

Supporting Multiple Output Devices on an

Ad-hoc Basis in Visualisation

A thesis

submitted in partial fulfilment

of the requirements for the Degree of

Master of Software and Information Technology

at

Lincoln University

By

Xi Zha

Lincoln University

February 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lincoln University Research Archive

https://core.ac.uk/display/35461418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

Abstract of a thesis submitted in partial fulfillment of the requirements for the Degree

of Master of Software and Information Technology

Supporting Multiple Output Devices on an Ad-hoc Basis

in Visualisation

By Xi Zha

In recent years, new visualisation techniques and devices, such as remote visualisation

and stereoscopic displays, have been developed to help researchers. In a remote

visualisation environment the user may want to see visualisation on a different device,

such as a PDA or stereo device, and in different circumstances. Each device needs to

be configured correctly, otherwise it may lead to an incorrect rendering of the output.

For end users, however, it can be difficult to configure each device without a

knowledge of the device property and rendering. Therefore, in a multiple user and

multiple display environment, to obtain the correct display for each device can be a

challenge.

In this project, the focus on investigating a solution that can support end users to use

different display devices easily. The proposed solution is to develop an application

that can support the ad-hoc use of any display device without the system being

preconfigured in advance. Thus, end users can obtain the correct visualisation output

without any complex rendering configuration.

We develop a client-server based approach to this problem. The client application can

detect the properties of a device and the server application can use these properties to

configure the rendering software to generate the correct image for subsequent display

on the device.

II

The approach has been evaluated through many tests and the results show that using

the application is a useful in helping end users use different display devices in

visualisation.

Keywords: Visualisation, Multiple Display Devices, Client-Server based application

III

Acknowledgements

I would like to express my deepest appreciation to my supervisors, Stuart Charters

and Keith Unsworth, for their support and guidance. Without their contributions and

persistent help this thesis would not have been possible.

I would like to thank the TLS(Teaching and Learning Services)staff, Caitriona

Cameron, for her help and advice in the use of the English language.

Finally, special thanks go to my parents and my partner Yan Zhang for their love and

support during my study.

IV

Table of Contents

Abstract .. I

Acknowledgements .. III

Tables ... VI

Figures ..VII

Chapter 1 Introduction ... 1

1.1 Aim .. 3

Chapter 2 Literature Review.. 4

2.1 Visualisation and Rendering ... 4

2.1.1 Rendering algorithms ... 4

2.1.2 Volume rendering ... 6

2.1.3 Stereoscopic rendering ... 7

2.1.4 Summary .. 9

2.2 Display Devices.. 10

2.2.1 Standard display device ... 11

2.2.2 Stereoscopic display device .. 12

2.2.3 Summary .. 14

2.3 Remote Visualisation .. 15

2.3.1 Remote visualisation framework... 16

2.3.2 Support visualisation output on different displays 22

2.3.3 Summary .. 24

2.4 Literature Review Summary ... 25

Chapter 3 Analysis and Design .. 26

3.1 Requirements ... 26

3.2 Objectives of the Project ... 27

3.3 System Model... 29

3.4 System Architecture.. 30

3.4.1 Property detection .. 30

3.4.2 Property description ... 31

3.4.3 Parse property data ... 32

3.4.4 Rendering system configuration ... 33

3.4.5 Network communication design ... 33

3.5 User Perspective of Application Flow ... 35

3.6 Analysis and Design Summary ... 35

V

Chapter 4 Implementation ... 37

4.1 System Overview ... 37

4.2 Programming Language.. 37

4.3 Client Application Implementation ... 39

4.3.1 Client user interface .. 39

4.3.2 Property detection .. 42

4.3.3 Detection of display properties in Java.. 45

4.3.4 Manual entry of other properties ... 49

4.3.5 Property description function .. 50

4.3.6 XML schema and file example ... 51

4.3.7 Create device profile... 53

4.4 Network Communication Implementation .. 54

4.4.1 Data transfer and receive function on client side 56

4.4.2 Data receive and transfer function on server side 56

4.5 Server Application Implementation ... 58

4.5.1 Overview of server application and functions 58

4.5.2 Render configuration .. 58

4.5.3 Generate image... 63

4.5.4 Call POV-Ray in Java ... 67

4.6 Summary .. 68

Chapter 5 Evaluation and Discussion .. 69

5.1 Evaluation Environment ... 69

5.2 System Evaluation .. 70

5.2.1 Platform independence ... 70

5.2.2 Client application evaluation .. 72

5.2.3 Server application evaluation .. 78

5.2.4 Exceptional and abnormal conditions ... 82

5.3 Results and Discussion ... 85

5.3.1 Limitations ... 87

5.4 Summary .. 89

Chapter 6 Conclusion and Future Work ... 90

6.1 Conclusion ... 90

6.2 Future Developments .. 92

6.3 Summary .. 94

References ... 96

Appendix A ... 98

Appendix B ..100

VI

Tables

Table 2-1Cues to the human visual system present in 2D and 3D images 7

Table 2-2 Cues to the human visual system present in 3D images 8

Table 2-3 Common display devices and properties ... 10

Table 4-1 Operating system on different platforms ... 38

Table 4-2Compatibility comparison of common program language 38

Table 4-3Basic structure of EDID data ... 43

Table 4-4 Example of EDID data ... 44

Table 4-5Required display properties for correct image display 44

Table 4-6 Network protocol of remote visualisation approaches 54

Table 4-7 Render solution comparison ... 59

Table 5-1 Evaluation environment ... 69

Table 5-2 Test ADAM on various platforms ... 71

Table 5-3 The client application functions tests .. 73

Table 5-4The server application functions tests .. 79

Table 5-5Exceptional and abnormal conditions tests .. 83

VII

Figures

Figure 1-1Haber-McNabb Visualisation Pipeline ... 1

Figure 1-2 Remote visualisation environment .. 2

Figure 2-1 Camera geometry of stereo pairs (Mackay, 2006) 9

Figure 2-2 a) Parallax Barrier Displays b) Lenticular sheet displays c)

Lenticulardisplays .. 13

Figure 2-3Remote visualisation structure ... 16

Figure 2-4Pipeline of a remote visualisation system over logistical networking

infrastructure (Ding et al., 2003) .. 17

Figure 2-5Themiddleware allows the client to access an assortment of

geophysical data from the server .. 18

Figure 2-6 Implementation of middleware and client application (Yuen et al.,

2004) ... 19

Figure 2-7 RAVE architecture (Grimstead et al., 2005) 20

Figure 2-8 CT and MR image of human brain (Sato et al., 1997) 21

Figure 2-9 Diagram of the data stream in a local network 21

Figure 2-10 RAVE client interface run on Linux, PDA and Windows platform 23

Figure 3-1 System model ... 29

Figure 3-2 Flowchart of system.. 30

Figure 3-3 Property Data Parse Function.. 32

Figure 3-4 Rendering reconfiguration function .. 33

file:///C:\Documents%20and%20Settings\Harry\Desktop\Harry%20thesis.docx%23_Toc253403795
file:///C:\Documents%20and%20Settings\Harry\Desktop\Harry%20thesis.docx%23_Toc253403796
file:///C:\Documents%20and%20Settings\Harry\Desktop\Harry%20thesis.docx%23_Toc253403796
file:///C:\Documents%20and%20Settings\Harry\Desktop\Harry%20thesis.docx%23_Toc253403802
file:///C:\Documents%20and%20Settings\Harry\Desktop\Harry%20thesis.docx%23_Toc253403804
file:///C:\Documents%20and%20Settings\Harry\Desktop\Harry%20thesis.docx%23_Toc253403807

VIII

Figure 3-5 Network communication... 34

Figure 3-6 Logical structure of system ... 35

Figure 4-1 The client application user interface .. 40

Figure 4-2 Prototype client application interface for small screen device 41

Figure 4-3 Graphics environment structure in Java .. 46

Figure 4-4 Detect properties in multiple devices environment 47

Figure 4-5 Read EDID information flow .. 48

Figure 4-6 Process steps from detection to description 50

Figure 4-7 Device information XML schema ... 52

Figure 4-8 Example of device profile ... 53

Figure 4-9 Process steps of server application .. 58

Figure 4-10 Stereoscopic display device XML profile 60

Figure 4-11 POVRAY. INI file ... 62

Figure 4-12 Image generation in typical way ... 63

Figure 4-13 Image generation in command line ... 64

Figure 4-14 Stereoscopic pairs generation steps ... 66

Figure 4-15 Call POV-Ray in Java ... 67

Figure 5-1 (a) 2 view stereo image (b) 8 view stereo image 88

1

Chapter 1 Introduction

Visualisation is an important technique used in many areas to help people understand

and solve problems. ―Visualisation is the process of presenting data in a form that

allows rapid understanding of relationships and findings that are not readily evident

from raw data‖ (Schroeder, Martin, & Lorensen, 1998).

As computing power has increased, complex scientific simulations have become

possible and the sizes of scientific data sets have grown to terabyte or petabyte size in

areas such as the geosciences and meteorology. Visualisation and rendering face

challenges as the data sets size increases.

Data Filter Mapping ImageRender

Figure 1-1Haber-McNabb Visualisation Pipeline

Figure 1-1 shows the typical visualisation and rendering pipeline. The first step

provides the visualisation data to filter stage; at this stage the data may be processed

to obtain the format, structure, and types that the map stage requires. The map stage

generates a visual representation of the input data which is the input to the render

stage. Lastly, the data will be rendered to generate the final image. However, for a

large visualisation model, data sets of this size will not fit within the storage of a

typical desktop workstation environment. Also, there is a limited amount of CPU

power to process data sets of this size. For that reason, to use large data sets in

visualisation, high-end workstation or supercomputers are often good solutions. Thus,

for low-end client platforms, such as PCs and PDAs, a server that maintains

large-scale data sets must handle the majority of computing and storage needs of the

whole visualisation process (Ding, Huang, Beck, Liu, Moore, & Soltesz, 2003).

2

In a visualisation system, if the data of pipeline on one machine and the users want to

view results on another machine then we need remote visualisation approaches to help

the user to process the data and image.

Several remote visualisation techniques have been developed to solve large data

problems; these are discussed below.

One remote visualisation technique is a client-server based system for visualising

environments (Deb & Narayanan, 2004). This visualisation approach uses a high

performance platform to store and process large data sets and allow different clients to

connect and receive the visualisation output.

Server/Workstation

Render

Configuration

Display devices

Figure 1-2 Remote visualisation environment

Normally, in a remote visualisation system, many users may use different display

devices to view the visualisation result. These devices may include standard 2D

monitor, small screen and stereoscopic display. Figure 1-2 shows a multiple display

device environment in a remote visualisation system. Within the system, different

users may use different display devices to view the visualisation, one may use a

standard monitor and one a stereoscopic monitor. In the remote visualisation system,

if the user changes the display device they are using to view the image, the rendering

3

needs to be reconfigured to provide the correct output. A scenario is discussed which

explains this in more detail. A scientist normally views the visualisation on a 15‖

desktop monitor with 1024*768 resolution. In some cases, the scientist needs to

receive the image on a mobile device such as a PDA which has a screen size of 3.5‖

and resolution of 320*240. Before the scientist uses the PDA, he needs to give the

new device’s properties to the rendering server to reconfigure the image generation.

Then the PDA can receive the correct visualisation output from the server. In addition,

if the scientist needs to use the desktop monitor again, the rendering must be

reconfigured again.

From this example, we can see that if the user wants to display the correct image on

different display devices, the rendering must be reconfigured each time. This situation

is not always convenient, because many users may not know enough about the

properties of the display device they are using or how to change the rendering

configuration.

1.1 Aim

In this project, we will investigate how to simplify supporting multiple display

devices in a remote visualisation environment. To support multiple display devices,

we should consider these situations: one user using different devices to view the

visualisation at different times, multiple users using different devices concurrently and

also at different times.

To succeed, the solution must not require users to work with a complex rendering

system or to have a depth of knowledge of the properties of their display devices. The

aim of this project is to provide a solution that allows users to use different types of

display devices with automatic configuration of rendering services to provide the

correct image for display on their connected device.

4

Chapter 2 Literature Review

Visualisation techniques can be used to represent complex scientific images. They

allow users to study experimental data or try experiments that may be difficult in the

real world. In this chapter, a general discussion of visualisation and rendering

techniques will be introduced in section 2.1. Section 2.2 will describe different types

of display devices and discuss possible issues for rendering for these devices. Section

2.3 will discuss approaches to remote visualisation.

2.1 Visualisation and Rendering

Visualisation is a technique for using the data and computer graphics to create images

to communicate a message. Visualisation today has been widely applied in the area of

science, education, engineering, interactive multimedia, and medicine (Haber &

McNabb, 1990) (Ware, 2004). In a visualisation system, the final image is generated

by rendering.

Rendering is the process of generating an image from a model by means of a

computer program. The model is a description of the objects in a computer

programming language or data structure. It contains geometry, viewpoints, texture,

lighting, and shading information. The image produced by the rendering system from

the model may be a raster graphics image. Many rendering algorithms have been

researched, and software used for rendering may implement a number of different

algorithms to produce the final image. This section provides a discussion about

rendering algorithms and their uses.

2.1.1 Rendering algorithms

Many rendering algorithms have been developed. These algorithms can be grouped

5

into four loose families: rasterisation, ray casting, ray tracing, and radiosity; these are

discussed below.

a) Rasterisation

Rasterisation is the process of converting graphics to a bitmap to output on a

display device. A high-level representation of an image should contain many

elements not only the pixels. These elements are referred to as primitives. For

instance, in a graphical user interface, windows and buttons might be the

primitives. In 3D scene, triangles and polygons in space might be primitives. In

many cases, a pixel by pixel rendering is too slow for the task, then a primitive by

primitive approach of rendering may helpful. This approach uses one loop

through each of the primitives to determine which pixels in the image are affected,

and then modify those pixels. This rendering method is called rasterisation, and

all current computer graphics cards use this method.

b) Ray casting

Normally, ray casting is used for real-time simulations, such as in 3D computer

games and cartoon animations, where detail is not important, or where there is a

need for better performance in the computational stage. This is usually the case

when a large number of frames need to be animated. Basically, the ray casting can

be broken down into three steps. For each object in a scene, firstly, construct ray

from eye position through view plane. Secondly, find first surface intersected by

ray through pixel. Thirdly, compute colour based on surface radiance. More

details are introduced in (Watt & Policarpo, 1998).

c) Ray tracing

In computer graphics, ray tracing is a technique for generating an image by

6

tracing the path of light through pixels in an image plane (Watt & Policarpo,

1998). Ray tracing is an extension of the same technique developed in ray casting.

