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The general goal of this research was to understand the agronomic and physiological changes 

of a lucerne crop in distinct physical radiation environments and to verify the potential of 

lucerne to grow under shaded conditions. To achieve this, the research was conducted in four 

main steps: (i) fIrstly, experimental data collection in the field using two artificial shade 

materials (shade cloth and wooden slats) under inigated and non-irrigated conditions; (ii) a 

second experiment with data collection in a typical temperate dryland agroforestry area under 

non-irrigated conditions; (iii) generation of a light interception sub-model suitable for shaded 

crops and (iv) a linkage between the light interception sub-model and a canopy photosynthesis 

model for agroforestry use. 

In experiments 1 and 2, lucerne crop was exposed to 6 different light regimes: full sunlight 

(FS), shade cloth (FS+CL), wooden slats (FS+SL), trees (T), trees+cloth (f +CL) and 

trees+slats (f +SL). The FS+SL structure produced a physical radiation environment (radiation 

transmission, radiation periodicity and spectral composition) that was similar to that observed 

in the agroforestry site (f). The mean annual photosynthetic photon flux density (PPFD) was 

41 % under the FS+CL, 44% under FS+SL and 48% under T compared with FS in clear sky 

conditions. Plants were exposed to an intermittent (sun/shade) regime under both FS+SL and 

T, whereas under FS+CL the shaded light regime was continuous. The red to far-red (RIFR) 

ratio measured during the shade period under the slats was 0.74 and under the trees was 0.64. 

However, RIFR ratio increased to 1.26 and 1.23 during the illuminated period under FS+SL 

and T, respectively, and these were equivalent to the ratio of 1.28 observed under the FS+CL 

and 1.31 in FS. 
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The radiation use efficiency (RUE) of shoots increased under the 5 shaded treatments 

compared with full sunlight. The pattern of radiation interception was unchanged by radiation 

flux, periodicity and spectral composition and all treatments had a mean extinction coefficient 

of 0.82. However, the magnitude of the decrease in canopy growth was less than those in 

PPFD transmissivity. The mean lucerne annual dry matter (DM) yield was 17.5 t ha-1 in FS 

and 10 t ha-1 under the FS+CL, FS+SL and T regimes. This declined to 3.4 t DM ha-1 under 

T+CL (22% PPFD transmissvity) and 4.1 t DM ha-1 under T+SL (23% transmissivity). A 

similar pattern of response was observed for leaf net photosynthesis (Pn) rates under the shade 

treatments compared with full sun. In addition, spectral changes observed under the trees and 

slats affected plant motphology by increasing the number of long stems, stem height and 

internode length compared with full sunlight. Thus, there were two main explanations for the 

increase in RUE under shade compared with full sun: (i) preferential partition of assimilates to 

shoot rather than root growth and/or (ii) leaves under shade were still operating at an efficient 

part ofthe photosynthetic light curve. 

The changes proposed for the canopy Pn model were appropriate to simulate the radiation 

environment of an agroforestry system. However, the model underestimated DM yields under 

the continuous and intermittent shade regimes. These were considered to be mainly associated 

with plant factors, such as overestimation in maintenance respiration and partitioning between 

shoots and roots in shade and the intermittency light effect on leaf Pn rates. Further 

investigation in these topics must be addressed to accurately predict crop yield in agroforestry 

areas. Overall, the lucerne crop responded typically as a sun-adapted plant under shade. It was 

concluded that lucerne yield potential to grow under intermediate shade was superior to most 

of C3 pastures previously promoted in the literature. 

Key words: alfalfa, fluctuating light, light intensity, light quality, Pinus radiata, shade and 

silvopastoral system. 
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CHAPTER! 

General introduction 

The process of crop growth in any environment is driven by energy transfonnation through 

photosynthesis, in which incident solar radiation is converted to more useful forms of 

chemical potential energy. To achieve this transfonnation, three processes are essential: (i) 

interception of incident solar radiation by the leaf canopy; (ii) conversion of the intercepted 

radiant energy to chemical potential energy; (iii) partitioning of the photosynthates to 

different parts of the plant. 

Classic research published by Monsi & Saeki (1953), Monteith (1965), Loomis et al. 

(1967), for example, have stated that radiation and its distribution within the canopy are the 

most important elements of microclimate affecting crop growth Diurnal changes of solar 

radiation dictate the course of photosynthesis and transpiration, and the vertical gradient of 

radiant flux within a canopy is a measure of the absorption of energy by foliage at different 

heights. This work stimulated the development of a number of canopy photosynthesis 

models for full sunlight conditions. The general assumption was that a critical study of 

radiation in relation to canopy architecture gives the truest description of light distribution 

within the canopy and hence the best estimate of photosynthesis. However, there is little 

infonnation available to know if such a photosynthesis canopy model can be used to predict 

plant responses under shaded environments. 

To date most studies have focused on fully illuminated crops under steady-state conditions 

of radiation density. However, in some circumstances, plants in crop connnunities are 

submitted to changes in the periodicity of illumination. For example, in multi-strata 

cultivation, such as agroforestry or inter-cropping systems, the under storey species is 

exposed to alternating periods of sun and shade as the sun passes through the upper canopy 

foliage. The effect of such temporal variation of radiation on understorey plants has rarely 

been investigated in agroforestry research. Indeed, plastic shade cloth, that produces a 

continuous and uniform patte?I of shade, is the most frequently used artificial material to 
\ ' 

simulate the shade of trees (Wilson, 1996; Healey & Rickert, 1998). The use of alternative 
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methodology, that could artificially closely resemble the actual radiation environment of an 

agroforestry system in its three aspects (flux, periodicity and spectral composition), is still 

unknown. Therefore, in this study, an alternative shade structure is compared with the 

traditional shade cloth for its ability to artificially mimic the radiation patterns and 

understorey plant responses observed in an agroforestry system In addition, adjustments to 

a classic canopy photosynthesis model (Loomis et al., 1967) are proposed to allow it to 

predict the ideal canopy architecture to maximize yield under different shade regimes. 

The null hypothesis of this thesis is that the understorey plants grown under an intermittent 

light regime respond in the same way as those in a continuous light regime. To test this 

hypothesis, research was conducted in four main steps: 

(i) Experimental data collection in the field using different artificial shade materials under 

irrigated and non-irrigated conditions. This was to test distinct shading methodologies and 

determine crop responses beneath them 

(ii) Experimental data collection in a typical temperate dryland agroforestry area under non­

irrigated conditions. This was to compare artificial shading methodologies directly with a 

field site. 

(iii) Generation of a light interception sub-model suitable for shaded crops and plant 

connnunities. This was to determine theoretically how plants could optimize canopy 

radiation interception under different light regimes. 

(iv) Linkage between the light interception sub-model and a canopy photosynthesis model 

for agroforestry use. This was to verify the theoretical canopy responses with field data and 

identify areas for improvement. 

The general goal is to understand the agronomic and physiological changes of a temperate 

legume in the physical radiation environment of an agroforestry system and to verify its 

potential to grow under shade conditions. In this research, lucerne (Medicago sativa L.) is 

used as the indicator crop because of its high ability to uptake soil water and nutrients and 

fix nitrogen from the air into plant protein, which decreases the chances of interactions 

between light, water and nitrogen stresses. To simulate the physical radiation environment 

in an agroforestry system, an alternative shade material constructed from wooden slats is 

proposed. The aim of the slatted structure was to recreate the alternating sun/shade pattern, 

,-'" 
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observed through a day, of a typical agroforestry system Plant responses were measured, 

predicted and compared with field data collected in full sunlight, under the artificial shade 

structures and in the agroforestry area. 

The thesis consists of 7 chapters (Figure 1.01). Chapter 2 is a review of the literature 

related to a description of the physical environment of agroforestry systems, light and water 

relations involved between trees and understorey pastures and current methodology used to 

artificially simulate tree shade. It also briefly describes the main agronomic and 

physiological features of a lucerne crop that may enable it to persist under trees. Finally, 

current 'state of art' of agroforestry modelling, including its main constraints and challenges 

to accurately predict understorey pasture yield are reviewed. Chapter 3 outlines a field 

experiment conducted to compare different artificial shade structures, and the crop 

responses observed beneath them, created to simulate the radiation environment of an 

agroforestry area. Chapter 4 describes a second field experiment to assess how close one or 

both artificial shade structures resemble the physical radiation environment and plant 

responses ob~erved in an agroforestry site. In Chapter 5, adjustments to a classic canopy 

photosynthesis model to predict crop yield under continuous and intermittent light regimes 

are proposed. A theoretical analysis is performed to investigate the canopy architecture 

strategy to optimise canopy photosynthesis under 3 different light regimes. Chapter 6 uses 

field data to test the theoretical assumptions from Chapter 5 and verify the accuracy of the 

canopy photosynthesis model to predict yield under the 3 light regimes. Finally, in Chapter 

7, the overall results are discussed and compared with those previously reported in the 

literature. This includes an agronomic analysis of the potential of lucerne to grow in 

agroforestry areas. The most appropriate shade structure to resemble under tree radiation is 

also discussed in relation to agroforestry research. In addition, a critical analysis is 

performed about the adjustments proposed for the canopy photosynthesis model and its use 

to predict understorey yield in shaded regimes. Finally, future research recommendations are 

outlined to improve modelling in agroforestry and to confirm the potential use of lucerne as 

an under storey crop for agroforestry systems in dryland temperate environments. 
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CHAPTER 2 

Literature review 

2.1- Definition and types of agroforestry systems 

Agroforestry is defined as a land-use system where woody perennials are deliberately used on 

the same land-management units as agricultural crops andlor animals, in some form of spatial 

arrangement or temporal sequence (Nair, 1993). There are various types of agroforestry 

combinations in different ecological and geographical regions of the world, including 

silvopastoral (pasture/animals and trees), agrosilvopastoral (crops and pasture/animals and 

trees), agro-silvicultural (crops and trees) and mUlti-purpose tree systems (trees cultivated for 

mUlti-purpose objectives). In temperate areas like New Zealand, the most common systems are 

the agri-silvicultural use of windbreaks and shelterbelts, woodlots and silvopastoral systems 

(Hawke et al., 1997; Mead et al., 1999). The main motives for agroforestry in New Zealand 

farms are: (i) prevention and control of soil degradation, (ii) diversification and increase .ofland 

productivity, (iii) aesthetics and (iv) environmental awareness (Mead, 1995). 

2.2- Most used temperate species in agroforestry 

In New Zealand, the most frequently used tree species for agroforestry purposes were listed by 

Mead et al. (1999) as radiata pine (Pinus radiata) , alder (Alnus cordata), poplar (Populus 

deltoides), eucalypts (Eucalyptus jastigata and E. nitens), Douglas fir (Pseudotsuga menziessi) 

and cupressus tree (Cupressus macrocarpa). From this group, radiata pine is the main species 

planted, especially the improved varieties, for woodlots, silvopastoral systems and shelter. The 

great virtue of radiata pine trees is the rapid growth, ease of establishment, wide tolerance of 

sites, amenability to silviculture and the ready acceptance in the timber, chipwood and round 
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wood markets (Mead et al., 1999). This tree species is usually planted in woodlots at between 

666 (5m x 3m) and 1250 (4m x 2m) stems ha'l. These trees are normally pruned to 6m and 

eventually thinned to between 250 and 500 stems ha'l to produce high-quality and high-value 

logs. Radiata pine trees are generally felled between 25-30 years old. In silvopastoral systems, 

initial stockings are often at 600 (6m x 2.8m) stems ha'l and final stocking at 200 stems ha'l. 

Research and farm models (Knowles, 1991) suggest that a final stocking less than 200 stems 

ha'l tends to produce low grade logs due to excessive branch sizes and may not be the best 

financial alternative. 

There is a wide range of pasture species for agroforestry purposes in New Zealand. The main 

understorey grasses used are perennial rygrass (Lolium perenne) and cocksfoot (Dactylis 

giomerata). Among legumes, the main species used are white clover (Trifolium repens), sub­

clover (Trifolium subterraneum) and lotus (Lotus peduncuiatus cv. Maku). Results from 

agroforestry experiments in the South Island of New Zealand showed that lucerne and 

cocksfoot have been the most productive and persistent species under radiata pine trees after 9 

years (Chang et ai., unpublished data). In another experiment, Mead & Chang (2002) found 

that sub-clover was a better pasture species than white clover and lucerne to form a 

silvopastoral system with alder, poplar, eucalypt and radiata pine trees, because it was the least 

competitive with trees for soil water. In the North Island of New Zealand, cocksfoot was also 

successfull under an 11 year-old stand of alder trees (Devkota et ai., 1998). 

The use of lucerne as an understorey species for agroforestry systems is uncommon. One of the 

few examples found in the literature was the integration between lucerne and walnut trees 

(Jugians regia) to study soil physical properties and soil water competition in the central area 

of ItaIx, (Pini et ai., 1999). The authors found that lucerne improved soil porosity to a depth of 

0.35 m and facilitated soil water movement in the agroforestry area. Dupraz et ai. (1998) 

intercropped walnut trees and lucerne in France and observed that the perennial legume was 

more competitive for soil water than tall fescue (Festuca arundinacea) and other plants, but 

enhanced the nitrogen content of the tree leaves. In New Zealand, a long-term agroforestry 

experiment showed that radiata pine trees grown for 7 years with a lucerne understorey were 
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8.6 mbigh, whereas plots with cocksfoot and ryegrass were approximately 9.2 m (Chang et ai., 

unpublished data). Diameter at the breast height (DBH) of trees was also greater in the 

cocksfoot and ryegrass than in the lucerne plots. However, these same authors reported an 

averaged annual understorey dry matter yield of 8.2 t ha-! for lucerne, 7.1 t ha-! for cocksfoot 

and 5.4 t ha-! for ryegrass under trees. In this same experiment at age 10, Peri et ai. (2002a) 

observed that trees in the lucerne treatments grew to 12.2 m high, whereas trees were 13.2 m 

high in cocksfoot and ryegrass treatments. Likewise, trees at age 10 showed a DBH of 0.26 m 

in cocksfoot, 0.27 m in ryegrass and 0.26 in lucerne. These authors explained that understorey 

water competition affected tree growth particularly during summer and early autumn when 

large soil water deficits occur in the Canterbury plains of New Zealand. 

2.3- Physical environment in agroforestry systems 

The vegetative components ·of agroforestry systems often differ greatly in size and other 

morphological characteristics. The presence of such distinct canopy profiles means that the 

radiation environment in agroforestry areas may change substantially. Skylight conditions 

(diffuse or direct) above the trees have also been shown to influence the pattern and magnitude 

of the radiation changes in a particular environment (Healey & Rickert, 1998; Bell et ai., 2000). 

Besides that, different root systems between the agroforestry components sometimes promote 

competition for soil water uptake, particularly in semi-arid regions or during water deficit 

periods in sub-tropical and temperate areas. Water use by crops in agroforestry systems is 

complex and it is typically regulated by the quantity of soil water capture and the conversion 

efficiency (Ong et ai., 1996). Competition for light is the primary limitation for understorey 

plants when water and nutrients are freely available. However, in many situations water 

availability rather than light can become the major limiting factor in an agroforestry 

environment. 
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2.3.1- Radiation above trees 

There are 3 features of solar radiation relevant to crop ecology (Monteith, 1969): (i) solar 

angle elevation, (ii) the spectral composition of the radiation and (iii) the relative intensity of 

diffuse and direct radiation. Solar angle elevations (~) are typically lower in temperate areas 

(high latitudes) than in tropical areas Oow latitudes). New Zealand is located between latitudes 

340 S and 47° S. For instance, at 43.50 S is Canterbury, New Zealand, where a maximum solar 

angle elevation of 690 is measured on 22 December and a minimum of 230 on 22 June both at 

about 1.00 PM (Building Research Bureau of New Zealand Inc., 1966). The mean total daily 

radiation Oong term data) for these days are 22.3 MJ m-2 and 6.5 MJ m-2 on 22 December and 

June, respectively (Wallace, 1994). While total short wave radiation (400-3000 nm) is 

commonly measured in meteorological stations, it is the photosynthetically active radiation 

(PAR), from blue to red wave lengths or 400-700 nm approximately, that is actually used by 

plants for photosynthetic processes (Salisbury & Ross, 1991). In photosynthesis, it is the 

number of photons per unit of area per unit of time (PPFD) absorbed by plants rather than the 

total light energy that is important. Additionally, fractions of diffuse sky and direct solar 

radiation transmitted by a forest each day can be greatly affected by the present sky weather 

conditions (Saeki, 1973). According to Robinson (1966) working in a temperate area, the 

fraction of PAR in diffuse radiation decreases from about 80% with low sun angles (~<100) to 

60% with high solar elevations (~>600) and increases in direct beam from 40% with ~<100 to 

48% when ~>30°. On cloudless days, diffuse radiation is predominant at sunrise and sunset, but 

on overcast days all radiation is diffuse and the intensity of radiant flux increases towards the 

zenith 

2.3.2- Radiation below trees: 

Trees are exposed to full skylight conditions, but when solar radiation passes through the tree 

canopy, understorey species experience changes in the radiation environment. At ground level, 

these modifications are strongly affected. by solar angle elevation and relative intensity of 

diffuse and direct radiation (Monteith, 1969) and by tree canopy characteristics, such as foliage 
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arrangement, orientation, size and shape (Ong et at., 1996). Therefore, the physical radiation 

environment under the trees is the major factor influencing understorey production, provided 

adequate soil water and nutrients are available (Nair, 1993). 

Radiation transmission: 

There are 3 main changes in radiation environment below trees: (i) quantity, (ii) quality and (iii) 

periodicity. Light transmission through a canopy varies with the proportion of direct to diffuse 

light. Diffuse light penetrates better than direct light because it emanates from the whole 

hemisphere of the sky rather than from the point source of the sun (Wilson & Ludlow, 1991). 

Due to the greater penetration of diffuse light and the progressive absorption of direct 

radiation, the proportion of diffuse to direct radiation increases towards the bottom of the 

canopy (Ludlow, 1978). Therefore, light transmission and distribution under trees may change 

slightly with different sky conditions. 

The amount of radiation intercepted by trees in an agroforestry system depends on the quantity 

of solar energy received, solar angle elevation, canopy characteristics (leaf area index, leaf 

angle and distnbution), canopy duration and fractional interception of light (Monteith, 1981). 

Because of the extensive horizontal and vertical variation in canopy structures, there is great 

spatial variation in light transmissivity in agroforestry systems. The differences in canopy 

structure are due to distinct species combinations, planting dates, plant establishment 

arrangements, leaf size, shape and orientation and fmally plant height (Ong et at., 1996). Even 

in a particular agroforestry area, light transmission varies as trees develop. Yunusa et at. 

(1995a), in an agroforestry area with radiata pine (800 trees ha-1
) and several pasture 

understoreys in New Zealand, observed that the fraction of PAR intercepted by trees in winter 

increased from about 25% in year 2 to about 50% in year 3. ill this same experimental area, 

Joshi (2000) reported that 200 trees ha-! intercepted about 30% of the mean incoming PPFD 

after pruning in year 7. This same author also found that mean radiation interception in late 

spring was approximately 33% at 8.00 AM, but 45% at 12.00 PM. 

Spectral composition: 
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In addition to the changes in radiation quantity, as sunlight passes through the tree canopy, 

spectral composition is altered because tree crowns preferentially absorb blue (480 nm) and red 

(660 nm) wavelengths over far-red (>700 nm) light (Holmes, 1981; Wilson & Ludlow, 1991; 

Sanderson et al., 1997). In particular, the red to far-red ratio (R/FR) of incident light can be 

dramatically reduced under a closed canopy compared with values in full sunlight (Schmitt & 

Wulff, 1993). The R/FR is an important clue by which plants may detect changes in radiation 

environment and promote morphogenetic adjustments (Smith, 1982; Ballare et al., 1995; 

Wong, 1991). There are few reports in the literature about changes in light spectral 

composition under tree canopies. For instance, Wilson & Ludlow (1991) reported that R/FR 

ratio measured in tropical full sun conditions was 1.20, whereas under an immature rubber 

plantation it was 1.07 and under mature rubber trees the ratio decreased to 0.62. These authors 

also cited R/FR values of 1.03 under old coconut and 0.43 under rainforest plantations. 

Devkota et al. (1998), working in an agroforestry area with alder trees and temperate grasses 

in the North Island of New Zealand, found that R!FR decreased from 1.24 under high pruned 

trees (77% PPFD transmission compared with full sunlight) to 0.96 under low pruned trees 

(17% transmissivity). 

Both the shade source and shade density influence the changes in spectral composition. This is 

particularly important in agroforestry research, when artificial shade materials are used to 

simulate tree shade. According to Bell et al. (2000) the proportion of blue light and far-red 

relative to total short wave radiation increase, whereas the red light portion decreases under 

deciduous and coniferous tree shade compared with full sun. It was also interesting in this study 

that a decline was observed for red light, but not for far-red light, in the shade of a building 

compared with an open field. The increase of the blue portion was explained by the authors as a 

result of the diffusion property of blue light by atmospheric aerosols, which allowed this spectra 

to strike the earth's surface at any angle originating from the sky hemisphere and to penetrate 

any shade source. On the other hand, Bell et al. (2000) explained that red spectra was only 

from direct radiation (not from the diffuse portion) and it was mostly absorbed by tree canopy 

leaves or blocked by the building. In addition, the direct far-red light mostly penetrated the gaps 

within the tree canopies, but did not penetrate a building. This work was important to show 
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that both shade source and shade density affects the proportion of red light, whereas far-red 

light is only influenced by shade source. These findings explain most of the changes in RIFR 

ratio reported in the literature in agroforestry areas and under artificial shade materials. 

The most commonly used artificial shade material to simulate tree shade in agroforestry 

research is plastic shade cloth (Wong & Wilson, 1980; Samarakoon et al., 1990; Devkota et 

al., 1997). However, light quality has been reported to remain similar under shade cloths to full 

light conditions. This was shown initially by Gaskin (1965), who observed that green shade 

cloth did not change the proportion of blue wavelength as observed under tree shade at light 

transmissivity between 25 and 75% compared with full sun. Then, Yates (1989) showed that 

both tree canopies and green shade cloth enhanced the green region of the spectrum, but light 

transmitted through vegetation contained a much higher proportion in the near infra-red range 

than under shade cloth Devkota et al. (1997) never found differences in RIFR between shade 

cloth with distinct light transmissivities of 43,27, 18 and 14% compared with full light. Finally, 

Healey & Rickert (1998) investigated the radiation under a different shade structure made from 

a wooden lattice, besides shade cloth of different colours and under a Leucaena leucocephala 

canopy. These authors reported a dramatic increase in the proportion of diffuse radiation under 

white shade cloth, a wooden lattice structure and the leucaena canopy. In addition, Healey & 

Rickert (1998) concluded that shade cloth materials worked as an artificial filter of radiation 

compared with full sun, because it uniformly reduced light in the 300-1100 nm waveband. From 

these publications, it is concluded that mimicry of the radiation environment beneath a tree 

canopy may be possible quantitatively, but the filtering of radiation by a plant community is 

qualitatively different from that by most common artificial shade materials. 

Radiation periodicity: 

Direct light penetrates a discontinuous forest canopy by (i) passing through the gaps in the tree 

foliage and (ii) passing between individual trees (Reid & Ferguson, 1992). Beneath the 

discontinuous canopy of an agroforestry system, there are shadow patches originated when sun 

is located behind the tree crown and trunks. As sun angle elevation changes, the position of the 

tree shadow moves. Therefore, understorey plants in forest environments are typically 
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submitted to a fluctuating sun and shade regime, which may vary from long periods of light to 

rapidly alternating periods of sun and shade (Rabinowitch, 1956; Pearcy, 1988; Yates et al., 

1988). In agroforestry systems, Wilson & Ludlow (1991) were one of the first to show the 

spatial variation of radiation under different trees canopies, but these authors did not address a 

discussion of its effects on understorey physiology and morphology. 

This physical phenomena, observed in agroforestry areas, promotes an intermittent light regime 

distinct from that observed under artificial shade cloth. Periodicity of radiation is an important 

aspect of the radiation environment in agroforestry systems, but unfortunately its effect on 

understorey plant responses has rarely been investigated. Transmission and periodicity of light 

under forest canopies is largely dependent on tree crown variables, such as total green crown 

length and mean green crown length per area (percival et al., 1984), tree rows alignment and 

spacing. Reports from Rabinowitch (1956) in laboratory conditions to Pearcy (1990) in natural 

environments indicated that physiological plant responses under fluctuating light could be 

somewhat different from the continuous regime. In addition, most light interception models 

used for agrofrestry systems (Satterlund, 1983; Quesada et al., 1989; Reid & Ferguson, 1992; 

Friday & Fo wnes , 2001) underestimate the intermittence effect of radiation underneath trees. 

The consequence is that predictions of understorey growth by mathematical models currently 

used for full sunlight conditions may not be appropriate to simulate canopy production in 

agroforestry systems. 

2.3.3- Water relations under trees 

,--

Besides sharing the light resource, trees and understorey crops can compete for soil water 

extraction in agroforestry systems (Nair, 1993). This can be particularly important in dryland 

areas, such as those in the South Island of New Zealand where soil water deficits are frequent 

in summer and autumn seasons (Hoglund & White, 1985), and can limit the growth of one or 

both agroforestry vegetative components (Ong et al., 1996). 
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Competition for soil water in agroforestry is dependent on the plants water requirements and 

root systems. The root systems of over and understorey species often differ in size and growth 

patterns. According to Noordwijk et ai. (1996), the association between trees with deep fine 

root systems and crops/pastures with shallow root distnbution is likely to be successful during 

short drought periods. This observation anticipates, for example, that most grasses would 

integrate better than lucerne with radiata pine trees for agroforestry purposes in non-irrigated 

areas. Lucerne has a deep root system, which has been reported to reach up to 2.4 m depth in 

unrestrictive soil under irrigation in New Zealand, whereas most of the other temperate 

pastures showed root depths between 0.3-0.8 m (Evans, 1978; McLaren & Cameron, 1990). 

Likewise, taproots of radiata pine trees can penetrate to 1. 1m soil depth in soils of Canterbury, 

New Zealand (Balneaves & De La Mare, 1989; Gautum et ai., 1999). 

Understorey lucerne has consistently been considered a competitor with radiata pine trees for 

soil water, especially during droughts and early in the agroforestry establishment, because of its 

deep root system and high water requirement (Yunusa et ai., 1995a; Mead & Chang, 2002). 

Despite this finding, lucerne had a water use efficiency (total DM biomass produced per unit of 

soil water used) of 41 kg rum-1 ha-1 in a 3 year-old agroforestry trial, compared with 24 kg rum-

1 ha-1 for radiata pine trees (Yunusa et ai., 1995b). In this same study, lucerne was shown to 

decrease the storage of soil moisture in the 0.9 m profile more intensively than the 

ryegrass/c1over understorey and bare ground treatment ill summer. Cumulative 

evapotranspiration was also greater for lucerne than ryegrass/c1over understorey. In the same 

work, it was reported that lucerne water competition decreased the tree crown volume by 46% 

compared with 24% for the grass/legume understorey relative to the bare ground treatment. 

This was likely to be due to faster root growth for the perennial legume than for the radiata 

pine trees at early stages. Nevertheless, lucerne soil water competition with trees appeared to 

decline as the pine root system developed in this trial. By tree age to, Peri et ai. (2002a) 

reported a decrease of 20% in tree diameter at breast height (DBH) with a lucerne understorey, 

18% with cocksfootlc1over and 16% with ryegrass/c1over compared with the bare ground 

treatment. Neither of these references reported the extra liveweight gain input promoted by this 

legume compared with the other understorey temperate pastures. 
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On the other hand, shade has been shown to indirectly improve the perfonnance ofunderstorey 

grasses in SUbtropical areas (Wilson & Wild, 1991). Working with 4 subtropical pastures under 

artificial shade cloth, Wilson (1996) observed that the proportion of water-stress days for plant 

growth were substantially reduced for irrigated and non-irrigated conditions. This author 

explained that the indirect effect of shade on slowing soil moisture loss is important to maintain 

microbial activity in litter and soil surface and the mineralisation of nitrogen. However, Wilson 

(1996) highlighted that an increase of yield in subtropical grasses may not always occur in 

agroforestry because of soil water competition between trees and understorey vegetation. 

The general wisdom is that complementarity in root distribution is the key to success of 

simultaneous agroforestry systems (Noordwijk et ai., 1996). However, long-term data from the 

Lincoln University agroforestry trial (Yunusa et ai., 1995a; Yunusa et ai., 1995b; Mead & 

Chang, 2002; Peri et ai., 2002a) have indicated that soil water competition between trees and 

some understorey pastures can be critical at early stages during droughts, but it tends to 

decrease over time. In the long-term (10 years), understorey pastures with shallow root systems 

were not persistent or productive under the radiata pine trees. Thus, the long term output from 

trees, pasture and animals will actually determine the most advantageous agroforestry system 

for the temperate non-irrigated areas rather than concentration on one factor in isolation. 

2.4- Lucernes important features for agroforestry 

2.4.1- General description and use 

Lucerne is an herbaceous perennial1egume widely used as a forage crop. In the South Island of 

New Zealand, lucerne is typically used for hay and silage production or grazing in sheep and 

dairy farms (White et ai., 1999). In the summer non-irrigated areas of Canterbury, lucerne is 

used to provide forage of high yield and quality. This is because of its tap-rooted systems, 

which penetrates the soils and allows the plant to extract water from deeper layers than any 
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other temperate pasture species (Douglas, 1986) and its ability to fix high amounts of nitrogen 

from air and convert these into plant protein (Bames & Sheaffer, 1995). 

Poor management has been one of the main constraints to successfully growing lucerne in New 

Zealand (Douglas, 1986). A practical guide to properly understand lucerne management and 

obtain high forage yield, quality and persistence was presented by Keoghan (1991). The growth 

pattern of lucerne requires that it is rotationally grazed rather than set-stocked. Plants require 

approximately 35 days between defoliations for root reserves to be replenished (White et ai., 

1999). Otherwise, regrowth is decreased and disease and pest attacks are more stressful. A 

period of fully flowering in summer each year encourages a build-up of root reserves for the 

following growing season and improves persistence. Results for height of cut in lucerne have 

been conflicting in the literature, but for practical management it is unimportant as long as the 

crown is preserved or unless frequent cutting is conducted (Keoghan, 1967). Stem regrowth 

after defoliation occurs from a crown, located just below ground level, and new tissue grows 

from the apical tip of the shoots with a trifoliate leaf at each node (Langer, 1994). Growth of 

new basal shoots begins at an advanced stage of maturity or following defoliation. If the 

duration of grazing is too prolonged, then yield is decreased owing to damage to the crown 

shoots. Well-managed lucerne, in high fertility and well-drained soils, can result in more than 20 

t DM ha-l 
yr-l in New Zealand areas (Kemp et ai., 1999) with a maximum yield of over 28 t 

DM ha-l reported under irrigated condition in Canterbury (Brown et ai., 2000). In this same 

area of New Zealand, growth rates of irrigated lucerne vary from about 150 kg ha- l d- l in 

summer to 30 kg ha-1 d-l in autumn and spring seasons (Douglas, 1986). 

2.4.2- Light relations 

DM yield usually declines under shade conditions, except for in some grasses when soil 

nitrogen is limiting (Wilson, 1996). StUdying photosynthetic and morphological responses to 

shade can be used to explain most of plant adaptation strategies for growth under different 

irradiance levels (Givinish, 1988). The lucerne crop is considered an efficient solar energy 

converter into plant biomass in full sunlight conditions (Loomis & Connor, 1992). However, 
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there is limited information in the literature concerning the ability of lucerne to acclimate at low 

radiation levels as experienced in agroforestry conditions. 

Radiation use efficiency (RUE): 

Lucerne has been reported to have high RUE in full sunlight conditions, similar to crops such as 

wheat, maize and sunflower (Loomis & Connor, 1992). This is because of its favourable 

canopy architecture, high photosynthetic efficiency and ability to fIX nitrogen from air and 

convert it into plant protein. For instance, a lucerne crop was reported to have a RUE of 

approximately 2.8 g of total DM MJ PAR-1 (data adapted from Loomis & Connor, 1992). 

Likewise, Khaiti & Lemaire (1992) estimated a mean RUE of 2.4 g total DM MJ PAR-1 for 2 

lucerne cultivars grown in summer field conditions. In their study, RUE for total DM (shoot 

+roots) was constant over seasons, however when estimated from shoot DM only, it was 1.8 g 

DM MJ P AR-1 in summer and decreased to 1.1 g DM MJ P AR-1 in autumn. This indicated that 

lucerne RUE based on total DM was insensitive to environmental (temperature and 

photoperiod) factors, but influenced by partitioning of assimilates between shoots and roots 

when based on harvest able biomass. 

There are limited data in the literature about RUE of crops and pastures under low radiation 

levels. In general, RUE has been shown to increase under low levels of light in grasses 

compared with full sun condition (Sophanodora, 1989; Cruz, 1995). For lucerne, Loomis & 

Connor (1992) cited that RUE increased from 2.8 to 3.2 g total DM MJ P AR-1 when radiation 

was reduced from about 1800 ~mol photons m-2 
S-1 to 700 ~mol photons m-2 

S-1. The reasons 

involved with increasing RUE under shade could be associated with more DM partitioned to 

shoot than roots, increase in leaf to stem ratios, increase of leaf nitrogen concentration and 

morphological changes that enhance light interception by canopy. Finally, Healey et ai. (1998) 

observed that a decrease of incident radiation is usually followed by an increase in the 

proportion of diffuse radiation under artificial shade materials (solarweave and bird guard) and 

this would enhance light penetration within the canopy compared with full sunlight. Overall, the 

mechanisms involved with greater RUE under light stress conditions are still not well clarified. 
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This can become more complex when analysed for lucerne, because of shadillg effects on root 

reserves and nitrogen f1Xation. 

DO' matter yield: 

In full sunlight, lucerne has been proved to be a highly productive crop. Nevertheless, under 

shadillg conditions the DM biomass was shown to decrease. Pritchett & Nelson (1951) were 

one of the first to observe a non-proportional declIDe of lucerne total dry weight with reducillg 

light. For example, these authors observed a decrease of 38% ill total dry weigbt when lucerne 

was exposed to 73% light reduction compared with full light ( ...... 610 !lmoi photons .m-2 
S-l) 

inside a glasshouse. More recently, Lill et ai. (2001) also reported a decrease of 19% ill above 

ground DM for lucerne growillg under 50% shade cloth compared with full sun ill glasshouse 

conditions, whereas plants under 80% shade declined shoot DM by 47%. Accordillg to 

Pritchett & Nelson (1951), shadillg depressed the weight of roots more than shoots as shown 

by declining root to shoot ratios. In contrast, Philippot et ai. (1991) found that by decreasillg 

the total daily amount of radiation (from 4.6 MJ PAR m-2 d-1 to 2.6 MJ PAR m-2 d-1
) received 

by lucerne plants ill controlled conditions, no changes ill biomass partitioning between shoots 

and roots were observed. The authors implied that leaf area expansion occurred illdependently 

of daily radiation, but shoot DM was strictly proportional to daily radiation. Indeed, the amount 

of radiation illtercepted by the lucerne canopy has a major effect on plant photosynthesis, which 

then regulates the process of biomass accumulation. 

Photosynthetic responses: 

The carbon pathway char~~teristic of lucerne is typical of C3 (reductive pentose phosphate 

cycle) plants. However, lucerne has an illtermediate photosynthetic response between C3 and C4 

species, which allows this crop to be photosynthetically more efficient than most C3 crops at 

intermediate to high radiation illtensities (Nelson & Moser, 1994). The net photosynthesis (Pn) 

rates of young lucerne leaves appear to saturate at approximately 113 to 112 of full sunlight 

radiation (Pearce & Lee, 1969; Wolf & Blaser, 1972, Macdowall, 1983, Brown & Radcliffe, 

1986). However, Asseng & Hsiao (2000) more recently reported a maximum Pn canopy rate of 
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40 /lmol CO2 m-2 
S-l and no sign of light saturation up to 1700 /lmol photons m-2 

S-l in full sun 

conditions in California. USA. 

Studies of lucerne photosynthetic activity under shade reported in the literature were mostly 

performed in laboratory or greenhouse conditions. Overall, results have shown the non-linearity 

response of leaf photosynthesis with decreasing irradiance as observed for plant DM. For 

example, Pearce & Lee (1969) reported a decrease in top leaf Pn from about 24 /lmol CO2 m-2 

S-l under 860 Ilmol photons m-2 
S-l artificial light to 13 /lmol CO2 m-2 

S-l under 280 J.lffiol 

photons m-2 sot, followed by similar reductions in specific leaf weight. This represented a 

decrease of approximately 46% in Pn rates compared with a decline of 67% in radiation flux. 

Likewise, Wolf & Blaser (1972) reported that the leaf photosynthetic saturation point 

decreased from 1500 /lmol photons m-2 
S-l for a field grown lucerne crop in full sun to 1300 

/lmol photons m-2 
S-l (13% reduction) under 30% shade cloth regime and to 970 /lmol photons 

m-2 
S-l (35% reduction) under 55% shade. A similar indication was shown by Walgenbach & 

Marten (1981), who found that field lucerne reduced total non-structural carbohydrates CINC) 
, 

of the upper 0.10-0.15 m canopy strata from 16% in full sun to 15% and 13% after being 

exposed to 20 days under 50% and 70% shade cloth, respectively. These authors suggested 

that a similar decrease would be found in roots TNC and thus explain the decrease in DM 

under shade observed in subsequent growth periods. The extent to which light influences 

growth of lucerne in the field depends on the level of radiation received, but it is the radiation 

distribution throughout the canopy that determines the fmal potential yield at a particular 

environment. 

Canopy architecture: 

The distribution of leaf area within a canopy and leaf orientation have been used by crop 

physiologists to explain the high photosynthetic activity and efficiency observed in lucerne 

compared with other crops grown in fully sun conditions. In these conditions, Woodward & 

Sheehy (1979) observed that a field grown lucerne canopy reached a leaf area index (LA!) of 6 

after 56 days regrowth in late spring (bud stage) and that approximately 50% of this leaf area 

was concentrated in the top canopy strata between 0.5 and 0.6 m height. Critical LA! occurred 
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between 0.3 and 0.4 m canopy height or approximately at LA! 4. The indication was that the 

canopy expanded leaf area in the most efficient position for the interception of PAR. Another 

important strategy of lucerne is to maintain top leaves at inteffilediate to vertical angle 

dispersals, reducing light saturation at the top canopy strata and allowing radiation to reach 

deep foliage layers (Heitchel et ai., 1988). Warren & Wilson (1965) observed that mean foliage 

angle dispersal of lucerne was 50° and varied little with depth in canopy. However, Keoghan 

(1970) showed for lucerne grown in chamber condition that plants had an increasing extinction 

coefficient (K) from top (K= 0.35) to bottom (K=1.72) canopy strata. The author reported a 

mean K of 0.77 for the second regrowth and a critical LA! of 3.9. Those results approximate to 

K estimations of about 0.61-0.77 reported by Wilfong et ai. (1967) and 0.88 by Gosse et ai. 

(1982) for field grown lucerne in full sun. A similar result was observed by Travis & Reed 

(1983) for field grown lucerne (LA! 4-5) at noontime, when leaflet angles were between 40 and 

80°. 

Changes in canopy architecture under shade were previously reported for other species such. as 

for woody deciduous dicots (McMillen & McClendon, 1979) and for cocksfoot (peri, 2002), 

but results for lucerne are unknown. According to Charles-Edwards (1981), there is an optimal 

canopy K for maximum canopy photosynthesis which changes with the incident light flux 

density: the lower the light, the more productive pasture will have planopbile leaves. In fact, 

most of the changes in canopy architecture found under shade are likely to be an indirect effect 

of the plant morphological changes, such as stem density, leaf size and elongation, soil nutrient 

and water supply (Trenbath & Angus, 1975). Therefore, the morphological characteristics may 

become particularly· important in low radiation environments where the efficiency of light 

capture is mandatory for maintaining the crop yield potential. 

Morphological responses: 

One of the first studies performed to investigate lucerne morphological changes in shade was 

undertaken by Cooper (1966), who observed that plant height was reduced by 10% under a 

50% shade cloth regime compared with full sun. An increase of leaf area ratio (leaf area to 

plant DW ratio) with decreasing light intensities was observed. In contrast, Wolf & Blaser 
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(1972) found an increase in stem height and a decrease in stem weight for field grown lucerne 

exposed to 30 to 70% shade cloth compared with full sunlight condition. These results were 

consistent with Lin et ai. (2001), who reported a significant decrease in the leaf to stem ratio 

and an increase in the internodal length of two lucerne cultivars under 50 and 80% shade cloth 

compared with those grown in full sunlight. In this same study, the authors never found 

changes in the proportions of leaf and stems for tropical legumes under shade. Despite some 

contradictions, lucerne appeared to respond as a typical sun-adapted plant when exposed to 

shade. That is, increasing plant height to have more access to incident light as has been 

observed in the dynamics of stem competition for light (Gosse et ai., 1988; Lemaire, 2001). 

Partitioning of assimilates between shoots and roots: 

Partitioning of assimilates between shoots and roots for lucerne is still a topic to be investigated 

and clarified by research. At the present, it is understood that nitrogen and carbohydrate 

reserves are mobilized from roots to shoots after defoliation until photosynthesis by the new 

leaf area canopy is sufficient to exceed the needs of new shoot and root growth and . 

maintenance requirements (Mitchell & Denne, 1967; Keoghan, 1991). Typically, plants are 

about 15-20 cm (Keoghan, 1991) or LAl<2 (Woodward & Sheehy, 1979) or take between 7-

14 days after defoliation (Pearce et ai., 1969), when root reserves reach their minimum levels 

and begin to increase again. Then, root reserves increase with increasing plant maturity until 

full flowering (Heitchel et ai., 1988). There is also' a seasonal effect on the partitioning of 

assimilates between shoots and roots. For example, Khaiti & Lemaire (1992) estimated that a 

field grown lucerne mobilised about 22% of its assimilates from shoot parts to roots by the end 

of the first regrowth period in 'summer, but this increased to 55% partitioning for the 

subsequent rotation in autumn. These authors highlighted that accumulation of reserves in tap 

roots was a consequence of the reduction in stem elongation rate because of low temperatures 

and shorter photoperiod. 

At present, there are no data published for lucerne partitioning rates under shade conditions. 

However, it is generally expected that plants under shade would be short of carbon production, 

thus they would tend to prioritise more shoot than root growth and transfer less photosynthates 
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to roots compared with full sun plants (Loomis et at., 1971). Under full sunlight, recovery of 

growth after defoliation may be more dependent on residual leaf area than on stored reserves, 

but under shade this situation may be reversed because other morphological responses to low 

light may result in little leaf area and few axillaries growing points remaining after grazing 

(Wilson & Ludlow, 1991). The complexity of this issue was reported by Luo (1991), using the 

ALFALFA 1.4 model (Denison & Loomis, 1989). This author observed an unexpected increase 

of fine-root to leaf ratios of simulations performed with 33 and 67% of full sunlight over a 40 

day rotation in spring. The carbohydrate translocations between the tap-crown and fine root 

pools were complex and underestimated by this model under low light intensity. 

2.4.3- Water relations 

Periods of soil water deficits usually occur in summer and autumn in the non-irrigated areas of 

New Zealand. In agroforestry, shade and low soil water content effects on canopy yield are 

confounded. Therefore, caution should be taken when analysing experimental data during these 

drought periods in agroforestry. Because competition between lucerne and trees have been 

previously reported (Section 2.1.3.3), it is important to review some important water relations 

that can affect yield of this crop under trees. 

Lucerne is considered an efficient water use crop in full sunlight conditions if the cost in 

assimilates associated with symbiosis and partitioning between roots and shoots are accounted 

for (Asseng & Hsiao, 2000). This is because morphological and physiological features allow 

lucerne to adapt to a wide range of soil moisture conditions. However, the magnitude of these 

changes is highly dependent on the level of soil water deficit, soil characteristics, manageme~~ 

and cultivar. When a drying period begins with the soil at field capacity, water is extracted 

mainly from the upper soil layers where root density is greatest and the flow path is shortest. As 

the upper soil dries, the zone of active extraction moves down, although it continues from the 

upper layers as long as the potential in the root xylem is lower than that of the soil water 

(Sheaffer et at., 1988). Lucerne has the ability to extract water from deep soil layers because of 

its deep root system. Lucerne was reported to reach between 180 and 240 mm depth in 
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unrestrictive soils of Canterbury (Evans, 1978; McLaren & Cameron, 1990). For instance, 

Brown (1998) found that lucerne extracted water from at least 2.3 m soil depth in non-irrigated 

conditions and 1.9 m in irrig ated conditions in Canterbury. 

Among the morphological changes induced by water stress in lucerne, Hall (1993) observed, in 

both greenhouse and field conditions, that mean stem length of previously water-stressed plants 

(plant water potential < -1.5 MPa) reduced 12% and leaf area per stem increased only 8% 

compared with previously non-stressed plants. The authors never observed changes in the 

number of stems per square meter in the field or per plant in the greenhouse. Canopy 

architecture was also observed to change with water stressed plants. Moran et ai. (1989) 

observed in a field lucerne stand that leaf zenith angle was more horizontally arranged (40°) in 

irrigated than non-irrigated (27) plots over a late spring day. These authors also concluded that 

well-watered lucerne leaves tended to track the sun throughout the day in both azimuthal and 

zenithal directions, whereas stressed plants reduced the tracking ability and produced mostly a 

leaf cupping action. 

Among the physiological responses induced by water stress, the depletion of stomatal 

conductance and leaf photosynthesis are the most frequent effects reported in the literature 

(Sanderson et ai., 1997). Antolin & Sanchez-Diaz (1993) showed a decrease of 33% and 77% 

in the leaf photosynthesis saturation point for lucerne seedlings under moderate (pre-dawn leaf 

water potential of -1.8 MPa) and sever~ (pre-dawn leaf water potential of -2.6 MPa) water 

stress, respectively, compared with well-watered conditions (pre-dawn leaf water potential of -

1.3 MPa). The authors also observed a decline in stomatal conductance, electron transport and 

apparent quantum yield. However, after isolating the stomatal effect, these authors concluded 

that the decline of leaf photosynthesis in lucerne under the two temporal droughts was mainly 

affected by non-stomatal factors, such as the inhibition of carboxylase activity (RuBP). 

Although the decrease of stomatal conductance is a plant mechanism to reduce leaf 

transpiration and save plant water content, a well-established lucerne crop requires severe soil 

water deficits before canopy photosynthesis declines to minimal rates. For example, Brown 
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(1998) reported that lucerne DM yield decreased, relative to irrigated conditions, when soil 

moisture deficits reached about 215 rum for 2.3 m soil depth profile. 

Below the maximum potential yield in well-watered conditions, lucerne DM yield decreases 

proportionally to the decrease in transpiration. Daily and seasonal ET are influenced by climatic 

factors, such as daily air temperature, advection and length of growing season. Sheaffer et ai. 

(1988) summarized research for lucerne from diverse climates and reported that about 56 to 83 

rum of water are required to produce 1 t DM ha- l
. In Canterbury, irrigated lucerne required 

about 36 rum of water to produce 1 t DM ha- l in full sunlight (McKenzie et ai., 1990). In 

contrast, for a 3 year-old agroforestry area in Canterbury, Yunusa et ai. (1995a) reported that 

evapotranspiration of lucerne under radiata pine trees ranged between 2.3-3.8 rum d- l in 

summer. 

Finally, the presence of intercropped trees can change lucerne water relations. Firstly, because 

the tree root system is likely to compete with that oflucerne (and vice-versa) during drought 

periods, and second because the presence of trees can change the micro-climatic environment 

for plants nearby trees. How a lucerne crop responds when exposed to both low radiation 'and 

low soil moisture content simultaneously is unknown and fonns one of the objectives of the 

present study. 

2.5- Crop yield modelling in agroforestry 

The complex relations between the over and understorey species make yield predictions a 

challenge in agroforestry systems. Although water relations may change dynamically in 

agroforestry areas over years as both trees and understorey crops grow, current crop yield 

models would easily simulate these modifications by assessing the plant water status. Indeed, 

light relations are the most complex factor to be considered in crop yield modelling under trees. 

Having an accurate model to predict understorey crop yield in shaded environments, would 
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assist researchers and farmers to plan the most adequate arrangement and combination of trees 

and pastures. 

2.5.1- Current models in agroforestry and constraints 

In agricultural ecosystems, production models have been developed for most of the major 

exchange processes between the plant community and the environment. These models are not 

only valuable research tools, but they can also become powerful tools to improve the 

management of crop production systems when integrated into sophisticated crop simulation 

models. Scientists have been remarkably successful in predicting plant behaviour at the 

molecular, physiological and agronomic levels by creating models in full sunlight conditions. 

However, they are still trying to accurately simulate understorey production in the complex 

agroforestry environment. 

Many models were developed to predict the amount of radiation below trees based on site, 

trees and stand variables (Satterlund, 1983; Quesada et ai., 1989; Reid & Ferguson, 1992). 

These models are useful tools to assist with forestry practices (e.g. tree thinning and pruning) in 

agroforestry areas, but they are usually not linked with predictions of understorey crop yield. In 

New Zealand, Knowles et ai. (1999) developed a simple linear function to predict pasture yield 

under trees based on the overstorey canopy closure. This function was developed with data 

from ryegrass (Lolium perenne), yorkshire fog (Hoicus ianatus) and browntop (Agrostis 

capillaris) with white clover (Trifolium repens) pasture grown under radiata pine (Percival & 

Knowles, 1988). However, this model only predicts pasture yield under trees relative to an 

open pasture, and it appears to predict seasonal pasture growth conservatively. In addition, it 

seems necessary to estimate other coefficients for different pasture species or combinations and 

to exercisecaution in extrapolating to different growth environment conditions. 

