
An Immersion Model for Software Engineering Projects

Neville Churcher and Andy Cockburn

Department of Computer Science

University of Canterbury

Christchurch, New Zealand

neville, andy@cosc.canterbury.ac.nz

April 12, 1996

Abstract

Software development projects are an essen-
tial component of software engineering courses.
They provide the opportunity for students to
apply theoretical material and to gain valu-
able experience in an environment typical of the
workplace. These bene�ts, however, are di�-
cult to realise. We discuss strategies for man-
aging �nal-year software engineering projects in
order to optimise the balance between pedagogy,
course administration, and time constraints. In
particular, we advocate an \immersion" model
for software engineering projects. The immer-
sion model emphasises the commercial reali-
ties of software development including activities
such as reverse-engineering of existing systems,
extensive code re-use, team work, user-interface
development, meetings with management, and
oral presentations. Our experiences with the im-
mersion model have been extremely encouraging
with signi�cant improvements in the quality of
student projects.

1 Introduction

Teaching text-book theory of software engineer-
ing and user interface design, though valuable,
provides students with a shallow understanding
of the underlying issues.

We believe it is important for students to ex-
perience at �rst hand the application of theory
to a `real world' software system. Experience
gained in group dynamics, teamwork, project
management, presentation and technical writing
provides students with skills that are valuable
in the job market and in further study. The op-
portunities for imparting such experience within

the con�nes of an undergraduate course are lim-
ited [4, 6].

The third year software engineering course
we teach in the Department of Computer Sci-
ence at the University of Canterbury is typical
in that it has, as a major component, a soft-
ware development project. In 1995 we substan-
tially modi�ed both the project structure and
our management procedures. Successful results
were achieved in terms of the quality of the work
produced, the range of skills learned, and the
administrative burden of management and as-
sessment.

Three major factors motivated our reassess-
ment of the software engineering project. First,
we were concerned that standard assignment
submissions, accepted as normal in most aca-
demic courses, do not encourage students to
carry out iterative improvement of their work
based on feedback from the lecturers. Second,
we were dissatis�ed by the amount of sta� time
spent on activities that provided little academic
worth to the students. Marking the submissions
associated with large team projects is a sub-
stantial burden on the academic sta�. If stu-
dents do not revisit the marked work there is
little academic value in the sta�'s work. Third,
the course time constraints place pressure on
the scope of the software project. To reinforce
the theoretical course content a software devel-
opment project has to be su�ciently large and
complex to require the management (and other)
strategies described in the lectures, yet the time
constraints limit the depth of student involve-
ment. These three factors, if allowed, can form
a vicious circle that results in frenetic work by
students and lecturers, but without commensu-
rate academic gains.

1



In this paper we discuss an \immersion
model" for software engineering projects in
which the academic sta� play the role of project
managers. Most formal assessment in the
project is replaced by regular (approximately
fortnightly) meetings with management. We
outline some of our educational strategies and
experiences, describe our current approach and
compare it with some of the alternatives we have
explored.

The paper is structured as follows. The next
section outlines our current approach to coor-
dinating the project, and brie
y describes the
1995 project tasks. Section 3 summarises our
primary learning objectives and identi�es some
of the advantages and di�culties of running a
project in this manner. Our experiences with
two previous models of project course structure
are compared in section 4. Conclusions are pre-
sented in section 5.

2 The Immersion Model

This section describes the structure and man-
agement of our current project model which
aims to immerse students in a realistic soft-
ware development scenario. The 1995 project
is brie
y reviewed to provide an example of
the model's application. The educational (and
other) rationale behind our use of the immersion
model is presented in the section 3.

2.1 Structure and Management of

the Project

Approximately forty students work in self-
selected small groups (normally three per team)
throughout the year to produce a functioning
and documented piece of software. The project
consists of four overlapping tasks, as follows:

1. Analyse and document an existing soft-
ware system. The focus is on \reverse-
engineering" the design of the system.

2. Modify and extend the functionality of the
system. Students are required to make
design decisions, re-use software compo-
nents, and implement extensions.

3. Design an improved user interface for the
system. This stage focuses on design ra-
tionale and rapid prototyping.

4. Implement the interface. The teams pack-
age the entire system and its documenta-
tion for release on the Internet.

The students are informed of this four-stage out-
line at the start of the year, but the detailed
speci�cations of each stage are revealed individ-
ually throughout the year.

