
Visualising Class Cohesion with Virtual Worlds

Neville Churcher Warwick Irwin Ron Kriz

Software Visualistion Group, Department of Computer Science,
University of Canterbury, Private Bag 4800,

Christchurch, New Zealand

VT-CAVE,
Virginia Tech,

Blacksburg VA24061
E-mail:{neville,wal }@cosc.canterbury.ac.nz, rkriz@vt.edu

Abstract

An understanding of cohesion is an important factor in soft-
ware design. However, cohesion is difficult to quantify, par-
ticularly for OO, and attempts to develop metrics have had
limited success. We advocate the use of visualisation tech-
niques to provide a richer view of cohesion than is possible
with a single numeric value. In this paper we describe the
application of ANGLE for 3D graph layout and the use of
XSLT transformations both to select the ingredients for vi-
sualisations and to determine their presentation details. We
discuss our experiences with the use of virtual worlds as a
presentation medium both on the desktop and in immersive
environments and report early results from ongoing empiri-
cal work.

Key words: software visualisation, cohesion, VRML,
virtual reality, software engineering

1. Introduction

Decomposition is one of the oldest and most fundamen-
tal techniques employed in software engineering. It results
in a “good” system design which consists of relatively inde-
pendent components which only interact in order to achieve
system goals.

During analysis we model a real-world problem by
breaking it up into successively smaller, more manageable,
sub-problems until these are small enough to be represented
accurately in our preferred notation. The problem is then
defined by the representations of the sub-problems and the
relationships between them. Similarly, our design and sub-
sequent implementation will also consist of a number of re-
lated parts.

Although the terms used to denote the parts (sub-
systems, modules, classes, components,. . .) and relation-
ships have changed over the years the benefits of a modular
system have endured. The basic idea is simple: put things

that belong together in one place. This leads to indepen-
dent ‘pluggable’ modules which are easy to develop, main-
tain and replace and which present simple interfaces to their
clients.

As always, there is a catch. There is no single correct
way to perform decomposition and different choices can
lead to different designs with very different properties. For
example, techniques based on decomposition with respect
to data flow tend to produce different results to those of
techniques based on decomposition with respect to control.

Concepts such as information hiding [25] help address
the problem of deciding what should be in a module. Good
choices lead not only to ‘better’ modules but also to simpler
relationships between them.

A related problem is assessing the degree to which each
module’s contents ‘belong together’ and the relative inde-
pendence of modules. Cohesion is a measure of internal
module strength while coupling describes the strength of
inter-module relationships. They are not independent—
coupling is lowered when communicating activities are lo-
cated in the same module. Cohesion and coupling are an
ingredient in many design techniques [29, 24].

The advent of object-oriented software development has
brought many benefits but has added further complexity to
the concepts of cohesion and coupling by increasing the
number of available component and relationship types. For
example, in conventional languages such as Pascal or C the
dominant relationship isprocedure invokes procedure. In
OO languages such as Java or C++ components may be meth-
ods, classes or packages and relationships include inheri-
tance and containment in addition to invocation.

Coupling and cohesion for OO systems have been dis-
cussed extensively [1, for example] and underlie design
heuristics such as the Law of Demeter [20].

Only for very small systems is a subjective assessment
of the levels of cohesion possible and sufficient. Measures
which are more objective and amenable to automated col-
lection are required for systems of realistic size. Cohesion
is multi-faceted, involving complex interactions between

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35461586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

many components, and it is not possible to represent it ade-
quately with quantitative metrics without significant loss of
information.

In our experience, software visualisation is a better way
to handle problem domains having many variables, com-
plex interactions and large data volumes. Software visu-
alisation involves applying information visualisation prin-
ciples to the software engineering domain. In previous
work [7, 14, 6, 18] we have explored the use of 3D vir-
tual worlds to deliver visualisations to the desk top via
VRML [5]. We are primarily interested in “just in time”
visualisations, requested and configured under the control
of the user, rather than professional quality visualisations
requiring time and expertise not normally available.