This method can handle complicated objects very well, and the objects may be

described mathematically. This makes ray tracing best suited for applications

where the image can be rendered slowly, such as in still images or television

special effects. This method is poorly suited for real-time applications, such as

computer games, where speed is very important.

d) Radiosity

Radiosity is a method used to simulate how directly illuminated surfaces act as

indirect light sources that light up other surfaces. The surfaces of a scene are

divided up into one or more small surfaces. A view factor for each small surface

is generated. After then, the view factors are used for the rendering equation to

render the image (Watt & Policarpo, 1998). This approach produces more

realistic shading and is good when used to represent an indoor scene. A classic

example is the way that shadows in the corners of rooms are rendered.

2.1.2 Volume rendering

Volume rendering techniques have been developed to display a 2D projection of an

object with in a 3D data set. Meißner, Pfister, Westermann, and Wittenbrink (2000)

describe volume rendering. Volume rendering is a key technology with increasing

importance for the visualisation of 3D sampled, computed, or modelled datasets. A

typical 3D data set is a group of 2D slice images acquired scanning techniques, such

as MRI, CT, PET, or ultrasound. For volume data, one key goal is to convey the

structure of the data distribution, for example the shape of the liver. By using this

technique, the volumetric data can be displayed as a two-dimensional image to the

user. Medical imaging is one area where volume rendering is frequently used.

7

Compared with other rendering techniques, such as ray casting, the volume rendering

technique has the advantage of presenting the structure of the volume, rather than

selected boundary surfaces of variable value or coordinate value.

2.1.3 Stereoscopic rendering

In today’s world, with the ongoing development of 3D display technology, people can

show an image with the illusion of depth on a 2D screen. The illusion of depth using

photographs, movies, or other two-dimensional image is created by presenting a

slightly different image to each eye. Three dimensional display technology holds great

promise for the future of television, virtual reality, entertainment, and visualisation.

Unlike rendering 2D images, stereoscopic rendering needs to calculate stereo pairs to

create a perception of depth, so the renderer can generate 3D images. Before

discussing how to calculate stereo pairs, the difference in characteristics between 2D

images and 3D images will be explained. Bourke (1999) introduces a number of cues

that the human visual system uses to see in stereo. Some cues are present even in 2D

images.

Table 2-1Cues to the human visual system present in 2D and 3D images

Cue Name Explanation

Perspective Objects get smaller further away.

Sizes of known objects An object appears smaller than other objects. For

example, if a car and a teacup appear the same size then

we expect the car to be further away.

Detail Close objects appear in more detail, distant objects

appear in less detail.

Occlusion An object that blocks another is assumed to be in the

foreground.

Lighting, shadows Closer objects are brighter, distant ones darker. There

are a number of other slight cues implied by lighting: the

8

way a curved surface reflects light suggests the rate of

curvature, shadows are a form of occlusion.

Relative motion Objects further away seem to move more slowly than

objects in the foreground.

Table 2-1provides details about the cues which are present in both 2D images and 3D

images. There are other cues that are only present in 3D images. These cues are listed

in Table 2-2.

Table 2-2 Cues to the human visual system present in 3D images

Cue Name Explanation

Binocular disparity This is the difference in the images projected onto the back the

eye, because the eyes are separated horizontally by the

interocular distance.

Accommodation This is the muscle tension needed to change the focal length of

the eye lens in order to focus at a particular depth.

Convergence This is the muscle tension required to rotate each eye so that it

is facing the focal point.

In the real world, binocular disparity (the difference in image location of an object

seen by the left and right eyes) is considered to be the most important depth cue in the

human visual system. In order to create a stereo pair, two images need to be generated,

one for each eye. Creating stereo pairs involves rendering a left and a right eye view

from positions separated by the interocular distance (the distance between the center

of rotation of the eyeballs). The view directions of the eyes are parallel to each other,

so the frustum from each eye to each corner of the projection plane is asymmetric, as

shown in Figure 2-1(a).

9

There are several methods of setting up and rendering the stereo pairs. To generate

correct stereo pairs, the frustum needs to be extended horizontally for each eye or

camera making it symmetric (Figure 2-1(b)). After rendering, the image from the

extended frustum will not be displayed, thus the user can obtain the correct stereo

effect from the screen.

There are a number of methods for setting up the camera and rendering the stereo

pairs. Mackay (2006) explains how to calculate and generate the stereo pair. The basic

principle for generating a stereoscopic image is to use two cameras within a scene to

generate slightly different images for each eye, so that the user can obtain a perception

of depth from a three dimensional image.

2.1.4 Summary

The main rendering techniques introduced in this section are rasterisation, ray casting,

ray tracing, radiosity, volume rendering, and stereoscopic rendering. Most

visualisation systems use one or more of these rendering techniques. This section also

discussed stereoscopic rendering. Unlike other rendering techniques, stereoscopic

Offaxis Frustum

Left

Camera

Right

Camera

Offaxis Frustum

Right

Camera

Left

Camera

Extended

Frustum

Extended

Frustum

(a) (b)

Figure 2-1 Camera geometry of stereo pairs (Mackay, 2006)

10

rendering is based on other rendering techniques, such as ray tracing; with

stereoscopic rendering, the focus is on how to obtain the correct camera parameters

for generating a stereo pair to produce the final image, rather than an algorithm.

2.2 Display Devices

A display device is an output device for the presentation of information for visual or

tactile reception, acquired, stored, or transmitted in various forms. In visualisation

environments, the display device is an essential component.

The properties of different display devices are quite varied. The following table shows

common display properties for some different types of display devices.

Table 2-3 Common display devices and properties

Display Device Resolution Number of Images Required

PDA 240x160 to 640x480 One

24’ Standard Monitor 1920x1280 One

Projector 800x600 to 1920x1080 One

24’ 2 View Stereoscopic 1920x600 （per eye） Two

Multiview (9)

Stereoscopic

1080x600 to

1920x1080
Multiple(18)

Volumetric

 Display
768x768x198 Multiple(198)

PowerWall
High

Resolution

Single or

Multiple

CAVE
Ultra High

Resolution
Multiple

From Table 2-3 we note that the display device type determines both the resolution

and the number of images required. The resolution typically increases with screen size.

In addition, for anormal2D monitor and small screen devices, only one image is

required for the 2D display effect but the stereoscopic display devices require multiple

images to achieve the stereo display effect. A visualisation environment enables users

to access images using different types of display devices. Therefore, to generate the

11

correct image, only providing the visualisation data is not enough, the display device

properties also need to be given to configure the renderer so it can create the correct

image for display.

2.2.1 Standard display device

In general, the standard display device can only display 2D images: most people use

standard display devices to view visualisations. The standard devices only require

single image input to display. Therefore, when a visualisation system generates the

image for different standard devices, the main issue of concern is the current

resolution of the monitor. Most current visualisation systems can support standard

display devices directly. The rendering server does not need to make a special change,

it only needs to adjust the resolution for the new display device to generate the correct

image. Two of the most common standard display devices are CRT and LCD.

a) Cathode Ray Tube (CRT)

The cathode ray tube display device is usually called CRT monitor and is one of the

most widely used display devices.

The CRT monitor has two important properties that need to concern us when we view

the visualisation: they are resolution and refresh rate. A CRT monitor usually supports

a range of resolution. Thus, to obtain the correct image display, the resolution

property is important.

b) Liquid Crystal Display (LCD)

Liquid Crystal Displays have become more and more popular as display devices in

today’s world. Compared with traditional CRTs, LCD devices have advantages in size,

weight, and electric power consumption.

12

Unlike with CRT monitors, there is an optimal resolution of a LCD screen. The image

will be displayed correctly and provides the best view under the optimal resolution.

The resolution is the only property of concern when rendering an image.

c) Projector

Projectors are one of the common ways of displaying visualisation. A projector takes a

video signal and projects the corresponding image on a project screen using a lens

system. A common projector for a visualisation system is the portable projector, and

the display resolutions include 800x600 pixels, 1024x768 pixels, 1280x720 pixels and

1920x1080 pixels.

Like the LCD monitors, a projector has an optimal resolution. The image size should

be set as the optimal resolution so that the image can be displayed correctly for the

projector. Hence, resolution is the key property when rendering an image for a

projector.

2.2.2 Stereoscopic display device

In recent years, stereoscopic display devices have become increasingly popular and

practical in the computer visualisation community. A stereoscopic display device is a

display device capable of conveying 3D images to the viewer. There are few basic

types of 3D display devices. A stereoscopic device separately sends two views of a 3D

scene onto the screen for the viewer, one for each eye. Usually the viewer needs to

use some optical or electric equipment, such as special glasses or headgear, to obtain

the 3D effect from the display device.

Autostereoscopic display devices can present a 3D image to a viewer without the use

of 3D glasses or other special viewing equipment. There are three classes of

autostereoscopic displays: reimaging displays, volumetric displays, and parallax

13

displays(Halle, 1997). Reimaging displays can represent an existing three dimensional

object in a new location. Volumetric displays can illuminate an object in three

dimensions in a spatial volume. Parallax displays emit directionally-varying image

information into the viewing zone. Parallax displays are the most common

autostereoscopic displays and are most compatible with computer graphics. Therefore,

the information about parallax display devices will be introduced in this section.

Halle (1997) describes the working principles of parallax devices. The surface of a

parallax display is covered with a special display element that can emit light of

varying intensity in different directions. Figure 2-2 shows the different surfaces of

parallax displays.

When rendering for an autostereoscopic display device, some camera and image

parameters are required. These are:

 Position of the camera.

Figure 2-2 a) Parallax Barrier Displays b) Lenticular sheet displays c) Lenticulardisplays

14

 The camera parameters, such as eye separation and focal length.

 The number of images that must be rendered.

 Pixel resolution and image format of the image data.

Annen, Matusik, Pfister, Seidel, and Zwicker (2006) introduce a multiview

autostereoscopic display device. Multiview parallax displays allow the user to obtain

stereoscopic views without glasses, and to view the image at arbitrary positions within

the viewing zone. In Annen et al.’s work, the developers used 16 projectors each with

1024*768 output resolution to implement the multiview 3D effect display. In addition,

the authors introduce two different approaches to generating multiview 3D displays:

optical multiplexing for lenticular screens and software multiplexing for

parallax-barrier displays. In optical multiplexing, each view is projected as a whole to

the display surface. Optical multiplexing is easy to implement in a distributed

rendering environment, but there are some weaknesses with this approach. The

viewing angles are limited, and flat-screen display devices, such as a high resolution

LCD, are not feasible with optical multiplexing.

In contrast to optical multiplexing, software multiplexing allows for more flexible and

compact display designs. In software multiplexing, the rendering software will use the

parameters, such as the number of projectors and view angles, to generate the

corresponding multiview pixels for the projectors and then compose these pixels to

the screen to obtain the 3D display.

2.2.3 Summary

Users may use various types of display devices to view visualisations. In order to

obtain a correct image display, the visualisation system needs to know which type of

display is being used and also the corresponding property information. This section

discussed the characteristics of different kinds of displays. For the standard display

15

device, the resolution is important property. For stereoscopic devices, not only is the

resolution information important but also other property information, such as eye

separation and focal length.

2.3 Remote Visualisation

Remote visualisation is used to solve large visualisation model problems. Normally, a

low-end computer is unable to store and process large data sets. Therefore, users need

a high-performance computer to process large data sets. Generally, two strategies have

been developed to visualise large data sets. The first approach, usually called render

remote, generates images on a high-end workstation which stores the data sets, then

transmits the image to the user who is connected with the workstation. The link

between the workstation and client would be over a network connection. In the second

strategy, usually called render local, smaller portions of data are sent to the client on

demand. The local client then uses the data to do the rendering. The network

connection between the data source and visualisation is shown in Figure 2-3

In a remote visualisation environment, the networks which connect the client and

server are very important. The transfer speed of the network is a major factor that

determines the remote visualisation performance. In recent years, two key

developments have allowed users to explore different approaches. The first

development is a network data cache that is tuned for wide-area network access,

called the Distributed Parallel Storage System or DPSS (Tierney, Crowley, Holding,

Hylton, & Drake, 1999). The DPSS is a data block server, built using low-cost

hardware components and custom software to provide parallelism at the disk, server,

and network level. Current performance results of this technology are 980Mbps across

a LAN and 570 Mbps across a WAN.

The other key development is a proliferation of high-speed networks. There are

16

currently a number of next generation Internet networks whose goal is to provide

network speeds of 100 or more times the current Internet network speed. These

include NSF’s Abilene, DARPA’s Supernet, ESnet testbeds, and KAREN. Typically,

the WAN connection speed of these networks could achieve 622Mbps of OC12 or

2.4Gbps of OC48 (Bethel, Tierney, Lee, Gunter, & Lau, 2000). In addition, KAREN

(Kiwi Advanced Research and Education Network) can provide up to 10 gigabits a

second connection speed. Along with the developing of high-speed network

technologies, many approaches to remote visualisation have been developed.

2.3.1 Remote visualisation framework

The principle of remote visualisation is to use a high-end workstation as a server to

handle large data sets and allow remote users to access the visualisation output.

Therefore, the remote visualisation approach is a client-server based method. The

server and client communicate via a network environment.

Workstation/Server Client

Data/Image

Visualization Process Access and display image

Network connection

Figure 2-3Remote visualisation structure

Figure 2-3 presents the architecture of the remote visualisation environment. A

majority of current remote visualisation projects use this basic structure. However, the

implementation of the three main components, Client, Server and Network, can be

quite dissimilar in different projects.

