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Abstract

The goal of this research was to improve the speed and accuracy of reporting by

clinical radiologists. By applying a technique known as eigenimage processing to

chest radiographs, abnormal findings were enhanced and a classification scheme

developed. Results confirm that the method is feasible for clinical use.

Eigenimage processing is a popular face recognition routine that has only

recently been applied to medical images, but it has not previously been applied

to full size radiographs. Chest radiographs were chosen for this research because

they are clinically important and are challenging to process due to their large

data content. It is hoped that the success with these images will enable future

work on other medical images such as those from CT and MRI.

Eigenimage processing is based on a multivariate statistical method which

identifies patterns of variance within a training set of images. Specifically it

involves the application of a statistical technique called principal components

analysis to a training set. For this research, the training set was a collection of

77 normal radiographs. This processing produced a set of basis images, known

as eigenimages, that best describe the variance within the training set of nor-

mal images. For chest radiographs the basis images may also be referred to as

“eigenchests”.

Images to be tested were described in terms of eigenimages. This identified

patterns of variance likely to be normal. A new image, referred to as the remain-

der image, was derived by removing patterns of normal variance, thus making

abnormal patterns of variance more conspicuous. The remainder image could

either be presented to clinicians or used as part of a computer aided diagnosis

system.

For the image sets used, the discriminatory power of a classification scheme

approached 90%. While the processing of the training set required significant

computation time, each test image to be classified or enhanced required only

a few seconds to process. Thus the system could be integrated into a clinical

radiology department.
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Chapter I

Introduction

1.1 Aim

The goal of this thesis is to develop and refine a system for computer aided

diagnosis of chest radiographs, using eigenimage processing. The system aims

to make clinicians faster and more accurate. The work is significant for both its

clinical and engineering merits, which are important to the author as a qualified

radiologist performing research in the field of computer engineering.

1.2 Clinical significance

The most common examination performed in the majority of radiology depart-

ments around the world is the frontal chest radiograph. Previously these have

used analogue film and processing, but more recently radiographs have been

acquired, processed, stored, and reported using digital techniques and computer-

based workstations.

This trend within radiology towards digital images for “plain” radiographs

combined with the decreasing cost of computing, has produced a working en-

vironment where radiologists can easily access image processing algorithms to

help them quickly and accurately report radiographs. Such algorithms are often

referred to as Computer Aided Diagnosis (CAD).

Chest radiographs are a very common examination, often performed after

hours or at remote locations and the images are then interpreted by non-expert

emergency staff or junior doctors from non-radiological specialties. The expert

radiologist interpretation is often done hours to days later, often after important

medical decisions have been made. Several recent studies comparing emergency

specialists to radiologists concluded that there is a significant difference between

1



radiology specialists and non-specialists in their interpretation of urgent films [1,

2]. Any CAD system that could help non-radiologists with interpretation in the

acute setting has the potential to improve patient care.

Even for experts CAD could be of clinical use in improving the accuracy of

reporting. For mammography, CAD systems are already in routine use, help-

ing clinicians identify calcifications and masses [3]. Subtraction techniques have

been successfully used in chest radiography to aid the reporter in finding lung

nodules [4].

1.3 Engineering significance

Recently there has been an increasing use of information theory approaches for

pattern recognition algorithms. This trend has been due to the accuracy and

flexibility of these approaches. For example, many people have been using train-

ing sets of images to identify important patterns, rather than the traditional

approach where the investigator chooses which features are important. One suc-

cessful information theory approach is eigenimage processing. This technique

was first used by Turk and Pentland in 1991 for face recognition systems [5, 6].

Engineering stands to benefit from the work in this thesis because it provides

insight into the differences and similarities of face recognition problems and CAD

systems. The work also provides an example of the application of the technique

to unusually large data sets, without taking excessive computational time.

There has been little published work on the application of eigenimage pro-

cessing to medical images. There are several likely reasons for this:

• Radiographs tend to be very large images. A standard frontal chest radio-

graph is 2048×2500 pixels, much larger than the images which eigenimage

processing was initially applied to. While these radiographs are the largest

of radiology’s “plain film” images, the volume of data from CT and MRI

can be larger still.