In this paper we develop 3D graph-based visualisations
which expose cohesion. The bindings which give rise to
cohesion are edges and aspects of cohesion may be inferred
directly from the graph layout. The ANGLE layout engine is
used and XSLT transformations [19] describe the mappings
from the software system to the graph model and from the
graph model to the final visualisation.

The remainder of this paper is structured as follows. In
the next section we discuss previous cohesion metrics. Our
visualisation strategy is introduced in section 3 and its ap-
plication to the visualisation of class cohesion is described
in section 4. Some results are presented in section 5 and in
section 6 we discuss the use of immersive environments to
go beyond desk-top presentation. Finally, our conclusions
and future directions are presented in section 7.

2. Measuring coupling and cohesion

Software metrics have been developed for measuring
many aspects of software artifacts and processes [15, 13]
including coupling and cohesion.

Measures of coupling typically involve inter-module
quantities such as fan-in and fan-out while measures of co-
hesion are generally derived from intra-module quantities.
Ideally, metrics should be developed in the context of a
framework which embodies the conceptual model of the
paradigm [9, 4, for example] but this has proved to be an
elusive goal.

Yourdon and Constantine identified several kinds of co-
hesion and coupling and used numeric values to indicate
the desirability of each [29]. Strictly speaking, this scale is
ordinal even though the values are numeric. Cohesion mea-
sures based on program slices have been developed [23, for
example].

The most commonly used suite of OO metrics, proposed
by Chidamber and Kemerer, includes three relevant met-
rics: RFC (method invocation), CBO (data and object use)
and LCOM (lack of cohesion of methods). Precise defini-
tion and interpretation of these metrics has proved not to

be straightforward [8]. LCOM has been particularly prob-
lematic [4, 16, 15] and a number of alternatives have been
proposed.

These include LCOM* which ranges from 0 for perfect
cohesion (each method uses all properties) to 1 for the case
where each method accesses only one property [16].

An alternative approach was suggested by Hutchens and
Basili [17]. They were interested in the large-scale mor-
phology of systems written in conventional languages. By
considering data bindings (triples(fi, dk, fj) where data
itemdk is accessible to both functionsfi andfj) they were
able to define a dissimilarity measure between functions.

This allowed the application of statistical clustering tech-
niques [12, for example]. The resulting dendrograms are
trees showing how the most closely related (i.e. least dis-
similar) functions form clusters which in turn interact with
other clusters to form larger clusters until finally the en-
tire system becomes a single cluster. Measures of cluster
strength and distinctness are available.

The interpretation of the initial clusters, near the leaves
of the dendrogram, suggests features such as ADTs where
a group of functions interacts strongly with core data struc-
tures. Towards the middle of the dendrogram the coarser
system structure is revealed while at the root all systems
appear as a single blob.

Hutchens and Basili identified three characteristic ‘fin-
gerprints’ from their experimental work.

planetary several subsystems ‘orbiting’ a central core.

black hole dominant cluster gradually accretes elements.

gas cloud shows no tendency to cluster.

Similar ideas have been explored for object oriented sys-
tems. Durnota and Mingins proposed a coherence metric
from which dendrograms could be constructed [11]. An-
other application is the analysis of legacy code in order to
identify structures which might become classes when mi-
gration to an object oriented version occurs [27]. Although
these ideas are intuitively appealing they appear not to have
been widely adopted.

In many ways, a class is a conventional program in
microcosm—with properties corresponding to global data
items and methods corresponding to functions which use
global data and invoke each other.

Defining and measuring class cohesion involves multi-
ple aspects. The internal cohesion of methods is analogous
to cohesion of functions in conventional languages and af-
fects the coupling via invocation of other methods. Simi-
larly, the use of class properties by methods is analogous to
the access of global data by functions in conventional lan-
guages. Although encapsulation and inheritance ensure that
there is no truly global data, the basic concept is the same.
Indirect coupling arises between methods which access the

2

same properties. Additionally, the invocation of methods
within the same class lowers the coupling to other classes.

