and transmitter antenna gains respec-

tively, and d is the distance between the receiver and transmitter. However,

in real cellular environments, there may be an interfering wave reflected from

the surface which accompanies the main wave [1]. This results in the following
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approximation to the received power:

Pr = Pt

(
hthr

d2

)2

GtGr, (2.25)

where hr, ht are the effective heights of the receive and transmit antennas

respectively and we have made the assumption that d2 ≫ hthr. This inverse

fourth power law is an approximation, and in real environments it depends on

foliage and terrain and can vary between 2.5 and 6. In this thesis, we also use

the inverse third power (d−3) as an approximation when we ignore the effects of

antenna heights. Values other than −3 were considered but we concluded that

minor variations did not have a significant impact on the results. Furthermore,

we assume Gr = Gt = 1 for simplicity.

2.9 Analytical Mean Capacity

In a MIMO system where both slow and fast fading are present, the mean

capacity averaged over the fast fading is given by Chiani and Win in [52].

They consider a single-user MIMO system in Rayleigh fading with a transmit

covariance matrix, Φ. The capacity of this single-user system, C is given by

C(nt, nr,Φ) = Kn

nr∑

k=1

∣∣∣R(k)
∣∣∣ , (2.26)

where nt and nr are the number of transmit and receive antennas respectively.

In (2.26) the normalization constant, Kn, is

Kn =
(−1)nr(nt−nr)

∏L
i=1 µ

minr

(i)

Γ(nr)(nr)
∏

i<j(µ(i) − µ(j))mimj
∏L

i=1 Γ(mi)(mi)
, (2.27)

where µ(1) > µ(2) > · · · > µ(L) are the L distinct eigenvalues of Φ−1, with

associated multiplicities m1, . . . , mL such that
∑L

i=1mi = nt, and Γ(m)(a) =
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∏m
i=1(a− i)!. The nt × nt matrix R(k) has elements:

r
(k)
i,j =





(−1)d(i)(j + d(i)− 1)!/µ
j+d(i)
(e(i)) j = 1, . . . , r; j 6= k

(−1)d(i)

log 2

∑j+d(i)−1
s=0 q(i, j, s) j = 1, . . . , r; j = k

[nt − d(i)]d(i) µ
nt−j−d(i)
(e(i)) j = nr + 1, . . . , nt

, (2.28)

where [a]n , a(a−1) . . . (a−n+1). Note that [a]0 , 1. The function q(i, j, s)

is given by

q(i, j, s) = exp(µ(e(i))) E1(µ(e(i))) +

j+d(i)−1−s∑

p=1

(−1)j+d(i)−1−s−p(p− 1)!/µp
(e(i)),

(2.29)

where E1(x) =
∫∞

x
e−w

w
dw is the exponential integral. The function e(i) is an

indicator function which is defined as the unique integer such that

m1 + · · ·+me(i)−1 < i ≤ m1 + · · ·+me(i),

and

d(i) =

e(i)∑

k=1

mk − i.

2.10 Order Statistics

For a set of random variables, X1, . . . , Xn, the order statistics consist of the

ordered set such that X(1) ≤ X(2) ≤ · · · ≤ X(n). The cumulative distribution

function (CDF) of an ordered variable X(r) is defined as follows in [53, p. 9]:

F(r)(x) =

n∑

i=r

(n
i

)
F i(x)[1− F (x)]n−i, (2.30)

where F (x) is the CDF of an unordered variable X .
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2.10.1 Concomitants

Consider the pairs (Xi, Yi), i = 1, . . . , n which are random samples of a bi-

variate distribution with CDF F (x, y). If the samples are ordered by Xi, the

variable Y associated with Xr:n, the rth largest value of X , is denoted Y[r:n].

This is called the concomitant of the rth order statistic [53, p. 144]. This situa-

tion occurs in the imperfect CSI case where the values of the true channel, H ,

are estimated at the receiver using some channel estimation procedure. The re-

sulting channel estimate, Ĥ , is correlated with H but not identical. The order

statistics, Xr:n, and Y[r:n], have the following relationship for r = 1, . . . , n [53, p.

144]:

Y[r:n] = µY + ρ
σY

σX
(Xr:n − µX) + ǫr (2.31)

where ρ = Corr(X, Y ), ǫr is a zero-mean error term which is independent of

Xr:n, and µX , σX and µY , σY are the mean and standard deviations of X and

Y respectively.

2.11 Optimization

In many systems the aim is to optimize a particular performance metric. For

example, it may be necessary to either minimize the power consumption while

achieving a given BER, or to optimize the channel rate. The problem can be

expressed in a very general form as follows 3 [54]:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p

(2.32)

where x ∈ Rn. A subset of optimization is convex optimization, which is a

special case. In convex optimization, if the solution is locally optimal, it is

also globally optimal due to the convexity of the function.

3To perform a maximization, minimize over −f0(x).
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2.11.1 The Lagrangian

Using Lagrangian duality, the constraints in (2.32) can be taken into account by

adding a weighted sum of these constraint functions to the objective problem

[54]. Hence the Lagrangian, L, associated with (2.32) is defined as

L(x, ζ,ν) = f0(x) +

m∑

i=1

ζifi(x) +

p∑

i=1

νihi(x), (2.33)

where ζi is the Lagrange multiplier associated with the ith inequality constraint,

fi(x) ≤ 0, and νi is the Lagrange multiplier associated with the ith equality

constraint, hi(x) = 0. The variables ζ and ν are also referred to as the dual

variables for (2.32).

2.11.2 Karush-Kuhn-Tucker Conditions

Building on the MSc. thesis of W. Karush [55], H. W. Kuhn and A.W. Tucker

wrote a conference paper [56] outlining the conditions necessary for optimiza-

tion. They can be broken down into parts, each representing a condition for

optimality. Given the optimal point of (2.32), x∗, and the optimal Lagrange

multipliers, ζ∗ and ν∗, [54], the Karush-Kuhn-Tucker (KKT) conditions are

defined as follows [54]:

• Stationarity (i.e. the gradient of the Lagrangian, ∇L(x∗, ζ∗,ν∗) = 0)

∇f0(x∗) +

m∑

i=1

ζ∗i∇fi(x∗) +

p∑

i=1

ν∗
i∇hi(x

∗) = 0 (2.34)

• Primal Feasibility

fi(x
∗) ≤ 0, for all i = 1, . . . , m

hj(x
∗) = 0, for all j = 1, . . . , p (2.35)
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• Dual Feasibility [54]

ζ∗i ≥ 0 (2.36)

• Complementary Slackness [54, p. 242]

ζ∗i fi(x
∗) = 0, for all i = 1, . . . , m (2.37)

2.11.3 Convexity

In order to ensure that the properties of convex optimization hold, it is nec-

essary to determine whether a function is convex. A function f : Rn → R is

convex if the following conditions hold [54].

1. The domain of the function, dom f , is a convex set.

2. For all x, y ∈ dom f , 0 ≤ θ ≤ 1

f [θx+ (1− θ)y] ≤ θf(x) + (1− θ)f(y). (2.38)

Following from the above, a function f is concave if −f is convex and vice

versa. An alternative approach to test convexity is to look at the second

derivative or Hessian, if it exists, for all x ∈ dom f . The function f is convex

if and only if the Hessian satisfies

∇2f(x) � 0, (2.39)

where A � 0 indicates the matrix A is positive semi-definite.

The final condition for optimality is that a feasible point exists within

dom f , i.e. there is at least one valid x such that fi(x) < 0, for all i = 1, . . . , m,

holds. This is referred to as Slater’s Condition [54, p. 226]. If this holds and

the optimization problem in (2.32) is convex, then the KKT conditions ((2.34),

(2.35), (2.36), (2.37)) are necessary for a unique optimal point.
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2.11.4 Waterfilling

For a single-user MIMO system, with an m × n channel matrix, H , water-

filling is an algorithm that produces the highest possible rate. The algorithm

consists of two parts, a particular covariance structure and a power allocation

algorithm.

Covariance Structure

It is well-known that in order to maximize the single user MIMO capacity

(2.3), the covariance matrix QWF has the form [1]:

QWF = V XV †, (2.40)

where X = diag(x1, x2, . . . , xm, 0, . . . , 0) is a matrix of power allocations to

each subchannel, ℓ = min(m,n) and V is a unitary matrix from the SVD of

H (see Sec. 2.2).

Power Allocation Algorithm

The power allocation algorithm itself stems from the convex optimization prob-

lem of maximizing the capacity with a set of power constraints. Boyd and

Vandenberghe [54, p. 245] describe the problem by dividing the channel into

its eigenchannels. This gives the following optimization problem:

max

xi : xi ≥ 0
∑ℓ

i=1 xi = 1

ℓ∑

i=1

log2 (αi + xi) , (2.41)

where λi are the eigenvalues of H†H , αi =
1

λiSNR
and xi is the power allo-

cated to each antenna. The total power constraint in this example is that the

total allocated power is 1 (
∑ℓ

i=1 xi = 1, also expressed as 1Tx = 1), as αi

is proportional to SNR. To make this problem convex, we can turn it into a
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minimization as follows:

min

xi : xi ≥ 0
∑ℓ

i=1 xi = 1
−

ℓ∑

i=1

log2 (αi + xi) . (2.42)

To optimize the above equation, we introduce Lagrange multipliers: ζi ∈ R
n for

the inequality constraint xi ≥ 0 and the multiplier ν for the equality constraint

1Tx = 1. These multipliers give the KKT conditions for optimization as:

x∗
i ≥ 0 1Tx∗ = 1 ζ∗i ≥ 0

ζ∗i x
∗
i = 0

−1
αi + x∗

i

− ζ∗i + ν∗ = 0, (2.43)

for all i = 1, . . . , ℓ.

To complete the minimization, we must solve (2.43) for x∗, ζ∗ and ν∗. We

can easily show that ζ∗i is a slack variable in the above equations so it can be

eliminated to leave

x∗
i ≥ 0 x∗

i (ν
∗ − 1/(αi + x∗

i )) = 0

1Tx∗ = 1 ν∗ ≥ 1/(αi + x∗
i ). (2.44)

Now looking at these equations closely, we can form a solution by considering

two distinct cases. The first case is where ν∗ < 1/αi. Under this condition the

last equation of (2.44) can only hold if x∗
i > 0, and with this being the case,

the third equation of (2.44) implies that ν∗ = 1/(αi+ xi). Solving for x∗
i gives

x∗
i = 1/ν∗ − α∗

i when ν∗ < 1/αi. Logically the other case is where ν∗ ≥ 1/αi,

leading to ν∗ ≥ 1/αi > 1/(αi + x∗
i ), which means that x∗

i > 0 is impossible as

it would violate the slackness conditions of ζ∗i used to convert (2.43) to (2.44).

Thus, by the first equation in (2.44), x∗
i = 0 when ν∗ ≥ 1/αi. This is expressed

neatly as

xi =





1/ν∗ − α∗
i , ν∗ < 1/αi

0, ν∗ ≥ 1/αi

. (2.45)
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Figure 2.3: Visual interpretation of the waterfilling algorithm.

Equation (2.45) can be simplified to x∗
i = max{0, 1/ν∗ − αi}. Combining this

with the equality constraint, 1Tx∗ = 1, we find

n∑

i=1

max{0, 1/ν∗ − αi} = 1. (2.46)

This gives

ν∗ =
k

1 +
∑

i∈κ αi
, (2.47)

where κ is the set of subchannels where ν∗ < 1
αi

and k is the number of channels

in this set.

The reason the above process is called waterfilling is as follows. If one

imagines each eigenchannel as a region in a tank, and α∗
i as the level of the

ground in region i, the solution, x∗
i , is the height of water above it when a

certain amount of water is poured in (the amount of power allocated). The

final water level ends up being 1/ν∗. In the end the shallower regions, i.e.

those with higher SNR, get more water as they are the ones with the lower α∗
i

values and thus higher eigenvalues, representing the better eigenchannels for

transmission. This is shown schematically in Fig. 2.3
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2.11.5 Iterative Waterfilling

Unfortunately, the extension of water-filling from a single-user to a multiuser

MIMO system is not as straight forward as water-filling each user indepen-

dently. Instead, one must take into account the mutual interference between

users. Jindal et al. [17] built upon work by Yu and Cioffi [16] to create a

robust and proven iterative algorithm for water-filling a multiuser system in

the MIMO-MAC domain with sum-power constraints. Note that the same

authors show that the results can also be used in the MIMO-BC domain via

duality [19]. This iterative approach, named Iterative Waterfilling, first creates

generalized channels for each user which include interference from the other

users. This generalized channel is calculated during every iteration by the

following equation for user i:

G
(n)
i = H i

(
I +

K∑

j=1,j 6=i

H
†
jQ

(n−1)
j Hj

)−1/2

. (2.48)

In (2.48) G
(n)
i represents the generalized channel for the ith user at the nth

iteration and Q
(n−1)
j represents the covariance matrix for user j at the (n−1)th

iteration. Note that Q
(0)
j needs to be initialized for all j = 1 . . .K (see [17]).

With (2.48), parallel non-interfering channels have been created which can be

water-filled separately (with individual power constraints) or in parallel with a

single sum-power constraint. The latter is the next step of Jindal’s algorithm

with the covariance matrices computed using standard water-filling:

{
Q

(n)
i

}K

i=1
=

argmax

{Qi}Ki=1 : Qi ≥ 0,
∑K

i=1 Tr {Qi} ≤ P

K∑

i=1

log2

∣∣∣∣I +
(
G

(n)
i

)†
QiG

(n)
i

∣∣∣∣

(2.49)
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The maximization in (2.49) may look complicated but can be performed simply

as a single water-filling problem based on the block diagonal channel with di-

agonals equal to G
(n)
i , . . . ,G

(n)
K . This can be further simplified [17] as a matrix

water-filling problem by taking the eigenvalue decomposition of G
(n)
i

(
G

(n)
i

)†
,

G
(n)
i

(
G

(n)
i

)†
= U iDiU

†
i (2.50)

with matrices U i unitary and Di square and diagonal. This simply leaves the

updated covariance matrices to be:

Q
(n)
i = U iΛiU

†
i (2.51)

where Λi = [µI − (Di)
−1]

+
, [ ]+ is a element-wise maximum with zero and

the water-filling level4, µ, is chosen for the sum-power constraint such that
∑N

i=1Tr{Λi} = P .

2.12 Cellular Layouts and Modelling

2.12.1 Single Cell ‘Bagel’ Model

To model a cell and the spatial distribution of users in the cell we use a simple

circular model, nicknamed the ‘bagel’. This consists of a uniform distribution

of users between two circles, one defining the cell radius, R, and the other

corresponding to an inner exclusion zone, R0. This inner exclusion zone is

to prevent users from being too close to the transmitter. This prevents the

traditional inverse power law models for signal strength from giving arbitrarily

high power to users who happen to be very close to the BS. The exclusion

zone is not just a mathematical construction since most cellsites are high up

on buildings or on cell towers and it is very hard for a mobile user to get

within a certain distance of the actual antennas. In this thesis R = 100m and

4Note that µ ≡ 1
ν∗

in the previous sections.
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R0 = 10m. This gives a mean distance from the antennas of 67.6m.

The PDF of the distance, r, from the base station to mobile using the above

model is as follows:

f(r) =
2r

R2 −R2
0

, R0 ≤ r ≤ R, (2.52)

where R is the cell radius and R0 is the inner exclusion zone radius.

Consider the ith user in the cell. The link gain of this user, denoted Γi, is

defined by the classical model [57]

Γi = ALir
−γ
i , (2.53)

where Li is the lognormal variable representing shadowing (see Sec. 2.8.1), ri

is the distance from user i to the base station, γ is the path loss exponent

and A is a constant such that E{Γi} = 1 across the cell. This is important as

it ensures that the mean SNR received by a user is equal to the ratio of the

transmit signal power over noise. In this thesis we refer to the mean SNR as

SNRav.

A key metric in investigating the relative effects of various algorithms

within this system is the ratio Γi/Γj for i 6= j. The CDF of the distribu-

tion of Γi/Γj, F (z) = Pr(Γi/Γj < z) is given as follows (see Appendix A for
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the derivation):

F (Z) =
a2R2R2

0

4

[
Φ

(
w1 − µ

σ

)
− Φ

(
w0 − µ

σ

)]

−
(
1

2
+

a2(R4 +R4
0)

8

)[
Φ

(
w2 − µ

σ

)
− Φ

(
w1 − µ

σ

)]

− a2R4 c2

8
exp[2/γ(σ2/γ + µ)]

[
Φ

(
w1 − µ− 2σ2/γ

σ

)
− Φ

(
w0 − µ− 2σ2/γ

σ

)]

− a2R4
0

8c2
exp[2/γ(σ2/γ − µ)]

[
Φ

(
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σ

)
− Φ

(
w0 − µ+ 2σ2/γ

σ

)]

+
a2R4

0 c
2

8
exp[2/γ(σ2/γ + µ)]

[
Φ

(
w2 − µ− 2σ2/γ

σ

)
− Φ

(
w1 − µ− 2σ2/γ

σ

)]

+
a2R4

8c2
exp[2/γ(σ2/γ − µ)]

[
Φ

(
w2 − µ+ 2σ2/γ

σ

)
− Φ

(
w1 − µ+ 2σ2/γ

σ

)]

+ Φ

(
w2 − µ

σ

)
. (2.54)

where a = 2/(R2 − R2
0), R0 < r < R, c = z−1/γ , w0 = γ log

(
R0

cR

)
, w1 =

γ log
(
1
c

)
, w2 = γ log

(
R
cR0

)
, Φ(x) = P (N(0, 1) < x) and µ and σ are the mean

and standard deviation of the normal distribution involved in the lognormal

distribution respectively.

Note that the value of R used (R = 100m) gives a small cell, but Fig. 2.4

shows that the sizes of the cell radius and inner exclusion zone have very little

effect on the distribution of the ratio of two users’ SNR values within the cell.

This suggests that in capacity studies, although the absolute capacity values

may change when the cell size is changed, the relative effects between users

may remain approximately the same.

2.13 Summary

In this chapter we have laid down the foundations for the thesis. Firstly, we

reviewed a number of system models including the common statistical channel

models, which are used due to their simplicity. Secondly, we covered various

techniques used throughout the literature, such as the SVD, order statistics



2.13. Summary 37

−50 0 50
0

0.2

0.4

0.6

0.8

1

Γ
1
 / Γ

2
 (dB)

C
D

F

 

 

R=100, R
0
=10

R=1000,R
0
=10

R=100,R
0
=0

Figure 2.4: CDF of the ratio Γ1/Γ2 for different values of R and R0.

and convex optimization. Finally we introduced models more specific to this

thesis, allowing the reader to understand their use in the following chapters.
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Chapter 3

Single User MIMO: Selection

Methods and Analysis

The throughput advantages of MIMO systems are increased by the use of large

antenna arrays and a large amount of attention has been given to getting as

much out of these systems to realize large potential capacity gains. However,

to achieve these gains, the number of antennas in either the transmit or re-

ceive array must be increased and in turn the associated baseband complexity

to process the MIMO capacity-approaching codes increases significantly. In

practice, spatial constraints and the power consumption of the antenna array

also are very important issues. An example of this is the continuing miniatur-

ization of cellular mobile terminals and the reduced space for accommodating

several antenna elements. Also, each RF chain requires proper amplification

prior to transmission. Whilst modern highly linear amplifiers are very power

efficient, they are also very expensive. For example, today’s typical 3GPP mo-

bile terminal transmitter uses a cheap non-linear amplifier per antenna, which

can consume between 20% and 30% of the terminal’s limited power budget.

Thus, maintaining a large number of these RF chains is very power and/or

cost intensive.

In this chapter we consider antenna selection. This is a simple yet very pow-

erful approach for reducing system complexity and the number of RF chains

(and thus making the system less power intensive), whilst retaining a large

39
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portion of the increased rates from using MIMO techniques. Using the princi-

ple of antenna selection at the transmit and/or receive side, RF chains can be

assigned to a subset of the available physical antennas. This is a convenient

method to approach the spatial capacity of MIMO without a large increase in

the system’s hardware needs. On the negative side, a feedback channel from

receiver to transmitter is needed in the case of transmit antenna selection;

however, very little feedback data (just the antenna indices) is required and

most modern communications systems have feedback channels available.