Wilson & Ludlow (1991) suggested a simple model to simulate pasture growth under trees 

based on the radiation use efficiency and average amount of photon irradiance intercepted daily. 
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In fact, this model originated from previous physiological models, which included a partitioning 

coefficient between shoots and roots, photosynthetic efficiency, radiation interception and loss 

of biomass as variables (Charles-Edwards, 1982). The authors minimized the importance ofthe 

partitioning coefficient for tropical grasses, because of their physiological characteristics. A 

seasonal variation in partitioning of assimilates between roots and shoots would modify RUE of 

above ground biomass as discussed in Section 2.1.4.2. Nevertheless, this seems inappropriate 

for species with large root reserves, such as lucerne, after defoliation (Avice et al., 1997). 

Another concern was discussed by Healey et al. (1998), who observed that RUE usually 

increases with the proportion of diffuse conditions and this effect should be taken into account 

to avoid underestimation of predicted yield under trees. Additionally, Cruz (1995) showed a 

critical point for using estimates of RUE in shaded environments. The author observed that for 

those species that partition carbon in favour of shoot growth, RUE would be mostly 

overestimated. To eliminate the effect of carbon partitioning on plants under shade, it would be 

necessary to estimate RUE based on total herbage biomass (Khaiti & Lemaire, 1992). So far, 

studies concerning canopy RUE under shade using this methodology are unknown. Finally, the 

model presented by Wilson & Ludlow (1991) neglected the intermittency effect of radiation in 

agroforestry areas when accounting for daily intercepted PAR from understorey plants. The 

model developed originally by Charles-Edwards (1982) used relationships observed in a steady­

state light regime. This would be perhaps appropriate for predicting understorey growth under 

shade cloth materials, for example, but might not be under trees where fluctuations of 

sun/shade are frequently observed. The hypothesis of a greater photosynthetic efficiency under 

intermittent light compared with continuous regime was firstly discussed by Rabinowitch 
/ 

(1956). In conclusion, it seems adequate to avoid models with variables of such complexity, 

such as RUE, whose crop responses are not completely clarified by research. To improve that, 

it is necessary to firstly return to classical canopy photosynthesis models successfully used in 

full sun crops and make the necessary adjustments to accurately simulate the fluctuations of 

radiation observed under trees. 
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2.5.2- Successful models in full sunlight and potential use in agroforestry 

Many scientists have used the canopy photosynthesis model integration to predict crop yield. 

For example, de Wit et al. (1970) with the Elementary Crop Growth Simulator (ELCROS) in 

com provided one of the frrst applications of those sub-models integrated with others. 

Afterwards, Brennan et al. (1970) also applied the same concepts to a dynamic model for sugar 

beet. More recently Weir et al. (1984) used those sub-models to create part of a whole-crop 

model (ARCWHEAT). The basic approach of the sub-models is used for full sunlight crops in a 

number of environmental conditions. However, there are some plant physiological situations 

that may require adjustments. One example was given by Thornley & Johnson (2000) when 

leaves in the upper region of a canopy are suffering from some degree of water stress owing to 

high radiation levels, whereas the leaves lower down may be relatively unstressed. In this 

situation, leaves within the canopy may have quite different photosynthetic responses. Another 

example comes from shaded environments where leaves may show different morphological and 

biochemical responses within the same canopy, depending on the intensity and periodicity of 

illumination. 

To derive the net canopy photosynthesis, scientists have developed three basic sub-models: (i) 

radiation interception, (ii) light utilisation in gross photosynthesis and (iii) partitioning of 

photosynthates to respiration. These sub-models when integrated are considered essential parts 

of a number of canopy growth models (Thornley, 1976; Marshal & Biscoe, 1980; Weir et al., 

1984). 

Radiation interception by the community: 

The actual flux of light received by each individual leaf within the canopy must be known to 

estimate photosynthesis (Loomis & Williams, 1969). Foliage angle affects the relative 

illumination of a fully exposed leaf and the projected shadow area of the leaf and thus the flux 

of light available to lower leaves. Besides, the morphological organization of individual leaves 

in the foliage canopy is critical, since the interception of light is a function of leaf area (Loomis 

et al., 1971). So, it is evident that simply averaging the light flux densities over a stratum 
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overestimates the rate of total photosynthesis, since the photosynthetic rate of single leaves is a 

curvilinear function of the light flux density (Saeki, 1973). The key problem is to relate the 

distribution of direct and diffuse radiation to the morphology within the plant community. In 

this way, the light environment of each photosynthetic organ can be characterized. These 

considerations led to the development of mathematical models to predict light distnbution 

within canopies. 

i) Canopy architecture: 

The vertical distribution of LA! in each of a series of horizontal strata was flrst described by 

Monsi & Saeki (1953) and Monsi (1968). It was found that light attenuation at any depth can 

be related to interposed LA! by the Bourguer-Lambert law: 

1 = 10 exp (-K*LAl) (Equation 2.1) 

Where 1 and 10 are light fluxes to horizontal receivers at points within and above the canopy 

and K is the extinction coefficient. K varies with cloudiness and strongly with solar angle 

(Loomis et al., 1971). Important differences occur among species in tenns of K values and 

these are closely related to the structure of the canopy, particularly to foliage angle (Hay & 

Walker. 1989). 

ii) Light distnbutions: 

Monsi & Saeki (1953) developed the mathematical model (Equation 2.1) for homogeneously 

arranged leaves and uniform foliage angle, where the K was a variable computed from 

geometrical considerations of leaf angle (<1», solar elevation angle (p) and LA!. Warren Wilson 

(1960) developed a geometrical theory based on the probability of a point quadrat contacting 

leaves of a given angle. The assumption was that with increasing angle between foliage and 

horizontal, the area projected vertically became progressively smaller and was minimal when 

the foliage was vertical. These authors suggested a method of calculation that revealed mean 

values of (i) the angle between the foliage and the horizontal and (ii) the denseness of the 
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foliage. This method was useful, since no accurate method of studying the vertical distnbution 

of a foliage area in situ had been developed. 

Saeki (1963) and Anderson (1966) showed the correspondence between Equation 2.1 and the 

Warren Wilson (1960) theory. The point quadrat probabilities could be taken to represent the 

average shadow area (F') cast in the direction ~ of a large number of leaves of area F. Equation 

2.1 was then derived by Duncan et al. (1967) to estimate the probability of penetration of rays 

of direct visible light as follows: 

I(z) = 10 exp (-LAI*[F'IF] q, r>1 sin~) = 10 exp (-LAI*K) (Equation 2.2) 

Where I, 10 [W (m2 ground)"l] and LA! are defined as above, [F'IF] is the ratio between the 

area of a leaf and the shadow it casts for a particular leaf angle <\> and elevation of the sun ~. 

This form of the Bouguer-Lambert law gives the area of direct light from a point source 

penetrating each foliage layer. 

[F'IF] q.r> = cos a * sin ~ if<\>:5 ~ or 

[F'IF] q, r> = sin ~* cos a*[1 +2/n (tan 80 - 80)] if <\> > ~ 

where 80 = acos (cot <\>*tan ~), expressed in radians, is the angle whose cos= cot <\>*tan~. 

To compute the area of sunlit leaves (A) within each layer, the flux of sunlight entering each 

layer (lz at the top of the layer) is subtracted from the flux of radiation leaving (Iz at the 

bottom of the layer). Equation 2.2 can also be used to calculate the penetration of diffuse sky 

light. The difference between the total LAI per layer and the area in direct sunlight (A), gives 

the area of leaves illuminated only by diffuse light (Duncan et al., 1967). The flux of diffuse 

skylight can also be computed in the same manner as for direct light by adding the light 

received from zones of the sky, each considered as a point source (Duncan et al., 1967). 

Equation 2.2 is an essential step to predict canopy photosynthesis as it simulates the 

distribution of direct and diffuse radiation within the foliage canopy. Validating measurements 



29 

in real plant communities confumyd the marked influence of canopy architecture on the 

absorption profile (Warren Wilson, 1967; Anderson, 1966). 

Gross photosynthesis in a single leaf: 

The response of gross photosynthetic rate (Pg) to irradiance has often been described as a 

rectangular hyperbola curve (Blackman, 1905; Rabinowitch, 1956). The rectangular hyperbola 

of the photosynthetic light response curve provided a good fit to data obtained under controlled 

environments. However, Thomley (1976) and Marshall & Biscoe (1980) showed that plants 

growing in the field could produce a somewhat different photosynthetic light response curve. 

This derived a model to combine a simplified description of the biochemical reactions occurring 

within the chloroplast with the physical diffusion of CO2 from the atmosphere and other 

parameters. This basic model has been widely used by many scientists to develop dynamic 

models of plant growth (Weir et ai., 1984; Thornley & Johnson, 2000). The equation is 

described as follows: 

Pg = [Pmax + aI(z)] - ([Pmax + aI(z)]2 - 48aI(z)Pmax])1f2 

28 

(Equation 2.3) 

Where Pmax is the photosynthetic rate at saturating point, a is the photosynthetic efficiency, Iz 

is obtained from Equation 2.2 and 8 is the ratio of physical (includes boundary layer, mesophyll 

and stomatal resistances) to total resistance to CO2. 

Total resistance is considered to be the sum of physical and biochemical (carboxylation) 

resistance to CO2 transfer. When 8 is zero, implying that the biochemical resistance is much 

greater than physical resistances, Equation 2.3 reduces to a rectangular hyperbola. By contrast, 

when 8 is unity, physical resistances are dominant and Equation 2.3 reduces to a non­

rectangular asymptotic curve (Marshall & Biscoe, 1980). Ludlow & Wilson (1971) reported 8 

values about 0.98 and 0.81 for Siratro (Phaseoius atropurpureus) and Green-Panic (Panicum 
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maximum), respectively, in 100% growth irradiance conditions. More recently, Peri (2002) 

reported that e in cocksfoot leaves was unaffected by a range of temperature, leaf nitrogen, 

regrowth duration and shade and had a mean value of 0.96. Other experimental evidence 

indicates that e is largely independent of temperature (Thomley & Johnson, 2000). 

The photosynthetic efficiency (a) can be calculated as the slope of the linear part of the 

photosynthetic light curve and it has been shown to vary little with percentage of growth 

irradiance (Thomley & Johnson, 2000). However, Norman & Arkebauer (1991) found 

differences in a values between crops. The authors cited a mean daily a of 0.007 mg CO2 Jl 

PAR (photosynthetic active radiation, 400-700 nm) intercepted on com whereas Ludlow and 

Wilson (1971) reported a values about 0.009 and 0.02 mg CO2 Jl PAR for Siratro (Phaseolus 

atropurpureus) and Green-Panic (Panicum maximum), respectively. Ehrlinger & Bjorkman 

(1977) stated that a was independent of temperature for C4 plants, whereas for C3 plants over 

the range between 14 and 24° C, a decreased by about 14 %. 

Thornley & Johnson (2000) stated that a and e are much less affected by growth irradiance 

than Pmax. The authors suggested that once the leaves saturate at intermediate to low levels of 

irradiances, the fitted values for a and e are less reliable. Therefore, it is reasonable to assume 

that the only significant effect of the growth irradiance is on Pmax, and that a and e are 

constants throughout the depth of the canopy. Johnson & Thomley (1984), supporting Acock 

et al. (1978) results, suggested a definition for Pmax appropriate to those leaves at the top of 

the canopy, while recognizing that Pmax does vary within the canopy. The basis for this 

assumption was that leaves developed under low irradiance have virtually the same rate of 

photosynthesis at that irradiance as do leaves developed at a much higher light level, indicating 

that leaves grown under shade maintain sufficient photosynthetic machinery to function 

efficiently in their growth environment. A more realistic expression for the relationship between 

maximum photosynthesis rate and the growth irradiance was suggested by Thomley & Johnson 

(2000): 

Pmax' = Pm° * [1-AI2 * (l-Iz/Io)] (Equation 2.4) 
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where Pm° is the asymptotic value of photosynthesis at saturating irradiance and A is a constant 

set as 0.70. 1z and 10 were defmed previously in Equations 2.1 and 2.2. 

The main limitation of Equation 2.4 is that other natural environmental factors are not 

considered to affect maximum leaf photosynthetic rate. Peri (2002) pointed out that the light 

flux, leaf temperature, soil moisture content and leaf nitrogen level may directly affect the Pmax 

values for temperate grasses. In his calculation, Pmax showed a maximum value of 1 mg 

CO2.m-2.s-1 when light intensity was highest at noon time. Thornley & Johnson (2000) also 

stated that plant water status would affect stomatal resistance and possible biochemical 

resistance throughout enzymatic activities. Therefore, the same authors suggested a 

complementary calculation for Pmax as described in Equation 2.4: 

Pm= Pmax' * [l-c *(I-PLWC)] (Equation 2.5) 

Where c is a dimensionless constant which reduces Pmax below its maximum value of Pm 

(Equation 2.4) as plant water content (PL WC) falls below unity. When the plant is free from 

water stress, WC approaches to unity and vice-versa. 

Additionally, Johnson & Thornley (1984) observed that Pmax depends strongly on 

temperature. In experiments on leaves of white clover and perennial ryegrass, Woledge & 

Dennis (1982) also found considerable variation with temperature in the rate of photosynthesis 

at saturating irradiance. These authors observed increases from 0.4xlO-6 to 1.2xlO-6 kg CO2 m-2 

S-l as the temperature was increased from 5 to 25°C. Johnson & Thornley (1984) assign a 

simple linear relationship, which was different from that published by Woledge & Dennis 

(1982), to explain Pmax variation with air temperature: 

Pmax=Pm(Tr) * (T-T'lTr-T') (Equation 2.6) 
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Where Tr is some reference temperature and T' is the temperature at which photosynthetic 

activity ceases. 

Total respiration in a single leaf: 

It is well accepted that the plant respiration process is closely coupled to adenosine di­

phosphate (ADP) supply and hence to biochemical activity (Beevers, 1961). Assuming that, 

Loomis et al. (1971) suggested, at least for the bu1k of the respiration of a plant, two main 

components: (i) respiration associated with growth and (ii) respiration associated with 

maintenance activities. Growth respiration should be correlated with the amount and type of 

new materials formed in plant growth and maintenance respiration with the living biomass, its 

degree of differentiation and function. 

Pirt (1965) fIrst demonstrated that the respiration rate of some bacterial populations could be 

separated into two main components: one proportional to the growth rate and the second 

proportional to the dry mass. The same author derived a simple regression of the respiration 

rate on the growth rate and dry weight and obtained two constants (a and b), which were 

interpreted as being related to the underlying processes of growth and maintenance. 

Afterwards, McCree (1970) showed that Pirt's relationship was also valid in the real vegetative 

world. In his work, McCree (1970) found the dependence of respiration rate on the gross 

photosynthetic activity, dry weight and time in white clover plants under a controlled 

environment. The author suggested the following equation to describe total respiration rate 

(R): 

R= a*P+ b*W (Equation 2.7) 

Where a and b are constants, P is the gross photosynthesis during the light period and W is the 

plant dry weight in CO2 equivalent units. For white clover, McCree (1970) found a=0.25 and 

b= 0.015 day"l. The theoretical ideas behind Equation 2.7 are: (i) there is a loss in material 

when converting the immediate products of photosynthesis into plant material and (ii) some 



33 

basal metabolism is required to maintain the current status of the plant. It was found that the 

coefficient a varies considerably with the type of plant tissue and that the coefficient b is also 

variable, depending on tissue organ and plant age (Thomley & Johson, 2000). Additionally, 

McCree (1970) concluded that over periods of more than one day, P, R and W were very 

dependent on the rates of death and regrowth of the various organs of the plants and those 

factors were often neglected in computer simulations. This means that models had failed when 

calculating respiration proportional to LA! and leaving out the rate of change of living material 

ill plant communities a large proportion of the synthesized material goes into leaf production. 

Thus the green leaf area continues to increase until the rate of death of old leaves equals the 

rate of production of new ones. This point is considered the optimum LA! (McCree & 

Troughton, 1966). After this point, it is reasonable to expect a slight decrease in canopy net 

photosynthesis as senescence develops. 

Therefore, the final equation to calculate total respiration rate can be expressed as follows: 

h=H 

R = a L Pg(5min) + b W 2 O.05(Tmax+Tmin) (Equation 2.8) 

h=O 

Where a is the growth respiration coefficient, H the number of daylight hours, b the 

maintenance respiration coefficient, Tmax and Tmin the daily maximum and minimum 

temperatures respec:tively, and W the crop weight expressed as grams of CO2 equivalent. 

McCree (1974) defmed each gram of crop dry weight to be equivalent to 1.43 g of CO2• 

According to this Equation, growth respiration is a fixed fraction of gross photosynthesis, so it 

. changes only with variables affecting photosynthesis rate. Maintenance respiration is dependent 

on the maintenance coefficient (b), daily mean temperatures and crop weight. By fIXing all crop 

and micrometeorological variables, total respiration rate (R) would only vary with the growth 

and maintenance coefficients. Thornley & Johnson (2000) stated that many of the approaches 

to respiration can be regarded as attempts to gain some understanding of the a and b 
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coefficients of McCree's equation. According to Hay & Walker (1989), most young plants use 

daily 25-35% of their assimilate to support growth (a= 0.25-0.35) and 1.5-3.0% of their dry 

weight (C02 equivalents) for maintenance processes (b= 1.75-3.47 x 10-7 
S-I). The same authors 

pointed out a and b coefficients of 0.34 and 0.012 dai1 for barley, respectively. In lucerne, 

Heichel et al. (1988), reviewing the literature, found that photorespiration can consume 

between 10 and 60% of net photosynthesis rate. 

Net canopy photosynthesis: 

Net canopy photosynthesis can be simulated with the integration of the three basic sub-models 

descnbed above: (i) canopy light interception, (ii) canopy gross photosynthesis rate and (iii) 

canopy total respiration rate. The rate of gross photosynthesis is calculated for each layer of the 

canopy and for each daylight hour by solving Equation 2.3 and using appropriate values of Iz 

from Equation 2.2. This gives gross photosynthesis in units of g CO2 m-2 leaf S-1. From this is 

obtained the hourly value, which is multiplied by the leaf area index of the layer. The values of 

each layer are then summed to give the hourly canopy gross photosynthesis, which can be 

converted to carbohydrate equivalents by mUltiplying by 0.65. Daily total respiration is a 

function of daily canopy gross photosynthesis and can also be converted to a carbohydrate 

base. Finally, daily canopy net photosynthesis rate is calculated as the difference between daily 

gross production and total respiration. 

2.1. 5. 3- Potential use of the canopy net photosynthesis model in agroforestry: 

The reasons for fluctuating light in natural communities include ~hanges in solar position, 

movements of clouds across the sun and movement of leaves. Additionally, in multiple 

agricultural systems, individual components may often have different height profiles and this 

would promote an alternating sun/shade regime for the understory vegetation. Physiological 

responses under an intermittent light regime are sometimes expected to be different from those 

in continuous radiation (Rabinowitch, 1956; Barden, 1977, Sager et at., 1980). Useful 

integrated models should be able to simulate all possible environments that occur in agricultural 
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ecosystems. In this study, it is necessary to review the canopy agronomic and physiological 

responses under two main light regimes: (i) continuous radiation and (ii) intermittent 

illumination. 

A considerable part of the classic work published by Rabinowitch (1956) reviewed the 

photosynthesis and related processes in intermittent light. Firstly, the author stated that 

intermittent light could be classified in the ways: (i) alternating light which was defined as an 

intermittent regime with equal periods of sun and shade and (ii) flashing light in which the 

period of light is much shorter than the period of shade. Rabinowitch (1956) pointed out that 

the true momentary light intensity during the flashes seemed to become unimportant. In 

agroforestry, both situations can occur depending on tree canopy closure, but usually flashing 

light is more characteristic of understorey environment in commercial or native forests (Yates 

et al., 1988). 

Rabinowitch (1956) hypothesis was that photosynthesis production could be expected to be 

larger in alternating light compared with continuous illumination if the periods of shade and sun 

are very long or very short. Long intervals of the order of several hours can improve the 

utilization of light energy because during the shade ''rest period" the plant can recuperate from 

the injury or exhaustion that often follows a period of intense photosynthesis. Very short 

periods « 1 second) may also cause an improvement of the energy conversion yield, because it 

allows the dark catalytic reactions of photosynthesis to run to completion, restoring the 

photosynthetic apparatus to its full efficiency at the beginning of each new light period. 

Conversely, in the intermediate range of frequencies (> 1 minute and < 1 hour) alternating light 

can be expected to cause a depression of the photosynthesis production because ~hade intervals 

of this length permit the development of induction phenomena, which occupy most of the 

subsequent light periods. Additionally, Rabinowitch (1956) suggested that the inertia of the 

stomata (both the opening of stomata in light and their closure in the shade are not 

instantaneous) could be only a contributing cause of the inhibition of plant growth by 

alternating light with an intermediate frequency. The main cause was said to be induction, 
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which is almost fully developed after 1 minute of shade and permits little photosynthesis in the 

first minute of subsequent illumination. 

Therefore, the question that arises is: are plants under trees using radiation more efficiently than 

plants in a continuous shade of equivalent light transmission? If the answer is positive, then the 

use of artificial shade cloth materials (Section 2.1.3.2) to simulate the agroforestry radiation 

environment will be underestimating potential growth under trees. If the answer is negative, 

then what are the main effects of light intermittency on plants that would reduce growth 

compared with a continuous shade regime? Although there is evidence that photosynthetic 

efficiency between continuous and intermittent light is different, much of the research on shade 

effects has focused on artificial environments (glasshouse or growth chamber). Further studies 

with crops under agroforestry light regimes, or at least under intermittent light close to that 

observed in agroforestry, are necessary. In addition, studies about light interception within the 

plant community may be of particular interest in limited radiation conditions as a canopy 

normally adjusts its plant architecture to optimise light interception. Most of the studies of 

canopy photosynthetic efficiency in continuous and intermittent light reported previously were 

performed with horizontally orientated leaves. The net photosynthesis model may be a useful 

tool to investigate plant physiological responses and strategies to tolerate shade. To do that, 

environmental functions in shade must be provided as input data. Nevertheless, it is unusual to 

find in the literature the use of models to simulate canopy photosynthesis in shaded 

environments and under different light regiines. The complexity of plant responses under shade 

may bring an extra challenge for scientific investigation in this area, particularly in agroforestry 

where there is a number of 'scenarios', involving light intensity, spectral composition and 

radiation periodicity, to which understorey plants are exposed. 

In the next chapter, an alternative artificial shading material to the commonly used shade cloth 

is created for agrofrorestry research. Both methodologies are tested and compared in a field 

experiment for their radiation physical environments. and crop responses under irrigated and 

non-irrigated conditions. 



CHAPTER 3 

Lucerne responses under different artificial shade and soil 
moisture conditions 

3.1- Introduction 
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In agroforestry research, artificial shading is an important tool used to simulate tree shade on 

understorey vegetation. The light environment in an agroforestry area changes slowly as tree 

crown develops (Section 2.1.3.2). For example, in a New Zealand agroforestry area (Knowles 

et al., 1999) radiata pine trees were dominant over underneath pasture species after 20 years. 

This makes research on understorey species difficult to undertake. Artificial shade structures 

provide a practical way to examine morphological and physiological changes in plants and to 

screen for shade tolerant species for agroforestry systems. 

In temperate areas, such as the East Coast of New Zealand, agroforestry systems may 

experience periods of full water supply, after soil moisture recharge in winter, followed by 

temporal drought in summer. In these conditions, it is necessary to isolate the effects of light 

and soil water content when using artificial shade materials to study plant responses for 

agroforestry purposes. Correspondingly, the interaction effects between variable soil water 

conditions and low light in plants are of interest in many agroforestry systems. 

Plastic cloth is the most common artificial shade material used in agroforestry research and it 

is abundant in the market in several colours. The cloth produces a continuous pattern of 

radiation over the day, but does not change spectral composition. However, understorey plants 

in agroforestry areas are usually submitted to fluctuating light regimes and changes in 

radiation spectral composition (Section 2.1.3.2). Therefore, shade cloth may not by the best 

methodology to resemble the radiation environment of an agroforestry area. Modifications in 

the pattern of light intensity, quality and regime may be particularly important when plant 

morphology and production are concerned (Yates et ai., 1988; Buxton & Fales, 1994). 
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The experiment described in this chapter was a 'pilot project' used to examine the effects of 

two artificial shade regimes on lucerne growth and development in irrigated and non-irrigated 

conditions. In addition to cloth, a slatted structure was built to mimic the intermittent light 

regime observed in an agroforestry trial near to this experimental area. Thus, the aims of this 

study were: (i) to create artificial regimes of continuous and intermittent light and (ii) to 

detennine if the crop responses of lucerne to both shade regimes were different and how they 

changed from those in an full sun in irrigated and non-irrigated conditions. If there were no 

differences in the crop response to the different shade patterns, then either shade structures 

could be used as an experimental methodology to mimic the agroforestry system. 

3.2- Materials and methods 

3.2.1- Site description 

The experiment was located at the Lincoln University Field Service Centre (FSC), Canteibury, 

New Zealand (43°39'S and 172°28'E) The soil was a Wakanui deep silt loam (Eutrochrept) 

with 180-350 mm silt loam top soil overlaying variable textural layers, ranging from a clay 

loam to a sandy loam. In this soil, there is typically 2 m of fme material overlying gravel and 

stones (Watt & Burgham, 1992). The total water holding capacity for this experimental site 

ranges from 613 to 801 mm over 2.3 m soil depth (Brown, 1998; Inch 1998). Irrigation 

requires careful monitoring to prevent water build-up and should be applied on a high 

frequency/short duration basis (Watt & Burgham, 1992). 

The climate is characterised by an annual rainfall of about 670 mm, which is slightly higher in 

winter than other seasons (Table 3.01). The annual mean temperature is 11.4 °C varying from 

a monthly average of 6.0° C in July to 17.4° C in January. The meteorological data used for 

this experiment were measured at the Broadfields Meteorological Station (Crop & Food 

Research Ltd., New Zealand), which is located 1 kIn north of the Lincoln University campus. 



Table 3.01- Actual (1998-1999) and long term monthly means (LTM from 1960 to 2001) for total global short wave solar radiation 
(SR), maximum (Tmax), minimum (Tmin) and mean (Tmean) air temperatures, total rainfall (R), Penmann evapotranspiration (ET) 
and sum of thermal time (TT) and measured in an full sun at the Broadfields Meteorological Station (Crop & Food Research Ltd., 
Lincoln, New Zealand), which is located 1 km north of the experimental site. 

Month SR LTM Tmax LTM Tmin LTM Tmean LTM R LTM ET LTM TT* LTM 
MJ -2 d-l -- m --

__________________________ oC ___________________________ 
------mro----- d-1 -----mro ---- ----°C days----

Dec' 98 23.9 23.3 21.2 21.2 10.4 10.1 15.5 15.6 24.1 52.6 4.8 4.7 461.4 442.1 

Jan' 99 22.3 23.0 22.1 23.2 13.3 11.8 17 17.4 36.2 56.8 4.2 5.0 512.1 540.3 

Feb' 99 22.3 20.2 22.2 23.4 12.4 11.9 17.1 17.6 38.3 46.1 4.8 4.4 467.6 435.0 

Mar' 99 15.4 14.4 21.6 20.5 12.2 10.0 16.5 15.2 56.1 56.8 3.5 3.1 498.5 416.8 

Apr' 99 9.8 9.8 16.5 17.7 8.1 6.9 11.9 12.2 36.3 54.8 2.0 2.1 343.0 325.6 

May' 99 6.9 6.0 16.8 14.3 5.2 4.1 11.2 9.2 23.6 54.9 1.8 1.4 334.5 234.1 

Jun' 99 5.4 4.6 12.1 11.5 1.8 1.6 6.6 6.5 69.1 62.6 1.0 1.1 183.8 189.7 

Jul' 99 4.8 5.2 10.5 10.9 2.4 1.4 6.7 6.1 135.1 67.1 0.9 1.1 200.6 183.7 

Aug'99 8.5 7.9 12.0 12.3 2.4 2.5 6.9 7.3 58.0 63.7 1.4 1.6 210.1 211.2 

Sep' 99 13.9 12.2 14:8 14.6 4.4 4.3 9.4 9.4 26.6 42.2 2.5 2.3 274.9 250.3 

Oct' 99 16.8 17.4 17.3 17.3 8.1 6.3 12.2 11.7 50.9 47.9 3.1 3.4 365.0 326.8 

Nov' 99 20.6 21.4 17.3 19.0 9.0 7.9 12.9 13.4 60.5 53.9 3.4 4.2 367.4 386.3 

* Sum of thermal time was calculated above a base temperature (Tb) =0 °c. 

Vl 
\0 
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3.2.2- Site history 

The experiment was contained within a 1.5 hectare paddock that had 'Kaituna' lucerne as one 

of the three pasture species in a split-plot experiment previously established on lit November 

1996. One month prior to sowing, lime was applied at 4 t ha-1
, sulphate of potassium at 150 kg 

ha-1 and super phosphate at 250 kg ha-1
. The area was sprayed with Triflur 40 (400 g rl 

Trifluralin) at a commercial rate of 2 I ha-1 diluted in 200 I ha-1 of water. Lucerne was sown at 

a rate of 7 kg ha-1 and plant populations of 200-250 plants m-2 had established by 28 October 

1997 (Brown et ai., 2000). 

3.2.3- Treatments and experimental design 

The current experiment only used the six lucerne plots. These were 22 x 6.3m each with at 

least a 10m buffer between the edges of irrigated and non-irrigated plots. The experimental 

period was from 23rd December 1998 to 24th June 1999. The experimental design was a split­

plot randomised block with the main plots as soil water status (irrigated and non-irrigated) and 

the sub-plots as light regimes (full sunlight, shade cloth or wooden slats) in three replicates. A 

view of the experimental site and details of the shade structures are shown in Plates 3.01 and 

3.02, respectively. 
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Plate 3.01- A view of the artificial shade structures set on a lucerne plot at the Field Service 
Centre (FSC) experiment, Lincoln University. 

Plate 3.02- Detail of the shade cloth and wooden slats structures used in the Field Service 
Centre (FSC) experiment, Lincoln University. 
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3.2.3.1- Radiation regimes 

The aim for one of the artificial shade structures was to mimic the radiation environment of a 

neatby radiata pine agroforestry area (Yunusa et ai., 1995). A previous analysis of this area 

showed that the mean light transmissivity under the trees was about 50% compared with full 

sun conditions (pollock, unpublished data). In addition, the understorey vegetation was 

exposed to alternate periods of high and low radiation as the direct sunlight passed between 

and behind tree crowns over the day. A slatted structure was constructed to produce a similarly 

fluctuating light regime. To ensure that the duration of direct sunlight and shade under slats 

was similar to the agroforestry environment, the ratio of slat height above the lucerne canopy 

to slat width was kept the same as the ratio of the tree crown distance from its shadow to tree 

crown width (2:1). Owing to the fact that tree crowns are vertical and slats horizontal, the ratio 

of 2:1 was based on the diameter of the tree shadow. The ratio was calculated for the lowest 

solar zenith angle (about 30° at New Zealand standard noontime in summer) and used to 

defme the height of the shade structure above canopy top. Figure 3.01 summarises the basis of 

the slatted structure construction for this experiment. 

h= d/tano 

H= h/coso 

d=4m 

Figure 3.01- Diagram of the Lincoln University agroforestry area in October 1998, on 
which the slatted structure construction was based. H is the actual distance of shadow 
from tree crown; h is the distance from tree crown to top of canopy; d is the mean 
diameter of tree shadow and 8 is the solar zenith angle (30). 
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To achieve this, a slatted structure was created with 0.15m wide wooden slats (painted white 

on top) and 0.15m gaps between slats covering a total area of 2.4 x 5.2m. The same width for 

the slats and gaps was designed to produce a light transmissivity of about 50%. This structure 

was supported horizontally on a vertically adjustable metal pipe frame, which allowed the slats 

to be kept at 0.30m above the lucerne canopy. Thus, the ratio of distance from slats to lucerne 

top (h) to slat width (d) was maintained at 2:1 as previously observed in the agroforestry area. 

For the shade cloth, the aim was to create a partial continuous light regime over the day that 

produced a similar level of light transmissivity to the slatted structure. Thus, black plastic 

shade cloth with 50% light transmissvity (commercial material description) was purchased 

from local horticultural supply stores and used to cover an adjacent 2.3 x 1.8m area. The shade 

cloth structure had an overhang material at both east and west sides to prevent direct radiation 

on plants at low solar inclination angles. The cloth structure was supported on the same metal 

pipe frame, adjusted weekly to approximately maintain 0.30m above lucerne top as the crop 

grew. Shade cloth and wooden slat structures were set in the field on 23rd December 1998. 

Light measurement 

The light environment was monitored with 2 quantum sensors (LI-190SB, Lincoln, USA), one 

installed above and one below the shade structures in Replicate 3. One quantum sensor was 

alternated from under shade cloth to under the wooden slat structure every 10 days and the 

other was set permanently in full sunlight conditions. Photosynthetic photon flux density 

(PPFD) , within the range of 400-700nm, was recorded by a datataker (DTI00, Roseville, 

Australia) every 30 seconds and the average was calculated at 8 minute intervals. The mean 

daily light flux transmissivity under both shaded structures was calculated for 10 different 

days in summer and autumn and on completely clear and overcast sky conditions. In Appendix 

1, the daily course of the global solar radiation measured in full sun during the experimental 

period is shown. 

Spectral radiation data were measured with a portable Spectroradiometer LI-1800 (LI-COR 

Inc., Lincoln, USA). Measurements were peIformed under the three light regimes prior to the 

experiment on IOlh October 1998 at noontime. Readings were peIformed in both clear and 
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overcast sky conditions. The red (660 nm) to far-red (730 nm) ratio (R/FR) was calculated in 

full sunlight, under the shade cloth, under the slats during the sun phase and during the shade 

phase. Spectral data were measured in W m-2 nm-1 between wavelengths of 300 and 1100 nm 

with intervals of 5 nm. 

3.2.3.2- Soil water status 

Soil water measurements 

Water content was measured in the top soil of each shade treatments from September 1998 to 

May 1999 in full sun plots and from January to May 1999 under the two shade structures, 

using the Time Domain Reflectometer (fDR) Trase system, Model 6050Xl (Soil moisture 

Equipment Corp., Santa Batbara, USA). To do this, metal rods measuring 0.50m and 0.20m 

long were permanently installed in the centre of each treatment. In addition, metal tubes 

measuring 2.25m long were permanently set in full sunlight treatments (irrigated and non­

irrigated plots) for all replicates. From 0.25 to 2.3m depth, soil moisture was measured with a 

Neutron probe (NP), Troxler Model 3333 at O.lm intervals. Such fragmentation of soil 

moisture measurement within the profile was necessary because of soil texture variability 

previously observed by Watt & Burgham (1992) and Brown (1998) in the same experimental 

site. Measurements using both TDR and NMM were taken at 7-10 day intervals during the 

experimental period. 

Irrigation water 

Irrigation was applied between November 1998 and February 1999 to irrigated treatments, 

using a travelling mini-boom irrigator. Table 3.02 shows a summary of the irrigation water 

applied. Previous research in the same plots (Inch, 1998; Brown, 1999) had shown the water 

extraction depth for lucerne in non-irrigated treatments was at least up to 2.3m and up to 1.9 m 

in irrigated treatments. The same authors reported that, for the non-irrigated lucerne, DM yield 

started to decrease below a soil moisture deficit (SMD) of 215mm for the 2.3m soil depth. 

Therefore, the target for the inigated plots was to maintain a SMD below 100 mm within the 

top LOrn soil depth or about half of the available water at field capacity. The soil field 

capacity (FC) of this area has been measured using nutreon probe readings for every O.lOm 
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soil layer down to 2.3m depth from 1997 to 2000 (Brown, unpublished data). The values for 

FC varied within each soil profile because of changes in soil texture and water holding 

capacity. On average, it was found that FC for O.lOm layers ranged from 30-37% at the 2.3m 

soil profile, which is consistent with previous reports (Watt & Burgham, 1992), 

The amount of irrigation water applied was measured with a flow meter (Neptune, type Sz, 

size 25.4 mm). The rate of water application was 15mm h-1
. Inigation was applied 

immediately after trimming the residual material, post grazing, to replace the water lost in the 

previous rotation. 

Table 3.02- Inigation water applied to the plots in the FSC experiment at 
Cantetbury, New Zealand for the 1998/1999 season. 

Start date Finish date Amount of irrigation 
water applied (mm) 

20/1111998 25/11/1998 80 

23/12/1998 

2010111999 

25102/1999 

Total 

27/12/1998 

2510111999 

0110311999 

86 

125 

71 

362 

Inigated plots received a total amount of water (A) equal to the difference between estimated 

potential evapotranspiration ()Y:p) and rainfall (R) plus irrigation (Irr) in the previous rotation 

(Equation 3.1). 

A=)Y:p - (R + lIT) Equation 3.1 

The actual amount of irrigation water applied (mm) was measured at the experimental site 

using a flow meter (Neptune, type Sz, size 25 mm). Total rainfall (mm) and Penmann Ep 

(mm) were collected at the Broadfields Meteorological Station. The potential SMD was 

calculated at 7-10 day intervals, using the following equation: 

SMD = SMDi + (R + lIT) - EA Equation 3.2 
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Where SMDi is the initial soil moisture deficit at the beginning of each measurement period 

and EA is the estimated daily evapotranspiration for that period. The daily SMD values were 

accumulated over the lucerne growth period. Daily EA was calculated from Equation 3.3: 

Daily EA = [(llSWC+R+Irr) / LEp] * Ep Equation 3.3 

Where Ep is the daily Penmann evapotranspiration (mm dail) and llSWC is the change in soil 

water content between two successive measurements in the experimental plots. 

Finally, six thermistor sensors (KTY/llO, Cooltronics, Christchurch, New Zealand) were 

petmanently set at 0.05m above the canopy for the three light regimes (full sunlight, shade 

cloth and wooden slat) in irrigated and non-irrigated plots in Replicate 3. The sensors were 

individually calibrated to a 0.1 °C mercury thetmometer. The sensors were installed in a 

O.lOm long metal pipe shelter to remain protected from direct solar radiation. The pipe was 

painted black inside to avoid re-irradiation effects. Metal shelters along with the temperature 

sensors were set on an aluminium bar connected to the shaded structures. Thus, as the height 

of shaded structures was adjusted weekly (0.30m above canopy), temperature sensors were 

automatically lifted and maintained 50mm above the canopy. The aim was to measure air 

temperature differences at canopy height that might result from different canopy transpiration 

rates under the different light regimes. A data logger also recorded the temperatures every 30 

seconds and the average was calculated at 15 minute intervals. 

3.2.4- Site management 

3.2.4.1- General 

Thirty soil cores (300 mm diameter x 150 mm depth) were taken at random within each 

lucerne crop at the end of the experiment in May 1999 (Table 3.03). During the experimental 

period no fertilizers were applied based on results from 150 mm deep soil cores (Table 3.03). 

Results for soil nutrients indicated small differences between irrigated and non-irrigated plots. 
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Levels of soil nutrients were adequate (Morton & Roberts, 1999), except for Olsen phosphorus 

(P) and sulphate sulphur [S(S04)] in irrigated plots, which were slightly below the target for 

sedimentary soils in Canterbury. 

Table 3.03- Soil test results for the Field Service Centre experimental site from samples taken 
in May 1999. Soil tests were perfonned using the Ministry of Agriculture and Fisheries Quick 
Test (MAF QT) procedures. 

Treatment Cal KI Mg2 Nat p3 S(S04/ pHs 

----------------m.e. 100 g-l soil------------ Mgmr1 ppm 

Irrigated 8.0 1.1 1.1 0.2 17.0 6.0 7.0 

Non-irrigated 7.5 1.2 1.1 0.2 20.0 9.0 6.8 

1. Ammonium acetate extraction:AA determination test method; 2. Ammonium acetate extraction test method; 
3. Olsen extraction:colorimetry test method; 4. Potassium phosphate extraction:IC test method; 5. 1:2.1 VN 
water slurry test method (AgResearch, Lincoln, New Zealand). 

3.2.4.2- Grazing 

Shade structures were removed during the period of grazing and the whole area (including 

shaded plots) were grazed simultaneously with sheep of different classes. The timing of each 

grazing was a compromise between optimal development stage for lucerne persistence and 

nutritive value. The period of grazing never exceeded 6 days. The spelling period between 

successive grazing periods in summer also aimed to allow lucerne to reach early flowering 

(Stage 3, according to Fick & Mueller, 1989) in summer and store sufficient reserves for the 

following season (Brown et ai., 2000). Post-grazing, residual shoots were trimmed just above 

crown height in all plots, using a sickle bar mower to ensure only subsequent lucerne regrowth 

was measured. Table 3.04 shows the duration of each rotation and grazing period for the 

experimental period. 
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Table 3.04- Rotation length and sheep grazing period used ill the present 
ex~eriment at Canterbury, New Zealand. 

Rotation Rotation period Rotation Grazing 
(from residual to final cut) length duration 

(daIs) (daIs) 
1 22 Dec -13 Jan 99 23 4 

2 19 Jan -17 Feb 99 30 5 

3 25 Feb -12 Apr 99 47 6 

4 22 Apr - 24 Jun 99 64 4 

3.2.5- Measurements 

3.2.5.1- Herbage dry matter samples 

Herbage dry matter (DM) yield was calculated from samples collected at 7-10 day intervals. 

Samples were cut from a 0.2 m2 quadrat about 50mm above ground level. From these samples, 

a randomised sub-sample of at least 50g fresh matter (FM) was separated and the total number 

of stems counted. Observations made during the first two rotations indicated variations in 

lucerne stem sizes between light regimes. Thus, the stem number sub-sample was also 

separated into three size classes: <10, 10-20, and >20 cm stem length for the final harvests in 

Rotations 3 (12th April 1999) and 4 (24 June 1999). 

Once in each rotation, when lucerne was still at the vegetative stage (Stage 2, according to 

Fick & Mueller, 1989), a second 50g FM sub-sample was collected to estimate the proportion 

ofleaf and stem (LIS ratio). This sub-sample was separated into leaf (leaflets) and stem (main 

stem + petioles). Main samples and sub-samples were dried in a forced air draft oven for at 

least 48 hours at 70°C to constant weight. DM yield (kg ha-1
), number of stems (stems ha-1

) 

and L:S ratio were then calculated. Final harvests for each rotation were taken in the 24 hours 

before sheep were introduced to the paddock. Growth rates (kg ha-1 d-1
) were calculated for the 

linear portion of the growth curve in each rotation. For this calculation, it was assumed that the 
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period between the day after grazing and fIrst lucerne DMharvest (7-10 days) corresponded to 

the lag phase of the growth curve. 

3.2.5.2-Green area index 

Green area index (GAl) was measured using a LAI-2000 canopy analyser (LI-COR Inc., 

Lincoln, USA). Readings were taken in predominantly diffuse light conditions at 7-10 day 

intervals. The equipment was set to take two series of one reading above and 5 readings below 

the canopy (50mm above the ground level) in each plot. The same equipment automatically 

calculated the proportion of diffuse light transmission (DIFN) at ground level and the mean 

foliage angle (MTA). The fmal GAl, DIFN and MTA values result from the integration of 5 

different zenith angles readings (7,23,38,53 and 68°) measured by the canopy analyzer. The 

above and below canopy readings for the cloth treatment were taken immediately under the 

shade material when light conditions were unifonn and predominantly diffuse. However, for 

the slatted structure, wooden slats were removed completely for the measurement period (2-5 

minutes) to take the above and below canopy readings and to avoid overestimations due to the 

fluctuating light regime. 

From these data, lucerne canopy architecture was described using the extinction coefficient 

(K) calculated from Beer's law (Equation 2.1, Section 2.1.5.2) and the MT A readings. To do 

this, a linear regression between Ln (Illo) and GAl was plotted for each treatment during the 

experimental period and the slope of this line was considered K. Both light penetration (1/10), 

assumed to be DIFN, and GAl were obtained from the canopy analyzer measurements. In 

addition, canopy radiation interception (%) in diffuse light condition was calculated by 

subtracting 1 from the DIFN value and multiplying for 100. 

3.2.5.3- Radiation use efficiency (RUE) 

Radiation use efficiency was calculated by the slope of the regression line obtained between 

mean shoot dry matter (g m-2
) against accumulated intercepted PAR (MJ m-2

) for each rotation 

period. Estimates of intercepted PAR (PARi) were calculated according to Gosse et al. (1982) 

and as applied by Khaiti & Lemaire (1992): 
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PARi I P ARo = 0.97 * [1 - exp (-LAl*K)] Equation 3.4 

Where P ARo is the incident PAR above canopy (in full sun and under the cloth and slat 

structures) and LA! is leaf area index. Light flux (IlIDol photons m-2 
S-1), measured by the 

quantum sensors in each treatment, was converted to PAR units (W m-2= J m-2 
S-1) and used as 

daily accumulated P ARo values (1 W m-2 = 4.61 /-lmol photons m-2 
S-1 as reported in the LI­

COR Radiation Measurement Manual). Specific K values for each treatment were used on this 

calculation and leaf area index was assumed as GAl. The daily value of GAl was estimated by 

linear interpolation between two successive GAl measurements. 

3.2.5.4- Leaf net photosynthesis (Pn) 

Leaf Pn rate was measured 6 times between Rotations 1 and 3 on three of the youngest fully 

expanded leaves per treatment and at an artificial light flux of 1000 /-till0l photons m-2 s-t, 

using the portable infra-red gas analyser (LI-6400, LI-COR Inc., Nebraska). Air temperature 

in the leaf chamber was blocked at 21 0 C and CO2 concentration set at 400 ppm. Readings 

were taken after stabilising at a coefficient of variance of 5 % and results of Pn rate were 

expressed as the mean va1ue of the three measurements in /-lmol C02 m-2 
S-1. When a lucerne 

leaf was smaller than the chamber, Pn rate was corrected according to leaf area. Samples were 

only collected in clear sky conditions between 1100 and 1400 h. Under the wooden slat 

regime, Pn rate was measured on fully illuminated leaves. 

3.2.5.5- Phenological development 

Five dominant stems from different plants were marked in the centre of each treatment to 

measure stem height (STH), number of fully expanded nodes (NOD), time to bud appearance 

and node number of the flowering bud (PFLOW). Measurements were taken at 10 day 

intervals until flower initiation (Stages 3-5 according to Fick & Mueller, 1989). New plants 

were marked at the beginning of each rotation. From these measurements, the phyllochron was 

calculated based on thermal time accumulation using Equation 3.5: 
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TT = L [ (Tmax + Tmin) / 2] - Tb Equation 3.5 

Where Tmax was the maximum daily air temperature, Tmin was the minimum daily 

temperature and Tb was the base temperature, below which no development takes place. Tb 

was 1 DC as calculated by Moot et al. (2000). Mean air temperatures were assumed to be equal 

between light regimes. 

3.2.6- Statistical analysis 

Results for all variables were analysed using a split-plot analysis of variance (ANOVA), 

where water status (irrigated and non-irrigated) was the main plot and light regimes (full 

sunlight, cloth and slats) the sub-plots, with 3 replicates. This analysis was performed on 

individual dates as measured in the field. A complementary ANOV A was penormed for all 

variables using a split-split plot analysis, where the sub-sub-plot was the date of measurement 

(time), to identify seasonal differences. In both cases, means were compared whenever 

treatment effects in the ANOVA presented p < 0.05. Then, Fisher's protected least significant 

difference (LSD) was used for means separation at the 5% level «(1= 0.05). For the RUE, a 

regression analysis was performed between shoot DM against accumulated PARi and the 

plotted equations are reported with the regression coefficients, coefficient of determination 

(R2) and standard errors (SE) for each treatment. Regression lines were performed with and 

without being forced through the origin. An ANOV A was then penormed on the regression 

coefficients for the slope, using the split-plot design. The statistical package used was the 

GENST AT 5, release 4.1 (Lawes Agricultural Trust, !ACR, Rothamsted, UK). 
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3.3- Results 

3.3.1- Environmental changes 

3.3.1.1- Radiation environment 

The use of both artificial shade materials produced distinct light flux transmissivity and 

periodicity (Figure 3.02 abcd). Specifically, on sunny days the light regime under the slatted 

structure was intermittent with equal alternating periods of near full sunlight and heavy shade 

(Figure 3.02a). For example, a maximum period of nearly 120 minutes of either heavy shade 

or high sunlight periods was measured in mid-summer at noontime. At this time, light flux 

transmissivity under slats was 94% during the sun and 6% during the shade period compared 

with the open. The mean daily light transmissivity under slats was 47%. In contrast, the shade 

cloth produced a continuous light regime similar to that observed in full sun on a clear and 

sunny day (Figure 3.02c). Light flux transmissivity under the cloth material reached a 

maximum of 45% (13.00h) and a minimum of 20% (I8.00h) compared with the open. The 

mean daily transmissivity was 42% on a sunny day under the cloth regime. 

In mid-summer on an overcast day, the difference in light periodicity between cloth and slats 

was minimal and both artificial shade structures followed the same pattern as the full sun. 

Mean daily light transmissivity in overcast sky conditions was 46% under the slatted structure 

(Figure 3.02b) and 38% under the shade cloth (Figure 3.02d) compared with the full sun. 