Our motivation stems from Hutchens and Basili’s ap-
proach of looking at a system as a whole and interpreting
the complex picture which results. The alternative is to de-
fine specific metrics, with corresponding information loss,
and attempt to find empirical evidence for their relevance.
Rather than using statistical clustering, we apply visualisa-
tion techniques in order to highlight the cohesion of classes.
If we can develop OO counterparts of fingerprints then these
may be useful to software engineers.

3. Visualisation with ANGLE

The conventional visualisation pipeline involves several
stages [26]. Data capture and transformation are followed
by the computation of geometry and finally the rendering
of the images. In our previous work we have shown how
this pipeline approach may be extended in the software vi-
sualisation domain [7, 14, 6, 18]. In particular, we have ex-
plored the potential uses of XML [21] both for representing
the products at each stage of the pipeline and for specifying
the sequence of transformations which occur.

The pipeline used in our current work is shown in Fig-
ure 1. A central component is the ANGLE graph layout en-
gine [6] which provides reliably “nice” layout of 3D graphs
using a force-based approach. Nodes repel each other as
if they were charged particles while edges act like springs
which pull connected nodes towards each other. Parameters
selected by the user include the functional form and strength
of the forces which, in turn, influence the equilibrium state
which constitutes a “good” layout [10].

The current version of ANGLE is strongly based on XML
technology. Its input and output files are in attributedNGML

format—an XML vocabulary in which the graph structure
is represented by node and edge elements—with the out-
put files augmented with layout information. More expres-
sive XML-based vocabularies for graph representation and
exchange are being developed [28, 3]. However,NGML is
currently sufficient for our needs in this domain and we can
make use of XSLT transformations in order to translate to
and from such alternative representations. We believe that
the separation of a model from its many possible views is at
least as important in visualisation as it is in other areas of
software engineering.

Designing a visualisation is not an exact science and
there are generally competing solutions. The key activity
is the establishment of mappings between features in the
system and elements of the display presented to the user.

Software visualisation requires the construction of artifi-
cial geometry, nodes and edges in our case, based on seman-
tics extracted from the source data by appropriate mappings.
ANGLE provides a flexible and extensible approach to spec-

ifying and applying such mappings. A given data source
may be passed through any number of pre-filters, each of
which is an XSLT transformation determining which ele-
ments and relationships will be included in the structure
and semantics of the graph which underlies the visualisa-
tion. Similarly, post-filters transform the graph layout into
the desired form for presentation. Figure 1 shows a single
data source with 2 pre-filter and 4 post-filter transforma-
tions (i.e. two different graphs, each presented in 2 different
ways).

4. Visualising cohesion

It is perhaps not surprising that such a multi-faceted con-
cept as cohesion has resisted representation by a single nu-
meric metric. Loss of information is inevitable when multi-
faceted data is aggregated into a single value.

We contend that it is preferable to deliver a holistic “big
picture” representation of the class structure which can be
readily interpreted by software engineers. Since cohesion
arises from the bindings among the class components we
should try to visualise these explicitly and use them to as-
sess cohesion levels.

Of course, quantitative metrics may be included in such
views. The use of 3D virtual worlds enables more variables
to be included in our visualisations. Thus, the size, shape
or colour of symbols can be used to represent the values of
numeric metrics.

The basic steps in visualisation construction are:

1. Form graph model by extracting node and edge data
from source data

2. Compute 3D graph layout

3. Use semantic information to add presentation detail

corresponding respectively to the pre-layout filter, layout
and post-layout filter stages in Figure 1.

The source data for the pipeline is represented by the
symbol at the left of the figure. In our work, this typi-
cally arises from the use of yakyacc-based static analysis
tools [18]. The details of the data format are defined by an
appropriate Document Type Definition (DTD). For exam-
ple, the data used to produce the worlds shown in this paper
is expressed in terms of classes, which have properties and
methods, which in turn use properties (Figure 2).