Antenna selection has its historical roots in selection combining which is

usually performed at the RX side for single-input-multiple-output (SIMO)

channels (see e.g. [32]). This technique has also been generalized to the TX

side for multiple-input-single-output (MISO) channels [34]. More recently,

many researchers have proposed algorithms for more generalized antenna se-

lection [35–38]. Some of these focus on selection to mimimize outage proba-

bilities or error rates [58, 59]. However, in this chapter, we propose selection

to increase MIMO capacity as in [36, 60]. Other previous work in this area is

based on both simple methods [35, 37, 61, 62], variants of which are discussed

in this chapter, as well as more complex methods [63], which can give slightly

better performance than the simpler methods at the expense of greater com-

putational complexity.

In this chapter we address antenna selection in a point-to-point single-

user MIMO link, building on the ideas in [35–37], analyzing and extending

the algorithms discussed. We demonstrate using statistical analysis of the

resultant channel capacities that the selection process can be simply modeled

as a scaling of the SNR, resulting in a performance gain. Hence, we propose

this SNR scaling factor as a very simple metric that can be used to compare

the performances of various algorithms. Note that this approach is extremely

general and can be used for a variety of channels, selection scenarios and also

when channel estimation error is considered. Furthermore, our analysis is
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valid for all scenarios: transmit selection, receive selection and joint transmit-

receive selection. In this chapter we use the scaling factor to assess the impact

of different channel types, including i.i.d. Rayleigh, correlated Rayleigh and

Ricean fading channels. Also we investigate the presence of imperfect CSI and

propose a simplified waterfilling scheme.

3.1 Selection Algorithms

We cover a variety of antenna selection algorithms, some pre-existing, some

novel. The aim of all of the algorithms is to a select an r×t (r receive antennas
and t transmit antennas) submatrix S from H , the m×n (m receive antennas

and n transmit antennas) single-user complex channel matrix (see Sec. 2.1).

We focus on two scenarios: selection only at the transmitter (TX selection) and

selection at both the transmitter and receiver (TX-RX selection). Selection at

the receiver (RX selection) is not covered in detail as it is analogous to TX

selection and all TX selection algorithms can be simply transferred to the RX

selection domain. TX selection is our major focus in this chapter as TX-RX

selection algorithms are also very similar to their TX selection cousins.

3.1.1 Transmit Selection Algorithms

We study three main algorithms for TX selection are considered as well as two

additional approaches that are derivatives of these. The first method is the

Optimal Selection Algorithm (OSA) which performs selection by choosing the

submatrix SOSA which results in the highest capacity. SOSA is chosen over all

possible m× t submatrices of H and thus provides the maximum capacity for

pure antenna selection. OSA can be described mathematically by:

SOSA =
argmax

{S ∈H} log2
∣∣∣∣Ir +

SNR

t
SS†

∣∣∣∣ , (3.1)

where the set {S ∈H} contains all m× t submatrices of H .
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The second algorithm, the Arbitrary Selection Algorithm (ASA), is based

on the selection of a random (arbitrary) m × t subset of H , SASA. If the

antennas are uncorrelated and the channel is random in nature, a deterministic

subset of H can be chosen for SASA. Also, in such random uncorrelated

channels, ASA is directly comparable to an independent system with m × t

antennas in which no selection is performed. This algorithm is not a sensible

approach to increasing capacity but provides a useful baseline (based on no

channel knowledge) with which to compare the other techniques.

The third algorithm is the Norm-based Selection Algorithm (NSA). This

performs antenna selection by using the norms of the columns of H , P
(u)
j =

∑m
i=1 |hij |2 (for column j), as a measure of the received power from each an-

tenna. Note that unless specified by the (u) superscript, all Pj variables are

assumed to be ordered. Hence Pj is the j
th largest column norm, whereas P

(u)
k

is the norm of column k. To perform the selection we create SNSA from the

columns with the t biggest norms, Pj , j = 1 . . . t. This algorithm is not novel

and has been described previously in the literature (examples are [35,37]) un-

der other guises. The advantages of NSA are its computational simplicity and

its close-to-optimal capacity results. Both of these advantages will be discussed

in more detail throughout the chapter. We note that NSA works better in i.i.d.

channels. In the presence of spatial correlation its performance is degraded,

which is further studied in Sec. 3.5. In practise, more complex variations on

NSA might be used to handle the correlated nature of the channel rows or

columns. However, this is not considered here.

Two more selection algorithms can be derived from the above three to

provide interesting benchmarks for comparison. The first one is WSA, the

Worst-Case Selection Algorithm, the antithesis of OSA. Thus to performWSA,

we pick SWSA to be the subset of H that minimizes capacity

SWSA =
argmin

{S ∈H} log2
∣∣∣∣Ir +

SNR

t
SS†

∣∣∣∣ , (3.2)
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Figure 3.1: Comparison of selection schemes for a (N , N + 2) choose (N , N)
system (SNR = 0dB).

where {S ∈H} contains all m× t submatrices of H .

Although not intended for use, WSA provides us a lower bound for the

selection process as well as interesting relationships to OSA and ASA. These

will be discussed in more detail later in the chapter. The other method is

the converse of NSA, WNSA (Worst-Case Norm-based Selection Algorithm)

in which one selects the submatrix SWNSA from the t columns of H with

the lowest norms, Pj , j = n − t + 1 . . . n. WNSA is used for comparison to

its opposite, NSA and the benchmark ASA. The basic selection algorithms are

shown for an (N,N+2) select (N,N) system in Figs. 3.1, 3.2 and 3.3 for a i.i.d.

Rayleigh channel with a variety of SNRs. Notice that the worst-case variants

are effectively mirrors of their best-case equivalents around ASA. These graphs

also illustrate that NSA is a very good approximation to OSA especially at

lower SNRs.

Figure 3.4 illustrates the effects of increasing the number of redundant

antennas. Note that the absolute selection gain of OSA (and NSA) with respect
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Figure 3.2: Comparison of selection schemes for a (N , N + 2) choose (N , N)
system (SNR = 10dB).
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Figure 3.4: Comparison of selection schemes for a (N , N +K) choose (N , N)
system with variable K (SNR = 10dB).

to ASA is dependent on the number of redundant antennas, n − t, not the

number of total antennas, n. This is a key point as it allows a system designer

to know how much system gain they can introduce to a system by introducing

redundant antennas, or how many redundant antennas they need to introduce

for a required increase in capacity.

3.1.2 Algorithms for Transmitter-Receiver Selection

All of the TX selection algorithms can be easily extended to RX selection by

performing the selections over the rows instead of the columns of H . From

this, TX and RX selection can be simply combined to create joint selection

algorithms. For OSA (and its converse WSA) we select submatrices S for

comparison which are r× t. Note there are many more submatrices to be con-

sidered in joint OSA than in standard OSA. Hence, joint OSA can be much

more computationally intensive as discussed in Sec. 3.4. It can be mathemat-

ically described by (3.1) with a slight change: now the selection {S ∈ H}
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Figure 3.5: Comparison of TX-RX selection schemes for a (N + 2, N + 2)
choose (N , N) system (SNR = 10dB).

encompasses all r × t submatrices of H . Similarly, ASA consists of a random

r × t submatrix drawn from the set {S ∈ H}. For NSA, the selection pro-

cedure might involve an independent concatenation: performing TX selection

then RX selection or vice versa. Order can be important here, and we should

intuitively select the dimension with the greatest choice (i.e. select RX anten-

nas first if m > n and TX antennas first if m ≤ n) to increase diversity gains.

Further improvements can be made if we perform the above selection itera-

tively, one row/column at a time from the dimension with the greatest choice

after each step. This gives a small gain over the independent concatenation

but at the increase of complexity. The relative performance of independent

and dependent selection can be seen in Fig. 3.5. Note that the gain of joint

over independent selection is only very slight.

A full joint approach to NSA would involve cycling through all possible r×t
submatrices and computing the norms. In terms of complexity this approach

is similar to OSA and is not therefore considered.
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Figure 3.6: Comparison of TX-RX selection schemes for a (N , N) choose (2,
2) system (SNR = 10dB).

3.1.3 Poor Man’s Waterfilling

The methods discussed so far are pure selection methods, where the power

levels of each selected antenna are equal. In this section we introduce a novel

power allocation algorithm called “Poor Man’s Waterfilling” (PMWF). The

name is derived from its greatly reduced complexity compared to the standard

power allocation scheme, waterfilling. Consider a TX selection case where

NSA is used and there are t selected antennas with norms P1, P2, . . . , Pt. The

PMWF approach follows by allocating powers based on these norms. The

resultant power to a column with norm Pj is the fraction, Pj/
∑t

k=1 Pk of the

total power. After PMWF the norm of the vector including the column norms

becomes tP 2
j /
∑t

k=1 Pk. Figures 3.7 and 3.8 illustrate PMWF for various SNRs.

In Sec. 3.2.6 PMWF is analyzed and it is shown that at low SNRs, NSA with

PMWF can outperform the more computationally intensive OSA1.

1Note that PMWF will also benefit a system in which OSA has been used.
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Figure 3.7: Comparison of selection schemes and PMWF for a (N , N + 2)
choose (N , N) system (SNR = 0dB).
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3.2 Algorithm Analysis

Of the three main algorithms, ASA is the easiest to evaluate as it leads to the

standard capacity results [14]. OSA on the other hand is highly non-linear and

difficult to analyze. At present there are no known approaches to computing

the capacity of the OSA and simulations are required. Hence, in this section,

we focus our analysis on the NSA. Our analysis leads to effective methods

to calculate the gains made by norm-based antenna selection. The statistical

analysis is based mainly on the fact that capacity, although exactly defined

by the joint distributions of the elements of all possible submatrices of H , is

strongly affected by the moments of these elements.

3.2.1 NSA Analysis

In this analysis we examine the simplest MIMO Rayleigh fading system, the 2×
2 case. The channel matrix, H , has column norms P

(u)
1 and P

(u)
2 . We assume

for simplicity and without loss of generality that the first column [h11, h21]
T

has the largest norm. We consider the selection of one transmit antenna, so

that S = [h11, h21]
T . Note that the elements of S are no longer Gaussian,

but instead are conditionally distributed due to the fact P
(u)
1 > P

(u)
2 . We

can find the exact distribution of S by computing the joint density function

f(h11, h21|P (u)
1 > P

(u)
2 ). Due to the fact that P

(u)
1 > P

(u)
2 we can clearly see

that the elements of S have a larger variance than those of H . The derivation

of the PDF of the column of H with the kth largest norm (for the general m×n
case) is given in Appendix B. From this derivation we show that the columns

retain their isotropic nature. This allows the replacement of the zero-mean

complex Gaussian entries of H , with zero-mean isotropic entries in S.

From Appendix B it is straightforward to show that in the 2 × 2 case the

joint density of the largest column is flattened slightly compared to the Gaus-

sian. This flattening is caused by the selection of large column norms pushing

the probability away from zero. Overall this means that the elements of S



50 Chapter 3. Single User MIMO: Selection Methods and Analysis

maintain the isotropic structure of those of H but have increased variances.

From this observation, a heuristic model for TX selection is that the scaling is

a simple scaling of the original elements of H . Given that column j of S (or-

dered) has norm Pj, we propose to model S as having elements with the same

distribution as those of H but with scaled variances, E{Pj}/m = µj/m, in-

stead of 1 for column j. This yields a simple power scaling due to the selection

process. This approximation for S is given by:

S ≈ V diag(
√
µ1,
√
µ2, . . . ,

√
µt)/
√
m, (3.3)

where the m× t matrix V is statistically identical to a m× t submatrix of H

picked at random. Note that V ≡ SASA. DefiningM = diag(µ1, µ2, . . . , µt)/m

and using equation (3.3) this leads to the approximate capacity:

Csel,pa ≈ log2

∣∣∣∣Ir +
SNR

t
V MV †

∣∣∣∣ bps/Hz, (3.4)

where the subscript, “pa”, denotes the fact that the diagonal matrix, M ,

can be interpreted as performing power allocation over the antennas. Thus,

we refer to this as the Power Allocation (PA) approximation. We can find a

further approximation to (3.4) by replacing the power allocation matrix (M)

with a single power scaling factor,

Pav =
1

mt

t∑

j=1

µj . (3.5)

This leads to the capacity:

Csel,ps ≈ log2

∣∣∣∣Ir + Pav
SNR

t
V V †

∣∣∣∣ bps/Hz, (3.6)

where the subscript, “ps”, refers to the power scaling provided by the SNR

inflation factor, Pav. This is a very simple approximation to NSA, suggesting

that it can be interpreted as a simple power scaling effect. This scaling is thus
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Figure 3.9: Comparison of NSA and approximations for a (N , N + 2) choose
(N , N) system (SNR = 0dB).

denoted as the Power Scaling (PS) approximation. Implementations of both

the PA and PS methods require both a knowledge of µ1, µ2, . . . , µt and the

statistics of (3.4) and (3.6) for the particular channel. For all the channels

studied in this chapter the mean capacity is known [14,48,64]. Figures 3.9 and

3.10 show NSA and its approximations at SNR = 0dB and SNR = 10dB. Note

that both the PA and PS approximations are very accurate, and PS performs

at least as well as PA for all cases. Thus, since PS is a simpler approximation,

this approach is the focus of further results.

We now discuss the relevant capacity results for a variety of channels.

3.2.2 Rayleigh Flat Fading Channels

The Rayleigh channel defined earlier in Sec. 2.6.1 has complex Gaussian chan-

nel matrix elements hij . Hence, the unordered column norm powers, P
(u)
j , are

i.i.d. complex χ2 distributed with m degrees of freedom, and a mean value of
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Figure 3.10: Comparison of NSA and approximations for a (N , N +2) choose
(N , N) system (SNR = 10dB).

E{P (u)
j } = m. The PDF and CDF of the complex χ2 distribution are respec-

tively [65]:

fχ(x;m) =
xm−1

(m− 1)!
exp(−x) (3.7)

Fχ(x;m) = 1− exp(−x)
m−1∑

k=0

xk

k!
. (3.8)

Some simple order statistics results are required to calculate the moments of

the ordered column norms. In general the ℓth moment of the jth order statistic

is [53]

E{P ℓ
j } = n!

(n−j)!(j−1)!

∫ ∞

−∞

xℓ F (x)n−j[1− F (x)]j−1 f(x) dx , (3.9)
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where f(·) and F (·) are the PDF and CDF respectively of the unordered

variables. Substituting (3.7) and (3.8) into (3.9) leads to [66, p. 38]:

E{P ℓ
j } = n!

(n−j)!(j−1)!(m−1)!

n−j∑

r=0

(−1)r
(
n− j

r

)
(3.10)

×
(m−1)(j+r−1)∑

s=0

cs(j + r − 1) (ℓ+m+ s− 1)!

(j + r)ℓ+m+s
, (3.11)

where cs(N) is the coefficient of xs in
(∑m−1

v=0
xv

v!

)N
.

Another simpler method for computing approximations to µj and generally

to E{P ℓ
j } is based on the well-known quantile approximations [53, 66]. These

are of the form, µj ≈ F−1
(

n+1−j−α
n−β

)
, where F (·) is the CDF of each column

norm. However, for these approximations to be accurate, especially when

j = 1, the correction factors α and β need to be chosen differently for each value

of j and n. Since simulations show that this approximation is not particularly

accurate and requires fine tuning of α and β for every pair of j and n, we

prefer to use the exact results.

Using (3.5) and (3.11) the PS factor, Pav, can be computed for any system

size. Sample results are given in Tables 3.1–3.3. The value of Pav gives a good

indication of the gains offered by transmit selection in terms of an equivalent

scaled SNR.

n
2 3 4 5 6

1 1.375 1.607 1.774 1.904 2.011
2 1.259 1.439 1.578 1.690

t 3 1.199 1.347 1.465
4 1.162 1.288
5 1.137

Table 3.1: Pav Values for Various n and t (m = 2)
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n
2 3 4 5 6

1 1.313 1.499 1.631 1.733 1.815
2 1.221 1.367 1.478 1.567

t 3 1.170 1.293 1.389
4 1.140 1.245
5 1.119

Table 3.2: Pav Values for Various n and t (m = 3)

n
2 3 4 5 6

1 1.274 1.433 1.544 1.630 1.700
2 1.194 1.321 1.416 1.491

t 3 1.151 1.258 1.340
4 1.125 1.217
5 1.107

Table 3.3: Pav Values for Various n and t (m = 4)
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Tables 3.1-3.3 show a few key points:

• The effective SNR gain is increased when the number of redundant an-

tennas (n− t) is increased.

• The effective SNR gain decreases with increasing m,n. This is due to

the fact that for a particular n − t, the absolute gain in capacity is

very similar no matter what the original capacity. With increasing m,n,

the ASA capacity increases, and this reduces the relative gain of the

redundant antennas, thus reducing the effective SNR gain.

• The effective SNR gains range from 10% to 100% for the given values.

For example, to give an effective SNR increase of 50%, systems such as

4 pick 2 or 6 pick 3 could be used if m = 2. For m = 3, 3 pick 1 and 5

pick 2 would also give a similar gain. For m = 4, 4 pick 1 and 6 pick 2

would also give approximately 50% increases in effective SNR.

3.2.3 Semi-Correlated Rayleigh Channels

Consider a semi-correlated (SC) Rayleigh channel matrix, HSC , given by,

Hsc = R1/2H , (3.12)

where R1/2 is the square root of the channel spatial correlation matrix at the

receiver. The unordered column norms of Hsc are now P
(u)
j = h†

jRhj , j =

1, . . . , n where hj is the jth column of H in (3.12). This is a well known

quadratic form as described in [67] and can be rewritten as P
(u)
j =

∑m
i=1 λj |hij|2

where λi, i = 1, . . . , m is the ith eigenvalue of R. The PDF and CDF of P
(u)
j
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are, respectively,

f(x) =
m∑

j=1

bj
λj

exp

(
− x

λj

)
, (3.13)

F (x) =

m∑

j=1

bj

[
1− exp

(
− x

λj

)]
, (3.14)

where

bj = λm−1
j

m∏

k=1,k 6=j

(λj − λk)
−1 .

We can easily extend the capacity approximations of (3.4) and (3.6) to this

case. Note that V is now semi-correlated and can be defined by V = R1/2U

where U is an i.i.d. Rayleigh channel matrix. We can rewrite the capacity

approximations as:

Csel,pa ≈ log2

∣∣∣∣Ir +
SNR

t
R1/2UMU †R1/2

∣∣∣∣ bps/Hz (3.15)

Csel,ps ≈ log2

∣∣∣∣Ir + Pav
SNR

t
R1/2UU †R1/2

∣∣∣∣ bps/Hz. (3.16)

Again we can derive the values of µ1, . . . , µt and hence, using order statistics,

can find Pav. Note that (3.9) and (3.5) are applicable to this situation by

substituting the χ2 distribution with the quadratic form distribution defined

in (3.13) and (3.14). From this we can derive a closed-form expression for

µj = E{Pj}. Firstly, note that the density of Pj is given by [66]

fPj
(x) = n!

(j−1)! (n−j)!
F (x)n−j [1− F (x)]j−1 f(x) . (3.17)

Substituting f(x) and F (x) from (3.13) and (3.14) into (3.17) we write:

µj =
n!

(j−1)! (n−j)!

∫ ∞

0

x

(
1−

m∑

t=1

bt e
−x/λt

)n−j ( m∑

r=1

br e
−x/λr

)j−1

×
m∑

s=1

bs
λs

e−x/λs dx . (3.18)
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Expanding the binomial term in (3.18), we finally have

µj =
n!

(j−1)! (n−j)!

∫ ∞

0

x

n−j∑

t=0

(−1)t
(
n−j
t

)
(

m∑

r=1

br e
−x/λr

)t+j−1 m∑

s=1

bs
λs

e−x/λs dx

= n!
(j−1)! (n−j)!

n−j∑

t=0

(−1)t
(
n−j
t

) ∑

K(t+j−1)

cK(t+j−1)

×
m∑

s=1

bs
λs

∫ ∞

0

x e−(dK(t+j−1)+1/λs)x dx

= n!
(j−1)! (n−j)!

n−j∑

t=0

(−1)t
(
n−j
t

) ∑

K(t+j−1)

cK(t+j−1)

m∑

s=1

bs
λs

(
dK(t+j−1) +

1

λs

)−2

,

(3.19)

where (
m∑

r=1

br e
−x/λr

)L

=
∑

K(L)

cK(L) exp
{
−dK(L) x

}
,

with

cK(L) = L!

m∏

i=1

bkii
ki!