Additionally, measurements taken in mid-autumn showed .that mean daily light transmissivity 

decreased to 46% under slats and 39% under cloth on either clear or overcast days. Spectral 

composition was analysed by calculating the red to far-red ratio (R:FR) and these are also 

indicated in Figure 3.02 (abcd). Under clear sunny sky conditions, the ratio was similar for full 

sunlight (1.32), shade cloth (1.30) and during the sun phase under slats (1.28). It decreased to 

0.74 during the shade phase under wooden slats. The magnitude of differences was reduced in 

overcast sky conditions, with a uniform reading under slats of 1.20, with 1.29 in full sunlight 

and 1.26 under cloth. 
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3.3 .1.2- Air temperature at canopy height (TClI) 

There were only small changes in TCH between shaded and full sunlight regimes on a daily 

basis, but variation was found during the day (Figure 3.03 abed). TCH under the two artificial 

shade structures was typically waIIDer than in full sunlight at night, but cooler during the day. 

For example, at night in the summer TCH was up to 19% WaIIDer under the cloth and 16% 

WaIIDer under the slat structures compared with the full sun in non-irrigated conditions (Figure 

3.03b). In autumn, cloth was 11 % and slats 12% WaIIDer than full sunlight (Figure 3.03d). In 

contrast, daytime TCH in summer was cooler by up to 13% under cloth and 16% under slats 

and by autumn the difference was up to 19% under cloth and 14% under slats. The same trend 

continued for inigated treatments, but cloth appeared to be even WaIIDer at night than the non­

irrigated treatment. Relative differences between the irrigated shaded regimes and full sunlight 

during the day were smaller than in non-irrigated conditions (Figure 3.03bd). 
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3.3.1.3- Soil water content (SWC) 

TDR measurements (Figure 3.04) showed that soil moisture in the top 0.5 m of the non­

irrigated full sun treatment decreased from 30% on 16 September to 19% on 1 December 

1998 and then remained constant until 17 February 1999, regardless of light regimes. 

Neutron probe measurements (Figure 3.05) showed a rapid decrease for SWC at 0-0.5 m 

from September to mid December in non-irrigated treatments and then SWC reduced at 

lower rates until 22 February 1999. For the layer 0.5-1.0 m, the SWC dropped from 34% 

on 16 September 1998 to about 9% on 22 February 1999. After this, there was no further 

water extraction until the end of June. Similarly, water extraction from 1.0-2.0 m was 

minimal from February to June. These data suggest moisture stress was likely to occur 

from the end of Rotation 1 until the beginning of Rotation 3. 

Indeed, the SMD increased rapidly in non-irrigated full sun conditions "from September 

1998 to mid-February 1999 as total rainfall was minimal and evapotranspiration increased 

(Table 3.01 and Figure 3.06). The maximum SMD for the 2.3 m soil profile was 385 mm 

on the 25 February 1999 in the non-irrigated treatments. The subsequent recovery occurred 

after the beginning of rotation 2 with the 31 mm of rainfall on 26 February 1999 (Figure 

3.06). Further rainfall in March continued to rewet the top 0.5 m soil layer and it then 

never returned to its minimal level (Figure 3.05), indicating crops did not experience any 

further water stress. For irrigated treatments the maximum SMD was 140 mm also on 25 

February 1999, but the available water below 1.0 m indicated these crops were not 

moisture stressed at any time. The range in minimum SWC values (lower limit) for the 

different soil depths indicates the differences in soil texture, which are common in these 

soils (Watt & Burgham, 1992). 

The imposition of light regimes after December 1998 did not affect the pattern of moisture 

extraction to 0.5 m soil (Figure 3.04). Small variations observed in SWC between light 

regimes were likely to be due to textural differences rather than a beneficial or detrimental 

effect of shading on soil moisture content. 
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Figure 3.06- Soil moisture deficit (SMD) and rainfall for irrigated C .... ) and non-irrigated 
(--) treatments measured in full sunlight conditions for the experiment. Data were means 
of 3 replicates from 1 It December 1998 to 30th June 1999 at Canterbury, New Zealand. 
Arrows indicate when irrigation was applied (see Table 3.02 for details). 

3.3.2- Biological changes 

3.3.2.1- Herbage dry matter yield (DM) 

An interaction (p<0.05) was observed between water status and light regimes for lucerne 

total DM yield over the experimental period. This was because irrigation increased DM 

yield more in fully illuminated crops, especially in Rotations 2 and 3, than under shaded 

treatments. Irrigation increased total DM yield b~ 19% (from 8.8 to 10.5 t ha-1
) in full 

sunlight, but only 10% under cloth (from 5.8 to 6.4 t ha-1
) and slat (5.5 to 6.0 t ha-1

) 

treatments over the experimental period. Total DM yield was reduced by about 40% under 

the two shaded treatments compared with full sunlight in irrigated and non-irrigated 

conditions. The associated growth rates calculated for the linear phase of the curves 

(Figure 3.07) decreased progressively from the first to the fourth rotation in almost all 

treatments (p<0.05), except for the non-irrigated full sunlight treatments, which were 

consistent between Rotations 1 and 2. 
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As expected, a difference in yield (p<0.01) between irrigated and non-irrigated treatments 

were observed for Rotations 2 and 3 (Figure 3.07). Irrigation showed no increase (p>0.26) 

in DM yield for the three light regimes in Rotation 1. However, irrigation increased DM 

yield (p<0.05) in Rotation 2 by 25% in full sun, 19% under cloth and 17% under slats and 

for Rotation 3 by 33%, 7% and 10%, respectively. The effects of irrigation were minimal 

for all light regimes in Rotation 4. 

The two artificial shade structures resulted in a slower lucerne recovery (lag phase of the 

curve) than in full sunlight for almost all the rotations (p<0.005), except for non-irrigated 

conditions in Rotation 2. For example in Rotation 3, growth rate to the first harvest was 74 

kg ha-1 d-1 in full sunlight, but only 40 kg ha-1 d-1 and 37 kg ha-1 d-1 under cloth and slats, 

respectively. In addition, the effect of shade cloth and slats on lucerne growth, after the 

fust cut (linear phase of the curve), compared with full sunlight was small in Rotation 1, 

but progressively increased (p<0.006) over the experimental period. 

For the Rotation 1, an interaction (p<0.03) between water status and light regimes was 

observed for mean growth rates. This was because the reduction in growth rates caused by 

shading was maximized in irrigated, but not in non-irrigated conditions. Growth rate was 

119 kg ha-1 d-1 or 17% lower under shade cloth and 112 kg ha-1 d-1 or 22% lower under 

slats than the 144 kg ha-1 d- 1 observed for full sunlight in irrigated treatments. However, 

growth rate was similar between the three light regimes in non-irrigated conditions with a 

mean value of 100 kg ha-1 d-1
. Differences between full sun and shaded growth rates were 

then observed in all subsequent rotations. The greatest reduction in DM growth occurred 

in Rotation 4, when plants under the shade showed a growth rate decrease of about 60% 

compared with full sunlight. Differences in growth rates were ~ot observed between the 

shade cloth and the slatted treatments under irrigated or non-irrigated conditions. 
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Figure 3.07- Mean dry matter yield ofluceme for 4 successive rotations in irrigated (a) 
and non-irrigated (b) treatments under full sunlight (e,o), shade cloth (.,0) and wooden 

slats (T ,\7) in Canterbury, New Zealand. Data are the average of 3 replicates and bars 
show standard errors for the [mal harvest in each rotation. Final harvests dates were given 
in Table 3.04. 
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3.3.2.2- Green area index (GAl) 

Lucerne GAl expansion (Figure 3.08) followed a similar pattern to DM yield. Irrigation 

increased (p<0.05) total GAl over the experiment period by 15% in full sunlight (from 

16.5 to 19.0), 14% under cloth (11.4 to 13.0) and 11 % under slats (11.2 to 12.5). The 

accumulated GAl decreased (p<0.001) about 30% under the two shaded regimes 

compared with full sunlight in irrigated and non-irrigated conditions. The effect of 

irrigation on canopy GAl was observed (p<0.02) particularly in Rotations 2 and 3. In 

Rotation 2, irrigation increased GAl by 28% compared with the non-irrigated treatment in 

full sun, but only 20% under shade. For Rotation 3, irrigation increased GAl by 20% in 

full sun and under cloth, but only 11 % under slats. Therefore, there was a lack of leaf 

expansion in non-irrigated treatments. For Rotations 1 and 4, irrigation did not affect 

(p>0.32) canopy GAl in any of the three light regimes. 

The shade by cloth or slats decreased (p<0.001) lucerne GAl compared with full sun in all 

rotations and soil water conditions. The greatest reduction in [mal GAl under shade 

occurred in Rotation 3 (p<0.001), when the decrease was about 40% under the cloth 

(GAI=2.9) and slats (GAI=3.0) compared with full sunlight (GAI=5.0). Canopy GAl 

values were typically the same for the two artificial shade treatments in all rotations. 

Shading also delayed GAl expansion compared with full sunlight in all rotations 

(0.04<P<0.001). For example in Rotation 3, irrigated plants in full sunlight reached 

GAI=3 after 19 days regrowth, compared with 35 days in both shaded treatments. In non­

irrigated treatments, plants needed 22, and 41 days to grow 3 units of GAl in full sun and 

under the two shaded regimes, respectively. 
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Figure 3.08- Mean green area index (GAl) for 4 successive lucerne rotations in irrigated 
(a) and non-irrigated (b) treatments under full sunlight (e,o), shade cloth (.,0) and 

wooden slats (T, \7) at Canterbury, New Zealand. Data are the average of 3 replicates and 
bars show standard errors for the [mal harvest in each rotation. Dotted lines indicate the 
critical GAl for lucerne canopies. Final harvests dates were given in Table 3.04. 
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3.3.2.3- Canopy architecture 

As expected, radiation interception increased exponentially against GAl for all treatments 

(Figure 3.09ab) with a common (p>0.83) mean critical GAl of 3.6. Calculations of the 

extinction coefficient (Section 3.2.5.2) showed a common (p>0.73) value of 0.82 was 

appropriate (Figure 3.09cd). Data for mean foliage angle (MFA) also indicated that foliage 

dispersal was similar (p>0.19) between water and light (p>0.12) treatments at the end of 

each rotation (fable 3.05). The exception was in Rotation 3 (p<0.05), when irrigated 

lucerne averaged 40°, non-irrigated 42° and plants under cl~th showed a lower (p<0.05) 

MFA than under slats and in full sunlight. The overall lucerne MFA over the experimental 

period was 45 ° for all treatments. 

Table 3.05- Mean foliage angle (MFA) of the lucerne canopy at the end of 4 rotations in 
Canterbury, New Zealand. 
Water status Light regime 

Irrigated 

Non-irrigated 

Mean 

F probability 
(Pr> F) 

Full sunlight 
Shade cloth 

Wooden slats 
Full sunlight 
Shade cloth 

Wooden slats 

Water status 
Light regime 
Water status 
Light regime 
Water *Ligh t 

t SEM is standard errors of means. 

Rotation 1 
45.7 
44.7 
47.0 
46.7 
48.3 
48.7 
46.9 
3.12 
1.75 
0.68 
0.78 
0.85 

MFA (degrees) 
Rotation 2 Rotation 3 

43.3 42.0 
42.0 38.3 
48.0 41.0 
41.3 43.0 
42.7 39.7 
42.7 43.3 
43.3 41.2 
0.80 0.21 
1.03 0.92 
0.19 0.03 
0.12 0.05 
0.18 0.87 

Rotation 4 
45.3 
46.7 
47.0 
43.7 
46.0 
44.5 
45.5 
0.98 
0.68 
0.38 
0.23 
0.69 



GAl 
Figure 3.09- Radiation interception (ab) within lucerne canopy and natural log of radiation penetration (Ln IzlIo) (cd) against green area 

index (GAl) in irrigated and non-irrigated conditions and under full sunlight (-), shade cloth (0) and wooden slats (T) at Canterbury, 
New Zealand. The extinction coefficient (K) was calculated as the slope of lines in c and d (Section3.2.5.2). Arrows indicate the critical 
GAl when 95% of the radiation was intercepted by canopy. Plotted data includes all points from 3 replicates. 
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3.3.2.4- Stem height (STH) 

Lucerne stem height (Figure 3.10) followed a similar pattern to the DM yield. The stem 

elongation rate decreased in all treatments across rotations (p<0.001). An interaction was 

observed between water and light regimes for elongation rate in Rotation 2 (p<0.02). This 

was because the reduction in stem elongation caused by shading was only observed in 

irrigated conditions (15.3 mm d-1
). Both shaded structures (18.7 mm d-1

) decreased stem 

elongation by 14% compared with full sunlight (21.7 mm d-1
) in irrigated conditions. The 

relative decrease in stem elongation under shade was also 14% for the subsequent Rotation 

3 (p<0.001) in irrigated and non-irrigated conditions. No differences (p>0.55) in stem 

elongation rate were observed between the three light regimes in Rotations 1 (23.6 mm d-1
) 

and 4 (4.6 mm d-1
). 

Despite the similarity in the numbers of dominant lucerne stems between plants grown 

under the cloth and slatted regimes, field observations indicated that canopy profiles were 

distinct for the 3 light treatments. Lucerne grown in full sun and under the cloth regime 

presented a more uniform appearance than under the slats. Data for stem classes measured 

in Rotation 3 showed the percentage of long stems (> 0.2m) was greater (p<0.05) in full 

sunlight (62%) than under cloth (56%) and slats (52%). The percentage of medium (32%) 

and short (18%) stems were similar between the two artificial shade regimes. A similar 

result (p<0.02) was found for stem classes in Rotation 4. 
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Figure 3.10- Mean height of dominant lucerne stem for 4 successive rotations in irrigated 
(a) and non-irrigated (b) treatments under full sunlight (.,0), shade cloth (_ ,0) and 

wooden slats (l', v) in Canterbury, New Zealand. Data are averages of 3 replicates and 
bars show standard errors for [mal harvests. Numbers on top indicate the rotation number. 

3.3.2.S- Number of stems and leaf to stem ratio 

. 
In full sun, the mean number of stems over the 4 rotations was 671 m-2 in irrigated and 616 

m-2 in non-irrigated treatments. Differences (P<O.OS) between irrigated and non-irrigated 

lucerne under the two shaded regimes were observed in the full sun during Rotations 1 and 

3 (Figure 3.11). The greatest differences (P< 0.01) was at the end of Rotation 1, with 637 

stems per m2 in irrigated and S40 per m2 in the non-irrigated treatment. The mean number 

of stems over the experimental period was consistently reduced (P<O.OS) by about 19% 

under cloth (S22 m-2
) and 22% under slats (SOS m-2

) compared with full sun (644 m-2
), but 

no difference was detected between the two shade regimes. 
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There was no difference (p>0.09) in leaf to stem ratio (vegetative stage 2, Fick & Mueller, 

1989) between treatments for most of the rotations, although values were consistently 

greater for shaded than for sun plants. The exception was in Rotation 3, when non-irrigated 

(1.09) treatments showed a greater LIS ratio (p<0.05) than irrigated (0.91) and shaded 

regimes (1.1). The averaged LIS ratio over the 4 rotations was 1.14 in full sunlight and 

1.22 under both shaded treatments. 
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Figure 3.11- Number of lucerne stems per m-2 at the end of each rotation in irrigated (a) 
and non-irrigated (b) treatments in full sunlight, under shade cloth and wooden slats at 
Canterbury, New Zealand. Bars on top are standard errors calculated for each rotation. 

3.3.2.6- Radiation use efficiency (RUE) 

Linear regressions were fitted to lucerne shoot DM against accumulated PARi (Figure 

3.12) to allow calculations of RUE in each rotation. Regressions were perfonned with 

(Appendix 2) and without (Table 3.06) being forced through the origin. Both methods 
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showed similar statistical results, but in this section results based on the regression not , 

forced through the origin are presented. 

The effect of irrigation water on RUE was close (p>0.06) to the significant level used for 

the present study at Rotations 2 and 3. Irrigated treatments increased RUE by 27 and 51 % 

compared with non-irrigated treatments in Rotations 2 and 3, respectively. 

Full sunlight conditions gave lower RUE than shaded plants in all rotations (p<0.008). 

RUE under shade cloth was higher (p<0.001) than under slats from Rotation 1,2 and 3, but 

similar in Rotation 4. The mean RUE over the experimental period was 1.06 g DM Mrl 

PARi in full sunlight compared with 1.73 under shade cloth and 1.49 g DM Mrl PARi 

under slats. There was a consistent trend of RUE to be lower (p<0.001) for all treatments 

in autumn. 
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Figure 3.12- Lucerne shoot dry matter (DM) against accumulated photosynthetically active 
radiation intercepted by canopy (PARi) measured from Rotations 1 to 4 under irrigated and 
non-irrigated conditions in full sunlight (FS), shade cloth (CL) and wooden slat (SL) 

regimes for Rotations 1 (e), 2 (0), 3 (A) and 4 (~) in Canterbury, New Zealand. Data are 
means of 3 replicates. The slope of each linear regression is the RUE for the treatment and 
is presented in Table 3.06. 
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Table 3.06- Mean coefficient of the slope (RUE) and intercept (I) calculated from the 
linear equation plotted in Figure 3.12 for irrigated and non-irrigated conditions. The 
slope of the linear regression is an estimation of the radiation use efficiency (RUE). 
The coefficient of determination (R2) and standard errors (SE) for each coefficient is 
also indicated. Regression lines were not forced through the origin. 

Treatment- R2 Slope (RUE) SE Intercept (I) SE (I) 

-g shoot DM MJ (P ARyl_ g shoot DM m-2 

Full sun irrigated- 1 0_99 1.26 0.075 -58.88 14.240 
Full sun irrigated- 2 0.99 1.18 0.072 -28.27 13.876 
Full sun irrigated- 3 0.96 1.43 0.194 -27.19 34.803 
Full sun irrigated- 4 0.93 0.94 0.158 21.49 15.770 

Cloth irrigated- 1 0.98 2.78 0.239 -73.96 18.045 
Cloth irrigated- 2 0.96 1.88 0.261 -14.75 19.237 
Cloth irrigated- 3 0.94 1.50 0.217 1.18 14.720 
Cloth irrigated- 4 0.95 1.32 0.171 3.59 6.819 

Slats irrigated- 1 0.99 2.26 0.047 -61.08 3.866 
Slats irrigated- 2 0.99 1.51 0.130 -13.24 10.634 
Slats irrigated- 3 0.97 1.23 0.115 23.04 8.680 
Slats irrigated- 4 0.98 1.30 0.116 9.90 4.471 

Full sun dry- 1 0.99 1.02 0.041 -21.28 7.847 
Full sun dry- 2 0.98 0.92 0.071 -14.68 13.218 
Full sun dry- 3 0.99 0.82 0.031 46.48 5.493 
Full sun dry- 4 0.98 0.92 0.080 22.23 7.684 

Cloth dry- 1 0.99 2.39 0.092 -49.68 6.881 
Cloth dry- 2 0.99 1.48 0.075 3.86 5.388 
Cloth dry- 3 0.94 1.17 0.213 33.40 13.843 
Cloth dry- 4 0.98 1.30 0.102 7.21 3.781 

Slats dry- 1 0.99 2.24 0.020 -54.56 1.615 
Slats dry- 2 0.99 1.21 0.066 3.98 5.128 
.Slats dry- 3 0.92 0.96 0.069 32.66 5.399 
Slats dry- 4 0.99 1.23 0.033 11.08 1.186 

Rot. 1 Rot. 2 Rot. 3 Rot. 4 
SEM* 0.057 0.099 0.055 0.040 

F probability 

Water 0.223 0.059 0.059 0.777 

Light < 0.001 0.007 0.008 < 0.001 
Water*light 0.102 0.863 0.276 0.862 

t Rotation lengths (1-4) are indicated in Table 3.04. * SEM= standard error afmeans far light effect 
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3.3.2.7 - Leaf net photosynthesis (pn) 

The Pn rate was unaffected by irrigation over the first 3 rotations (0.14<P<0.62), but in 

most cases shading decreased (0.001<P<0.016) the photosynthetic activity of individual 

top leaves compared with full sunlight (fable 3.07). The mean Pn rate measured in 

irrigated conditions was 31.4 Jlmol CO2 m-2 
S-1 in full sunlight compared with 28.8 under 

shade cloth and 27.0 under slats. In non-irrigated conditions, the Pn rate was 31.1 Jlmol 

CO2 m-2 
S-1 in full sun, 27.6 under cloth and 26.1 under slatted treatment. Top leaf 

photosynthesis measured under cloth was 18% greater (p<0.005) than under slats only on 

16 February 1999, but similar for the other rotations. 

Table 3.07- Instantaneous net photosynthesis rate at 1000 photons m-2 
S-1 of the 

youngest fully expanded lucerne leaf of crops grown in full sunlight (FS), under 
shade cloth (CL) and wooden slats (SL) in irrigated (irr) and non-irrigated (dry) 
conditions in season 1999. 
Treatments FS irr CL irr SL irr FS dry CL dry SL dry 

12 Jan 
03 Feb 
16 Feb 
22 Mar 
30 Mar 
12 Apr 

F probability 
Water(W) 
Light(L) 

W*L 
SEM* 

------------------------------Jlmol CO
2 

m-2 s -1 _________________________ _ 

25.75 23.52 22.84 25.36 22.71 20.79 
38.32 38.89 36.77 36.94 37.58 35.06 
30.77 29.67 23.08 31.72 26.07 22.90 
31.25 25.62 24.53 30.07 26.54 27.72 
33.44 26.57 27.73 34.18 26.81 24.83 
29.08 28.81 27.04 28.30 25.60 25.40 

12 Jan 03 Feb 16 Feb 22 Mar 30 Mar 12 Apr 

0.617 0.561 0.807 0.144 0.569 0.161 
0.016 0.533 0.005 0.007 0.001 0.293 
0.697 0.990 0.436 0.236 0.303 0.713 
0.704 1.457 1.233 0.829 0.836 1.037 

* SEM= standard error of means. 

3.3.2.8- Node appearance and flowering time 

Calculations for the phyllochron were performed with the assumption that light regimes 

presented equivalent mean air temperatures over the experimental period (Table 3.08, 

Figure 3.13). The phyllochron increased (p<0.001) from Rotation 1 to 4 for all treatments 

with mean values of 34,39,56 and 57°C day for Rotations 1 to 4, respectively. Irrigation 

only affected node appearance iIi Rotation 3 (p<0.01) with values of 55°C day and 57°C 

day in irrigated and non-irrigated treatments, respectively. Light regimes never affected 

(0.07<P<0.71) lucerne development. 
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The presence of flowering buds was observed in Rotations 1, 2 and 3 in full sunlight 

conditions and only in Rotation 2 for the shaded treatments. In the Rotations 1 and 2, 

irrigated plants accumulated about 374°C day to reach early bud in the full sun, but this 

increased to about 603 °c day in Rotation 3. For Rotation 2, the thermal time required to 

flower was 490°C day under both shaded treatments, regardless of water status regimes. 

During Rotation 3, irrigated plants showed buds from node 10 upwards, compared with 

from node 7 in non-irrigated conditions. This required 603 °c day to flower in irrigated and 

437°C day in non-irrigated treatments. 

Table 3.08- The mean phyllochron (OC day) of lucerne in irrigated and non­
irrigated conditions submitted to full sunlight, shade cloth and slatted regimes 
for the 4 rotation periods in Canterbury, New Zealand. Mean air temperature 
for each rotation is indicated in parenthesis. 

FS irrigated 
CL irrigated 
SL irrigated 
FS non-irrigated 
CL non-irrigated 
SL non-irrigated 

Rotation 1 
Rotation 2 
Rotation 3 
Rotation 4 

Rotation 1 t Rotation 2 Rotation 3 Rotation 4 
(17.3°C) (16.9°C) (14.9°C) (9.8°C) 
------------------------------ °Cd--------______________________ _ 

33.17 35.52 51.71 57.11 
33.50 37.38 55.95 55.70 
33.53 39.98 57.84 57.83 
36.90 40.93 . 55.96 56.17 
34.80 40.16 57.75 60.51 
34.61 42.04 57.75 54.60 

F probability 
Water(W) Light(L) W*L Mean SEM* 

0.341 0.712 0.542 34.42 1.275 
0.187 0.122 0.412 39.33 1.255 
0.008 0.069 0.393 56.16 1.498 
0.735 0.439 0.101 57.15 1.887 

t Calculations were perfonned for the whole rotation length. Final readings were perfonned on 12 
January, 17 February, 09 April and 15 June 1999. 
* SEM= standard error of means. 
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Figure 3.13- Node appearance of lucerne stems against cumulative thermal time for 4 
successive rotations in irrigated (a) and non-irrigated (b) treatments in full sunlight (.,0), 

under shade cloth (_,0) and wooden slats (T, \1) at Canterbury, New Zealand. Thermal 
time calculation starts on 23 December 1998. Bars indicate the standard errors for final 
reading. Numbers on top indicate the rotation number. The phyllochron is calculated as 
the slope of the curves. 
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3.4-Discussion 

3.4.1- Environmental changes 

3.4.1.1- Light regimes 

The two artificial shade structures produced distinct temporal and spectral light regimes for 

the lucerne crop. The level of radiation intensity was similar between structures (at about 

46% PPFD transmittance) compared with full sunlight, but only the slatted structure 

produced the alternating periods of sun and shade typically observed in agroforestry 

systems on clear and sunny days. The longest single period of full sun received by the 

lucerne crop under the slats was 120 minutes near midday in February (Figure 3.02). 

In addition, the spectral changes in RIFR ratio found under the slats during the shade phase 

(0.74) were consistent with values found in coniferous (0.8) and deciduous (0.9) shade by 

Bell et al. (2000). Because of the high proportion of diffuse light during shading and since 

red light is only observed in the direct radiation, it is speculated that the reduction in RIFR 

ratio under slats was primarily caused by a blocking effect from the slats. Healey & Rickert 

(1998) found a dramatic increase in the proportion of diffuse light under a dense wooden 

lattice structure on a sunny day. In contrast to the slatted structure, shade cloth produced a 

uniform light regime similar to that observed in full sun. The RIFR ratio under the cloth 

(1.30) was equivalent to full sunlight conditions (1.32) and the sun phase under slats 

(1.28). The indication was that the black shade cloth did not absorb or block any of the 

PAR wave bands and therefore it approximated a 'neutral filter', which uniformly reduces 

transmission of light in the 300-1100 nm wave band (Yates, 1989). This is inconsistent 

with tree canopies where the radiation transmitted contains a lower proportion of red 

(Ludlow, 1978) and a greater proportion of near infra-red (Healey & Rickert, 1998) light 

than found under shade cloth (Yates, 1989). 

3.4.1.2- Temperature 

The two artificial shade structures altered the temperature at the canopy height, particularly 

in summer time (Figure 3.03). Shade cloth and slats decreased the TCH relative to full sun 

during daytime and increased it at night. These results require careful analysis because 
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temperature sensors could be influenced by changes from the components of the energy 

balance, by differential transpiration rates from the lucerne canopy or by disrupted air flow 

under the shade structures. 

According to Brenner (1996), in clear full sunlight conditions, temperatures above the 

canopy usually increase during the day and cool at night in full sun conditions. This was 

consistent with full sun data measured in this experiment and occurs because the amount of 

emitted long wave radiation is usually greater than the amount absorbed by soil and 

vegetation during the daytime (Monteith & Unsworth, 1990). However, under shaded 

environments, downward long wave radiation fluxes tend to be similar to upward long 

wave fluxes from soil and vegetation. Thus, the rate of atmosphere cooling at night is 

considerably slower than in full sunlight (Brenner, 1996). As a consequence, night 

temperatures above the shaded canopy can be warmer and daytime temperatures cooler 

compared with the full sunlight. This pattern was measured for both shade structures in this 

experiment on typical clear days of summer and autumn. In addition, it was noted that 

TCH under shade cloth was warmer than under slats at noon and this was probably because 

of a greater daily amount of long wave radiation emitted downwards by the black plastic 

material compared with the wooden slats. 

Changes in temperature above the canopy between light treatments could be also caused by 

differential transpiration rates. Stomata are expected to be more closed under shaded than 

full sunlight regime, because of the low radiation effect on stomatal conductance. 

According to Salisbury & Ross (1993), light acts on mesophyll cells, which then send a 

message to the guard cells. As a consequence, rates of transpiration would be greater in the 

full sun than under the shaded regimes especially when water stress was not severe. 

However, temperatures were warmer in tUll sun than under cloth during the day. Under the 

slatted treatment, a bi-model pattern similar to the light regime was observed for TCH. 

Temperatures above the canopy under slats ranged from nearly the same as in full sun to 

well below that observed under cloth. This explains the slower rate of temperature cooling 

observed under slats compared with under cloth during the night (Figure 3.03). In a 

subtropical environment, Wong & Wilson (1980) also found a decrease of I-2°C in mean 

air temperatures above canopy and leaf temperatures measured below shade cloth (60 and 

40% light transmissivity) compared with full sunlight at noontime. These authors 

associated such results simply with lower radiation load under shade compared with full 
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sun. Wilson (1996) never observed the effects of 50% shade cloth on maximum or 

minimum above-canopy temperatures for tropical grasses, but shade lowered temperature 

extremes of surface soil up to 10-12 °C compared with full sunlight. Soil temperatures 

were not measured in the present study, but are perhaps far more critical for plant 

performance under shade than small differences in air temperatures, specialy because of 

large potential differences in surface soil temperatures (Wilson, 1998). The study 

suggested that the lower temperatures under shade than in full sun had a beneficial effect 

on microbial activity and in holding soil water content in the wann subtropical area. 

3.4.1.3- Soil Moisture 

As expected, changes in SWC (Figure 3.04) observed in this experiment were a result of 

the amount of rainfall, irrigation and evapotranspiration at the experimental site. The 

lowest soil moisture readings measured in non-irrigated treatments were at the end of 

summer in late February (Figures 3.04 and 3.05). This was consistent with the total rainfall 

being below and evapotranspiration above the long-term means in February (Table 3.01). 

There was an indication that plant water extraction was restricted in non-irrigated 

treatments from Rotations 1 to 3 (Figure 3.04). The SWC at 0.5-2.0 m (Figure 3.05) 

declined from September 1998 to January 1999 and remained nearly constant until the end 

of the season, indicating that water had been extracted from these layers and was not 

recharged again during the experimental period. 

The small differences observed between the three light regimes were assumed to be from 

soil textural variation. The rates of SWC decrease under artificial shading were similar to 

those in full sun for non-irrigated conditions. In contrast, Wilson & Wild (1991) suggested 

that the combined· effects of low radiation load and decreased evapotranspiration resulted 

in greater SWC from 0-0.2 m soil depth under a shade cloth compared with an open 

treatment in a subtropical environment. This anomaly was probably because of the high 

humidity, which would decrease the evaporative demand in subtropical areas compared 

with the temperate area used in this study. 
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3.4.2- Biological changes 

3.4.2.1- Effects ofinigation 

Lower DM yield, GAl and STH indicate that lucerne was water stressed in the open non­

inigated treatments for Rotations 2 and 3. The increase of SWC in the top 0.5 m due to 

inigation was 20, 30 and 25% compared with non-irrigated in full sun at the end of 

Rotations 1,2 and 3, respectively, and was accompanied by an increase in DM yield of 11, 

25 and 32% in Rotations 1,2 and 3, respectively. The progressive reduction ofDM yield 

under shade from rotation 1 to 4 was probably a cumulative effect of reduced carbohydrate 

storage in roots in non-irrigated treatments since the beginning of the water stress period. 

Likewise, the increase due to inigation in canopy GAl (Figure 3.08) was about 5, 28 and 

20% compared with non-irrigated treatments in Rotations 1, 2 and 3, respectively. The 

greatest decrease in yield and GAl observed in non-irrigated conditions occurred during 

Rotations 2 and 3, when SMD (Figure 3.06) reached averages of about 340. In Rotation 1, 

the mean SMD in non-irrigated treatments was 297 ± 21 mm and only a small benefit on 

lucerne yield from irrigation was observed. Two years before this experiment and at the 

same site, Inch (1998) and Brown (1999) reported that the DM yield of the lucerne crop in 

the non-irrigated decreased relative to the irrigated treatment with a SMD of 215 nun. Any 

difference in the critical SMD between years probably resulted from a change in root 

structure leading to greater water extraction in the later seasons. The differences between 

irrigated and non-irrigated treatments for DM yield and GAl were smaller in Rotation 4 

due to the recovery of SMD starting from 26 February 1999 when 31 mm of rain fell on 

the experimental site (Figure 3.06). 

Evidence of water stress in Rotations 2 and 3 agreed with lower RUE in the non-irrigated 

than irrigated treatments (Table 3.06) for all of the light regimes, although plant 

architecture (Table 3.05) and leaf photosynthesis (Table 3.07), two important determinants 

of radiation interception and utilization by canopy (McKenzie et al., 1999), were not 

affected by irrigation during this study. The primary effect of water stress on plants is a 

progressive loss of cell turgor pressure, which results in a decline of cell and leaf area 

expansion (Hay & Walker, 1989). As a secondary effect, foliage angle can change and 

radiation interception by the canopy decreases with consequences on photosynthetic 

activity (Trenbath & Angus, 1975). Contrary to the reports by Moran et al. (1989), who 
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worked with lucerne under a larger soil water deficit than observed in this study, the level 

of water stress experienced by lucerne crops did not affect either foliage angle or top leaf 

photosynthesis. It is speculated that the main effect of water stress on lucerne yield in this 

study resulted from a decrease in the total amount of carbohydrates partitioned to shoots 

after defoliation. One indication was the slower lucerne GAl recovery, after grazing to the 

first measurement, in non-irrigated compared with irrigated treatments. 

In Rotations 2 and 3, the increase in DM yield and GAl caused by irrigation was typically 

lower under the shaded treatments than in full sunlight. This suggests that the crop growth 

under cloth and slats was primary limited by the low PPFD, which probably never offered 

sufficient energy (activated electrons) for photosynthesis activity and efficient use of the 

available soil water for biomass production. Therefore, the apparent 'benefit' of shading in 

holding soil water content in non-irrigated areas, as discussed by Wilson & Wild (1991) 

and Wilson (1996) for subtropical environment, would depend on the level of radiation, the 

evaporative demand and the water stress to which crops are exposed. 

Such benefits for C3 and C4 crops are likely to be observed under conditions of greater 

water stress than those experienced during this experiment and under light levels close to 

the photosynthetic saturation point (Nelson, 1995). For the level of shading (about 50% 

transmission) and water stress experienced by lucerne plants in this study, irrigation was 

advantageous particularly in Rotation 2. Irrigation is not an ordinary practice in 

agroforestry systems, but it was used in this study to isolate the effects of radiation and soil 

water content during drought periods, which are occasionally observed in tree-crop/pasture 

associations in both subtropical and temperate regions. 

3.4.2.2- Effects of light regimes 

DM and growth rates 

Lucerne decreased yield under shade compared with full sunlight conditions and only 

slight differences could be noted between shade cloth and wooden slat regimes. The DM 

yield (Figure 3.07) under shade relative to the full sunlight decreased progressively over 

the experimental period. This started at about 25% of the DM yield in full sun for irrigated 

and 21 % for non-irrigated conditions in Rotation 1, but increased to a maximum of 55 and 

45% for irrigated and non-irrigated treatments, respectively, in Rotation 3. This 
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progressive decrease of DM yield was probably caused by a progressive decline in root 

reserves from the beginning of the experiment. The consequences of that would only 

become apparent in later rotations as plants adjust to the new source and sink relationships 

experienced previously under shade conditions. 

Growth rates during the linear phase also indicated a progressive reduction under the two 

artificial shade regimes compared with full sun treatments. The reduction was 49% for 

irrigated and 39% for non-irrigated treatments in Rotation 3. These results agree with 

Walgenbach & Marten (1981), who submitted field lucerne to 47 and 73% shade cloth in 

summer. The authors observed decreases of shoot total carbohydrates content from 8-16% 

in the first rotation to 28-44% in the second rotation under the two shaded regimes 

compared with full sunlight conditions. This caused a progressive reduction in the rate of 

subsequent regrowth periods. 

The relative reductions of DM yield or growth rates observed under shade in Rotation 3 

were less than the decrease of radiation caused by cloth (58%) and slats (53%) compared 

with full sun. This apparent anomaly could occur because, in a lucerne canopy, 

photosynthesis decreases progressively, but not proportionally to the reduction in available 

light (King & Evans, 1967; Cooper, 1969; Pearcy & Lee, 1969; Wolf & Blaser, 1972). 

Although top leaf Pn rates (Table 3.07) consistently showed lower values under the two 

shaded structures than in full sunlight, the magnitude of these differences was much lower 

than the differences found for DM yield. The greatest reduction in leaf photosynthesis was 

only 18% for cloth and 25% under slats in irrigated conditions in Rotation 3. It is important 

to note that photosynthesis was measured only on the youngest fully expanded leaf and 

only at a constant artificial light flux of 1000 j.lmol m-2 
S-1 for all three light regimes. This 

indicates that shaded leaves in the top part of canopy were still operating close to 

saturation levels and maintaining sufficient photosynthetic machinery to operate efficiently 

in their growth environment. Although photosynthesis was not measured in different 

canopy layers in this study, it is reasonable to estimate that there would be a faster decline 

for lower canopy strata under shade treatments than in full sun and this would agree with 

observations by Acock et al. (1978). Therefore, in the whole canopy basis, the net 

photosynthesis decrease under the two shaded treatments could be expected to be 

proportional to those observed for DM yield. 
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GAl expansion 

The shading effects on lucerne DM yield appeared to be largely due to change in GAl 

(Figure 3.08). That is, the canopy GAl decline was progressive under the shaded regimes 

compared with .full sun, starting from 23% for irrigated and 20% for non-irrigated 

conditions in the fIrst rotation to a maximum of 42 and 40% for irrigated and non-irrigated 

treatments, respectively, in Rotation 3. The magnitude of the differences between light 

regimes was slightly lower for GAl than those measured for DM yield; This result might 

be expected because changes in lucerne stem parts would have a greater influence on dry 

weight than they would have on GAl. From the DM (Figure 3.07) and GAl curves (Figure 

3.08), it was noted that plants under cloth and slats had a slower initial regrowth (longer 

lag phase) than in full sunlight. This is consistent with a lower level of root reserves, which 

reflects primarily in early leaf area growth (Avice et ai., 1997). In other words, the canopy 

under cloth and slats took longer to reach the critical GAl than in full sunlight. The greatest 

delay was observed in Rotation 3, when irrigated plants grew 3 units of GAl in 19 days in 

full sun, whereas under the two shaded treatments this occurred in 35 days. 

The reductions in DM yield, and presumably root reserves; were also reflected in the 

number of stems per unit area (Figure 3.11), which decreased under shade compared with 

full sunlight. This decrease was consistent with the changes observed in canopy GAl, 

whereby fewer stems would lead to fewer leaves for canopy expansion. However, the 

maximum reduction of stem number caused by shading was only 31 % in irrigated and 26% 

in non-irrigated compared with full sun plants. This suggests that canopy GAl under shade 

was affected by other changes, besides the number of stems. One indication was the 

decline in STH (Figure 3.10), particularly for Rotations 2 and 3. But decline in STH is an 

unusual response to shade. In most species shade increases STH because of reduction in 

RIFR ratio (Ballare et al.,.,1995). It is possible that this experiment was not long enough for 

lucerne crop to show all its morphological plasticity in shade. Another assumption is that 

specifIc leaf area growth was greater under the two artifIcial shade regimes than in full 

sunlight and this was supported by a consistently greater LIS ratio (Section 3.3.2.5) for 

shaded than full sun plants in all rotations, but particularly in Rotation 3. Woodward & 

Sheehy (1979) observed a similar LIS response for heavily shaded lucerne stems and 

concluded that some of the reserves were remobilised to grow extra leaf area and optimise 

light interception under low radiation conditions. A reduction in the number of stems in 
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lucerne has also been reported as a consequence of low levels of root reserves (Lemaire, 

2001). 

Canopy architecture 

Canopy architecture was unaffected by light regimes. The mean foliage angle (Table 3.05) 

was 45° for all treatments over the experimental period, which was similar to the range (40 

and 50) reported for lucerne by Heichel et al. (1988) and Moran et al. (1989). The results 

indicate that plants intercepted a similar relative amount of radiation per unit of GAl 

(Figure 3.09ab), regardless oflight regimes. This was confirmed by the constant extinction 

coefficient (K=0.82) between treatments (Figure 3.09cd). The mean K value was greater 

than those (0.61-0.77) found by Wilfong et al. (1967) and Sheehy et al. (1979) both in full 

light, but consistent with the value of 0.88 reported by Gosse et ai. (1982) and Gosse et ai. 

(1988). 

The common canopy architecture meant that the critical GAl of 3.6 was equal for all three 

light regimes (Figure 3.09ab). However, there were occasions when the canopy never 

reached this critical value (Figure 3.08). For example, non-irrigated plants under cloth only 

reached a maximum of GAl=3.2 and slats GAl=3.0 in Rotation 3. For the two shaded 

treatments, the critical GAl was only reached for irrigated conditions in Rotations 1 and 2. 

Even full sun plants did not grow to critical GAl in Rotation 4. In full sunlight, the reason 

that canopy GAl growth rates decreased was the low temperatures in the last autumn 

rotation, reaching only GAl=3 after 60 days of regrowth. For shaded conditions, it seems 

likely that plants tried to maximise net canopy photosynthesis by adding leaf layers until 

the net return from the bottom (most heavily shaded leaves) was zero (Hom, 1971). That 

is, canopy GAl was adjusted under cloth and slats until the irradiance penetrating to the 

most shaded leaves equalled their compensation point (Givinish, 1988). 

There was an indication that more shoot growth per unit of intercepted PAR was obtained 

under cloth and slats than in full sunlight (Figure 3.12 and Table 3.06). Radiation 

decreased by about 55% under cloth and slats, but potentialleafPn was about 90 and 85% 

of that observed in irrigated and non-irrigated full sunlight crops, respectively. Thus, 

lucerne leaves developed under cloth and slats seemed to still have the capacity to 

photosynthesise effectively compared with the saturated leaves developed in full sun. For 

the whole canopy, this difference is expected to be lower than for the top leaves, but still 
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the overall rates under shade were estimated to decrease less than the reduction in the 

amount of radiation. 

The values reported for RUE (Table 3.06) in full sunlight were lower than those reported 

by Khaiti & Lemaire (1992) for field lucerne seedlings in the summer (l.80g DM Mrl 

PAR) and in the autumn (l.13g DM Mrl PAR). The reason for such differences was 

possibly the greater remobilisation to roots for the 3 years old lucerne stand used in this 

study compared with that calculated for a seedling crop. A greater RUE for shaded than 

sun plants has been reported previously for other crops, especially in intercropping and 

agroforestry systems (Wilson & Ludlow, 1991; Cruz, 1995; Sophanodora, 1989). For 

example, Healey et al. (1998), working with subtropical grasses under 25% black shade 

cloth observed that increased shoot to root ratio and decreased respiration rate contributed 

to the 16% enhancement in RUE under the shade compared with full sunlight. However, 

the authors stated that it was actually the increase in diffuse radiation under the cloth, 

allowing more radiation to be spread over sunlit and shaded leaves, that enhanced RUE 

compared with the full sun environment. There are other factors, which have been 

indicated to explain increased RUE under low levels of incident radiation (Wilson & 

Ludlow, 1991): more DM is partitioned to above-ground herbage; increased LIS ratio, 

thereby reducing light interception by less efficient stem tissue; increased leaf nitrogen 

content and less CO2 limitation for leaf photosynthesis. In this study, no changes were 

observed for LIS ratio (Section 3.3.2.5). Although lucerne root aspects were not measured, 

the present study suggests a substantial decrease in roots and root reserves under shade (eg. 

progressive decrease in herbage DM yield and RUE from rotations 1-3, increase in RUE 

under shade and increased lag phase in regrowth), especially when accompanied by little 

changes in plant mOlphology, measured as foliage angle, extinction coefficient, LIS ratio, 

STH, leaf Pn rate at saturation and node appearance. Likely, these responses indicate that 

there was an increase in shoot/root ratio under shade, caused by carbohydrate partitioning 

and translocation of root reserves accumulated before the experiment started, and this 

would explain the increase in RUE under cloth and slats compared with full sun. 

Lucerne development (Figure 3.13) was apparently unaffected by shading. The 

phyllochron (Table 3.08) was similar between the three light regimes. The similar daily 

temperatures measured above the canopy (Figure 3.03) in the full sun and under shade may 

have contributed to this lack of response, despite the changes observed between day and 
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night temperatures. Plants under cloth and slats flowered only once in Rotation 2, whereas 

in full sun flowering was observed from Rotations 1-3. This was an indication that shaded 

plants were possibly affected by less carbohydrate available for growing the flowering 

buds. 

Indeed, there were little differences in lucerne morphology between plants growing under 

shade cloth and wooden slats in this experiment. In this short-term study, the greatest 

difference was in the stem size classes. Although statistically the results for stem classes 

never showed significant differences between the two artificial shading treatments, field 

data suggested that plants under slats had a greater variation in stem sizes than under the 

cloth and in full sun. In fact, plants under slats showed some of the stems as long as those 

observed in full sunlight. This was not detected in the results because the longest class size 

(> 0.2 m) was limited to distinguish long stems between the light regimes. It would be 

expected, if a stratified GAl analysis had been performed, that the slatted plants would 

have presented a greater GAl in the uppermost stratum than plants under cloth conditions. 

Potentially, this would be a disadvantage for light distribution within the canopy under 

slats if leaves of the upper stratum were not more vertically dispersed. As overall canopy 

architecture was unchanged with the 3 light regimes, this could partially explain the greater 

RUE observed under cloth compared with slats from Rotation 1 to 3. The increase and 

decrease of photosynthetic activity during the sun and shade periods under slats was not 

determined in this study, but it may greatly explain the advantage for plants growing under 

cloth compared with under slats. Data from the literature (peri et ai., 2002) suggests that 

maximum leaf Pn rate actually decreased gradually after leaving the sun and entering the 

shade period under a slatted structure. 

3.5-Points to be addressed 

Based on the temporal radiation differences between shade cloth and slats, it seems likely 

that lucerne leaves under the intermittent (slat) regime changes its photosynthetic activity 

from the full sun to the heavy shade periods (and vice-versa). At this stage, results would 

agree with McCree & Loomis (1969) that it is valid to use leaf photosynthetic rates 

determined in continuous shade conditions for the alternating sun/shade regime. However, 

if yield differences are likely to appear between the continuous and intermittent regimes in 

a long-tenn study or at distinct regrowth periods, then it is critical to know the plant 
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photosynthetic activity during both the full sun and shade periods under slats. For the next 

experiment, the focus should also concentrate on a long-tenn agronomic and physiological 

analysis under the two artificial shade structures and under trees compared with an full sun 

condition. 

Because lucerne is used as an indicator crop to detennine shading effects, it appears 

necessary to maintain this analysis over different seasons and at distinct regrowth periods. 

After shoot removal, lucerne regrowth is a complex process in which the interaction of 

environmental factors (light, air and soil temperatures) and endogenous plant factors (root 

reserve levels, number of remaining active meristems) detennines the fmal herbage yield 

(Richards, 1993; Volenec et al., 1996; Lemaire, 2001). ill this 'pilot' study, both artificial 

shading treatments were imposed after summer to a well-established lucerne crop, which 

was previously growing in full sunlight conditions. To obtain conclusive results, it is 

essential to perfonn further investigation on recently established plants with shade imposed 

at the beginning of its growing season. 

ill this chapter, the use of two artificial shade structures as an experimental methodology to 

resemble the radiation environment of an agroforestry system has been investigated. 

Despite the results indicating a useful potential to use either cloth or slat structures for 

agroforestry research purposes, the accuracy of the methods to simulate yield of 

understorey vegetation from a real agroforestry system is unknown. Further study should 

address a comparison between lucerne growing under the two artificial materials and under 

trees at equivalent light transmissivity levels. 

Additional measurements of photosynthesis activity during shade.and sun periods under 

the intermittent regime and morphological responses, such as stem classes, LIS ratio, 

internode length and stem height, in a long-tenn study are necessary to obtain more 

conclusive differences between the two artificial shade methods. ill the next chapter, these 

measurements are again perfonned for a young lucerne crop, theoretically more sensitive 

to root reserves changes, and compared with plants grown in a non-irrigated agroforestry 

system during distinct seasons. 
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3.6-Conclusions 

Lucerne plant responses submitted to different soil water and radiation conditions in a 

short-term led to the following conclusions: 

1- The typical physical radiation characteristics (light flux, light periodicity and spectral 

composition) of an agroforestry system were better simulated by a wooden slatted than a 

plastic shade cloth structure. 

2- Irrigation increased lucerne crop yields in full sunlight proportionally to the increase in 

SWC during water stress periods. However, irrigation had little effect under artificial shade 

environment and light was the primary factor that limited yield increases in this particular 

experiment. 

3- Canopy architecture was similar and it was unaffected by water status and light regimes. 

Mean foliage angle was 45°, with a K value of 0.82 and a critical GAl of 3.6 for all 

treatments. 

4- Artificial shading reduced the number of stems, GAl and DM growth compared with 

full sunlight. There are indications that a decrease in root carbohydrate reserves would be 

involved with shading effects on lucerne growth. 

5- The reduction in crop yield and growth rates under artificial shading was lower than the 

decline in PPFD transmission compared with full sun condition, because of the greater 

RUE under the artificial shade structures compared with full sun. 

6- There were only slight morphological differences between plants growing under shade 

cloth and wooden slat· structures, but there were indications that differences in the 

proportion of stem classes may occur over a longer study period. 
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CHAPTER 4 

Lucerne growth and development under artificial and tree shade 

4.1- Introduction 

In Chapter 3, the assessment of regimes for light intensity, light periodicity and spectral 

composition, using artificial shade structures for agroforestry research, was highlighted. 

Specifically, plastic cloth and wooden slats produced distinct radiation environments, but 

lucerne crop responses were similar over the short experimental period. 