XSLT stylesheets are used in the transformation from the
specific source data format to the more general attributed
NGML input for ANGLE. One considerable advantage of
this approach is that a single source data set may be used un-
changed in multiple visualisation pipelines, each of which
will emphasise different aspects of the data.

Table 1 shows some typical mappings between the el-
ements of the source data and those of the corresponding

3

 style NGML

 NGML

Angle

XSLT

 style
 NGML

Angle

XSLT

 style XSLT

 style

XSLT

 NGML

 style
XSLT

 style XSLT

 WRL

 WRL

 WRL

 WRL

 config

 config
source

Pre-layout
filter

Post-layout
filter

Layout

Figure 1. ANGLE in the visualisation pipeline

...
<class>

<name>Customer</name>
<property name="address"/>
<method signature="getAddress" accessMode="public">

<name>getAddress</name>
<use property="address"/>

</method>
..
</class>

Figure 2. Class description format

source NGML

γc class7→node
γp property7→node
γm method7→node
γcp class-has-property7→edge
γcm class-has-method7→edge
γmp method-uses-property7→edge

Table 1. Pre-filter mappings

NGML VRML
δc node (classNode)7→purple cylinder
δp node (propertyNode)7→green cube
δm node (methodNode)7→red sphere
δcp propertyEdge7→yellow cylinder
δcm methodEdge7→purple cylinder
δmp useEdge7→cyan cylinder

Table 2. Post-filter mappings

attributedNGML file. The nodes and edges resulting from
the selected mappings will participate in the layout compu-
tation and be available to subsequent pipeline stages. The
worlds shown in this paper represent uses as edges (γmp)
between method (γm) and property (γp) nodes. Some in-
clude nodes representing the class itself (γc) and edges con-
necting it to properties (γcp) and methods (γcm).

Applying the XSLT file corresponding to some pre-filter
mappingΓ yields anNGML description of the graph, to-
gether with various other data which have been attached
as attributes of node and edge elements. Such attributes
are ignored by ANGLE and simply pass out the other end
where they are available to transformations further down the
pipeline. In this example, three separate kinds of node and
three kinds of edge are present.

ANGLE then generates a 3D layout consistent with the
configuration data (algorithm, terminator and iteration pa-

4

<graphset>
<graph>

<title>The Customer Class</title>
<nodes>

<node nodetype="classNode">
<name>Customer</name>

</node>
<node nodetype="propertyNode"

accessmode="private">
<name>address</name>

</node>
<node nodetype="methodNode"

nid="getAddress"
accessmode="public">

<name>getAddress</name>
</node>

...
</nodes>
<edges>

<edge edgetype="propertyEdge">
<from>Customer</from>
<to>address</to>

</edge>
<edge edgetype="methodEdge">

<from>Customer</from>
<to>getAddress</to>

</edge>
<edge edgetype="useEdge"

usetype="unspecified">
<from>getAddress</from>
<to>address</to>

</edge>
...

</edges>
</graph>

</graphset>

Figure 3. Attributed NGML

rameters) provided. The format of the output is essentially
the same as that of Figure 3 with the addition of coordinate
elements for each node.

A given outputNGML file may then be further trans-
formed in various ways, as specified by XSLT files corre-
sponding to post-filter mappings, to produce VRML worlds
or other formats. For example, Table 2 contains post-filter
mappings used to produce worlds shown in this paper. Note
that nodes and edges which participate in the layout com-
putation will not necessarily appear in the presentation un-
less corresponding mappings are used. Although not shown
here, it is straightforward to add further mappings (such
asaccessmode(public)7→ transparency 0.5). In this way,
changes to presentation details, such as colour and shape of
symbols, are neatly separated from the structural data about
the underlying graph.

For convenience, we define some frequently-used sets of
mappings (Table 3) used in the pre- and post-filter transfor-
mations reported in this paper. Clearly, many other indi-
vidual mappings and combinations are possible. These are
straightforward to generate.