, dK(L) =

m∑

i=1

ki
λi

and the sum is over all partitions of L (i.e., K(L) = (k1, . . . , km) where
∑m

i=1 ki = m).

Figures 3.11 and 3.12 show that the NSA algorithm is a good approxima-

tion to the optimal capacity, even under correlated channel conditions. For

simulation purposes, we use an exponential correlation structure to model SC

Rayleigh channels. This gives a receiver correlation matrix, R, with elements

given by [68]

rij =





̺j−i i ≤ j

r†ji i > j
, |̺| ≤ 1, (3.20)

where ̺ is the (complex) correlation coefficient between adjacent receive an-

tennas. In our simulations, we used the value of ̺ = 0.8.
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Figure 3.11: Comparison of selection algorithms over different channels for a
(N , N + 2) choose (N , N) system (SNR = 0dB).
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Figure 3.12: Comparison of selection algorithms over different channels for a
(N , N + 2) choose (N , N) system (SNR = 10dB).
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3.2.4 Ricean Channels

An i.i.d. Ricean channel can be simply expressed as the weighted sum of a

LOS channel and a Rayleigh flat-fading channel as follows:

Hrice = aHLOS + bH , (3.21)

where a2 + b2 = 1 and the entries of HLOS and H have unit variance. If we

assume the common model of a unit rank HLOS matrix, then we can assume

without loss of generality that the elements of HLOS are all unity. This leads

to the jth unordered column norm of Hrice being given by P
(u)
j = [a1 +

bhj]
†[a1+ bhj ], where 1 = [1, . . . , 1]T and hj is again the j-th column of the

i.i.d. Rayleigh matrix H . This is a non-central quadratic form with PDF and

CDF respectively given by [67]

f(x) =
1

b2

(
2x

b2δ

)(m−1)/2

Im−1

(
2x
√
δ

b2

)

× exp

[
−
(
2x

b2
+ δ

)/
2

]
(3.22)

F (x) = exp

(
−δ

2

) ∞∑

j=0

,
(δ/2)j

j! (m+ j − 1)! 2m+j

×
∫ 2x/b2

0

um+j−1 exp
(
−u
2

)
du, (3.23)

where δ = 2ma2/b2 and Ik(·) is a modified Bessel function. Although the

integral in the CDF can be expressed as a finite sum there is no closed-form

solution that avoids either numerical integration or an infinite series. To find

the means, µ1, . . . , µt, we can use (3.9) with (3.3) and (3.6) to compute the

corresponding capacity approximations. Figures 3.11 and 3.12 show that the

NSA algorithm is a good approximation to the optimal capacity, even under

Ricean channel conditions. Note that the simulated Ricean channel has K-

factor K = 10dB and is defined in Sec. 2.6.2.
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3.2.5 Transmitter-Receiver Antenna Selection

In Sec. 3.1.2 we showed that TX selection algorithms can be easily extended

to RX selection and TX-RX selection. Using the analysis in Sec. 3.2.1 for the

TX-RX selection case leads to two power scaling factors, one for TX selection

Pav,t and the other for RX selection Pav,r. If joint selection is performed,

the results from Sec. 3.2.1 and Sec. 3.2.4 can be leveraged to approximate the

capacity. Assuming TX selection occurs first, the selected matrix St ≈ V M 1/2

is calculated using (3.3). For an i.i.d. Rayleigh channel, the resultant row (RX)

selection problem is exactly the same as the column (TX) selection problem

for the semi-correlated case. This is due to the fact that the forms of the rows

of St are equivalent to that of the columns of Hsc in (3.12). Hence, both (3.4)

and (3.6) can be evaluated for the i.i.d. Rayleigh case.

The capacity of TX-RX selected SC Rayleigh and i.i.d. Ricean channels can

also be approximated in the form of (3.4) by using similar methods. Thus, we

can use the SNR scaling approximation of (3.6) effectively in TX-RX selection.

Using TX selection leads to the submatrix St ≈ P
1/2
av,tV . Following with RX

selection now yields the submatrix S ≈ P
1/2
av,rSt ≈ P

1/2
av,rP

1/2
av,tV . This result now

allows us to use (3.6) with the new power scaling factor, Pav = Pav,rPav,t.

3.2.6 Poor Man’s Waterfilling

After the initial selection techniques, an algorithm like conventional waterfill-

ing, where the transmit power is allocated over the eigenmodes of the selected

channel, can be used. However, this can be computationally intensive, and thus

we propose a simpler algorithm to achieve suboptimal gains but at a highly

reduced complexity level. PMWF uses the values of the column norms, Pj,

to allocate power to the system as described in Sec. 3.1.3. As with standard

antenna selection, the effects of this procedure can be simply approximated

by a power scaling factor. After TX selection has been performed, column j

in S has norm Pj. Under PMWF this norm is scaled by tPj/
∑t

k=1 Pk and
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the resulting selection matrix is denoted Spmwf . The total norm of Spmwf is

‖Spmwf‖2 =
∑t

j=1 tP
2
j /
∑t

k=1 Pk. The average modulus squared value of an

element of Spmwf is ‖Spmwf‖2/(mt). The mean of this gives the power scaling

factor:

Pav,pmwf =
1

m
E

{∑t
j=1 P

2
j∑t

k=1 Pk

}
. (3.24)

For TX-RX selection using PMWF (for TX-selection) the power scaling factor

is now Pav = Pav,rPav,pmwf . Exact evaluation of (3.24) is very difficult as the

PDF of a sum of χ2 order statistics is extremely complex (see for example, [69]).

However, the so-called “delta method” can be employed with good effect [70].

Note that (3.24) involves the mean of a ratio of 2 random variables. The delta

method approach for this scenario is based on the Taylor series expansion

E

(
X

Y

)
△
= E[g(X, Y )] = E

[∑

d,f

g(d,f)(µX , µY )

d! f !
(X − µX)

m (Y − µY )
n

]

(3.25)

where

g(d,f)(µX , µY ) =
∂d+f

∂xd ∂yf
g(x, y)

∣∣∣∣
x=µX ,y=µY

,

µX = E(X), µY = E(Y ) and E[g(X, Y )] is usually approximated by only the

first few terms. Taking terms up to order two (d+ f ≤ 2), we find:

E

(
X

Y

)
≈ µX

µY

+
µX

µ3
Y

var(Y )−E[(X − µX)(Y − µY )]

µ2
Y

=
µX E(Y 2)

µ3
Y

−cov(X, Y )

µ2
Y

.

(3.26)

Comparing (3.24) with (3.26) we need to compute the following variables:

µX =
∑t

j=1E(P
2
j ), µY =

∑t
j=1 E(Pj), E(Y 2) =

∑t
j=1

∑t
k=1E(PjPk), and

cov(X, Y ) =
∑t

j=1

∑t
k=1 E(P

2
j Pk)− µXµY . However, from (3.11), the compo-

nents E(Pj), E(P
2
j ), and E(P 3

j ) are already known for the i.i.d. Rayleigh fading

case. To compute (3.26), we need to know the variables E(PjPk) and E(P 2
j Pk)

as well. For the Rayleigh fading case we can find these from E(P s
i P

q
j ). With-

out loss of generality, we set i > j so that 0 < W
△
= Pi < Z

△
= Pj < ∞. Thus
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the joint density of (W,Z), or (Pi, Pj), is [66]:

fW,Z(w, z) =
n!

(n−i)! (i−j−1)! (j−1)!
F (w)n−i [F (z)− F (w)]i−j−1

× [1− F (z)]j−1 f(w) f(z) . (3.27)

For the Rayleigh case, substituting f(w) and F (w), using (3.7) and (3.8), into

(3.27), we find

fW,Z(w, z) =∆

(
1− e−w

m−1∑

k=0

wk

k!

)n−i(
e−w

m−1∑

h=0

wh

h!
− e−z

m−1∑

ℓ=0

zℓ

ℓ!

)i−j−1

×
(
e−z

m−1∑

u=0

zu

u!

)j−1

wm−1e−w

(m− 1)!

zm−1e−z

(m− 1)!
, (3.28)

where ∆ = n!/[(n − i)! (i − j − 1)! (j − 1)!]. Expanding the binomial terms,

the first two bracketed terms in (3.28) yield

fW,Z(w, z) =
∆

[(m− 1)!]2

n−i∑

k=0

i−j−1∑

ℓ=0

(−1)k+ℓ
(
n−i
k

)(
i−j−1

ℓ

)
wm−1 zm−1

×
(

m−1∑

h=0

wh

h!

)k+i−j−ℓ−1(m−1∑

u=0

zu

u!

)ℓ+j−1

e−(k+i−j−ℓ)w e−(ℓ+j)z .

(3.29)

Expanding the two power series in (3.29), we finally have

fW,Z(w, z) =
∆

[(m− 1)!]2

n−i∑

k=0

i−j−1∑

ℓ=0

(−1)k+ℓ
(
n−i
k

)(
i−j−1

ℓ

)

×
N(i,j,k,ℓ,m)∑

h=0

ch(N(i, j, k, ℓ,m))

×
N(j,ℓ,m)∑

u=0

cu(N(j, ℓ,m))wm+h−1 zm+u−1 e−(k+i−j−ℓ)w e−(ℓ+j)z,

(3.30)
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where N(i, j, k, ℓ,m) = (m − 1)(k + i − j − ℓ − 1), N(j, ℓ,m) = (m − 1)(ℓ +

j − 1) and cs(N) is defined after (3.11). The calculation of E{W sZq} is now
straightforward using the result

∫ ∞

0

∫ ∞

w

wa zb e−cw e−gz dw dz = g−(b+1)

b∑

v=0

b!

(b− v)!

(a+ b− v)!

(c+ 1)a+b−v+1
,

where a, b ∈ Z+. Finally, we write the joint moment as

E{P s
i P

u
j } =

∆

[(m− 1)!]2

n−i∑

k=0

i−j−1∑

ℓ=0

(−1)k+ℓ
(
n−i
k

)(
i−j−1

ℓ

)

×
N(i,j,k,ℓ,m)∑

h=0

ch(N(i, j, k, ℓ,m))

N(j,ℓ,m)∑

u=0

cu(N(j, ℓ,m))

×
m+r+q−1∑

v=0

(m+ u+ q − 1)!

(m+ u+ q − 1− v)!

× (2m+ u+ h + s+ q − 2− v)!

(k + i− j − ℓ+ 1)2m+u+h+s+q (ℓ+ j)m+u+q
. (3.31)

This derivation is already complicated for the i.i.d. Rayleigh case. The equiv-

alent calculation for the other channel models is possible in principle but the

mathematics becomes extremely cumbersome and is therefore of limited use.

Hence, these results are omitted from the thesis.

Figures 3.13 and 3.14 highlight the performance of PMWF relative to NSA

at SNR values of 0dB and 10dB respectively. In the 0dB SNR case (Fig. 3.13)

NSA with PMWF outperforms OSA. In addition the PS approximation is

excellent for the mixture of NSA and PMWF and also provides an accurate

approximation to OSA. Note that NSA with PMWF outperforms OSA only

for low SNR, but for higher SNRs, OSA becomes superior again, although the

difference is small. This comparison is shown in more detail in Fig. 3.15 for an

i.i.d. Rayleigh channel. We observe that as the SNR varies from -10dB to 10dB

the percentage improvement of OSA over NSA is at most 4%. Also, NSA with

PMWF offers improvements over OSA of up to about 6.5% at -10dB. These
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Figure 3.13: Comparison of NSA and approximations using PMWF for a (N ,
N + 2) choose (N , N) system (SNR = 0dB).

gains reduce with increasing SNR and at 10dB OSA has a slight superiority

(see Sec. 4.5.3 for more discussion on proportional power algorithms). Overall,

the performance of the simple norm-based approaches compare very favorably

with OSA.

3.3 Effects of Imperfect Channel State Infor-

mation

In this section we cover the impact of imperfect CSI on TX selection and the

power scaling approach. Taking column j of (2.22), we can write

hj = ρ ĥj +
√

1− ρ2 ej , (3.32)
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Figure 3.14: Comparison of NSA and approximations using PMWF for a (N ,
N + 2) choose (N , N) system (SNR = 10dB).
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Figure 3.15: Percentage capacity improvement of PMWF, NSA and OSA rela-
tive to each other in a (2, 4) choose (2, 2) system for an i.i.d. Rayleigh channel.
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with hj, ĥj and ej being the jth columns of H , Ĥ , E respectively. Taking

the column norms of (3.32), we have

P
(u)
j = ρ2P̂

(u)
j + (1− ρ2)‖ej‖2 +∆ (3.33)

where ∆ is the cross product term given by

∆ = ρ
√

1− ρ2
(
ĥ
†

jej + e
†
jĥj

)
. (3.34)

Since E{P̂ (u)
j } = E{‖ej‖2} = m, we can rewrite (3.33) as

P
(u)
j = ρ2(P̂

(u)
j −m) +m+ ǫj (3.35)

where ǫj = ∆ + (1 − ρ2)(‖ej‖2 −m). In the process of TX selection columns

of H are selected on the basis of the measurements of Ĥ . This leads to the

area of order statistics called concomitants [53]. Note that (3.35) is simple and

linear and thus when ǫj is independent of P̂
(u)
j the following relationship holds:

µ[j] = ρ2 (µj −m) +m, (3.36)

where µj is as before but µ[j] represents the mean norm of column j of H

selected on the basis of Ĥ . Note that in the TX selection scenarios covered, ǫj

is uncorrelated with P̂
(u)
j but not independent. This can be seen from (3.34).

The cross product ∆ contains ĥj and P̂
(u)
j . Hence, it is a function of ĥj.

Parameters ∆ and P̂
(u)
j are dependent. However, due to the multiplication by

ej in (3.34) E(P̂
(u)
j ) = 0 and E(∆) = 0. Hence P̂

(u)
j and ∆ are uncorrelated.

Thus we use (3.36) as an approximate result. Since the column norms now

have means µ[j], we can adjust Pav,t to give Pav,CSI ,
∑t

j=1 µ[j]/(mt) which,

after substituting (3.36), can be rewritten as

Pav,CSI = 1− ρ2 + ρ2Pav,t . (3.37)
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Figure 3.16: Comparison of selection algorithms and PS approximations under
imperfect CSI (SNR = 0dB).

This shows that the effect of imperfect CSI can be simply accommodated in

the power scaling factor.

Figure 3.16 shows the gains of NSA over ASA under the effects of imperfect

CSI. It covers various system sizes and both the actual NSA value and PS

approximation. We see that the PS approximation holds even when the CSI

is not perfectly known.

3.4 Algorithm Complexity

Both NSA and PMWF are low complexity compared to OSA. Breaking down

the computation of NSA, the basic steps are the calculation of the column

norms and their ordering. The calculation of a column norm of H requires m

multiplications and m additions, giving a complexity of O(m). Since there are

n columns to compare, the total computation is O(mn). These norms need

to be sorted which is an O(n logn) operation if the fastest search methods

are used. In most cases, mn > n logn, so it is safe to approximate the total



68 Chapter 3. Single User MIMO: Selection Methods and Analysis

computational complexity of NSA as O(mn). OSA, on the other hand, in-

volves a matrix multiplication, addition and determinant calculation for each

submatrix. The determinant calculation is by far the most complex part and is

approximately O(t3). For TX selection this calculation occurs
(
n
t

)
times. Over-

all, this makes the total complexity approximately O(nt) as shown in [71]. The

enormous difference in complexity, especially for high t and n, is a strong mo-

tivation for using NSA despite the slight capacity penalty. In addition, this

penalty can be reduced at low SNR levels by using PMWF which does not

increase the complexity of NSA as it uses information already calculated.

3.5 System Size

In some systems, especially in hand-held devices, there is a space constraint.

Although we have shown increasing gains with the number of redundant anten-

nas (see Sec. 3.1.1), packing multiple antennas into a small space soon causes

correlation between the antennas. In such a system one can model the effect of

this as a semi-correlated Rayleigh channel (see Sec. 3.2.3). Naturally, increas-

ing antenna correlation will reduce capacity, but at the same time increasing

antennas increases the selection gains. The method of selection now becomes

very important. Since OSA selects columns based both on the size and the

relationship between the columns, we might expect that OSA would increase

in superiority over NSA in this correlated case. This is due to the intrinsic

dependence between the columns that OSA could possibly exploit. However,

in the limiting case of perfect correlation each column becomes identical, and

thus it does not matter which columns are chosen and all selection methods

become equivalent.

This correlated scenario is also important in another sense. Consider the

selection gains available from selecting a few antennas from a densely packed

array of a large number of antennas confined to a fixed space. In this situation,

the columns become correlated due to the small antenna spacing. As more
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antennas are packed into the space there are now two opposing factors: the

selection gain due to greater choice versus the increased correlation between

the columns.

To explore this situation in detail, we consider an equi-spaced linear array

of both fixed and variable length. The decorrelation distance is assumed to be

half a wavelength so that the correlation between channel coefficients separated

by half a wavelength is ̺(0.5) = 0.5. We use the well-known simple exponential

model for correlation [68], where ̺(d) = exp(−ad) and choose a to match the

decorrelation distance. With this correlation model we compatre the relative

performance of OSA and NSA and also investigate the competition between

reduced spacing and antenna numbers.

Figure 3.17 shows the mean capacities achieved by NSA, OSA and ASA in

a (4,8) choose (4,4) and (2,4) choose (2,2) system where the transmitter picks

half of the total available antennas. The x-axis is the total antenna array span

in wavelengths (λ), and as predicted, when the intra-antenna spacing is small

the three methods converge. For systems of this size NSA works acceptably,

giving more than 70% of the gains of OSA over ASA.

Figure 3.18 shows a more complex scenario. In Fig. 3.18, we consider

(4,N) choose (4,4) and (2,N) choose (2,2) scenarios, where the N antennas

are constrained to a total array length of one wavelength. Figure 3.18 shows

the increasing superiority of OSA over NSA and the potential decrease in

performance of NSA as N increases. This is caused by two key effects. The

first effect is the ability of OSA to use the correlation structure of the channel,

whilst NSA cannot. The second effect is the fact that in the presence of

heavy correlation NSA tends to select consecutive antennas since the antenna

with the highest norm is often surrounded by others with similar high norms.

However, due to the high correlation between selected antennas, the channel

gains are similar, leading to reduced capacity. Hence, in densely packed arrays

or other highly correlated scenarios, NSA needs to be adjusted to account for

correlation patterns in addition to the simple norms.
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3.6 Summary

In this chapter we have shown that antenna selection can provide significant

gains in a system, with NSA being a benchmark algorithm. Although not as

effective as OSA, it is similar in performance and is considerably simpler to

implement. Also, at low SNRs the combination of NSA and PMWF provides

gains which are superior to OSA. We also show that a closed form analysis for

NSA is possible which results in a robust power scaling approximation to the

capacity. The beauty of this power scaling approach is its generality and its

ability to gauge the effect of selection in a single finite number.
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Chapter 4

Multiuser MIMO: Broadcast

Channel Capacity

Up to now, the vast majority of work on the MIMO-BC has made the basic

assumption that the users have equal SNR. In practise this is very unlikely

if the multiple users are not co-located. In this chapter, we focus on the

MIMO-BC where the users are located separately and thus experience different

SNRs due to distance and shadowing effects. We compare this scenario to the

equal SNR case. The unequal SNR effects have a considerable impact on

the capacity and also the relative merits of different broadcast algorithms.

Furthermore, with the sometimes considerable variations in SNR comes an

increasing likelihood that the capacity allocations are highly unequal. Thus,

fairness becomes an increasingly important concern. Hence, in this chapter,

our focus includes the effects of shadowing and also subsequent fairness issues.

The key algorithm we use in this chapter is ITWF developed by [16] and

implemented for the MIMO-MAC with sum-power constraints by [17]. This is

proven to provide the optimal capacity for any MIMO-BC system [17]. In [17]

the iterative algorithms are used to find the sum-rate of a MIMO-BC channel.

These ITWF methods are complex and do not result in a fair sharing of the

resources at lower SNRs. Recently researchers have derived the capacity for

the MIMO-BC with the perfectly fair approach of each user achieving the same

capacity [40]. Again the approach is complex, and in scenarios with variable

73
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SNRs it may offer considerably less capacity than the higher SNR users would

expect. Thus, we look at simpler techniques which could approach ITWF

capacity but with lower complexity and reasonable fairness to all users at a

variety of SNRs.