17

Figure 2-4Pipeline of a remote visualisation system over logistical networking infrastructure (Ding et al.,

2003)

Ding et al. (2003) explain how to implement remote visualisation over a logistical

networking infrastructure. In Ding’s work, the developer uses a light-field rendering

and light-field database for remote visualisation. A light-field database is a small

database that stores part of the data sets of objects; light-field rendering is rendering

using the data from the light-field database to generate the image of particular view

sets of an object. To allow a user to navigate different volumes, multiple light-field

databases are needed. The reason light-field rendering and databases are used is for

large complex data sets, as to visualise a scene with raw geometries is too inefficient.

A streaming model over Logistical Networking infrastructure is introduced in Ding et

al.’s paper, and the working process of server, server agent, client, and client agent are

shown in Figure 2-4. In this system, the server stores the light-field database of all

view sets, which is then uploaded to a depot pool. After that, a dictionary service

listing each view set, as well as its exNode pointer, is created and maintained on a

server-based Dictionary of View Sets (DVS server). View set is accessed via a

corresponding exNode. The exNode table stores the index of view sets and

corresponding exNode pointers. When a request is received, it consults the exNode

table. If it finds the requested view set, it returns the corresponding exNode. The

retrieved exNode is then used to obtain a copy of the view set from the pool.

18

The characteristic technique of this approach is that it uses the concept of Logistical

Networking to build up the network connection between the client and server. In

addition, this method needs to build a light-field database and dictionary table to

improve the efficiency of the visualisation.

Yuen, Garbow and Erlebacher, (2004) introduce an approach to remote visualisation

using Internet and off-screen rendering techniques. This system is based on the

client-server model, and the developer needs to create a software application acting as

middleware to allow the client access to the data. Figure 2-5 demonstrates how this

middleware connects the client with the server to obtain the data. The complex details

of accessing the data is hidden in the middleware so the client can obtain the data

simply, while the middleware takes care of network communication and security.

Middleware Client

Multidimensional

Earthquake Data

3D Mantle

Convection Data

Molecular

Dynamics

Server

Figure 2-5Themiddleware allows the client to access an assortment of geophysical data from the server

This project uses a combination of CORBA, C++, Java, Python, and OpenGL to

provide the middleware and client application. Figure 2-6 illustrates the

implementation of the application using these programming tools. The client

application provides a graphical user interface so the user is able to change and view

the visualisation interactively. After the server receives the request from the client, it

begins data analysis and rendering the image, and then returns the resulting image to

19

the client. The system uses CORBA to connect and transfer information between the

client and the server.

Figure 2-6 Implementation of middleware and client application (Yuen et al., 2004)

In this approach, the client application allows the user to view the visualisation

remotely using a web browser and provides a Java applet as the front-end interface

through which users can interactively select subsets of their data to analyse and to

view the results of the analysis. As an example to demonstrate how it can be used, a

user who wishes to interrogate a large cluster of earthquakes to identify patterns in the

interrelationships of small earthquake events first loads the client applet over the

Internet into a web browser. He then inputs the clustering parameters into the applet

to produce the desired output. After that the server will produce the visualisation

based on the parameters and pass the image back to the user.

This project uses the CORBA bus to translate commands and the image buffer. This

protocol can provide interoperability between objects on different machines, among

multiple different programming languages, regardless of the machine’s platform

(Yuen et al., 2004). The other feature of this approach is off-screen rendering. This

function is implemented on the server side and enables multiple clients to render

different data simultaneously.

20

The Resource-Aware Visualisation Environment (RAVE) uses Grid/Web Services to

advertise data sources and recruit rendering assistance from remote resources

(Grimstead, Avis, Walker, & Philp, 2005). The RAVE architecture includes a Data

Service, Render Service, and Thin Client. Figure 2-7 shows the architecture of the

RAVE system.

Figure 2-7 RAVE architecture (Grimstead et al., 2005)

In the RAVE system, the data service imports data from either a static file or a live

feed from an external program, either of which may be locally or remotely hosted.

The render services connect to the data service to obtain the latest data and generate

an image. The render service can be exposed to the local console, so the user can

interactively modify the visualisation output. However, if a local user does not have

the facility to install a render service on their machine, an active client can be installed

instead—this is a stand-alone copy of the render service that can only render to the

screen and does not support off-screen rendering. From the architecture chart (Figure

2-7), we see that the active render client on the top can only support a local

stereoscopic display, but the laptop console is a render service and an active render

client. Thus, it can generate a local display on its own screen as an active render client

and also support remote display to another thin client as a render service.

21

In modern medical science, visualisation makes a significant improvement on

research methods, especially in anatomy and neuroradiology. The increasing

capabilities of magnetic resonance (MR) imaging and multisection spiral computed

tomography (CT) can represent the structure of human brain as shown in Figure 2-8.

In addition, the CT and MR scanner can acquire volumetric data with near-isotropic

voxels, using these data to make three dimensional images is necessary, especially in

studies of complex structures like intracranial vessels. Most modern CT and MRI,

however, provide limited 3D image processing capabilities, so to implement 3D

visualisation with interactive operations requires a high-end performance graphics

workstation that is not available at many medical institutions. In this situation, remote

visualisation is a good solution to the problem. Bethel et al. (2000) discuss an

approach that combines fast visualisation on a normal PC system with high-quality

visualisation on a high-end graphics workstation that is directly accessed and

remotely controlled from the PC environment via the Internet using a Java client.

Figure 2-9Diagram of the data stream in a local network

Figure 2-8 CT and MR image of human brain (Sato et al., 1997)

22

Figure 2-9shows the data stream in this remote visualisation system, the DICOM

(Digital Imaging and Communications in Medicine) image data obtained from the CT

scanner or MR imager. The image data are transferred to the local PC first and then by

FTP to the visualisation server, which is remotely controlled from the local PC by use

of a Java client application. In this system, the server can process the data, generate

the images and send them back to the local PC; users are able to change and view the

visualisation interactively.

To evaluate this system, researchers used CT angiography data of five patients with

intracranial aneurysms transferred to the workstation directly after the investigation.

The average time for the complete visualisation process including data transfer was

15-25 minutes depending on the complexity of the structure. That result is fast enough

for this method to be used in the clinical situation of patients with subarachnoid

hemorrhage under emergency conditions(Bethel et al., 2000).

2.3.2 Support visualisation output on different displays

In the RAVE system, the render service connects to the data service and requests a

copy of the latest data. As render services have a full scene data, an image may be

rendered as required. In this system, the developers focused on the data transfer and

command transfer between the clients and servers. There are two kinds of client

within the RAVE system, the active client and thin client. The active client collects

the required datasets from the data server and renders the image locally, and the thin

client uses a remote render server to generate the image.

The solution provides the client user application to the users. The application allows

the users to select different datasets from the data server to render and provides

interaction, such as move and rotate, with the visualisation.

23

The users must use the RAVE application to view the visualisation result. The RAVE

application renders the image with a fixed size and colour depth. The datasets

discussed by Grimstead et al (2005). were rendered at 400x400 resolution with 24 bits.

The image size and colour depth cannot be changed. Details of the rendering process,

such as how to set the resolution and colour depth of the image, are not provided.

In RAVE, the clients view the visualisation at a fixed size (Figure 2-10). This solution

works well for the standard 2D display client. Grimstead et al. (2005) mention that the

client may view the visualisation on a stereoscopic device; however, they do not

provide details to explain how to support devices such stereoscopic displays to obtain

the 3D effect.

The solution suggested by Garbow et al. (2003) provides a Java applet for the client.

This applet is accessed through a web browser and provides functionality, such as

selecting datasets, rendering data, interactive data mining, and analysis of the data.

The visualisation is displayed in a window with a fixed size in the applet user

interface. Therefore, the servers do not need to collect the display properties from the

client to render the image. The client only needs to access the applet and then view the

visualisation result. This solution allows multiple users to access and view the

visualisation. However, Garbow et al. do not mention if solution can support different

Figure 2-10RAVE client interface run on Linux, PDA and Windows platform

24

types of display such as a stereo display device. The special display device may not

obtain the correct image from the server.

Engel, Sommer, Ernst, and Ertl (1999) introduce an approach for web-based remote

3D visualisation techniques. This approach uses the typical remote visualisation

structure, the image generated by a high-end visualisation server, and the clients

access and view visualisation by the network connection. This solution has developed

into a web-based Java application. The application provides a window to display the

visualisation result. The users can select different image quality with different

resolution. However, support for the special display device is not provided.

Remote visualisation approaches provide a client application. The client application

could be web-based or stand alone. Most of the applications display the visualisation

result in a window with a fixed size. The approach, such as RAVE, mentions that the

client can use stereoscopic display to view the visualisation, but does not give the

detail of the rendering process. All these approaches can support multiple users but

most of them cannot support multiple types of display devices properly.

2.3.3 Summary

Remote visualisation provides a solution so that users are able to access high-end

workstations to help with complex or large visualisation models. There are a number

of visualisation approaches that have been developed. All these solutions are

client-server based systems. However, the platform, program language, and network

protocol may be different. Therefore, we need to consider how to support multiple

platform environments when we develop a solution. Furthermore, most remote

visualisation systems cannot support special devices, such as stereoscopic devices,

directly. RAVE can support the stereoscopic device but it still needs an active render

to generate the image for it.

25

2.4 Literature Review Summary

A visualisation system combines many different components. For the end users the

display device is an essential component. Recently, many visualisation models have

become large and complex, and standard computer environments, such as personal

computers, are not able to process this kind of visualisation model. Therefore, remote

visualisation has been created to solve the problem. In a remote visualisation system,

users can use different types of display devices to access the visualisation; however,

many systems do not correctly support some devices. From section 2.2, we

understand that key properties for different types of devices are not the same. In

addition, for special devices, such as stereoscopic devices, we need to use

stereoscopic rendering techniques to calculate the stereo pairs and display the right

image.

26

Chapter 3 Analysis and Design

This chapter presents an analysis of the requirements of this project and introduces the

proposed design of the system.

3.1 Requirements

In recent year, a number of new display technologies have been used in visualisation,

such as autostereoscopic and volumetric display devices. At the same time, remote

visualisation has begun to become widely used to help the researcher deal with large,

complex visualisation projects for scientific research. With this technique, users can

easily use a high-end workstation to process the complex data sets and obtain the final

image from the workstation. One of the most important characteristic of remote

visualisation technique is that it provides a multi-user environment, which means a

number of clients may use several different types of display to view the visualisation

result. The diversity of display devices requires the renderer to be configured for each

device so that the device displays the correct image. The requirements for a system to

generate the correct output for a display include:

1. Multiple user environment

Current remote visualisation systems are designed with a multiple user

environment. For different types of visualisation system, the solution should be

able to support both single and multiple user environments.

2. Multiple display devices

A number of new display devices have been developed and begun to be used in

the visualisation area. In a multiple user environment, different users may use

27

different types of display devices in their local system to view the visualisation

output. In addition, a single cliental so can use many different display devices in a

local visualisation environment. The diversity of display device properties has

been discussed in the literature review section, and this diversity may cause the

incorrect display of images on a device if not correctly configured. To obtain and

display the correct image is a basic requirement of a visualisation system.

Therefore, this situation requires a solution to support various types of displays to

ensure the user can obtain the correct image.

3. Platform independence

Multiple user environments result in multiple computer platform environments.

For instance, in a typical remote visualisation system, the operating system of the

server/workstation is Linux or UNIX. For local PC clients, the operating system

may include Microsoft Windows, Linux, and Macintosh OS. In addition, a mobile

device client usually uses Symbian, Palm OS, or Windows Mobile as the

operating system. The solution requires a good level of compatibility so that it

can be used with a variety of computer platforms.

4. Ad-hoc display support

The solution should support various display devices in an ad-hoc way: that is, if a

new device is used, the system should be able to detect the properties of the

device ―on the fly‖, in a similar way to how ―Plug n Play‖ works for USB devices.

This feature means the end users can easily use different types of display devices

in visualisation.

3.2 Objectives of the Project

The overall objective of this project is to develop a solution that allows a user to use a

28

visualisation system with different types of display devices without explicit

configuration of rendering services. In order to achieve this overall objective, there

are several key objectives, as follows:

1. Develop a solution which can support multiple display devices.

To support multiple display devices, the key task is to obtain the display device

properties, and use those properties to configure the rendering so that the correct

image is generated. Thus, a method which can detect the properties of the display

device should be developed. In addition, the properties data should be described

using a data format that can be transferred to the rendering software for display

configuration. Therefore, the solution should implement a method to describe

device properties and transfer the property information from client to server.

2. Develop a solution which can support multiple simultaneous users.

The solution should be able to support multiple users, a stand-alone approach

cannot satisfy this requirement, as it can only support a single user. A

client-server structure allows many users to connect with one server. For this

reason, a client-server based approach is appropriate for this project.

3. Develop a solution which allows automatic configuration.

In order to obtain the correct visualisation result for the display device, the

solution should be able to use the display properties to configure the rendering

software automaticallyso that the render can generate the correct image.

4. Develop a solution which can run on various platforms.

To satisfy different users, the solution should be able to run on various platforms,

such as Linux, Windows series. Thus, a platform independent solution will be

29

developed.

3.3 System Model

The above sections outline the requirements and objectives of this project. The

proposed solution is a client-server based application. A simple structure of this design

is presented in Figure 3-1.

Client

ApplicationDetect the property

Network

Correct Visualisation Output

Configuration of

rendering

Describe & transfer the

information

Standard Device

Stereoscopic Device

Small screen device

Other device Client

Application

PDA

Client

Server

Client

Server

Application

Figure 3-1 System model

In this system, the client application runs on a client machine to detect or gather the

properties of the display device. After the properties are detected, the property data

will be encoded and transferred to the server via the network. The server application

receives the property data from a client and parses the data to extract the display

properties used to configure the rendering software. Lastly, it renders an image based

on the display properties and returns to the client application an image to display.

30

3.4 System Architecture

The system has two main parts: the client application and the server application.

Parse Property Data

Rendering

Configuration

Generate Image

Client Application

Property Detection

Property Description

Display Image

Server Application

Property Data

Image Data

Figure 3-2 Flowchart of system

The main functions of this project are displayed in Figure 3-2. These are property

detection, property description, property data parse, rendering configuration, and

network communication.