Γ1 {γc, γp, γm, γcp, γcm, γmp}
Γ2 {γc, γp, γm, γcp, γmp}
Γ3 {γp, γm, γmp}
∆1 {δc, δp, δm, δcp, δcm, δmp}
∆2 {δc, δp, δm, δcp, δmp}
∆3 {δp, δm, δmp}

Table 3. Sets of mappings used in this paper

5. Results

Figure 4 shows four low cohesion situations for a class
(represented by the purple cylinder) with three properties
(green cubes) and three methods (red spheres). Edges rep-
resent the relationshipsclass-has-property(δcp), class-has-
method(δcm) andmethod-uses-property(δmp). Each figure
is a snapshot of a VRML world and is labelled with the cor-
responding pre- and post-filter mappings.

Figure 4(a) shows the case where no method uses any
property. The graph is symmetric, with the class node in
the centre, and is characterised by a radial fingerprint rem-
iniscent of akina (sea urchin). Properties which are never
used are likely to be candidates for removal during design
review. These will not be highlighted by metrics such as
LCOM and it is valuable to be able to see these readily.

Now let us consider the effect of addingmethod-uses-
property edges to our visualisations. Figures 4(d), 4(b)
and 4(c) show three visualisations of the case where each
method uses one property.

In Figure 4(b) all edges both contribute to the layout and
are represented explicitly sinceγcm ∈ Γ1 while in Fig-
ure 4(c) all contribute to the layout butclass-has-method
edges are not present in the world sinceδcm 6∈ ∆2.

In Figure 4(d) the edges representingclass-has-method
relationships neither contribute to the graph layout nor are
they present in the world sinceγcm 6∈ Γ2.

The effects of more than one method accessing a prop-
erty and more than one property being accessed by a method
are shown in Figure 5. In this example all methods access
at least one property.

Figures 5(a) and 5(b) both includeγcm but the corre-
sponding edges are not rendered in Figure 5(b) sinceδcp 6∈
∆2. The 3-fold symmetry arising from the three methods
each accessing the same property and the two-fold symme-
try arising from the use of two properties by one method are
clearly visible in each case. The presence of two clusters of
accesses is highlighted in Figure 5(c) where the∆3 post-
filter has suppressed the class node and all non-use edges.

Figure 5(d) results from transformations which exclude
γcm—this generally leads to more “open” layouts.

At the opposite end of the class cohesion spectrum lies
perfect cohesion, where each method uses each property.

5

(a) Γ1∆1, 0 uses (b) Γ1∆1, 3 uses (c) Γ1∆2, 3 uses (d) Γ2∆1, 3 uses

Figure 4. Low class cohesion

(a)Γ1∆1 (b) Γ1∆2 (c) Γ1∆3 (d) Γ2∆1

Figure 5. Multiple use participation

(a)Γ1∆1 (b) Γ1∆3 (c) Γ2∆1 (d) Γ3∆3

Figure 6. Perfect cohesion (6 properties, 6 methods)

6

(a)Γ2∆1 (b) Γ1∆1 (c) Γ1∆2 (d) Γ1∆3

Figure 7. Separable class

Figure 6 shows 4 presentations of this situation for a class
with 6 properties and 6 methods. In Figure 6(a)Γ1 has in-
cluded in the layout the class node (at the centre of the Fig-
ure) and all associated edges. The same pre-filter has been
used in Figure 6(b), so the overall shape is the same, but∆3

has suppressed the class node and non-use edges. This gives
rise to a more un-cluttered graph since the shape is the same
but fewer edges need be displayed. Whenγcm is removed
(Figure 6(c)) the class node (at left) moves from the centre
but the overall symmetry is maintained. In the perfect cohe-
sion case, symmetry is also maintained if the non-use edges
are omitted from the layout (Figure 6(d))

Perfect cohesion results in highly symmetric polyhedral
structures characterised by a “gas cloud” fingerprint.