Eigenbeamforming is one alternative method to ITWF in which multiple

antennas and the transmitter and receiver can be used to provide array and

diversity gains in place of capacity gains [72]. In BF, transmission takes place

across one or more eigenchannels. Another alternative is antenna selection

which provides a cost effective solution to the increasing hardware needs of

MIMO systems [33] (see Chapter 3). Antenna selection can be applied to

either or both ends of the MIMO link. In previous chapters we considered

transmit and receive antenna selection methods for a single user system. The

single user analysis gave a simple power scaling factor as a good approxima-

tion to the effect of the selection methods. These methods can also be applied

to multiple user systems. In addition to BF and selection, we also consider a

baseline case where the transmitter sends independent signals to each user with

an equal share of the power. The above methods provide a useful hierarchy of

complexity beginning with ITWF, being the most complex, requiring extensive

processing at the transmitter and full channel feedback. BF requires less pro-

cessing and feedback whilst the selection algorithms are simple in comparison.

The baseline case requires no feedback nor extra processing.

For a direct comparison of these methods we employ the same analysis

philosophy of Chapter 3. This gives us a set of approximately “equivalent”

single-user capacities with varying SNR and system size.

We begin this chapter by defining a number of algorithms that we use

in our analysis and simulations. We then develop an equivalent single user

analysis for these algorithms. We continue with a section on MIMO-MAC

design and algorithm complexity analysis. We finish the chapter with a set of

comprehensive simulated results and discussion of these results.



4.1. Performance Metrics and Algorithms 75

4.1 Performance Metrics and Algorithms

For the multiuser MIMO case two key metrics of link performance are link

throughput and fairness. To evaluate link throughput, we consider the sum

capacity of ITWF along with the sum-rates of the suboptimal approaches.

From the viewpoint of the dual MIMO-MAC, we can write the sum capacity

as [17], [16], (see Sec. 2.3.1)

C = max
Q1,...,QK

log2

∣∣∣∣∣I t +

K∑

i=1

H
†
iQiH i

∣∣∣∣∣ bps/Hz, (4.1)

where the maximization in (4.1) is performed over all positive, semi-definite

matrices, Qi, that satisfy
∑K

i=1Tr(Qi) ≤ P where P is the total power avail-

able to the system. When we use the suboptimal algorithms to select the Qi

matrices in (4.1), then an achievable rate is obtained.

The other key metric we consider in this chapter is that of the ‘fairness’ of

each proposed allocation strategy. The fairness metrics considered are outlined

in Sec. 2.3.4.

4.1.1 Iterative Waterfilling

Iterative waterfilling has been shown in [17] to achieve the sum-capacity of

both the MIMO-BC and MIMO-MAC channels. Using the duality properties

discussed in [19], we can perform ITWF in the MAC domain and can convert

the resulting Qi matrices to optimal Σi matrices for use at the BC transmitter.

This approach avoids the direct optimization problem in the BC domain, which

is non-convex and highly difficult to solve.
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4.1.2 Equal Power Independent Uncorrelated Transmis-

sion

Equal Power Independent Uncorrelated Transmission, or EPIUT, is the sim-

plest suboptimal power allocation method. In the MIMO-MAC this consists

of setting Qi =
P

Kri
Iri and if performed in the MIMO-BC, Σi =

P
Kt

It. This

method acts as a convenient benchmark to the performance of all algorithms

as it is a convenient baseline approach requiring no transmit processing and

no CSI at the transmitter. As we have noted, EPIUT can be performed in

both the MIMO-MAC and MIMO-BC domains. However, we have found that

EPIUT in the MIMO-MAC produces a slightly better mean rate as compared

to MIMO-BC EPIUT (see Sec 4.3) and thus we use it in this thesis. We then

use duality principles to find the equivalent MIMO-BC covariance matrices.

4.1.3 Beamforming Techniques

Like the simple EPIUT, we can implement BF in either MIMO-MU domain.

However, like EPIUT, we found that the BF implementation in the MIMO-

MAC domain achieved higher rates in the systems applicable to this thesis.

Thus, we consider only BF in the MIMO-MAC and we need to use duality to

determine the MIMO-BC.

Beamforming in the MIMO-MAC consists of user i transmitting ℓi symbols

along the ℓi principal eigenvectors. More specifically, user i selects the top

ℓi ≤ min(ri, t) eigenchannels which have eigenvalues λ
(i)
1 > λ

(i)
2 > · · · > λ

(i)
ℓi
.

Note that these are the ordered eigenvalues of the ri×ri matrix H iH
†
i . Then,

beamforming results if a Qi matrix is used, defined by

Qi =
[
v
(i)
1 v

(i)
2 . . .v

(i)
ℓi

]
P i

[
v
(i)
1 v

(i)
2 . . .v

(i)
ℓi

]†
(4.2)

where P i = diag(Pi1, Pi2, . . . , Piℓi) is a diagonal matrix which allocates powers

to the eigenchannels and v
(i)
j denotes the eigenvector of H iH

†
i corresponding
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to λ
(i)
j . We consider both Pij constant and Pij ∝ λ

(i)
j as power allocations in

this thesis.

One of the key decisions we make in the BF approach is choosing the

number of eigenchannels to be employed by each user. We use two approaches

here. The first, denoted BF2, is a fair (in terms of user fairness) approach

where each user selects their L largest eigenchannels (L ≤ min(r1, r2, . . . , rK)).

The other approach, denoted BF1, selects the best L′ eigenchannels from the

system irrespective of the user and performs beamforming across these.

4.1.4 Selection Techniques

Selection can be split into two distinct categories: user selection and antenna

selection.

User Selection

A sensible approach to user selection is to select the user(s) with the highest

single-user capacity(s). This would mean that the selection process involves

waterfilling, which is complex, time consuming and requires a high degree of

feedback. Thus, we also use a suboptimal selection approach, where users are

selected based on the size of the single-link gain, ‖H i‖2F . This is denoted SLG.

Note that this requires much less system feedback than waterfilling as only the

link gains need to be fed back. Once the user(s) are selected, it is assumed

that EPIUT is used. It is important to note that user selection is inherently

unfair as only a subset of the users are active at any one time.

Antenna Selection

In a multiuser broadcast system, antenna selection can take two distinct forms.

The first, which we denote S2, is where each user performs selection indepen-

dently, picking their best L antennas (L ≤ min(r1, r2, . . . , rK)) and allocating

a fair share of the total power across the selected antennas evenly. Note that
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this approach is fair in terms of users. The other approach is performance

based and selects the best L′ antennas of the entire system irrespective of the

user. We denote this S1. For simplicity the antennas are selected using NSA

rather than OSA. Hence, user i ranks antenna j first if row j of H i has the

largest row norm, denoted Γiαij = ‖(H i)j.‖2, where (H i)j. is row j of H i.

The ordered row norms are thus denoted by Γiαi(1) > · · · > Γiαi(ri). As with

the beamforming approaches, power allocation is also an issue and to address

it, we take the same two approaches as beamforming. Thus a selected antenna

for user i, for example antenna j, can be allocated power Pij where Pij is either

a constant or Pij ∝ Γiαij.

4.2 Equivalent Single-user System Analysis

We now attempt to analyze the algorithm defined in Sec. 4.1.

Due to the high complexity and iterative nature of the optimal iterative

waterfilling solution, little analytical progress can be made and thus we have

to use simulations instead. For most other approaches we can achieve further

insight by converting the systems in to their “equivalent” single-user forms.

From these, we can employ well-known and established capacity results. The

dimensions of an “equivalent” single-user MIMO system with nr receiver an-

tennas and nt transmitter antennas are denoted by (nr, nt).

4.2.1 Equal Power Independent Uncorrelated Transmis-

sion

With the EPIUT approach the MIMO-MAC gives us Qi = P
Kri

Iri . In the

special case where ri = r and Γi = Γ for all users then (4.1) yields the rate R

where

R = log2

∣∣∣∣I t +
PΓ

Kr
U †U

∣∣∣∣ bps/Hz, (4.3)
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with U =
[
U

†
1 . . .U

†
K

]
, where U i are r × t i.i.d. CN(0, 1) matrices. The

resulting rate is that of a single-user MIMO system with t transmit antennas

and Kr receive antennas (i.e. a (Kr, t) system) with equivalent SNR = PΓ

for an i.i.d. Rayleigh channel. In more general cases with differing link gains

(Γi) or antenna numbers, we can still express these in a single-user system

although the channel is no longer i.i.d. Instead the rate equation is

R = log2
∣∣IM +U †D1U

∣∣ bps/Hz, (4.4)

with U defined as above and block diagonal matrix D1 made up of K diagonal

matrices of the form PΓi

Kri
Iri . We can compute the mean rate for such a system

using the techniques explained in Sec. 2.9.

4.2.2 Beamforming Techniques

We can construct a basic approximation to beamforming in the following way.

For simplicity, we only show the approach for the BF2 case with L = 1 will

be shown (this is where the user communicates over their maximum eigen-

channel). In this case (4.2) collapses neatly to Qi = v
(i)
1 Pi1v

(i)†
1 . Consider the

SVD, H i = V i Si W
†
i , with the principal ri × ri submatrix of Si given by

diag

(√
λ
(i)
1 , . . . ,

√
λ
(i)
ri

)
and v

(i)
1 is the first column of V i. Now substituting

Qi as well as the SVD for H i into (4.1), we can write

R = log2

∣∣∣∣∣IM +
K∑

i=1

W
†
i diag(Pi1λ

(i)
1 , 0, . . . , 0)W i

∣∣∣∣∣

= log2
∣∣IM +W †D2W

∣∣ bps/Hz, (4.5)

where W † =
[
(W †

1).1 (W †
2).1 · · · (W †

K).1

]
is a t × K matrix containing the

first columns of the W †
i matrices andD2 = diag(P11λ

(1)
1 , . . . , PK1λ

(K)
1 ). Due to

the nature of the SVD, W † contains independent columns with column norms
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equal to 1. Hence we can find a rough approximation by replacing (4.5) with

R = log2
∣∣IM +U †D3 U

∣∣ bps/Hz, (4.6)

where U : K×t is i.i.d. CN(0, 1) and D3 = D2/t. Note that in (4.6) the singu-

lar matrix S, containing the singular vectors, is replaced by an i.i.d. Gaussian

matrix with the same mean and column power. This analysis is accurate to

within 10% for reasonable channel models due to the approach in [73], where

it is shown that the mutual information of a system is more dependent on the

moments of the channel distribution rather than the distribution itself.

4.2.3 Selection Techniques

We can handle user selection that is based on link gain (SLG) using the ap-

proach developed in previous chapters. For simplicity, we consider the easiest

case where ri = r for all users. The link gain for the ith user is then Γiαi =

Γi

∑r
j=1 αij = ΓiYi, where Yi has a complex χ2 distribution with rt degrees of

freedom. Thus, the selected user’s link gain is gmax = max(Γ1Y1, . . . ,ΓKYK).

Our approach is to create an equivalent r × t channel matrix for the chosen

user, Hequiv =
√
E(gmax)/(rM)U , which has the same mean link gain as the

original user and U is i.i.d. CN(0, 1). This gives the rate

R = log2

∣∣∣∣It +
E(gmax)

rt
U †U

∣∣∣∣ bps/Hz . (4.7)

Also note that we can obtain E(gmax) using standard order statistic results for

non-identical independent random variables.

Our approach for antenna selection methods is very similar. We now de-

scribe our approach for the S2 method with L = 1 but the methodology can

also be applied to all other cases. In S2 (with L = 1), user i selects antenna j if

αij = max(αi1, . . . , αiri) and allocates power Pij. This results in a correspond-

ing matrix Qi = diag(0, . . . , Pij, . . . , 0) with the non-zero entry in position j.
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However, for the special case of L = 1 we can further simplify the notation by

denoting the jth row of H i by hi, dropping the j subscript in Pij and using

the order statistic notation αi(1) for the maximum row norm. Substituting for

Qi in (4.1), we can write

R = log2

∣∣∣∣∣It +
K∑

i=1

Pi h
†
i hi

∣∣∣∣∣ bps/Hz. (4.8)

Using techniques from Chapter 3, we can replace the rows hi by
√

ΓiE(αi(1))ui,

where ui is an i.i.d. CN(0, 1) vector and (4.8) becomes

R = log2
∣∣It +U †D4 U

∣∣ bps/Hz . (4.9)

where U is a K ×M i.i.d. CN(0, 1) matrix and

D4 = diag[P1Γ1E(α1(1)), . . . , PKΓKE(αK(1))].

Note that we can obtain the values of E(αi(1)) by using the same methods as

those employed to find Pav in Chapter 3.

4.2.4 System Comparison

Of the equivalent systems constructed, only (4.3) and (4.7) are in the form of

rates for i.i.d. MIMO channels. The remaining equivalent systems, e.g., (4.4),

(4.5), (4.6) and (4.9), have diagonal Di matrices in the quadratic forms. This

form of log determinant can be analyzed [74], but we achieve greater insight by

converting all of the cases to approximate single-user MIMO systems in i.i.d.

channels. Hence we construct approximations to these systems by replacing

Di by E{Tr(Di)/νi} Iνi, where νi is the dimension of Di. Using this approach,

we can compare the different algorithms in terms of a single equivalent SNR

and dimension, as shown in Table 4.1. Note that the terms, constant and

proportional used in Table 4.1 refer to the power allocation method used, which
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Method
Dimension
(nt, nr)

Equivalent SNR

EPIUT
(ri = r,Γi = Γ)

(Kr, t) PΓ

EPIUT
(general case)

(∑K
i=1 ri, t

)
P
K

∑K
i=1 Γi

BF2
(constant)

(KL, t) P
K

∑K
i=1 ΓiE

[∑L
j=1 λ

(i)
j

ML

]

BF2
(proportional)

(KL, t) P
K

∑K
i=1 ΓiE

[∑L
j=1 λ

(i)2
j

t
∑L

j=1 λ
(i)
j

]

SLG (ri, t) E(gmax)/t
S2
(constant)

(KL, t) P
K

∑K
i=1 ΓiE

[∑L
j=1 αi(j)

Lt

]

S2
(proportional)

(KL, t) P
K

∑K
i=1 ΓiE

[ ∑L
j=1 α

2
i(j)

t
∑L

j=1 αi(j)

]

Table 4.1: Equivalent MIMO Systems

can be constant or proportional to the eigenvalues (in BF1 and BF2) or the

row norms (in S1 and S2). Table 4.1 gives the approximations:

R ≈ log2

∣∣∣∣IM +
SNR

nt
U †U

∣∣∣∣ bps/Hz, (4.10)

where SNR and nt are from Table 4.1 and U is nt × t.

Using the equivalent system SNR values from Table 4.1 and the mean ca-

pacity calculations from Sec. 2.9, Figs. 4.1 and 4.2 show that the equivalent

SNR formulations are a very good approximation to the actual sum-rate even

in the case of highly variant individual SNRs. One key point to note from

Table 4.1 is that the equivalent SNR of selection is less than that of beam-

forming. This is due to the fact that S2 and BF2 tend to become efficient when

the leading norms or eigenvalues dominate. Since leading eigenvalues tend to

dominant more than dominant row norms, BF2 gives better performance and

a higher equivalent SNR than the S2 case. This point is reinforced in the ma-

jority of the figures in this chapter. Note that both the equivalent SNR and
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Figure 4.1: Comparison between simulation (Sim) and equivalent SNR ap-
proximation (Aprx) for BF2 and S2 algorithms (SNRav = 10dB, (2,4) three
user system with shadow fading effects).

the system dimension need to be taken into account when comparing systems.

4.3 MAC Design

Throughout the chapter we have used various suboptimal covariance matri-

ces, based on EPIUT, selection and beamforming. In all cases these matrices

were constructed for the MAC and transformed to the BC using the duality

results in [19]. Intuitively, designing the Qi matrices is easier, since the users

are decoupled in the MAC system. The BC design is hampered by intrin-

sic problems of interference, and the Σi matrices affect all users. Although

MAC design is not universally better than BC design, it is usually preferable

for typical system dimensions. We demonstrate this below for some simple

examples.

We consider the S2 approach where the best single antenna is selected. In

the MAC this makes perfect sense. Each user selects a single antenna leading
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Figure 4.2: Comparison between simulation (Sim) and equivalent SNR ap-
proximation (Aprx) for BF2 and S2 algorithms (SNRav = 10dB, (4,4) three
user system with shadow fading effects).

to a BC channel with nt transmit antennas and K single antenna users with

optimized links to the BS. For the BC, we choose one antenna at the BS for

each user to maximize the link. It is possible that one antenna maximizes the

link for all users. This is not a practical solution as the dimensionality of the

resulting system (i.e. 1 transmit antenna) cannot support K users. Hence,

simple selection works at the MAC end but more complex versions would be

required in the BC.

Next, we consider the EPIUT approach. For ease of exposition, we assume

two users with nr antennas. Furthermore, we let both users have the same link

strength and undergo i.i.d. Rayleigh fading. This scenario gives:

CMAC = log2

∣∣∣∣I +
1

nr

H
†
1H1 +

1

nr

H
†
2H2

∣∣∣∣ bps/Hz (4.11)
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and

CBC = log2

∣∣∣∣I +
1

nt
H1H

†
1

∣∣∣∣

− log2

∣∣∣∣I +
1

nt

H2H
†
2

∣∣∣∣

+ log2

∣∣∣∣I +
2

nt
H2H

†
2

∣∣∣∣ bps/Hz, (4.12)

since Q1 = Q2 =
1
nr
I and Σ1 = Σ2 =

1
nt
I. The mean capacities are

E{CMAC} = E

[
log2

∣∣∣∣I +
1

nr

(
H

†
1H

†
2

)(H1

H2

)∣∣∣∣
]

bps/Hz (4.13)

and

E{CBC} = E

[
log2

∣∣∣∣I +
2

nt
H2H

†
2

∣∣∣∣
]

bps/Hz, (4.14)

since the first two terms in (4.12) cancel out. From (4.13) and (4.14) we observe

that the MAC has the capacity of a single user system of dimension (nt×2nr)

and an SNR of 2. The BC system has an equivalent dimension of (nr×nt) and

an SNR of 2. The number of channels available in the MAC is min(nt, 2nr) and

the number in the BC is min(nr, nt). Hence the two systems have the same

SNR and the MAC has a greater or equal number of channels. In general,

therefore, the MAC has a higher capacity. This is not always true, since for

small nt and large nr the number of channels is the same and the BC system

has nr receive antennas and benefits from diversity. This is not a particularly

useful scenario since small nt, large nr, K > 1 leads to an overloaded BC

system. Our simulation results show that the BC superiority can be achieved

but only in asymmetric cases, where the total number of receive antennas is

around three times higher that the number of transmit antennas. In such

scenarios EPIUT is impractical, and so the MAC design is the best approach

in realistic cases.
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4.4 Complexity Analysis

Although ITWF provides optimal performance, it is a highly complex algo-

rithm. The most complex step in ITWF (see Sec. 2.11.5) is the SVD. This

can be made linear with respect to the number of users [17] by taking the SVD

of each effective channel separately. This leads to a complexity per iteration of

approximately O(Kr3). The other complex processes such as calculating the

effective channels can be streamlined as discussed in [17].

The other algorithms we use are more straightforward. BF is the next com-

plex as it needsK eigendecompositions each of O(t3) and a sort of O(Kt log(Kt)).

Although the order of BF is slightly more that that of ITWF, we only need

one iteration, making it considerably more straightforward. Selection follows

with row norm calculations and a sort, leading to a complexity of O(Krt) (see

Sec. 3.4). EPIUT is very simple by comparison and requires no computations

at all.

4.5 Simulation Results

The baseline system we used for simulations is a 2×4 MIMO-BC system with

varying numbers of users. Shadowing and path loss effects are included in some

results. Definitions of these effects can be found in Sec. 2.12.1. The constant,

A, in (2.53) is adjusted so that the mean user SNR, SNRav, is either 0dB or

10dB as specified in each plot. Also, we considered 2×8 and 4×4 MIMO-BCs,

each with 3 users.