• For CAD systems, the recognition problem is different from that of face

recognition systems. In CAD systems, there is often one important class

of images (the “normal” image) and multiple classes of pathology, with the

possibility of each form of pathology being sub-classifiable. Also, unlike
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face recognition, it is common for a radiograph to belong to several classes

at once. For example, a chest radiograph may show both heart failure and

pneumonia.

• This use of eigenimage processing also differs from traditional uses in that

CAD systems aim to help the clinician make decisions, rather than at-

tempting to replace the clinician. To achieve this a CAD system may sim-

ply prioritise images or identify areas of importance on an image, rather

than providing a comprehensive classification system.

• Traditionally there has been little overlap between medically trained ra-

diologists and image processing engineers. Fortunately this situation is

changing with the development of professional colleges that include both

groups.

1.4 Existing CAD systems

Work began on CAD systems soon after the advent of computers. Significant

early papers were written in the 1960s [7, 8]. Recently an excellent review of

current chest radiograph CAD techniques was published by Ginneken et al. [9].

Within clinical practice, mammography has probably received the largest amount

of investigation [10, 11].

Existing CAD techniques for chest radiography can loosely be grouped into

enhancement, registration, subtraction, region of interest, and segmentation tech-

niques.

Enhancement techniques are methods that allow the data already present

to be made more apparent to the viewer. Most available radiological viewing

software packages contain several routines for image enhancement, varying from

simple contrast enhancement to advanced mathematical methods [12, 13]. One

of the best researched techniques is temporal subtraction, which aims to enhance

images by removing what was present in previous radiographs [14, 15].

Image registration is the process of aligning two images so that direct com-

parison is easier. Registering two images and then subtracting them has shown

itself to be useful in digital subtraction angiography (DSA) and in the detec-
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tion of interval changes, such as the detection of lung nodules and pulmonary

opacities.

Region-of-interest analysis and segmentation are techniques for finding fea-

tures within an image that are useful for the reporting radiologist. This includes

lung nodule detection and breast mass/calcification detection [16]. Segmentation

can also be used for enhancing structures or removing structures within an image.

Methods include thresholding, region growing, edge detection, ridge detection,

and fitting of geometric models.

In the last few years there has been a number of large cohort studies that have

examined the efficacy of CAD systems in clinical practice. Many of these have

demonstrated that CAD systems can successfully improve the identification of

nodules and lung opacities [14, 15, 17–19]. While these studies have shown good

results, the best success has been in mammography [3, 10, 11, 20–22]. Currently

several mammography CAD systems have FDA approval for marketing within

the United States of America.

It is worthwhile noting that in mammography the primary job of the radi-

ologist is to find calcifications and masses. These are small objects which have

a different signal level from background signal of the image, making feature ex-

traction techniques a viable option. However with frontal chest radiographs,

identifying lung nodules is but a small part of the radiologist’s job, and identify-

ing common pathologies such as heart failure, pleural effusions, pneumothoraces,

and pneumonia requires a more general approach. These pathologies are not

subtle in terms of area of the image involved or the signal-to-noise ratio of the

abnormality. Rather they often involve changes in the texture or size of anatom-

ical features. It is hoped that recent techniques developed for other pattern

recognition systems, such as the eigenimage processing technique, could be a

more suitable way to advance CAD systems.

1.5 Eigenimage processing

Eigenimage processing is an information theory approach to image classification.

In essence, it is the application of Principal Components Analysis (PCA) to a set

of training images to produce a set of basis images that are used for processing of

subsequent test images. The method is typically used for classification systems,
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image compression systems, and image enhancement systems.

In the statistical literature the basis images are known as “principal compo-

nents”, while in the engineering literature they are termed “eigenimages”. The

word is derived from the fact that the images are eigenvectors of the training set’s

co-variance matrix. There is a lack of agreement in the literature as to whether

the term “eigenimage processing” refers to the application of PCA to any set of

images for any purpose, or whether the term should only refer to complete image

classification systems in which PCA is a single step.

PCA is a multivariate statistical method for studying correlations between

variables [23–25]. It is closely related to the Karhunan-Loève transform and

Singular Value Decomposition (SVD) of matrices [26, 27]. The use of PCA in

imaging was first proposed by Turk and Pentland in 1991 for face recognition sys-

tems [5,6]. There is also an earlier paper by Kirby and Sirovich studying the use

of the Karhunan-Loève transform for characterisation without classification [28].