3.4.1 Property detection

Property detection is one of the key functions in this project. In this project, the

application should be able to support multiple display devices to obtain the correct

visualisation output. To achieve this goal, the correct device property information

must be found. There are two points that need to be considered when designing this

function:

1. Detect the properties automatically.

The reason for automatic property detection is to make the client application as

easy to use as possible. Users do not need to setup many parameters on the client

application in order to use it. The application will automatically detect the

property information as much as possible.

31

2. Allow user to manually enter or modify property information.

In some case, users may use special display devices, such as stereoscopic displays.

For special displays, the computer may not be able to automatically detect all

property information from the display device. Some properties, such as eye

separation, may not be stored in the device itself, so users will have to manually

enter property information into the application. Another situation is that the

application may detect incorrect properties from the display device. For example,

the property information which is detected by the application is not the same as

the value recorded in the device manual. Thus, the user may need to manually

modify incorrect property information.

3.4.2 Property description

After the application obtains the device property information, we need to find a way

to describe this data so that the property data can be stored and transferred easily.

There are a number of data formats that can be used to describe the property data. The

most appropriate data format should be chosen by considering the following points:

1. Platform independence

The application may run on different computer platforms, so that property data

must be able to be transferred between different platforms correctly.

2. Extensible for new device

There are a number of different types of display devices, and we need to consider

how to use an appropriate structure to store the property data for all devices. This

structure should also be able to describe new types of device. When we need to

describe new types of property information, the structure should be able to be

32

easily extended.

3. Compact format

The data should be in a compact format so that data size can be minimised and

the transfer time of the network reduced. The reason for this requirement is that

the client application may be used on mobile device and the data may be

transferred by mobile network connection.

3.4.3 Parse property data

After the server application receives the property data from the client application, it

should be parsed by a data parse function. Thereby, the server application can receive

the property information about the target display device.

Figure 3-3 shows the output of the property data parse function. The property

information is passed from client to the server. The server application will parse the

property data so that the application can obtain the property information. After that,

Property

Information

Property

Data

Parse

Function

Server Application

Resolution: 1024 * 768

Refresh Rate: 85Hz

……

Standard Device

Resolution: 840 * 1080

Refresh Rate: 60Hz

View Number: 2

Eye Separation: 6

……

Stereoscopic Device

……

Other Device

Figure 3-3 Property Data Parse Function

33

the property information will be transformed to parameters to configure the rendering

system, such as the size of the windows, focal length.

3.4.4 Rendering system configuration

After the application parses the property data of the target display device, the server

can obtain the rendering parameters. The application uses these parameters to

configure the rendering system, such as change the size of the image, calculate and set

the camera’s position.

Current Rendering

Parameter

Window Width: 640

Window Height: 480

Camera Position:(0,0,10)

…...

Rendering

parameter data

Rendering

Configuration

Function

Window Width: 800

Window Height: 600

Camera Position:(0,0,10)

…...

Window Width: 1024

Window Height: 768

Camera 1 Position:(-5,0,10)

Camera 2 Position:(5,0,10)

…...

…...

New Rendering

Parameter

Or

Or

Figure 3-4Rendering reconfiguration function

Figure 3-4 gives an example showing the output from this function. In this example,

the rendering parameters are window size 640x480 and camera position (0, 0, 10).

This function will then change the parameters of the rendering system based on the

parameter data which is passed by the property data parse function.

3.4.5 Network communication design

This project is to investigate the development of a client-server application. The client

and server communicate via a network connection.

34

Send Device

Property Data

Receive Image

Receive

Device

Property Data

Send Image

Network Connection

Client Application Server Application

Figure 3-5Network communication

In this project, we focus on transfer of the property data from the client to the server

application, and the final image from the server to the client application, see Figure

3-5. When designing the network communication part, the following requirements

need to be considered:

1. Reliable transfer

Correct display device property information is essential for rendering

configuration. The data must be transferred correctly and completely when the

client sends the property data to the server. Therefore, the network protocol for

this project should provide a reliable transfer environment to ensure correct data

transfer.

2. Appropriate transfer efficiency

The properties and image data will be transferred via a network. The network

communication protocol should have a low overhead to maintain the transfer

efficiency.

35

3.5 User Perspective of Application Flow

This solution should easily be used by end users. Therefore, the application needs to

be made so that it is as easy as possible to use. The users only need to provide a few

inputs to obtain the appropriate output. Figure 3-6 gives a possible user perspective

application flow.

Click the function button to send the

properties to server

Select the display device from the list on

the user interface

Run the client and server application

(Optional)

Modify the detected properties or add new

properties value

Figure 3-6Logical structure of system

First, the users need to run the client and server applications. Second, the users need

to select a display device from the available device list. Then the users can modify or

add display properties if it is necessary. Lastly, the users simply need to click a button

to create and send the profile, and then the server application will automatic configure

the render. From this flow, we can see that end users only need to follow a few steps

in order to configure the render for a display device.

3.6 Analysis and Design Summary

This chapter briefly introduces the objectives and how to design the application to

36

achieve the requirements. The main functions of the client and server applications are

discussed. The client application focuses on display device property detection and

description, and the server application has responsibility for reconfiguration and

generation of the final image.

37

Chapter 4 Implementation

This chapter discusses the implementation of the design described in chapter 3

including the technical choices made and the reasons for those decisions. This system

is named ADAM, Ad-hoc Display Adaptation (for) Multiple (device). The chapter

begins with an overview of ADAM and this is followed by a detailed description of

each of its components.

4.1 System Overview

In chapter 3, the design chapter, the system model was introduced. The two main

components of ADAM are: the client application and the server application. The

client application is used to detect and describe the properties of the display device

and display the resulting image returned by the server. The server application is used

to parse the property data, configure the rendering software, generate the image and

transfer it to the client. Communication between the client and server is via a network

connection. The display device properties and the generated image will be transferred

between the client and server applications. The logical structure of the system has

been presented in Figure 3-2. This figure provides an overview of how the system is

structured and at what stage communication occurs between the applications.

4.2 Programming Language

In order to implement the system, we need to select appropriate programming

languages for the client and server applications. In the last chapter, we discussed the

requirements of the project. One requirement is that the solution should have a good

level of compatibility so that it is able to be used in variety computer platforms. Table

4-1 shows the common operating systems on different platforms.

38

Table 4-1 Operating system on different platforms

Platform Operating System

SuperComputer Linux, Unix

Apple Mac OS X

PC Windows XP, Windows Vista, Linux, Unix

PDA Symbian, Windows Mobile

However, the requirements for the server and client applications are different. The

user may use the client application on different platforms, but the server application

normally runs on a server machine, where the platform is usually Linux, UNIX, or

Windows. In addition, the user may use the client application on a mobile device,

such as a PDA. Thus, the size of the client application should be kept small, but the

size of the server application is not as important.

Based on the requirements, we compared the compatibility of different support

platforms for common programming languages, as shown in Table 4-2.

Table 4-2Compatibility comparison of common program language

 VB.Net C# Java C++

Windows Series platforms

(98, XP, Vista)
Yes Yes Yes Yes

Macintosh OS platform No No Yes Yes

Linux, UNIX platforms No No Yes Yes

Symbian platform No No Yes Yes

Windows Mobile platform Yes Yes Yes Yes

From this table, we can see that VB.net and C# language can support all Windows

platforms; however, there is a low compatibility of these two languages for other

platforms.

The C++ program can run on all platforms but it may not run across different platforms.

In addition, it requires a different compiler for each platform. For example, a C++

39

program compiled for a Windows OS can only be used on a Windows platform, they

cannot run on other platforms. If we need a C++ program for another platform, such as

Linux, we need to use a compiler that can support Linux to create the program. This

requires using a different C++ program for each platform.

Unlike C++, a Java application can run across multiple platforms. The most important

character of the Java platform is that Java applications are typically compiled to

bytecode that runs on any Java virtual machine (JVM) which itself is implemented for

a variety of computer architectures. The Java platform provides various JVM versions

for a platform. The user only needs to install the corresponding Java running

environment for different platforms and then the Java applications are able to run on it.

Therefore, we can use one Java application for all platforms. In addition, the Java

platform provides a micro edition (Java ME) for the mobile device environment. Java

ME has been widely used for creating applications for mobile devices, such as PDAs

and cell phones. Accordingly, the Java programming language will be used to

implement both the client and server applications.

4.3 Client Application Implementation

The client application is designed to detect device properties and display the resulting

image. This section will discuss the implementation of the client application.

4.3.1 Client user interface

In order to allow users to use the functions of the client application, we used a GUI

including lists, buttons, text fields, and combo boxes to implement the client

application user interface. Figure 4-1 shows a screenshot of the client user interface.

40

Figure 4-1 The client application user interface

The Display Device List includes all available display devices which are connected to

the client machine. The users need to select a device from this list in order to collect

the display properties. The text fields are used to display the properties and also allow

the users to enter and modify the properties. There are two buttons on the interface,

the Create and Send Profile button is used to generate the device profile and send it to

the server application. After the resulting image is sent back, the image will be

displayed in a new window automatically. In addition, the users can use the Display

Image button to display the resulting image at any time.

The common screen size of PDA devices is 2‖ to 4‖, and the resolution is much lower

than the desktop and laptop device. Hence, compared with desktop and laptop

displays, the small screen has a limitation in that it cannot display a large, complex

user interface. In this project, we developed a client application user interface. This

user interface works correctly on desktop and laptop displays. However, the interface

is too big for small screen devices and the contents of the interface may not be

displayed correctly. In addition, the required display properties for the small screen

device may not be the same as the desktop displays. For the desktop system, the users

may use different types of display devices, such as a standard device and stereoscopic

41

device. This means that the client application must provide the functions to allow the

users to input the corresponding display properties. For the small screen device, most

use 2D screen and cannot extend to connect with other display devices. Furthermore,

the small screen usually is a standard LCD screen, and in section 2.2.1 we noted that

the most important display property for the standard LCD screen is resolution. Hence,

the user interface for the PDAs’ client needs to contain the basic display property such

as the resolution. PDAs may have a stereoscopic screen. For those special PDAs, we

need to consider entering extra display properties.

The desktop or laptop system may connect with multiple displays, so we need to

provide a device list on the client application user interface to allow the users to select

the connected device. PDAs, however, have only one screen. Hence, we can remove

the device list from the user interface to make it fit more easily within the small

screen. Some of the latest PDAs have a built-in projector, thus the PDA can be used as

a portable projector. For this kind of device, we need consider how the application can

support multiple displays.

Figure 4-2 Prototype client application interface for small screen device

42

Figure 4-2 gives a prototype client application interface design for a small screen

device. The interface provides the basic display properties for the current device. The

users can modify the properties if there is an error. The application also provides more

options to help the users to support some extra or special displays. Compared with the

desktop version of the user interface, this one only provides the essential properties

and functions for the small screen device. The size of this interface can easily fit

within a common PDA device screen.

4.3.2 Property detection

The first step of the system process is to detect the properties of the display device. A

detailed implementation of this function will be presented in this section.

Before we discuss the implementation, we need to decide which display properties

need to be found.

1. Basic display properties

Generally, there are three basic properties for every display device. They are the

resolution, the refresh rate, and colour depth or bit depth. The resolution is the number

of pixels contained on a display monitor, expressed in terms of the number of pixels

on the horizontal axis and the number on the vertical axis. To display the appropriate

image on a device, the correct resolution is necessary. The refresh rate is the number

of times a display's image is repainted or refreshed per second. An incorrect refresh

rate will cause a blank display, or the image may become distorted. The colour depth,

also called bit depth, is the number of distinct colours that can be represented by a

pixel. The higher colour depth can show truer colours. If the colour depth is too low,

the image will lose colour and become distorted. Therefore, the basic display

properties must be correctly found by the client application.

43

2. Special display properties

Unlike the standard display device, in addition to the basic display properties, special

devices need other property information to display the image correctly.

A stereoscopic display device can present the image with a 3D effect on a 2D screen.

This kind of display requires three special properties: eye separation, view distance,

and aperture. These properties are used to configure the rendering software and to

generate the stereo image.

Volumetric 3D display devices can present real, volume-filling 3D images. The

resolution of this device has three dimensions so that we also need a slice number

property for volumetric displays.

In addition to the above display properties, many devices also have properties, such as

the manufacturer and the display size. This is called the extended display

identification data (EDID). The EDID Standard (VESA, 2007) is created by VESA
1
 to

support Plug n Play. It defines a data structure used to carry configuration information

for optimal use of a display. The EDID data structure resides in the display device and

is stored in 128 byte blocks.

Table 4-3Basic structure of EDID data

EDID data Description

Header Exact match of defined header data

Vendor/Product ID Product information such as manufacture,

product ID, serial number

EDID Structure Version EDID version number

Basic Display Parameters and Features Display parameters such as maximum

1 VESA, the Video Electronics Standards Association, is an international non-profit organisation representing

hardware, software, PC, display and component manufacturers, cable and telephone companies, and service

providers.

44

horizontal and vertical image size.

Table 4-3 presents the basic structure of EDID data. The detailed EDID data structure is

described in the EDID implementation guide, which is provided by VESA. This guide

document provides guidance for both writing and interpreting EDID data. Table

4-4shows a summary of the EDID data reported by an Envision EN-775e monitor:

Table 4-4 Example of EDID data

EDID Data Information

Monitor Name EnVision EN-775e

Monitor ID EPID775

Model EN-775e

Manufacture Date Week 26 / 2002

Serial Number 1226764172

Max. Visible Display Size 32 cm × 24 cm (15.7 in)

Picture Aspect Ratio 4:3

Horizontal Frequency 30–72 kHz

Vertical Frequency 50–160 Hz

Maximum Resolution 1280×1024

Gamma 2.20

DPMS Mode Support Active-Off

Supported Video Modes: 640×480 140 Hz

 800×600 110 Hz

 1024×768 85 Hz

 1152×864 75 Hz

 1280×1024 65 Hz

Monitor Manufacturer Envision, Inc.