In this chapter, crop responses to the two artificial shading methods are assessed over a longer 

term throughout different seas~ms. Another objective is to determine if sun/shade intervals of 

1-2 hours can improve the utilization of light energy under this intermittent light regime 

compared with continuous shade (Rabinowith, 1956, Section 2.1.5.3). In addition, agronomic 

and physiological responses of lucerne under the two artificial shade structures will be 

compared directly with those observed in an agroforestry system. Thus the aims of this 

experiment are: (i) to investigate the patterns of radiation of an agroforestry area and compare 

it with the two artificial shade materials; (ii) to extend the crop results of cloth and slats 

methods by adding tree shade levels and (iii) to determine the yield potential of lucerne under 

a shade environment. 
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4.2- Materials and methods 

4.2.1- Site description 

4.2.1.1- Site history 

This study was conducted at the Lincoln University agroforestry area, located in Canterbury, 

New Zealand (43 0 38'S and 1720 28'E). The area was established in July 1990 with five Pinus 

radiata genotypes and six understorey pasture treatments: 'WL 325' lucerne (Medicago 

sativa), 'Maru' phalaris (Phalaris aquatica) + clovers, 'Wana' cocksfoot (Dactylis giomerata) 

+ clovers, 'Yatsyn' perennial ryegrass (Loliumperenne) + clovers, 'Yatsyn' perennial ryegrass 

and bare ground, in a split-plot design with three replicates. Full details of the establishment 

were reported by Mead et ai. (1993). 

The trees were planted at 7.0 m (between rows) x 1.4 m (within a row) spacing (1000 stems 

ha-1
) in an east-west direction. Strips of 1 m wide centred on tree rows were sprayed with 

hexazinone at 2.5 kg a.i. ha-1 in the spring of 1990 and 1991 to aid tree establishment. 

Therefore, experimental plots under trees had only 86% of their area occupied by sown 

pastures. The total area planted in trees was 5.2 ha with 18 pasture plots of 46.2 x 42.0 m 

(0.194 ha) each. 

The pine trees were periodically thinned to a fmal stocking of 200 stems ha-1 (Table 4.01). 

Annual pruning (fable 4.01) controlled the diameter over stubs (DOS) and left a similar 

amount of crown between trees. In 1997, all trees were pruned to a fmal height of 6 m. 

Pruning residues were removed from all plots. Tree crown closure had not occurred at age 10 

years. Additional details of the forestry practices were reported by Chang & Mead (2002). A 

view of the agroforestry experiment at age 9 years is shown in Plate 4.01. 

An adjacent area of 1 ha in a full sun was used to establish the same 18 pasture treatments in 

September 1990. Each experimental plot was 27.5 x 18 m (0.05 ha). All pastures were cut for 

silage in the open and under trees in the first two growing seasons to avoid livestock damage 
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damage to the seedling trees. Sheep flocks have subsequently rotationally grazed both pasture 

treatments in the open and under trees since 1993, with no further herbage conservation. 

Table 4.01- Silvicultural thinning and pruning procedures for the Lincoln University 
agroforestry area since trees were established in 1990. 

Thinning procedures 

1992 1993 1994 1996 

Age (years) 2.5 3.5 4.5 6.5 

Stocking (stems ha"l) 800 600 400 200 

Mean tree height (m) 1.3 2.6 4.3 8.6 

Pruning procedures 

1994 1995 1996 1997 

Age (years) 4.5 5.5 6.5 7.5 

Pruning height (m) 1.41 1.7' 3.7' 6.02 

1. Pruning to a crown length of 4 m (biological criteria) 
2. Pruning to 6 m height from ground (silvicultural criteria) 

Plate 4.01. A view of the lucerne pasture in the Lincoln University agroforestry experiment in 
summer 2000. 
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4.2.1.2- Tree development 

At the commencement of the current study, in August 1999, the diameter at breast height 

(DBH) outside bark was measured using a tape and ladder and total height (lIt) using a digital 

hypsometer (Forestor Vertex, Sweden). Tree measurements were taken annually in three 

lucerne replicates· at 9 and 10 years in winter (Table 4.02). From these measurements, basal 

area per hectare (BA), mean crown length (MCL) and total crown length per hectare (TCL) 

were estimated (Table 4.02). 

Table 4.02- Summary of the main dasometric variables of radiata pine grown in lucerne plots 
at the Lincoln University agroforestry area at ages 9 (1999) and 10 (2000). Tree stocking was 
200 stems ha-1 for both years. Values are mean of 3 replicates. 

Year DBH (mm) Ht (m) BA (m2 ha-l
) 

1999 

SD 

2000 

SD 

229 

7.4 

256 

6.7 

11.0 

0.45 

12.5 

0.51 

8.2 

0.53 

10.4 

0.54 

MCL(m) 

5.5 

0.55 

6.5 

0.51 

1100 

110.0 

1300 

102.0 

DBH= diameter at breast height (1.4 m from ground); Ht= total tree height; BA= basal area (BA= DBH2*1t]/4 * 
2(0); MCL: mean crown length (MCL= Ht - 6); TeL: total crown length per hectare (TCL: MCL*200); SD= 
standard deviations 

4.2.1.3- Soil 

The soil is classified as a Templeton silt loam in the New Zealand soil classification system 

(Udic Haplusteps in the U.S. Soil Taxonomy system). and consists of 1-2 m of fIne alluvial 

sediments over gravels. The typical profIle texture fOlm consists of 1-2 m of ftne alluvial 

sediments over gravels with a uniform textured layer of varying thickness (but less than 60 

cm), underlain by a texturally layered portion in the B horizon and below. Textures in the 

layered portion ranged from heavy silt loams to sands. Gravels were found below 160 cm 

depth (Karageorgis et ai., 1984; Adams, unpublished data). It is medium to free-draining with 

a moderate capacity to hold moisture at 320 mm in the top one meter (Watt & Burgham, 

1992). The site has only slight changes in topography, but there is variation in depth to the 

underlying gravels (Mead et ai., 1993). The soil is considered as one of the most productive 

cropping soils in the Canterbury plains and is used for annual crops, ryegrass and white clover 
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seed production and grazing. The experimental area was cropped with peas (Pi sum sativa) in 

the 1989/1990 season, prior to establishment. 

Thirty soil cores (300 mm diameter x 150 mm depth) were taken at random within each 

'Kaituna' lucerne plot in full sun and under trees at the beginning and at the end of the 

experiment in September 1999 and April 2001, respectively (Table 4.03). Soil nutrients 

between lucerne plots in the full sun and under trees were similar. Potassium (K) and 

magnesium. (Mg) levels were optimal for maximum pasture production in sedimentary soils 

(Morton & Roberts, 1999), but the pH decreased from 6.0 and 5.8 in 1999 to 5.4 and 5.6 in 

open and under trees, respectively, by 2001. Sulphate sulphur [S (S04)] was below the target 

values in 1999, but increased to the optimum level in 2001. Soil nutrient levels for Olsen 

phosphorus (P), calcium (Ca) and sodium. (Na) were always below the optimal levels for 

maximum pasture production .. No fertilisers were applied during the experimental period to be 

consistent with the long-tenn experimental protocol for the Lincoln University agroforestry 

area. 

Table 4.03- Soil nutrient levels to 150 mm depth for 'Kaituna' lucerne plots in the full sun and 
under trees sampled at the beginning (1999) and at the end (2001) of the experiment in the 
Lincoln University agroforestry area. Soil tests were performed using the Ministry of 
Agriculture and Fisheries Quick Test (MAP QT) procedures. 

Treatment Year Cal KI MgI Nal p3 S (S04);J pHS 

----m----m.e. 100 i l soil-------- Jlg mrl ppm 

Full sun 1999 5.62 0.46 0.92 0.19 7 3 6.0 

2001 5.00 0.51 0.84 0.17 7 7 5.6 

Under trees 1999 - 5.00 0.46 0.80 0.15 9 4 5.8 

2001 4.38 0.51 0.80 0.15 10 9 5.4 

1. Ammonium acetate extraction:AA determination test method; 2. Ammonium acetate extraction test method; 
3. Olsen extraction:colorimetry test method; 4. Potassium phosphate extraction:IC test method; 5. 1:2.1 VN 
water slurry test method (AgResearch, Lincoln, New Zealand). 
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4.2.1.4- Climate 

The climate description and long term mean (LTM) meteorological data for the experimental 

site are described in Section 3.2.1. Actual air temperatures were recorded onsite in the open 

and under trees, using a digital temperature sensor (fDC-OIA, Monitor Sensors, Queensland, 

Australia) located 1.5 m above ground and logged every 6 minutes. Other meteorological data 

(rainfall, Penmann evapotranspiration and windrun) used for the open treatments were 

obtained from the Broadfields Meteorological Station, which is located 2 kIn north of the 

agroforestry area (Table 4.04). 

Mean monthly air temperatures were similar in the full sun and under trees over the 

experimental period (Figure 4.01). The mean daily temperature was 11.4 ± 3.39 °C under trees 

and 11.2 ± 3.3 °C in the full sun over the experimental period. On a typical winter day at the 

experimental site, mean daily temperature was 0.4 °C warmer under trees than in the open 

with maximum differences of 1.9 °C at 3.00 h (Figure 4.01a). Similar results were observed 

for a typical summer day (Figure 4.01b) when mean daily temperature was 0.6 °C warmer than 

in the open and maximum differences were 1.6 °C between 10.00 and 3.00 h. 

Annual rainfall (Figure 4.02) was similar to the long-term mean (659 mm) in 1999 (625 mm) 

and 2000 (668 mm), but below (419 mm) in 2001. Monthly rainfall at the experimental site 

was below the long-term means (Table 3.01, Section 3.2.1) from April to May 1999 and from 

December 2000 to March 2001. 
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Figure 4.01. Diurnal air temperature under the trees (0) and in the open (.) on a typical sunny 
a) winter (16 July 2000) and b) summer (1 February 2001) day at the Lincoln University 
agroforestry experiment. 
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Figure 4.02. Mean air temperature ("C) and monthly rainfall OIl) measured in the full sun (.) 
and in the agroforestry site (0) during the experimental period for Broadfields Meteorological 
Station (Lincoln, New Zealand). 



Table 4.04- Actual total global solar radiation (SR) (MJm-2
), maximum (Tmax), minimum (Tmin) and mean (Tmean) air temperatures 

(,C), total Penmann evapotranspiration (ET) (mm), mean windrun (km d-1
) and total rainfall (mm) recorded in an full sun at the 

Broadfields Meteorological Station (Lincoln, New Zealand) from March 1999 to March 2001. 
Data* Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

-------------------------------------------------------1999-----------------------------------------------------
SR 478.2 292.4 213.6 161.2 148.7 262.2 417.1 521.9 601.8 742.7 
ET 107.7 59.9 ': 55.5 29.1 27.7 44.1 74.1 97.1 100.5 133.6 

Tmax 21.6 16.5 16.8 12.1 10.5 12 14.8 17.3 17.3 18.9 

Tmin 12.2 8.1 5.2 1.8 2.4 2.4 4.4 8.1 9 8.6 

Tmean 16.5 11.9 11.2 6.6 6.7 6.9 9.4 12.2 12.9 13.4 

Windrun 340.9 252.02 280.6 211.14 258.43 231.05 284.7 331.1 361.8 334.8 

Rainfall 56.1 36.3 23.6 69.1 135.1 58 26.6 50.9 60.5 35.1 

Data Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

---------------------------------------------------2000------------------------------------------------
SR 517.3 293 169.2 177.9 152.4 231.5 361.6 564.3 684.9 786.8 

ET 95.8 56.3 41.7 -0.5 32.4 47.5 71.9 107.4 115.6 172.7 

Tmax 19.5 17.2 14.8 12.8 12.1 12.6 15 17.4 16.2 22.3 

Tmin 9.3 7.8 5 3.7 3.8 2.2 5.3 6.6 5.3 11.4 

Tmean 14 12 9.9 8.3 7.9 7.4 10.1 12 10.8 16.9 

Windrun 319 240.2 335.1 353.9 271.6 278.4 370.8 440.7 365.7 456.9 

Rainfall 51.8 50.6 72.4 41.4 10.8 99.4 50.6 78.6 82.8 24.6 

* Meteorological data units: rainfall and ET (mm), air temperature ~C), SR (MJ m-2
) and windrun (km d- 1

) 

Jan Feb Mar 

------------2000------------
660.7 553 517.3 
120.6 113 95.8 

19.5 21.6 19.5 

10.8 11.3 9.3 

14.8 15.9 14 

295.5 351.2 319 

85 19.9 51.8 

Jan Feb Mar 

------------2001------------
712.9 516.2 

140.7 107.5 

20.1 22.8 

9.1 11.5 

14.7 16.5 

390.1 358.6 

43 6.4 

465 

111.1 

20.9 

9.8 

15.2 

380.2 

6 

\0 
.j::o.. 
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Soil temperature was measured in the full sun and under tree treatments, using two thetmistor 

sensors (KTY/llO, Cooltronics, Christchurch, New Zealand) permanently set at 0.10 m below 

ground in Replicate 3. The sensors were individually calibrated to a 0.1 °C mercury 

thermometer. Readings were taken at one minute intervals, the averages were calculated 

hourly and data were stored by dataloggers. Mean monthly soil temperatures (Figure 4.03) 

were typically warmer under trees than in full sun, particularly in spring and summer periods, 

reaching a maximum difference of2.1 °C by January 2001. In autumn and winter, mean soil 

temperatures under the trees and in the open were similar. 
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Figure 4.03. Mean monthly soil temperature fC) measured 10 cm below ground in full sun 
(e) and in the agroforestry site (0) during the experimental period in Canterbury, New 
Zealand. 
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4.2.2- Treatments and experimental design 

4.2.2.1- Preparation of experimental plots 

Of all pasture treatments, lucerne and cocksfoot showed the greatest persistence and 

production under trees over the 9 experimental years (Chang et al., unpublished data; Varella 

et al., 2001). Therefore, for this study, a second set of 'Kaituna' lucerne (winter semi-dormant 

cultivar) treatments was established to replace phalaris plots in both full sun and under trees. 

The phalaris was sprayed with Glyphosate 360 (Nujarm glyphosate 360) at 1.5 I i.a. ha-1 plus a 

surfactant (Pulse penetrant) diluted at 0.1 % in January and February 1999. Then, 'Kaituna' 

lucerne was directly drilled in a 150 mm rows at 7 kg ha-1 in both the open and under trees in 

March 1999. 

4.2.2.2- Treatments and design 

The present experiment used the six recently established 'Kaituna' lucerne plots (three in the 

full sun and three under trees) from September 1999 to March 2001. The experimental design 

was a split-plot randomised block with the main plots as covering status (with or without 

radiata pine trees cover) and sub-plots the artificial shade structures (none, shade cloth or 

wooden slats) in three replicates. This imposed six light regimes to lucerne plants: 

1- Trees (T); 

11- Shade cloth installed under trees (T +CL); 

111- Wooden slats installed under trees (T +SL). 

IV-Full sunlight (FS); 

V- Shade cloth installed in the open (FS+CL); 

VI- Wooden slats installed in the open (FS+SL); 

Details of the shade structures construction were as described in Section 3.2.3.1. Shade cloth 

and slatted structures were set permanently in lucerne plots on 9th September 1999. A view of 

the experimental site and details of the shade structures in full sun and under trees are shown 

in Plates 4.02 and 4.03, respectively. The artificial shade structures were set in the middle of 
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middle of the 7.0 m wide inter-row under trees and in the centre of open field plots, both in an 

east-west direction. Subplot study area was 5 x 15 m. The shade cloth covered a 2.3 x 1.8 m 

area and wooden slats covered an adjacent 2.4 x 5.2 m area. The control subplot consisted of 

no artificial shading, located adjacent to the shade structures and covered a 2.5 x 5 m area. 

Plate 4.02. A view of the shade structures installed in the open field adjacent to the Lincoln 
University agroforestry experiment. 

Plate 4.03. A VIew of the shade structures installed under the trees at the Lincoln 
University agroforestry experiment. 
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4.2.3- Site management 

4.2.3.1- Grazing management 

After being grazed in June 1999 ,all lucerne plots were trimmed before the first growing 

season, on 15 August 1999, and remaining herbage was left in the field. Experimental plots 

were grazed from 29 September 1999 to 30 March 2001, except during the winter period (May 

to September 2000) because the cultivars used were semi-dormant (fable 4.05). In summer 

2001, there were only 2 grazing rotations (Jan and Mar) because of the low soil water content 

and slow lucerne crop growth rates. Two flocks of shorn Coopworth ewe lambs were 

rotationally grazed in the three 'Kaituna" and three 'WL325' lucerne plots in the open and 

under trees for 6±2 days (36±12 days regrowth). The timing of each grazing was a 

compromise between optimal development stage for lucerne persistence and nutritive value. 

Lucerne plants were allowed to fully flower (Stage 6; Fick & Mueller, 1989) at least once in 

summer. Shade structures were removed for the grazing period. To avoid overgrazing and 

plant damage, subplot areas were only grazed for the last 2±1 days in each grazing period, 

having been fenced off for the previous 4 days. Post-grazing residual shoots were trimmed just 

above crown height in all plots as described in Section 3.2.4.2. An electric fence was set up 

around the study areas to prevent early grazing. 

Lucerne plots were rotationally grazed with a single flock in the full sun and another under 

trees. Thus, there were 1-2 week differences in regrowth time for crops between the three 

replicates, but rotation length was equivalent for all rotations, except the first one. Therefore, 

for this chapter, ~plicate differences are acknowledged, but assumed as differences in rotation 

time. The mean value of the three replicates and differences' among treatments are the main 

focus. 
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Table 4.05- Sheep grazing period, stocking rate and 'Kaituna' lucerne rotation length at 
the agroforestry experiment from July 1999 to March 2001. 
Rotation Replicate Rotation period Rotation Grazing 

1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 
5 
5 
5 

1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

(residual to final cut) length duration 

15 Aug -29 Sept 1999 
15 Aug-05 Oct 1999 
15 Aug-12 Oct 1999 
05 Oct-16 Nov 1999 
12 Oct-24 Nov 1999 
18 Oct-02 Dec 1999 

24 Nov 1999-02 Jan 2000 
02 Dec 1999-08 Jan 2000 
09 Dec 1999-15 Jan 2000 

08 Jan-18 Feb 2000 
15 Jan-25 Feb Mar 2000 

22 Jan-04 Mar 2000 
25 Feb-17 Apr 2000 
03 Mar-24 Apr 2000 
11 Mar -28 Apr 2000 

24 Apr-04 Oct 2000 
28 Apr-II Oct 2000 
03 May-18 Oct 2000 
11 Oct-20 Nov 2000 
18 Oct-28 Nov 2000 
25 Oct-06 Dec 2000 

28 Nov 2000-04 Jan 2001 
05 Dec 2000 11 Jan 2001 
14 Dec 2000-17 Jan 2001 

11 Jan-19 Mar 2001 
17 Jan-25 Mar 2001 
23 Jan-30 Mar 2001 

-----------days---------
45 6 
51 7 
58 6 
42 8 
43 8 
45 7 
39 6 
37 7 
37 7 
41 7 
41 7 
42 7 
52 7 
52 5 
48 5 

163 7 
166 7 
168 7 
40 8 
41 7 
42 8 
37 7 
37 6 
34 6 
67 4 
67 6 
66 6 

Lambs per 
plott 

FS* T** 
8 31 
8 31 
8 31 
5 26 
5 26 
5 26 
5 23 
5 23 
5 23 
7 21 
8 21 
8 18 
5 13 
5 13 
5 13 

6 
8 
8 
9 
8 
8 
7 
7 
7 
8 
8 
8 

26 
21 
21 
21 
19 
19 
19 
19 
19 
13 
13 
13 

t Sheep stocking rate per plot and grazing duration were equivalent for lucerne 'Kaituna' and 'WL325' plots. 
* Full sun (FS) plots measured 0.05 ha each; * * Trees (T) plots measured 0.2 ha each 

Sheep stocking rate was adjusted when necessary after each live weight measurement (37±5 

day intervals) to ensure a similar pasture allowance for both flocks. Calculations of stocking 
.... -

rate were made based on a minimal pasture intake rate of 1.5-2.0 kg DM per lamb per day 

(Milligan et at., 1987; Rattray et at., 1987). Mean stocking rate observed over the 

experimental period in the full sun was 21±6 hd ha-1 d-1 and under trees, 16±4 hd ha-1 d-1 per 

rotation. Mean actual pasture allowance was 3.3±1.4 kg DM hd-1 d-1 in full sun and 2.9±1.0 kg 

DM hd-1 d-1 under trees over the experimental period. Details of pre and post grazing pasture 

mass, pasture allowance and apparent intake rate per measured period are shown in Appendix 

3. 



100 

Liveweight gains were always greater in the full sun than under trees (Appendix 3). Mean gain 

per head was 229±40 g hd-1 d-1 in open and 171±51 g hd-l d-l under trees over the 

experimental period, and mean liveweight gain per area were 5.3±1.4 and 2.6±1.1 kg ha-l d-1 

in full sun and under trees, respectively. 

4.2.3.2- Weed control 

All 'Kaituna' and 'WL325' lucerne plots were sprayed with Spinnaker (imazethapyr 240 g i.a. 

litre-I) at 400 m1 ha-l of commercial product on 10th August 1999. On 16th June 2000, Atradex 

(atrazine 900 g i.a. kg-I) at 1.1 kg ha- l of commercial dosage and Gramoxone (paraquat 250 g 

a.i. litre-I) at 3 I ha- l were both applied immediately after grazing in the whole plot area. 

Herbicides effectively controlled grasses, but some broadleaf weeds persisted in particular 

during the first spring season (from October to December 1999). The mean infestation for this 

period was 21.6±8.7 % in full sun and 18.8±5.7 % (dry weight basis) under trees. The most 

frequently observed weeds in the study area were hawksbeard (Crepis capillaris), dandelions 

(Taraxacum officinale), narrow-leaved plantain (Plantago lanceolata) and clovers (Trifolium 

rep ens, T. pratense, T. subterraneum) particularly in the full sun plots. By the second spring, 

weed control had reduced weeds to a maximum of 3±1.2 % in the full sun and 1.0±I.l % 

under trees. 

4.2.4- Measurements 

4.2.4.1- Physical environment 

Radiation: 

The PPFD of shaded treatments was monitored with 3 quantum sensors (LI-190SB, Lincoln, 

USA) placed in the centre of the space between adjacent tree rows. One was periodically 

installed above and another below the shade structures under trees (T, T +CL and T +SL) and 

the third installed permanently in full sunlight (FS) conditions. Under trees, the two sensors 

were altemated from under cloth to under slats every 15 days and both were rotated between 
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replicates every 30 days. PPFD was continuously recorded every 30 seconds and averaged for 

15 minute intervals by a datataker under trees and another in the full sun (DT100, Roseville, 

Australia) over the experimental period. Radiation transmissivities under the shaded 

environments were calculated on a daily PPFD basis. 

Spectral radiation was measured with a portable Spectroradiometer LI-1800 (LI-COR Inc., 

Lincoln, USA) as described in Section 3.2.3.1. Readings were the average of five scans and 

were taken between the wavelengths of 300 and 1100 nm at 5 nm intervals. Measurements 

were perfOImed on three occasions: on 7 th March 2000 for a partial overcast day at 12.00 PM 

(51.6° solar angle), on 10th October 2000 for a sunny day at 12.00 PM (52.6° solar angle) and 

on 11th October 2000 for a cloudy day at 12.00 PM. On all occasions, spectral radiation was 

taken in each of the ten light regime conditions: 

Tree area: 

1- under trees during sun period (T sun) 

ll- under trees during shade period (T sh) 

llI- under trees+c1oth during sun period (T +CL sun) 

IV-under trees+c1oth during shade period (T +CL sh) 

V- under tree+slats during sun period (T +SL sun) 

VI- under trees+slats during shade period (T +SL sh) 

Open area: 

Vll- full sunlight (FS) 

Vill- under shade cloth (FS+CL) 

IX- under slats during sun period (FS+SL sun) 

x- under slats during shade period (FS+SL sh) 

The differences in spectral radiation between treatments focuses on the proportions of blue 

(B= 400-500 nm), red (R= 600-700 nm) and far-red (FR= 700-800 nm) wavelengths to the 

total short wave radiation (PPFD+FR= 400-800 nm) as used by Bell et ai. (2000). 
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Soil water content: 

Metal rods measuring 0.5 m long were installed permanently in the centre of each treatment 

for all replicates to measure soil water content (volumetric base), using a TDR (rime Domain 

Reflectometer Trase system, Model 60S0Xl, Soilmoisture Equipment Corp., Santa Barbara, 

USA). Soil moisture readings were taken at 7 -10 day intervals in all experimental plots. 

4.2.4.2- Agronomic measurements 

DIY matter yield: 

The herbage dry matter (DM) yield was measured prior to sheep grazing at the end of each 

regrowth period. Samples were cut from a 0.2 m2 quadrat at about O.OS m above ground level 

and above plant crown. The number of DM cuts was reduced compared with the previous 

experiment to avoid undesirable effects of frequent cuts on lucerne regrowth. From the main 

sample, a randomised sub-sample of at least 100 g fresh matter (PM) was selected to count the 

number of stems, to separate into stem class sizes and to measure leaf to stem ratio as 

described in Section 3.2.5.1. 

Green area index and radiation use 

Green area index (GAl) was measured using a LAI-2000 canopy analyser (LI-COR me., 

Lincoln, USA) at 7-10 day intervals as described in Section 3.2.5.2. To avoid reading noise, 

particularly in the fluctuating light regimes (SL, T and T +SL), GAl measurements were taken 

only in diffuse sky conditions (overcast days or clear days at low solar angles). 

Calculations for canopy radiation interception and the extinction coefficient (K) used data 

collected from the canopy analyser and followed methods described in Section 3.2.S.2. 

Estimations of RUE for treatments in each rotation were based on fmal DM yield and PPFD 

intercepted by canopy at the final harvest (RUE= fmal DM yield/accumulated PARi by crop 

from residual to final cut), as described in Section 3.2.S.3. 
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Phenological development 

Five dominant stems from different plants were marked in the centre of each treatment to 

measure stem height (STH), number of fully expanded nodes (NOD), time to bud appearance 

and node number of the flowering bud (PFLOW) as described in Section 3.2.5.5. New plants 

were marked at the beginning of each rotation. Results for phenological development in this 

chapter focus on the phyllochron and time to flowering. 

4.2.4.3- Physiological measurements 

Leaf net photosynthesis rate 

Potential leaf Pn rate ()..tmol CO2 m"2 S"1) was measured on three of the youngest fully 

expanded leaves per treatment at the late vegetative stage for rotation periods from November 

1999 to November 2000. Measurements were performed at an artificial light flux (PPFD) of 

1000 /-tIDol photons m"2 S"1, using the portable infra-red gas analyser (LI-6400, LI-COR Inc., 

Nebraska). Equipment settings and field procedures were as described in Section 3.2.5.4. 

Readings were taken in each of the 10 different light regimes as listed in Section 4.2.5.1. 

In addition, photosynthetic light response curves were measured at the end of each rotation 

from November 1999 to November 2000. Measurements were performed at seven PPFD 

levels: 0, 100, 250, 500, 750, 1000 and 2000 1JID01 photons m"2 s"t, using the "Auto Light 

Curve Program". The minimum wait time used to stabilise readings, before taking 

measurements, was 60 seconds or 5% coefficient of variation (CV) for each PPFD level. For 

the photosynthetic light curves, a non-rectangular hypeibola (Section 2.1.5, Equation 3) was 

fitted and the main parameters (Pmax= maximum photosynthetic rate and a= photosynthetic 

efficiency) were obtained from the plotted equation. 

4.2.5- Statistical analysis 

Results for all variables were analysed using a split-plot analysis of variance (ANOVA), 

where covering status (with or without trees cover) was the main plot and shade structures 

(control, shade cloth and wooden slats) the sub-plots, with 3 replicates. This analysis was 
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penormed on individual dates as measured in the field. A complementary ANOV A was 

penormed for all variables using a split-split plot analysis, where the sub-sub-plot was the date 

of measurement (time), to identify seasonal differences. In both cases, means were compared 

whenever treatment effects in the ANOV A were significant (p<O.05). Means separation was 

then based on the Fisher's protected least significant difference test (LSD) at 5% probability. 

Agronomic and physiological data between replicates were analysed in each rotation for 

equivalent regrowth time. The statistical analysis was also penOimed for the average values 

over the 9 rotation periods. For the photosynthetic curves, a statistical analysis was performed 

separately for Pmax and a parameters, after fitting the non-rectangular hyperbola equation. 

The statistical package used was the GENSTAT 5, release 4.1 (Lawes Agricultural Trust, 

IACR, Rothamsted, UK). 
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4.3- Results 

4.3 .1- Physical environment 

4.3.1.1- Solar radiation 

Photosynthetic photon flux density (PPFD) 

The PPFD transmissions under the shade treatments for different seasons are summarized in 

Table 4.06. Radiation passing through the radiata pine trees was slightly greater than mean 

transmission observed under the two artificial shade structures in the full sun. They had a 

mean PPFD transmissivity of 42 % and 46% under FS+CL and FS+SL, respectively, in 

summer. Under trees (T), the mean PPFD measured was 55% compared with FS and reached a 

maximum of 93% transmissivity (1871 Ilmo} photons m-2 
S-I) during the sun period (11.00 

AM) and a minimum of 9% (184 Ilmol photons m-2 
S-I) during the shade period (12.00 PM) in 

a clear summer day. As expected, mean radiation transmission decreased proportionally under 

T+CL to 22% (maximum of9761lmol photons m-2 
S-1 and minimum of 441lmol photons m-2 s-

1) and to 23% (maximum of 1136 Ilmol photons m-2 
S-1 and minimum of 41 IlIDOl photons m-2 

S-I) under T +SL compared with the full sun in summer. 

Radiation transmitted under the shade structures and trees declined from summer to winter 

(Table 4.06). For example, PPFD measured under trees decreased from 55% in summer to 

47% in spling and 45% in winter compared with FS. The decrease of PPFD transmission 

observed over seasons was lower for the two artificial shade structures in the full sun than that 

observed under trees. PPFD under slats declined from 46% in summer to 41 % in winter and 

under cloth from 42 to 40% compared with FS. The consequence was that the PPFD 

transmissivity under T became even closer to the FS+CL and FS+SL treatments as sun angle 

declined. In overcast sky conditions, radiation transmission increased slightly under all shade 

treatments compared with a clear sunny day. 
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Table 4.06. Mean daily PPFD transmissivities (relative to full sunlight treatment) measured 
under shade cloth (FS+CL), wooden slats (FS+SL), radiata pine trees (T), trees+cloth (T +CL) 
and trees+slats (T +SL) for typical sunny days in different seasons and for a diffuse overcast 
day in summer. Values in parenthesis indicate the maximum sun angle when PPFD was 
measured. 

Treatment Summer* Autumn* Winter* Spring* Diffuse** 

--------- ------------ --------------%---------------- ------------------
FS 100 100 100 100 100 

FS+CL 42 (65j 40 (54°) 40 (24j 40 (52°) 43 (56j 

FS+SL 46 (66j 45 (43°) 41 (23j 45 (52) 51 (61j 

T 55 (70j 48 (50°) 45 (23j 47 (55°) 58 (70j 

T+CL 22 (70j 15 (50°) 10 (24j 16 (55°) 23 (50j 

T+SL 23 (70j 16 (53°) 13 (23j 18 (61j 25 (70j 

* PPFD measured.in clear suuny sky days; ** PPFD measured in a summer overcast day. 

Temporal patterns 

Besides the FS+CL and FS+SL treatments used in the ftrst experiment (Section 3.3.1.1), three 

new light regimes were imposed under trees (T, T +CL and T +SL). An intermittent light 

regime was observed under T (Figure 4.04), with a maximum of 2.45 hours of full sun and 

1.30 hours of heavy shade in summer at noontime. fu the spring, the maximum sun period was 

1.45 hours and maximum shade period was 1.15 hours. This was different from the 

intermittent regime observed under the FS+SL structure (Section 3.3.1.1), which produced 

equivalent periods of sun and shade over the day. The shade cloth structure set under trees 

(T+CL) produced a similar temporal pattern as that observed under T on sunny days (Figure 

4.04a). During the sun period, T +CL transmitted a similar amount of PPFD to that measured 

under FS+CL treatment (45% PPFD), but during the shade period caused by tree shade, the 

transmissivity was consistent with that observed in the tree shade alone (4%). The T +SL 

treatment (Figure 4.03b) produced an intermittent light regime with a maximum of 45 minutes 

in sun and 3.30 hours in shade in summer. The maximum PPFD transmissivity measured 

under the T +SL treatment was 48 % during the sun period and 5 % during the shade period 

compared with FS. The pattern of light regime for both T +CL and T +SL was similar to those 

in the full sun for overcast days (Figure 4.04bd). 
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Spectral composition 

Radiation spectral composition (fable 4.07) on a clear and sunny day for FS+CL (42% 

transmissivity) caused no change in the proportions of B, R and FR wavelengths compared 

with FS treatment and with the other treatments exposed to direct sunlight (FS+SL sun, T 

sun and T +SL sun). However, both slatted (5% transmissivity) and tree shade (9% 

transmissivity) increased the proportions of B and FR light and decreased the amount of R 

wavelength. There was more FR light under tree shade (f sh, T +CL and T +SL sh) than 

under FS+SL sh treatment. The consequence was that R/FR ratio reduced under T sh (0.64) 

compared with FS (1.31), but BIFR increased. The BIFR ratio was greatest for the FS+SL sh 

and Tsh treatment (0.64) and lowest for the FS+SL sun and T+SL sun treatment (0.48). The 

RIFR ratio was similar for FS (1.31) and FS+CL (1.28), FS+SL sun (1.26), T sun (1.23) and 

T+CL sun (1.24), but decreased under FS+SL sh (0.74), T sh (0.64) and T+SL sh (0.46). 

As diffuse sky conditions increased, spectral irradiance differences among treatments 

reduced. It was not possible to identify the shadow patches under the intermittent regimes on 

an overcast day and differences between treatments for B and R wavelengths were less 

evident than on clear sunny days. Overall ratios decreased in the cloudy day compared with 

those in the clear sky condition. However, the FS+CL treatment continued to approach the 

FS spectmm. The FR radiation was also greater for the FS+SL sh T and T +SL compared 

with FS and FS+CL treatments. The R/FR was slightly lower under T (1.01) and FS+SL 

(1.07) than in FS (1.15) treatment. 
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Table 4.07. Spectrum ratios between blue (B), red (R) and far-red(FR) to photosynthetic 
photon flux plus far-red (pPFDFR), blue to far-red (BIFR) and red to far-red (R/FR) 
measured in different light regimes on sunny (10 Oct 2000), partially cloudy (7 Mar 2000) 
and cloudy (11 Oct 2000) sky conditions in Canterbury, New Zealand. 

Treatmcnt** B*IPPFDFR* R*IPPFDFR FR*IPPFDFR BIFR RIFR 

7 March 2000: sunny-cloudy 

FS 0.216 0.280 0.269 0.802 1.041 

FS+CL 0.214 0.283 0.267 0.802 1.059 

FS+SLsun 0.205 0.285 0.278 0.738 1.025 

FS+SLsh 0.213 0.276 0.283 0.753 0.975 

Tsun 0.215 0.274 0.274 0.785 0.999 

Tsh 0.215 0.269 0.286 0.753 0.942 

T+CLsh 0.211 0.271 0.289 0.731 0.938 

T+SLsun 0.203 0.268 0.309 0.657 0.868 

T+SLsh 0.207 0.277 0.286 0.724 0.969 

10 October 2000: sunny 

FS 0.147 0.342 0.262 0.561 1.307 

FS+CL 0.146 0.341 0.266 0.547 1.285 

FS+SLsun 0.139 0.344 0.272 0.512 1.262 

FS+SLsh 0.210 0.236 0.319 0.659 0.739 

Tsun 0.139 0.340 0.277 0.502 1.228 

Tsh 0.212 0.218 0.339 0.626 0.644 

T+CLsun 0.140 0.342 0.275 0.508 1.243 

T+CLsh 0.203 0.207 0.370 0.548 0.560 

T+SLsun 0.133 0.340 0.288 0.461 1.178 

T+SLsh 0.207 0.182 0.395 0.524 0.461 

11 October 2000: cloudy 

FS 0.148 0.326 0.284 0.520 1.146 

FS+CL 0.146 0.324 0.290 0.504 •. 1.117 

FS+SL 0.142 0.321 0.301 0.471 1.066 

T 0.140 0.315 0.312 0.448 1.008 

T+CL 0.145 0.322 0.295 0.490 1.092 

T+SL 0.140 0.318 0.308 0.455 1.033 

* PPFDFR= 400-800 nm; B= 400-500 nm; R= 600-700 run; FR= 700-800 nm. 
** FS- full sunlight; CL- shade cloth; SLsun- slats during sun period; SLsh- slats during shade period; Tsun-
trees during sun period; Tsh- trees during shade period; T+CLsh- trees+cloth during shade period; T+SLsun-
trees+slats during the sun period; T +SLsh- trees+slats during the shade period. 
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4.3.1.2- Soil water content (SWC) 

The SWC was above 24% in spring for all treatments, but on occasion declined below 20% 

in summer and autumn (Figure 4.05). There were indications of low soil water extraction by 

plants from February to March 2000. The lowest SWC of the experimental period was in 

March 2001 «15% in both the FS and under T), although the SWC continued to decline, 

indicating that plants were still extracting soil water. Surprisingly, SWC was not different 

(P>0.29) between the FS and T over the experimental period, including the dry seasons. 

There was 3-5% more (P<0.003) SWC under the artificial shade structures than in the FS 

and T in the last rotation period in March 2001. No differences between the shade cloth and 

wooden slats for SWC were observed. 
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Figure 4.05. Mean soil volumetric water content (%) of the top 0.5 m measured with the 
Time Domain Reflectometer (TOR) in the open field (a) and under trees (b) for three light 
regimes: no shade structures r- ), shade cloth ~ and wooden slats r- ) from 
September 1999 to March 2001. Bars indicate standard error of means (SEM) by the end of 
each rotation length. Lucerne winter-dormancy period was from May to September 2000. 
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4.3.2- Plant agronomic response 

4.3.2.1- Hewage dry matter yield (DM) 

DM increased from September to December, then declined in summer periods (January to 

March) in both growing seasons (Figure 4.06). Lucerne annual DM decreased (p<0.003) by 

30% under the trees (10.8 t ha-1
) compared with full sunlight (1S.4 t ha-1

) over S rotations 

from October 1999 to March 2000. Annual DM was also greater (p<0.001) under trees (10.8 

t ha-1
) than under FS+CL (8.S t ha-1

) and under FS+SL (8.9 t ha-1
) in the first growing 

season. Plants under the cloth and slatted shade decreased (p<0.001) in total DM yield by 

4S% and 42%, respectively, compared with FS in the first year. Lucerne DM declined Sl % 

under T +CL (S.4 t ha-1
) and 42% under T +SL (6.3 t ha-1

) compared with the T treatment. In 

the second year (from October 2000 to March 2001), there were only 4 lucerne rotations and 

differences between treatments were similar to those in the previous growing period. 

However, annual DM production from all treatments under the trees decreased (p<0.001) 

compared with the first year period. The annual DM under trees (8.6 t ha-1
) decreased 

(p<0.02) by 4S% compared with FS (1S.7 t ha-1
) with further reduction (p<0.001) under 

T+CL (3.1 t ha-1
) and T+SL (3.6 t ha-1

) compared with under the T for the second growing 

season. Yields under FS+CL (9.0 t ha-1
) and FS+SL (9.2 t ha-1

) were similar to that under T. 

No significant differences in lucerne DM were observed between the two artificial shade 

structures installed either in the full sun or under trees. DM production under both cloth and 

slats was similar to the agroforestry treatment. In the first growing season, plant yield under 

the FS+CL was on average 78 % of that observed in T treatment, whereas under the FS+SL it 

was 85%. Differences in DM yield between the two artificial shade materials and trees were 

minimal for the second growing season. Plants yielded more (p<0.03) under T than under 

FS+SL on three occasions: November 1999, January 2000 and October 2000. On the other 

hand, DM yield under T was greater (p=0.01) than FS+CL in January and February 2000. 
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Figure 4.06. Mean fmal heibage dry matter yield (DM) for lucerne grown in six different 

light regimes: full sunlight (V), shade cloth (_), wooden slats (0), radiata pine trees (e), 

trees+c1oth (0) and trees+slats (T). Data are averages of3 replicates collected from October 
1999 to March 2001 and bars indicate the standard error of means (SEM). No data was 
collected from May to September 1999, when lucerne was in winter-donnancy. 

4.3.2.2- Green area index (GAl) 

Lucerne annual GAl in FS was greater (p<0.006) than the 5 shaded treatments (Figure 4.07). 

Plants under trees decreased total GAl by 29% compared with FS in the ftrst year and by 

42% in the second experimental year. Total GAl was greater (p<0.001) under the T than 

under the FS+CL and FS+SL in the first growing season, but they were all the same in the 

second growing season. In the 1999-2000 season, total cumulative GAl was 18.5 in FS, 13.2 

under T, 11.1 under FS+CL and 11.8 under FS+SL over 5 lucerne rotations. In the second 

growing season, total cumulative GAl was 18.9 in FS, 10.9 underT, 11.2 under FS+CL and 

11.5 under FS+SL over 4 lucerne rotations. The heavy shaded treatments T +CL and T +SL 

reduced total GAl production from the first growing season (GAI= 8.4 and 9.7, respectively) 

to the second growing season (GAI= 5.4 and 6.2, respectively). 



113 

Final GAl measurements at the end of each rotation followed the same pattern as DM yield, 

with a peak of production between September and December, and then declining in March­

April for all treatments. Final GAl in FS was always greater (p<0.07) than other treatments. 

Tree shading decreased lucerne fmal GAl compared with FS progressively from 24% at the 

beginning of the experiment (October 1999) to 58% in April 2000 (p<0.07) and 52% in the 

March 2001 (p<0.04). Final GAl was greater (p=0.05) under the natural shade (f) than the 

two artificial shade regimes (FS+CL and FS+SL) only for the fIrst three rotations in 1999. In 

subsequent rotations, no signillcant differences (p>O.lO) between the natural and artifIcial 

shade regimes were observed for fmal GAl. 

Plants under shade had a slower (p<0.02) GAl expansion from defoliation time to the fIrst 

harvest (lag phase) compared with full sun crop for all rotations, except in April 2000. In the 

second growing period, the most shaded treatments (T +CL and T +SL) had a slower 

(p<0.03) GAl recovery after defoliation than the intermediate shade treatments (FS+CL, 

FS+SL and T). No significant differences (p>O.lO) for initial GAl expansion between the T 

and the two artifIcial shades (FS+CL and FS+SL) were observed. The exception was in the 

second Rotation of 1999 and in the last two rotations of the experiment, when T was slower 

(p<0.03) to recovery after defoliation than FS+CL and FS+SL. 
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Figure 4.07. Mean green area index (GAl) for lucerne grown in six different light regimes: 

full sunlight (7), shade cloth (_), wooden slats (D), radiata pine trees (e), trees+cloth (0) 

and trees+slats (T). Data are averages of the 3 replicates at equivalent regrowth time and 
were collected from October 1999 to March 2001. Bars indicate the standard error of means 
(SEM) for frnal readings. No data were collected from May to September 1999, when 
lucerne was in winter-dormancy. 

4.3.2.3- Number of stems 

Changes in the mean number of stems (Figure 4.08) were consistent with results from the 

final canopy GAl. Mean number of stems per m2 was 804 in FS, which was greater 

(p<O.OOI) than under FS+CL (493 stems m-2
) and FS+SL (476 stems m-2

). The mean 

numbers of stems for the T +CL and T +SL treatments were 344 and 359 stems m-2
, 

respectively, compared with 523 under trees. The number of stems under T was greater 

(p=0.002) than under the two artificial shade regimes for the first three rotations, but 

equivalent for the subsequent rotations. No differences (p>O.095) in mean number of stems 

between the shade cloth and slatted treatment were observed. In the second growing period, 

there was an apparent grouping in the number of stems aniong treatments. The full sun 

plants (858 stems m-2
) had a greater (p<O.OOI) number of stems than the three intermediate 

shade levels (511 stems m-2
) , whereas the two most shaded regimes had the lowest stem 

popUlation (338 stems m-2
). 
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Figure 4.08. Mean stems number measured at the fmal harvest for lucerne grown in six 

different light regimes: full sunlight (V), shade cloth (_); wooden slats (D), radiata pine 

trees (e), trees+cloth (0) and trees+slats (T). Data are averages of 3 replicates collected 
from October 1999 to March 2001 and bars indicate the standard error of means (SEM). No 
data were collected from May to September 1999, when lucerne was in winter-dormancy. 

4.3.2.4- Canopy architecture and radiation interception 

Estimates of the extinction coefficient (Figure 4.09b) showed equivalent (p>0.29) lucerne 

canopy architectures for the six light regimes over the experimental period with a mean K= 

0.84. This resulted in a similar pattern of radiation interception (PPFDi) by the canopy 

(Figure 4.09a) between treatments. That is, the lucerne canopy intercepted 95% of the 

incoming radiation (critical GAl) at a mean GAI= 3.6 for all treatments (p>0.28). Lucerne in 

the FS treatment reached the critical GAl in all rotations, except in the autumn 2000 when 

maximum GAl was 2.8. In contrast, critical GAl under the 5 shaded regimes was never 

achieved (Tables 4.08 and 4.09). For example, when mean GAl was 3.6 in full sun (95% 

PPFDi) , FS+CL was 2.2 (85% PPFDi) , FS+SL was 2.4 (85% PPFDi), T was 2.7 (88% 

PPFDi), T +CL was 1.6 (73% PPFDi) and T +SL was 1.9 (77% PPFDi) for the fIrst growing 
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season (fable 4.08). Similar difference among treatments was observed in the second season 

for full sun plots, but overall GAl declined under the tree covering treatments (fable 4.09). 
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Figure 4.09. Radiation interception (Izllo) within lucerne canopy (a) and natural log of·Iz/Io 

(b) against green area index (GAl) in six different light regimes: full sunlight ("7), shade 

cloth (_), wooden slats (D), radiata pine trees (e), trees+cloth (0) and trees+slats (T) 
measured over the experimental period. The extinction coefficient (K) was calculated as the 
slope of lines in graph b (Section 3.2.5.2). Arrow indicates when 95% of the incoming 
radiation was intercepted by canopy (critical GAl). Data are the averages of the 3 replicates 
over the experimental period. 

Table 4.08. Mean GAl, regrowth and relative amount of PPFD intercepted (PPFDi) by 
lucerne canopy under the six light regimes when full sun plants reached the critical GAl* 
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(GAl= 3.6). Data are averages of 3 replicates over the 5 experimental rotations in the first 
growing season at Canterbury, New Zealand. Statistics were ~eIfonned for GAl. 
Rotation period** Treatment GAl Regrowth PPFDi F probLt 

(days) (%) (p<F) 

150ct-18Nov 99: FS 3.60 28 95.0 

FS+CL 2.28 28 86.11 

FS+SL 2.29 28 86.22 

T 2.68 28 89.80 

T-tCL 1.55 28 74.62 

T+SL 2.00 28 82.59 0.050 (0.135) 

02Dec 99-05Jan 00 : FS 3.60 36 95.0 

FS+CL 2.07 36 83.56 

FS+SL 2.30 36 86.33 

T 3.11 36 92.51 

T-tCL 1.77 36 78.93 

T+SL 2.13 36 84.34 0.001 (0.111) 

20Jan-23Peb 00 : FS 3.60 26 95.0 

FS+CL 1.71 26 77.84 

FS+SL 1.95 26 81.86 

T 2.06 26 83.42 

T-tCL 1.43 26 71.87 

T+SL 1.48 26 73.05 0.025 (0.150) 

13Mar-18Aur 00: FS 2.81 38 90.74 

FS+CL 1.74 38 78.39 

FS+SL 1.78 38 79.10 

T 1.73 38 78.21 

T-tCL 0.84 38 52.91 

T+SL 1.05 38 60.87 0.001 (0.144) 

* Critical GAl occurs when canopy intercepts 95 % of the total incoming radiation; 
** Rotation period is the average of the 3 replicates (Table 4.05). 
t is the F probability for the interaction Cover*Shade on GAl. The SEM is shown in parenthesis. 

Table 4.09. Mean GAl, regrowth and relative amount of PPFD intercepted (PPFDi) by 
lucerne canopy under the six light regimes when full sun plants reached the critical GAl* 
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(GAl= 3.6). Data are averages of 3 replicates over the 4 experimental rotations in the 
second growing season at Canterbury, New Zealand. Statistics were eerfonned for GAl. 
Rotation period** Treatment GAl Regrowth PPFDi F probLt 

(days) (%) (p<F) 

l1Jul-140ct 00: FS 3.60 153 95.0 

FS+CL 2.05 153 83.29 

FS+SL 2.03 153 83.01 

T 2.30 153 86.33 

T+CL 1.07 153 61.55 

T+SL 1.17 153 64.77 0.001 (0.100) 

250ct-27Nov 00: FS 3.60 31 95.0 

FS+CL 2.42 31 87.56 

FS+SL 2.56 31 88.83 

T 2.31 31 86.44 

T+CL 0.85 31 53.32 

T+SL 1.15 31 64.15 0.001 (0.176) 

12Dec OO-lOJan 01: FS 3.60 26 95.0 

FS+CL 1.84 26 80.13 

FS+SL 2.26 26 85.89 

T 1.47 26 72.82 

T+CL 0.70 26 46.68 

T+SL 0.61 26 42.23 0.003 (0.096) 

30Jan-13Mnr 01: FS 3.60 41 95.0 

FS+CL 2.12 41 84.21 

FS+SL 2.12 41 84.21 

T 1.86 41 80.45 

T+CL 1.05 41 60.87 

T+SL 0.96 41 57.64 0.03 (0.159) 

* Critical GAl occurs when CIlllOpy intercepts 95 % of the total incoming radiation; 
** Rotation period is the average of the 3 replicates (Table 4.05). 
t is the F probability for the interaction Cover*Shade on GAl The SEM is shown in parenthesis. 