Eigenimage processing is probably the most frequently used form of image

recognition currently in use [29]. Since the initial work of Turk and Pentland

on digital pictures of faces, people have built complete face recognition systems

with maximum recognition rates close to 90% [30, 31]. It has also been success-

fully used in optical character recognition, voice recognition, lip-reading, image

compression, and image enhancement [32–38].

The technique has shown itself to be most useful for recognising patterns

that exist in the whole image, rather than identifying small areas of interest.

Given this, it is expected that pathological patterns such as heart failure, pleural

effusions, and pneumonias would be more easily recognised than small areas of

interest, such as lung nodules.

While its use in medical imaging has been limited, it has been applied to

mammography image compression and feature analysis, and regions of interests

within CT volume data [39–41]. To date, little work has been published on

classification schemes for complete radiological images.

Several variations on eigenimage processing have been described:

• Multi-resolutional approaches where PCA is performed at different resolu-

tions to improve classification or compression [42, 43].

• Non-linear approaches, such as kernel PCA, where the data is transformed
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so that the PCA process can find patterns that are non-linear in the original

data space [44].

• Iterative approaches, such as incremental PCA and sub-space PCA, where

the training set is updated or segmented [29,45]. These approaches allow for

the use of large training sets, or alterations of the training set (as required

for video compression).

1.5.1 Comparison with other face recognition systems

A good survey of face recognition systems was performed by Chellappa et al. [46].

In addition to eigenimage processing (PCA), there are many other statistical

methods that have been used. Two other major statistical methods used for

face recognition are Independent Component Analysis (ICA) and Linear Dis-

criminant Analysis (LDA). Several authors have attempted direct comparison

of these systems using standardised image sets [47–49]. In general, while ICA

can be more accurate than PCA for some problems it is often computationally

too expensive. For many problems PCA is more accurate than LDA with similar

computation required. There have been successful attempts to integrate all three

major routines into one system [50].

ICA is a generalisation of PCA. It searches for a linear transformation which

expresses the observed data as a linear combination of statistically independent

source variables. There are many good papers and tutorials that explain and

compare the use of PCA and ICA for face recognition [47, 48, 51]. Due to the

computational expense of ICA, some face recognition systems perform PCA for

dimensionality reduction prior to applying ICA [51].

In PCA, data is projected into a space where the transformed variables are un-

correlated, that is their co-variance is zero. In ICA, this requirement is strength-

ened so that the variables are not only uncorrelated, but remain uncorrelated af-

ter any transformation of the variables. Sometimes this is summarised by saying

that PCA minimises second order statistics (variance), while ICA also minimises

higher order statistics [48]. It can be shown that when the observed variables are

from a Gaussian distribution, ICA reduces to PCA [51]. Few people have studied

the distribution of chest radiographs, but one thorough analysis concluded that

a multivariate Gaussian distribution is a reasonable approximation [52]. Thus
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for chest radiographs, the computationally more expensive ICA routine is likely

to produce the same results as PCA, although no one has formally tested this.

Classification systems based on LDA are often known as either Fisher lin-

ear discriminants or Fisher-faces. LDA finds basis vectors that best discrimi-

nate between two or more pre-defined classes by considering the scatter between

them [53]. Many authors have found that for face recognition, PCA usually out-

performs LDA. Others have tried to use non-linear components, such as curvi-

linear components, for classification but these have failed to become popular,

probably due to the computing requirements [54].

In summary, the choice of eigenimage processing (PCA) for chest radiograph

analysis is consistent with current trends in face recognition. While both ICA

and LDA may offer some benefits, particularly if used in conjunction with PCA,

developing a PCA based system first provides a good pathway towards the other

forms of analysis.

1.5.2 Method overview

When developing a classification system based on eigenimage processing two sets

of images are required. The first group, the training set, is used to calculate the

eigenimages. The second group, the test set, is used for evaluating the system.

Turk and Pentland outlined the three basic steps found in most classification

systems based on eigenimage processing:

Image registration: All images from both the training set and test image sets

are aligned. The aim is to remove differences due to photographic (or in

this case radiographic) technique.

Processing of the training set: PCA is applied to the training set to calcu-

late a set of basis images, called eigenimages, that best describe the variance

of the training set.