One of the primary aims of cohesion and coupling mea-
sures is to guide refactoring activities. In OO this includes
activities such as splitting a class into two or more classes,
combining classes (the reverse of splitting) and moving
properties or methods from one class to another. Figure 7
shows a potentially separable class which has 5 properties
and 5 methods. One pair of properties is used by each of
a pair of methods while the other three properties are ac-
cessed by each of the remaining three methods.

Two clusters are visible—each corresponding to a candi-
date class after refactoring. In general, separable classes are
suggestive of the “planetary system” fingerprint. The class
node connects the clusters in Figures 7(a), 7(b) and 7(c).

However, If the pre-filter mappings for a separable class
do not includeγc, γcp and γcm then more than one con-
nected component will be present. This situation is not gen-
erally welcome in force-based layout as the connected com-
ponents will separate dramatically under the effect of the re-
pulsive force. It is possible to modify the functional form of
the forces to keep separate connected components “nearby”
but other aesthetic issues, such as distortion of the compo-
nents, then arise. A reasonable compromise is illustrated in
Figure 7(d) where the mappings used are such that the class
node and its associated edges participate in the layout but
are omitted in the visualisation.

The examples we have given thus far have been some-
what artificial. Classes encountered in the wild are likely to
be larger and to exhibit more complex interactions between
their properties and methods. Figure 8 shows several visual-
isations of a class selected from the results of our on-going
study of Java software.

Several features are evident. The overall shape is some-
what planetary and open. A number ofkina fingerprints
indicate the presence of several methods which use only a
single property. These are connected by a small number of
common methods (such as those enclosed by the ellipse in
Figure 8(c)) which use multiple properties.

Cohesion is far from “perfect”, since the structure is
rather open, but it is not clear whether separation is war-
ranted. Design review should concentrate on thosekina,
such as the pair at the upper- and lower-left of Figure 8(c),
which are weakly connected (i.e. have few shared methods).

One method (rectangle in Figure 8(c)) uses only one
property and is the only user of that property. The radial
strand highlights this feature. This is also clearly visible in
Figure 8(a) where (sinceδcm 6∈ ∆3 andδcm 6∈ ∆3) it ap-
pears as a separate cluster. A separate cluster also appears,
for the same reason, in Figure 8(d)), but is a long way away
from the main cluster since non-use edges do not contribute
to the layout. However, in Figure 8(b) it is much harder to
identify (at the right hand edge) because of the larger num-
ber of edges present. Such a feature indicates a possible
design anomaly or that an unseen ancestor class contains
further users.

Clearly, different mappings emphasize different features
and we do not expect any particular set to be preferable in
all situations. For example, the inclusion ofγcm leads to
more spherically symmetric layouts (Figures 8(a) and 8(b))
which can make it more difficult to spot weakly connected
clusters. However, the flexibility of our approach allows
users to develop rapidly custom visualisations and to com-
pare the differences between alternative representations.

7

(a)Γ1∆3 (b) Γ1∆1

(c) Γ2∆1 (d) Γ3∆1

Figure 8. A “real” class with 7 properties and 26 methods

8

6. Beyond the desktop

In practice, classes can be very large and complex: one
would expect frequently to encounter classes with tens of
properties and hundreds of methods, particularly when in-
heritance is included. Another important aspect is the in-
teraction of software engineers—refactoring is likely to be
based on the outcome of collaborative discussions of arti-
facts such as our visualisations.

When worlds become very large they can become diffi-
cult to navigate and interpret with desktop facilities (typi-
cally a web browser with VRML plug-in). Similarly, as the
number of collaborators increases it becomes more difficult
for them to gather around a VDU. Immersive virtual real-
ity environments such as CAVEs utilise stereo projections
onto multiple surfaces to give users the impression of being
inside the artifact being visualised.