4.3,1.5- Radiation use efficiency (RUE) 
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The RUE for plants grown in FS was always less than those calculated under the 5 shaded 

treatments (Figure 4.10). The mean RUE in FS was 0.8 g DM MJ-1 PAR, which was lower 

(P<0.001) than under FS+CL (1.3 g DM MJ-1 PAR), and under both FS+SL and T (1.2 g 

DM MJ-1 PAR). The most shaded treatments reduced RUE from 3.3 g DM MJ-1pAR in the 

ftrst rotation to 1.7 g DM MJ-1 PAR by January 2000 and then it stabilized. Mean RUE was 

the same for T+CL and T+SL with a value of 1.3 g DM Mrl PAR over the experimental 

period, excluding the ftrst two rotations. For all other treatments RUE declined (P<0.00l) 

consistently from spring to autumn in both seasons. 

ill full sun conditions, RUE under shade cloth was greater (P< 0.02) than under slats at the 

beginning of both seasons (November 1999 and October 2000). ill all other rotations, there 

were no differences between FS+CL and FS+SL treatments (Figure 4.10). Plants grown 

under the trees usually showed similar RUE to those under the two artificial shading 

treatments. The exception was in the last experimental rotation (April 2001), when lucerne 

under T and in full sun had the lowest (p<0.005) RUE (0.6 g DM MJ-1 PAR) among 
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Figure 4.10. Mean radiation use efficiency (RUE) calculated for each final harvest for 

lucerne crops grown in six different light regimes: full sunlight (V), shade cloth (_), 

wooden slats (D), radiata pine trees (e), trees+cloth (0) and trees+slats C~). Data are 
averages of 3 replicates collected from October 1999 to March 2001 and bars indicate the 
standard error of means (SEM). No data was collected from May to September 1999, when 
lucerne was in winter-donnancy. 

4.3.2.6- Instantaneous net photosynthesis rate potential (pn) 

The Pn at 1000 J,.I.IDol photons m-2 
S-1 was measured separately during the sun and shade 

periods under the intermittent light regimes and also in the continuous radiation treatments 

(Figure 4.11). In all six rotations, there were differences (0.001 <P<0.03) between treatments 

for Pn rate. Net photosynthesis was usually highest (36-40 J.,Imol CO2 m-2 
S-1) for FS, FS+SL 

sun, T sun, and T+SL sun and lowest (14-26 J.,Imol C02 m-2 
S-1) for FS+SL sh, T sh, T+CL 

sh and T+SL sh treatments. Leaves under shade cloth treatments (FS+CL and T+CL sun) 

showed an intennediate mean photosynthetic activity (27-34 J..Imol C02 m-2 
S-1), but were 

frequently not different (p>0.05) from that Pn measured in full sunlight, as found from 

January to March 2000 and January 2001. Plants exposed to the alternating sun/shade 

regimes (FS+SL, T, T+CL and T+SL) showed a decrease in Pn between periods of full sun 

and full shade, which was less proportional to the reduction in PPFD. For example, under 

FS+SL, leafPn ranged from 40 J..Imol CO2 m-2 
S-1 during the sun period to 26 J.,Imol CO2 m-2 

S-1 during the shaded period in January 2000. Similarly, leafPn changed from 35 J.,Imol C02 

m-2 
S-1 during the sunny period under trees to 22 J.,Imol CO2 m-2 

S-1 during the tree shade 

period. 

For the following analysis, a weighted mean of Pn was calculated between both sun and 

shade periods under all the intermittent treatments based on the mean length of time leaves 

were exposed to each radiation condition (Section 4.3.1.1). For example, plants were 

exposed to approximately 60% (2.45 h) of the diurnal time in full sun and 40% (1.30 h) in 

shade under the T and T +CL treatments, whereas under T +SL and FS+SL the time was 

equally 50% in shade and in full sun. The Pn for leaves in FS was higher (O.OOl<P<O.Ol) 

than the two artificial shade regimes in all rotations, except in February 2000, when no 
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difference was observed between the six light regimes (p>0.16). Leaf Pn rate under T was 

usually similar (p>O.OS) to those under FS+CL and FS+SL. Leaf Pn was higher 

(0.003<P<0.02) in FS compared with T in the fIrst two rotations, but remained similar over 

the following rotations. 

Leaf photosynthetic response curves were also generated prior to grazing in 6 of the 9 

rotations. The results taken in autumn-spring (Figure 4.12) and summer (Figure 4.13) 

confinned the lower (p<0.001) leaf Pn response during the shade compared with the sun 

period for plants submitted to the intermittent light regimes (f and FS+SL), particularly at 

high PPFD levels. The Pn in the continuous light regimes (FS and FS+CL) showed the same 

photosynthetic response (Table 4.11). Lucerne top leaves under the 6 light treatments never 

saturated at the maximum PPFD of 2000 llIllol photons m-2 
S-l. The Pmax, estimated from 

the asymptotic light curves, was always similar (0.OS<P<0.36) between FS, FS+SL sun and 

T sun treatments over the experimental period (fable 4.10), with a mean value of 41.3 J.Ullol 

CO2 m -2 s -1. Likewise, average Pmax for treatments under heavy shade (FS+SL sh, T, T +CL 

sh and T +SL sh) was similar and consistently lower than in sun treatments (0.OS<P<0.36) at 

about 28.9 J.Ullol CO2 m-2 
S-l over the experimental rotations. 
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Figure 4.11. Mean net photosynthesis rate at 1000 !lmol photons m-2 
S-1 (PnlOOO) of the youngest fully expanded leaf in lucerne plots. 

Measurements were perfOImed for 10 light regimes, during the late vegetative stage and at noon time, for six consecutive rotations: FS 
(full sunlight), FS+CL (shade cloth), FS+SL sun (slats sunny period), FS+SL sh (slats shaded period), T sun (tree sunny), T sh (tree 
shaded), T +CL sun (tree+cloth sunny), T +CL sh (tree+cloth shaded), T +SL sun (tree+slats sunny) and T +SL sh (tree+slats shaded). 
Mean air temperatures in full (fops) and under trees (f°T) at the moment Pn rate was measured are shown at the bottom of the graph. 
Data are averages of3 replicates and error bars on the top indicate the least significant difference (LSD) between means at a=0.05. 
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The weighted mean analysis among treatments (Table 4.10) indicated that top leaf Pmax 

was generally similar between FS, FS+CL and FS+SL. The exception was in February 

(p=0.02) and April 2000 (p<0.001), when Pmax declined under the slatted regimes 

compared with full sun and cloth treatments. The Pmax for top leaves was equivalent 

(0.09<P<0.99) between T and the two artificial shade regimes in the open over the 

experimental period. However, calculations for the averaged leaf Pmax over the 6 rotations 

showed that treatments without artificial shading (FS and T) had higher Pmax (p=0.002) 

compared with those with artificial shade (FS+CL, FS+CL, T +CL and T +SL). Plants under 

FS+CL and FS+SL had a mean leaf Pmax of 35.6 ~ol C02 m-2 
S-l compared with 42.7 

J.-lmol C02 m-2 
S-l for FS. Pmax under T (36.6 J.-lmol CO2 m-2 

S-l) was higher than under 

T +CL and T +SL (30.8 J.-lmol CO2 m-2 
S-l). 

Leaf photosynthetic efficiency (a) was calculated as the slope of the linear part of the light 

curves shown in Figures 4.12 and 4.13 and was calculated from the asymptotic fitted curves. 

The analysis (fable 4.11) showed that leaves under heavy shaded treatments (FS+SLsh, Tsh, 

T+CLsh and T+SLsh) had a mean a (0.015 mg CO2 rl) lower (p=0.02) than those observed 

(0.017 mg CO2 rl) under high radiation (FS, FS+CL, FS+SLsun, Tsun and T +SLsun) over 

the 6 rotations. However, the weighted mean for a was equivalent (p>0.26) among 

treatments over the 6 rotations, with a mean value of 0.016 mg CO2 rl. The exception was 

on February and April 2000, when leaves under FS+SL had a lower (0.005<P<0.05) a 

compared with FS and FS+CL. 
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Figure 4.12. Mean leaf net photosynthetic light response curves (Pn) measured under 6 different light regimes during the spring (Nov 
1999, Oct and Nov 2000) and autumn CApr 2000) experimental periods: a-full sunlight CT), b-shade cloth C+), c-sunny period under 
slats ce), c- shade period under slats CO), d-sunny period under trees C.6.) and d-shade period under trees C.6.). Data are averages of 
the 3 replicates. Dates of measurements and statistical analyses are indicated in Table 4.10. 
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Figure 4.13. Mean leaf net photosynthetic light response CUlves (Pn) measured under 6 different light regimes during the SUllliller (Jan 
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Table 4.10. LeafPmax (maximum gross photosynthesis rate) from asymptotic light curves for 
10 different light regimes during 6 consecutive rotations: full sunlight (FS), shade cloth 
(FS+CL), slats sunny period (FS+SLsun), slats shaded period (FS+SLsh), tree sunny (fsun), 
tree shaded (fsh), tree+c1oth sunny (T+CLsun), tree+c1oth shaded (f+CLsh), tree+s1ats sunny 
(f +SLsun) and tree+s1ats shaded (f +SLsh). Mean values are the weighted averages for the 
sun and shade periods under all the intermittent regimes or the actual reading in continuous 
treatments. Data are averages of the 3 replicates. 

Treatment 

Tsun 
T sh 

T+CLsun 
T+CLsh 
T+SLsun 
T+SL sh 

FS 
FS+CL 

FS+SL sun 
FS+SL sl1 
Means: 

T 
T+CL 
T+SL 

FS 
FS+CL 
FS+SL 

P<f 
Cover(C) * * 
Shade(S)** 

C*S 
SEMt 

LSD:/: (5%) 

Nov 99 Jan 00 Feb 00 Apr 00 Oct 00 Nov 00 
___________________________________________ oC ________________________________________ _ 

16.4 20.3 19.4 16.8 12.7 13.3 
17.0 21.6 20.8 16.9 13.4 14.5 

______________________________________ J.lffiol CO
2 

m·2 s .1 ________________________________ _ 

47.3 43.4 40.9 41.4 36.4 38.6 
23.9 29.3 29.8 35.0 30.7 30.5 
28.2 33.9 34.3 27.3 39.8 34.6 
23.0 27.7 28.0 25.9 34.3 28.2 
31.8 37.1 34.6 24.6 43.0 28.6 
23.2 27.3 28.0 23.2 32.5 34.8 
45.7 44.8 44.1 41.4 44.6 35.9 
34.1 32.7 41.6 36.4 35.5 38.4 
40.0 52.1 40.2 32.5 39.8 33.6 
29.1 31.8 31.6 28.9 36.6 32.7 

37.9 37.7 36.5 38.8 34.0 35.3 
26.1 31.4 31.8 26.7 37.6 32.0 
27.5 32.1 31.3 23.8 37.7 31.6 
45.7 44.8 44.1 41.3 44.5 36.0 
34.1 32.7 41.5 36.4 35.5 38.3 
34.6 41.9 35.9 30.7 38.2 33.2 

0.37 0.35 0.29 0.07 0.45 0.14 
0.02 0.08 0.02 <0.001 0.60 0.47 
0.99 0.49 0.18 0.27 0.09 0.55 
2.46 2.46 1.81 1.45 3.06 0.84 

8.04 8.01 5.91 4.63 10.70 5.09 

* Mean air temperature in full sunlight (TempFS) and under trees (TempT) between 1100 and 1400 h when Pn 
rates were measured 
** Statistics performed for mean values. Main plots (cover): Tree or full sun; Subplots (shade): no artificial 
shade, cloth or slats. 
t SEM is the standard error of means for the lowest P<f test 
:j: LSD is the least significant difference (LSD) at u=0.05 for the lowest P<ftest. 
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Table 4.11. Leaf photosynthetic efficiency (a) calculated from the asymptotic light curves for 
10 different light regimes during 6 consecutive rotations: full sunlight (FS), shade cloth 
(FS+CL), slats sunny period (FS+SLsun), slats shaded period (FS+SLsh), tree sunny (T sun) , 
tree shaded (Tsh), tree+cloth sunny (T +CLsun), tree+cloth shaded (T +CLsh), tree+slats sunny 
(T +SLsun) and tree+slats shaded (T +SLsh). Mean values are the weighted averages for the 
sun and shade periods under all the intermittent regimes or the actual reading in continuous 
treatments. Data are averages of the 3 replicates. 

Treatment Nov 99 Jan 00 Feb 00 Apr 00 Oct 00 Nov 00 
___________________________________________ oC _________________________________________ 

TemPFs* 16.4 20.3 19.4 16.8 12.7 13.3 
17.0 21.6 20.8 16.9 13.4 14.5 TempT* 
--------------------------------------mg C()2 J-l _________________________________ 

Tsun 0.021 0.021 0.017 0.019 0.017 0.014 
Tsh 0.013 0.014 0.013 0.018 0.014 0.015 
T+CL sun 0.013 0.017 0.012 0.016 0.017 0.016 
T+CL sh 0.014 0.018 0.015 0.014 0.019 0.017 
T+SL sun 0.015 0.021 0.017 0.013 0.022 0.016 
T+SL sh 0.016 0.015 0.018 0.011 0.017 0.017 
FS 0.015 0.018 0.019 0.019 0.016 0.017 
FS+CL 0.014 0.018 0.021 0.019 0.015 0.016 
FS+SLsun 0.018 0.022 0.019 0.017 0.019 0.017 
FS+SLsh 0.014 0.020 0.011 0.017 0.017 0.014 
Means: 
T 0.017 0.018 0.015 0.018 0.015 0.014 
T+CL 0.013 0.017 0.013 0.015 0.018 0.016 
T+SL 0.016 0.018 0.018 0.012 0.019 0.017 
FS 0.014 0.018 0.019 0.019 0.016 0.017 
FS+CL 0.014 0.018 0.021 0.019 0.015 0.016 
FS+SL 0.016 0.021 0.015 0.017 0.018 0.016 
P<f 
Cover(C)** 0.64 0.21 0.46 0.03 0.39 0.54 
Shade(S) * * 0.20 0.43 0.90 0.005 0.05 0.75 
C*S 0.15 0.62 0.05 0.10 0.34 0.38 
SEMt 0.0015 0.0006 0.0026 0.0006 0.0008 0.0011 

LSD:j: (5%) 0.0052 0.0035 0.0104 0.0026 0.0040 0.0034 

* Mean air temperature in full sunlight (TempFS) and under trees (TempT) between 1100 and 1400 h when Pn 
rates were measured 
** Statistics performed for mean values. Main plots (cover): Tree or full sun; Subplots (shade): no artificial 
shade, cloth or slats. 
t SEM is the standard error of means for the lowest P<f test 
:j: LSD is the least significant difference (LSD) at u=O.OS for the lowest P<ftest 
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4.3.2.6- Plant morphology 

Stem classes 

As described in Section 3.3.2.4, stems were classified within three different classes. Plants 

grown in FS and under T had a higher (p< 0.01) number of long (>20 cm) stems than under 

the two artificial shade structures over the 9 rotations. For example, the mean percentage of 

long stems was 71 % for treatments without artificial shading (FS and T), 66% for slatted 

(FS+SL and T +SL) and 64% for shade cloth (FS+CL and T +CL) treatments. No differences 

(p>0.14) were observed for medium (10-20 cm) stem size between treatments with or without 

artificial shading, which were all about 22%. Plants under shade cloth showed a higher 

(p<0.001) number of short «10 cm) stems (15%) than all other treatments (9% in FS and T 

and 11 % under slatted treatments). Plates 4.04 and 4.05 show a view of the morphological 

changes between plants grown the shade cloth and slats plants. 

Stem height (STill 

The tallest (p<0.001) stems were observed under the trees and slatted treatments (fables 4.12 

and 4.13). The mean STH was 0.52 m for T and FS+SL, but 0.46 m in FS and under shade 

cloth over the experimental period. In addition, mean STH was taller (p<0.001) under T+SL 

(0.48 m) than under T +CL (0.46 m). The individual analysis for each rotation showed that 

plants were usually taller (p=0.05) under FS+SL than under FS+CL, but closer to T regime. 

The exceptions (p>0.14) occurred in March (mean STH=0.27 m) 2000 rotation, when no 

differences (p>0.20) were observed among treatments, and on March 2001 (p>0.31) when 

plants under T (0.44 m) had a similar STH to the two artificial shading structures (0.49 m). 

Internode length (INTNOD) 

Mean INTNOD for plants at the fmal harvest (Tables 4.12 and 4.13) was longer (p<0.001) 

under the slats (45 mm) than under cloth (41 mm) and full sunlight (41 mm) over the 

experimental period. Overall, plants under trees (46 mm) had longer (p<0.00l) INTNOD than 

in full sun and under shade cloth (41 mm). Plants under T showed similar (p>0.06) mean 

INTNOD to those under the FS+SL treatment over the experimental period. Again the 

exception was on March 2000, when plant INTNOD was shorter (p<0.02) under T (25 mm) 
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compared with FS (33 mm) treatment. On March 2001 rotation, the difference between T (37 

mm) and FS (39 mm) treatments was not significant (P>0.06). 

Plate 4.04. A view of the morphological changes under the shade cloth structure in 
summer at the open site. 

Plate 4.05. A view of the morphological changes under the wooden slats structure In 

slimmer at the open site. 
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Leaf to stem (LIS) ratio 

Changes in LIS ratio followed a similar pattern and was exponentially related to STH (Figure 

4.14). Differences in leaf to stem ratio between treatments were usually observed in spring 

rotations, but remained the same over summer-autumn seasons (Tables 4.12 and 4.13). The 

mean LIS ratio was higher (p<0.03) in FS (0.75) and FS+CL (0.76) than under FS+SL (0.70) 

and T (0.69). Plants under T +SL showed lower LIS ratio (0.71) than plants grown under the 

T+CL regime (0.75). 

o 
~ 
(J) 

.:J 

1.5,---------------------, 

1.2 

0.9 

0.6 

0.3 

Y= 0.445+1.485e-0.035x 

R2= 0.71 
SEE= 0.0985 

• 

0.0 -t------r--------,------r-----i 

o 20 40 60 80 

Stem height (em) 

Figure 4.14. Leaf to stem (L:S) ratio plotted against stem height at the final harvest for lucerne 

canopy grown in six different light regimes: full sunlight (\7), shade cloth (_), wooden slats 

(D), radiata pine trees (e), trees+cloth (0) and trees+slats (T"). Graph included data from the 
3 replicates collected from October 1999 to March 2001. Regression line is plotted for all data 
and SEE indicates the standard error of estimate for the regression. 
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Table 4.12. Mean stem height (STH), internode length (INTNOD) and leaf to stem (LIS) ratio 
at the end of each rotation for lucerne canopy under the six different light regimes. Data are 
averages of 3 replicates over the 5 experimental rotations in the first growing season at 
Canterbury, New Zealand. 

Rotation* Treatment STH INTNOD LIS 
(m) (mm) ratio 

15Aug-050ct 99: FS 0.48 48.63 0.82 
FS+CL 0.42 41.47 0.78 
FS+SL 0.51 51.37 0.81 
T 0.58 59.70 0.76 
T+CL 0.51 51.33 0.62 
T+SL 0.55 51.57 0.55 
F probl. t (SEM) 0.002 (0.011) 0.002 (2.313) 0.053 (0.034) 

150ct-18Nov 92: FS 0.46 40.20 0.64 
FS+CL 0.45 40.73 0.63 
FS+SL 0.53 45.50 0.69 
T 0.62 51.93 0.54 
T+CL 0.63 52.60 0.59 
T+SL 0.59 51.27 0.60 
F probl. (SEM) 0.024 (0.042) 0.080 (2.904) 0.034 (0.02) 

02Dec 99-05Jan 00: FS 0.55 47.80 0.68 
FS+CL 0.45 46.37 0.63 
FS+SL 0.51 49.93 0.68 
T 0.69 57.37 0.56 
T+CL 0.66 57.13 0.62 
T+SL 0.71 62.47 0.61 
F probl. (SEM) 0.008 (0.046) 0.051 (3.000) 0.118 (0.031) 

20Jan-23Feb 00: FS 0.50 48.91 0.80 
FS+CL 0.48 45.90 0.81 
FS+SL 0.51 50.25 0.85 
T 0.53 54.63 0.74 
T+CL 0.44 46.71 0.76 
T+SL 0.55 53.14 0.73 
F probl. (SEM) 0.152 (0.032) 0.221 (2.890) 0.204 (0.036) 

13Mar-18Apr 00: FS 0.29 33.14 1.06 
FS+CL 0.26 29.19 1.00 
FS+SL 0.30 35.89 1.16 
T 0.23 25.33 1.13 
T+CL 0.25 28.33 1.02 
T+SL 0.29 32.70 1.04 
F probl. (SEM) 0.196 (0.049) 0.016 (16.670) 0.256 (0.052) 

* Rotation period is the average of the 3 replicates (Table 4.05). 
t The F probability and the standard error of means (SEM) are shown for all variables. 
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Table 4.13. Mean stem height (STH), internode length (INTNOD) and leaf to stem (L:S) ratio 
at the end of each rotation for lucerne canopy under the six different light regimes. Data are 
averages of 3 replicates over the 4 experimental rotations in the second growing season at 
Canterbury, New Zealand. 

Rotation* Treatment STH INTNOD LIS 
(m) (rum) ratio 

17Jul-140ct 00: FS 0.41 25.07 0.66 
FS+CL 0.46 33.40 0.71 
FS+SL 0.51 37.03 0.65 
T 0.47 28.40 0.55 
T+CL 0.37 22.30 0.74 
T+SL 0.36 21.30 0.65 
F probl. t (SEM) 0.052 (0.041) 0.010 (2.279) 0.020 (0.020) 

250ct-27Nov 00: FS 0.52 44.61 0.65 
FS+CL 0.52 44.10 0.64 
FS+SL 0.60 52.13 0.58 
T 0.62 54.22 0.55 
T+CL 0.55 47.60 0.65 
T+SL 0.53 45.74 0.66 
F probl. (SEM) 0.041 (0.032) 0.086 (3.392) 0.007 (0.020) 

12Dec 00-10Jan 01 FS 0.48 42.02 0.73 
FS+CL 0.54 46.63 0.71 
FS+SL 0.60 50.80 0.64 
T 0.54 47.74 0.67 
T+CL 0.41 42.41 0.80 
T+SL 0.45 43.33 0.76 
F probl. (SEM) 0.001 (0.022) 0.081 (2.552) 0.001 (0.022) 

30Jan-13Mar 01: FS 0.44 39.72 0.80 
FS+CL 0.49 37.62 0.81 
FS+SL 0.49 35.07 0.85 
T 0.45 36.87 0.74 
T+CL 0.35 25.83 0.76 
T+SL 0.38 27.47 0.73 
F probl. (SEM) 0.008(0.0184) 0.036 (1.354) 0.204 (0.036) 

MEANforthe 
experimental period FS 0.46 41.03 0.78 

FS+CL 0.46 40.53 0.76 
FS+SL 0.51 45.23 0.70 
T 0.54 46.23 0.69 
T+CL 0.46 41.60 0.75 
T+SL 0.49 43.23 0.71 
F probl. (SEM) 0.001 (0.014) 0.001 (0.948) 0.014 (0.031) 

* Rotation period is the average of the 3 replicates (Table 4.05). 
t The F probriliility and the standard error of means (SEM) are shown for all variables 
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4.3.2.7- Plant development 

Calculations for the phyllochron were based on air temperatures collected from full sun and 

trees, assuming no changes in mean daily temperatures under the artificial shaded structures 

(Table 4.14). Although phyllochron seemed to increase under tree regimes compared with full 

sun during shortage of soil water, the mean phyllochron was the same (p>0.14) for all six light 

regimes over the 9 experimental rotations (42 DC day) and values increased from spring to 

autumn seasons for all treatments (p<0.001). 

Mean daily air temperature was 0.2-0.5 DC wanner under trees than in full sun in spring and 

summer rotations, but in autumn and winter mean temperature was inverted and full sun was 

0.1-0.3 DC wanner than under trees (Figures 4.01 and 4.02). Plants flowered in full sunlight 

and under trees from November to March in both growing seasons. Full sunlight plants 

accumulated 452 DC day to reach late bud (Stage 4, according to Fick and Mueller, 1989) 

while under trees plants were at early bud (Stage 3) in November rotations. In January and 

February of both growing seasons, full sun plants accumulated 401 and 505 DC day to be at 

late flowering (Stage 6), respectively, whereas plants under the T were only at late bud (Stage 

4). With this same summer temperature accumulation, plants under the two artificial shading 

structures reached the early bud (Stage 3). No flowering buds were observed in the T +CL and 

T +SL treatments over the experimental period. 
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Table 4.14. The mean phyllochron (DC day) of lucerne stems in six light regimes over 9 
rotations in Canterbury, New Zealand and from October 1999 to March 2001. 
Treat Oct Nov Jan Feb Apr Oct Nov Jan Mar Mean 

-----1999----- --------------------2000----------------- -----2001-----
------------------------------------_______ DC day ----------------------------------------------

TT* 354 452 401 505 550 541 359 469 843 

T 36 38 33 52 58 31 32 41 59 42 

T+CL 35 38 35 53 62 32 31 45 56 44 

T+SL 33 39 35 49 62 31 31 48 62 43 

FS 35 41 35 49 52 32 31 41 58 41 

FS+CL 34 41 41 48 54 40 31 40 60 43 

FS+SL 35 39 40 49 54 40 31 39 56 42 

Mean 35 39 37 50 57 34 31 42 59 

P<F 

Cover** 0.99 0.22 0.11 0.17 0.03 0.03 0.74 0.03 0.08 0.23 

Shade** 0.17 0.67 0.01 0.84 0.23 0.002 0.98 0.21 0.93 0.14 

C*S 0.17 0.55 0.09 0.66 0.83 0.01 0.90 0.07 0.16 0.94 

SEMt 1.78 0.75 0.68 0.79 0.20 1.08 1.36 0.62 0.12 0.50 

* Mean thermal time (TT) accumulated individually for each replicate from the residual to the [mal DM cut. 
Mean air temperatures in full sunlight IIJld under trees are indicated in Figure 4.01, Section 4.2.1.3. 
** Main plots (cover): Tree IIJld full sun; Subplots (shade): no artificial shade, cloth IIJld slats. 

t SEM is the stllJldard error of mellJls for the lowest P<ftest 
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4.4- Discussion 

4.4.1- Radiation environment 

4.4.1.1- Light flux and temporal patterns 

The two artificial shade structures set in the open successfully mimiced the quantity of PPFD 

transmission obselVed under the agroforestry site over the seasons. However, the temporal 

pattern and spectral composition under slats were closer to that obselVed under trees than from 

shade cloth. The mean PPFD transmission over the seasons was 41% under FS+CL, 44% 

under FS+SL and 48% under T compared with full sun (Table 4.06). 

The alternating periods of sun and shade under FS+SL were equivalent at 120 minutes at 

noontime (Section 3.3.1.1, Figure 3.02), but plants under T were exposed to a double period of 

full sun (2.45 hours) and approximately the same of shad~ (1.30 hours) compared with slats at 

maximum solar elevation (Figure 4.04). The sun and shade time course was inversed at low 

solar angle elevations under T, when 30 minutes of full sun and 165 minutes of shade was 

obselVed, whereas under FS+SL there were 50 minutes of light and 40 minutes of shade. The 

differences in temporal pattern between FS+SL and T were a consequence of the distinct 

shapes of the shade sources (conical tree crown versus long wood slat), tree canopy 

discontinuity and the additional presence of tree trunks in the agroforestry site. Change in the 

temporal pattern of radiation is an important issue in agroforestry research as it influences the 

daily canopy photosynthesis (pearcy, 1990) of understorey vegetation. The periodicity of 

radiation was previously discussed for sunfleckl shade events of forest environments (pearcy, 

1988), but it has usually been omitted in most agroforestry publications. 

4.4.1.2- Spectral composition 

Plants under the intermittent regimes (trees and slats) experienced different spectral 

composition from those in the continuous treatments during the shade period, but grew in 

equivalent spectral conditions during the sun period (Table 4.07). The shade cloth structure 
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always had similar BIFR and RIFR ratios to the full sunlight conditions on sunny and overcast 

days. This result partially disagrees with early observations by Gaskin (1965) who found that 

shade cloth produced similar light quality (proportions of blue and red wavelengths) to tree 

shade when light transmission was above 25% compared with full sunlight. However, the 

results agree with more recent data from Devkota et ai. (1997), who reported a similar RIFR 

ratio between black shade cloth with 43, 27, 18 and 14% and full light conditions. In addition, 

proportions of Rand B light were always the same between T sun and FS+SL sun or between 

T sh and FS+SL sh. The ratios of BIFR and RIFR observed in FS and under trees were 

consistent with those reported by Bell et ai. (2000) under coniferous and deciduous tree shade. 

The RIFR ratio was equivalent between the slatted and trees regimes, but they are explained 

differently. The red photon light originating primarily from direct irradiance was blocked and 

decreased at the low PPFD transmissions during the shade phase under slats. The same decline 

of R wavelength was observed under trees, but this was also because of tree canopy 

absorption. The FR was greater under trees than under the slats because direct FR penetrated 

tree canopies, but not the wooden slats. The heavy shaded treatments (T+CL and T+SL) 

produced similar temporal variation of spectral composition to slats and under trees; but plants . 

were exposed to a longer period in shade with low RIFR ratios. 

Overall results indicate that lucerne was submitted to equivalent radiation environments either 

under trees or slats. Therefore, plants morphogenetic changes would basically depend on the 

time scales of phytochrome-mediated responses during the shade period under the intermittent 

regimes. ill the present experiment, RIFR ratio exceeded 1.0 in FS, FS+CL and during the sun 

periods under the intermittent regimes, but reduced to 0.4-0.7 during the heavy shaded 

periods. Likewise, Turnbull & Yates (1993) found that the RIFR ratios were between 0.3 and 

0.6 during the shade, but exceed 1.0 during the sun periods under a subtropical rainforest. 

These authors observed that the time length under shade is critical for the magnitude of plant 

morphogenetic changes. The dependent effect of spectral composition and temporal variation 

of radiation on plant morphology under intermittent light regimes will be discussed in further 

Section (4.4.1.5). ill summary, the spectral composition under the slatted structure was closer 

to that observed under trees than that from shade cloth. 

4.4.2- Lucerne crop responses 
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4.4.2.1- DM yield 

The DM yield changed progressively under shade treatments with regrowth periods (Table 

4.06). In the second season, three distinct treatment groups were observed: (i) high PPFD (FS), 

(ii) intermediate PPFD levels (FS+CL, FS+SL and T) and (iii) low PPFD levels (T +CL and 

T +SL). DM yield decreased 30% and 45% under T compared with FS in the first and second 

season, respectively, but in both seasons mean daily PPFD (Table 4.06) was reduced by 52% 

on clear sunny conditions. A similar pattern of response under the other shade treatments was 

observed in this study. 

Under shade, the progressive decrease ofDM yield observed over the experimental period was 

probably associated with a continuous decline in root reserves and preferential allocation of 

carbon assimilates to shoot growth (Lemaire, 2001). Similar decline in DM yields and growth 

rates under the two artificial shade materials were observed in non-irrigated plots in the first 

experiment (Chapter 3, Section 3.4.4.2). Plants under the two heavy shaded treatments were 

severely affected by the decrease in PPFD. Therefore, the initial indication is that plants 

compensated the low PPFD levels by increasing remobilisation to above ground biomass. 

Results agreed with Lin et ai. (2001) who observed that the dry weight ofluceme cultivars 

grown in greenhouse declined between 24-15% under 50% shade cloth and between 55-39% 

under 80% shade compared with full sun (2000 lImol photons m-2 
S-l at noon). 

4.4.2.2- Canopy GAl 

Results for total and [mal canopy GAl (Figure 4.07) were consistent with the DM yields and 

associated with the decline in the number of stems (Figure 4.08). By the end of summer 

periods, when SWC dropped below 15% in the top 0.5 m soil depth (Figure 4.05), lucerne 

GAl was more affected under competition from trees than in the full sun. This was the only 

time when plants under FS+CL and FS+SL had greater GAl than those under T. However, in 

the other rotations, when SWC was sufficient, DM yield and canopy GAl expansion seemed to 

be driven primarily by the radiation environment. This suggests a possible interaction between 
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soil water and radiation competition for lucerne growth under trees. That is, lucerne growth 

declined more severely when low soil moisture (SWC<15%) caused by tree roots competition 

was combined with shading. ill this case, DM yield decreased beyond the reduction in PPFD 

transmission. ill contrast, when SWC was sufficient, lucerne DM yield decreased less than the 

reduction in PPFD. 

Under the two heaviest shade treatments, lucerne plants never developed sufficient GAl for 

full light interception and relative reductions in DM was mainly limited by the low radiation 

environment. Competition for water and radiation resources has been identified as the main 

limitation for understorey species growth in agroforestry systems (Ong et ai., 1996). These 

results contrast with Yunusa et ai. (1995) for the Lincoln area, when lucerne was competitive 

with young radiata trees (2-3 years old) in summer and had increased DM yield compared 

with the full sun. However, lucerne DM yield decreased compared with the open in spring, 

when soil moisture was not limiting and tree crown shade was severe. Obviously, the 9 years 

old trees in the present study had a greater advantage in competition for light and water with 

the lucerne understorey than the 2-3 year old trees. 

The differences in slopes of GAl expansion after defoliation (Figure 4.07) indicate that under 

shade there was a lag in new green area expansion. Canopy GAl expanded to intercept most of 

the radiation available (pPFDi= 95%) in FS (Figure 4.08a, Tables 4.08 and 4.09), while 

radiation interception under the two artificial shade structures (pPFDi= 78-89%) and under T 

(pPFDi= 72-92%) never reached the critical GAl of3.6. ill addition, plants under T+CL and 

T +SL were estimated to intercept only 42-65% of the available PPFD in the second season. 

Thus, subsequent growth rates were greatly affected by reduced canopy photosynthesis. It is 

important to highlight that canopy architecture was unaffected by light regimes, with a mean 

K of 0.84 over the experimental period (Figure 4.08b). This result agrees with that found in 

the previous chapter when plants showed a mean K of 0.82 for all treatments. Although plants 

can eventually change canopy architecture under shade (Trenbath & Angus, 1975; Heichel et 

ai., 1988; Peri, 2002) or in severe water stress conditions (Moran et ai., 1989), the lucerne 

strategy under shade actually seemed to adjust GAl expansion until the irradiance penetrating 

the most shaded leaves equalled their compensation point. Therefore, the lucerne crop 
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appeared to regulate its GAl expansion to maintain a favourable balance between sink and 

sources at a particular radiation environment. This response agrees with Givinish (1988) 

theory that lower levels of irradiance decrease the light that penetrates through a given number 

of canopy layers, so that shaded plants arrange their leaves in fewer layers than full sun plants. 

4.4.2.3- Leaf Pn 

Results for instantaneous Pn (Figure 4.11) and estimated Pmax (Table 4.10) confinned the 

intermittency light-response effect under the slatted shade structure and under trees compared 

with the steady-state conditions in the FS and under shade cloth. Photosynthetic activity on top 

leaves declined consistently from the sun to the shade period under slats and trees over the 

experimental period (Figures 4.12 and 4.l3). This was an indication that top leaves developed 

the photosynthetic phenomena of induction (gradual rise of photosynthesis after a prolonged 

shade pellod from a low initial rate to a steady final level) and deactivation (gradual decrease 

of photosynthesis from high to low irradiance), as defined by Rabinowitch (1956), under the 

present altemating sun/shade regimes. Peri et al. (2002) found that the decrease of Pmax in 

cocksfoot leaves, after entering the shade, was an exponential function of the duration in 

PPFD (at 50% PPFD of full sun) previously experienced. Likewise, these authors reported that 

the increase of Pmax (induction phase) in the intermittent regime was dependent on the 

previous time spent under severe shade. In this experiment, Pn measurements were randomly 

taken dUllng the sun and shade phases under the intermittent regimes and this may explain the 

variability observed in Pmax (Table 4.10) within the heavy shaded treatments (FS+SLsh, Tsh, 

T +CLsh and T +SLsh). 

Weighted averages for instant Pn, estimated Pmax and u (Section 4.3.2.6) showed that 

photosynthetic activity on top leaves changed little for plants grown in full sunlight or any 

other shade regime with more than 50% PPFD transmissivity. Although lucerne leaves were 

normally non-saturated at a PPFD of 2000 ~mol photons m-2 s-t, there was only a slight 

increase between 1000 and 2000 ~mol photons m-2 
S-1 (Figures 4.12 and 4.13). This explains 

the similarities for mean Pmax between FS, FS+CL, FS+SL and T over the duration of the 

study (Table 4.10). However, full sun exposed leaves (FS, FS+SLsun and Tsun) had higher 
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Pmax compared with those that were operating in heavy shade (FS+SLsh, Tsh, T +CLsh and 

T +SLsh). Photosynthetic activity would be expected to drop quickly for leaves at lower layers 

in all shaded treatments, because they would be operating in a lower part of the photosynthetic 

light response curves (Figures 4.12 and 4.13). 

Data from Figure 4.09 shows that the lucerne crop in full sun intercepted 50% of the available 

PPFD (~1 000 J!mol photons m-2 
S-1) with a cumulative GAl of about 1.0 unit, so leaf 

photosynthesis activity at any layer less than this GAl level would be expected to change little. 

For this reason, the overall reduction in instant Pn and Pmax for top leaves under the 50% 

shade regimes was usually observed to be less than the decrease in DM yield compared with 

the FS. This result agrees with Evans (1993) who observed that most of the full sunlight was 

intercepted at the top parts of a lucerne canopy and that 50% interception occurred with a 

cumulative LAI of about 1.0 in spring. ill the current study, for example, mean DM yield 

under T was reduced 38% compared with full sun, but top leaf mean Pmax decreased about 

14% in this treatment over the experimental period. Similar trend was previously reported in 

Chapter 3 (Section 3.3.2.1, Figure 3.07), when plants under the two artificial shade structures 

had 40% less DM yield compared with those in FS, whereas instant Pn was reduced by about 

14% in non-irrigated conditions (Section 3.3.2.7, Table 3.07). This response is consistent with 

data from Woodward & Sheehy (1979) in full sun conditions, where they observed a decrease 

of only 30% in canopy Pn at 100 mm below the top canopy, but a reduction of70% at 300 mm 

depth compared with top leaves. According to the authors, this was due to the most efficient 

distribution of leaf area per unit of canopy height observed at the top canopy parts (cumulative 

LAI= 2.5). The results of this experiment also agree with Walgenbach & Marten (1981), in 

glasshouse conditions, who reported a decrease of 29% and 42% in shoot DM for lucerne 

plants grown for 20 days under 50 and 70% shade cloth, respectively, compared with fully 

illuminated plants. These authors also reported a decline of only 8% and 16% in total non­

structural carbohydrates in the upper 0.10-0.15 m ofheIbage from plants grown under the two 

shaded regimes, respectively. 
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4.4.2.4- Use of radiation 

The RUE estimations were similar to those observed in the previous experiment (Chapter 3, 

Section 3.3.2.6). Plants grown under the shaded regimes typically had greater RUE (Figure 

4.10) than those in full sun. In addition, overall RUE values decreased from summer to 

autumn rotations. The mean RUE of 0.8 g DM MJ-1 PAR in full sunlight observed in this 

study was similar to those found by Khaiti & Lemaire (1992) for seedlings in spring, but lower 

than those for subsequent summer and autumn regrowth. The lower efficiency of lucerne in 

the current experiment compared with the literature could be because plants grew without any 

fertilizer input and irrigation. In addition, the mean RUE reported by Khaiti & Lemaire (1992) 

was calculated over the different growth periods within the rotation, whereas in the present 

study RUE was calculated based on the final harvest only, when usually reserves 

remobilisation to roots is maximal (Keoghan, 1991). Despite the difference, the decrease of 

RUE in autumn compared with summer rotations observed in the current experiment was 

consistent with Khaiti & Lemaire (1992) work and indicates more partitioning from shoots to 

roots in late· season as well as slowing of new leaf appearance and growth at lower 

temperatures. However, estimation of RUE on a whole plant basis (shoot+roots) was shown to 

be constant over seasons by the same authors and has been reported to be little sensitive to 

environmental conditions (Monteith, 1989). 

The explanation for greater RUE under shade compared with the FS treatment was previously 

stated as a result of lower decline in DM yield and photosynthesis activity than the reduction 

in PPFD .md a possible increase in the shoot/root ratio. In this study, one evidence of 

preferential allocation of carbohydrates to shoots rather than roots under shaded treatments 

was the longer stem lengths compared with full sun plants. The morphological changes in 

shaded plants, such as in stem height, internode length and LIS ratio, seemed to be affected by 

the light quality environment and are the most important acclimation response observed on 

lucerne plants under shade. However, the magnitude of these changes never seemed to playa 

major role in the canopy growth under low radiation. Indeed, the most likely explanation for 

lucerne growth efficiency under shaded regimes was associated with the ability of the leaves 

to maintain its Pn capacity for PPFD above about I 000 ~mol photons m-2 
S-1, which was the 
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averaged light level mostly measured at the top of the canopies under FS+CL, FS+SL and T 

on clear days in summer. The light saturation point of young lucerne leaves was previously 

reported to occur at approximately 113 to 112 of full sunlight conditions (pearce & Lee, 1969; 

Wolf & Blaser, 1972; McDowall, 1983; Nelson & Moser, 1994). In this experiment, top 

leaves were not physiologically light-saturated in most situations, but only small changes were 

observed between 1000 and 2000 Ilmo1 photons m-2 
S-1. There are few data in the literature 

concerning the efficient use of radiation in agroforestry areas (Wilson & Ludlow, 1991; Friday 

& Fownes, 2001). Overall, greater RUE was typically reported for tropical grasses and 

legumes under shade compared with full sun (Sophanodora, 1989; Ong et al., 1996). 

The quick decline in RUE under the most shaded treatments (T +CL and T +SL) between 

rotations 1 to 3 was probably due to a rapid decrease in root reserves combined with a major 

instant dec1ule of PPFD levels, causing a lag in new leaf growth after defoliation (Figure 

4.07). The same rapid drop of RUE under intennediate shade levels was never observed in this 

and in the previous experiment, probably because the newly established lucerne plants were 

less affected by the decline of root reserVes at the 50% PPFD transmissivity. 

Finally, tbe RUE of plants was similar between distinct shade regimes at equivalent PPFD 

levels (FS+CL, FS+SL and T) for most of the study. Plants under T had lower RUE compared 

with the two mtificial shade regimes only in the last rotation, when water and light stress 

interacted and reduced DM yield more severely in the agroforestry site than in the full sun. 

The silnilmities between the two artificial light and the trees regimes were consistent over the 

two expeliments and are at variance with the hypothesis initially stated by Rabinowich (1956) 

that long intervals of the order of several hours can improve the utilization of light energy 

because during the dark "rest period" the plant can recuperate from the injury or exhaustion 

that often follows a period of intense photosynthesis. That affinnative might be true for PPFD 

levels lower than 50% full sunlight. However, this experiment had not exposed plants to 

artificial shade levels similar to those observed under T +CL and T +SL in order to address this 

discussion. 
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4.4.2.5- Plant morphology and development 

While no morphological changes were noted in the previous experiment under the two 

artificial shade structures (Chapter 3, Section 3.3.2.4-5), in this study they were the main 

differences observed between the shade cloth, slats and trees treatments (Section 4.3.2.6). 

Plants under the T and FS+SL showed the highest proportion of long size stems, whereas 

under FS+CL there was a higher proportion of short stems. Plants grown under T and FS+SL 

were also the tallest, had the greatest internode length and the lowest L:S ratio among 

treatments. Those changes were caused by the decrease of the RIFR ratio under the 

intermittent regimes (Table 4.07) compared with FS and FS+CL treatments. Smith (1982) and 

Ballare et aZ. (1995) previously stated that reduction in the RIFR ratio promotes stem 

elongation pmticularly in sun-adapted plants. In this experiment, plants under shade cloth were· 

similar to those in full sunlight and the proportion of far-red light was lower than under trees 

or slats. 

However, the morphological changes observed under the inten:llittent compared with the 

continuous regimes were insufficient to affect canopy growth. While a small number of high 

PPFD events may have a significant influence on the daily average ofPPFD under intermittent 

regimes, they have little influence on the daily RIFR ratio (Turnbull & Yates, 1993). Shading 

duration (with low RIFR ratio) under the trees and slatted structure was probably not long 

enough to allow the morphological changes to affect canopy growth. The interaction between 

light quantity and quality is still unclear, but these results suggest careful analysis for 

environments with longer shade periods than those observed in this study is required. 

Light intensity, spectral composition and periodicity never affected lucerne development over 

the experimental period (Table 4.14). As expected, the mean phyllochron was equivalent 

among treatments over the 9 rotations because only a small difference in daily air temperature 

(Figures 4.01 and 4.02) between the agroforestry and the full sun sites was observed. The 

phyllochron tmd its seasonality dependence observed in this study was consistent with data 

reported by Moot et aZ. (2001) for lucerne in spring and summer (350 C day per node) and in 

autumn (51 0 C day per node). However, there was a clear delay in time of flowering with 50% 
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shading and no reproductive induction observed in the two most shaded plants (Section 

4.3.2.7). Reduced flowering was also observed with otherunderstorey plants at low PPFD and 

low RIFR ratio (Mitchell & Woodward, 1988) and this could possibly be explained by a 

decrease in carbohydrate allocation to flowering nodes (Ballare et al., 1995). 
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4.5- Conclusions 

Results for a lucerne crop observed under the different light regimes lead to the following 

conclusions: 

1- The wooden slats structure resembled better than the shade cloth the PPFD transmission, 

light regime (pattern of temporal variation) and spectral composition observed in the 

agroforestry site. 

2- Spectral changes observed under trees and slatted regimes affected plant morphology by 

increasing the number of long stems, stem height and internode length compared with full 

sunlight plants. However, those changes influenced little the canopy growth responses. 

3- Canopy growth (DM yield and GAl expansion) was mainly affected by the amount of 

PPFD received by plants. The magnitude of the decrease in canopy growth was less than that 

in PPFD transmissivity. 

4- Mean mmual DM yield was 17.5 t ha-1 in full sunlight conditions and declined to 

approximately 10 t ha-1 under FS+CL, FS+SL and T, then 3.4 t ha-1 under T +CL and 4.1 t ha-1 

under T +SL. Lucerne yield potential under intermediate shade was superior to most of C3 

pastures reported in the literature. 

5- Canopy architecture was unaffected by radiation environment and mean foliage angle had 

an internlediate dispersal with a mean K of 0.82. 

6- Top leaves under the intermittent shade regimes experienced fluctuations in photosynthetic 

activity, but had steady responses under the continuous shade treatment. The weighted means 

indicated that they operated at similar photosynthetic rates in FS, FS+CL, FS+SL and T and 

declined under the two most shaded treatments. 
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7 - The magnitude of the decrease in top leaf Pn was less than the reduction observed in DM 

yield, suggesting that photosynthesis activity at the intermediate and lower canopy strata was 

critical under the shade regimes. 

8- Light use efficiency was unaffected by radiation periodicity. The mean RUE under the 

artificial and natural shade regimes was 58% higher than full sun plants. 

9- The radiation environment never affected plant node development, but flowering was 

delayed in the shaded treatments. 

Having defined th~ main field lucerne responses under the different light regimes, in the next 

chapter, a theoretical analysis will be performed using a canopy net photosynthesis model to 

observe how the crop would optimize canopy architecture to obtain maximum yields under the 

intermittent and continuous light regimes. The results of this analysis will assist in determining 

the actual yield potential of lucerne under light restrictions. 
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CHAPTERS 

A theoretical canopy photosynthesis model for different light 

regimes 

5.1- Introduction 

The wide range of environmental conditions and the large number of plant species found in 

agricultural systems produce complex canopy responses, which cannot be predicted by a 

single mathematical model. It is necessary to integrate various sub-models to adequately 

predict plant growth responses. 

One successful example of sub-model integration is that used to predict canopy net 

photosynthesis rate (Pn) and consequently crop growth rate (de Wit et ai., 1970; Acock et 

ai., 1978; Weir et ai., 1984; Thornley & Johnson, 2000). This requires integration of sub­

models (Section 2.1.5) for (a) canopy radiation interception, (b) light utilisation in canopy 

gross photosynthesis and (c) partitioning of photo synthates to canopy respiration. 

Canopy Pn models can be applied to a number of environmental situations and crops under 

full continuous radiation. However, for plants growing either under intermittent light, such 

as in agroforestry and intercropping systems, or under a continuous shade regime, 

adjustments to these models are required. Thus, the time scale in the canopy Pn models 

should correctly resemble the alternating sun and shade intervals to produce a reliable plant" 

growth response for this light regime. It has also been reported that shaded plants may 

adjust their morphological (Wilson & Ludlow, 1991; Buxton & Fales, 1994) and 

physiological (Rabinowitch, 1956; Loomis et ai., 1971) characteristics to maximise 

photosynthetic activity. Increasing leaf area, changing leaf to stem proportions and adjusting 

plant architecture are common strategies associated with maximising light interception and 

consequently optimising photosynthesis in plant communities. Accurate canopy Pn models 

should also include these plant parameters. Biochemical plant responses are complex to 
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model and they are often not included in canopy Pn models. For the purpose of this study, 

biochemical adjustments are not included. 

Shaded plants in nature may be exposed to either continuous or intermittent light regimes. 