There is a single formal submission at the
end of the year: the delivery of the complete ex-
tended software, interface, and companion docu-
mentation. On-going feedback, motivation, and
direction is given to the teams at fortnightly
meetings at which the current course lecturer
plays the rôle of project manager.

At each meeting the team presents a progress
report and discusses progress made, problems
encountered, alternative solutions, design ratio-
nale, and so on. Groups are responsible for
developing their own formats for documenting
meetings, design decisions, and other records.

2.2 Applying the Immersion

Model

The 1995 project involved the jgraph pack-
age [7] which according to its man page

\: : : takes the description of a graph
or graphs in the standard input,
and produces a postscript �le on the
standard output. Jgraph is ideal
for plotting any mixture of scatter
point graphs, line graphs, and/or
bar graphs, and embedding the out-
put into LATEX, or any other text
processing system which can read
postscript."

Figure 1 provides an example of jgraph in-
structions and the resultant graph.

Task 1: Technical documentation

The �rst project task required the students to
produce technical documentation for jgraph.
To provide context for their work, the students
were informed that they would be extending the
functionality of jgraph, and that they would ul-
timately design and implement a graphical in-
terface to their extended system. The regular
meetings with `management' allow the course
supervisors to ensure that the groups remain fo-
cused on appropriate tasks.

2



newgraph

title : Sample Graph Title

xaxis min 0 max 10

label : The X Axis Label

yaxis label : The Y Axis Label

newcurve

marktype circle

fill 0

linetype solid

pts 0 0 2 4 3 9 4 16

label : Line 1

newcurve

marktype xbar

fill 0

linetype none

pts 1 5 9 2 5 5

label : Line 2

legend on

Figure 1a: jgraph instructions.

0 2 4 6 8 10

The X Axis Label

0

5

10

15

T
he

 Y
 A

xi
s 

L
ab

el

Sample Graph Title

Line 1
Line 2

Figure 1b: The resultant graph.

Figure 1: Preparing and viewing graphs with jgraph.

This task tests a variety of skills based on
the ability to read, understand and abstract im-
portant elements from C code. The code is un-
documented and uncommented, packaged into
eleven .c �les and three .h �les. Ultimately,
the test of the students' documentation is its
usefulness in subsequent tasks involving modi�-
cation of the software. We avoid precise spec-
i�cation of document structure but state that
the object is to add `value' by using the sys-
tem representation techniques covered in lec-
tures (such as those of the standard structured
techniques) to convey the recovered design. Stu-
dents are advised that discussion of algorithms,
data structures, use-cases etc. should be appro-
priately cross-referenced both within the docu-
mentation and to the code itself, and students
are guided towards appropriate support tools.

Task 2: Design and implement jshell

Task two required students to develop an in-
teractive shell, jshell, which would allow
exploratory and incremental development of
graphs through a command line interface. With-
out this extension jgraph requires an entire
graph description (such as that shown in �gure
1a) to be input without any interaction. Conse-
quently, each modi�cation to a standard jgraph
graph requires a time consuming cycle of edit-
compile-view.

The task requirements are deliberately im-
precise, o�ering no instructions on how the mod-
i�cations are to be made. The aim is to encour-
age students to detect, confront, and overcome
issues requiring design and coding decisions.

The teams rapidly diverged in the focus of
their designs, and we encouraged the diversity
provided that the proposed solutions were doc-
umented with appropriate design rationale, and
that they were achievable in the available time.
The regular meetings provided an opportunity
to moderate progress and design directions.

Some of the major categories of design is-
sues addressed by di�erent groups included the
following:

Architecture Some groups opted to modify
the jgraph code directly. Others con-
structed a shell by implementing a front-
end which communicated with the original
jgraph via pipes.

Compatibility Some groups felt it impor-
tant to ensure that their shell could pro-
cess jgraph scripts directly. Others sac-
ri�ced backwards compatibility for in-
creased functionality.

Error handling Those who assembled and
passed entire jgraph scripts to jshell

faced a variety of problems detecting and
reporting errors in the script, broken pipes

3



and so on. Those who processed individ-
ual commands in the shell command loop
also faced challenging problems.