The methods we simulated include ITWF, EPIUT (also referred to as EP),

S1 (best K antennas), S2 (best antenna per user), BF1 (best K eigenchannels)

and BF2 (best eigenchannel per user). We also show proportional power allo-

cation versions of S1 and BF1. We denote these S1P and BF1P respectively.

It is important to note the different flavours of SNR used: SNRav represents

the mean user SNR defined above, Γi is the SNR of user i, and SNR with no
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subscript represents the SNR for the case where there is equal SNR for each

user.

We display the results on two types of graph. The first is a standard

CDF, from which the statistical performance of the algorithms can be simply

compared. Examples of this type of graph include Figs. 4.4, 4.18 and 4.21.

The second set of graphs, which are shown in Figs. 4.7, 4.8, 4.9 and 4.10,

show the effects of changing the relative link gains (Γi) of two links in the

cellular environment. They compare the performance of certain algorithms

with the optimal ITWF capacity. The x axis of these graphs corresponds to

the y axis of the c.d.f. in Fig. 4.3 (with R = 100 and R0 = 10). This c.d.f. is

then inverted to give a value of Γ1/Γ2 and this ratio is used in the capacity

simulations. For example, at x = 0.5 in Fig. 4.7 we invert the c.d.f. in Fig. 4.3

to obtain Γ1/Γ2 = 0dB. Hence all channel pairs where Γ1/Γ2 ≈ 0dB are used

to simulate capacity. The final percentage capacity is the average percentage

capacity for all simulations where Γ1/Γ2 ≈ 0dB. Note that the distribution

of this ratio is given in both Sec. 2.12.1 and Appendix A. The first notable

point about these graphs is their symmetry around P (Γ1/Γ2 < x) = 0.5. This

relates to symmetry about Γ1 = Γ2 due to the fact that Γ1 and Γ2 are i.i.d.

variables. Thus, to read these graphs only one half needs to be considered.

As an example, consider Fig. 4.8. Look at the BF2 algorithm relative to the

EP algorithm. These lines cross at approximately P (Γ1/Γ2 < x) = 0.17.

Therefore, taking into account the symmetry of the graphs, EP is greater than

BF2 approximately 34% of the time and conversely BF2 is greater than EP

for approximately 66% of the time in this scenario. Also note that this is an

average result. At each point, Γ1/Γ2 = x, there are many values of Γ1 and Γ2

which give the same value of x. Hence the curves are averages over all such

simulated points. In practice, this is achieved by binning all pairs of (Γ1,Γ2)

values in a small region around Γ1/Γ2 = x. However, in reading these graphs

there are a couple of points of note:

1. At the edges, the relative mean SNR of the samples is inflated compared
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to SNRav, the desired average SNR. This is due to the fact that, in gen-

eral, samples with a large ratio of Γ1/Γ2, have either Γ1 or Γ2 significantly

greater than SNRav.

2. The center, where Γ1 = Γ2, should not be confused with an i.i.d. Rayleigh

system. It is equivalent to the mean of a number of Rayleigh systems

each with a different SNR = Γ1 such that their mean is SNRav.
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Figure 4.3: CDF of the ratio Γ1/Γ2 for different values of R and R0.
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Figure 4.4: Algorithm comparison for a (2,4) two user system (SNRav = 10dB,
no shadow fading effects).
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Figure 4.5: Algorithm comparison for a (2,4) two user system (SNRav = 10dB,
shadow fading effects).
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Figure 4.6: Algorithm comparison for a (2,4) two user system (SNRav = 0dB,
shadow fading effects).



4.5. Simulation Results 91

0 0.2 0.4 0.6 0.8 1
60

70

80

90

100

P(Γ
1
 / Γ

2
 < x)

P
er

ce
nt

ag
e 

of
 IT

W
F

 C
ap

ac
ity

 

 

S1
BF1
EP

Figure 4.7: Algorithm comparison for a (2,4) two user system for varying ratios
of link gain (SNRav = 10dB).
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Figure 4.8: Algorithm comparison for a (2,4) two user system for varying ratios
of link gain (SNRav = 10dB).
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Figure 4.9: Algorithm comparison for a (2,4) two user system for varying ratios
of link gain (SNRav = 0dB).
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Figure 4.10: Proportion power allocation algorithm comparison for a (2,4) two
user system for varying ratios of link gain (SNRav = 10dB).
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Figure 4.11: Algorithm comparison for a (2,4) three user system (SNRav =
10dB, no shadow fading effects).
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Figure 4.12: Algorithm comparison for a (2,4) three user system (SNRav =
10dB, shadow fading effects).
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Figure 4.13: Algorithm comparison for a (2,4) three user system (SNRav =
0dB, shadow fading effects).



4.5. Simulation Results 95

10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

Sum Rate (bps/Hz)

C
D

F

 

 

ITWF
EPIUT
S1
BF1
S2
BF2
S1P
BF1P

Figure 4.14: Algorithm comparison for a (2,4) six user system (SNRav = 10dB,
no shadow fading effects).
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Figure 4.15: Algorithm comparison for a (2,4) six user system (SNRav = 10dB,
shadow fading effects).
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Figure 4.16: Algorithm comparison for a (2,4) six user system (SNRav = 0dB,
shadow fading effects).
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Figure 4.17: Algorithm comparison for a (2,8) three user system (SNRav =
10dB, no shadow fading effects).
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Figure 4.18: Algorithm comparison for a (2,8) three user system (SNRav =
10dB, shadow fading effects).
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Figure 4.19: Algorithm comparison for a (2,8) three user system (SNRav =
0dB, shadow fading effects).
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Figure 4.20: Algorithm comparison for a (4,4) three user system (SNRav =
10dB, no shadow fading effects).
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Figure 4.21: Algorithm comparison for a (4,4) three user system (SNRav =
10dB, shadow fading effects).
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Figure 4.22: Algorithm comparison for a (4,4) three user system (SNRav =
0dB, shadow fading effects).
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4.5.1 Results Overview

The previous figures showed a considerable subset of MIMO-BC systems of

different sizes and in different conditions. A number of key points arise from

these figures.

Firstly, the shape of the CDF graphs are split into two distinct types. In the

absence of shadowing Figs. 4.4, 4.11, 4.14, 4.17 and 4.20 show the well-known

approximately Gaussian CDF shape. The equivalent systems with shadowing

(Figs. 4.5, 4.12, 4.15, 4.18 and 4.21) show a very different shape to averaging

over the Γi variables. These are similar to those found in [57].

Next, our comparison of the algorithms in the various scenarios leads to

a discussion on the issue of performance versus fairness. We consider fairness

issues in detail in Sec. 4.5.2. Also, the use of proportional power appeared in

the results. We discuss this in detail in Sec 4.5.3, covering both selection and

beamforming algorithms.

4.5.2 Performance vs. Fairness

In this thesis we measure fairness in a number of ways as discussed in Sec. 2.3.4.

One measure is the number of active subchannels. This is a key metric as it

shows how many subchannels are closed and how many are open for commu-

nication. Note that a high number of subchannels in some circumstances does

not necessarily mean a high number of users are available for active communi-

cation as the channels may come from the same user. However, Fig. 4.23 shows

that these two measures of fairness are closely linked for the ITWF algorithm.

With ITWF being the only algorithm with a variable (var) amount of open

subchannels, it provides more flexibility for the algorithm to be fairer/less fair

depending on the system state as shown in Fig. 4.23. The decreasing flexibility

of S1 and BF1 means that they are less able to adjust their fairness to maximize

performance which is highlighted especially in the high SNR Rayleigh cases

(Figs. 4.4, 4.11, 4.14, 4.17 and 4.20). The complete lack of flexibility and full
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Algorithm No. OS No. AU
ITWF var var
S1 3 var
BF1 3 var
S2 3 3
BF2 3 3

Table 4.2: Number of Active Users (AU) and Open Subchannels (OS) Available
to Various Algorithms for Simulated (2,4) Three User Systems

user fairness of the S2 and BF2 algorithms hampers their ability to maximize

performance in nearly all scenarios. On the positive side, S2 and BF2 are

completely fair algorithms in terms of active users. The flexibility/lack of

flexibility of certain algorithms is summarized in Table 4.5.2.

An important trend to note with the performance/fairness tradeoff is that

the algorithms with a similar fairness/power allocation structure to ITWF in

a particular scenario tend to have near-optimal performance in that scenario.

This can be seen in the Rayleigh conditions, especially at moderate to high-

SNR, where EPIUT comes close to optimal capacity as both algorithms have

many subchannels and full active users in these cases (for examples, see Figs.

4.11, 4.17 and 4.14). In the other case, where there is a variable power al-

location and/or low-SNR, ITWF tends to allocate power to fewer users and

subchannels. In these cases S1 and BF1 become very close to optimal, as is

shown in Figs. 4.12, 4.13 and 4.22. This is also reflected in Figs. 4.7 and 4.8

where the S1 and BF1 algorithms tend to do well in a channel with greater dif-

ference in SNR between the two users. Note that S1 and BF1 match ITWF in

the extremes. S2 and BF2, however, do well in a channel where each user has

approximately equal link gains. A key point to note in comparing the EPIUT

approach with the S2 and BF2 approaches is that it has a higher dimensional-

ity (sending 6 rather than 3 symbols in a (2,4) 3 user case for example). This

increase in dimensionality yields better performance in most situations.
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Figure 4.23: Percentage of spatial channels open and active users for ITWF in
a (2,4) three user system for variable SNRav.

4.5.3 Proportional Power

The use of proportional power is also of considerable interest. In Sec. 3.2.6,

we showed that gains made by allocating power based on column norms have

a positive effect in low-SNR regions. However, this benefit is SNR dependent

and decreases with SNR to such an extent that it becomes a deficit at high

SNR. For the multiuser system, a similar effect happens. Figure 4.24 shows

that the S1 and BF1 algorithms both have good gains from proportional power

allocations at low SNR while this approach results in a deficit at high SNR.

The number of antennas per user1 does not have much bearing on the

gains/losses of proportional power allocations as can be seen by comparing

Figs. 4.12, 4.18 and 4.21. However, increasing the numbers of users tends

to increase the relative gains of proportional power, which can be seen by

comparing Figs. 4.5, 4.12 and 4.15. These effects are due to the fact that

proportionality decreases the fairness of an algorithm by encouraging allocation

1Note that all users in these results have the same number of antennas.
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Figure 4.24: Gains of proportional power allocation over fixed power allocation
for a (2,4) three user system (shadow fading effects).

to the best subchannels at the expense of the weaker ones. Thus, it is typical

to see the benefits of proportional allocation in situations which discourage

fairness, such as the low power per user case.

Figure 4.10 shows the effects of proportional power allocation where the

link gains are varied. The proportional algorithms perform well, outperforming

their non-proportional counterparts except at the edges. This is due to the

fact that, as noted before, the mean SNR at the edges is higher than SNRav,

and this causes the proportional power algorithms to provide deficits rather

than gains as highlighted above.

4.6 Summary

In this chapter we have studied the effects of shadowing and the performance

and fairness properties of a variety of MIMO-BC algorithms, both optimal

and suboptimal. As we have shown, shadowing can have a large impact on

both the relative and absolute performances of the algorithms as well as their
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fairness in distributing the channel resources. ITWF always achieves optimal

capacity, but sometimes at the cost of fairness, especially in shadowing and/or

low-SNR conditions. This is due to the fact that it tends to allocate all of the

resources to the dominant user. In contrast, the relatively simple selection and

beamforming algorithms can approach optimal sum-capacity whilst retaining

a higher level of fairness than ITWF for varying SNR conditions. Finally, we

have developed a new analytical approximation for the MIMO-BC capacity, by

breaking down the systems into power-scaled equivalent single-user channels.

This should prove to be a useful tool for better understanding the channels.



Chapter 5

Multiuser MIMO: Broadcast

Channel Capacity and

Modifications to the

Waterfilling Algorithm

A well-known problem in modern communications is that of maximizing the

mutual information of a channel composed of several subchannels subject to

a global power constraint [14, 75, 76]. These subchannels can range from fre-

quency bins in a frequency selective system to variations over time to spatially

parallel channels as found in MIMO systems. The solution to this problem is

also well-known and is given by the capacity-achieving waterfilling algorithm.

Waterfilling, or waterpouring as it is sometimes known, gets its name from

the visual interpretation of pouring a set amount of water over the inverse of

the subchannel gains (see Fig. 2.3). Many applications and variations of water-

filling now exist. A common example is to modify the waterfilling algorithm

to reduce the mean-squared error of a system [75, 77–80]. Other variations

can be used to maximize the minimum signal to interference and noise ratio

or minimize the bit error rate [81]. However, relatively few researchers [82]

have modified the waterfilling algorithm to increase multiuser system fairness

(fairness relative to system users rather than relative to individual channels).

105
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This is the focus of this chapter.

Two approaches to multiuser MIMO (MIMO-MU) capacity problems have

recently been investigated. The first is the maximization of the sum capacity

with no fairness constraints. These techniques typically employ waterfilling

on a multiuser scale, both under individual user power constraints [16] and

sum power constraints [17]. The key finding of Vishwanath et. al ’s on duality

[19] allows the convex optimization of the MIMO-MAC to be applied to the

MIMO-BC. These techniques were shown in Chapter 4 to lack fairness in some

circumstances. The second category is research focussed on fairness and quality

of service [83], at the expense of overall throughput. A good example is the

work by Lee et al.’s on symmetric capacity [40].

In this chapter, we propose modifications to the waterfilling algorithm

which increase fairness by encouraging the allocation of power into each sub-

channel. We approach this in two ways: firstly via a ‘hard’ minimum power

allocation which modifies the constraints of the waterfilling algorithm. This

approach is similar to previous work [82]. In addition we provide a brief anal-

ysis as well as an upper bound on the algorithm’s performance relative to

classical optimal waterfilling. The second, novel approach provides a ‘soft’

constraint by adjusting the waterfilling problem by using utility functions.

We can clearly see fairness issues on a channel-by-channel basis in the

conventional WF algorithm described in Chapter 2. The form of (2.45) in

Sec. 2.11.4 implies that the solution, x∗
i , may be zero at certain times. This

implies that a channel is zero or inactive, which may be undesirable in some

systems. In order to discourage this possibility, in this chapter we look at

various modifications to the waterfilling algorithm. However, note that the

main thrust of this work is multiuser fairness. We develop this from the single

user work described in Sections 5.1 and 5.2.
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5.1 Constraint Modification

In classic waterfilling,1 (2.42) is minimized subject to the constraints, 1Tx = 1

and xi ≥ 0. Changing or adding-to these constraint functions is one possible

modification to the waterfilling algorithm. In this chapter we look at the effects

of adding the constraints, xi ≥ u and xi ≤ w where 0 < u,w ≤ 1. Note that

u and w need to be such that a feasible point exists. Thus, a more practical

definition of u is that 0 < u ≤ 1/m and that w ≥ 1/m, where m is the number

of non-zero singular values of H as given in Sec. 2.11.4. Using the notation

in [54], the first KKT condition is that fi(xi) ≤ 0, where fi(x), i = 1, . . . , m

represent the inequality constraints [54].

It is easy to see that imposing minimum power constraints increases the

fairness of a system by giving power to channels which may have previously

been allocated none. However, it is not as easy to see that imposing maximum

power constraints also increases system fairness. It does this in two ways.

Firstly, imposing these constraints reduces the power in the dominant user.

Secondly, the power that was in the dominant user(s) is now redistributed

amongst the weaker users, increasing overall system fairness.

5.1.1 Minimum Power Constraints

For a minimum power constraint, we introduce the constraint xi ≥ u, which

is equivalent to fi(xi) = u − xi. Note that the constraint xi ≥ 0 is now

unnecessary. Using the new inequality in the KKT conditions gives:

u− x∗
i ≤ 0, 1Tx∗ = 1, ζ∗i ≥ 0,

ζ∗i (x
∗
i − u) = 0,

−1
αi + x∗

i

− ζ∗i + ν∗ = 0. (5.1)

1See Sec. 2.11.4
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Equating the 4th KKT condition in (5.1) with the 5th and using ζi as a slack

variable gives:

(x∗
i − u)

(
ν∗ − 1

αi + x∗
i

)
= 0, (5.2)

Equation (5.2) has solutions at x∗
i = u and ν∗ = 1

αi+x∗
i

. The latter gives the

standard waterfilling solution x∗
i =

(
1
ν∗
− αi

)
as long as x∗

i > u. We can see

that this holds as long as ν∗ < 1
αi+u

, and thus the final value of x∗
i can be

expressed as:

x∗
i =





1
ν∗
− αi, ν∗ < 1

αi+u

u, ν∗ ≥ 1
αi+u

. (5.3)

In (5.3), ν∗ can be found by using the 2nd KKT condition, so that
∑m

i=1max
{
u, 1

ν∗
− αi

}
= 1. This gives:

ν∗ =
k

1− (m− k)u+
∑

i∈κ αi
, (5.4)

where κ is the set of subchannels where ν∗ < 1
αi+u

and k is the number of

subchannels in this set. In practise we can solve this by adjusting the classical

waterfilling implementations to check if xi ≥ u rather than xi ≥ 0 to find a

valid solution.

5.1.2 Maximum Power Constraints

For a maximum power constraint2, we introduce the constraint xi ≤ w. This

is equivalent to fi(xi) = xi − w. Using this inequality in the KKT conditions

gives:

−x∗
i ≤ 0, xi − w ≤ 0, 1Tx∗ = 1,

ζ∗j,i ≥ 0, ζ∗1,ix
∗
i = 0, ζ∗2,i(x

∗
i − w) = 0,

−1
αi + x∗

i

− ζ∗1,i + ζ∗2,i + ν∗ = 0. (5.5)

2Due to the constraint 1
Tx = 1, a minimum power constraint introduces an effective

maximum power constraint of xi ≤ 1− u×m.
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where j ∈ {1, 2}, ζ1,i is the multiplier associated with xi ≥ 0 and ζ2,i the

multiplier associated with xi ≤ w. We consider three cases: x∗
i = 0, x∗

i = w

and 0 < x∗
i < w.

• x∗
i = 0

In this case, ζ∗2,i = 0 and thus the final KKT equation of (5.5) gives

ν∗ ≥ 1/αi due to the positivity of ζ∗1,i.

• x∗
i = w

In this case, ζ∗1,i = 0 and thus ν∗ ≤ 1/(αi + w).

• 0 < x∗
i < w

In this case, both ζ∗1,i = ζ∗2,i = 0, giving the classical waterfilling relation-

ship ν∗ = 1/(αi + x∗
i ).

These three cases lead to the solution:

x∗
i =





0, ν∗ ≥ 1
αi

1
ν∗
− αi,

1
αi+w

< ν∗ < 1
αi

w, ν∗ ≤ 1
αi+w

. (5.6)

This results in a value of ν∗ as follows:

ν∗ =
k

1− cw +
∑

i∈κ αi

, (5.7)

where κ is the set of subchannels where 1
αi+w

< ν∗ < 1
αi
, k is the number of

subchannels in this set and c is the number of subchannels where ν∗ ≤ 1
αi+w

.
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5.1.3 Dual Constraints and Practical Implementation

We can use both the constraints xi ≥ u and xi ≤ w at the same time. Using

derivations from Secs. 5.1.1 and 5.1.2 we get the result:

x∗
i =





u, ν∗ ≥ 1
αi+u

1
ν∗
− αi,

1
αi+w

< ν∗ < 1
αi+u

w, ν∗ ≤ 1
αi+w

. (5.8)

This gives a value of ν∗ as follows:

ν∗ =
k

1− cw +
∑

i∈κ αi
(5.9)

where κ is the set of subchannels where 1
αi+w

< ν∗ < 1
αi+u

, k is the number of

subchannels in this set and c is the number of subchannels where ν∗ ≤ 1
αi+w

.