The few works in the literature which investigate this issue assume that it is valid to 

compute leaf photosynthesis from continuous radiation for the various fluctuating light 

conditions, providing the same environmental conditions (McCree & Loomis, 1969; Loomis 

et ai., 1971 and Sager & Giger, 1980). However, this conclusion appears to be 

unsatisfactory when extended to a canopy photosynthesis level. Efficiency of light 

interception by different canopy layers and partitioning of photosynthates may produce 

somewhat different plant responses under the shaded regimes. 

The intention of the analyses in this chapter were: (i) to link classic canopy Pn models found 

in the literature with continuous and intermittent light regimes and make the necessary 

adjustments to predict canopy growth rate accurately and (ii) to derive the optimum plant 

architecture required to maximise net canopy photosynthetic activity in each light regime. 

To achieve this objective, a canopy net photosynthesis model based on radiation 

interception, gross photosynthesis and total respiration was adjusted to operate in periods of 

(i) full continuous, (ii) partial continuous and (iii) intermittent light conditions. The model 

was also adjusted to simulate various canopy architectures by changing randomly 

distributed leaf angles. The theoretical analyses reported in this chapter are followed by 

validations from field experiment and are further described in Chapter 6. 

5.2- Materials and methods 

The general canopy Pn model was an integration of three main sub-models found in the 

literature: (a) radiation interception on a leaf (b) leaf gross photosynthesis rate and (c) leaf 

total respiration rate as described in Section 2.1.5. The canopy Pn rate was then obtained by 

subtracting total respiration from gross photosynthesis rates. Adjustments were proposed to 

allow adequate simulation of the alternating light regimes described in Chapter 3. The three 
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sub-models were developed in linked Excel (Microsoft Corporation, 1997) spreadsheets and 

integrated into a general canopy Pn model. 

5.2.1- Radiation interception by leaves 

The sub-models suggested by Monsi & Saeki (1953) and Warren Wilson (1960) were 

integrated into a model to estimate the probability of penetration of rays of direct visible 

light. This integration was suggested by Duncan et al. (1967) to estimate the probability of 

penetration of rays of direct light and gives the opportunity to simulate light penetration 

with different leaf angles within the canopy profile. This integration reduces the inaccuracy 

of a single mean K value due to changes in skylight brightness, solar elevation angles and 

solar tracking movements by leaves. In this canopy Pn model, light penetration was 

calculated according to the equation (Section 2.1.5): 

I(z)= 10 exp (-LA! * [F'IF] $. 13 / sin~) Equation 2.2 

This derivation gives the area of direct light (Iz) from a point source (Io) penetrating each 

foliage layer (LA! units) and allows the amount of light penetration to be calculated from 

various canopy architectures, by changing leaf angles (<1», and at different periods of the 

day, by altering solar elevation angles (~). Expressions to calculate [F'IF] $. 13 were also 

detailed in Section 2.1.5. 

In this sub-model, light flux above the canopy (Io) was used as input data at 5 minute 

intervals during the day and expressed in Ilmol photon m-2 
S-1. Values of 10 were 

subsequently converted to Watts m-2 of ground area, based on the ratio of 1 W m-2 of PAR 

<=::: 4.61 Ilmol photons m-2 
S-1 (LI-COR Radiation measurement Manual, Lincoln USA). Light 

attenuation was corrected for the respective solar elevation and leaf angles every 5 minutes. 

Values of ~ were derived from equations used to calculate zenith angle (Appendix 4). 

Calculation of ~ was for the latitude of 430 39'S and longitude 1720 28' E (Lincoln, New 

Zealand) on January 10th 1999 (Figure 5.01). For this specific geographic position, 

maximum solar elevation was estimated at 68.50 at 12040 PM local time. 
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Figure 5.01- An example of calculated daily solar elevation angles for the 10th January 1999 
in Canterbury, New Zealand (43° 39'S and 172° 28' E). Mathematical expressions are in 
Appendix 4. 

The amount of direct light penetration was simulated for seven different leaf angles 

(randomly distributed): 0, 15,30,45, 60, 75 and 90°. Values ofIz were calculated for every 

0.1 unit of LA! ( accumulative) as the light penetrated within the canopy and for 5 minute 

intervals during the day. This time scale was appropriate to register irradiance alternations, 

as observed in the intermittent treatment. The lowest LA! value of 0.1 was assumed to be at 

the top of the canopy and this increased with depth within the canopy. Finally, to compute 

the area of sunlit leaves within each layer (direct radiation interception), the flux of direct 

sunlight entering each layer (Iz above the foliage layer) was subtracted from the flux leaving 

the layer (Iz available at the top of the subsequent lower foliage layer). 

Three daily light regimes (Figure 5.02) were used as theoretical input data (10) to simulate 

canopy radiation interception in (i) full continuous light (100% transmissivity), (ii) partial 

continuous light (50% transmissivity) and (iii) intermittent light (50% transmissivity) with 

minimum periods of sun/shade of 30 minutes each at early morning and late afternoon and 

maximum of 120 minutes each at noontime. These theoretical light regimes produced 



151 

changes ill radiation transmissivity and periodicity similar to those described ill Chapter 3. 

The pattern of radiation was similar between the full and the partial continuous radiation 

whereas the illtermittent light produced an alternating fulllight/heavy shade regime. The sun 

and shade periods under the intermittent regime produced transmissivity values of 90% and 

7% (in PPFD values) compared with the full contilluous radiation, respectively. Overall, the 

full contilluous light produced a daily photosynthetic radiation (400-700 nm) of 12.2 MJ m-

2, whereas the partial continuous and illtermittent regimes produced 6.08 MJ m-2
. Mean 

light transmissivities for both shaded treatments were calculated to be at 50% to facilitate 

comparisons between light regimes. 
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Figure 5.02- Simulated photosynthetic photon flux density (PPFD) in the full continuous 
light r-), under continuous shade ("",~,:<."" ) and intermittent shade (-) on a typical full 
sun day in Canterbury, New Zealand. 

5.2.2- Leaf gross photosynthesis 

Leaf gross photosynthesis rate (Pg) was calculated according to Thornley (1976) and Weir 

et al. (1984) as described in Section 2.1.5. The sub-model equation is as follows: 

Pg = [Pm + alzl - ([Pm + alz12 
- 48alzPml)112 

28 

Equation 2.3 
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This equation implies that gross photosynthetic rate (Pg) is dependent on four main 

variables: leaf radiation interception (Iz) , ,photosynthetic rate at the saturating point (Pm), 

photosynthetic efficiency (a.) and the ratio of physical to-total resistance to CO2 transfer (8). 

The radiation interception of sunlit foliage values (Iz) for <j> and ~ angles, as described in the 

previous section of this chapter, were linked to the Pg equation. For the purpose of this 

study a.=0.017 rug CO2 rl PAR and 8=0.72 (dimensionless) were set as constants based on 

measured light curves from field lucerne leaves. Details of measured light curves are given 

in Chapter 6. Maximum photosynthesis was calculated according to Thornley & Johnson 

(2000) equations as described in Section 2.1.5. Initially, maximum photosynthesis rate was 

corrected based on the growth irradiance within the canopy profile (Pmax'). 

Pmax' = Pmo * [1 - AI2 * (1- IzlIo)] Equation 2.4 

Then, values of Pmax' were reduced as mean plant water content (PL WC) decreased as 

follows: 

Pm = Pmax' * [1- c * (l - PLWC)] Equation 2.5 

Leaf Pm, from Equation 2.5, was the actual value used in Equation 2.3 to calculate Pg. The 

Pmo was the maximum photosynthesis rate (at 2000 /-lmol photons m-2 
S-I) measured in the 

field for top lucerne leaves. In this Chapter, a standard Pmo value of 1. 78 rug CO2 0.1 m-2 
S-1 

for the three light regimes was applied based on field lucerne measurements in the summer. 

The value for A was set at 0.7 according to Thornley & Johnson (2000). When plants were 

free from water stress, PLWC approached unity and when plants were under severe water 

stress PLWC reached zero. In this chapter, Pm was calculated in well-watered conditions 

according to field data (pLWC= 0.85). Constant c, which was a dimensionless value, 

reduced Pmax' below its maximum value as PL WC fell below one, and had a value of 2 in 

this model based on Thornley & Johnson (2000). 

After calculating the appropriate values for Iz and Pmax, and setting the values of a. and 8, 

the gross photosynthesis rate was calculated for every 0.1 GAl unit at 5 minute intervals. 

This gave Pg in units of rug CO2 0.1 m-2 
S-I. The sum of Pg values was transformed to a 
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daily basis and to a square meter of ground surface and the outcome was then expressed in 

g CO2 m-2ground d-1. Having a known GAl distribution in the plant, it was then possible to 

simulate Pg at any height within the canopy profile or at different stages of maturity. For 

interpretations of RUE in this chapter, canopy Pn was also expressed in g carbohydrate 

equivalent (CH20) m-2 ground d-1 based on the ratio of 19 C02m-2 ground d-1 
::= 0.65 CH20 

m-2 ground d-1 (Hay & Walker, 1989). The carbohydrate unit was assumed an 

approximation of plant dry matter and easily comparable with values reported in the 

literature. 

5.2.3- Total respiration 

The third sub-model applied in this study was modified from McCree (1974) to calculate 

total respiration rate (R) in 5 minute intervals using Equation 2.8 (Section 2.1.5.2): 

t=H 

R = a L Pg (t) + b W 2 O.l(fmax+TminI2) Equation 2.8 
t=O 

The fITst part of the equation calculated the growth respiration dependent on the Pg values 

and the second part assumed the maintenance respiration rate affected by air temperature as 

described in Section 2.1.5. H is the number of 5 minute intervals in a day and t is the time 

course used for calculations of growth respiration. The growth respiration coefficient (a) 

and the maintenance respiration coefficient (b) were set as 0.34 (dimensionless) and 0.03 

dai1, respectively, in this chapter. These were consistent values reported for non-stressed 

lucerne in the literature (Shone & Gale, 1983; Hanson, 1978). From data obtained in the 

field for irrigated lucerne (fmal harvest) in summer, a relationship between GAl and crop 

dry weight (W) was calculated and a corresponding W value was set at 7500 mg C02 

equivalent in every 0.1 unit of GAl for the 3 light regimes. A unit of dry matter was 

converted to CO2 equivalent units based on McCree (1974), multiplying by 1.43. The Tmax 

and Tmin are the daily maximum and minimum air temperatures, respectively, and were 

measured in the field. 
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The mean daily temperature (Truax + Tminl2) was set at 15.5° C as measured for 10th 

January 1999 in Lincoln, New Zealand (Meteorological Data Software by New Zealand 

Institute for Crop and Food Research Ltd.). Temperatures and coefficients a and b were 

kept as constants for all light regimes and maintenance respiration was calculated on a daily 

basis for every 0.1 unit of GAl within the canopy. Then, the total respiration rate was 

expressed on a daily basis (g C02m-2 ground d-1
). 

5.2.4- Canopy net photosynthesis 

Finally, the three sub-models were integrated into a dynamic model of canopy net 

photosynthesis (Pn). Daily Pn was calculated as the difference between Pg (Equation 2.3) 

and R (Equation 2.8) to obtain values in g C02 m-2ground d-1
. Using this model, it was 

possible to perform theoretical simulations of Pn at various levels "z" within the canopy 

under different light intensities and regimes. Also, it was possible to calculate Pn while 

altering canopy architecture (foliage angles) under different light conditions. In addition, the 

model offered the flexibility to simulate different field conditions by modifying values for 

Pmax, a and 8 or by changing crop dry weight and mean temperatures. 

5.2.5- Radiation use efficiency 

Canopy radiation use efficiency (RUE) was calculated from the ratio between daily canopy 

Pn production (on a carbohydrates basis) and canopy light interception (in MJ PAR per day) 

for the three light regimes. Canopy Pn production was obtained from the combination of 

Equations 2.3 and 2.8. Radiation interception was calculated from the amount of area of 

sunlit leaves as obtained from Equation 2.2. 

5.2.6- Simulations performed 

In this chapter, a series of simulations were performed to predict the theoretical net 

photosynthesis efficiency of crops under the three light regimes. To isolate the effects of 

light regimes on the canopy Pn rate only, all other parameters involved in the mathematical 

model were maintained as constants. For all simulations, PPFD values were set at 5 minute 
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intervals and light attenuation was calculated according to sun angles observed for the 

summer 1999 in the latitude of 43° 39'S (Lincoln, New Zealand) (Figure 5.02). Respiration 

coefficients, W, a and e were set as previously described in this chapter. Sensitivity analysis 

for a and b coefficients and air temperature on total respiration rate were also perfonned 

since these parameters may change under shaded environments. The following simulations 

were perfonned in this chapter: 

Simulation 1: This simulation detennined the pattern of radiation interception and 

penetration with increasing values of canopy LA! in full continuous, partial continuous and 

intennittent light regimes. Simulations were perfonned at the maximum solar elevation 

angle (68.5° at 12.45 PM) for all light regimes, except for the shade period under the 

intennittent regime (65.3° at 11.45 AM). A random leaf angle was set at 45° for all 

treatments, which was near the mean of all treatments found in the earlier experiemnts. 

Simulation 2: This simulation detennined the daily canopy Pn rate against increasing LA! 

for different growth (a) and maintenance (b) respiration coefficients in full continuous light 

regime. The standard a coefficient was set at 0.34 and the b coefficient was set at 0.03 dol. 

Increments and reductions at 25, 50, and 75% for both respiration coefficients were 

simulated independently to calculate daily canopy Pn rate. Leaf angle was maintained at 45°. 

Simulation 3: This simulation detennined the sensitivity of canopy Pn rate against LA! for 

changes on mean air temperature in full and partial continuous light regimes. The standard 

mean air temperature of 15.5°C was changed ± 2 degrees in both continuous light regimes. 

Leaf angle was maintained at 45°. The a coefficient was set at 0.34 and b coefficient at 0.03 

dol. 

Simulation 4: This simulation detennined the canopy Pn rate against LAI for different light 

intensities and regimes. PPFD values in the full and partial continuous and intennittent light 

regimes were used as an input data. In addition, simulations were perfonned of canopy Pn 

rate against LA! for 80, 60, 40 and 20% light transmissivity compared with the full 

continuous regime. Leaf angle was maintained at 45°. The a coefficient was set at 0.34 and 

b coefficient at 0.03 dol. 

., ", 
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Simulation 5: This simulation detennined the daily canopy Pn rate with increasing LAI for 

seven leaf angles (randomly distributed) in full, partial continuous and intennittent light 

regimes: 0, 15, 30, 45, 60, 75 and 90°. The a coefficient was set at 0.34 and b coefficient at 

0.03 d-1
. 

Simulation 6: This simulation detennined the maximum daily canopy Pn rate with different 

leaf angle dispersals (0, 15, 30, 45, 60, 75 and 90) for full, partial continuous and 

intennittent light regimes. It also detennined the LAI value at which daily canopy Pn was 

maximised against leaf angles (optimisation of canopy Pn) for the three light regimes. The a 

coefficient was set at 0.34 and b coefficient at 0.03 d-1
. 

Simulation 7: This simulation detennined the canopy radiation use efficiency against LAI 

for the optimised canopy architecture in the three light regimes. The criteria used to identify 

the optimised canopy architecture were maximum daily Pn rates combined with greater LAI 

values. 
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5.3- Results 

5.3.1- Simulation 1- Influence of light regimes 

The irradiance available at level z decreased exponentially from the top (LA! 0.1) to the 

bottom (LA! 8) of the canopy for all treatments (Figure 5.03). The Full continuous light 

regime and the high light period under intermittent radiation resulted in a similar decline in 

canopy light penetration. The decrease was slower under partial continuous radiation and 

the low light period under the intermittent regime (Figure 5.03a). The absolute difference 

between the full continuous light and shaded conditions was greater for the top layers of the 

canopy. However, all treatments had 9,5% of the available light intercepted by the top part 

of the canopy (LA! 3.6) because of the constant leaf angle applied (Figure 5.03b). This 

indicated that the light interception model was sensitive to the amount of light rather than 

light periodicity and that the critical LA! point (when 95% of the above canopy light was 

intercepted) can be modified with different canopy architecture and solar angle elevations 

(Equation 2.2). The amount of irradiance available was negligible by LA! 5 in all treatments. 
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Figure 5.03- Simulation 1: light penetration (a) and interceptance (b) against LA! for the 
three light regimes in a typical sunny day at noontime in Canterbury, New Zealand. Leaf 
angle was set at 450 for the three light regimes. ' 
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5.3.2- Simulation 2- Influence of respiration changes 

Figure 5.04 (a and b) showed that growth and maintenance respiration had a different effect 

on canopy Pn rate. As expected, canopy Pn rate increased with lower growth and 

maintenance respiration coefficients. The growth coefficient a had a major effect on canopy 

Pn rate on the high-illuminated upper part of the canopy, whereas changes in coefficient b 

affected net photosynthesis more for the more shaded layers within the canopy (LA1>3.3). 

The ability to predict canopy Pn rate, using different a and b coefficients made this model 

flexible for a range of environmental conditions and crop species. 
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Figure 5.04. Simulation 2: daily whole canopy Pn rate against LA! for different growth (a) 
and maintenance (b) respiration coefficients in full continuous light regime with 450 leaf 
angle dispersal in Canterbury, New Zealand. 
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5.3.3- Simulation 3- Influence of air temperature 

According to Equation 2.8, mean air teJIlPerature exponentially affected canopy 

maintenance respiration. Figure 5.05 shows that change in air temperature, under both 

continuous light regimes, affected the lower canopy parts (LA! > 2) more drastically than 

the upper parts. The temperature effect occurred exactly within the canopy parts where light 

penetration also decreased. A decrease of 2 °C in mean air temperature (13.5 °C) compared 

with the standard value (15.5 °C) caused an increase of up to 6 g CO2 m-2 ground d-1 on 

daily canopy Pn rate in either full or partial light regimes. Correspondingly, a 2 °C increase 

in temperature reduced canopy Pn by a maximum of 7 g CO2 m2ground d-1
. 
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Figure 5.05. Simulation 3: whole canopy Pn rate against LA! for different mean daily air 
temperatures under full (a) and partial (b) continuous light regimes in Canterbury, New 
Zealand. In a and b respiration coefficients a and b were set at 0.34 and 0.030 dai\ 
respectively. 
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5.3.4- Simulation 4- Influence of shade on whole canopy Pn 

Figure 5.06 shows that for all light regimes the accumulative Pn curve increased to an 

optimum LA! when most of the radiation was intercepted and then decreased as amount of 

radiation interception by each unit of LA! declined for the lower parts of the canopy. In full 

continuous light (100% transmissivity), maximum canopy Pn rate was 38.29 g CO2 m-2 d-1 

at LA! 3.6. Above this LA! level, Pn rates declined as little radiation penetrated to these 

depths within the canopy and maintenance respiration increased. Maximum canopy Pn rates 

did not reduce in direct proportion to the decrease in light intensity for the continuous 

regimes. For instance, the maximum canopy net photosynthesis reached 26.36 g CO2 m-2 d-1 

or 69% of that predicted in full continuous light regime at LA! 2.9 under 60% light 

transmissivity. Positive Pn rates were obtained deeper within the canopy (high LA!) for light 

transmissivities higher than 50% in the continuous regime. In contrast, plants submitted to 

lower light intensity (40% and 20% transmissivity) were not able to produce positive Pn 

values at LA! > 6.9 and LA! > 3.8, respectively. 

Photosynthesis responses under the intermittent light regime were lower than the 50% 

continuous light and actually approached the 40% continuous treatment. Daily canopy Pn 

rates reduced about 39% under the alternating sun/shade regime compared to the partial 

continuous treatment (50% transmissivity) and a negative Pn value was found at LA! higher 

than 6.4. In addition, maximum daily Pn rate was obtained at LA!=2.7 under the partial 

continuous regime, whereas under the intermittent treatment the maximum Pn rate occurred 

atLA!=2.5. 
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Figure 5.06. Simulation 4: whole canopy net photosynthesis rate (Pn) against LA! for 
different light regimes and intensities. Values in parenthesis mean light transmissivity 
compared with full continuous light conditions. Simulations were performed with leaf angle 
set at 45° for all treatments. 
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5.3.5- Simulation 5-lnfluence of leaf angle 

5.3.5.1- Full continuous radiation (100% transmissivity) 

In full continuous light conditions, plant architecture (leaf angles) altered canopy 

photosynthetic efficiency (Figure 5.07 a and b). In the top layers of the canopy (LA!:52), all 

leaf angles produced similar daily Pn rates. In contrast, greater Pn rates were observed in 

the lower part of the canopy with more vertical leaf dispositions (> 45 ). Canopy Pn rate 

for the vertical leaf angle (90 ° dispersal) was greater than that for 45° leaf angle at lower 

layers (LA! > 3.4), but it was never superior to values obtained for leaf angles of 60 and 

75°. 

Optimum LAI also varied with leaf angles in the full continuous light regime. For the more 

horizontal leaf dispersals (0 ° to 30) optimum LA! occurred in the upper canopy (LA! 3 to 

3.3). In contrast, with verticalleaf dispersal (75 ° to 90) the light penetrated deeper within 

the canopy and the optimum LA! was reached at about 4.5. In this light regime, maximum 

canopy Pn was greatest for leaves oriented at 75° (40.3 g CO2 m-2 d-1 at LA! 4.6). For 

canopies with simulated horizontal leaf dispersal, the upper layers of the canopy intercepted 

a large proportion of the light. 
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Figure 5.07. Simulation 5: daily whole canopy Pn rate against LA! for different canopy 
architecture (leaf angles) in full continuous light regime (100% transmissivity). Leaf angles 
were set at 0 (_),45 (D) and 90° (A) in 5.07a and 15 (e), 30 (0),60 (T), 75° (V) in 5.07b. 
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5.3.5.2- Partial continuous radiation (50% transmissivity) 

Under 50% transmissivity (Figure 5.08 a and b), canopy Pn rates were lower compared with 

the full continuous light conditions at all leaf angles. Also, differences in canopy Pn rates 

between leaf angles were less evident than in the full continuous regime. Leaf angle 

dispersals of 30° and 60° produced similar maximum Pn rates, but critical LAI occurred at 

different points (LAI 2.5 and 2.9, respectively). Leaf angles of 75° and 90° produced the 

lowest Pn rates of all simulations in this light regime. However, critical LAI for both 

analyses occurred deeper within the canopy (LAI 3) compared with the other leaf angles. In 

contrast to the fmding for the fully illuminated plants, under partial continuous radiation the 

45° leaf angle resulted in the greatest accumulative Pn value (22.34 g CO2 m-2 d-1 at LAI 

2.7) of all canopy architecture dispersals. A leaf angle of 60° slightly reduced the maximum 

canopy Pn rate to 21.95 g CO2 m-2 d-1 and the critical LAI occurred at a value of 2.9. 
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Figure 5.08. Simulation 5: daily whole canopy Pn rate against LA! ,for different canopy 
architecture (leaf angles) in partial continuous light regime (50% transmissivity). Leaf angles 
were set at 0 (_),45 (D) and 90° (A) in 5.08a and 15 (e), 30 (0),60 (T), 75° (\7) in 5.08b. 
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5.3.5.3- Intennittent radiation (50% transmissivity) 

Under the intennittent light regime, canopy Pn rates were lower than for the partial 

continuous radiation. In addition, differences between leaf angle dispersals were of a similar 

nature, but less evident under the intennittent regime (Figure 5.09 a and b) than the partial 

continuous light regime. As occurred in the partial continuous treatment, the greatest Pn 

rate occurred at 45° leaf angle (13.71 g CO2 m-2 d-1 at LAI 2.5), but the difference was 

minimal compared with the 60° leaf angle dispersal. Contrary to the full continuous light, 

but similar to partial light, a vertical leaves dispositions (75° and 90) in this light regime 

resulted in the lowest canopy Pn rates, although radiation penetrated slightly deeper within 

the canopy (LAI=2.7). Predicted canopy Pn rates were always lower at any leaf angle 

dispersal under the intennittent than the corresponding partial continuous regime. 
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Figure 5,09, Simulation 5: daily whole canopy Pn rate against LA! for different canopy 
architecture (leaf angles) using the intermittent light regime (100% transmissivity). Leaf 
angles were set at 0 (_),45 (D) and 90° ( .. ) in 5.09a and 15 (e), 30 (0),60 (T), 75° (\7) in 
5.09b. 



171 

5.3.6- Canopy photosynthesis optimisation 

Simulations 1-4 enabled calculations of the optimum canopy architecture in which maximum 

net photosynthesis was combined with optimum LAI (Figure 5.10). Plants in the full 

continuous light radiation were most efficient with a leaf angle dispersal of 75°, which 

resulted in a predicted maximum Pn rate of 40.34 g CO2 m-2 d-1 at a LAI of 4.6. With the 

90° leaf dispersal, photosynthetic efficiency was reduced because light interception was 

reduced mainly in the upper parts of the canopy. 

For the partial continuous radiation regime, the maximum canopy Pn rate was obtained with 

leaf angle of 60° when light reached lower layers without compromising photosynthesis 

(21.95 g CO2 m-2.d-1 at a LAI of 2.9), but virtually there were only small differences from 

leaf angle 45 to 60°. Similarly, the maximum canopy Pn occurred with a leaf angle of 60° 

(13.55 g CO2 m-2.d-1 at a LAI of 2.6) under the alternating sun/shade regime, but no 

virtually no difference was observed for leaf angles changes. Thus, it appeared that the 

optimum canopy architecture for maximising Pn rate was actually more dependent on the 

amount of PPFD available than on light regimes. Additionally, optimised canopy Pn under 

the intermittent regime was much lower compared with the partial continuous regime, 

though both received equivalent incidence of daily radiation. 



172 

50 

~ 4.6 ..... 
4.1 4.5 :.0 

<'l 40 
3.6 .. .. 

's 3.3 --
<'l 3.0 3.1 

0 .. 
C) -

OJ) 
'-' 30 4) 

~ 
1-< 

~ 
2.3 2.4 2.5 2.7 2.9 p... 

;>, ,.., 3.0 3.0 
0.. -0 20 -0 
~ 
(.) 2.3 2.5 2.6 

.1 
2.2 2.2 2.7 2.7 .. .. .. 

~ 
10 

::E 

0 
0 15 30 45 60 75 90 

Leaf angle (degrees) 

Figure 5.10. Simulation 6: predicted maximum canopy Pn rate against leaf angles for full 
continuous (.), partial continuous (0) and intermittent (T) light regimes with different leaf 
angles. Values above each point indicate the LA! at which daily Pn rate was maximal. 
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5.3.7- Canopy radiation use efficiency 

The RUE at the optimum leaf angle was calculated across LA! indices for the three light 

regimes (Figure 5.11). In full light, RUE was 2.56 g CH20 Mr! PAR at the critical LA! 

4.6, whereas under partial continuous light RUE increased to 2.96 g CH20 Mrl PAR at the 

critical LA! 2.9. Under the intermittent regime, RUE declined to 1.9 g CH20 MJ-l PAR at 

the critical LA!. The RUE in full continuous light decreased slightly with increasing LA! 

values, whereas for both shaded regimes it declined more quickly after reaching the critical 

LA!. It is also important to note that the RUE for the partial continuous light regime was 

greater than the full continuous irradiance in the top parts of the canopy, but this response 

reversed after reaching LA!= 3.7. 
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Figure 5.11. Simulation 7: radiation use efficiency (RUE) against LA! for optimised 
canopy architectures under full continuous (.), partial continuous (0) and intermittent ('Y) 
light regimes. 
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5.4- Discussion 

5.4.1- Radiation interception by a canopy 

Light distribution within the canopy was similar for the three light regimes simulated, but 

the amount of radiation available at a given canopy layer (LA! level) differed systematically. 

Light penetration within the canopy for the intermittent regime showed two distinct 

responses (Figure 5.03a): (i) during the fully sun period, light penetration was similar to that 

produced by full continuous radiation regime and (ii) during the shade period, light 

penetration was negligible, corresponding to only 7% of the full continuous radiation. The 

mathematical model applied to calculate light distributions (Equation 2.2) produced an 

immediate switch from full sun to heavy shade condition. Therefore, the length of time in 

which the canopy was submitted to both full sun and heavy shade conditions was a critical 

point for simulations using the canopy Pn model. In addition, 95% of the available radiation 

was intercepted at LA! 3.6 regardless of the light regime and intensity (Figure 5.03b). This 

indicated that canopy architecture within this LA! range was critical to maximise light 

interception and quite independent of the amount of PPFD incident on the canopy. 

5.4.2- Total canopy respiration 

The opportunity to vary the maintenance respiration coefficient is an important tool in this 

canopy photosynthesis model, because values in the literature can change with air 

temperature, plant water status and crop weight (Penning de Vries, 1975). Figure 5.04b 

shows that when coefficient b increased, canopy Pn declined and the differences were 

particularly noted for the lower parts of the canopy (LA! > 3). As the light availability 

became limited at the lower part of the canopy, the proportional influence of maintenance 

respiration in relation to the canopy Pn rate increased. Conversely, at the top of the canopy, 

where light levels are higher, the importance of growth respiration (coefficient a) related to 

canopy Pn rate was greatest. Coefficient a is considered to vary with the type of plant tissue 

or type of new materials formed in plant growth (Thornley & Johnson, 2000). In the 

literature, there are a number of a and b coefficients cited for different plant species and 

temperature conditions (McCree, 1970; Penning de Vries, 1975, McCree & Silsbury, 1978; 
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Heichel et al. 1988; Hay & Walker, 1989) and for various leaf water potentials (Wilson et 

al., 1980). It is also necessary to state that this canopy Pn model did not include the rate of 

change of living material. If a rate of canopy material senescence was applied in this Pn 

model, as suggested by Thornley & Johnson (2000), a clearer optimum LA! point for the 

canopy Pn curves might be obtained even for simulations with the lowest b coefficient 

simulations. Therefore, the assumptions of these simulations are only fully valid during the 

vegetative stage, prior to the canopy reaching the optimum LA!. After this point, the death 

of plant parts commences and the rate of senescence needs to be included in any model. 

According to McCree (1970), air temperature has exponential effects on maintenance 

respiration rates in plants. There is evidence in the literature (Wong & Wilson, 1980; Ovalle 

& Avendano, 1988; Chen, 1989, Wilson, 1996) that air temperature changes only slightly in 

artificial and natural shade environments compared with full sun, but this can be affected by 

air movement under shade structures or wind conditions. Figure 4 showed the sensitivity of 

simulated canopy Pn rate to air temperature change. A change of only ±2 °C in air 

temperature from the ambient value of 15.5 °C caused an effect of up to ±30% on fmal 

canopy Pn rates at lower layers for both full and partial continuous light regimes. For the 

purpose of this theoretical analysis, air temperature was assumed to be equivalent between 

light regimes. 

5.4.3- Light regime effects 

In the current model, Pn increased rapidly at the top part of the canopy and passed through 

a maximum point defmed as the optimum LA!. Beyond this point, Pn decreased as light 

availability was reduced (figure 5.06) and respiration rates increased (Figures 5.04a and b). 

Having set the canopy architecture constant at 45°, light intensities and periodicity did not 

change the format of the Pn curve. However, the optimum LA! was obtained deeper within 

the canopy at higher incident light intensities. At 40 and 20% continuous radiation, the 

influence of total respiration did not allow the canopy to produce positive Pn rates at LA! > 

6.9 and 4.0, respectively. 
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The comparison between continuous and intermittent regimes at similar light intensity and 

equivalent leaf angles are also shown in Figure 5.06. The alternating light regime was less 

efficient than the partial continuous light treatment. These results are consistent with 

McCree & Loomis (1969) who found that the mean leaf Pn rate in alternating light was 

always within a few percent of the mean of the photosynthetic rates in a steady light 

condition. Differences in Pn rate between the two shaded treatments in this model were 

greater than those reported by McCree & Loomis (1969). The behaviour of the simulation 

under intermittent light regime, compared with the partial continuous, was associated with 

the occurrence of a great reduction in photosynthetic activity during the shade period 

combined with a limited increase during the sun period. Because Iz values were close to 0 

PPFD during shade period under the intermittent light, gross photosynthesis was 

dramatically reduced and the simulated canopy operated at a very low portion of the Pn 

response curve. On the other side, after leaving the shade period, fully illuminated leaves 

under the intermittent regime automatically switched to similar Pg rates as simulated for full 

continuous light regime. 

In nature, both the opening of stomata in light and their closure in the shade are not 

instantaneous. Therefore, the inertia of the stomata is an extra cause of plant growth 

inhibition or enhancement under an alternating light regime (Rabinowitch, 1956). The same 

author stated that photosynthesis production could be expected to be higher in alternating 

light compared with continuous illumination if the periods of shade and sun are very long or 

very short. This phenomena occurs because during the shade "rest period" leaves can 

recuperate from the injury or exhaustion that often follows a period of intense 

photosynthesis. With very short light periods, plants are more efficient under the 

intermittent light regime because this allows the dark catalytic reactions to run to 

completion, restoring the photosynthetic apparatus to its full efficiency at the beginning of 

each sun period (Rabinowitch, 1956). In the analyses performed in this chapter, a minimum 

of 30 (at lowest solar angle) and a maximum of 120 minutes (at greatest solar angle) were 

applied for both the sun and shade periods under the intermittent regime. Frequency of light 

fluctuations used in this analysis could be classified as intermediate compared with those 

reported by Rabinowitch (1956). It seems likely that, within this time under shade 

conditions, plants would operate in a more efficient part of the Pn curve than this simulation 
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predicts, because the biochemical photosynthetic apparatus would still have substrate to be 

synthetised (Peri, 2002). Therefore, predicted canopy Pn rates were likely to be 

underestimated in this model particularly for shade periods under the intermittent light 

regime. To correct this problem, a detailed study of Pg light curve responses during the 

induction period (innnediately post the shade period) and during the deactivation period 

(innnediately after commencing the shade period) would be necessary to be included in a 

comprehensive model. 

5.4.4- Canopy architecture effect 

The canopy architecture influenced the simulated Pn efficiency (Figures 5.07, 5.08 and 

5.09). In full continuous light, vertical leaf dispersal allowed light to penetrate deep within 

the canopy. As a result, simulated canopy Pn rate at high LAI values was higher for more 

vertical leaves compared with the horizontal dispersal. This response was associated with 

greatest radiation intercepted at the top of the canopy for flat leaves and low photosynthetic 

rates at the bottom portion of the canopy (Figure 5.07). In the full continuous light regime, 

the greatest photosynthetic rates were obtained at more inclined leaf dispersal (>60). This 

result is consistent with Duncan et al. (1967) who found that the more nearly horizontal 

leaves gave the highest Pn rate at low LAI values and that with a LAI > 3.5, the more 

vertical leaves were most effective. The implication is that plant communities in full light 

regimes try to distribute evenly the incoming radiation throughout canopy layers to 

maximise canopy Pn. By increasing leaf angle, particularly at the tops, plants in full light 

regime thereby maintain most of the leaves operating close to their photosynthetic 

saturation point. 

Net photosynthetic rates under the partial continuous radiation regime (Figure 5.08) were 

similar for leaf angles between 0 and 60°, but radiation was more efficiently used within the 

canopy profIle with leaf angle dispersal of 60°. The low available radiation under this regime 

meant that the canopy was more efficient by maintaining intermediate leaf dispersals and a 

balance of radiation interception between the top and bottom leaf layers. 
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For the alternating light regime, a similar response to the partial continuous treatment was 

observed (Figure 5.09), but with less variation between leaf angles. Differences in canopy 

Pn rates between leaf angle dispersals were also less under the intennittent light regimes 

because of the low photosynthetic rate produced during the shade periods. Similarly, there 

were no substantial differences on canopy Pn rates for leaf angles between 0 and 60° under 

the alternating light regime. 

5.4.5- Optimum canopy architecture 

Results for optimisation of plant architecture (Figure 5.10) suggest that the advantage of a 

more vertical leaf angle is greater under high PPFD conditions than in shaded regimes, 

because the lower canopy layers are still able to operate at a lower portion of the Pn curve. 

Conversely, intermediate leaf angle dispersal would be photosynthetyically efficient at low 

light levels, but this would be strongly limited by a critical LA! in which leaves could still 

achieve positive Pn rates. Although solar tracking by leaves has been reported for some 

plants, such as lucerne (Heichel et ai., 1988; Moran et ai., 1989), it follows that random 

intermediate leaf dispersal is the optimum strategy for plants submitted to an intermittent 

light regime. In practice, the canopy Pn under the alternating light regime might be 

enhanced if a longer period of illumination had been simulated, particularly at greater sun 

angle elevations. Then, canopy Pn responses would approximate the full continuous light 

conditions and more vertical leaf angles are likely to be the most efficient canopy 

architecture. 

The regimes simulated in this chapter showed that continuous shading produced greater Pn 

rates than the intennittent regime for all leaf angle dispersals, although photosynthetic 

values under the alternating regime were likely to have been underestimated. At the 

optimum canopy architecture (60° leaf angle dispersal) this model produced maximum daily 

canopy Pn rates 38% lower under the intennittent than under the partial continuous regime. 

In the real situation, it is possible that adaptation by the plant may make the canopy Pn 

under the alternating regime approach the rate of the partial continuous treatment. 

However, the simulations indicate the existence of a potential source of inefficiency within 

the intermittent light regime. This response confirms the Rabinowitch (1956) hypothesis 
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that plant at intermediate light frequency under the fluctuating light regime can approach 

but not exceed the rate under the continuous light regime. However, it partially agrees with 

McCree & Loomis (1969) conclusions that it is valid to compute photosynthesis from leaf 

photosynthetic rates determined under steady-state light conditions for the various 

fluctuating light regimes found in the literature. 

The greater RUE in the full continuous light regime compared with the shaded continuous 

regime (Figure 5.11) resulted from the higher photosynthetic rates achieved per unit of light 

intercepted, particularly at middle and low canopy parts in full sun conditions compared 

with the partial continuous light regime. In the top layers of the canopy for the full light 

regime, the RUE was lower than in the partial continuous radiation because leaves were 

operating above the saturation level, whereas the 50% transmissivity treatment was 

operating just about Pmax conditions. So, there was an inefficient conversion of light 

energy into carbon at the top parts of the canopy in full sunlight, although leaves were 

maintained at 75° angle. However, this response changed at LA! > 3.7, when lower canopy 

parts in the full continuous light regime were able to intercept sufficient radiation to 

maintain positive photosynthetic rates whereas under partial continuous regime the 

photosynthetic efficiency declined dramatically. Another important observation was that the 

greatest RUE in the full sunlight conditions was obtained at a LA! of 2.4, whereas the 

critical LA! was 3.6. In other words, the maximum conversion of light to carbon did not 

occur at the same canopy LA! as the optimum level for net photosynthesis. This results 

support conclusions of several authors (Duncan et al., 1967; Loomis & Williams, 1969 and 

Loomis et al., 1971) that there can be a photosynthetic inefficiency in significant parts of the 

canopy, whenever top leaves operate above light saturation conditions, whereas 

intennediate and lower leaves still perform at efficient parts of the Pn light curve. 

Simulations of RUE under the intermittent regime was consistently lower than the other two 

continuous radiation treatments at all canopy levels (Figure 5.11) and this did not agree 

with actual data in experiments 1 and 2. Since daily PPFD interception was similar between 

the two shaded regimes at all LA! values, this response resulted from the reduced canopy 

Pn rates simulated under the intermittent light regime. The magnitude of the RUE varied in 
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this theoretical analysis, but the direction of RUE against canopy LA! was the same for both 

shaded treatments. 

5.5- Conclusions 

The theoretical results produced in this chapter suggested that: 

1. Total light intensity was the mam factor that affected canopy net photosynthesis, 

regardless of the periodicity of light regimes. 

2. In full sunlight conditions, a random leaf angle of 75° was optimal to maxllnise canopy 

net photosynthesis. 

3. Under partial continuous and intermittent light regimes, a random leaf angle of 45-60° 

was optimal to maximise canopy net photosynthesis. 

4. (iv) The automatic switch from heavy shade to full light under the intermittent regime 

using this canopy model probably increased the cost of ftxing carbon particularly during 

the shade periods and underestimated [mal daily net photosynthesis rates. 

A theoretical framework for testing canopy Pn will be developed in the next chapter for the 

three light regimes. Then, the theoretical conclusions produced in this analysis will be 

validated with data collected from the lucerne fteld experiment reported in Chapter 3. 
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CHAPTER 6 

Validating the canopy net photosynthesis model under different 

light regimes 

6.1- Introduction 

The canopy Pn model presented in Chapter 5 was based on mathematical relationships that 

have previously been developed and validated for crops under natural skylight conditions 

(de Wit et ai., 1970; Marshall & Biscoe, 1981; Weir et ai., 1984; Thornley & Johnson, 

2000). Both partial continuous and alternating light regimes, caused by fluctuations in daily 

overcast conditions, may have been simulated during validation periods, but they were not 

the focus of these studies. 

It has not been reported whether the mathematical relationships were valid under 

alternating light regimes, such as those described in Chapter 5. The theoretical analysis 

suggested that daily canopy net photosynthesis decreased at a slower rate than the level of 

PPFD available and as a consequence predictions based on full sunlight were expected to 

underestimate crop growth rates under both the shaded regimes, through less so for the 

alternating light regime. Therefore, the aim of this chapter is (i) to test the theoretical 

assumptions made in Chapter 5 for these light regimes and (ii) verify the accuracy of the 

proposed canopy Pn model to predict field production under the three light regimes. 

Further discussion follows about adapting mathematical relationships applied in this 

canopy Pn model for shaded conditions. The partial continuous and intermittent regimes 

simulated in this chapter were produced in the field using plastic shade cloth and wooden 

slat structures, respectively, as described in Chapter 3. Input and validation data for these 

analyses were obtained from a lucerne crop grown in the field in Canterbury during two 

consecutive summer rotations under irrigated and non-irrigated conditions. 
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6.2- Materials and methods 

6.2.1- Field experiment description 

Canopy Pn rates for a 4 year old lucerne crop were simulated daily for two consecutive 

summer rotations (January and February 1999). Measured data for comparisons were 

obtained from an experiment with irrigation (full or none) as the main plots and light 

regimes as subplots with three replicates. The light regimes imposed on December 12th 

1998 were: (i) full continuous (natural sky light), (ii) partial continuous (under black plastic 

shade cloth) and (iii) intermittent (under wooden slats). The shade cloth treatment allowed 

a mean daily transmissivity of 40% (in PPFD units) compared with the full sunlight regime 

in both rotations, whereas the slatted treatment allowed 46% transmissivity. Details of the 

pattern of these light regimes were previously discussed in Chapter 3. Shade structures 

were removed immediately prior to grazing and irrigation at the end of each rotation. For 

the first period of validation (between 23 December 1998 and 13 January 1999), the actual 

mean soil moisture deficit (SMD) to a maximum extraction depth of 2250 mm was 297 

mm (standard deviation ± 20.7) in non-irrigated and 120 mm (standard deviation ± 21.5) in 

irrigated treatment. In the following rotation (between 20 January 16 February 1999), the 

mean SMD reached 332 mm (standard deviation ± 12.8) in non-irrigated and 102 mm 

(standard deviation ± 22.9) in irrigated plots. Methods for calculating SMD during the 

expedment period were presented in Section 3.2.3.2. Plant water content (PLWC) was 

estimated from the difference between fresh and dry weight material for all samples 

collected in the first and second summer rotations. Additional details about the experiment 

site, lucerne establishment and statistical analysis procedures were previously reported in 

Chapter 3. 

6.2.2- Plant measurements 

Lucerne DM samples and GAl were collected at seven day intervals, usmg methods 

described in Sections 3.2.5.1 and 3.2.5.2. To facilitate comparisons between predicted and 

actual values, DM yields were converted to a total carbohydrate (CHO) base. The 

assumption was that CHO was approximately the result of the subtraction between total 
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DM and nitrogen plus minerals (P, Ca, Mg and K) content. Lucerne DM samples were 

harvested at bud stage in the end of the second summer rotation (16 February 1999). From 

the main sample, sub-samples were obtained for leaves and stems. Total nitrogen and 

mineral analyses were performed individually for leaves and stems in two replicates for all 

treatments. Therefore, a relationship was plotted between lucerne GAl and mean weighted 

shoot CRO production for each treatment. 

Canopy architecture was assessed by the extinction coefficient (K) calculated from Beer's 

law (Equation 2.2, Section 5.2.1). To do this a linear regression between Ln (1/10) and GAl 

was plotted for each treatment during the experimental rotations and the slope of this line 

was K. Light penetration (1/10) and GAl were obtained from canopy analyser (LAI 2000, 

LI-COR Inc., Nebraska) measurements in diffuse light conditions. Radiation interception 

(%) in diffuse light conditions was calculated by subtracting 100 from the radiation 

penetration value (%). Measurements using the canopy analyser were performed weekly at 

ground level. The final GAl and light penetration values resulted from the integration of 5 

different zenith angles readings (7, 23, 38, 53 and 68°) measured by the canopy analyser. 

In addition, a stratified analysis of GAl and mean canopy angle (MCA) was performed at 

O.1m canopy height intervals immediately before the final harvest (11 th February, 1999) for 

all treatments, using the canopy analyser. The GAl increment resulted from the subtraction 

of two consecutive strata readings within the canopy profile. MCA was measured 

individually at 0.1 m canopy height and represented the mean inclination fot foliage located 

above the sensor. MCA resulted from the integration of 5 different zenith angles. When 

MCA approaches 0, then foliage has a predominant horizontal dispersal, whereas high 

MCA values means foliage has a vertical dispersal. The mean plant heights in irrigated 

plots at this stage were 48, 43 and 44 cm in open, shade cloth and slats regimes, 

respectively. In non-irrigated, plant heights were 36, 38 and 42 cm, respectively (Section 

3.3.2.4). Statistical analysis for plant height in all treatments was reported in Section 3.2.6. 

6.2.2.1- Statistical analysis for plant growth 

From the relationship of GAl against total shoot CRO, a fitted equation for each treatment 

was estimated with correspondent R2 values. Statistical analysis was performed for the 
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parameters obtained from the fitted equation, USlOg a split-plot analysis of variance 

(ANOV A) with three replicates. Canopy water status (irrigated and non-irrigated) was set 

as the main plots and light regimes (open, shade cloth and wooden slats) were the sub­

plots. Means were separated using the least significant difference at 5 % level (LSD 5%). 

Statistical analysis for canopy architecture was based in the estimated extinction coefficient 

and MCA values obtained weekly with the canopy analyser. From the slope of the fitted 

regression line Ln (Illo) against GAl, the K estimated value was obtained for each 

treatment during the whole experiment period. The ANOV A was performed for K values, 

using a split plot design with three replicates. From the relationship between canopy 

radiation interception and GAl, an equation was fitted. Then, the critical GAl was 

estimated at 95% radiation interception based on the fitted equation for each treatment and 

a statistical analysis was performed, using a split plot design with three replicates. The 

same statistical analysis was also performed for MCA in both rotations. The main plots and 

sub plots for these analyses were set as previously described in this chapter. 

Results for the canopy-stratified analysis (GAl increment and MCA) were analysed using a 

split-split-plot ANOVA with three replicates. The main plots and sub plots were set as 

previously described in this chapter. The sub-sub plots were set as canopy layer 

(measurements at 0.10 m intervals from 0 to 0.50 m canopy height). To facilitate the 

statistical analysis, using balanced treatments, GAl increment missing values, for plants 

shorter than 0.50 m, were set at a minimum value of 0.01. This situation occurred 

particularly for non-irrigated and shaded treatments. For MCA stratified analysis, statistical 

analysis was performed from 0 to OAO m canopy height as MCA measurements lose 

precision when associated with low GAl (LAI 2000 Manual, LI-COR Inc., Nebraska). 

Means were separated using the least significant difference at 5% level (LSD 5%). 

6.2.3- Environmental measurements 

Quantum sensors were set above the canopy to measure PPFD (Ilmol photons m-2 
S-I) in 

full sunlight, under the shade cloth and under the wooden slats. All quantum sensors were 

set in replicate 2 and maintained 0.10 m above the canopy and 0.20 m below the artificial 
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shade materials, using a moveable aluminium bar connected to the shade structures. 

Sensors were lifted weekly as the canopy height increased. Details about the sensors were 

described in Section 3.2.3.1. To nm the canopy Pn model, PPFD data was converted to 

PAR units (1 W m-2 = 4.61 Ilmol photons m-2 
S-I) as described in Chapter 3. Ambient 

temperature in full sunlight was assessed from the Broadfields Meteorological Station 

(New Zealand Institute for Crop & Food Research Ltd., Lincoln). Figure 6.01 shows the 

actual PAR measured under the three light regimes and the ambient temperature in full 

sunlight during the validation periods. 