Task 3: Design a GUI for jshell

Task 3 required the design of a non-functional
prototype user interface.

Before considering any graphical interface
elements, students were required to identify a
system context, stating who the users of their
system would be, and identifying typical usage
scenarios. Depending on their intended user
base, the emphasis on various usability proper-
ties (such as those captured by the principles
in [1]) varied substantially across the project
teams.

Students were also required to produce a
rough paper and pencil sketch (or \storyboard")
of their design, including cut-outs for system
components such as pull-down menus or tran-
sient dialogue-boxes [8]. The emphasis was on
rapid modi�cations to the interface. \Smart"
teams were admonished if they produced screen-
dumps of executable code. At the project meet-
ings the storyboards were used to identify po-
tential usability problems, and to discuss design
alternatives.

Task 4: Implement the GUI and Full Sys-

tem

Students were then required to implement the
system designed in the previous task. The GUI
was implemented using the Tool Command Lan-
guage (Tcl) and the Tk widget set [5] and was
used to drive the character based jshell. A
sample session with one of the best completed
applications is shown in �gure 2.

Tcl is an interpreted scripting language
which is powerful and easy to learn. It is also
possible to embed Tcl interpreters in C or C++
programs.

Tcl/Tk is an extremely e�ective addition to
our software engineering project. Previously the
size and complexity of interface toolkits (such
as Xt and Motif, SUIT, InterViews, and so on)
have almost prohibited the inclusion of GUI de-
velopment within the time constraints of the
project. In past projects we have experimented
with the SUIT graphical toolkit and with the
character-based terminal-independent package
curses. Both experiences were disappointing:
the students struggled to overcome the complex-

ity of the SUIT toolkit, and the crude interfaces
produced by curses failed to motivate the stu-
dents. In contrast, Tcl/Tk abstracts most of the
complexity of GUI development, allowing stu-
dents to quickly build high-quality interfaces.
The polished look and feel of their systems is
also a strong motivator for the students.

3 Learning Objectives and

Rationale

This section describes some of our learning ob-
jectives across four, somewhat overlapping, are-
nas of system development: software issues,
user-interface design, team-management, and
information presentation. Rather than present a
complete list of our educational goals, only those
pertinent to the immersion project approach are
discussed.

In general, students bene�t in that they have
a chance to receive feedback early enough to
avoid wasting time on `red herrings' and to learn
from small mistakes rather than su�er the con-
sequences of large ones. The frequent meetings
have led to a closer relationship with sta�, en-
couraging students to view meetings as an op-
portunity to discuss ideas rather than an oral
examination. Administering the meetings is de-
manding on sta� time, but these costs are o�set
in two ways. First, there is no formal marking
of submissions other than the �nal submission
at the end of the year. Second, as the student
teams have an allocated appointment time with
the managers, they tend to `drop-in' with prob-
lems less frequently than they have with previ-
ous models of project coordination.

3.1 Software Issues

A primary objective of the project is to disabuse
students of the impression, reinforced by several
years of throw-away programming assignments,
that software is a disposable item. Our decision
to base the entire project on a piece of existing
software (such as jgraph) is motived by several
important educational objectives.

� Examining and modifying code written
by others is a common task in the
workplace|particularly for entry level
employees.

� The di�culty of comprehending code writ-
ten by others is a powerful way to reinforce

4



Figure 2: One team's �nal system.

the importance of code quality and docu-
mentation.

� We believe that studying existing code
nurtures empathies for those who will
modify the student's own code. Students
are advised that their code may be evalu-
ated by peer teams and that it may form
part of the project exercise in subsequent
years.

� Modifying existing code fosters an aware-
ness of code evolution.

Additionally, experience with graphical user
interface design is a common demand in the
workplace. By including a GUI development
component in the project, students gain expe-
rience in programming in an event-driven style.

3.2 User Interface Design

Our Software Engineering course includes a ma-
jor lecture component on Human-Computer In-
teraction (HCI). Like many theoretical Soft-
ware Engineering topics, theoretical HCI is often
viewed as \obvious" by students until they ex-
perience it for themselves. We contend that the
immersion approach is particularly appropriate
for a project with a GUI development compo-
nent. Two of our arguments are given below.