Figure 9(a) shows the basic structure of the CAVE at Vir-
ginia Tech (http://www.cave.vt.edu). Figure 9(b)
shows a snapshot from the CAVE console while the class of
Figure 8 is being displayed. The labelled walls correspond
to the projection surfaces indicate how much of the world is
currently “inside” the CAVE. Figure 9(c) is another snap-
shot from the CAVE console and illustrates how the world
extends beyond the CAVE walls, which are indicated by the
grid lines. CAVE users do not see the walls and grid.

Experiencing these worlds in the CAVE is an impressive
experience and leave us in no doubt that comprehension of
worlds such as these is greatly enhanced. In particular, the
ability to interact with “life-size” artifacts is a significant
advantage.

Although CAVE technology is currently rather expen-
sive, lower-cost and portable alternatives and augmented
reality systems are becoming more affordable and may be
available routinely on the desktop in a few years. Our visu-
alisations have also been used with the MagicBook [2].

7. Conclusions and future work

Our initial results are encouraging. Our pipeline ap-
proach allows us to determine which components and re-
lationships from a data source will be included in a graph
structure, to generate a nice 3D layout of the corresponding
graph and to control the presentation of the resulting visu-
alisation using semantics derived from the original source
data. XSLT transformations combined with ANGLE permit
software engineers to explore not only the content of exist-
ing visualisations but also the creation of new kinds.

Our approach represents explicitly the bindings from
which cohesion arises. A number of characteristic features
have been identified and related to specific cohesion situa-
tions. We believe that our visualisations of class cohesion
complement the conventional metrics-based approach. We

(a) Basic structure

(b) CAVE console snapshot showing walls

(c) CAVE console snapshot

Figure 9. The VT CAVE

9

hope that data from our on-going empirical work allow us
to make more confident predictions about which classes are
most likely to exhibit cohesion anomalies.

Only a small set of mappings has been discussed in this
paper. We will explore others (such asmethod-invokes-
methodedges) in order to learn more about what is neces-
sary for a “realistic” visualisation and to build up our library
of transformations.

Real systems exhibit many complicating factors. Con-
structors and methods such as Java’stoString tend to access
many properties while setters and getters (mutators and ac-
cessors) tend to access only one. Inheritance and overload-
ing are important. By providing a range of mappings we
enable the user to explore the effects of such factors—we
do not expect to find a single form which will be optimal in
all situations.

User studies are needed in order to clarify which visual-
isations are most useful to software engineers.

Virtual and augmented reality environments encourage
and support the collaborative analysis of large complex sys-
tems and we anticipate their increased adoption as part of
the software engineering tool set.

References

[1] E. Berard.Essays on object-oriented software engineering,
volume 1. Prentice Hall, 1993.

[2] M. Billinghurst, H. Kato, and I. Poupyrev. The
MagicBook—moving seamlessly between reality and virtu-
ality. IEEE Computer Graphics and Applications, 21(3):6–
8, May/June 2001.

[3] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and
M. Marshall. Graphml progress report. In Mutzel et al. [22],
pages 501–512.

[4] L. Briand, J. Daly, and J. W¨ust. A unified framework for co-
hesion measurement in object-oriented systems.Empirical
Software Engineering, 3(1):65–117, 1998.

[5] R. Carey and G. Bell.The Annotated VRML 2.0 Reference
manual. Addison-Wesley, 1997.

[6] N. Churcher and A. Creek. Building virtual worlds with
the big-bang model. In P. Eades and T. Pattison, editors,
Information Visualisation 2001, volume 9 ofConferences in
Research and Practice in Information Technology, Sydney,
Australia, Dec. 2001. ACS.

[7] N. Churcher, L. Keown, and W. Irwin. Virtual worlds for
software visualisation. In A. Quigley, editor,SoftVis99 Soft-
ware Visualisation Workshop, pages 9–16, University of
Technology, Sydney, Australia, Dec. 1999.

[8] N. Churcher and M. Shepperd. Comment on “a metrics
suite for object oriented design”.IEEE Trans. Softw. Eng.,
21(3):263–265, Mar. 1995.

[9] N. Churcher and M. Shepperd. Towards a conceptual frame-
work for oo software metrics.ACM SIGSOFT Software En-
gineering Notes, 20(2):69–75, Apr. 1995.