The EDID properties identify and describe capabilities of a display device. Compared

with basic display properties, EDID properties are optional display properties for the

rendering configuration.

Table 4-5Required display properties for correct image display

Standard

Display Device

Stereoscopic

Display Device

Volumetric 3D

Display Device

Resolution Yes Yes Yes

Colour Depth Yes Yes Yes

45

Refresh Rate Yes Yes Yes

Eye Separation No Yes No

View Distance No Yes No

Aperture No Yes No

Slice Number No No Yes

EDID data Optional Optional Optional

Table 4-5 lists the required display properties for different types of device. The basic

properties, such as resolution, colour depth, and refresh rate, are key properties for

every display device. For stereoscopic devices, the eye separation, view distance, and

aperture properties are essential, and for the volumetric display, the slice number is

essential. In addition, EDID data can help the system identify the display device, but

it is not the decisive factor for the resulting image display.

4.3.3 Detection of display properties in Java

Generally, a display device is able to support several modes of resolution, refresh rate,

and colour depth. We need to detect the current properties of the device, such as the

current resolution, to configure the renderer so that the correct image can be generated.

To obtain the current property information, we need use a computer program to detect

and return the properties. The Java language provides an interface to help a developer

obtain the display device information. In this case, we need use

GraphicsEnvironment,GraphicsDevice and DisplayMode classes to implement the

detection function. The GraphicsEnvironmentclass describes the collection of

GraphicsDeviceobjects available to a Java application. The GraphicsDeviceclass

describes the available graphics devices in a particular graphics environment. The

DisplayModeclass encapsulates the current resolution, the colour depth, and refresh

46

rate of an available GraphicsDevice. Therefore, in order to implement a detection

function, we need create a new GraphicsEnvironmentfirst, and then find all available

graphics devices in this collection. After that, we can obtain the display properties for

each graphics device. The properties will be displayed after detection,as show

inFigure 4-3.

Graphics Environment

Graphics Device

Display

Mode

Graphics Device

Display

Mode

…
…

Display ID : 00

Display Height : 1280 (pixel)

Display Width : 800 (pixel)

Refresh Rate : 60 (Hz)

Bit Depth : 32 (bit)

Display ID : 01

Display Height : 1440 (pixel)

Display Width : 900 (pixel)

Refresh Rate : 60 (Hz)

Bit Depth : 32 (bit)

Figure 4-3 Graphics environment structure in Java

When the client application starts, the detection function will be called on

automatically. In a multiple screen environment, all available devices will be

displayed in a list and the user can select a device and view the corresponding

properties as shown in Figure 4-4.

47

Figure 4-4 Detect properties in multiple devices environment

Many solutions have been developed to detect the EDID information. The Nicomsoft

Company provides an API called WinI2C/DDC, which allows a user to read EDID

data from the display device. To use this API, we need the client application to call the

WinI2C/DDC dll file. The Java platform cannot call WinI2C/DDC dll file directly, we

must design a new dll file called Project DLL to wrap it. Figure 4-5 presents the

process for reading EDID data from the displays.

48

Property

Detect

Function

Initialization

Project DLL

WinI2C/DDC DLL

Enumerate all

available

monitors

Read EDID

Java method

GraphicsEnvironment

GraphicsDevice

Read EDID

Read resolution, refresh rate and color depth

Display the

properties

Output resolution, refresh rate and color depth properties

Output EDID Information

Figure 4-5 Read EDID information flow

The client application starts the property detection function. This function will use a

Java method to return the basic properties immediately, meanwhile the function calls

the Project DLL file to detect and return EDID information.

Although WinI2C/DDC API provides a powerful ability to read the EDID information,

it is purchased software, so this may increase the cost of the system. There is another

open-source EDID application, read-edid, which was also evaluated. However, this

application did not provide an interface to the developer. By using this application, the

program will take more time to be implemented. Currently, we use a trial version of

WinI2C/DDC API to implement the read-edid data method. For future development,

the open-source application may be considered.

49

4.3.4 Manual entry of other properties

Unlike the basic display properties, for special displays, such as the stereoscopic

display device, the Java application may not be able to automatically detect the

properties such as eye separation and view distance. Therefore, users have to

manually enter this information. Another possibility is that the application may detect

incorrect properties, thus the user needs to be able to manually modify incorrect

properties.

In this project, we use the TextField control in the Java platform to display property

information. This allows the user to manually enter or modify the information. In

addition, the application will evaluate the properties before generating the device

profile. For example, if the user enters text information into the resolution property

field, the application will give an error message that the field can only accept integer

values. Some properties, such as resolution, are essential for every display device,

thus the resolution field cannot remain empty if the user needs to generate the device

profile. Another example is that of special displays,such as a stereoscopic device,

where the eye separation and view distance are required fields. The system will check

the required field before creating the profile, and if the user omits an essential

property the application will send an error message. Figure 4-6 gives the process steps

between property detection and creating a profile.

50

Detect properties

Display properties on user
interface

Manually enter or modify
property (optional)

Evaluate properties

Create device profile

Correct

Invalid value Display error message

Check required field

Complete

Missing property data

Figure 4-6 Process steps from detection to description

4.3.5 Property description function

Before we can use and transfer the display properties, the data need to be described in

a format that can be stored and transferred easily. This application is designed to

support a multiple user, multiplatform environment, and the three requirements of the

data format which were discussed in the design chapter. These requirements are

platform independence, extensible for new devices and compact format. The

XML(W3C, 2008) format will be used as the data format to describe the display

properties in this project. The Extensible Markup Language (XML) is a

general-purpose specification for creating custom markup languages. It is a simple

and flexible text format language and supports Unicode, allowing almost any

51

information in any written human readable language to be communicated. Thus, XML

is widely used as the format for information storage and transfer between various

platforms. Thus, it satisfies the requirement of platform independence. Furthermore,

XML is classified as an extensible language because it allows its users to define their

own elements, such as structure, field names, and specific values. This is very useful

when we need to extend the element to describe a new type of display device.

Nevertheless, there is a shortcoming for XML format. Compared with other data

formats, such as binary, XML format is redundant and large. This disadvantage may

affect application efficiency when storing, transmitting, and processing large data sets.

In this project, however, we only use XML format to describe the display device

property data, and the size of data will not be large and complex. For that reason, this

limitation, relative to other advantages, is acceptable.

4.3.6 XML schema and file example

An XML schema is a description of a type of XML document and it provides a view

of the structure of the document. In this case, the property information of a display

device needs to be described using an XML format file. Therefore, it is necessary to

create an XML schema to define the structure of this XML.

52

Figure 4-7 Device information XML schema

Figure 4-7 presents the structure of this XML schema. This schema is called a Device

Information schema. It is used to describe and record the properties for a display

device. The detailed code of this XML schema is provided in Appendix A.

The device properties are stored under two main categories, Device Description and

Device Type. The Device Description category contains general information of the

display device, such as brand and model. This category also records the hardware

properties, such as resolution, colour depth, refresh rate, screen size, view number.

The last category, Device Type, records the type of display device, with corresponding

attributes. For the detailed content of these two categories, the reader should refer to

the Appendix B.

53

 <?xml version="1.0" encoding="ISO8859-1" ?>
 - <DisplayDevice>

 <DeviceDescription>
 <DeviceName>ViewSonic</DeviceName>
 <DeviceModel>E71f</DeviceModel>
 <DeviceScreenSize>24</DeviceScreenSize>
 </DeviceDescription>

 <HardwareDescription>
 <CurrentResolution>960*1200</CurrentResolution>
 <CurrentRefresh_Rate>80Hz</CurrentRefreshRate>
 <CurrentColor>32bit</CurrentColor>
 <ViewNumber>2</ViewNumber>
 </HardwareDescription>

 <DeviceType>
 <StereoscopicDevice EyeSeparation="0.3" FocalLength="2" Aperture="60">
 </DeviceType>

 </DisplayDevice>

Figure 4-8 Example of device profile

Figure 4-8provides an example of a device profile. This profile stores the properties of

a stereoscopic display device. From this profile, we know the device information such

as the brand and model. We also can get the display properties, such as the resolution,

and eye separation, from this profile.

4.3.7 Create device profile

We need a method that can create an XML device profile by using the detected

display properties. In this project, we used JDOM
2
 as a toolkit to generate the XML

file in Java. JDOM provides a method, BuildXMLDoc(), to generate an XML file. To

create the file, we need to set the display property type as the Element first, such as

resolution and refresh rate. The Element and structure of the file must be based on the

XML schema. Then we pass the property value to the corresponding Element. After

all properties are passed we used XMLOutputter() method to write the file to the disk.

2 JDOM is a Java-based "document object model" for XML files. JDOM provides a way to represent that document

for easy and efficient reading, manipulation, and writing.

54

4.4 Network Communication Implementation

In chapter 2, we introduced different remote visualisation approaches. These

approaches each use a different network protocol to connect the client and server.

Table 4-6 lists the approaches and corresponding network protocol.

Table 4-6 Network protocol of remote visualisation approaches

Approach Name Protocol Function

Resource Aware Visualisation

Environment

TCP Direct transfer of live data or

continuous stream

FTP Transfer data file

Remote Visualisation over

Internet

HTTP Transfer web client application

CORBA bus Transfer commands and image

buffer

CT/MRI Remote Visualisation FTP Transfer raw CT/MRI data

Remote 3D Visualisation using

Image-Streaming Techniques

UDP Transfer image buffer data

CORBA bus Transfer commands and events

From Table 4-6 we note that the CORBA bus is usually used to transfer commands

and event information. The CORBA (Common Object Request Broker Architecture)

technique works more like an architectural rather than a network protocol. However,

in this project we need to focus on data transfer and other protocols, such as FTP,

UDP and TCP, which are commonly used to transfer the data.

The FTP protocol is usually used to transfer data files, the transfer reliability of this

protocol is good. However, the overhead of FTP consists of commands to log in, the

user name and password, specify the files or directories to upload or download, and

what ports need to be used. As a result, the overhead of FTP is large and that may

increase the transfer time. In addition, the users need to use some information, such as

the server address, server port, user name, password, directory and file name, in order

to transfer the file between the client and server application. This situation requires

the users to make more inputs to use the applications and may increase the probability

55

of misoperation, such as giving the incorrect password or file name.

Unlike FTP, UDP and TCP allow a network connection of the client and server

application without much extra information.

The advantage of UDP protocol is that the overhead is small and that can reduce the

transfer time. However, a big disadvantage for this protocol is that a data packet may

not be delivered. In addition, UDP gives no indication of the packet missing so the

application at the receiver side must includes checking method for this. This will

increase the working time.

TCP is a reliable network protocol, it has a significant advantage in that it can ensure

all data packets are delivered. But this feature adds an overhead, because every packet

will receive a reply or acknowledgement from the receiver, this can slow down the

transmission time.

In this project, the device property data file is important, since the rendering

reconfiguration function may not work correctly if we lose property data. However,

the UDP protocol has some risk of data loss, so we use TCP protocol to implement the

network communication. In addition, we can use a built-in library with the Java

platform to implement the TCP connection without any extra toolkit or library.

Implementation of a TCP connection requires two parts: the client side and server side.

To implement communication between the client and the server, the server application

needs to create a listening socket on a TCP port and wait for the client to connect.

Once a client connects to the port, the server accepts the connection and starts to

receive and respond to the data with the client. The following sections explain how

each part works in this project.

56

4.4.1 Data transfer and receive function on client side

This function is used to send the device profile to the server application and receive

the resulting image from the server. For the transfer and receipt of data, the client

needs to enter the IP address and port of the server on the user interface.

After the client obtains the server address and port, the following steps are used to

create the connection.

1. Create a new socket

We use the Socket(address, port) function to create a new socket to connect with

server application.

2. Send the profile via the socket

Java provides the OutputStream() function to transfer the data to the server side via

the socket. When the OutputStream() process is finished, the profile is transferred. The

socket begins to listen and waits for the data from server side.

3. Receive the data from server

When the server application begins to send the image file,theInputStream() function is

used to receive data from the socket.

4.4.2 Data receive and transfer function on server side

The goal of this function is to receive the device profile from the client and return the

final image to the client. For implementation of this function, the server needs to

create a new listening socket on a port and wait for the client to connect. When the

client is connected, the server begins to receive and transfer the data. In this project,

57

the following steps are used to program a Java application using the corresponding

functions.

1. Create a new server socket

We use the function ServerSocket(int port) to create a server socket and bind it to the

specified port. The parameter port defines the port number.

2. Listen for the client

In the Java platform, we need to use an infinite loop to achieve this step. An example

is presented below:

While (true)

{

Socket Socket = ServerSocket.accept();

}

In this loop the ServerSocket.accept() function listens for the client.

3. Accept a client connection

In order to accept the connection of a client, the ServerSocket.accept() function is

used. This function listens for a connection on a particular port and returns a new

socket.

The server application should be able to support multiple clients. In order to

implement this capacity, we use an array to store all connected sockets, and add each

new socket into the array. Thus, the server application can get and process each socket

from the array based on the connection order.

4. Receive and respond request

After accepting a connection and getting a socket, the server should be able to receive

58

the data from the socket by using save() function and then call the other functions to

generate the resulting image for this display device. After that, the image will be

returned to the client application to display.

4.5 Server Application Implementation

This section will discuss the implementation of the server application and

corresponding functions.

4.5.1 Overview of server application and functions

The server application is designed to process the display device properties profile,

configure the rendering software, generate and return the resulting image to the client

side.

Receive Profile Profile Parse
Render

Configure
profile

Property

Value
Generate Image Transfer Image

Call

Render

Image

File

Figure 4-9 Process steps of server application

Figure 4-9 presents the process steps of the server application and the functions run by

the server. The implementations of the data receive and transfer functions are

discussed in the network section. The detailed implementation of the other functions

will be introduced in the following sections.

4.5.2 Render configuration

The main function of the server application is the render configuration function. This

function is the key function that allows the application to support various types of

displays. The server application will configure the renderer based on different display

properties so that a particular display device will obtain the correct visualisation

59

output. In this section, we will discuss rendering software and introduce the

implementation of the profile parse and render configure function.