To implement the dual constraint approach the following algorithm may be

used:

Algorithm 5.1 Waterfilling with Dual Constraints u,w

1: c← 0
2: Waterfill across all m channels with constraint xi ≥ u.
3: while max{x∗

i } ≥ w do
4: x∗

max ← w
5: c← c+ 1
6: Recalculate ν∗ from (5.9).
7: Waterfill across remaining m− c channels with constraint xi ≥ u.
8: end while

5.1.4 Perturbation and Sensitivity Analysis

In the convex optimization of waterfilling, strong duality3 holds [54]. Hence,

if we view the constraint, xi ≥ u, as a perturbation of the original constraint,

xi ≥ 0, an upper bound can be found to the solution of the modified waterfilling

3Strong duality means that the solution to the problem is both primal and dual optimal
[54].
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problem in terms of the the optimal capacity. Using the analysis in [54], we

can show that

p∗(u) ≥ p∗(0) +
m∑

i=1

ζ∗i u, (5.10)

where p∗(a) is the optimal value of (2.42) with the constraint xi ≥ a. Hence,

p∗(0) is the solution to the original problem. Converting this into capacity

results using (2.41) gives the upper bound:

C(u) ≤ Copt −
m∑

i=1

ζ∗i u, (5.11)

where Copt is the classic waterfilling solution and C(u) is the capacity with

inequality constraint, xi ≥ u. Examination of (5.11) leads to two key points:

1. The penalty in the upper bound is proportional to u. Thus increasing

u will tend to increase the difference between the optimal and modified

solutions.

2. The penalty increases with ζ∗i . From the original solution, ζ∗i 6= 0 only

if x∗
i = 0. Thus, if a channel has no power in the original system it will

cause the modified system be further from optimal.

To find ζ∗i , we set x
∗
i = 0 in the 5th KKT equation of the waterfilling problem.

This gives

ζ∗i = ν∗ − 1

αi
, (5.12)

where ν∗ is calculated from (2.47).

The upper bound in (5.11) using (5.12) is shown in Fig. 5.1 for a large

nr = nt = 12 (12× 12) single-user MIMO system with

ζ∗ = [0, . . . , 0, 0.7734, 2.1782, 3.5453, 4.5983, 4.7447]T. The size of the system

chosen for this example is large to ensure that some values of ζ∗i are positive,

and it also mimics a broadcast system with large t or K. The classical solution

to waterfilling is at u = 0 and equal power is at u = 1/12 = 0.0833. Note that

the bound becomes tight for low values of u which is the interesting case.
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Figure 5.1: Perturbation analysis for a 12×12 MIMO system with constraint-
modified waterfilling.

5.2 Utility Functions

In this section, in order to allow us to be able to adjust certain properties of

the waterfilling results, we maximize a modified capacity expression. Note that

in (2.42), the waterfilling solution can produce large xi values at the expense

of some channels where xi = 0. To increase fairness, xi in (2.42) is replaced

with a utility function, U(xi), which has the property of increasing small xi

values and reducing large xi values. This encourages fairness at the expense

of suboptimal capacity performance. This approach results in the following

optimization problem:

min

xi : xi ≥ 0,
∑m

i=1 xi = 1
−

m∑

i=1

log [αi + U(xi)] (5.13)
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for some non-negative function U(xi).
4 This leads to the following KKT con-

ditions for i = 1, . . . , m:

x∗
i ≥ 0, 1Tx∗ = 1, λ∗

i ≥ 0,

λ∗
ix

∗
i = 0,

−U ′(x∗
i )

αi + U(x∗
i )
− λ∗

i + ν∗ = 0. (5.14)

Evaluating the last two conditions gives us either x∗
i = 0 or, if x∗

i > 0, the

solution:

ν∗ =
U ′(x∗

i )

αi + U(x∗
i )
. (5.15)

We can now apply the generalized solution in (5.15) with a variety of utility

functions in order to see their effects on both capacity and fairness. The opti-

mization problem in (5.13)-(5.15) results in the power allocations, x∗
1, x

∗
2, . . . , x

∗
m.

These values are then used in (2.41) to compute the corresponding rate.

5.2.1 Nonlinear Utility Functions

In pursuit of utility functions that encourage channel fairness we start with the

straightforward case of U(xi) = xs
i for some value of s which is non-negative.5

Using (5.15), we find that

ν∗ =
s(x∗

i )
s−1

αi + (x∗
i )

s
. (5.16)

We need to solve Equation (5.16) to find x∗
1, x

∗
2, . . . , x

∗
m and hence the resulting

suboptimal rate. The solution of (5.16) is split into three cases: 0 < s < 1,

s = 1 and s > 1.

Case 1: s = 1: This is the special case of standard waterfilling, where

ν∗ = 1
αi+x∗

i

. The solution to this can be found using (2.45).

4Note that we concentrate on monotonic increasing utility functions.
5Negative s values are ruled out due to the non-concavity of log(αi + xs

i
).
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Case 2:6 s > 1: We define γ = s− 1 > 0 and rewrite (5.15) as:

(x∗
i )

1+γ −
(
1 + γ

ν∗

)
(x∗

i )
γ + αi = 0. (5.17)

Rearranging (5.17), we can write

(x∗
i )

γ

(
x∗
i −

1 + γ

ν∗

)
= −αi. (5.18)

From (5.18) we see that a real non-zero solution can only be found if

−αi >
min

x∗
i ∈ [0, 1]

{
(x∗

i )
1+γ − 1 + γ

ν∗
(x∗

i )
γ

}
. (5.19)

To find the minimum in (5.19), we differentiate (5.18) to give:

(1 + γ)(x∗
i )

γ − γ(1 + γ)

ν∗
(x∗

i )
γ−1 = 0. (5.20)

Rearranging (5.20), we have

(x∗
i )

γ(1 + γ)

[
1− γ

ν∗

1

x∗
i

]
= 0, (5.21)

which has the solutions x∗
i =

γ
ν∗

and x∗
i = 0. Using x∗

i =
γ
ν
in (5.19), we find

αi >
γγ

(ν∗)γ+1
. (5.22)

Note that if (5.22) does not hold, from (5.18) we see that x∗
i = 0, as is the

case sometimes in standard waterfilling.

Case 3: 0 < s < 1: We define δ = 1− s (s = 1− δ) and rewrite (5.15) as:

(x∗
i )

1−δ − 1− δ

ν∗
(x∗

i )
−δ + αi = 0. (5.23)

6For this case, log(αi+xs

i
) is not necessarily concave, and thus the answer is only locally

optimal in some cases.



5.2. Utility Functions 115

Rearranging (5.23), we write

x∗
i + αi(x

∗
i )

δ −
(
1− δ

ν∗

)
= 0

x∗
i + αi(x

∗
i )

δ =

(
1− δ

ν∗

)
. (5.24)

We can now solve Equation (5.24) using nested numerical methods, along with

the constraint 1Tx∗ = 1, to find both ν∗ and x∗. In certain special cases, such

as δ = 0.5, analytical solutions are also available. Inspection of case 3 leads to

Theorem 1.

Theorem 1. For the case where U(xi) = xs
i for 0 < s < 1, the solution is

fair, i.e. x∗
i 6= 0 for all i.

Proof. Take two values from the vector x∗; x∗
i and x∗

j , where i 6= j. Using the

fact that the right hand side of (5.24) is constant for all i, j, we have

x∗
i + αi(x

∗
i )

δ = x∗
j + αj(x

∗
j )

δ. (5.25)

Setting x∗
j = 0 in (5.25), we can write

x∗
i + αi(x

∗
i )

δ = 0

⇒ αi(x
∗
i )

δ = −x∗
i . (5.26)

Since, by definition, αi ≥ 0, x∗
i ≥ 0 and 0 < δ < 1, (5.26) only holds when

x∗
i = 0. This means that if x∗

j = 0, x∗
i = 0 and thus all values of x∗ are zero.

However by the optimization constraint, 1Tx∗ = 1, this cannot be the case

and thus x∗
i 6= 0 for all i.



116 Chapter 5. MIMO-MU: BC Capacity and WF

5.2.2 Linear Utility Functions

Another simple subset of viable utility functions are linear functions of the

form Ui(xi) = aixi + bi. Note that in its most general form, U(xi) need not be

the same for all i. However, not selecting a constant function, Ui(xi) = U(xi),

creates a very complicated solution in all situations except the linear case.

Substituting Ui(xi) = aix+ b into (5.15), we find that

ν∗ =
ai

αi + aix∗
i + bi

⇒ x∗
i = max

{
1

ν∗
− α̂i, 0

}
, (5.27)

where α̂i = αi−bi
ai

. Note the derivation of (5.27) is very similar to that of

classical waterfilling and is thus omitted.

A special case of linear utility functions is that where bi = 0 and ai = a > 1

for all i and thus α̂i = αi/a. Since, by definition, αi = 1/ρλi, a > 1 produces

waterfilling at a higher effective SNR. This is very beneficial to fairness as it is

well known that at high SNR, the fairness of waterfilling increases. However,

it does come at a detrimental cost to capacity.

5.2.3 Utility Function Example

In theorem 1, we showed that U(xi) = xs
i for 0 < s < 1 gives a fair allocation

of power. However, calculating the resulting capacity for an arbitrary value of

s requires nested numerical methods. For certain values of s we can remove

one level of numerical solution. For example, letting s = 0.5 gives U(xi) = x
1/2
i

and (5.15) becomes:

ν∗ =
(1/2)(x∗

i )
−1/2

αi + (x∗
i )

1/2
. (5.28)

Rearranging (5.28) and denoting yi = (x∗
i )

1/2 gives:

y2i + αiyi −
1

2ν∗
= 0. (5.29)
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Taking the positive solution of (5.29) gives:

yi =
−αi +

√
α2
i +

2
ν∗

2
,

x∗
i =



−αi +

√
α2
i +

2
ν∗

2



2

. (5.30)

The final step is using the optimization constraint, 1Tx∗ = 1, to calculate the

value of ν∗. This gives:

m∑

i=1



−αi +

√
α2
i +

2
ν∗

2



2

= 1. (5.31)

We must solve equation (5.31) numerically to find the multiplier ν∗ and then

(5.30) can be used to find x∗
i .

5.2.4 Concavity Preservation

The function −∑m
i=1 log (αi + xi), which appears in the original waterfilling

problem, is convex by nature. Hence, the special features of convex optimiza-

tion hold, including the fact that a local minimum is a global minimum. For a

utility function to give an optimization with the same properties, the function
∑m

i=1 log (αi + U(xi)) must be concave.

Theorem 2. The function g(xi) = log (αi + U(xi)) is concave if

(αi + U(xi))U
′′(xi) ≤ (U ′(xi))

2

for all xi ≥ 0.

Proof. The simplest test for concavity is that g′′(xi) ≤ 0 for all xi within the
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domain of the problem (dom x⇒ xi ≥ 0). Differentiating g(xi) we find

g′(xi) =
U ′(xi)

αi + U(xi)
,

g′′(xi) =
(αi + U(xi))U

′′(xi)− (U ′(xi))
2

(αi + U(xi))2
. (5.32)

Hence for g(xi) to be concave requires

(αi + U(xi))U
′′(xi) ≤ (U ′(xi))

2, (5.33)

for all xi ≥ 0.

Corollary 1. If U(xi) is real and non-negative for all xi ∈ dom x, then g(xi)

is concave if U ′′(xi) ≤ 0 for all xi ∈ dom x.

Proof. Since U(xi) is real and non-negative, (U ′(xi))
2 ≥ 0 for all xi ∈ dom x.

Noting that this also implies αi + U(xi) is real and positive, (5.33) can be

contracted to U ′′(xi) ≤ 0.

Corollary 2. If U(xi) is real, non-negative and linear for all xi ∈ dom x,

g(xi) is concave.

Proof. Use Corollary 1, noting the fact that since U(xi) is linear, U ′′(xi) =

0.

As an example let U(xi) = xs
i . Now (5.33) gives:

(αi + xs
i )(s(s− 1))xs−2

i ≤ s2x2s−2
i

αis(s− 1)xs−2
i + (s2 − s)x2s−2

i ≤ s2x2s−2
i

αis(s− 1)xs−2
i ≤ sx2s−2

i . (5.34)

This can be shown to hold for 0 ≤ s ≤ 1, never hold for s < 0 and hold only

for certain values of αi if s > 1.

Many functions can be proposed as utility functions. However they need to

preserve concavity and satisfy U(xi) ≥ 0, for all 0 ≤ x ≤ 1. More complicated
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functions may not lead to closed form solutions using the KKT conditions and

other techniques such as interior-point methods may be required [54]. Note

that the solutions found using any methods must be feasible for all αi > 0.

5.3 Multiuser Applications

Modifications to the waterfilling algorithm have been proposed to promote

fairness amongst the subchannels. In a single-user link this has limited ap-

plication, however in multiuser MIMO systems, fairness is a key issue. Thus

it is appropriate to use the modified waterfilling algorithms in the multiuser

domain. We consider the ITWF algorithm in [17]. To form a modified-ITWF,

we look at Algorithm 2 of [17]. Step 2 of this algorithm uses waterfilling over

a “single-user” effective channel G. We can replace this step with a modified

algorithm from Secs. 5.1 or 5.2.

5.3.1 Convergence Analysis

In order to ensure that ITWF works with the new utility function algorithms,

they must not affect the convergence properties of ITWF. This leads us to the

following theorem.

Theorem 3. Modified waterfilling using a utility function converges if the

function g(xi) = log [αi + U(xi)] is concave for all αi > 0.

Proof. This proof stems from the proofs of Theorems 2 and 3 of [17]. First we

note that the utility function modifications only change Step 2 of Algorithm 2.

Hence it is sufficient to show that the modified Step 2 has the same properties

as those in the original theorems.

Theorem 2 states that Algorithm 1 in [17] converges partly due to the

fact that the solution in the maximization in Step 2 has a unique solution.

It is straightforward to show that as long as g(xi) is concave, the properties
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of convex optimization apply, and amongst them is the fact that the solution

is globally optimal and unique. Thus, the modified waterfilling algorithm

converges if we use Algorithm 1.

The other feature of Algorithm 2 that is different from Algorithm 1 is

the averaging step. Theorem 3 of [17] states that Algorithm 2 converges if

Algorithm 1 converges, which we have just demonstrated, and if the averaging

step is non-decreasing. Noting that the function for optimization, f exp, as

defined in [17] and (5.35), is identical (only the definition of S has changed)

the proof in [17] can be used. The one difference between modified waterfilling

and the original is the possible non-concavity of the log det function. Thus,

for the proof in [17] to hold, f exp must be concave. In the modified waterfilling

case, we can write f exp as:

f exp =
1

K

K∑

i=1

log2

∣∣∣∣∣I +H
†
iS

(n)
i H i +

∑

j 6=i

H
†
jQ

(n−1)
j Hj

∣∣∣∣∣ ,

=
1

K

K∑

i=1

log2

∣∣∣I + Ĝ
†

iS
(n)
i Ĝi

∣∣∣ , (5.35)

where Ĝi = H i(I +
∑

j 6=iH
†
jQ

(n−1)
j Hj)

−1/2. Using (2.40), (2.41) and (5.13)

this becomes:

f exp =
1

K

Km∑

i=1

{
log2[α̂i + U(xi)] + log2(ρλ̂i)

}
, (5.36)

where α̂i = 1/ρλ̂i and λ̂i is the i
th eigenvalue of Ĝi. From (5.36) it can be seen

that f exp is concave if g(xi) = log2[α̂i + U(xi)] is concave. Thus the modified

version of Algorithm 2 converges since we have chose U(xi) to ensure this7.

Now we again look at waterfilling with modified constraints. For the mod-

ifications not to affect ITWF convergence, Step 2 of Algorithm 2 [17] must

7See Sec. 5.2.4.
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Figure 5.2: Capacity comparisons for a three user (2,4) MIMO-BC system.

result in a unique solution. Since waterfilling with modified constraints does

not change the convexity of the optimization problem, a unique solution will

exist if a feasible solution exists. Thus, in order for ITWF with modified

constraints to converge, the constraints must allow a feasible solution.

5.4 Simulation Results

All our simulations were carried out in a shadow fading environment using the

model in Sec. 2.12.1. The value, A, was adjusted to ensure that the mean

user SNR was equal to SNRav. We assume each user had the same number

of receive antennas, i.e. nri = nr = 2 for i = 1, . . . , m and nt = 4 (a (2,4)

system). We used the utility function U(xi) = xs
i with varying values of s as

indicated on the figures. We set the constraint value, u, at 10% of the equal

power allocation, u = 0.1ρ/Knr.

Figure 5.2 shows that using waterfilling in any form gives a sizeable gain

over equal power especially in the low-SNR region. Note that the results for
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Figure 5.3: Comparison of the number of active subchannels for a three user
(2,4) MIMO-BC system.
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Figure 5.4: Percentage power in the dominant subchannel (DS) for a three
user (2,4) MIMO-BC system.
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Figure 5.5: Percentage power in the dominant subchannel (DS) for ITWF
with a per-channel maximum power constraint for a three user (2,4) MIMO-
BC system.

s ∈ {0.7, 0.9} always give higher capacity than the extra constraint approach

and achieve more than 95% of ITWF capacity. However, this capacity comes

at a cost as seen in Fig. 5.3 which shows the number of active subchannels.

Although, by Theorem 1, all subchannels have xi > 0 for the utility function

case, xi can still be small. Thus, we define an active subchannel as one with

power xi ≥ 0.1ρ/Knr (more than 10% of the equal power allocation). Hence

the extra constraint solutions (which are not shown) have all 6 subchannels ac-

tive. From Figs. 5.2 and 5.3 we can see that decreasing s allows a considerable

increase in fairness with a reasonably small loss in capacity.

Another good measure of system fairness is the power in the dominant

subchannel as shown in Fig. 5.4. The utility function approach is less sensitive

to SNR and performs well in the low-SNR region. However, at high SNR,

classic ITWF and minimum power constraint ITWF become superior.

In Figs. 5.5 and 5.6 we examine ITWF with a maximum per-subchannel

power constraint. In the plots, w is the amount the constraint is above an
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Figure 5.6: Capacity comparisons for ITWF with a per-channel maximum
power constraint for a three user (2,4) MIMO-BC system.
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Figure 5.8: Percentage of ITWF capacity acheived in a two user (2,4) MIMO-
BC system for varying values of the link gains, Γi.

equal power allocation, ρ/Knr, with w = 1 being equal power. In the (2,4)

three user system shown, w = 6 is equivalent to having no constraint at all.

These figures show that maximum power constraints have an excellent effect on

reducing the power in the dominant subchannel but have a detrimental effect

on capacity, especially when the constraint is too tight. Figure 5.7 shows the

capacity comparison between a few dual constraint systems.8 It is key to note

that the maximum power constraints have a stronger detrimental effect on the

capacity than the minimum power constraints.

In Fig. 5.8 we compare the two new algorithms for a two-user MIMO-BC

system in a channel with differing link gains. In Fig. 5.8 the value of SNRav

is fixed by setting Γ1 + Γ2 = 2 but the relative sizes of Γ1 and Γ2 are varied.

The utility function, with U(xi) = x
1/2
i , performs better than the constraint

version for large differences in link gains. At approximately equal link gains

the constraint function approach outperforms the utility function.

Figures 5.9 and 5.10 show both the power in the dominant subchannel and

8Parameter u in these plots is also a function of ρ/Knr.
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Figure 5.9: Percentage power in the dominant subchannel (DS) for SNR-
adjusted ITWF for a three user (2,4) MIMO-BC system.
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Figure 5.10: Comparison of the number of active subchannels for SNR-adjusted
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Figure 5.11: Percentage gain over EPIUT for SNR-adjusted ITWF (standard
ITWF = 100%) for a three user (2,4) MIMO-BC system.

the number of active channels for SNR-adjusted ITWF. This is the case where

a linear utility function is used with the value U(xi) = axi as discussed in

Sec. 5.2.2. From the figures we see that adjusting the value of a can be viewed

as a simple SNR shift of a (dB) of the original ITWF values and an increase

in fairness. However, Fig. 5.11 shows that too large an increase in a can have

a large detrimental effect on capacity, especially at higher SNR values.

5.5 Summary

In this chapter we have proposed two modifications to the waterfilling algo-

rithm, based on ‘hard’ and ‘soft’ minimum power allocations. These provide

powerful and flexible techniques for increasing multiuser MIMO system fair-

ness without a significant degradation in the overall sum rate. In particular,

the novel approach based on a set of utility functions, U(x) = xs, can be tuned

by the parameter, s, to trade off sum-rate with fairness. In addition, the utility

function U(x) = x1/2 provides a good balance between sum rate, fairness and
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complexity.