First, iterative design is a cornerstone of
good user interface development [2, 3]. Con-
tinuous project meetings allow several design
iterations with techniques such as storyboards
[8]|students delay commitment [9] to one par-
ticular interface solution, and have the opportu-
nity to consider and discuss alternatives. Rough
sketches of the students' proposed solutions al-
low rapid improvement in the designs long be-
fore coding starts. The meetings use the rough
storyboards as conversational props, with a fo-
cus on good design. In contrast, our past ex-
perience has shown that, when asked to for a
formal submission of a \rough" storyboard, stu-
dents produce polished computer-generated sto-
ryboards that focus on presentation rather than
on design: years of assessments have stressed
the importance of neat presentation for all sub-
missions.

Second, once the project groups' storyboards
are �nalised, the students can begin coding the
interface. All deviations from the storyboard
must be documented. In our experience, when
students do not have a concrete target for their
user-interface design (such as a storyboard),
their interfaces tend to be caused by work on
the functionality rather than designed.

5



3.3 Team Management

The educational value of team-projects and
peer-learning are well known [10]. There are
many standard requirements in team-projects
such as our requirement that the overall task
be su�ciently large to demand continuous work
over the year. Our concern here, however, is how
the immersion approach fosters e�ective group-
work within project teams.

It is essential that the students are, from
the beginning, made aware that the project is
not amenable to last minute assaults. A team
size of three ensures that communication issues
must be addressed, while being small enough to
avoid large communication overheads. Regular
meetings between the team and their `manager'
ensure that groups are continually accountable
for their progress: an analogy between pay and
grades is powerfully received by students.

Groups are encouraged to discuss internal
problems such as personality clashes before they
escalate to unmanageable proportions. Such sit-
uations have been particularly problematic un-
der previous project coordination styles, but are
nipped at the bud when raised at the fortnightly
meetings. The meetings also provide sta� coor-
dinating the course with an early warning sys-
tem for the detection of potential drop-outs,
personality clashes, and unequal individual con-
tribution. The increased student contact helps
us balance the con
icting aspects of individual
assessment for group work.

Team selection is normally negotiated by the
students themselves, but some `matchmaking' is
usually required. The resulting improvements
in productivity and group dynamics outweigh
the slightly more realistic situation of assigned
groups. The fact that groups consisting of
academically undistinguished but highly moti-
vated and organised students often out-perform
groups who look better `on paper' provides a
valuable lesson for all concerned.

To further reduce team problems such as in-
equitable group work, in 1996 we have intro-
duced progress reports which all team members
must submit independently to the course super-
visor by email. The students' responses are re-
quested, through standardised email templates,
prior to each round of project meetings. While
easy to administer, these messages provide ad-
ditional information about individual contribu-
tions and potential disharmony.

3.4 Information Presentation

Few courses in Computer Science provide the
opportunity for iterative improvement of writ-
ten material. Normally, a submission is made,
and it is graded. Although the student may at-
tend to the marker's comments, it is rare that
another pass is made through the same material.

We strongly believe in the educational value
of modifying written work from an editor's com-
ments. In our project the fortnightly meetings
provide an opportunity to review the latest draft
of the documentation. Additionally, all groups
are required to make a copy of their documenta-
tion available on-line for the manager's perusal.

Oral presentation skills are also promoted.
The meetings are intended to provide a rela-
tively stress-free environment for gaining experi-
ence in technical discussion. Additionally, each
project group makes a formal presentation, or
`sales pitch,' of their system to their peers and
managers at the end of the year.

4 Other Models of Project

Organisation

In this section we brie
y outline two models for
project course structure that were used at Can-
terbury prior to our experiment with immersion.
All three approaches make the assumption that
re-use is an important component. We have not
considered models where the products are pre-
dominantly built from scratch.

4.1 Big bang

In the Big-bang approach tasks are introduced
at the beginning of the course. Students work
in groups which are entirely responsible for their
own management. The project deliverables are
submitted for assessment at the end of the
course.