[10] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis.Graph
Drawing: Algorithms for the Visualization of Graphs. Pren-
tice Hall, 1999.

[11] B. Durnota and C. Mingins. Tree-based coherence metrics in
object-oriented design. In C. Mingins, B. Haebich, J. Potter,
and B. Meyer, editors,TOOLS12&9, pages 489–504, Syd-
ney, Australia, 1993. Prentice Hall.

[12] B. Everitt. Cluster Analysis. Edward Arnold, 1993.
[13] N. Fenton and S. L. Pfleeger.Software Metrics: A Rigorous

& Practical Approach. International Thompson Computer
Press, 2nd edition, 1997.

[14] D. Hartley, N. Churcher, and G. Albertson. Virtual worlds
for web site visualisation. InProc APSEC2000, 7th Asia
Pacific Software Engineering Conference, pages 448–455,
Singapore, Dec. 2000. IEEE Press.

[15] B. Henderson-Sellers.Object-Oriented Metrics: Measures
of Complexity. Prentice Hall, 1996.

[16] B. Henderson-Sellers, L. Constantine, and I. Graham. Cou-
pling and cohesion (towards a valid metrics suite for object-
oriented analysis and design).Object Oriented Systems,
3:143–158, 1996.

[17] D. Hutchens and V. Basili. System structure analysis:
clusterings with data bindings.IEEE Trans. Softw. Eng.,
11(8):749–757, 1985.

[18] W. Irwin and N. Churcher. XML in the visualisation
pipeline. In D. D. Feng, J. Jin, P. Eades, and H. Yan, editors,
Visualisation 2001, volume 11 ofConferences in Research
and Practice in Information Technology, pages 59–68, Syd-
ney, Australia, Apr. 2002. ACS. Selected papers from 2001
Pan-Sydney Workshop on Visual Information Processing.

[19] M. Kay. XSLT Programmer’s Reference. Wrox, 2000.
[20] K. Lieberherr and I. Holland. Assuring good style for object-

oriented programs.IEEE Software, pages 38–48, 1989.
[21] D. Martin, M. Birkbeck, M. Kay, B. Loesgen, J. Pinnock,

S. Livingstone, P.Stark, K. Williams, R. Anderson, S. Mohr,
D. Baliles, B. Peat, and N. Ozu.Professional XML. Wrox
Press, 2000.

[22] P. Mutzel, M. Jünger, and S. Leipert, editors.Graph Draw-
ing: 9th International Symposium GD2001, volume 2265 of
Lecture Notes in Computer Science, Vienna, Austria, Sept.
2001. Springer-Verlag.

[23] L. Ott and J. Bieman. Program slices as an abstraction for
cohesion measurement.Information & Software Technol-
ogy, 40(11–12):691–699, Nov. 1998. Special Issue: Pro-
gram Slicing.

[24] M. Page-Jones.The practical guide to structured systems
design. Yourdon Press Computing Series. Prentice Hall, En-
glewood Cliffs., N.J, 2nd edition, 1988.

[25] D. Parnas. On criteria to be used in decomposing systems
into modules.Commun. ACM, 14(1):221–227, 1972.

[26] W. Schroeder, K. Martin, and B. Lorensen.The Visualiza-
tion Toolkit: An Object-Oriented Approach to 3D Graphics.
Prentice Hall, 2nd edition, 1998.

[27] A. van Deursen and T. Kuipers. Identifying objects using
cluster and concept analysis. InProceedings of the 21st In-
ternational Conference on Software Engineering (ICSE’99),
pages 246–255, Los Angeles, 1999. ACM Press.

[28] A. Winter. Exchanging graphs with GXL. In Mutzel et al.
[22], pages 485–500.

[29] E. Yourdon and L. Constantine.Structured design : fun-
damentals of a discipline of computer program and systems
design. Prentice Hall, Englewood Cliffs, N.J., 1979.

10