4.5.2.1 Render software

There are a number of render solutions that are used in visualisation, such as

POV-Ray, OpenGL, and VTK. In this project, we focus on the rendering configuration,

to obtain the correct image output. Therefore, we need to select a render solution

which can easily be used to generate and output the image. There are some

requirements that need to be considered in choosing the renderer:

 Java support, this application is created using the Java language so that the render

solution should be able to support the Java platform.

 The render software should output the image file directly after rendering has

finished.

Table 4-7 Render solution comparison

 POV-Ray OpenGL VTK

Java Support Yes Yes Yes

Stand-alone render

application

Provides its own

render application.

Allows user to render

the POV-Ray image

Need to use other

programming

language platform to

use it.

Need to use other

program language

platform to use it.

Image File Output Support to output

image file to the disk

automatically after

rendering is finished.

Users have to add

functions into the

application to output

image file to disk.

Users have to add

functions into the

application to output

image file to disk.

Table 4-7 compares possible render applications. All render solutions support Java.

However, the configuration of the OpenGL and VTK environments are not

straightforward to set up. Before the developer can use these two render toolkits, they

need to configure the render toolkit with a particular programming platform such VB,

C++, or Java. After that, developers can use the same programming platform as the

60

compiler to use the render toolkits.

POV-Ray provides its own stand-alone render application so that users can use any

program language to call POV-Ray to render an image directly. In addition, after

POV-Ray finishes rendering, the application can output the final image file to the disk

immediately. Hence, we chose POV-Ray as the rendering software in this project.

4.5.2.2 Profile parse and storage

The display device profile stores the properties of a device and is described in an

XML format. The profile is transferred from client to server. The server application

should be able to parses the XML profile so that the application can use the property

information for further processing. In order to achieve this goal, we use the JDOM

toolkit to implement the parse function.

The JDOM toolkit provides APIs that can parse an XML file easily. The following is a

simple example to explain how JDOM is used to parse an XML file, in this project.

<?xml version="1.0" encoding="ISO8859-1" ?>
 - <DisplayDevice>
 <DeviceDescription>
 <DeviceName>ViewSonic</DeviceName>
 <DeviceModel>E71f</DeviceModel>
 <DeviceScreenSize>24</DeviceScreenSize>
 <HorizontalResolution>960</HorizontalResolution>
 <Vertical Resolution>1200</Vertical Resolution>
 <CurrentRefresh_Rate>80Hz</CurrentRefreshRate>
 <CurrentColor>32bit</CurrentColor>
 <ViewNumber>1</ViewNumber>
 </DeviceDescription>
 <DeviceType>
 <StereoscopicDevice EyeSeparation="0.3" FocalLength="2" Aperture="60">
 </DeviceType>
 </DisplayDevice>

Figure 4-10 Stereoscopic display device XML profile

Figure 4-10 shows an example XML profile, this profile records properties of a

stereoscopic display device. We use JDOM to parse this file and obtain the properties,

resolution, eye separation, focal length, and aperture. The following steps show how

61

to use JDOM to obtain the properties from this profile:

First, we need create variables such as resolution and aperture to store property values.

Then we use the Document doc=builder.build(name)function to obtain the XML

profile, property name is the profile name and location. After that, the

getRootElement() function is used to take the root element. In this example, the root

element is ―DisplayDevice‖, as shown in Figure 4-10. Then, we use a loop to find

each property value such as Horizontal Resolution, Eye Separation, and pass the

values to corresponding variables.

4.5.2.3 Render configure

In POV-Ray, there are several ways to use property value to configure the render.

When POV-Ray starts the rendering process, the program looks for the configuration

settings. We can either store the properties in an INI file, or POV-Ray also provides

another option, to use the command line to configure the render. Therefore, there are

two options we can choose when we need to use property values to configure a

render:

1. Use POVRAY.INI file

There is a special INI file in the POV-Ray’s render directory called POVRAY.INI.

This file contains configuration information about the render such as the width and

height of the image as shown in Figure 4-11. We can store display device properties in

the POVRAY.INI file. Whenever we start up POV-Ray to render an image for a

particular display device, we need to store the current properties in the file, to override

any previous settings.

62

; Width of image in pixels. Accepts integer values.

;

Width = 320

;

;

; Height of image in pixels. Accepts integer values.

;

Height = 240

;

Figure 4-11 POVRAY. INI file

2. Command line option

This option allows the user to use the command line to configure the render directly.

When we use POV-Ray to render an image, we can enter the device properties on the

command line. The property value in the command line will override corresponding

values in the POVRAY.INI file. For example, we can use +w320 and +h240

commands to set the resolution of the render to 320 by 240 instead of using the INI

file.

Comparing these two methods, the command line solution offers the following

advantages:

 Flexibility for changing the render properties

Using the command line to change the render properties is straightforward. The

POV-Ray command line option allows users to set any render properties by using the

command.

 Reduces the complexity of the server application implementation

By using the POVRAY.INI file to change the render parameters we need several steps:

open the file, parse the content, rewrite the properties, and save the new file. After that,

POV-Ray will generate the image with the new render properties. To implement the

steps, we need to create methods and functions for the server application. This will

63

increase the complexity of the server application implementation. Using the command

line, however, we only need one method to achieve the same requirement.

4.5.3 Generate image

After the render is configured, we need to generate the image. Generally, POV-Ray

provides two ways to generate an image, using a GUI or command line.

1. Generate an image using aGUI.

POV-Ray provides a compiler with a graphical user interface (GUI). By using this

compiler, the developer can easily process and design the scene. Figure 4-12 gives an

example showing how to use GUI to generate an image.

Figure 4-12 Image generation in typical way

In the POV-Ray render system, a POV-Ray scene is recorded as a pov file. This file

stores all scene data such as the shape, size, and position of the object, the type and

position of the light source and so on. Thus, we need a pov file to generate an image

usingthe POV-Ray render system.

 First, we need to choose a pov file and then open it.

 Second, we call the run function to render this scene file.

64

 Lastly, we can see the resulting image in the render window and the system will

store the scene as a bitmap file.

2. Generate an image using the command line

The POV-Ray program provides a set of command line switches that are used to set

the options of POV-Ray. Thus, we can use the command line to achieve the same

objective as the GUI. Figure 4-13 shows the syntax of the user command line to call

POV-Ray to generate an image, and gives an example to display of how to use a

command line to render a scene.

:\\POV-Ray application \\function \\pov file \\other options

povray.exe /render desk.pov +w640 +h480 /exit

Figure 4-13 Image generation in command line

In this example, we need to call the POV-Ray application first. Then we specify the

function, in this case we use the render function, and specify the pov file used to

generate the scene. Lastly, we give the resolution of the image and use theexit

function to terminate the POV-Ray application after the rendering is finished.

The advantage of using the GUI is that when the users use it to process the POV-Ray

scene, it is convenient and they can see the resulting image instantly. However, in this

project we need to use the server application to configure and render to obtain the

resulting image automatically. Thus, the GUI method is not an appropriate solution

for this project.

65

On the other hand, by using command line option, we can configurethe render and

generate the image at the same time. The implementation of the command line method

for the server application is straightforward.

4.5.3.1 Generate stereoscopic pairs

For some special display devices, such as a stereoscopic display, we need to generate

the stereo pairs image separately and combine the pair to obtain the final image. In

chapter 2, we discussed how to calculate the camera parameters for stereo pairs. In

POV-Ray, we developed a camera .inc file to do the calculation of the left and right

camera parameters. The camera .inc file should be included in a pov file, so that when

this pov file is rendered, the camera parameters can be loaded automatically. We

developed a method that can modify the content of the pov file in order to include the

camera .inc file when the device type is stereoscopic. In addition, we need to call the

POV-Ray application twice to generate the left eye image and right eye image

separately. Figure 4-14 shows the steps for generating the stereoscopic pairs.

66

Parse

stereoscopic

properties

Generate left

camera .inc file for

POV-Ray

Generate right

camera .inc file for

POV-Ray

Eye separation

View Distance

…

Use left camera

file to

generate left eye

image

Use right camera

file to

generate right eye

image

Combine two

separate image to

generate one image

(side by side)

Figure 4-14 Stereoscopic pairs generation steps

The device profile records the type of device. We know a device is either a standard

display or a stereoscopic display after parsing the device profile. If it is a stereoscopic

display, then the server application starts to use the stereoscopic display properties,

such as eye separation and view distance, to calculate the left and right camera

parameters and create two camera .inc files. Then the server application will call

POV-Ray twice to generate the left and right eye images separately. When the

individual images have been generated, the server application should combine the two

separate images to one side-by-side image. We created a method to combine the

pictures. First, we passed these two images into the function in this order: left eye

image first and right eye image second. Then, we used the BufferedImage() function

to read each image. Lastly, we generated a new combined image by using the

ImageIO.write() function and wrote this image as a bitmap file to a local disk, which

means we can then transfer this image file to the client.

67

4.5.4 Call POV-Ray in Java

In these last two sections, we discuss how to use the command line option to configure

the renderer and generate the image in the POV-Ray system. This section describes

how Java was used to implement the methods.

For Java to call POV-Ray, Java provides a class called Runtime. It provides a method

getRuntime.exec()which allows the user to call a standard application with a command

line.

Runtime.getRuntime().exec(“/povray.exe /render desk.pov +width +height /exit”)

Figure 4-15 Call POV-Ray in Java

Figure 4-15provides an example showing how to use this method to call POV-Ray. In

this example, we call POV-Ray to render the desk.pov file and configure the render

with specific size. After the image has been generated, POV-Ray will output the image

as a bitmap file to local disk, normally in the same place as where the POV-Ray

application is stored.

After the resulting image has been generated, the server application starts to transfer the

image to the client application. For the standard device, when the image has been

created, the server application will load the image to the Socket which connects with

the client application by using the OutputStream() function. For the special displays

such as the stereoscopic device, the server application will wait while the final image

is combined, and then start to transfer the combined image to the client application.

68

4.6 Summary

This chapter presents the techniques that have been used to implement the client and

the server applications. It discusses different program platforms in section 4.2,

essential display properties and client application function implementation in section

4.3, the network protocol and connection in section 4.4, and the rendering software

and the server application function implementation in section 4.5.

69

Chapter 5 Evaluation and Discussion

This chapter discusses the evaluation of ADAM, and examines the functions of the

client and server applications. It discusses the successes and limitations of ADAM.

First, the evaluation environment is introduced. The following sections then discuss

the evaluations, and the limitations of ADAM. The chapter concludes with a summary

of the findings.

5.1 Evaluation Environment

The requirements of this project are discussed in the design chapter. To evaluate the

requirements, a number of tests were designed and performed. These tests are

discussed in detail in section 5.2. In conducting the tests, a number of environments

were used and these are discussed below. All tests were conducted during normal

working hours and under normal network conditions. Four different evaluation

environments were used, as in Table 5-1:

Table 5-1 Evaluation environment

Machine
Platform Monitor Rendering

Software

PC desktop

Processor: AMD 4600+

RAM: 2GB

Hard Disk Capacity:

320GB

Windows Vista

Home Premium

17‖ standard desktop monitor

20‖ wide screen desktop monitor

POV-Ray

version 3.6

PC desktop

Processor: AMD 4600+

RAM: 2GB

Hard Disk Capacity:

320GB

Ubuntu version

9.04

17‖ standard desktop monitor

20‖ wide screen desktop monitor

POV-Ray

version 3.6

70

Laptop

Processor: Intel T2400

RAM: 2GB

Hard Disk Capacity:

100GB

Windows XP

SP3 version

2002

15.4‖ wide screen laptop monitor

17‖ stereoscopic desktop monitor.

POV-Ray

version 3.6

Laptop

Processor: Intel T2400

RAM: 2GB

Hard Disk Capacity:

100GB

Windows

Mobile 6.1

Emulator

15.4‖ wide screen laptop monitor

POV-Ray

version 3.6

5.2 System Evaluation

To conduct the evaluation we developed three test types:

 Client Side tests

 Server Side tests

 Exceptional/Abnormal Condition tests

The client and server application tests were designed to exercise the critical functions

of the solution. Sections5.2.2 and 5.2.3 present the details of these tests. The final part

of the evaluation was to test the client and server applications in exceptional and

abnormal conditions, such as network failure and software misconfiguration.

5.2.1 Platform independence

A key requirement of this project is that the system can be run on various platforms

without reconfiguration so that it can support different users using different display

devices. To test this capability, we ran ADAM on different operating systems before

running the test ADAM on each operating system. Prior to running the test, we setup

Java suite (version 1.5.0.09) and installed POV-Ray for each platform. Table 5-2 lists

the outcomes of testing ADAM on different operating systems.

71

Table 5-2 Test ADAM on various platforms

Test Platform Client Application Server Application POV-Ray

Windows XP SP3 version

2002
Working Working Working

Windows Vista Home

Premium
Working Working Working

Ubuntu version 9.04 Working Working Not test

Windows Mobile

6.1(emulator)
Not Working Working Not Available

Normally, the server application runs on the desktop or server device. Thus, we only

needed to test the server application on Windows desktop series and Ubuntu platforms;

for the Windows Mobile platform we only needed to test the client application.

Table 5-2 shows the outcome of the test for ADAM on different platforms. The client

and server applications can be used on Windows XP, Windows Vista, and Ubuntu

platforms. However, the test of the client application on the Windows Mobile

operating system failed. The following steps were used to test the client application on

Windows Mobile platform. First, we ran the Windows Mobile emulator as it gave an

emulator interface. Second, we used a Java running environment emulator application,

MIDP Java Emulator version2.3, to load and run the client application. When we tried

to run the client application an error message displayed, ―The client application is not

a valid Windows CE application‖.

72

5.2.2 Client application evaluation

The aim of this evaluation was to test the client application. The main functions of the

client application are:

 Display properties detection

 Display properties description(XML format)

 Transfer the XML profile to the server application

 Receive the image from the server application

 Display the resulting image.

For each function above, we needed to test if it worked correctly or not. In addition to

those main functions, the client application also has other functions. These functions

are used by the major function and were not evaluated explicitly. The following table

provides the detail of the tests and the result of those tests.