There are many problems associated with
this approach, but one major di�culty is the
failure of some groups to begin work early
enough to achieve satisfactory results. To some
extent this makes the project self-assessing as
those who lack managerial skills are penalised
(often severely). Although this may appear con-
venient, our educational objectives do not in-
clude punishing those students who do not cur-
rently possess particular skills and rewarding
those who do. Rather, we should provide all

6



students with opportunities to learn, improve
and demonstrate these skills.

4.2 Milestones

To ease the problems of the big bang approach
we introduced several milestones within the
project. The idea is to `buy' time-slices from
students who work in a climate of inexorable in-
ternal assessment. Generally, milestone points
correspond to the availability of one or more de-
liverables for assessment. Individual tasks may
also be timed so that they overlap, allowing for
the possibility of introducing changes in require-
ments during the course of the project.

While we have found that this technique en-
sures that some progress is made earlier in the
year, an equally undesirable side-e�ect is intro-
duced. Students perceive the project as a se-
ries of small assignments rather than as a large
piece of work|leading once again to last-minute
poor quality work. Consequently, the milestones
have a tendency to become `inch pebbles' to
the students while the assessment load gener-
ated makes them appear millstones round the
necks of sta�! The considerable e�ort invested
in marking is largely wasted as students have
moved on to other tasks by the time marking is
completed and little opportunity is available for
them to learn from their mistakes.

5 Conclusions

The sample project described in section 2.2 em-
phasises our message that software is constantly
evolving. Tasks involving design recovery, doc-
umentation for change, and adding a GUI to an
existing application are natural companions to
the more traditional design, coding, and testing
activities.

It is important to choose a topic that can
capture student interest, and much suitable soft-
ware such as jgraph is available via the Inter-
net. The Tcl/Tk language has many features
which make it ideal for use in projects. It is
easy to learn, powerful, very good for control-
ling other programs, and|most important of
all|fun! This makes it feasible to attempt to
develop X11 GUI software within the tight time-
frame typical of software engineering courses.

We have been encouraged by our results.
The quality of the end products|the systems
and documentation that the students produce|

has increased. Our claims of success are sup-
ported by results of an evaluation exercise con-
ducted in 1995 by the University of Canter-
bury's Educational Research and Advisory Unit
(ERAU) in addition to the normal course sur-
veys. Although the project management de-
mands on the sta� remain about the same, we
feel that our time is much better spent. Addi-
tionally, the incidence of intra-group problems
has fallen, primarily because problems were de-
tected earlier.

We are continuing to use and re�ne the im-
mersion approach, and we encourage comments
from others involved in project-oriented courses.
The appendix below directs interested readers to
an archive of information on our 1995 project.

Appendix

The full set of task requirements for the
1995 jgraph project and tar �les containing
some of the student submissions are also avail-
able from the same address can be accessed
from http://www.cosc.canterbury.ac.nz/~

neville/project314.html

References

[1] Dix, A., Finlay, J., Abowd, G., and
Beale, R. Human-Computer Interaction.
Prentice Hall, 1993.

[2] Gould, J., Boies, S., and Lewis,

C. Making usable, useful, productivity-
enhancing applications. Communications

of the ACM 34, 1 (1991), 74{85.

[3] Gould, J., and Lewis, C. Designing for
usability: Key principles and what design-
ers think. Communications of the ACM 28,
3 (1985), 300{309.

[4] Ibrahim, R., Ed. Proc. 8th SEI CSEE

Conference (New Orleans, LA, Mar. 1995),
vol. 895 of Lecture Notes in Computer Sci-

ence, Springer-Verlag.

[5] Ousterhout, J. K. Tcl and the Tk

Toolkit. Addison-Wesley, Reading, Mas-
sachusetts, 1994.

[6] Pierce, K. Rethinking academia's con-
ventional wisdom. IEEE Software March

(1993), 94{99.

7



[7] Planck, J. Jgraph | a �lter for graph
plotting to postscript. Anonymous ftp to
princeton.edu pub/jgraph.Z, 1992.

[8] Rettig, M. Prototyping for tiny �ngers.
Communications of the ACM 37, 4 (1994),
21{27.

[9] Thimbleby, H. User Interface Design.
ACM Press, Addison-Wesley, 1990.

[10] Thorley, L., and Gregory, R., Eds.
Using Group Based Learning in Higher Ed-

ucation. Kogan-Page, 1994.

8