In addition, temperature sensors were set immediately above the canopy in both water 

status treatments and under the three light regimes in replicate 3. Sensors were maintained 

0.10 m above the canopy and 0.20 m below the artificial shade materials and they were 

raised as the canopy height increased. Temperature sensors were installed inside an 

aluminium shelter (0.10m diameter) covered externally with white plastic paint and 

internally with black paint. The aim was to isolate the sensors from direct radiation effects 

and measure the airflow temperature in all treatments at the canopy height. Other details 

about the sensors were described in Section 3.2.3.2. 
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6.2.4- Physiological measurements 

6.2.4.1- Gross photosynthesis rate 

Parameters involved in the gross photosynthesis rate (Pg) sub-model (Equation 2.3, Section 

5.2.2) were obtained from net photosynthetic light response curves measured in the field at 

0, 100250, 500, 750, 1000 and 2000 flmol photons m-2 
S-I using the infra-red gas analyser 

(LI-6400, LI-COR Inc., Nebraska). Air temperature in the equipment's chamber was 

blocked at 21 ° C and CO2 concentration was set at 400 ppm. Pn rates were measured on the 

youngest fully expanded leaves at the top of the canopy. Samples were only collected in 

clear skylight conditions between 11.00 AM and 2.00 PM local time. Under the wooden 

slats regime, Pn rates were measured during the sunny period. For these validations, the 

negative Pn rate measured at zero PPFD was assumed to be equal to the leaf dark 

respiration rate. This value was then added to the Pn rates measured at PPFD >0 flmol 

photons m-2 
S-I to obtain an approximation of the Pg light curve. A non-rectangular 

hyperbola was fitted to the Pg light curves in each replicate to estimate the parameters a 

(photosynthetic efficiency) and e (curvature of the curve). The maximum photosynthesis 

rate of the youngest fully expanded leaf (PmO) was obtained from the light curves at 2000 

flmols photons m-2 
S-I in each treatment. PmD values were used in Equations 2.4 and 2.5 

(Section 5.2.2) and corrected for the amount of light penetration (Iz/Io) and the mean 

PLWC in each treatment to estimate the final maximum leaf photosynthesis (Pm). In this 

chapter, Pn rates in /lmol CO2 m-2 
S-I were converted to mg CO2 m-2 

S-I by multiplying by 

0.044 because of the canopy Pn model specification. Other details for the Pg parameters 

and coefficients were previously described in Sections 2.1.5.2 and 5.2.2. 

6.2.4.2- Total respiration rate 

Coefficients for total respiration (Equation 2.8, Section 5.2.3) were not measured in this 

experiment. The a and b coefficients used to run the canopy Pn model were obtained from 

the literature. A growth respiration coefficient (a coefficient) of 0.34 was used as reported 

for cereals (Weir et ai., 1984) which is also within the range cited for lucerne (Shone & 

Gale, 1983 and Heichel et ai., 1988) under non-stressed conditions. For full sunlight and 
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irrigated conditions, coefficient b was set at 0.03 d- I as reported for lucerne by Shone & 

Gale (1983). In this analysis, the assumption was that the maintenance coefficient reduced 

with increased water stress conditions (Penning de Vries, 1975; Wilson et ai., 1980). 

Therefore, the canopy CRO production was predicted for three different maintenance 

respiration coefficients obtained from the literature to choose a suitable value for the non­

irrigated plots. 

Crop dry weight (W) used to estimate the total canopy respiration rate (Rt) was obtained 

from the relationship between GAl and shoot crop dry matter in each treatment (Table 

6.01). A mean value of W for every 0.1 GAl unit was calculated for all treatments in both 

rotations and then converted to CO2 equivalents by multiplying DM yield by 1.43 (McCree, 

1974). W was applied in Equation 2.8 to calculate maintenance respiration and it resulted 

from the mean value of the three replicates for each treatment and collected at final harvest. 

Likewise, maximum and minimum daily ambient temperatures (Tmax and Tmin) were 

applied to Equation 2.8 to calculate maintenance respiration. The values were obtained 

from the Broadfields Station. Daily values for Tmax, Tmin and PAR (Figure 6.01) were 

used as input data during the rotation period to estimate Rt. Ambient temperatures for the 

simulations were assumed to be equivalent for all light regimes. 

Table 6.01- Lucerne crop weight (W) used to simulate total respiration rate (Rt) under 
the three light regimes and different water status in rotation I (Rot. I , from 23 December 
1998 to 13 January 1999) and rotation 2 (Rot. 2, from 20 January to 16 February 1999). 
Values are averages of 3 replicates for final harvest. 

Treatments Crop weight (W) 
mg CO2 eq.per 0.1 GAI* 

Rotation I Rotation 2 
Irrigated: 

Open 7700 7500 
Shade cloth 7700 7200 

Wooden slats 7400 7000 
Non-irrigated: 

Open 7400 7600 
Shade cloth 7300 7400 

Wooden slats 7400 7000 

F probability (0. 68'S P 'SO.87**) (0. 35'S P 'SO. 25) 
*Dry weight (W) was expressed in CO2 equivalents (eq.) by mUltiplying DM yield by 1.43. 
**F probability tests resulted tium ANOV A for main effects (water status and light regimes) are shown in 
parenthesis. 
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6.2.4.3- Net photosynthesis rate 

Instant canopy net photosynthesis was simulated as the difference between Pg and Rt for 

0.1 unit of GAl intervals. The instant Pn rates were calculated at 5 minute intervals, 

summed, converted to daily canopy Pn production in g CO2 m-2 d- 1 and then values were 

expressed as accumulative Pn production over the GAl range. To facilitate comparisons 

with field measurements, accumulated Pn production was converted to a CHO base by 

mUltiplying by 0.65 (Hay & Walker, 1989). 

6.2.4.4- Statistical analysis for physiological responses 

From the measured leaf photosynthetic curves, a fitted equation was estimated based on a 

non-rectangular hyperbola (Equation 2.3, Section 5.2.2) for each treatment with 

correspondent R2 values. Statistical analysis was performed for the parameters obtained 

from the fitted Pg equation (8, a and Pm), using a split-plot analysis of variance (ANOVA) 

with three replicates. Canopy water status (irrigated and non-irrigated) were set as the main 

plots and light regimes (full sunlight, shade cloth and slats) were the sub-plots. In addition, 

an ANOVA was performed for mean PLWC (Section 6.2.1) measured during the rotation 

periods. Means were separated using the least signifIcant di±lerence (LSD) at 0,=0.05. 

6.2.5- Simulations procedures 

The simulation procedures for a complete lucerne rotation were performed as follows: The 

starting GAl point was 0.3 as observed for field measurements. The daily canopy Pn 

production (CHO base) was assessed for a GAl value of 0.3 in the simulation for day 1 

after regrowth. The total CHO production predicted on day I was then converted into new 

GAl, using the relationship shown in Section 6.3.1. Then, the canopy Pn production in day 

2 was predicted for the newly estimated GAl. The subsequent canopy Pn in days I and 2 

were summed and the expansion in GAl was used to predict CHO production for day 3. 

Total CHO production in day 3 was assessed, summed to the production in days 1 and 2 

and again converted into a new GAl. These procedures continued iteratively on a daily 

basis for the duration of the rotation period. 
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Partitioning of CHO to roots was assumed to start at GAI= 1 or about 7 days after regrowth, 

as reported by Pearce et al, (1969) for lucerne. The rate of CHO partitioning to roots during 

the vegetative stage for summer in this chapter was calculated according to the pattern 

described by Khaiti & Lemaire (1992) for full sun plants. Because of the lack of data for 

lucerne under shaded, the same rate of partitioning was applied for all light regimes. That 

is, it was assumed that 19% of the total daily CHO produced was translocated below 

ground in the summer regardless of light regimes and water availability. Details of 

simulation procedures were the same as described previously until the canopy GAI=1. 

Above this, daily canopy Pn productions were reduced by 19% before CHO production was 

accumulated for the next GAl estimation. The following simulations of daily canopy Pn 

production were performed (Table 6.02): 

Simulation 1: Daily variation from simulated canopy Pn (accumulative CHO production) 

and GAl growth for irrigated lucerne in full sunlight, under shade cloth and wooden slats in 

the first summer rotation (from 23 December 1998 to 13 January 1999). GAl growth was 

estimated according to the relationship described in Section 6.2.2. 

Simulation 2: Accumulated predicted daily canopy Pn (CHO production) for lucerne in 

full sunlight regime and under non-irrigated conditions during two consecutive summer 

rotations (from 23 December 1998 to 13 January 1999 and from 20 January to 16 February 

1999), using three different maintenance respiration coefficients (b coefficient): 0.030, 

0.025 and 0.020 d- I
. 

Simulation 3: Accumulated predicted daily canopy Pn (CHO production) for lucerne in a 

full sunlight regime under irrigated conditions during two consecutive summer rotations 

(from 23 December 1998 to 13 January 1999 and from 20 January to 16 February 1999). 

Parameters and coefficients used for canopy Pn simulations were described in Section 

6.2.4. 

Simulation 4: Accumulated predicted daily canopy Pn (CHO production) for lucerne 

grown in full sunlight regime and under non-irrigated conditions during two consecutive 

summer rotations (from 23 December 1998 to 13 January 1999 and from 20 January to 16 

February 1999). Parameters and coefficients used for canopy Pn simulations were 

described in Section 6.2.4. 



191 

Simulation 5: Accumulated predicted canopy Pn (CHO production) for lucerne grown 

under cloth regime and in irrigated conditions during two consecutive summer rotations 

(from 23 December 1998 to 13 January 1999 and from 20 January to 16 February 1999). 

Parameters and coefficients used for canopy Pn simulations were described in Section 

6.2.4. 

Simulation 6: Accumulated predicted canopy Pn (CHO production) cloth regime and in 

non-irrigated conditions during two consecutive summer rotations (from 23 December 

1998 to 13 January 1999 and from 20 January to 16 February 1999). Parameters and 

coefficients used for canopy Pn simulations were described in Section 6.2.4. 

Simulation 7: Accumulated predicted canopy Pn (CHO production) under slats regime and 

in irrigated conditions during two consecutive summer rotations (from 23 December 1998 

to 13 January 1999 and from 20 January to 16 February \999). Parameters and coefficients 

used for canopy Pn simulations were described in Section 6.2.4. 

Simulation 8: Accumulated predicted canopy Pn (CHO production) under slats regime and 

in non-irrigated conditions during two consecutive summer rotations (from 23 December 

1998 to 13 January 1999 and from 20 January to 16 February 1999). Parameters and 

coefficients used for canopy Pn simulations were described in Section 6.2.4. 

Simulation 9: Temperature sensitivity analysis (2 and 3 °c mean air temperature decrease) 

for accumulated predicted canopy Pn (accumulative CHO production) under cloth regime 

in irrigated and non-irrigated conditions during two consecutive summer rotations (from 23 

December 1998 to 13 January 1999 and from 20 January to 16 February 1999). Parameters 

and coefficients used for canopy Pn simulations were described in Section 6.2.4. 

Simulation 10: Temperature sensitivity analysis (2 and 3 DC mean air temperature 

decrease) for accumulated predicted canopy Pn (accumulative CHO production) under slats 

regime in irrigated and non-irrigated conditions during two consecutive summer rotations 

(from 23 December 1998 to 13 January 1999 and from 20 January to 16 February 1999). 

Parameters and coefficients used for canopy Pn simulations were described in Section 

6.2.4. 



Table 6.02- Summary of the simulations performed to predict lucerne canopy net photosynthesis (Pn) for the FSC experiment during 
Rotations 1 (23 December 1998-13 January 1999) and 2 (20 January to 16 February 1999) in Canterbury, New Zealand. 

Simulation Light regime Water status Rotation Respiration coefficient Canopy Pn GAl 

Irrigated Non- 2 a b (dai') 

irrigated 

Full sunlight ~ ~ 0.34 0.03 daily daily 

2 Full sunlight ~ ~ ~ 0.34 0.02-0.03 Sensitivity analysis for b 

3 Full sunlight ~ ~ ~ 0.34 0.03 cumulative cumulative 

4 Full sunlight ~ ~ ~ 0.34 0.02 cumulative cumulative 

5 Shade cloth ~ ~ ~ 0.34 0.03 cumulative cumulative 

6 Shade cloth ~ ~ ~ 0.34 0.02 cumulative cumulative 

7 Slats ~ ~ ~ 0.34 0.03 cumulative cumulative 

8 Slats ~ ~ ~ 0.34 0.02 cumulative cumulative 

9 Shade cloth ~ ~ ~ ~ 0.34 0.02-0.03 Temp. sensitivity analysis 

10 Slats ~ ~ ~ ~ 0.34 0.02-0.03 Temp. sensitivity analysis 

\0 
N 
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6.2.5.1- Statistical analysis for validations 

The accuracy of each of the predictions was tested using the root mean square deviation 

(RMSD) as suggested by Wallach & Goffinet (1989), according to the following equation: 

RMSD= \ redicted - observed 2 

no. of observations 
Equation 6.1 

Where observed was the DM yield measured in the field (CHO base) and predicted was the 

canopy Pn production (CHO base) simulated by the model described in Section 5.2. 
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6.3- Results 

6.3.1- Plant measurements 

6.3.1.1- GAl versus Carbohydrate yield 

The mean lucerne nutritive value (N and minerals) did not show great differences amongst 

treatments in the final summer harvest (Appendices 5 and 6). In full sunlight regime, N was 

3.2% (± 0.06 standard deviation) and 3.4% ± 0.07 in irrigated and non-irrigated plots, 

respectively. These values slightly increased to 3.6% (± 0.02) and 3.5% (± 0.06) under the 

shade cloth regime in irrigated and non-irrigated plots, respectively. Likewise, under the 

slatted regime lucerne N reached 3.6% regardless of the water status treatments (± 0.05 

standard deviation in irrigated plots and ± 0.01 under non-irrigated conditions). Lucerne 

shoot minerals content followed the same pattern as for N. The consequence was that 

estimated lucerne shoot carbohydrate content (lOO%DM - % total nitrogen - %minerals) 

was similar amongst light regimes and plant water status treatments in summer with a 

mean value of 91 %. 

DM yields observed in the field were converted to a CRO units based on the results shown 

in Appendices 5 and 6. Figure 6.02 shows that the relationship between GAl and total 

shoot CRO yield was estimated by a fitted equation with 3 parameters (Y = Yo +a X b
). The 

ANOV A showed no significant difference for both equation coefficients a (P>0.24 for light 

regimes and water status treatments) and b (0.21 :s P :s 0.36) in full sunlight, under shade 

cloth and under slats regimes either in irrigated or non-irrigated conditions. Therefore, a 

single curve was fitted for all data and a single equation was used in these simulations to 

describe GAl growth against CRO production. 
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Figure 6.02. Lucerne green area index (GAl) against total shoot carbohydrates for full 
sunlight ce), shade cloth (0) and wooden slats (T) regimes. Data for irrigated and non­
irrigated plots were combined between December 1998 and June 1999 in Canterbury. 

6.3.1.2- Canopy architecture: 

Canopy architecture was similar amongst treatments during the two summer rotations with 

a mean canopy angle of 47° ± 2.5 (standard error) in rotation 1 (0.68 :::; P :::; 0.86) and 43° ± 

1.1 in rotation 2 (0.12 :::; P :::; 0.19). The estimated K value for the whole experiment period, 

calculated from the slope of the linear regression in Figure 6.03(1, confirmed that canopy 

architecture was equivalent for all treatments (0.16 :::; P :::; 0.73). The mean K was 0.82 ± 

0.013 (standard error) for the full sunlight, shade cloth and wooden slats regimes, 

regardless of water status treatment. This indicated that radiation penetration within the 

canopy was equivalent for the three light regimes and the two water status conditions 

during the experiment period (Figure 6.03b). Additionally, it was observed that 95% of the 

radiation was intercepted at a mean GAl= 3.6 ± 0.04 (critical GAl) for all treatments (0.64 

:::; P :::; 0.82) and this value was similar to that estimated in the theoretical simulations 

performed in Chapter 5 (Section 5.3.1). 



196 

0 

a 

-1 

Mean K= 0_82 

-2 

'0 

~ -3 
c 

....J 

-4 

-5 

• 
-6 

0 2 3 4 5 6 7 8 

120 

t b 

100 -_ .. • /,.r-= 
~ 80 
c 
0 

li 
OJ 

60 IT ~ 
OJ 
C 
1: 
OJ 40 

:.:J 

20 

0 

0 2 3 4 5 6 7 8 

GAl 

Figure 6.03. Natural log (Ln) of radiation penetration (a) and light interception within the 
canopy (b) against green area index (GAl) for irrigated and non-irrigated lucerne in full 
sunlight (e), under shade cloth (0) and wooden slats (T) during the experiment period in 
Canterbury. Mean K value is the average slope of the linear regressions in Figure 6.03a. 

The stratified analyses using the canopy analyser (Figure 6.04) showed differences in leaf 

angle for canopy layers (P<O.OOl), but there was no difference for water status condition 

(P=0.97) and light regimes (P=0.83). Likewise, significant difference was found for the 

interactions (OA2 :s P :s 0.86). Lucerne leaves were more vertical in the top OAO m of 

canopy height (54°) than the layers measured below that value (SEM= 1.6, LSD at 5%= 

4.5). Mean MCA at 0.30 m height was 47°, whereas at 0.20 m, it was 43° and at 0.10 m 

height was 45°. It is important to state that MCA, measured by the canopy analyser, gave a 
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mean canopy angle for the total amount of foliage available above a particular canopy 

height, but not just for the 0.10 m interval between canopy layers. Therefore, the results 

indicated that MCA decreased consistently for the foliage below 0.30 m height compared 

with the top layer (0.40 m height) because leaf inclination became more horizontal for 

layers close to the ground. However, there was no difference for layers below 0.30 m 

height, indicating that lucerne foliage angle became nearly constant for middle and bottom 

canopy layers. 

The weighted average of canopy angle (corresponding to the GAl) was 47, 44 and 46° in 

full sunlight, under shade cloth and slats, respectively, in irrigated plots. In non-irrigated 

conditions, the weighted average was 45, 46 and 47°in full sunlight, under shade cloth and 

slats, respectively. Overall, for the simulations proposed in this Chapter, a constant mean 

canopy angle of 45° for all treatments was assumed. 

The stratified analysis (Figure 6.04) also showed significant effects of GAl increment for 

the triple interaction water*light*height (P<0.05). In the full sunlight regime and under 

irrigated conditions, GAl increment within the canopy profile was greater between 0.20 

and 0.30 m height (SEM= 0.18, LSD 5%= 0.52) compared with the other layers. Under the 

shade cloth and slatted regimes, GAl increment was more evenly distributed within the 

canopy profile than for the full light regime and the greatest increment in foliage area 

occurred between 0.10 and 0.30 m height from the top of the canopy. In contrast, under 

non-irrigated conditions, GAl increment was greatest between 0.10 and 0.20 m height for 

the full light regime, whereas under both shaded regimes foliage area index was evenly 

distributed between 0.10 and 0040 m height. For all light regimes under irrigated 

conditions, there was a significant difference (SEM= 0.18, LSD 5%= 0.52) in GAl 

increment between top and mid canopy layers. However, under non-irrigated conditions, 

the difference in GAl between top and mid part of the canopy was not evident for the shade 

cloth and slats regimes. 
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Figure 6.04. Green area index (GAl) increments and mean canopy angle (MCA) at 0.10 m 
height intervals from the ground to top of the canopy for the three light regimes under 
irrigated (abc) and non-irrigated (def) conditions in Canterbury. Standard error of means 
(SEM) of the interaction water*light*plant height for GAl increment was 0.18 and for 
MCA was 1.6. 
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6.3.2- Photosynthetic curves 

Statistical analysis of the parameters (Tables 6.03 and 6.04), obtained from the fitted non­

rectangular equation (Figure 6.05), showed greater effects of water status treatments than 

for light regimes. There was a difference in a for water status treatments in Rotation 1 

(P<0.006) and Rotation 2 (P< 0.008), but not for light regimes (P>0.62). The mean 

photosynthetic efficiency in irrigated treatment was 0.017 mg CO2 r I, whereas in non­

irrigated conditions a decreased to 0.015 mg CO2 rl (SEM= 0.0001, LSD 5%= 0.0006). 

For Pmo values, there was no significant difference among water (P> 0.39) and light regime 

(P= 0.25) treatments in the first summer rotation. However, differences occurred in Pmo for 

light regimes (P< 0.004) in the second summer rotation. The full sunlight regime produced 

the greatest Pmo in the second summer rotation (1.78 mg CO2 m-2 
S-I in irrigated and 1.70 

in non-irrigated plots). The Pmo values in full light were similar to those measured under 

the shade cloth regime (SEM= 0.013, LSD 5%= 0.043), but they both were greater than 

Pmo observed under the slatted regime (1.65 mg CO2 m-2 
S-I in irrigated and non-irrigated 

plots). In addition, there were no verified significant effects of water status (P= 0.87) and 

light regimes (P> OAO) for 8 values in both lucerne rotations. 
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Table 6.03- Mean gross photosynthesis parameters estimated from measured light 
curves (a, e and Pmo) and plant water content (PL WC) of lucerne grown in three light 
environments for the first summer rotation (from 23 December 1998 to 13 January 
1999). Values of a, e, Pmo and PLWC are averages of 3 replicates. Standard errors of 
means for PLWC and standard errors for Pmo, a and e are shown in parenthesis. 
Values of PLWC are averages of the rotation and standard deviations are shown in 
parenthesis. 

Treatments PLWC 
% 

Irrigated: (0.005) 
Open 0.87 

Shade cloth 0.86 
Wooden slats 0.86 
Non-irrigated: 

Open 0.83 
Shade cloth 0.82 

Wooden slats 0.83 

(0.00032) 
0.0171 
0.0170 
0.0170 

0.0154 
0.0152 
0.0152 

e 
dimensionless 

(0.005) 
0.71 
0.73 
0.71 

0.69 
0.74 
0.72 

* To convert mg CO2 m-2 
S-I to 1111101 CO2 m-2 

S-I, it is necessary to divide by 0.044 

PmO * 
mg CO2 m-2 S-I 

(0.012) 
1.50 
1.46 
1.42 

1.47 
1.42 
1.44 

Table 6.04- Mean gross photosynthesis parameters estimated from measured light 
curves (a, e and PmO) and plant water content (PLWC) of lucerne grown in three light 
environments for the second summer rotation (from 20 January to 16 February 1999). 
Values of a, e, Pmo and PLWC are averages of 3 replicates. Standard errors of means 
for PLWC, a and Pmo are shown in parenthesis. Standard error for e is shown in 
parenthesis. Values of PLWC are averages of the rotation and standard deviations are 
shown in parenthesis. 

Treatments PLWC 
% 

Irrigated: (0.006) 
Open 0.85 

Shade cloth 0.85 
Wooden slats 0.84 
Non-irrigated: 

Open 0.78 
Shade cloth 0.78 

Wooden slats 0.79 

a 
mg C02 T 1 

(0.00012) 
0.0169 
0.0166 
0.0168 

0.0152 
0.0149 
0.0147 

e 
dimensionless 

(0.011 ) 
0.72 
0.71 
0.73 

0.72 

0.72 
0.71 

* To convert 111g CO2 111-2 s-J to Ilmol CO2 m-2 
S-I, it is necessary to divide by 0.044 

6.3.3- Simulation I: daily variation in canopy photosyntheis 

PmO * 
CO -2-1 mg 2 m s 
(0.038) 

1.78 
1.76 
1.65 

1.70 
1.67 
1.65 
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Daily net photosynthetic production (expressed in carbohydrates) changed with light and 

temperature regimes. Figure 6.06 shows the daily variation of canopy Pn in the three light 

regimes during the first summer rotation. The simulated canopy Pn production in full 

sunlight (Figure 6.06a) ranged from about 2 g CRO nf2 d- I on an overcast day (7 MJ d- I 



202 

PAR) and high mean air temperature condition (22°C) on day 16 to nearly 20 g m-2 d- I on 

the best environment condition observed in the field (16 MJ d- 1 PAR and 15°C on day 18)_ 

Canopy GAl growth resulted from the accumulative predicted daily Pn production and was 

calculated according to the Equation from Figure 6.02. There was little GAl growth in days 

with limiting light or temperature conditions (days 16 and 21 after grazing). 

Variations in daily canopy Pn under the shade cloth followed nearly the same pattern as in 

the full sunlight regime, but the magnitude of the results decreased. In optimum 

environmental conditions (day 18, 6.4 MJ d- 1 PAR and 15°C) under the shade cloth, 

canopy Pn production reached about 10 g CRO m-2 d- 1 (Figure 6.06b), i.e. 50% of full sun. 

In contrast, under overcast conditions (day 16, 2.9 MJ d- 1 PAR and 22°C) daily Pn 

production under the shade cloth reached -1.7 g m-2 d- 1
, much less than full sun. Similarly, 

canopy Pn production followed the same daily variations under the slatted treatment, but 

the magnitude of the Pn rate was even lower than under the shade cloth regime (Figure 

6.06c). Under the intermittent light, maximum CRO production was 5.2 g m-2 d- 1 in 

maximum environmental conditions (day 18,7.3 MJ d- 1 PAR and 15°C), about 25% of full 

sun, but decreased to -0.6 g m-2 d- 1 on a cloudy day (day 16,3.3 MJ d- 1 PAR and 22°C), 

less than cloth shade. The GAl growth was always simulated to be slower under the 

wooden slats treatment compared with the shade cloth regime. 
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Figure 6.06. Simulated daily canopy Pn production (closed symbols) and GAl increment 
(open symbols) in irrigated lucerne against days after grazing (from 23 December 1998 to 
13 January 1999) in full sunlight (a), under shade cloth (b) and under wooden slat 
regimes (c) in Canterbury, New Zealand. 
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6.3.4- Simulation 2: maintenance respiration coefficients 

Simulated canopy Pn production was inversely related to the maintenance respiration 

coefficient (Figure 6.07). For the first summer rotation (Figure 6.07 abc), a b coefficient 

between 0.030 and 0.025 dai' reduced the difference between predicted and actual lucerne 

Pn production. However, for the second rotation (Figure 6.07 de.f), when water limitation 

increased compared with the previous growth period (Section 6.2.1), a b coefficient of 

0.030 day-' caused an underestimation of predicted lucerne production compared with the 

actual data. For this rotation, a b value of 0.025 dai' was found to be appropriate in non­

irrigated plots. 

Therefore, a maintenance respiration coefficient (b coefficient) was set at 0.030 d-' for 

irrigated plots and 0.025 d-' for non-irrigated plots in further analysis, regardless of the 

light regimes. These values were consistent with Shone & Gale (1983) for lucerne under 

similar mild water stress conditions (0.6 MPa of osmotic potential). Wilson et al. (1980) 

found for sorghum that the b coefficient was reduced by a factor of abo.ut two as night leaf 

water potential decreased from 0.3 to 1.1 MPa. Althought leaf water potential was not 

measured in this experiment, it was found to be appropriate and consistent with the 

literature under non-irrigated condition to reduce the b coefficient by 20% relative to that 

used in irrigated conditions (0.030 d-'). No evidence was found in the literature to support 

changes in respiration coefficients under shaded environments, except when starvation of 

carbohydrates, induced by prolonged shade, forces the cell to degrade protein (Penning de 

Vries, 1975), which was unlikely to occur in the treatments used in this experiment. On the 

other side, the growth respiration coefficient (a coefficient) was set at 0.34 for all 

treatments in this analysis and it was found to be quite independent on the water stress 

levels applied by Wilson et al. (1980) and Shone & Gale (1983). 
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6.3.5- Simulations 3 and 4: full sunlight 

Simulations in full sunlight under either irrigated or non-irrigated conditions frequently 

overestimated the actual carbohydrate production in both summer rotations (Figure 6.08). 

The RMSD for rotation 1 was 134 kg eHO ha- I or 8% of the mean observed data 

(Appendix 7). In the first rotation under irrigation conditions (Figure 6.08a), predicted 

values overestimated eHO production in open lucerne by II % in the first harvest, but this 

difference became close to zero in the second and final harvests. Otherwise, eHO 

predictions in non-irrigated treatments (Figure 6.08b) were similar to the observed yields in 

the first and second harvests, but in the final harvest predicted production was 13% greater 

than the actual value. 

For the second summer rotation, eHO production predictions equally overestimated actual 

yields in irrigated conditions (Figure 6.08), but the difference between predicted and actual 

values were greater than in the first rotation, especially in irrigated plots. The RMSD was 

220 kg eHO ha- I or 15% of the mean observed data (Appendix 7). In the full sunlight and 

under irrigation conditions, simulations were 29% greater than the actual eHO production 

in the first harvest. This difference increased to 41 % in the second cut, but finished only at 

5% overestimation in the final harvest. In non-irrigated plots (Figure 6.08d), where soil 

moisture deficit reached a peak of 360 mm, predicted eHO yield overestimated the actual 

production by 24 and 15% in the first and second harvest, respectively. However, the 

difference decreased in the last two harvests and predictions overestimated by only 7 and 

2% the actual production. 
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6.3.6- Simulations 5 and 6: shade cloth 

Simulations under the shade cloth greatly underestimated actual CRO yields in both 

summer rotations, particularly for the final harvests (Figure 6.09). The RMSD was 465 kg 

eRO ha- 1 or 40% of the mean observed data in the first rotation and this decreased to 314 

kg CRO ha-1 or 34% of the mean observed data in the following rotation (Appendix 8). In 

the summer rotation 1, predictions in irrigated plots were 2, 32 and 43% lower than the 

actual CRO production in the first, second and final harvests, respectively (Figure 6.09a). 

Under non-irrigation conditions, the first harvest simulation was 18% lower than the actual 

yield in the first cut and to 31 and 32% in the second and final harvests, respectively 

(Figure 6.09b). In the field, lucerne under shade cloth produced on average 80% of the 

CRO yield observed in full sunlight by the end of the first rotation, whereas shade cloth 

simulation was on average 67% of that predicted in full sunlight by the end of the first 

rotation. 

Simulated CRO production underestimated by 16 and 32% the actual yield for the two final 

harvests in irrigated plots (Figure 6.09c) and by 29 and 32% in non-irrigated conditions 

(Figure 6.09d) for the second rotation. The difference between predicted and actual CRO 

yield for the second summer rotation decreased compared with the first rotation. In 

irrigated field conditions, lucerne under shade cloth produced on average 63% of that in 

full sun for the last two harvests, whereas simulated values under shade cloth were 43% of 

that predicted in full sunlight. Likewise, actual lucerneCRO yield under cloth in dry 

conditions was on average 68% of that in the full sunlight regime, but predicted values 

under shade cloth was 46% of those simulated in the open treatment. 



Irrigated Non-irrigated 

"" j al j 
b 

::c ::c ::c ::c 

0 

2000 

0 

1500 1 
0 

0 
1000 

"';" 
a:l 
..c 
OJ 

500 

2£ 
c 
0 ·0 t5 10 15 20 25 30 10 15 20 25 30 :::J 
-0 2500 e c d 
C-
oo 
OJ 

2000 I I I I I "§ .0 
-0 
>-..c 
0 1500 J .0 
.0 

ca 0 
0 

. ---------- 0 

1000 

500 -j - .1i.o 

10 15 20 25 30 10 15 20 25 30 

Days after grazing 

Figure 6.09. Accumulated daily predicted (closed symbols) and actual (open symbols) carbohydrate yields for lucerne grown 
under the shade cloth regime under irrigated (ac) and non-irrigated (bd) conditions against days after grazing during the first 
(ab) and second (cd) summer rotations in Canterbury, New Zealand. Coefficient b was set at 0.03 d- l for irrigated and 0.023 
d- l for non-irrigated condition. Bars on the top show the standard error of reps for actual data at each harvest. 

N o 
\0 



210 

6.3.7- Simulations 7 and 8: wooden slats 

Predictions for crop growth under the slatted regime also greatly underestimated the actual 

values (Figure 6.10). As found for the shade cloth regime, difference between predicted 

and actual eRO yields was greater for the first summer rotation than for the subsequent 

growth period. In the end of first Rotation, RMSD for lucerne grown under the intermittent 

regime was 710 kg eRO ha-' or 64% of the mean observed data, but RMSD reduced to 

30% of the observed production in the second Rotation (Appendix 9). In this Rotation 

(Figure 6.10 ab), simulated value was underestimated by 62% of that observed in irrigated 

full sunlight condition for the last two harvests. Similarly, for lucerne grown under the slats 

and in non-irrigated treatment, final predicted value was underestimated by 58% of that 

measured in full light. 

In the second Rotation, canopy eRO yield under irrigated slatted condition was 

underestimated by 29% of that in full sunlight (Figure 6.1 Oc) and RMSD decreased to 286 

kg eRO ha-'. In the non-irrigated treatment, the lucerne production was underestimated by 

34% of that observed in full ·sun (Figure 6.1Od). These results were consistent with those 

found for the shade cloth regime. Overall, field lucerne eRO production under slats was on 

average 76% of that in full sunlight at the end of the first rotation and 58% in the second 

summer rotation. In contrast, lucerne simulated values under the slatted treatment were on 

average only 28% of those predicted in the full sunlight for the first summer period and 

38% for the second rotation. 
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6.4- Discussion 

6.4.1- GAl versus carbohydrates yield 

The relationship between GAl and shoot CHO production was similar among treatments in 

this experiment (Figure 6.02). In lucerne, shading reduced both GAl and DM yield 

(Sections 3.3.2.1 and 3.3.2.2), but the relationship between GAl and DM was similar to 

that observed in the full sunlight regime. In addition, little change was observed in shoot 

nitrogen and mineral content for lucerne submitted to different water and light regimes in 

this experiment (Appendix 6). Smith (1970) found similar weighted averages of shoot N 

and mineral content for lucerne grown in full sunlight and cool temperature (17°C) to 

those measured in this experiment. The consequence was that mean carbohydrate content 

did not change among treatments and a single relationship for all treatments was 

appropriate to predict GAl growth from shoot CHO production in this analysis. 

6.4.2- Canopy architecture 

Light and water status treatments did not affect lucerne canopy architecture substantially 

during the experimental period (Figures 6.03 and 6.04). The results indicated that light and 

water regimes did not modify the lucerne K value. The mean extinction coefficient was 

K=0.82 for all treatments and this was close to the typical range cited for lucerne by Khaiti 

& Lemaire (1992), Sheehy et al. (1979) and Wilfong et al. (1967). Most of the radiation 

(95%) was intercepted at a mean GAI=3.6, regardless of the light regimes and water status 

treatments. The mean observed critical GAl was exactly the same as found in the 

theoretical simulations of Chapter 5. Likewise, the mean foliage angle (45°) measured for 

all treatments during the two summer rotations was equivalent to that simulated in Section 

5.3.1. These foliage inclination values agreed with those measured for non-water stressed 

(0.5 MPa leaf water potential) and full cover lucerne by Moran et al. (1989) who reported a 

mean leaf inclination of 42° at noontime in late spring. However, the same authors reported 

a decrease in the leaf inclination to 24° for water stressed lucerne (1.5 MPa leaf water 

potential). 
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The level of water stress experienced by plants in the non-irrigated plots was minimal and 

did not affect canopy architecture during summer rotations. Based on the mean soil 

moisture deficit measured in non-irrigated plots (Section 6.2.1), it was unlikely that lucerne 

plants in this experiment were exposed to the levels of water stress that altered leaf angles 

as reported by Moran et al. (1989). At the same experimental site used in this analysis, 

Brown (1998) reported, for the same lucerne stand aged three years, that DM production 

and radiation use efficiency started decreasing when the maximum soil moisture deficit 

reached 290 mm within the 2250 mm soil depth. 

The stratified analysis of the canopy (Figure 6.04) showed a weighted average of 46° for 

canopy foliage angle, similar to data collected over the experimental period, and no 

statistical differences between light and water status treatments. From this analysis, it was 

observed that leaves on top layers were more vertically arranged than mid and bottom parts 

in all treatments. However, the greatest GAl increment was measured in the middle parts of 

the canopy for all treatments. The combination of higher GAl with the leaves horizontally 

dispersed in the middle part of the canopy resulted in most of the radiation being 

intercepted by GAI= 3.6 for all treatments. The advantage of this foliage arrangement was 

observed in non-limiting conditions (full sunlight and irrigated plots) where the greatest 

GAl increment of all treatments was measured. Increments of GAl were more evenly 

distributed within the canopy profile under slats than under shade cloth, particularly in 

irrigated conditions, although canopy foliage angle distribution was similar between the 

two shaded regimes. This result was probably associated with the morphological 

modifications observed in plants under slats compared with those under the cloth. Stem 

class analysis (Section 3.3.2.4) showed that plants under slats had virtually similar 

proportions of long stems (> 20 cm) compared with plants grown under the shade cloth. 

However, a variation within the long stem class was noted between slats and cloth 

treatments. Some of the long stems grown under slats reached lengths as long as 50 cm, 

approaching the sizes observed in full sunlight. On the other hand, under shade cloth long 

stems were uniformly distributed within the 20-30 cm range. This difference in stem sizes 

can explain the difference in increments of GAl in the top canopy part between the two 

light regimes. 
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6.4.3- Plant physiological responses 

Leaf maximum photosynthesis measured at 2000 flmol photons m-2 S-I or about 500 W m-2 

PAR (PmO) was the most affected parameter of the Pg curve under the experimental 

conditions (Figure 6.05, Tables 6.03 and 6.04). Pmo values for irrigated plots were slightly 

greater than non-irrigated plots for all light regime treatments. The small differences 

observed between water status treatments was probably a result of the low levels of 

maximum soil moisture deficit measured in this experiment (Section 6.2.1) and the high 

ability of lucerne crop to uptake water from deep soil layers. The greatest difference in Pmo 

was observed between full sunlight and wooden slats especially in the second summer 

rotation. It probably took a while for lucerne to adjust to the new source and sink 

relationships experienced under the shaded regimes and this had a direct influence on the 

measured Pg curves. 

Figure 6.05 shows that plant leaves on the top of the canopy operated with similar 

efficiency once exposed to the same radiation level, regardless of light treatment. This 

result was consistent with the discussion by Thornley & Johnson (2000) for a tropical 

legume and grass pasture growing in different irradiance levels. The basis for this 

assumption was that leaves grown in a low irradiance have virtually the same rate of gross 

photosynthesis as leaves grown at much greater light level, indicating that leaves can 

maintain sufficient photosynthetic machinery to operate efficiently in their growth 

environment. However, if instant photosynthetic rates were compared at the actual 

irradiance levels (454 W m·2 of PAR in full sunlight, 182 under shade cloth and 210 under 

slats), then differences between light regimes would be more evident. 

The timing at which lucerne leaves under the slats regIme were exposed to full light 

appeared to be critical in this analysis of photosynthetic rate. Top leaves under the 

intermittent regime were exposed to a switch sun/shade regime in this experiment (Section 

5.2.1), but photosynthetic curves were measured at an unknown time after the leaf left the 

slatted shade. Using the same slatted structure, Peri et al (2002b) stated that the time 

required for cocksfoot leaves (Dactylis glomerata) to reach the same maximum 

photosynthesis as observed in full sunlight (full induction), were 15, 20 and 37 minutes 
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after being 30, 60 and 180 minutes under the shade period, respectively. The same authors 

reported that maximum photosynthesis rate of cocksfoot leaves decreased asymptotically 

after 1 minute under shade, reaching a minimal value of 40% of that observed in full 

sunlight at 140 minutes of severe shading. In contrast, it was found in this work that 

cocksfoot leaf photosynthesis declined slower under cloth shade (50% transmissivity) than 

the slatted light regime, reaching a Pm value 76% of that in full continuous light after 120 

minutes under shading. These figures have not yet been determined for lucerne leaves. In 

this experiment, maximum sun period under the slats was about 120 minutes at noontime 

(Section 3.3.1.1). 

Based on the great difference between actual and predicted lucerne CRG yield found in this 

experiment, there is an indication that lucerne Pg would operate at a higher part of the light 

curve during the shade period under the slats than that simulated by the canopy Pn model. 

Therefore, there might have been an underestimation of Pmo values under the slatted 

regime and this would be associated with either the time required by leaves to fully 

complete photosynthetic activation after leaving shade or the time required to achieve the 

complete photosynthetic deactivation under the severe shade regime. To avoid this 

discrepancy, leaf Pg curves need to be measured at regular and short intervals of time 

during the activation (after leaving the shade) and deactivation (after leaving the full 

sunlight) periods. The wooden slat structure easily permits modifications of the timing 

under shade and full sun, simply by changing either the wood slat dimensions or distance 

between slats and top of the canopy. 

Growth irradiance slightly changed a, but 8 remained unaffected by the treatments (Figure 

6.05; Tables 6.03 and 6.04). Lucerne top leaves showed the same photosynthetic efficiency 

for all light treatments within the light transmissivities used, although total CRG yield 

decreased markedly under the shade compared with the full sunlight regime (Figures 6.08, 

6.09 and 6.10). The reason for that was probably associated with the rapid decrease in 

radiation penetration at layers below the top, which led leaves to operate in a lower part of 

the photosynthetic curve than those performing above the 50% full light transmissivity. 

Also lower leaves quickly changed to light levels below compensation point and then an 

increase in respiration drain on whole canopy occurred. Phi Iippot et ai. (1991) assumed the 

same a value for different daily radiations applied on lucerne in his photosynthesis 
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predictions. In this work, a mean 8 value of 0.72 was calculated for all treatments, although 

a value of 0.90 was found by Sheehy et al. (1979) for seedling lucerne in full sunlight 

regime for a fitted rectangular hyperbola. Low values of 8 are more likely to be found in 

curves for non-stressed C4 plants compared with C3 crops, because complete 

photosynthetic saturation usually does not occur at the maximum PPFD rate found in 

nature (approximately 2000 j.lmol m-2 
S-l in New Zealand). Following the discussions in 

Chapter 5, the physiological meaning of low 8 values is related to increasing carboxylation 

resistance to CO2 transfer at chloroplast level (Marshall & Biscoe, J 980). 

6.4.4- Daily variations in the canopy Pn model 

Daily canopy Pn simulations were sensitive to variance measured in daily radiation and 

mean air temperatures (Figure 6.06). Low canopy CHO production was observed on cold 

and fully overcast days. Variation in daily CHO production was less evident for plants 

under the slats regime than in full sunlight and under shade cloth. The main differences in 

canopy CHO production between shade cloth (Figure 6.06b) and slats (Figure 6.06c) 

occurred particularly on clear days. This was possibly a consequence of the 

underestimation in the photosynthetic activity simulated during the heavy shaded period 

under the slatted regime. 

A detailed analysis of the canopy Pn model outputs showed no differences in Pm values, 

calculated from Equations 2.4 and 2.5 (Section 5.2.2), between the sun and shade periods 

under slats, because the ratio Iz/Io was constant for the two periods and the same Pmo value 

(Equation 2.4. Section 5.2.2) was applied for both cases. However, the major problem for 

the intermittent light regime simulation actually occurred in the Pg rate calculations 

(Equation 2.3, Section 5.2.2) because of the very low Iz value applied during the shade 

phase. For instance, simulated Pg rate for top leaves (GAl< 1) during the shade period 

under slats was only about 20% of that calculated during the sun phase and this proportion 

consistently decreased to only 7% at GAI=3. 

Knowing that the final actual CHO yield for lucerne grown under the slatted light regime 

(Figure 6.10) was about 60% of that observed in the full sunlight conditions at the second 
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summer rotation, it is valid to presume that the actual photosynthesis rate during the shade 

period under slats would be greater than that predicted by the proposed canopy Pn model. 

Thornley (1976) stated that the factors involved with the discrepancy between 

measurements and estimates of photosynthesis under fluctuating light were the response 

time of the photosynthetic system in the leaf and the steady-state light response curve with 

the degree of non-linearity and the value of the light flux for Pmax. The current work has 

limited data to correct such a discrepancy produced by the slatted regime. To avoid this 

problem in the future, it would be necessary to make measurements with greater precision 

at low PPFD levels as would be found under the slatted treatment. Then, the induction 

response of photosynthesis after leaving the shade period and the deactivation pattern after 

leavi,ng the sun period could be accurately simulated for this light regime. Overall, it was 

clear that the canopy Pn model underestimated Pg for plants grown under the slatted 

regime, particularly during the shade period. 

6.4.5- Full sunlight simulations 

Simulations for canopy Pn production in the full sunlight regime were reasonably accurate 

at different stages of lucerne regrowth (Figure 6.08 and Appendix 7). The critical part of 

these simulations was the shoot to root partitioning, which applied a fixed coefficient after 

the canopy reached GAI=1 based on literature data. Although the constant shoot to root 

partitioning value of 19% appeared to work well, it did not consider the exponential 

decrease of shoot carbon substrate after defoliation as discussed by Johnson & Thornley 

(2000) and shown by Sheehy et al. (1979) data. This meant that the partitioning rate for the 

first days after reaching GAI= 1 was possibly overestimated, but became adequate 

afterwards. The consequence was that early eHO prediction was underestimated for the 

first days after grazing. The partitioning rate was maintained the same for non-irrigated 

plots, because the level of water stress was considered mild. It has been reported that, under 

severe water stress, plants could enhance carbohydrate translocation rate into roots 

(Johnson & Thornley, 2000). However, in response to drought similar to that in this 

experiment, plants first reduce leaf growth (Bradford & Hsiao, 1982) and architecture 

(Moran et al., 1989), while continuing to partition carbohydrate to root growth. A detailed 

study of lucerne carbon shoot and root translocation, with different levels of water stress 

during the growing period, would be necessary to correctly estimate the partitioning rate. 
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One of the most used techniques to estimate carbon partitioning in lucerne is the shoot and 

root DM ratio measured at different stages of maturity as used by Luo (1991) and Philippot 

et ai. (1991). Khaiti & Lemaire (1992) also suggested that the relationship between RUE 

calculated for lucerne shoot biomass and for total biomass (shoot and root) gave a 

reasonable estimate of partitioning rate. 

6.4.6- Shaded regimes simulations 

Predicted lucerne eHO production under the shade cloth and under the slatted regimes was 

underestimated especially at the end of the two summer rotations, regardless of the water 

status treatments (Figures 6.09 and 6.10). For both shaded regimes, the difference between 

simulated and actual eHO production in the first rotation was greater than the second 

rotation and this was evident particularly for the final harvests. This result was likely to be 

a consequence of field lucerne adjusting partitioning to the newly fixed carbon among 

sources and sinks in the first Rotation. There was also a greater underestimation in the 

slatted treatment compared with the a~tual eHO production than in the shade cloth regime 

at the end of the first Rotation (Appendices 8 and 9). For the subsequent rotation, predicted 

values for both shaded regimes equally underestimated the production observed in the 

field. 

There were two main values in the model that could be involved with the underestimation 

of actual eHO yields for shaded regimes using the proposed canopy Pn model: (i) high 

partitioning rate and (ii) high total respiration rates. Partitioning between shoot and roots 

after defoliation can be highly variable and depends on the environmental conditions 

(Johnson & Thornley, 2000). When photosynthesis decreases due to shading, plants 

become short of carbon but have a relative surplus of mineral nutrients and water. Such 

plants tend to transfer less photosynthates to roots and produce proportionately less root 

and more shoot material than full sunlight plants to achieve the functional equilibrium 

between plant parts (Loomis et ai., 1971, Brouwer, 1983). As a result, carbon shortage is 

relieved over time through the compensatory increase in leaf area and photosynthesis 

(Pearce & Lee, 1969). However, Luo (1991) found that functional equilibrium between 

lucerne fine roots and leaves was not achieved with light treatments in autumn. The author 

found that both leaf and fine root growth were substantially reduced when full sunlight was 
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reduced by 33% and 67% in an autumn rotation, but the ratio of fine root to leaf biomass 

was lower than the control when radiation was reduced in a late summer rotation. If lucerne 

shoot to root partitioning rate really decreased under both shade treatments in summer, then 

comparison curves for above ground biomass in this analysis would certainly overestimate 

simulations of CHO production. However, the reduced translocation of CHO's to the roots 

would likely manifest itself in later growing periods by decreasing recovery rate after 

grazlllg. 

It was also possible that maintenance respiration rates were overestimated under both 

shaded conditions in this model. The effects of high maintenance respiration would be 

especially noted for the shaded canopy parts (high GAl) as discussed in Section 5.3.2, 

which would coincide with the CHO yield underestimation by the end of both rotations. 

The reasons could be associated with air temperature changes under both the shade cloth 

and wooden slats. There is no evidence in the literature that the maintenance respiration 

coefficient (b coefficient) changes under low radiation levels such as those reported for this 

experiment, except when plants are submitted to carbohydrate starvation under ·low light 

conditions (Penning de Vries, 1975). Additionally, canopy maintenance respiration could 

be overestimated under shade because the canopy Pn model did not accounted for actual 

loss of biomass as it was shown in some species under shade conditions by Schwenke 

( 1996). 

Initially, it was assumed in these simulations that air temperature did not change under 

shade conditions. Air temperature was measured with a partially covered sensor to avoid 

direct incidence of sun flecks. However, it has been reported that air temperature can be 

reduced in agroforestry areas, which also produce an intermittent light regime. Wilson & 

Ludlow (1991) reported mean daily values of 2-3 °c higher in full sunlight compared with 

a tree-pasture system in the subtropical areas. Wong & Wilson (1980) observed a 

difference between 1 and 2 °c in both maximum and minimum air temperature as well as 

in leaf temperature of C4 grasses under shade cloth compared with the full sun. In this 

experiment, canopy temperatures were also on average I-2°C lower under both shaded 

regimes than in open during daytime in summer rotations (Chapter 3, Section 3.3.1.2). It 

was possible that air temperatures were overestimated in the simulations performed for 

both shaded treatments in this analysis and this would overestimate particularly 
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maintenance respiration rates and decrease canopy Pn productions. Accurate air 

temperature measurement was not possible under the shade cloth and wooden slats because 

of the short distance (0.30 m) between the top of canopy and shade structures. So, it is 

necessary to perform a temperature sensitivity analysis for both shaded regimes with daily 

mean temperatures lower than those measured in the full sunlight and evaluate the 

magnitude of the canopy Pn increase in summer conditions. 

6.4.7- Temperature sensitivity analysis 

As shown in Figure 6.11, lucerne under the shaded structures was submitted to a different 

temperature above the canopy than in full sunlight and this could influence canopy 

respiration rates and development. A theoretical comparison of the energy environment 

between the shade cloth and wooden slat structures may indicate the reasons for 

temperature modifications under the low radiation regimes. 

The incoming energy was equivalent for full sunlight and above both shaded structures and 

it consisted of two main components: (i) solar radiation (direct and diffuse radiation) and 

(ii) terrestrial radiation (long-wave radiation). Theoretically, when total radiation reached 

the black plastic shade cloth, a considerable amount of energy was absorbed and re-emitted 

as thermal re-irradiation upwards and downwards, according to the Stefan-Boltzmann law. 