Chapter 6

Collaborative MIMO: Broadcast

Channel Capacity

A key application of the MIMO techniques discussed in the previous chapters

is in cellular networks. However, in such systems, the intercell co-channel inter-

ference becomes a major drawback [24,26,27]. Recently, the use of BS collab-

oration has been proposed to help mitigate this interference [28–31]. Possible

collaboration methods include dirty paper coding [28, 84], zero-forcing beam-

forming [28, 31] and many others. The drawback for most of these techniques

is the large amount of feedback required to convey CSI between the cells.

Another technique for reducing interference is transmitter power control. In

the downlink this works by adjusting the total output power for each BS in an

attempt to mitigate interference, while maintaining a satisfactory intracell link.

Examples of this approach for single antenna links are given in [43,44,85–87].

However, as for the other techniques, optimal power control still requires BS

collaboration and a significant amount of feedback and processing. Despite

this, near optimal power control can exist in systems with very limited channel

information at the base stations, unlike dirty paper or beamforming techniques.

This leads to increased capacity without a large increase in overhead.

In Secs. 6.1 - 6.4, we look at the problem of MIMO multicell power alloca-

tion. Firstly, we formulate the sum-rate equation for such a system from results

in [24, 25]. Then, building on the work by Badruddin et. al. [45], we find a

129
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set of solutions to the power optimization problem. Due to the non-convexity

of the aforementioned problem, no one solution is guaranteed to be globally

optimal. Thus, to find the global optimum, we need to search amongst all

possible cases. In order to reduce the complexity, we propose a more practical

algorithm than the brute force approach. This algorithm achieves the optimal

rate in the vast majority of scenarios.

The simulation results show that optimal power allocation is almost always

the trivial case where a BS is either switched off or transmits at maximum

power. Hence, the most important problem, ignoring fairness and scheduling

issues, is to select the cells which should remain on. We show that this can

be done extremely accurately using only the link gain information so that no

CSI is required for the channel matrices. Furthermore, we show that for larger

numbers of collaborating cells and higher SNR the scenario where one or more

BS is switched off becomes more important.

It is important to note that this is a theoretical upper bound. In a practical

system, it is highly unlikely that a cell would be fully turned off for a prolonged

time for the benefit of the system at the expense of their own users. Thus,

we show via simulations that using a multicell multiple access scheme such as

frequency-division multiple access (FDMA) can produce gains over the all on

state whilst maintaining quality of service to all users.

On the other hand, in Sec. 6.5 we give an example of full collaboration on a

small scale. In Sec. 6.5, we transform adjacent sectorized cells into unsectorized

macro-cells using collaboration between adjacent BSs only. We demonstrate

that this provides significant gains over an interference-limited system and

indicates that full collaboration, even on a small scale, can provide significant

gains.
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Cell i

Cell j

Γji

Γii

200m

BS

Figure 6.1: Layouts of both 3-cell (left) and 7-cell (right) cellular systems.

6.1 System Model and Capacity Results

In this chapter we consider a set of neighbouring cells, specifically focussing on

sets of 3 and 7 hexagonal cells as shown in Fig. 6.1. These cells each contain a

single-user MIMO link with the BS located at the centre and a mobile station

(MS) randomly located in the hexagon.

6.1.1 Cell Clusters

We consider a set of K cells each with a single user MIMO system with nt

transmit antennas and nr receive antennas. The link equation for a single-user

MIMO link in a generic cell is given by

y = Hx+ n+ i, (6.1)

where i is a nr × 1 vector representing interference from all the other cells in

the cluster. This multicell MIMO system has capacity, Ci, for cell i, where Ci
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is given by [25]

Ci = log2
|Inr

+ ρiΓiW i +
∑K

j=1,j 6=i ρjΓjiW ji|
|Inr

+
∑K

j=1,j 6=i ρjΓjiW ji|
bps/Hz, (6.2)

where W i = H iH
†
i and W ji = HjiH

†
ji. In (6.2), H i is the complex channel

matrix for cell i, Hji is the complex channel matrix between BS j and MS

i, Γji is the link gain of the link between BS j and MS i and ρi =
Pi

ntσ2 is a

measure of the SNR of cell i where Pi is the transmit power of BS i. Note that

this model assumes no CSI at the transmitter.

Whilst (6.2) gives the instantaneous capacity for each cell, we can calculate

the mean capacity over the fast (Rayleigh) fading using techniques from [52]

(see Sec. 2.9). Given a set of slow-fading parameters, in [52] it is shown that:

EH{Ci} = C(Knt, nr,D
(i)
1 )− C((K − 1)nt, nr,D

(i)
2 ) (6.3)

where1

D
(i)
1 = diag(ρ1iΓ1i, . . . , ρiiΓii, . . . , ρKiΓKi),

D
(i)
2 = diag(ρ1iΓ1i, . . . , ρKiΓKi).

and C(t, r,Φ) is given in Sec. 2.9.

6.2 Optimization

In any cluster of cells we wish to maximize the sum-rate whilst only adjusting

the power levels at each transmitter. These levels lie within the ranges 0 ≤
Pi ≤ Pmax,i, due to the transmission limitations of each BS. Without loss

of generality, we assume that all the transmitters have the same maximum

power, that is Pmax,i = Pmax. Thus, we define the optimization problem for

1Note that the diagonal matrix, D
(i)
2 , does not contain the direct link term, ρiiΓii.
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the sum-rate as:

S∗ =
max

0 ≤ Pi ≤ Pmax, i = 1, . . . , K
S, (6.4)

where S =
∑K

i=1Ri and Ri is the rate for cell i which is given by [25]:

Ri = log2
|Inr

+ PiΓ̄iW i +
∑K

j=1,j 6=i PjΓ̄jiW ji|
|Inr

+
∑K

j=1,j 6=i PjΓ̄jiW ji|
bps/Hz, (6.5)

where Γ̄i = Γi

ntσ2 . Defining the Lagrangian for the minimization version of

(6.4), noting there is no sum-power constraint, we write

L(P , ζ) = −S −
K∑

i=1

ζ1iPi +

K∑

i=1

ζ2i(Pi − Pmax) (6.6)

where P = (P1, P2, . . . , PK), ζ = (ζ11 , . . . , ζ1K , ζ21, . . . , ζ2K ) and ζ1i ,ζ2i are the

Lagrange multipliers associated with the inequality constraints. The Karush-

Kuhn-Tucker (KKT) conditions associated with (6.5) are [54]:

−P ∗
i ≤ 0, P ∗

i − P ∗
max ≤ 0, ζ∗1i ≥ 0, ζ∗2i ≥ 0,

ζ∗1iP
∗
i = 0, ζ∗2i(P

∗
i − P ∗

max) = 0,

∂S∗

∂P ∗
i

− ζ∗1i + ζ∗2i = 0. (6.7)

Taking the final KKT condition in (6.7) and multiplying by P ∗
i (P

∗
i − P ∗

max),

we have

P ∗
i (P

∗
i − P ∗

max)
∂S∗

∂P ∗
i

− P ∗
i (P

∗
i − P ∗

max)ζ
∗
1i

+ P ∗
i (P

∗
i − P ∗

max)ζ
∗
2i
= 0 (6.8)

Using the 5th and 6th KKT conditions in (6.7), equation (6.8) gives

P ∗
i (P

∗
i − P ∗

max)
∂S∗

∂P ∗
i

= 0. (6.9)
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Equation (6.9) has three sets of solutions:

P ∗
i = 0, P ∗

i = Pmax,
∂S∗

∂P ∗
i

= 0. (6.10)

Whilst the first two solutions given in (6.10) are straightforward, the third

solution is harder to find. Setting Aji = Γ̄jiW ji, we can rewrite S as

S =
K∑

i=1

log2

∣∣∣∣∣Inr
+ PiAii +

K∑

j=1, j 6=i

PjAji

∣∣∣∣∣

−
K∑

i=1

log2

∣∣∣∣∣Inr
+

K∑

j=1, j 6=i

PjAji

∣∣∣∣∣ bps/Hz. (6.11)

Using the property, ∂
∂P

log |PX + Y | = Tr[(PX +Y )−1X] [88], (6.11) can be

differentiated to give

∂S

∂Pi
=

1

log 2

(
∂

∂Pi
log2

∣∣∣∣∣Inr
+ PiAii +

K∑

j=1, j 6=i

PjAji

∣∣∣∣∣

)

− 1

log 2

(
K∑

j=1, j 6=i

∂

∂Pi

log2

∣∣∣∣∣Inr
+ PiAij +

K∑

k 6=j, k=1

PkAkj

∣∣∣∣∣

)

=
1

log 2
Tr



(
Inr

+ PiAii +

K∑

j=1, j 6=i

PjAji

)−1

Aii




− 1

log 2

K∑

j=1, j 6=i

Tr



(
Inr

+ PiAij +

K∑

k 6=j, k=1

PkAkj

)−1

Aij


 . (6.12)

Setting ∂S∗

∂P ∗
i

= 0 and solving (6.12) gives a polynomial of orderKnr−1 in Pi.

This can be seen by writing the inverse matrices in (6.12) as (PiF +G)−1 =

adj(PiF + G)|PiF + G|−1, where adj(A) is the adjugate of the matrix A.

Multiplying through by the determinants gives a polynomial expression in Pi

which can be identified as having order Knr − 1. Since Pi = 0 and Pi = Pmax

are also candidate solutions, there are up to Knr + 1 possible feasible values

for Pi and K powers to be allocated. Furthermore, since (2.32) is non-convex,
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it is difficult to find the global maximum value without evaluation of all these

possible combinations of solutions.

There are two fundamental problems here: firstly, the overhead in com-

puting all the solutions and secondly, the need for full network CSI (all W i

and W ji matrices) to compute (6.11) or (6.12). Hence, we consider two trivial

simplifications:

• We consider only the 2K power allocations where Pi ∈ {0, Pmax};

• We maximize EH(S) rather than S, so that the W i, W ji matrices are

not required.

Furthermore, to avoid the search over the 2K ON/OFF possibilities, we now

derive a the simplified algorithm.

6.3 Practical Algorithm

To reduce the optimal search across the 2K possible ON/OFF solutions we

propose a simple, practical algorithm for efficiently finding a near optimal sum

rate. Note that the algorithm is ad-hoc in nature but not only approaches

the best ON/OFF solution but is also very close to the global optimum where

results are available. Our idea is to start with all BSs transmitting at Pmax.

Then, one at a time, we switch off an individual BS. If all the sum-rates with

K − 1 BSs operational are the less than the original, then our policy is to use

all BSs. If some of the sum-rates are higher than the original, then the highest

is chosen and our policy is to switch one BS off. Then we repeat the procedure

to see if it beneficial to switch off another BS. We repeat this algorithm until

no further gains are achieved. Our approach is summarized in Algorithm 6.1

below. This simplified search avoids the tree structure of the optimal method

and simplifies the problem from O(2K) capacity calculations to O(K2).
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Algorithm 6.1 A simplified ON/OFF selection algorithm

1: Pi ← Pmax for all i
2: repeat
3: Calculate sum rate, S
4: for i = 1→ K do
5: Pi ← 0
6: Calculate sum rate, Si

7: Pi ← Pmax

8: end for
9: if max(Si) > S then

10: Pi ← 0 for i corresponding to max(Si)
11: end if
12: until max(Si) ≤ S

6.4 Power Allocation to One Dominant User

Given any cluster of cells, the maximum sum rate occurs when at least one

cell has full power. We use this property later and therefore give the following

proof. For any cell, i, the effect of a small global increase in power can be

described by, Pi = (1 + ε)Pi. This results in a rate for cell i, R̄i, given by:

R̄i = log2 |Inr
+ (1 + ε)PiΓ̄iW i

+
K∑

j=1,j 6=i

(1 + ε)PjΓ̄jiW ji|

− log2 |Inr
+

K∑

j=1,j 6=i

(1 + ε)PjΓ̄jiW ji| bps/Hz. (6.13)

Setting F = PiΓ̄iW i and G =
∑K

j=1,j 6=i PjΓ̄jiW ji, we can show that R̄i ≥ Ri

or:

log2
|Inr

+ (1 + ε)(F +G)|
|Inr

+ (1 + ε)G| ≥ log2
|Inr

+ F +G|
|Inr

+G| . (6.14)
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Rearranging (6.14), we have

|Inr
+ (1 + ε)(F +G)||Inr

+G| ≥

|Inr
+ F +G||Inr

+ (1 + ε)G|. (6.15)

Using the determinant property, |AB| = |A||B|, we finally write

|Inr
+G+ (1 + ε)(F +G) + (1 + ε)(F +G)G| ≥

|Inr
+ F +G+ (1 + ε)G+ (1 + ε)(F +G)G|, (6.16)

which reduces to

|E + ε(F +G)| ≥ |E + εG|, (6.17)

where E = Inr
+ F + 2G + (1 + ε)(F + G)G. Since F and G are positive

semi-definite, (6.17) holds and therefore (6.14) holds. This shows that a small

global increase in power will increase each cell’s rate and thus the sum rate.

This means that the system should increase its power so that at least one BS

is capped at Pmax.

6.5 Three Cell Collaboration

Now we consider a system of three adjacent cells as in Fig. 6.2(a). We divide

each cell evenly into three sectors, each with an even share of directional an-

tennas. This is shown in Fig. 6.2(b). Note that no frequency reuse is required,

as interference between the sectors is eliminated using directional antennas.

Thus, we assume that the only interfering sectors for the MIMO-BC are those

adjacent to the sector in question, but in different cells2. Now, we can con-

struct a macro-cell from the three adjacent sectors as shown in Fig. 6.3. This

involves collaboration of CSI data between the three BSs, BS1, BS2 and BS3,

to form an effective collaborative BS (CBS) for the macro-cell. This is only a

2We assume that interference from further away cells is negligible and is ignored.
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very low level of collaboration as each BS would only need partial CSI from

its adjacent cells to achieve gains. We give a comparison of the systems with

and without collaboration in Fig. 6.4.

To obtain the sum rate of users within the macro-cell, we employ the ITWF

algorithm. However, our implementation of ITWF needs to be slightly different

due to the diversified nature of the CBS. In the single BS version of ITWF, it

is assumed that the cell is not sectorized and the algorithm is free to allocate

all its power over a single antenna. However, in the collaborative case, we

have an extra power constraint. This is due to the fact that one-third of the

power must be allocated across the antennas of each BSi. Defining Σi as the

transmit covariance matrix from the CBS to user i, the additional constraint

can be expressed as

t/3∑

i=1

dii ≤ P,

2t/3∑

i=t/3+1

dii ≤ P,

t∑

i=2t/3+1

dii ≤ P, (6.18)

where the diagonal matrix D, with elements dii, is defined as

D = diag

(
K∑

i=1

Σi

)
. (6.19)

To acquire the optimal sum rate for this system would require using a modified

version of the ITWF algorithm with these extra power constraints included.

However, creation of this modified algorithm would be very difficult, due to

the fact that ITWF is constructed and performed in the MAC domain and

the constraints are in the BC domain. Thus, instead of changes to the ITWF

algorithm, we perform scaling on the BC covariance matrices. After we find
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(a) No sectorization. (b) Sectorization.

Figure 6.2: Original three cell system.

the optimal solution with ITWF, the resultant MAC covariance matrices are

then converted to their BC duals (see Sec. 2.3.3) [19]. We then scale the

resulting BC covariance matrices so that the constraints of (6.18) are met in

the maximum. This ensures that each BS does not exceed its maximum allowed

transmit power whilst still attempting to keep the sum-rate to near optimal

levels. Hence, this procedure provides a lower bound on the optimal sum

capacity that could be achieved if a modified version of ITWF was employed.

The true optimal sum-rate lies between this lower bound and the upper bound

of ITWF without these constraints.

6.6 Simulation Results

All of our simulations were carried out in a shadow fading environment using

the model in Sec. 2.12.1. We adjusted the value, A, to ensure that the mean

SNR of the user at the cell edge (r = 100m) was given by a fixed cell-edge

SNR value (see Figs. 6.5-6.8). This mean SNR was averaged over the shadow

fading. Note that SNRedge = SNRav − 19.52dB.
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(a) Three sector collaboration. (b) Macro-cell.

Figure 6.3: Three sector collaboration and equivalent macro-cell.

(a) With collaboration. (b) No collaboration.

Figure 6.4: Three cell collaboration system comparison (solid lines refer to
desired signals and dashed lines refer to interfering signals).
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6.6.1 Power Control

In each cell we consider a (2,2) MIMO system so that nr = nt = 2. In

future work, larger MIMO systems should be considered to see whether any

fundamental change in the nature of the results occurs with larger numbers of

antennas.

Our first set of simulation results are shown in Table 6.1. Here, we consider

a two cell system and it is possible to find the globally optimal power allocation.

This is achieved by setting P1 = Pmax, solving (6.9) for P2 and then comparing

this solution with that obtained by setting P2 = Pmax and solving (6.9) for

P1. The largest sum-rate is the optimal power allocation since at least one of

the cells must use maximum power (see Sec. 6.4 for a proof). The resulting

optimal power allocation gives a sum-rate which is almost identical to the sum-

rate given by the simple policy where each BS is either OFF or operating at

Pmax as shown in Table 6.1. This motivates our focus in this chapter on power

allocation policies which are either ON or OFF. In future work it is desirable

to see if this property still holds for larger number of cells.

In Fig. 6.5, we compare the best ON/OFF allocation over all 2K possibilities

with the results of Algorithm 6.1. In these simulation results the rates are

computed from (6.5), so the instantaneous channel matrices are used. For

both the 3- and 7-cell scenarios the simplified algorithm is virtually optimal.

In Fig. 6.6, three allocation policies are considered. The simplest approach

is “All On” where Pi = Pmax, for all i = 1, 2, . . . , K. The best ON/OFF

solution is labeled “Opt(Sim)”. This best sum-rate is achieved by searching

all 2K possibilities using the instantaneous channel matrices. A similar policy

computes EH(S) for all 2K possibilities and records the best option. The

instantaneous sum-rate for this option is then recorded. Note that this policy,

denoted “Opt(Ana)”, uses the analytical mean values of (6.5) using the result

in (6.3). Hence, no channel matrices are required.

Figure 6.6 shows two key points. Firstly, it shows that selection based on
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Cell-Edge SNR (dB) -10 0 10 20
Percentage 100 100 99.99 99.99

Table 6.1: Percentage of the Optimal Capacity Achieved by a 2-cell ON/OFF
Selection System
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Figure 6.5: Comparison of mean sum-rates for Algorithm 6.1 with the optimal
ON/OFF solution.

mean sum-rates (requiring only the Γ values), is approximately equal to the

instantaneous capacity selection. This indicates that the link gains and slow

fading have a more significant effect on the capacity than the fast Rayleigh

fading. Secondly, it shows that power management does provide significant

gains over an “All On” approach especially at higher transmit powers and for

larger numbers of cells. Also note that as expected, the mean sum-rate for the

“All On” approach reaches a ceiling when the gains due to increased power

are balanced by increasing interference. Also shown in Fig. 6.6 are the mean

sum-rate values (shown by the circles) evaluated using (6.3). These match the

simulated means for the “All On” case and provide a check on the analytical

results used to select the BSs in the absence of any CSI for the channel matrices.
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Figure 6.6: Comparison of mean sum-rates for 3-cell and 7-cell systems with
various allocation policies.

Figure 6.7 shows the distribution of the number of active cells in the opti-

mum ON/OFF solution versus SNR for a 3-cell system. At lower SNR, when

the magnitude of interference is less, using all 3 cells simultaneously is pre-

ferred in most cases (approximately 70% of the time the “All On” approach is

best at -10dB SNR). However, when the SNR increases, the use of all 3 cells

decreases and the use of 2 out of 3 cells starts to dominate.

Thus, with the optimal or suboptimal power allocations some cells will not

be active at certain points in time. To address this, a multiple-access scheme

such as FDMA can be used to give weighted time/frequency allocations to two

sets of cells. Set 1 is operational in frequency slot 1 and set 2 is operational

in frequency slot 2. We consider a very simple approach where the set 1 cells

operate in a frequency band of RF × BW Hz, where 0 ≤ RF ≤ 1 is a reuse

factor and BW is the total bandwidth used by the original system. The set 2

cells then operate in a frequency bin of size (1 − RF) × BW Hz. The overall

sum rate for comparison is the weighted combination of the individual sum

rates for the two sets of cells. The final selection of which cells are in each set
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Figure 6.7: Distribution of active cells for a 3-cell system (number of active
cells is labeled).

is determined by choosing the maximum of the weighted sum rates.