73

Table 5-3 The client application functions tests

Test

Number
Test Item Test Method Expect Result Test Result

1 Automatically

detect display

properties

Run the client application, and select the display

device from the display list.

The client application

should detect the basic

display properties, the

resolution, the colour

depth, and the refresh

rate. If the device has

EDID data, the client

application should

detect the EDID

information.

The client application detected the resolution,

the colour depth, and the refresh rate. The

current client application could not detect the

EDID information because of the library

license. The license is valid for 30 days trial,

and it was expired when the evaluation was

conducted.

2 Display the

required display

properties for

different types

of device

Select different device types from the Device Type

list on the client application.

There is a star that will

appear beside the

property field to show

which property is

required for the selected

device type.

Displayed the required display properties for

different types of device.

74

3 Check the

required display

properties for

different types

of device

a) After the client application detects the properties,

click the ―Create and Send Profile‖ button on the

client application.

b) Delete some required properties value and then

click the ―Create and Send Profile‖ button on the

client application.

If all required properties

are complete, the client

application will give a

message showing that

the profile has been

created successfully. If

missing a required

property, the client

application should give

a message to the user

that some required

properties are missing.

In test a, the client application created and sent

the profile to the server, and showed a

successful message.

In test b, the client gave an error message to the

users to finish the required property fields and

to create and send profile.

4 Valid property

value check

a) After the client application detects the properties,

click the ―Create and Send Profile‖ button on the

client application.

b) Add some invalid property values, for example,

add some text in the resolution field, and then click

The client application

should create the profile

successfully if there is

no invalid value. If there

is an invalid property

value, the client

In test a, the client application successfully

created and sent the profile.

In test b, an error message about invalid

property values was displayed. The client

application to create and send profile stopped.

75

the ―Create and Send Profile‖ button on the client

application.

application should give

a message to the user.

5 Create and send

profile

Click the ―Create and Send Profile‖ button in the

following situations:

a) Click the button without selecting any item

from the Display Device List

b) Select the display device but do not give the

Server Address and Port value, then click the

button.

For the first situation,

the client application

should give a message

notifying the user to

select a device from the

Display Device List.

For the second situation,

the client application

should give a successful

message to the user to

create the profile. It

should give another

message to the user that

the Server Address and

Port value is missing,

In test a, the client application gave an error

message notifying the users to select a device

from the list.

In test b, the client application gave an error

message notifying the users to input the server

address and port.

In test c, the client application gave a

successful message to create and send the

profile.

76

c) Select the display device and give the Server

Address and Port value, then click the button.

and profile transfer has

failed.

For the third situation,

the client application

should give the

successful message to

the user to create and

send the profile.

6 Check the

profile content

Run the client application, select a display item and

click the ―Create and Send Profile‖ button.

After clicking the

button, the client

application should

create a XML file to

store the display

properties. The XML

file should be stored at

same location as the

client application, and

the content should be

correct.

We found the XML file after we clicked the

button. We also checked the content of the

XML, and the content was correct for the

select display device.

XML file (1280_800.xml)create by client

application:

XML file (5268497.xml) on server side:

77

7 Display the

resulting image

Run the client and server application, create and

send a profile to the server application.

The server application

should generate the

resulting image base on

the profile and send it

back to the client

application. The client

application should

display the resulting

image.

After we sent the profile to the server

application, the client application received and

displayed an image. The image was created

based on the device properties.

Resulting image:

78

5.2.3 Server application evaluation

The main task of the server application is discussed in chapter 3, the design chapter.

The server application should be able to configure the rendering system based on the

device properties. The server application includes the following functions:

 Receive the device profile from the client

 Parse the XML profile to obtain the display properties

 Configure the rendering software and generate the resulting image

 Send the resulting image back to the client application.

The following table provides the detail of the tests for each function of the server

application.

79

Table 5-4The server application functions tests

Test

Number
Test Item Test Method Expect Result Test Result

8 Receive the XML

profile from the client

application

Run the client and server

application. Select the

display device, give the

server address and port

value and then click the

―Create and Send Profile‖

button.

The client application should give a

message that the transfer of the profile

has been successful. The server

application should display ―Receive data

from ―client IP address‖‖ on its form.

Lastly, the server application should

display ―Image send to ―client IP

address‖‖, and the client application

should receive the resulting image data

from the server and display it.

The server application received the

XML file from the client application

and stored the file to the disk at same

location as the server application.

9 Check the device

profile content

After the device profile has

been transferred from the

client application, open the

file and check the content.

The XML file on the server side should

be same as the client side. The content of

the profile should be same, otherwise the

data transfer between the client

application and server application is

incorrect.

Opened the XML file and compared

the content with the original file on

the client side. Where the content was

the same, the data transfer function

was working correctly.

10 Check the XML parse

function

Run the server application

as debug mode, and use the

Java compiler to monitor

the data parse function.

The data parse function should be able to

obtain the property value from the XML

file, and pass the value to corresponding

variables.

The data parse function found the

property value from the XML profile,

and then passed the value to the

variables so that the application could

use it for further processing.

80

11 Check the resulting

image

Use the rendering software

to generate an image based

on a display device’s

properties used as a

reference image. Then, use

the client and server

applications to detect the

properties and create an

image. Compare these two

images.

Two images should be same. The resulting image and the reference

image were same. The result proved

the render configure function and

image generation function were

working correctly.

12 Check the multiple

user

Use multiple clients (4)

applications to connect with

one server application. The

client applications use

different display devices.

The server application should be able to

connect with the client applications and

generate the correct image for each

client.

The server application generated the

correct image for each client

application. The images were

generated separately and based on the

connection order.

13 Check the image for

the stereoscopic

display

Run the client application,

and select the display type

as stereoscopic, then send

the profile to obtain the

image.

The server application should create a

combined image for the stereoscopic

display.

The server application generated two

images, one for each eye, and

combined these two images. The

client application received a

combined 2-view stereoscopic image.

81

82

5.2.4 Exceptional and abnormal conditions

When we conducted the evaluation of ADAM described in 5.2.1, 5.2.2 and 5.2.3, we

assumed ADAM was in a working environment. All components, such as render

software and network, were functioning correctly. However, in real world use of

ADAM, the working environment may encounter abnormal situations. The user may

not follow expected or desired usage patterns. This may cause an unexpected result

for the client and the server applications. In this section, we describe the test

conducted on ADAM under some special situation, and discuss the test result.

In ADAM, after the client application transfer of the device profile to the server

application, the render software will be called and start to generate an image. In this

section, we discuss how we tested ADAM under the following situations:

 After the profile is transferred to the server application, and before the resulting

image is sent back, shut down the client application.

 The server application needs to use POV-Ray to generate the resulting image. If

the POV-Ray is missing, what situation will occur?

 The server application is shut down, and the client application still attempts to

transfers the profile to the server.

83

Table 5-5Exceptional and abnormal conditions tests

Test

Number
Test Item Test Method Expect Result Test Result

14 Check the system

status when the client

application is shut

down

Shut down the client application

when the server application is

generating the image.

The client application gives

a message to remind user

that image is rendering on

server side.

The server application continued to generate the

image until finished. The server displayed ―IP

address client exited‖.

15 Check the system

status if the render

software is missed

Run the server application in a

non-POV-Ray working

environment.

The client application gives

error message to notify the

users that the render has a

problem.

The server application continued to run but no

image was generated.

16 Check the system

status when the

server application is

shut down

Run the client but not the server

application, and then transfer the

profile to the server.

The client application gives

the message to notify the

users that server is closed.

The client application sent a message to notify the

user that the server application was not running and

that file transfer had failed.

17 Change the screen Run the client application, and The client application can If the user had already selected the display device

84

properties while the

client application is

running

then change the resolution of the

screen.

detect the latest resolution

of the screen.

from the list before the resolution changed, the user

had to rerun the client application to detect it again.

If the user did not select the device, the application

detected the latest resolution after the change.

85

5.3 Results and Discussion

Section 5.2 discussed the evaluation of the functions for the client and server

applications. The design chapter lists some objectives for the system, and in this

section, we discuss the test results in relation to these four objectives.

1. Support multiple display devices

To support different display devices we need to find the display properties from a

display device so that the render software can generate the resulting correct image

based on the properties. In ADAM, the client application provides functions that can

detect the display properties from the display device. In the test, we used the client

application to detect the display properties from different display devices. Test 1

showed that the detect method automatically detects the basic display properties from

the connect display device accurately.

The client application also provides other functions, such as the required property

check and valid property value check, to help end users to ensure the property data is

completed and data format is correct. In tests 2, 3, and 4 the functions were evaluated

and the test outcomes matched the expected result.

Although the property detect method can obtain the basic property data from the

device, there are other properties that the users of special devices may need to enter

manually, for example, the eye separation value for the stereoscopic device. Currently,

at the client application user interface, there are the default display device types and

property fields. However, the users may want to use other types of display devices or

add some new display property. This would require modification of the client

application code. This is not a flexible way to add the display device and property

type for end users.

86

We developed a method that can use the display property data to generate XML file as

a device profile. This profile can be used to configure the render software on the

server side in order to generate the correct image. As tests 5 and 6 showed, this

method is currently working well but it faces the same challenge as the client user

interface. If the user needs to record some new type of display device and property,

the method code needs to be changed.

2. Support multiple users

We developed a client server structure system. The server application is able to

connect with multiple users. In the test, we opened four client applications and

connected to the server application, and then we tested the capability for each function

of the server application. Test 8 showed that the device profile can be transferred from

the client applications to the server application. We checked the profile content on

both client and server side. The profile content was the same, so that the data transfer

function on client application and data receive function on server side was working. In

addition, the resulting image was transferred between the server application and each

client application correctly.

3. Automatic configuration

It is important that the server application can use the display properties to configure

the render software automatically, so that the users can obtain the resulting correct

image without manually changing the render parameters each time the users change to

a different display device. To use the property data in the profile, we developed a

method that can parse the XML profile file in order to obtain the property data. In test

10, we checked the profile parse function and the outcome showed this function can

parse the device profile to get the properties. In the trial, we used the render software

to generate an image based on the specific display device’s properties and used it as

the reference image. After that, we used the client application to detect the properties

87

from this display device and generate the resulting image. We compared the two

images to test the configuration function. The resulting image was the same as the

reference image, as shown in test11, so that the configuration function was working.

4. Platform independence

We have developed a Java solution to achieve the platform independence requirement.

In the trial, we tested the client and the server application on different platforms. For

most platforms, the client application and server application were running well, but

the client application failed to run on the Windows Mobile platform. We used a

Windows Mobile emulator to test if the client application can be used on a mobile

device. In addition to using the Java application on the Windows mobile platform, we

needed to use a Java virtual machine application to load and run the Java application.

Although we installed the Java virtual machine application, the client application still

could not run.

Another issue is the render software. Currently, we use the POV-Ray Windows

version as the render toolkit. Thus, the configuration method is based on a Windows

platform and cannot be used on other platforms directly. We can modify this function

to solve this issue and the detail will be discussed in chapter 6, the future work

chapter.

5.3.1 Limitations

According to this evaluation and some other feedback, some limitations of ADAM

have been found.

1. Support the multiview stereoscopic device

Currently, the ADAM can generate the 2 view stereoscopic image. In test 13, we

successfully generated a 2 view stereoscopic image by using ADAM. However, if the

88

device is a multiple view stereoscopic device, for example an 8 view, the ADAM

cannot generate the corresponding stereo images. The following figures show the

stereo images of 2 view and 8 view stereoscopic display device.

(a) (b)

Figure 5-1 (a) 2 view stereo image (b) 8 view stereo image

As we can see in Figure 5-1, the 8 view stereo image is more complex. The

calculation of this image is different compared with the 2 view stereo image.

2. Support other special display devices

The ADAM can support the standard and 2 view stereoscopic display device currently.

The system needs to be further developed so that it can support other special display

devices, such as the volumetric display device.

3. The extension of user interface and device profile

The user interface needs to be further developed. For example, how can the client user

interface allow the users to add new display property types or device types to the

interface?

The XML device profile is used to describe and store the property information for a

device. However, if there are new types of properties, we need to add the new

property to the profile. Currently, if we need change the property type in XML profile,

we have to recode the client application function.

4. Support more platforms

89

In this evaluation, the client application can work on many platforms except the

Windows mobile platform. The current version of the server software is configured to

make use of the Windows version of the POV-Ray software. POV-Ray is available

for platforms other than Windows, including Linux and MAC OS X, however to make

use of these versions the server application would need to be recompiled with a

platform specific command line. At present therefore the server application is limited

to running in a Windows environment.

5.4 Summary

To evaluate the functionality of ADAM, we conducted several different tests to test

each function. The test outcomes showed that the main functions, such as the property

detect function, the property describe function, the data transfer function, and the

render configuration function, can achieve the design requirements. Thus, ADAM can

detect the display properties from the connect display device and configure the render

software correctly based on the properties. This means that ADAM enables the users

to use different display devices to obtain the correct image output without requiring

any render configuration in advance.

During these tests, the evaluation also shows some limitations of the current solution.

The solution needs to be further developed in order to support more special display

devices. There is a problem, for example, when the client application runs on the

Windows Mobile platform. The functions such as property description and the user

interface also need to be considered as to how to allow the users to add new type of

properties in a flexible way.

This section presented the evaluation of ADAM and discussed the test results in

relation to the design requests. During the tests, some limitations were found, and the

future work on these limitations will be discussed in next chapter.

90

Chapter 6 Conclusion and Future Work

This chapter draws this project to a conclusion and discusses its success and

achievements. Lastly, the future work is presented, highlighting avenues for further

development and refinement.

6.1 Conclusion

Currently, in a visualisation system, a user may use a variety of display devices to

view the visualisation result, such as the standard 2D monitor and stereoscopic

monitor. More especially, in a remote visualisation environment, there are multiple

users who may access the resulting visualisation and the users may use different

devices. The visualisation result may be displayed correctly on some displays but

distorted on others due to the different display properties of the device. Therefore, the

end user needs to carefully configure the rendering parameters for different devices

based on the device’s properties each time in order to obtain the correct visualisation

output. As a result, in multiple types of display environments, end users can find it

very difficult to correctly configure the renderer for different devices without

assistance from technical experts. This situation highlights the complexity of using the

visualisation system, and also may lead to the user receiving the incorrect resulting

image for a particular display device. In order to solve this problem, the solution

needs to met these requirements:

 Support different types of display devices to show a visualisation without manual

configuration of the renderer, so that end users can use different displays easily.