The cloth reflected a small amount of solar radiation because of the low reflectance 

(albedo) value of the material. The radiation in which plants were exposed under the shade 

cloth structure was predominantly diffuse light. As described in Section 3.2.3.1, the shade 

cloth structure had an overhang material at both east and west sides to prevent direct 

radiation on plants at low solar inclination angles. These overhangs might have partially 

blocked the horizontal wind speed and turbulence under the cloth and reduced the 

convective transfers from the leaf surfaces. Likewise, two main components of the energy 

environment would likely be altered under the slatted structure namely: thermal re­

irradiation and light reflection. Because the wooden slats were white painted on the top, 

less radiation absorption and more reflection would be expected compared with the black 

shade cloth material. Besides, the white wooden slat was a poorer heat conductor than the 

black plastic cloth. Therefore, the wooden slat material would heat at slower rates and 

produce less thermal re-irradiation downward and upward than the cloth. Under the slatted 
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structure, horizontal wind flows were similar to the full sun. Under this treatment, lucerne 

plants were submitted to an alternating regime of direct and diffuse light. 

This theoretical analysis led to the assumption that plants could be exposed to a lower 

ambient temperature environment under both shaded regimes compared with the full 

sunlight especially at daytime. Having a clear sky condition in the open field, the amount of 

emitted long-wave radiation would be greater than the amount absorbed by soil and 

vegetation (Monteith & Unsworth, 1990). So, ambient temperature above the canopy 

usually increases at daytime and cool down at nighttime. Under the shaded regimes, 

however, downward long-wave radiation fluxes would be similar to upward long-wave 

fluxes from soil and crop, thus rate of atmosphere cooling would be considerably slower 

than in full sunlight (Brenner, 1996). As a consequence, night temperatures above the 

canopy could be warmer under the shade cloth and wooden slat regimes and daytime 

temperatures cooler than in the full sunlight. Figure 6.1 I shows exactly this daily pattern of 

temperature modification at canopy height under the cloth and slats regimes relative to that 

observed in full sunlight in a clear and sunny day. Temperatures :vere on average 10% 

warmer under the shade cloth and 3% under the slatted structure than the full sunlight at 

night-time in irrigated plots. At daytime, temperatures under the shade cloth was 3% cooler 

and under slats 5% cooler than the full sun. Relative differences for temperature at canopy 

height between light regimes disappeared in non-irrigated treatments. Temperatures under 

both shaded regimes were 6% greater at night-time and 8% lower at daytime than in full 

sunlight conditions. Therefore, it was possible that respiration rateS were overestimated in 

the simulations performed for the shaded regimes as Tmax and Tmin were set as measured 

in full sunlight. 
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Figure 6.11. Relative air temperature at canopy height (5 cm above canopy top) under the 
shade cloth (-) and wooden slat (---) regimes compared with the full sunlight against time 
during a clear sunny day in irrigated (a) and non-irrigated (b) conditions. A relative 
temperature of zero means same temperature as measured in full sun. Data were collected 
in repetition 3 on February 13 1h 1999 in Canterbury, New Zealand. 

Therefore, a temperature sensitivity analysis was performed to verify possible 

overestimation of canopy maintenance respiration rate and consequently excessive 

reduction in Pn production. The current daily maximum and minimum air temperatures 

measured in the full sunlight regime were decreased by 2 and 3 °c under both shaded 

regImes. 
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Figures 6.12 and 6.13 showed that differences between predicted and actual values under 

the shade cloth and wooden slats light regimes reduced especially in the second summer 

rotation, but both continued to underestimate the final CRO productions observed in the 

field. The differences between predicted and actual values were again smaller in the second 

rotation than the first growth period. The RMSD under the cloth regime decreased to 327 

kg eRO ha- l in rotation 1 and 209 kg CRO ha- I for a 2() C increase in the daily mean 

temperatures. For a 3° C increase, the RMSD was 273 and 169 kg CRO ha- I in rotations 1 

and 2, respectively. Under the slatted regime, predicted values were still excessively 

underestimated in the first summer rotation. The RMSD under the intermittent light regime 

was 623 kg CRO ha- I in rotation I and 184 kg CRO ha-I for a 2() C increase in the daily 

mean temperatures. On the other side, the RMSD was 575 and 129 kg CHO ha- l in 

rotations 1 and 2, respectively, for a 3° C increase in the daily mean temperatures. 

The accuracy of the proposed canopy Pn model for lucerne under the shade cloth and 

wooden slat regimes was enhanced with reductions in mean daily temperatures. The 

criteria to establish partitioning rate under shaded environments for modelling purposes 

requires further work. These modifications can improve the accuracy of the canopy Pn 

model especially under continuous radiation. However, the adjustments made in the canopy 

Pn model to accommodate switches of high/low radiation with intermediate frequencies (1-

2 hours) seemed to be insufficient to accurately predict canopy production under 

intermittent regimes. Further work must be done to adjust other mathematical relationships 

with particular emphasis on Pm and Pg Equations, including functions to predict correctly 

the activation and deactivation photosynthetic phases. Finally, leaf Pm functions should be 

corrected for low temperatures if the proposed canopy Pn model is used for spring and 

autumn seasons, particularly in temperate areas. These functions have already been 

successfully tested Weir et. aZ. (1984) and Thornley & Johnson (2000). 
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6.5- Conclusions 

The validation performed for lucerne in summer rotations suggested that: 

1- Lucerne canopy architecture was not affected by the light regimes proposed in this 

study. Overall, the adjustments proposed for the canopy Pn model allow applications of 

different randomised leaf angles. Therefore, the model can be used for different crops 

and environmental situations. 

2- Top leaf photosynthetic capacity was similar between the full sunlight and shade 

cloth regimes, but both were greater than the slatted treatment (sunny phase). The Pm 

was affected by the light regimes and a was particular sensitive to plant water status. 

The photosynthetic curvature (8) was not affected by either the light or water status 

regime. 

3- The canopy Pn model was accurate in predicting field lucerne CHO yield in full 

sunlight, for irrigated and non-irrigated conditions in summer rotations. 

4- The canopy Pn model greatly underestimated field lucerne CHO production under 

the shade cloth regime. The reasons for the inaccuracy of the simulations were probably 

associated with no allowance being made for the decrease in partitioning rate from 

shoot to root and canopy maintenance respiration rate under the continuous shade 

conditions. 

5- The canopy Pn model also greatly underestimated field lucerne CHO production 

under the wooden slats regime. The reasons were associated with an underestimation of 

photosynthesis rates at the shade phase, an overestimation of the rate of partitioning to 

roots and an overestimation of the maintenance respiration under the intermittent 

regIme. 
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CHAPTER 7 

General Discussion 

7.1- Lucerne as a potential crop for temperate agroforestry systems 

Light competition from the tree canopy and soil water competition between the understorey 

and overstorey species are the main factors that can affect the integration of a lucerne crop 

with trees. This research has shown that the mean annual DM yield observed for lucerne plants 

growing under trees, slats and cloth shade regimes of about 50% PPFD was 10 t ha- l y(l 

compared with 18 t ha- l y(l in full sunlight in the agroforestry area (Chapter 4, Section 

4.3.2.1). This showed a decrease of approximately 40% in DM yield under the shade compared 

with about 50% reduction in daily PPFD under these treatments. At this same agroforestry site, 

Peri (2002) reported an annual cocksfoot (Dactilys glol11erata) yield of 7 t DM ha- l y(l under 

the wooden slats structure and 6 t DM ha- l y(l under trees compared with 8 t DM ha- l y(l in 

the open field. The author also found the same annual DM yield under intense shade (23% 

PPFD) of 4 t ha- l y(l for cocksfoot as that observed for lucerne in this study. The implication 

was that lucerne yield was more sensitive than cocksfoot to intermediate shading levels, but 

the perennial legume always produced more total biomass than the grass. The yield advantage 

of lucerne over cocksfoot at this site was probably related to its higher leaf photosynthetic 

activity at 50% light transmissivity, its deeper root system (drought tolerance) and the ability 

to fix nitrogen. 

Worldwide, cocksfoot or orchardgrass has been referred to as one of the most shade tolerant 

temperate pasture species (Sheehy & Peacock, 1975; Christie & McElroy, 1995; Devkota et 

ai., 1998, Chang et ai., unpublished data, Joshi et oi., 1999). However, lucerne actually 

showed greater yield under trees in the current study. In addition, data collected from the site 

since 1990 (Mead et ai., 1993; Pollock et al., 1994; Yunusa et al., 1995b; Chang & Mead, 
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2002) has confirmed that the lucerne was more persistent and had a higher DM yield growing 

under radiata pine trees than any of the other temperate pasture species initially used (ryegrass, 

phalaris, white clover and red clover). Results from the present study indicated that even a 

newly established lucerne crop had the potential to grow under mature trees at intermediate 

levels of shade. Forage nutritive value and sheep performance were also higher with the 

lucerne understorey compared with cocksfoot (Peri et al., 200 I a and 200 I b). This suggests that 

the conventional concept of shade tolerance, defined by Wong (1991) as the higher relative 

growth performance of plants in shade compared with full sun is inappropriate. It should be 

reviewed to include the concept of potential yield or the maximum yield that can be reached by 

a crop in a given environment (Evans & Fischer, 1999), particularly when screening pasture 

species for grazing in an agroforestry system. 

Over the two experimental periods, lucerne biomass accumulation responded to the amount of 

incident PPFD, but there was little effect of radiation periodicity. One indication of this was 

that plants increased mean RUE of shoot biomass by 64% under FS+CL and 45% under 

FS+SL compared with FS over the first experiment period (Chapter 3, Section 3.3.2.6) and by 

62% under FS+CL, 50% under FS+SL and T over the second experiment period (Chapter 4, 

Section 4.3.2.5). Indeed, the lucerne crop under shade seemed to operate efficiently at 

intermediate levels of radiation. However, these results require careful analysis because RUE 

estimated from aerial DM, as performed for the present study, is strongly affected by the 

partitioning of assimilates between shoots and roots (Khaiti & Lemaire, 1992). The same 

authors reported that estimations of RUE based on the total biomass yield (shoot and root) 

were constant over the seasons, but they also observed that environmental stress conditions 

could modify the crop RUE. In this study, the apparent overestimation of canopy RUE is 

acknowledged since no shootlroot ratio measurements were taken. Nevertheless, the analysis 

of RUE based on shoot DM is still useful to indicate the potential of crops growing under low 

radiation environment compared with full illumination conditions. There are two theoretical 

hypotheses to explain the increase of RUE under shade compared with full sun. These are 

either (i) preferential partition of assimilates to shoot rather than root growth or (ii) similar leaf 

photosynthetic activity in lucerne for a wide range of radiation flux levels. 
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The small effect of radiation periodicity on lucerne RUE was probably an indirect consequence 

of the changes in spectral composition (Table 4.07) that altered plant morphology. The initial 

theory was that lucerne plants should alter its canopy architecture under the distinct light 

regimes, but this did not occur for the light treatments in both experiments (Chapter 3, Section 

3.3.2.3 and Chapter 4, Section 4.3.2.4). One morphological change observed was an increased 

stem height and internode elongation under the intermittent compared with continuous shade 

(Chapter 4, Section 4.4. I .5). This was consistent with the decrease of RIFR ratio observed 

during the shade period under slats and trees compared with full sunlight, but was not 

observed under shade cloth. In fact, results of both experiments indicated a slight decrease in 

RUE under the intermittent compared with continuous shade. This apparently rejects 

Rabinowitch's hypothesis (Chapter 2, Section 2.1.5.3) that plant production could be expected 

to be higher in alternating compared with continuous light regime if the periods of shade and 

light are very long or very short. However, the definitions of short and long fluctuating light 

were not given by Rabinowitch (1956). It appeared that lucerne under the FS+SL and Twas 

submitted to temporal patterns that would be classified between intermediate and long light 

fluctuations. Besides, Rabinowitch's hypothesis was based mainly on studies of photosynthetic 

production and not on the efficiency use of radiation. 

Given that canopy architecture was unchanged by light regimes in both field experiments, the 

increased RUE of shaded compared with full sun plants could not be explained by an 

improvement in the pattern of radiation interception. In addition, it has been cited an increase 

of LIS ratio for grasses, but not for legumes in the literature (Wong, 1991). Indeed, in the 

present study plants under the intermittent regimes seemed to prioritize remobilization of 

assimilates to above ground herbage by elongating stems in an attempt to intercept more light 

as has commonly been observed under the dynamics of stem competition for light (Gosse et 

al., 1988; Lemaire, 2001). In contrast, plants under shade cloth did not follow this pattern 

despite the increase in RUE. This was possibly because the spectral composition under cloth 

was unchanged from the full sun conditions. Thus, the morphological responses of lucerne 
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under the intermittent regimes were typical from sun-adapted plants grown under low light 

quality conditions (Ballare et al., 1995). 

It also seems likely that the higher RUE under shade compared with full sun from both field 

studies was enhanced by lucerne leaves continuing to operate at efficient parts of the 

photosynthetic curves. This was supported by the photosynthetic light curves (Figures 4.12 and 

4.13, Section 4.3.2.6; Figure 6.05, Section 6.3.2), which showed a relatively slow increase in 

leaf Pn rates for PPFD levels between 500 and 2000 f.lmol photons m-2 
S-I (-115 and 450 

Watts m-2
, respectively) n all treatments. Therefore, leaf photosyntheis at the top of the 

canopy, where most of the radiation was intercepted (Sections 3.3.2.3 and 4.3.2.4), was 

potentially similar for all 6 light regimes. These responses were consistent with the lower 

decrease in DM yield and leaf Pn than the decline measured in PPFD under all shaded regimes 

and probably explains some of the increase of RUE under shade compared with full sun. 

Overall, a potential understorey crop for agroforestry systems mus~ show persistence and a 

balanced interaction with trees over time. Lucerne has been shown to perform well under this 

agroforestry area over time (Mead et al., 1993; Pollock et al., 1994; Yunusa et al., 1995b; 

Chang et al., unpublished data), but its deep root system occupies a niche similar to that of the 

pine roots (Kemp et al., 1999; Chang & Mead, 2002). Although this was not the focus of this 

study, it is appropriate to consider lucerne competitiveness with trees. Results from previous 

investigations (Peri et al., 2002) showed that radiata pine trees growing with no understorey 

had 34% and 29% higher volume than trees growing with lucerne and cocksfoot understoreys, 

respectively, at age 10. This study also found that understorey competition effects on growth 

became more evident during summer and early autumn months when soil water deficits are 

common in Canterbury dryland areas. In this study, the newly established lucerne replaced 

phalaris plots in 1999 and thus tree growth results (Table 4.02, Section 4.2.1.2) were greatly 

influenced by the past 10 years grass growth. However, Peri et ol. (2002) concluded that the 10 

year old lucerne understorey was more competitive with radiata pine growth (diameter at 

breast height, height, basal area and total volume) than cocksfoot and ryegrass (Section 2.1.2). 

These authors highlighted that lucerne had a deep root system, whereas the bulk roots of 
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grasses occurred in the top layers of soil. A premature analysis about the best tree-pasture 

combination cannot be performed without balancing all outputs from individual components 

over the years. Indeed, it seems that the greatest competitiveness of only 5% of lucerne on 

radiata pine growth compared with the perennial grasses would be compensated for by an 

increase in animal performance observed in the legume pasture under trees (Appendix 3). 

7.2- Optimized strategies of a lucerne crop under different light regimes 

Having observed that lucerne canopy architecture was largely unchanged under continuous and 

intermittent shade and the morphological adjustments were related to spectral composition, the 

canopy Pn model was used to hypothesise the theoretically optimum response for lucerne 

plants to maximize yield under the 3 light regimes. The results from the theoretical simulation 

analyses (Chapter 5) showed that different strategies would be required under the 3 light 

treatments. For example, the predicted optimum foliage angle was 75° in full sunlight and 45-

60° under both continuous and intermittent shade to maximize light penetration within the. 

canopy and net photosynthesis rates (Section 5.4.5). However, this was not observed in the 

field with a foliage angle of between 40-50° for all light regimes in both field experiments 

(Sections 3.3.2.3 and 4.3.2.4). The stratified canopy analysis also showed that top strata leaves 

had more vertical dispersal than intermediate and lower layers mainly for the fully illuminated 

treatment (Figure 6.04, Section 6.3.1.2). In theory, this is appropriate for full sun condition to 

minimize the inefficiency of having saturated leaves operating at the top strata and allow 

maximum photosynthesis to layers below. For shaded environments, this foliage angle 

distribution may make no difference because of the increase in the proportion of diffuse 

radiation. 

Despite theoretical simulations showing that maximum canopy Pn rates was unchanged with 

different foliage angles under shade (Figure 5.10), light penetration down to LAI of about 3 

(with a foliage angle dispersal of about 60°) was consistent with the canopy leaf area 

expansions observed in the field (Figures 3.08 and 4.07). The overall analysis indicated that 

lucerne was not a perfectly responsive crop in the field compared with that predicted from the 
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theoretical simulations. In full sunlight, saturation of photosynthesis (Pm ax) was possibly 

overestimated in the top parts of canopy in full sunlight conditions and this would explain the 

reasons for an optimum canopy strategy with a foliage angle more vertically disposed, whereas 

in the field plants showed an intermediate angle dispersal. On the other hand, it is possible that 

the canopy Pn model also underestimated the effect of the increased proportion of diffuse 

radiation in the simulations. Plants in shade would take advantage of this predominant diffuse 

condition to arrange their leaves more horizontally and maximize light interception (Healey et 

al., 1998). Despite the discrepancies between the theoretical simulations and the field data, the 

lucerne crop still had a high yield potential under the shaded environments. 

7.3- Use of artificial shade materials for agroforestry research 

As expected, the black plastic cloth, frequently used in agroforestry research, did not mimic 

the temporal patterns of shading nor the spectral composition observed in the agroforestry area 

(Sections 3.3.1.1 and 4.3.1.1). Healey et al. (1998) also observed that the filtering of radiation 

by an overstorey plant community was qualitatively different from the filtering by a number of 

artificial shade materials. These authors found a dramatic increase in the proportion of diffuse 

radiation under Leucaena leucocephala shade and under a wooden latticed structure for a 

sunny day. These results do not invalidate previous studies, llsing plastic shade cloth to screen 

plants for shade tolerance or to observe crop/pastures responses under shade, but do indicate 

the need for careful analysis when they are extrapolated to an agroforestry environment. In 

contrast, the slatted structure used in this study did closely reproduce the temporal and spectral 

radiation environment of the agroforestry area. In addition, radiation flux and periodicity are 

easily adjusted by altering the slats height above the crop and by changing the slat/gap ratio 

(Chapter 3, Section 3.2.3.1). Caution is still necessary, because soil water extraction by plants 

under the artificial shade may not be as fast as that observed under trees, especially during 

drought periods. In this study, soil water competition in the agroforestry area was evident 

when lucerne RUE under trees was similar to that calculated for plants in full sun and below 

that of the two artificial shade treatments (Section 4.3.2.5). 
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Despite the differences in radiation environment produced by the slat and cloth structures, 

most of the crop response data indicated similarities under both artificial shade materials. The 

plant morphological responses under the cloth and slatted structure were driven by shade and 

spectral composition changes (Sections 3.3.2.4 and 4.3.2.6) and results suggest that they may 

continue to occur in a long-term period. If this is true, further morphological responses can 

lead to modifications in canopy structure and nutritive value, which affect the herbage intake 

of grazing animals (Hodgson & Brookes, 1999). In addition, previous research has indicated 

that differences in plant physiological responses between continuous and intermittent light 

regimes could be expected to happen with very long or very short sun/shade fluctuations 

(Rabinowitch, 1956). This radiation condition is likely to occur in agroforestry areas with high 

tree populations or as tree canopy closure occurs (Percival & Knowles, 1988; Hawke & 

Knowles, 1997). The current research compared only the different light regimes at about 50% 

full sunlight PPFD and for maximum intermittent shade periods of 1.30 h. Overall, the 

evidence from this investigation suggests that the wooden slats structure would be more 

appropriate than shade cloth to artificially simulate the temporal radiation environment in an 

agroforestry system. 

7.4- Canopy growth prediction in agroforestry systems 

Adjustments to a canopy photosynthesis model (Thornley, 1976; Marshal & Biscoe,1980; 

Weir et al., 1984) were functionally appropriate to perform simulations under shaded 

environments. The complexity of the physiological responses in those plants led to an 

underestimation of final crop yield under both continuous and intermittent shade. The 5 minute 

intervals of radiation flux for the canopy light interception sub-model were adequate to 

resemble the time course of the sun/shade fluctuations under the intermittent regimes and it is 

probably a sufficiently short period to be appropriate for most agroforestry radiation 

environments (Section 5.2.1). These changes had immediate effects on the other two linked 

sub-models (Pg and Rt sub-models). From the three likely reasons used to explain the 

underestimation of crop yield under the shade treatments (Section 6.4.6), two were due to 

inadequate fixed parameters applied to the sub-models (partitioning rate from shoot to root and 
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maintenance respiration) and the other suggested a mechanistic adjustment for the gross 

photosynthesis model due to the intermittence effects. 

7.4.1- Predicting maintenance respiration under shade 

The hypothesis that maintenance respiration was overestimated under the two shaded regimes 

was supported by Figures 5.04b and 5.05b (Sections 5.3.2 and 5.3.3, respectively), which 

indicated that the effects of the changes in either mean daily air temperature or maintenance 

respiration coefficient typically occurred at the high cumulative GAl (most shaded parts of the 

leaves). The graphs of predicted and simulated crop yields (Figures 6.09 and 6.10, Sections 

6.3.6 and 6.3.7, respectively) showed that underestimation occurred for the last two harvests 

(after mid-rotation) under the shade cloth and slats regimes, when actual plants GAl were 

between 3 and 4 units (Figure 3.08, Section 3.3.2.2). Calculations of the critical GAl indicated 

that most of the radiation intercepted by shaded canopies was at this same cumulative GAl 

interval (Figures 3.09ab, Section 3.3.2.3). 

According to Equation 5 (Section 5.2.3), the mean air temperature, crop dry weight and 

maintenance respiration coefficient (b) determine the total maintenance respiration rate. In the 

first experiment, air temperature at the top of canopy (Figure 3.03, Section 3.3.1.2) appeared to 

decrease under shade relative to full sunlight in the daytime, but increase at night. Overall, 

simulations were performed with equivalent mean air temperatures for the 3 light regimes in 

this study. The proximity of the temperature sensor to the top of the canopy might have 

resulted in overestimation of temperatures under cloth and slats. In the literature, there is no 

evidence of shading effects on b coefficient, but there have been reports showing that it 

increases exponentially with temperature and leaf water potential (Amthor, 1986). In addition, 

King & Evans (1967) showed an exponential decrease of dark respiration in the lower and 

shaded leaves of lucerne canopy and Penning de Vries (1975) observed that starvation of 

carbohydrates induced by prolonged shade reduce the levels of enzymes (Rubisco) and 

presumably the protein turnover rate, declining maintenance respirations costs (Amthor, 1986). 

Despite the theoretical evidence that maintenance respiration was overestimated in the 
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simulations pertormed in Chapter 6, new research is necessary to measure the costs of 

maintenance respiration in plants exposed to different radiation flux and periods of shade, 

following the methodology suggested by McCree (1970) and used previously by Wilson et al. 

(1980). 

Given that maintenance respiration costs in shaded plants might be overestimated, a 

temperature sensitivity analysis was performed for lucerne grown under the shade cloth and 

slats by decreasing daily air temperatures by 2 and 3 °C (Figures 6.12 and 6.13, Section 6.4.7). 

This was based on indications that daytime temperature above the canopy was lower under 

shade than in full sun from this experiment (Section 6.4.7, Figure 6.11) and from literature 

(Wong & Wilson, 1980; Wilson & Ludlow, 1991). These results improved the prediction of 

final crop yield compared with the actual data, particularly in the second summer rotation. 

However, there was still an underestimation of about 17% under the irrigated continuous and 

18% under non-irrigated continuous shade, 14% under the irrigated intermittent and 21 % 

under non-irrigated intermittent shade regimes at the second summer rotation. The remaining 

difference between actual and predicted data might possibly be corrected by accounting for a 

decline in root biomass under shade (Schwenke, 1996) i.e. a decrease in W for the canopy 

maintenance respiration (Equation 2.8, Section 5.2.3). 

7.4.2- Predicting carbohydrates remobilisation under shade 

The remaining difference between the predicted and actual crop yields under the two artificial 

shade regimes was presumably caused by making too high an allowance for partitioning rates 

of CHO from shoots to roots. In these simulations, partitioning from shoots to roots was 

assumed to occur after reaching canopy GAI= I or about 7 days regrowth, as reported by 

Pearce et al. (1969). The validation graphs (Figures 6.12 and 6.13) confirmed that 

underestimation of actual crop yield increased with the regrowth duration. Partitioning 

between shoots and roots for lucerne in different light regimes was not the focus of this work 

and is still not completely understood in lucerne crop agronomy (Brown et al., 2000). A 

similar difficulty to predict partitioning rates under low light was observed in simulations 
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using the ALFALFA 1.4 model (Denison & Loomis, 1989). Using this model, Luo (1991) 

observed an unexpected increase of fine-root to leaf ratios in lucerne exposed to 33 and 67% 

shade cloth. The author concluded that functional equilibrium between fine roots and leaves 

was achieved with water treatments, defoliation and fine root pruning, but not with light 

treatments. The carbohydrate trans locations between the crown and fine root pools were 

complex and underestimated by this model under low light intensity. Further investigation is 

necessary to elucidate lucerne canopy strategy to translocate carbohydrates between shoots and 

roots under low light regimes and over different seasons. 

7.4.3- The intermittency effect on canopy photosynthesis 

Finally, the third hypothesis for the underestimation of crop yields was discussed in terms of 

the intermittent effect of radiation on the photosynthesis sub-model (Section 6.4.7). This sub­

model worked as a switch onloff photosynthetic response with the radiation flux in which the 

canopy was exposed as discussed in Section 5.4.3. The radiation flux measurements under 

slats indicated that plants were exposed to alternating periods of about 94% (sun period) and 

6% (shade period) full sunlight flux (Sections 3.3.1.1). Because the Pg sub-model estimated 

photosynthetic responses based on the light curves parameters measured in the field (Section 

6.3.2), those responses decreased and increased instantaneously with changes in radiation flux 

absorbed by canopy leaves. This was particularly evident for the Pmax function (Equation 3, 

Section 5.2.2) where maximum photosynthesis rate was corrected based on the growth 

irradiance within the canopy profile. Thornley (1976) stated that the photosynthesis of a leaf, 

plant or canopy is often estimated by combining measurements of light flux with the 

appropriate light response curve, and the estimated value is then compared with a value 

derived from gas exchange rates from field experiments. However, this estimated value and 

the derived value may not be in agreement because of the temporal changes in the incident 

radiation. 

Peri et ai. (2002) has recently reported an exponential decrease of cocksfoot Pmax leaves with 

time under heavy shade. The authors observed a decrease of Pmax rates from I to 140 minutes 
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of heavy shade and then stabilised until 180 minutes. Under 50% shade cloth, cocksfoot Pm ax 

rates decreased slower than under the heavy shade and stabilised after 120 minutes under 

moderate light. In this same work, Peri et ai. (2002) observed that the time required to reach 

full induction on return to full sun was dependent on the duration of the previous shade phase. 

For instance, the authors found 15 minutes to reach. full induction after 30 minutes under 

severe shade and 37 minutes after 180 minutes of shade. Those photosynthetic responses were 

probably closely linked to stomatal (physical resistances) and non-stomatal (biochemical 

resistances) responses of leaves under intermittent light regimes. The rates of photosynthetic 

induction and deactivation processes, however, can vary with the shade tolerance ability of 

plants. In this case, it is speculated that lucerne leaves would present somewhat different 

photosynthetic responses to shade duration. Such physiological relationships are important and 

should be considered in any future mathematical model aiming to accurately predict canopy 

photosynthesis under natural or artificial intermittent regimes. 

7.5- Recommendations for future research 

There is no doubt of the practical importance of artificial shade materials for agroforestry 

research. First, the proposed wooden slats structure needs to be tested with different overstorey 

and understorey species and under different radiation flux regimes. Further study should 

compare plant agronomic and physiological responses at least under 4 PPFD transmissivity 

levels: 100, 75, 50 and 25%. A suitable crop/pasture growing under an agroforestry area with 

distinct tree popUlations should be compared with those growing under shade cloth and 

wooden slat structures at identical PPFD levels. The results of this investigation would 

conclusively identify the advantages/disadvantages of llsing cloth or slats in a range of 

radiation conditions where most of the agroforestry areas are grown. 

Second, with particular interest in using lucerne as a suitable crop for agroforestry systems, 

grazing experiments should be performed to assess the long-term persistence and feeding 

value of this legume under shading conditions and compare these results with an open field 

crop. The potential lucerne production and nutritive value should be compared with the 
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estimated requirements of livestock (cattle or sheep) to determine the carrying capacity of 

agroforestry areas with distinct light transmissions (Wi Ison & Ludlow, 1991) and therefore 

assess the potential viability of an animal enterprise. To assess the system sustainability, tree 

growth measurements should continue until the final harvest to identify the long-term effects 

of lucerne understorey competition on final wood production and log quality. 

The adjustments perlormed for the canopy photosynthesis model indicated the importance of 

obtaining realistic field canopy parameters, such as the maintenance respiration coefficient and 

partitioning rates, to accurately predict crop yield under shade regimes. The partitioning rate 

between shoots and roots is especially important for perennial species with reserves storage 

organs. A field or glasshouse experiment, using artificial shade materials with various light 

transmissivities, could elucidate how perennial crops/pastures trans locate assimilates from 

shoots to roots in distinct radiation environments and over seasons. Among the most common 

plant measurements used to study partitioning rate are shoot to root ratio, RUE of shoot 

material and of total herbage (shoot+roots) and starch and carbohydrates content 9f above and 

below ground organs. Modifications of maintenance respiration rates should be measured in 

field and glasshouse conditions, using the methodology suggested by McCree (1970) and 

McCree & Silsbury (1978) and exposing plants to different levels of PPFD. The aim would to 

be to measure the index of plant carbon loss in maintaining its dry weight over a 24-hour cycle 

of light and shade. Finally, the time course response of photosynthesis under intermittent light 

regimes with different periods of shade and sun can be assessed using the wooden slat 

structure by changing slat dimensions or their distance from the top of the canopy. Such an 

investigation should be performed with frequent photosynthetic responses measured during the 

illuminated and shade phases to correctly describe the processes of induction and deactivation 

through simple mathematical equations. It is necessary to measure Pn rate changes under 

natural light conditions, rather than the artificial light device of the photosynthesis equipment, 

to maintain leaf readings in similar light conditions to the rest of the plant. Functions obtained 

from this investigation could be included to correct abnormalities of the Pg sub-model under 

intermittent light regimes. 
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In the meantime a simple model using PAR interception and herbage RUE would be practical 

to predict maximum potential rates of understorey plants in shade, such as that suggested by 

Schwanke (1996) and Wilson and Ludlow (1991). The RUE model integrates changes in 

partitioning rate, root mass changes, maintenance respiration changes and Pn delays. It is also 

more practical than the canopy Pn model, because it requires less instrumentation and less 

knowledge of the environment conditions. However, the RUE model does not allow for 

changes in plant morphology and physiology. The canopy Pn model is a valuable tool for 

suggesting selection traits to optimise production of various pasture/crops types under shade. 

An accurate model to predict understorey yield in agroforestry would be useful to assist 

farmers and scientists to screen 'shade tolerant' crops and to guide forestry management 

practices over time. Furthermore, by combining research results from appropriate artificial 

shade methodology with such a model, it would be easy and inexpensive to simulate different 

agroforestry scenarios, perform risk analyses and choose the most sustainable agroforestry 

system for each situation. 

7.6- Summary and conclusions 

Lucerne is a high potential crop for agroforestry in dryland areas. Its performance under 50% 

shade (10 t DM ha- 1 y( I) was better than most of the other temperate pastures referred to in the 

literature without any fertilizer inputs. This was mainly because lucerne showed high leaf 

photosynthetic activity for PPFD levels greater than 1000 ~lmol photons m-2 
S-l and because of 

its canopy architecture, which allowed light penetration deep within the canopy. Lucerne 

persistence under shade was shown in this and previous research, provided careful 

management practices, although there was an apparent remobilisation of carbohydrates to 

shoots under shade from the young crop that may diminish over time, lucerne has survived at 

this site for over J 0 years. 
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The use of artificial shade structures was appropriate to simulate trees shade effects on plants. 

The wooden slatted structure more closely resembled the complete physical radiation. 

environment (radiation flux, spectral composition and temporal patterns) of the agroforestry 

system than shade cloth. However, the advantage of slats over cloth was only expressed in 

morphological plant responses for lucerne. This legume, when grown under the intermittent 

treatments had a potential yield equivalent to those under the continuous shade regime. Plant 

response differences under cloth and slatted structures may occur at different PPFD 

transmissivities. Nevertheless, the crop responses might be different for other species with 

more asymptotic light response curves or lower saturation points and with a distinct frequency 

of sun/shade fluctuations. The ideal canopy grown under intermittent regimes of 50% shade 

would be morphologically like plants in full sunlight in order to maximize photosynthesis 

during the illuminated period. In addition, this crop would require biochemical adaptations to 

slow the deactivation of photosynthesis during the shade phase and accelerate the recovery 

(induction) during the illuminated period under trees or slats. 

It is possible to predict crop yield under continuous and intermittent shade regimes, such as 

that found in agroforestry systems, using the classical canopy photosynthesis model published 

in the literature for full sunlight conditions. The adjustments performed in this model allowed 

solving the time-scale problem of the intermittent light regimes. Further attention must be 

addressed to the overestimations in maintenance respiration and partitioning rate between 

shoots and roots under shade and the intermittency light effect on leaf photosynthetic activity, 

before the canopy photosynthesis model is used to predict accurately the understorey yield in 

agroforestry areas. 

The following conclusions resulted from this research: 

• The wooden slats structure artificially mimic better the agroforestry radiation 

environment than the shade cloth. 
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• Radiation periodicity had little influence on lucerne crop responses at intermediate 

shade levels. The amount of PPFD and the spectral composition had the most 

important effect on crop growth and morphology. 

• Canopy architecture in lucerne was unchanged by radiation flux, periodicity and 

spectral composition. 

• Lucerne has a high yield potential to grow in agroforestry areas if well managed for 

long persistence. 

• The canopy photosynthesis model require further adjustment in canopy respiration, 

partitioning of carbohydrates and light intermittency effect on leaf photosynthesis to 

accurately predict the yield of understorey plants in agroforestry systems. 
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Appendices 

Appendix 1- Daily course of global solar radiation (MJ d- 1
) in full sunlight 

conditions for the FSC experiment at Canterbury, New Zealand. Data were 
collected between December 1998 and June 1999. 
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Appendix 2- Mean coefficient of the slope (RUE) calculated from the linear equation 
plotted in Figure 3.12 for irrigated and dryland conditions. The slope of the linear 
regression is an estimation of the radiation use efficiency (RUE). The coefficient of 
determination (R 2) and standard errors (SE) for each coefficient is also indicated. 
Regression lines are forced through the origin. 

Treatment-Rotationt R2 Slope (RUE) SE (RUE) 

---g shoot DM MJ (PARY'---
Open irrigated- 1 0.97 0.965 0.1356 
Open irrigated- 2 0.99 1.050 0.0548 
Open irrigated- 3 0.99 1.290 0.0689 
Open irrigated- 4 0.97 1.130 0.1029 

Cloth irrigated- 1 0.95 1.833 0.3254 
Cloth irrigated- 2 0.98 1.707 0.1564 
Cloth irrigated- 3 0.99 1.550 0.0867 
Cloth irrigated- 4 0.99 1.407 0.0362 

Slats irrigated- 1 0.96 1.547 0.2465 
Slats irrigated- 2 0.99 1.360 0.0556 
Slats irrigated- 3 0.96 1.520 0.1682 
Slats irrigated- 4 0.98 1.523 0.1057 

Open dry- 1 0.99 0.917 0.0367 
Open dry- 2 0.99 0.857 0.0362 
Open dry- 3 0.97 1.062 0.1029 
Open dry- 4 0.98 1.113 0.0783 

Cloth dry- 1 0.98 1.750 0.2053 
Cloth dry- 2 0.99 1.523 0.0489 
Cloth dry- 3 0.96 1.647 0.1718 
Cloth dry- 4 0.99 1.463 0.0839 

Slats dry- 1 0.97 1.597 0.2049 

Slats dry- 2 0.99 1.250 0.0391 

Slats dry- 3 0.92 1.362 0.2058 

Slats dry- 4 0.98 1.487 0.0981 

Rot.l Rot. 2 Rot. 3 Rot. 4 
SEM* 0.0448 0.0469 0.0453 0.0214 

F probability 

Water 0.780 0.0964 0.615 0.988 

Light <0.001 <0.001 <0.001 <0.001 

Water*light 0.587 0.796 0.063 0.319 

t Rotation lengths (1-4) are indicated in Table 3.4;* SEM:::: standard error of means for light 
effect. 



Appendix 3- Lucerne grazing parameters and sheep performance in open field and under trees over the experimental period at the 
Lincoln University agroforestry area. Plant data are averages of 3 reElicates and sheeE Eerformance data are means of the flock. 

Treatment Date* Plant Pre- Post Stocking Grazing 
Stage grazing grazing rate days 

ko DM ha· l d· l hd ha·1 
0 

Tree lucerne 27Nov 99 Bud 2955.33 1279.25 16.67 128.33 
Open lucerne 27Nov 99 Bud 3426.33 1371.50 21.67 166.83 

Tree lucerne 15Feb 00 Bud 1836.17 1420.96 18.33 128.33 
Open lucerne 15Feb 00 Flower 2982.33 1676.50 21.67 151.67 

Tree lucerne 27Apr 00 Veg. 1001.17 410.42 10.83 67.17 
Open lucerne 27Apr 00 Veg. 1509.58 857.49 16.67 103.33 

Tree lucerne 27Nov 00 Bud 2525.17 868.33 16.39 122.91 
Open lucerne 27Nov 00 Bud 5088.00 1735.00 27.78 208.38 

Tree lucerne IOJan 01 Bud 1898.33 365.50 15.83 114.00 
Open lucerne 10Jan 01 Flower 4176.67 2282.67 23.33 168.00 

Tree lucerne 27Mar 01 Flower 1288.92 314.90 10.83 32.50 
Open lucerne 27Mar 01 Flower 3204.58 1715.00 26.67 133.33 

Tree lucerne Averages 1917.51 776.56 14.81 98.87 
Open lucerne 3397.92 1606.36 22.96 155.26 

Tree lucerne Stdev 733.229 488.370 3.195 39.883 
012en lucerne 1203.290 470.453 4.002 35.518 
* Date ofliveweight measurement 

Plant Bulk Growth 
height density rate 

cm mgcm ·3 kgDM 
ha- I d- I 

61.67 0.48 68.73 
45.45 0.75 79.68 

53.60 0.34 44.78 
52.13 0.57 72.74 

27.93 0.36 19.63 
35.12 0.43 29.60 

61.82 0.41 60.12 
52.42 0.97 121.14 

70.00 0.27 54.24 
65.00 0.64 119.33 

41.11 0.31 18.15 
65.67 0.49 45.13 

52.69 0.36 44.28 
52.63 0.64 77.94 

15.565 0.073 21.158 
11.675 0.197 37.478 

Sheep 
Liveweight gain 

kg hd· l d· l ko ha-l dol 
0 

0.162 2.70 
0.234 5.07 

0.162 2.97 
0.262 5.68 

0.112 1.21 
0.160 2.67 

0.186 3.05 
0.211 5.86 

0.261 4.14 
0.269 6.27 

0.140 1.52 
0.239 6.37 

0.171 2.60 
0.229 5.32 

0.0510 1.078 
0.0397 1.381 

Pasture 
allowance 

kgDM 
hd- I d- I 

4.12 
3.68 

2.44 
3.36 

1.81 
1.78 

3.67 
4.36 

3.43 
5.11 

1.68 
1.69 

2.86 
3.33 

1.024 
1.376 

tv 
0\ 
tv 
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Appendix 4- Zenith angle formula according to PAR Ceptometer Operator's Manual 
(Decagon, Pullman, Washington). The Equation was used to calculate solar angle 
elevation (90 - zenith angle) in Lincoln, New Zealand (430 30' Sand 172 0 28' E). 

8z = arcos* [sin L * sin D + cos L * cos D " cos 0.2618 " (t-t,,)] 

Where L is the latitude (in the Southern hemisphere, L is negative), D is the solar 
declination, t is the time and to is the time of solar noon. The factor 0.2618 converts hours 
to radians. Time t is used in hours (standard local time). Solar declination is calculated 
from: 

D = arcsin * [0.39785 * sin * [4.869 + 0.0172 * J + 0.03345" sin" (6.224 + 0.0172 * J)] 

Where J is the day of the year in Julian calendar. The time of solar noon is calculated 
from: 

to = 12 - LC - ET 

Where LC is the longitude correction and ET is the equation of time. LC is +4 minutes or 
+ 1 /15 hour for each degree east of the standard meridian and -1/1 5 hour for each degree 
west of the standard meridian. New Zealand is about 7.7 degrees west of the closest 
standard meridian of 180 degrees. The equation of time is a 15 to 20 minute correction 
which depends on the day of the year and it can be calculated from: 

ET = [-104.7" sin"{ + 596.2 * sin2"{ + 4.3" sin3"{ - 12.7, sin4"{ -429.3, cos"{ -2.0" cos2"{ + 
19.3 * cos3"{]/3600 

Where "{ = (279.575 + 0.986 " J) ., rc/180. 
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Appendix 5- Nitrogen and minerals (P, Mg, Ca and K) content in lucerne leaves and 
stems collected at bud stage in 16th February 1999 in Canterbury, New Zealand. 
Sam2les were harvest from re2licates 1 and 3. Values are eXEressedas % of dry matter. 
Treatment Water Re~. Sam~le N P Mg Ca K 

Full sun Irrigated 1 Leaf 5.49 0.36 0.29 2.16 4.03 

Stem 1.69 0.25 0.12 0.64 4.24 

Shade cloth Irrigated Leaf 5.95 0.41 0.28 2.22 4.12 

Stem 2.01 0.21 0.10 0.68 4.34 

Wood-slats Irrigated Leaf 5.74 0.37 0.28 2.31 4.65 

Stem 2.00 0.25 0.12 0.71 4.34 

Full sun Non-Irr. Leaf 5.14 0.31 0.35 1.92 4.41 

Stem 1.88 0.19 0.15 0.70 3.06 

Shade cloth Non-Irr. Leaf 5.53 0.36 0.39 2.22 3.35 

Stem 1.78 0.21 0.13 0.70 3.46 

Wood-slats Non-Irr. 1 Leaf 5.76 0.37 0.37 2.00 4.10 

Stem 1.86 0.20 0.14 0.69 3.71 

Full sun Irrigated 2 Leaf 5.45 0.40 0.34 2.09 4.20 

Stem 1.72 0.25 0.12 0.62 3.67 

Shade cloth Irrigated 2 Leaf 5.73 0.39 0.34 2.08 4.43 

Stem 2.06 0.23 0.11 0.68 4.69 

Wood-slats Irrigated 2 Leaf 5.59 0.41 0.36 2.08 4.45 

Stem 2.12 0.25 0.13 0.64 4.39 

Full sun Non-Irr. 2 Leaf 5.09 0.32 0.30 1.78 5.01 

Stem 1.83 0.20 0.12 0.66 3.58 

Shade cloth Non-Irr. 2 Leaf 5.33 0.33 0.36 1.86 3.96 

Stem 1.96 0.25 0.15 0.71 4.13 

Wood-slats Non-Irr. 2 Leaf 5.62 0.37 0.36 2.04 4.01 

Stem 1.84 0.25 0.15 0.72 4.67 
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Appendix 6- Proportion of leaves and stems in lucerne shoots and weighted average of 
nitrogen, total minerals (P, Mg, Ca and K) and total shoot carbohydrates (CHO) content 
for replicates 1 and 3 collected at bud stage in 16th February 1999 in Canterbury, New 
Zealand. Values are ex£ressed as % of dry matter. 
Treatment Rep. Water Leaf Stem Total Total Total 

nitrogen minerals CHO* 
-_______ 0/0 _______ ------Weighted average (% of DM)------

Full sun Irrigated 38.74 61.26 3.\6 5.86 90.98 

Shade cloth Irrigated 41.41 58.59 3.64 6.04 90.32 

Wood-slats Irrigated 41.35 58.65 3.54 6.32 90.13 

Full sun 1 Non-Irr. 47.81 52.19 3.44 5.47 91.08 

Shade cloth 1 Non-Irr. 44.94 55.06 3.46 5.32 91.22 

Wood-slats Non-Irr. 44.91 55.09 3.61 5.69 90.71 

Full sun 3 Irrigated 40.96 59.04 3.25 5.62 91.13 

Shade cloth 3 Irrigated 43.84 56.16 3.67 6.38 89.95 

Wood-slats 3 Irrigated 43.08 56.92 3.61 6.23 90.16 

Full sun 3 Non-Irr. 46.27 53.73 3.34 5.88 90.78 

Shade cloth 3 Non-Irr. 47.23 52.77 3.55 5.84 90.61 

Wood-slats 3 Non-Irr. 47.09 52.91 3.62 6.25 90.13 

. Treatment Water Total CHO (% ) 
Mean St. Dev. 

Full sun Irrigated 91.05 0.11 

Shade cloth Irrigated 90.\4 0.26 

Wood-slats Irrigated 90.\4 0.02 

Full sun Non-Irr. 90.93 0.2\ 

Shade cloth Non-Irr. 90.91 0.43 

Wood-slats Non-Irr. 90.42 0.41 

* Total shoot CHO was estimated by 100% DM - % total nitrogen - %total minerals 



Appendix 7- Observed and predicted carbohydrate yields (kg ha- 1
) of lucerne in the full sunlight regime for two successive 

summer rotations and at different regrowth periods in Canterbury, New Zealand. Root mean square deviation (RMSD) was 
calculated for both rotations to test the accurac~ of the model. 

Light Water Rotation Days Carbohydrate yield (kg ha-!) 

regIme status after grazing Observed Predicted (Predicted-Observed)'l' 

Full sunlight Irrigated I 11 981.27 1090.47 11924.64 

I 16 1563.15 1637.85 5580.09 

I 22 2349.68 2362.63 167.70 

Full sunlight Non-irrigated' I 1 1 981.27 1020.83 1564.99 

I 16 1538.74 1621.64 6872.41 

I 22 2126.43 2411.22 81105.34 

RMSD 133.68 

Full sunlight Irrigated II 7 480.24 619.21 19312.66 

II 14 1056.47 1489.54 187549.62 

II 21 2124.81 2470.88 119764.44 

II 28 2838.51 2994.04 24189.58 

Full sunlight Non-irrigated II 7 315.12 392.28 5953.67 

II 14 860.20 986.00 15825.64 

II 21 1644.00 1759.34 13303.32 

II 28 2265.35 2307.85 1806.25 

RMSD 220.14 

N 
0\ 
0\ 



Appendix 8- Observed and predicted carbohydrate yields (kg ha- 1
) of lucerne in the shade cloth regime for two successive 

summer rotations and at different regrowth periods in Canterbury, New Zealand. Root mean square deviation (RMSD) was 
calculated for both rotations to test the accurac~ of the model. 

Light Water Rotation Days Carbohydrate yield (kg ha- I
) 

regIme status after grazing Observed Predicted (Predicted-Observed)2 

Shade cloth Irrigated I 11 540.19 527.46 162.05 

I 16 1222.23 746.54 226280.98 

I 22 1856.87 1056.63 640384.06 

Shade cloth Non-irrigated I 1 1 616.25 506.69 12003.39 

I 16 1117.22 772.45 118866.35 

I 22 168 \.30 1135.61 297777.58 

RMSD 464.66 

Shade cloth Irrigated II 7 246.87 290.89 1937.76 

II 14 496.80 608.00 12365.44 

II 21 1265.55 1059.33 42526.69 

II 28 1878.49 1279.19 359160.49 

Shade cloth Non-irrigated II 7 294.71 207.09 7677.26 

II 14 605.67 450.37 24118.09 

II 21 1140.01 810.96 108273.90 

II 28 1527.97 1044.78 233472.58 

RMSD 314.15 

N 
0\ 
-....l 



Appendix 9- Observed and predicted carbohydrate yields (kg ha- I
) of lucerne in the wooden slats regime for two successive 

summer rotations and at different regrowth periods in Canterbury, New Zealand. Root mean square deviation (RMSD) was 
calculated for both rotations to test the accurac~ of the model. 

Light Water Rotation Days Carbohydrate yield (kg ha- I
) 

regIme status after grazing Observed Predicted (Predicted-Observed)'; 

Wooden slats Irrigated I 1 1 448.65 308.43 19661.65 

I 16 1062.07 420.12 412099.80 

I 22 1684.98 612.25 1150749.65 

Wooden slats Non-irrigated I 1 1 574.54 339.85 55079.40 

I 16 1150.36 484.39 443516.04 

I 22 1680.23 710.14 941074.61 

RMSD 709.72 

Wooden slats Irrigated II 7 254.53 274.91 415.34 

II 14 576.53 547.77 827.14 

II 21 1167.31 853.85 98257.17 

II 28 1559.55 1086.99 223312.95 

Wooden slats Non-irrigated II 7 264.35 196.75 4569.76 

II 14 522.87 416.12 11395.56 

II 21 996.25 667.63 107991.10 

II 28 1355.93 896.23 211324.09 

RMSD 286.81 

N 
0\ 
00 
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