Figure 6.8 shows such a FDMA scheme with various values of RF. The

dynamic allocation strategy (dyn) shown in Fig. 6.8 uses a dynamic reuse factor

equal to the number of cells in set 1 divided by the total number of cells. The all

on state in Fig. 6.8 has RF = 1, corresponding to the original system where all

cells occupy the full bandwidth. Figure 6.8 shows that sum-rate improvements

can be achieved, even when fairness issues are considered. However, with the

simple FDMA scheme shown, the advantages of power control are only realized

at high SNR. Note that the advantages occur at lower SNR for higher numbers

of cells. Hence, with coordination over a larger cluster, say 19 cells, the FDMA

scheme may be beneficial at realistic cell-edge SNR values.

6.6.2 Three Cell Collaboration

Table 6.2 shows the result of three-cell collaboration for various systems. It

shows a number of systems, each with either two or three users per sector (i.e.
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Figure 6.8: Comparison of different FDMA reuse factors.

the CBS has six or nine users). The four different algorithms we employ are

as follows:

1. ITWF without the extra power constraints. This is a theoretical upper

bound on the collaborative sum rate, as it allows power distributions

which exceed the per BS power constraints. This is denoted ITWF.

2. ITWF with the extra power constraints applied afterwards. This is de-

noted ITWF(Pn). This is a lower bound on the optimal sum-rate. Note

that the optimal sum-rate will be between the values given by ITWF

and ITWF(Pn).

3. A single three-sector cell ignoring interference from adjacent cells. This

is denoted SingleC. The available power is allocated using standard sum

power ITWF techniques.

4. A single three-sector cell, taking into account interference from neigh-

bouring sectors as noise. Power is also allocated using ITWF. This is

denoted SingleC(w/Int).
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System ITWF ITWF(Pn) SingleC SingleC(w/Int)
2 Users 2× 2 11.6 11.0 9.96 6.93
3 Users 2× 2 14.3 13.9 12.7 9.04
2 Users 2× 4 16.5 15.8 14.0 9.83
2 Users 4× 4 23.2 22.2 20.4 14.3
3 Users 2× 4 20.6 19.9 18.3 13.0
3 Users 4× 4 28.4 27.6 25.9 18.5

Table 6.2: Sum-Rates (in bps/Hz) for Different Levels of 3-cell Collaboration
(SNRav = 14.7dB)

Two key points come from Table 6.2. Firstly, the table shows the effects

of interference on cellular MIMO systems. In all systems the loss from inter-

ference (comparing SingleC with SingleC(w/Int)) is between 29-30%. This

is a significant loss in throughput and provides the motivation for mitigating

schemes such as collaboration. Secondly, Table 6.2 shows that, using collab-

oration, the gains over the interference limited case (comparing ITWF(Pn)

with SingleC(w/Int)) can be from 49% (for the 3 user 4 × 4 system) up to

60% (for the 2 user 2×4 system). This indicates that even a very small amount

of collaboration, as proposed here, can create very beneficial results.

6.7 Summary

In this chapter we have provided analysis and simulation results for cellular

MIMO power control. We have also developed a fast, near-optimal algorithm

to implement power control. The results show that power control can signifi-

cantly boost the system throughput, especially at higher SNRs. However, both

optimal and suboptimal power allocations often involve switching off one or

more BSs. In response to this observation we have also shown that a multiple

access policy such as FDMA could be used to improve system capacity whilst

still providing some quality-of-service to all cells. Also, we have demonstrated

that a small three cell collaboration scheme provides interference mitigation
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without large amounts of network CSI at each BS. This shows that BS collab-

oration has advantages even on a small scale.
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Chapter 7

Conclusions and Future Work

The main contributions and conclusions of the thesis are discussed below.

7.1 Conclusions

In Chapter 3, we studied the problem of antenna selection for single-user

MIMO systems. Although the methods we used are not original, our anal-

ysis is novel and provides a very simple metric for evaluating the gains from

antenna selection. This widely applicable analysis tool is not limited to an-

tenna selection and can be used in a variety of MIMO systems. Our power

scaling analysis technique is a convenient and intuitive approach to the rapid

assessment of selection techniques in a variety of environments. We also intro-

duced the novel method of PMWF in this chapter, which provides increased

gains in the low-SNR regions at very little complexity.

In Chapter 4 we provided an in depth study of the broadcast channel. This

highlighted many key points about this channel and its capacity, especially in

a shadow fading environment. Firstly, we showed that user fairness cannot

be taken for granted in highly variable channels. Although, capacity can be

straightforwardly optimized, the resulting systems can lack user fairness, which

may be key in providing quality service to all users within the system. Sec-

ondly, our work reinforces the fact that differing suboptimal methods favour

different scenarios. For example, the equal power approach, EPIUT, is very
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successful in the Rayleigh fading case, when users have equal link gains. How-

ever, when the link gains vary, such as in the case of shadowing, the EPIUT

approach deteriorates and simple antenna selection and beamforming tech-

niques become very close to optimal. Since, in the shadowing case, certain

antenna selection techniques approach ITWF capacity, these can be used as

a lower bound for ITWF with the possibility of closed-form analysis. Finally,

we also show that various suboptimal methods can be modelled simply and

effectively using an equivalent SNR metric derived from the work in Chapter 3.

Next, in Chapter 5 we looked at modifications to the highly powerful ITWF

algorithm to increase system fairness without significant losses in sum capacity.

This is based on modifying the underlying waterfilling algorithm. Firstly, when

we apply simple constraints to the waterfilling algorithm, we ensure channel

(and thus user) fairness. This is a very important point as it can also be

used to provide minimum rates in some circumstances. Our analysis of these

methods indicated that the losses in capacity due to increasing user fairness

were dependent on both the gains in fairness and the fairness of the system

before constraints were added. Thus, if the system encounters shadowing, the

original system fairness will be low and the losses in capacity will be higher.

Secondly, we have proposed a novel approach of using a utility function with the

waterfilling algorithm providing a powerful and flexible way to ensure fairness

without a large drop in overall capacity.

Finally, in Chapter 6 we studied the issues related to taking MIMO into

the cellular environment. Whilst previous work has covered the areas of full

collaboration between base stations and used techniques such as dirty paper

coding to maximise network capacity, these methods required a large amount of

CSI. We showed that gains could be made with only limited CSI knowledge by

using transmitter power control in an attempt to mitigate intercell interference.

We also showed that this power control can be approximated by a method with

two simple states per cell yielding very little loss in overall sum rate. Finally,

we gave an example of more intense collaboration that provided gains, where
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a three-cell system can collaborate using methods discussed in Chapter 4.

7.2 Suggestions for Future Work

The key metric used throughout this thesis has been the sum capacity which

is relevant when the MIMO link is used for multiplexing gain. However, the

MIMO link can also be used for diversity gains, which are mostly measured

using the bit error rate (BER). Algorithms aimed at optimizing multiplex-

ing gain in general do not optimize diversity gains. A good example is the

use of OSA in Chapter 3. In this thesis, optimal antenna selection is based

on maximizing the link capacity. However a brief investigation of antenna

selection to optimize BER has resulted in selections which can be quite dif-

ferent from the capacity selections. This also applies to NSA, which we have

shown approaches optimality with regard to link capacity but does not neces-

sarily approach optimality when applied to optimizing BER. Future research

is needed to find simple selection methods which can optimize diversity gains

or even optimize both multiplexing and diversity gains simultaneously. The

same philosophy applies to the work in Chapter 4. In this chapter, all our cal-

culations and derivations of suboptimal algorithms are based on maximizing

multiplexing gains. Future work is needed to find suboptimal algorithms which

can achieve high diversity gains in a variety of shadowing and shadowing-free

environments.

The majority of this thesis is based upon the assumption of a flat-fading

time-invariant Rayleigh channel. Although, we have done some work on Ricean

and correlated Rayleigh channels in this thesis, it is an open area of research

to apply the methods developed to other channel models. Also, time variation

may have some part to play in fairness issues and needs to be looked at. Of

more importance, due to fact that we have shown that slow fading can have

more importance than fast fading, is the development of a model to map

changes in slow fading over time. This would be due to movements in the
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mobile users through a region containing shadowing objects. A study of the

variations in slow fading would need to cover fairness effects as it is the link

gain which primarily governs whether a user is on or off. Such studies would

be able to statistically determine how long a user could be without a signal.

One key conclusion from Chapter 4 was that sub-optimal algorithms behave

differently in different environments. An area of future work would be to adapt

the type of suboptimal algorithm to the current channel environment. This

would increase the sum rate effectively in all environments.

In Chapter 5 we provided a novel modification to the waterfilling algo-

rithm by using utility functions. Whilst some utility functions were suggested,

a large set of functions can be suitable for adjusting the algorithm to account

for various properties such as fairness. Future work is needed to investigate

such functions and see their effect on the waterfilling algorithm. Another area

of future work springs up from Chapter 5. Whilst our work has been focused

on MIMO capacity, waterfilling can be used in other areas of communication.

One such area is the allocation of power across subchannels in an orthogonal

frequency division multiplexing (OFDM) system. Many OFDM systems do not

employ waterfilling in its general form, as the solutions increase certain chan-

nels to such an extent that the peak to average power ratio (PAPR) becomes

too high. Use of a modified waterfilling algorithm applying maximum channel

power constraints as discussed in Chapter 5 could be investigated to increase

OFDM capacity without having too much of a negative effect on PAPR levels.

The majority of the work in this thesis is based on information theory.

Thus, a key point of future work would be to implement these results in prac-

tical systems. Whilst the work in Chapter 3 would be relatively easy to im-

plement, the work in Chapter 5 would be much more difficult to implement.

However, the work in Chapter 6 would also be relatively simple to apply to a

current MIMO cellular system with base station collaboration. Unfortunately,

such systems are rare at this time, and thus this technology is a good candidate

for future generation base stations.



Appendix A

Finding the Cumulative

Distribution Function of the

Ratio of Two Shadow Fading

Link Gains

In this appendix, we derive an expression for the CDF of the ratio of two

shadow-faded and distance-attenuated link gains. This ratio is defined as fol-

lows:

Z =
Γ1

Γ2
=

exp(X1)r
−γ
1

exp(X2)r
−γ
2

, (A.1)

where exp(X1) and exp(X2) are lognormal variables representing the shadow

fading to user 1 and user 2 respectively and r1 and r2 are the distances between

MS 1 and the BS and MS 2 and the BS. For the case of uniform location of

users in the annulus with inner radius, R0, and outer radius, R, we can easily

find the PDF of the distance as:

f(r) =
2r

R2 −R2
0

= ar, (A.2)

where a = 2/(R2−R2
0) and R0 < r < R. Defining the variables u = r1/r2 and

v = r2, gives r1 = uv and r2 = v. Note that R0 < uv < R and R0 < v < R.
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The joint PDF of the variables u and v is given by

f(u, v) = (auv)(av)

∣∣∣∣∣∣
v u

0 1

∣∣∣∣∣∣
= a2uv3, (A.3)

in the region R0 < uv < R, R0 < v < R. Integrating over v gives:

f(u) = a2u

∫ min(R,R/u)

max(R0,R0/u)

v3dv

=
a2u

4

[
min(R,R/u)4 −max(R0, R0/u)

4
]

=





a2u
4

(
R4 − R4

0

u4

)
, u < 1

a2u
4

(
R4

u4 −R4
0

)
, u ≥ 1

. (A.4)

From (A.4) we can compute the CDF for the two different cases u < 1 and

u ≥ 1. For the case u < 1:

F (u) =

∫ u

R0/R

f(t)dt

=
a2

4

∫ u

R0/R

R4 t− R4
0 t

−3dt

=
a2

8

[
R4 t2 +

R4
0

t2

]u

R0/R

=
a2

8

[(
R4 u2 +

R4
0

u2

)
−
(
R2R2

0 +R2R2
0

)]

=
a2

8

(
R4 u2 +

R4
0

u2
− 2R2R2

0

)
. (A.5)
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For the case u ≥ 1:

F (u) =
a2

8
(R4 +R4

0 − 2R2R2
0) +

∫ u

1

a2

4

(
R4 t−3 − R4

0 t
)
dt

=
1

2
+

a2

8

[
−R

4

t2
− R4

0 t
2

]u

1

=
1

2
+

a2

8

[(
−R

4

u2
− R4

0 u
2

)
− (−R4 − R4

0)

]

=
1

2
+

a2

8

(
R4 +R4

0 −
R4

u2
− R4

0 u
2

)
. (A.6)

Now, including the shadow fading gives the CDF for Z, we can write

FZ(x) = P

(
exp(X)

(
r1
r2

)−γ

< Z

)

= P
(
exp(X)u−γ < Z

)

= P
(
u > Z−1/γ exp(X/γ)

)

= 1− E
{
Fu

[
Z−1/γ exp(X/γ)

]}
, (A.7)

where X = X1 −X2. Letting c = Z−1/γ, the CDF of u, Fu, is as follows. For

u < 1 (c exp(X/γ) < 1), we have

Fu[c exp(X/γ)] =
a2

8

[
R4 c2 exp(2X/γ) +

R4
0

c2
exp(−2X/γ)− 2R2R2

0

]
. (A.8)

For u ≥ 1 (c exp(X/γ) ≥ 1),

Fu[c exp(X/γ)] =
1

2
+

a2

8

[
R4 +R4

0 − R4
0 c

2 exp(2X/γ)− R4

c2
exp(−2X/γ)

]
.

(A.9)
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Since X is a normal variable, we can perform the expectation in (A.7) using

the dummy normal variable w. Doing this, we find

FZ(w) = 1− Ew

{
Fu

[
Z−1/γ exp(w/γ)

]}

= 1−
∫ ∞

−∞

Fu [c exp(w/γ)] fw(w)dw

= 1−
∫ w0

−∞

Fu(·)fw(w)dw −
∫ w1

w0

Fu(·)fw(w)dw

−
∫ w2

w1

Fu(·)fw(w)dw −
∫ ∞

w2

Fu(·)fw(w)dw, (A.10)

where w0, w1 and w2 represent the limits u = R0

R
, u = 1 and u = R

R0
respec-

tively. To find w0, we set u = R0

R
, yielding

R0

R
= c exp(w0/γ)

R0

cR
= exp(w0/γ)

w0 = γ log

(
R0

cR

)
. (A.11)

Then to find w1, we set u = 1:

1 = c exp(w1/γ)

w1 = γ log

(
1

c

)
. (A.12)

Finally to find w2, we set u = R
R0
:

R

R0

= c exp(w2/γ)

R

cR0

= exp(w2/γ)

w2 = γ log

(
R

cR0

)
. (A.13)
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Note that Fu(·) = 0 for w < w0 and Fu(·) = 1 for w > w2. Taking the

individual parts of (A.10), we can write

∫ w1

w0

Fu(c exp(w/γ))fw(w)dw

=

∫ w1

w0

a2

8

(
R4 c2 exp(2w/γ) +

R4
0

c2
exp(−2w/γ)− 2R2R2

0

)
fw(w)dw

=
a2

8

[
R4 c2

∫ w1

w0

exp(2w/γ)fw(w)dw +
R4

0

c2

∫ w1

w0

exp(−2w/γ)fw(w)dw

− 2R2R2
0

∫ w1

w0

fw(w)dw

]
. (A.14)

In the same way, we have

∫ w2

w1

Fu[exp(w/γ)]fw(w)dw =
1

2

∫ w2

w1

fw(w)dw+

a2

8

[
(R4 +R4

0)

∫ w2

w1

fw(w)dw − R4
0 c

2

∫ w2

w1

exp(2w/γ)fw(w)dw+

R4

c2

∫ w2

w1

exp(−2w/γ)fw(w)dw
]
, (A.15)

where

fw(w) =
1√
2πσ2

exp

(
−(w − µ)2

σ2

)
,
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and
∫ b

a
fw(w)dw = Fw(b) − Fw(a). Calculating the integrals in (A.14) and

(A.15) requires the following general integral:

∫ b

a

exp(±2w/γ)fw(w)dw

=

∫
exp(±2w/γ) 1√

2πσ2
exp

(
−(w − µ)2

σ2

)
dw

=
1√
2πσ2

∫ b

a

exp

(±4wσ2/γ − (w − µ)2

σ2

)
dw

=
1√
2πσ2

∫ b

a

exp

(
−(w − (µ± 2σ2/γ))2 − 4σ4/γ2 ∓ 4σ2µ/γ

2σ2

)
dw

=
exp(4σ2/γ2 ± 4µ/γ)√

2πσ2

∫ b

a

exp

(−(w − (µ± 2σ2/γ))2

2σ2

)
dw

=
exp(4σ2/γ2 ± 2µ/γ)√

2πσ2
P (a ≤ N ≤ b)

=
exp(4σ2/γ2 ± 2µ/γ)√

2πσ2
P

(
a− µ∓ 2σ2/γ

σ
≤ Z ≤ b− µ∓ 2σ2/γ

σ

)

=
exp(4σ2/γ2 ± 2µ/γ)√

2πσ2

[
Φ

(
b− µ∓ 2σ2/γ

σ

)
− Φ

(
a− µ∓ 2σ2/γ

σ

)]
,

(A.16)

where Φ(x) = P (N(0, 1) < x). Substituting (A.16), (A.14) and (A.15) into

(A.10) and also using the fact
∫∞

w2
Fu(·)fw(w)dw = (1 − Fw(w2)) , we finally
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have

F (Z) =
a2R2R2

0

4

[
Φ

(
w1 − µ

σ

)
− Φ

(
w0 − µ

σ

)]
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(
1

2
+

a2(R4 +R4
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8
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Φ

(
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σ

)
− Φ

(
w1 − µ

σ
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− a2R4 c2

8
exp[2/γ(σ2/γ + µ)]
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Φ

(
w1 − µ− 2σ2/γ

σ

)
− Φ

(
w0 − µ− 2σ2/γ

σ
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− a2R4
0

8c2
exp[2/γ(σ2/γ − µ)]

[
Φ

(
w1 − µ+ 2σ2/γ

σ

)
− Φ

(
w0 − µ+ 2σ2/γ

σ
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+
a2R4

0 c
2

8
exp[2/γ(σ2/γ + µ)]

[
Φ

(
w2 − µ− 2σ2/γ

σ

)
− Φ

(
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σ
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+
a2R4

8c2
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w2 − µ+ 2σ2/γ

σ
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w1 − µ+ 2σ2/γ

σ
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+ Φ

(
w2 − µ

σ

)
. (A.17)
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Appendix B

Isotropic Analysis of Largest

Column Density

Consider them×n matrixH in the i.i.d. Rayleigh case. We define an arbitrary

column of H by X = [X1, X2, . . . , Xm]
T and its norm by R =

∑m
i=1 |Xi|2. In

NSA we choose this column for inclusion in S if it has one of the t largest

column norms. Hence, the distribution of S is affected by the selection of the

“largest” columns and is no longer i.i.d. complex Gaussian. We derive The

distribution of the column with the k-th largest norm as follows

fX (x|k) =
∫ ∞

0

fX (x|R = r) fPk
(r) dr (B.1)

where conditioning on k implies the k-th largest norm, x = [x1, x2, . . . , xm]
T ,

and Pk is the k-th largest norm as before. Using Bayes rule, we can simplify

the conditional density in (B.1) as

fX (x|R = r) =
fR(r|x) fX (x)

fR(r)
. (B.2)

Now, conditioned on x, R has a degenerate distribution and fX (x) is

simply the joint density of m independent complex Gaussians. Hence, we have

fX (x|R = r) =
δ (r −

∑m
i=1 |xi|2) exp (−

∑m
i=1 |xi|2)

πmfR(r)
. (B.3)
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Substituting (B.3) into (B.1) we finally write

fX (x|k) =
∫ ∞

0

δ (r −
∑m

i=1 |xi|2) exp (−
∑m

i=1 |xi|2)
πmfR(r)

× n!

(n− k)!(k − 1)!
FR(r)

k−1[1− FR(r)]
n−k fR(r) dr

=
n!

πm(n− k)!(k − 1)!
exp

(
−

m∑

i=1

|xi|2
)

× FR

(
m∑

i=1

|xi|2
)k−1 [

1− FR

(
m∑

i=1

|xi|2
)]n−k

(B.4)

and so the joint density of the k-th largest column remains isotropic as it is

solely a function of
∑m

i=1 |xi|2.
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