 Support a multiple user environment, so that the solution can be used in a remote

visualisation system.

91

To develop an appropriate solution for end users, we discussed the design of the

system in chapter 3. We indicated that the application should have the ability to detect

and collect the display properties from the display device. In addition, the solution

should also have the ability to use the detected display properties to automatically

configure the renderer in order to generate the correct image.

To support a multiple user environment, we pointed out that the system should be a

client-server based approach. The solution should use a platform independent

programming language so that it can support users on different platforms. In order to

meet the requirements, we developed a client application and a server application

system. This system is implemented in Java. We evaluated how well the approach met

the requirements via several tests and discussed the results in chapter 5, the evaluation

chapter. The achievements of the approach are summarised below for each of the

requirements.

 Support multiple display devices

To support different display devices, we developed an approach to detect the display

properties of a device, and used the properties to automatically configure the renderer.

We have developed a client application which can automatically detect the display

properties, such as the resolution, refresh rate, and colour depth, from the display

device. In addition, the users can manually enter extra properties, such as the eye

separation and viewing distance of a stereoscopic display. The display device

properties are stored as a profile using an XML format.

We have developed a server application which can automatically configure the

renderer by using the display properties. After the server application receives the

device profile from the client application, the profile is parsed and the server

application obtains the property data, and then the automatic configuration method

92

uses the properties to configure the renderer. As a result, the renderer can render the

appropriate image for that display device.

By using the applications, end users are able to obtain the correct visualisation output

for different displays without manually configuring the render.

 Support multiple user environment

A multiple user environment may lead to a situation with various computer platforms.

To support multiple user environments, we used Java language to implement the

client and the server applications, so that the solution can be used on different

platforms.

In addition, in a multiple-user environment, such as a remote visualisation system, a

server should allow multiple clients to access and obtain the resulting image. Thus,

we use the client-server base structure to implement the approach. The server

application of ADAM allows multiple client applications to connect and transfer the

device profile and resulting image data.

This study looked at the issues involved in multiple display devices and multiple user

environments in visualisation. The primary goal of this project is to create a solution

for users to easily use the different types of display device in visualisation. In this

project, we developed a system named ADAM to achieve this goal. The result is that

ADAM is able to configure the render to help users to obtain the correct visualisation

output for some display devices. Although ADAM is a useful tool, it currently has

some limitations. Future improvements are discussed in section 6.2.

6.2 Future Developments

This study provides a useful tool for the users to use different display devices in

93

visualisation. However, there are some limitations in the current system. In order to

improve ADAM and overcome the limitations discussed in the evaluation chapter, this

section discusses future enhancements to support the multiview stereoscopic device,

support special display device, refinement of the client user interface, the extension of

the device profile language and support more platforms and render software.

1. Support the multiview stereoscopic device and other special devices

Currently, the system can support all standard display devices. For the stereoscopic

display device, it can support 2 view stereoscopic display devices but cannot support

multiple view stereoscopic devices such as an8 view device. In order to support this

type of display device, we need to further develop the camera parameters calculation

and image compositing methods.

Although the volumetric device type is included in the current device type list in the

user interface, the system does not currently support this type of device. Volumetric

displays use multiple image slices of a visualisation to display a 3D image. Each slice

is different. To support volumetric devices we need to undertake more complex

calculations to determine the images to render.

2. The client-user interface

The client application provides many display device types and display property types

on the user interface. Currently, we use a combo box to list all display device types,

the users can only select the device type from the list. In order to improve this design

that allows the user to add new device types from the user interface, we plan to add a

new method that allows the users to add customised device types by themselves.

Additionally, we put all display properties fields on the current client application user

interface. The users can enter the property data in these fields, but the property type

94

cannot be changed. We need to upgrade the interface that should allow the users to

add new display property types, and the users to set the data type of the new property.

3. The extension of display device and property

Another method that we need to improve is the property description method. The

current method can only record existing display properties, if the users need to add a

new display property, the describe function has to be recoded. As we improve, the

user interface will allow the users to add new display property types. We plan to

modify the existing property description function to make it more flexible and capable

of adding or removing the display property.

4. Support more platforms and render software

Currently, the client application does not run on the Windows Mobile platform. We

need to determine the reason for this. In the future, we plan to support more platforms

In addition, the POV-Ray windows version is used as the render software in the

current system. In the future, we plan to use multiple versions of POV-Ray, such as

Linux or Mac version, to help the users use this system in different platforms.

Additionally, we can make the system support more render software, such as the

OpenGL, and VTK, so that the users have more options. A possible design for

supporting other render software is to use a case structure on the server side. For each

case, we can create a method to call a render software such as POV-Ray, OpenGL,

and VTK. In addition, we need a list to display all available render software on the

user interface so that the users are able to select the needed renderer.

6.3 Summary

This section presents the conclusion and future work of this project. In the conclusion,

95

we represent the problem and the aim of the project, discuss the achievements and

contributions of the project. Future work of the system is also discussed in this section.

This is based on the current limitations and includes three main parts to support more

display devices, extend display properties, and support more platforms.

This study investigated supporting different display devices in a multiple user

environment. The approach uses a client-server based structure. It provides a client

application for collecting display properties and creating a device profile, and a server

application for automatic configuration of the renderer and generation of the image.

The approach was evaluated with several tests and the results show that this solution

was useful to help users to use different display devices in visualisation.

96

References

Annen, T., Matusik, W., Pfister, H., Seidel, H.-P., & Zwicker, M. (2006). Distributed

rendering for Multiview Parallax Displays. Paper presented at the SPIE

Conference Stereoscopic Displays and Virtual Reality Systems XIII. Retrieved

from http://www.merl.com/papers/docs/TR2006-031.pdf

Bethel, W., Tierney, B., Lee, J., Gunter, D., & Lau, S. (2000, November).Using

high-speed WANs and network data caches to enable remote and distributed

visualization. Paper presented at the IEEE Supercomputing Conference, Dallas,

TX. Retrieved fromhttp://doi.ieeecomputersociety.org/10.1109/SC.2000.10002

Bourke, P. (1999). Calculating stereo pairs. Retrievedfrom

http://local.wasp.uwa.edu.au/~pbourke/projection/stereorender/

Deb, S., & Narayanan, P. J. (2004).Aremote visualization system for large

environments (No. 2004-41). Hyderabad, India: International Institute of

Information Technology. Retrieved from

http://www.iiit.ac.in/techreports/2004_41.pdf

Ding, J., Huang, J., Beck, M., Liu, S., Moore, T., & Soltesz, S. (2003). Remote

visualization by browsing image based databases with logistical networking.

Paper presented at the Supercomputing, 2003 ACM/IEEE Conference.

Retrievedfrom http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=-

-1592937

Engel, K., Sommer, O., Ernst, C., &Ertl, T. (1999). Remote 3D visualization using

image-streaming techniques.Proceedings of the International Symposium on

Intelligent Multimedia and Distance Education. Retrieved from

http://citeseer.ist.psu.edu/394248.html

Grimstead, I. J., Avis, N. J., Walker, D. W., & Philp, R. N. (2005, September).

Resource-aware visualization usingweb services. Paper presented at the UK

e-Science All Hands Meeting, Nottingham, England. Retrieved from

http://www.allhands.org.uk/2005/proceedings/papers/306.pdf

Haber, R. B., & McNabb, D. A. (1990). Visualization idioms: A conceptual model for

scientific visualization systems. Visualization in Scientific Computing, 74-93.

Halle, M. (1997). Autostereoscopic displays and computer graphics.Computer

Graphics, 31(2), 58-62.

97

Mackay, D. (2006). Generating synthetic stereo pairs and a depth map with PoVRay.

(DRDC-Suffield-TM-2006-197).Ottawa, Canada:Defence Research and

Development. Retrieved fromhttp://www.drdc-rddc.gc.ca/index1-eng.asp

Meißner, M., Pfister, H., Westermann, R., & Wittenbrink, C. M. (2000).Volume

visualization and volume rendering techniques. Retrieved from

www.labri.fr/perso/preuter/imageSynthesis/02-03/papers/volvistut.pdf

Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., et al. (1997).

3D multi-scale line filter for segmentation and visualization of curvilinear

structures in medical images In Lecture Notes in Computer Science (Vol.

1205/1997): Springer Berlin / Heidelberg.

Schroeder, W., Martin, M. K., & Lorensen, E. W. (1998). The visualization toolkit: An

object-oriented approach to 3D graphics(2
nd

 ed.)Englewood Cliffs, NJ:

Prentice-Hall.

Tierney, B., Lee, J., Crowley, B., Holding, M., Hylton, J., & Drake, F. (1999). A

network-aware distributed storage cache for data intensive environments.

Proceedings of IEEE High Performance Distributed Computing Conference.

Retrieved from http://www-didc.lbl.gov/DPSS/

VESA. (2007). E-EDID verification guide. Retrieved from

http://www.vesa.org/Standards/summary/2007_3b.htm

W3C. (2008). Extensible Markup Language (XML).Retrieved from

http://www.w3.org/XML/

Ware, C. (2004). Information Visualization: Perception for Design. San Francisco:

Morgan Kaufmann.

Watt, A., & Policarpo, F. (1998). The Computer Image. Harlow: Addison Wesley

Longman Limited.

Yuen, D. A., Garbow, Z. A., & Erlebacher, G. (2004). Remote data analysis,

visualization and problem solving environment (PSE) based on wavelets in the

geosciences. Visual Geosciences, 9(January, 2004). Retrieved from

http://www.springerlink.com/content/6klcc6px6tk80xnq/fulltext.pdf

http://www.vesa.org/Standards/summary/2007_3b.htm
http://www.w3.org/XML/

98

Appendix A

Device Information XML Schema

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <xsd:element name="DeviceInformation">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="DeviceDescription">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="DeviceBrand" type="xsd:string">

 </xsd:element>

 <xsd:element name="DeviceModel" type="xsd:string">

 </xsd:element>

 <xsd:element name="ScreenSize" type="xsd:string">

 </xsd:element>

 <xsd:element name="DeviceManufacturer" type="xsd:string">

 </xsd:element>

 <xsd:element name="DeviceName" type="xsd:string">

 </xsd:element>

 <xsd:element name="HorizontalFrequencyUpperLimit" type="xsd:int">

 </xsd:element>

 <xsd:element name="HorizontalFrequencyLowerLimit" type="xsd:int">

 </xsd:element>

 <xsd:element name="VerticalFrequencyUpperLimit" type="xsd:int">

 </xsd:element>

 <xsd:element name="VerticalFrequencyLowerLimit" type="xsd:int">

 </xsd:element>

 <xsd:element name="HorizontalSize" type="xsd:int">

 </xsd:element>

 <xsd:element name="VerticalSize" type="xsd:int">

 </xsd:element>

 <xsd:element name="AspectRatio" type="xsd:string">

 </xsd:element>

 <xsd:element name="HorizontalResolution" type="xsd:int">

 </xsd:element>

 <xsd:element name="VerticalResolution" type="xsd:int">

 </xsd:element>

99

 <xsd:element name="RefreshRate" type="xsd:int">

 </xsd:element>

 <xsd:element name="ColorDepth" type="xsd:int">

 </xsd:element>

 <xsd:element name="ViewNumber" type="xsd:int">

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="DeviceType">

 <xsd:complexType>

 <xsd:choice>

 <xsd:element name="Standard">

 </xsd:element>

 <xsd:element name="Sterescopic">

 <xsd:complexType>

 <xsd:attribute name="EyeSeparation" type="xsd:decimal"

use="required">

 </xsd:attribute>

 <xsd:attribute name="FocalLength" type="xsd:decimal"

use="required">

 </xsd:attribute>

 <xsd:attribute name="Aperture" type="xsd:decimal" use="required">

 </xsd:attribute>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="Volumetric">

 <xsd:complexType>

 <xsd:attribute name="SliceNumber" type="xsd:int" use="required">

 </xsd:attribute>

 </xsd:complexType>

 </xsd:element>

 </xsd:choice>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

100

Appendix B

Device Description Category

Element Name Data

Type

Content Required Property

Device Brand String The brand of display device Optional

Device Model String The model of display device Optional

Screen Size String The diagonal length of display

device

Optional

Device Name String The display device name in

operation system

Optional

Horizontal

Frequency

Integer The range of horizontal

frequency of device

Optional

Vertical

Frequency

Integer The range of vertical

frequency of device

Optional

Horizontal Size Integer The horizontal physical length

of device screen

Optional

Vertical Size Integer The vertical physical length of

device screen

Optional

Aspect Ratio String The aspect ratio of device

screen

Optional

Horizontal

Resolution

Integer The current horizontal

resolution of the device

Yes, for all devices

Vertical

Resolution

Integer The current vertical resolution

of the device

Yes, for all devices

Refresh rate Integer The current refresh rate of

device

Yes, for all devices

Colour Depth Integer The current colour depth of

device

Yes, for all devices

View Number Integer The number of view angle for

a display device. This property

is special for stereoscopic

device, the view number of

different autostereoscopic

device may not same. For

example, if the view number is

2, the device allows people to

view the screen in two

Yes, only for

stereoscopic devices

101

different angle with 3D effect.

Device Type Category

Element with Attribute Data Type Content Required Property

Standard No special

attributes

Yes, for all devices

Stereoscopic (Element)

Eye Separation Decimal Eye separation

value for a

stereoscopic

device

Yes, only for

stereoscopic devices

Focal Length Decimal Focal length for

a stereoscopic

device

Yes, only for

stereoscopic devices

Aperture Decimal Aperture value

for a

stereoscopic

device

Yes, only for

stereoscopic devices

Volumetric (Element)

Slice Number Integer The number of

slice for a

volumetric

device

Yes, only for

volumetric devices