Analysis of test images: Each image from the test set is described as a com-

bination of the eigenimages with one weighting factor per eigenimage. The

weighting factors are then used to assign the test image to a particular

class. For example, in the case of chest radiographs the weighting factors

may be used to assign the test image to be either normal or abnormal.
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The three steps are described in more detail below.

1.5.3 Image registration

Image registration is the process of aligning two images with respect to normal

structures. In eigenimage processing it is applied to all images in both the

training set and test set. The aim is to ensure that any differences between

images represent true differences in underlying anatomy and pathology.

Registration is important because no two humans are exactly the same shape

and size, nor are two radiological examinations ever performed in a perfectly

repeatable manner. When comparing one radiograph with another it is impor-

tant that any variation observed is the result of pathology, not simply because

of differences in the size or position of the patient. Image registration is also

important elsewhere in radiological image processing, such as digital subtraction

angiography, temporal subtraction, and image segmentation, as well as other

types of pattern recognition.

Broadly speaking, image registration systems can be grouped into manual

or automatics. For manual registration, a user selects control points that are

then aligned. In automatic registration, the computer aligns the images without

user intervention. Registration techniques may be simple, and only allow certain

transformations such as translation and rotation. Other techniques are more

complex and may also allow the images to be scaled or warped.

For the majority of the work in this thesis, registration was performed using

an “affine transformation” based on manually selected control points. The images

were then cropped, and intensity centred. Intensity centring was performed by

removing the empirical mean of the training set from the image.

1.5.4 Processing the training set

This is the core step in eigenimage processing. PCA is applied to a high di-

mensional data set in order to perform dimensionality reduction. Essentially the

method involves writing an n×m pixel image as a vector of length nm. Possible

images then span an nm dimensional space. Actual recorded images are found

to be highly correlated, and as such they are clustered in a low dimensional sub-

space of the entire image space. The aim of PCA is to find an efficient basis for
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this sub-space.

The mathematical problem is to find a set of basis vectors (corresponding to

basis images) that best represent the variance within the set of training images.

Turk and Pentland showed that one such method is to find the eigenvectors of the

co-variance matrix. The eigenvectors are ordered by the associated eigenvalues

of the co-variance matrix. These eigenvalues are usually referred to as charac-

teristic roots. The eigenvector with the largest characteristic root represents the

strongest pattern of variance within the training set.

All principal components exist in the same vector space as the original data, so

when the data represents an image, the eigenvectors can also be viewed as images.

This has led to the coining of the term “eigenface” by Turk and Pentland [5, 6].

For chest radiographs we have suggested the term “eigenchest”. However, since

the work presented in this thesis could also be applied to other radiographs, CT

images or MRI images, the term “eigenimage” is also used. Figure 1.1 depicts a

set of eigenchests formed from a training set of normal chest radiographs.

1.5.5 Analysis of test images

Once the eigenimages have been produced, subsequent test images are described

as a linear combination of the eigenimages with associated weighting factors. The

weighting factors are then used to classify the test images, by grouping images

that are similar into sets. In Turk and Pentland’s original paper, classification

was performed using the Euclidean length of the weighting factors.

The process of expressing a test image as a linear combination of eigenimages

is depicted in figure 1.2. Usually, within each test image there is a small portion

of the image that is not able to be represented by the eigenimages. This portion

of the test image is referred to as the “null space image”. Complementary to

this terminology, the portion of the test images described by the eigenimages is

often referred to as the “column space image”.

Several good reviews describe the types of classification schemes used for

eigenimage processing [55,56]. In particular, they describe the use of “Euclidean

distance”, “Mahalanobis distance” and “self organising maps”. Most methods

involve measuring the distance between test images within eigenspace, where

each image’s location is specified by its weighting factors.
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Training set Eigenimages

Figure 1.1: Deriving eigenimages from a training set: Ap-
plication of PCA to the training set produces a set of eigenchests,
u1,u2, . . . ,uk that best represent the variance within the set.

A popular variation on eigenimage processing is to define different spaces for

each pattern that is to be classified. For example, using the data sets gathered

for this thesis, PCA would be performed on both the normal training set and a

pneumonia training set. Distance measures, as described above, are then used

to test if an image to be classified is closest to the normal set or the pathological

set [45, 57, 58]. This approach is similar to LDA.

1.6 Source images

The source images for this thesis were taken from the Christchurch Public Hospi-

tal’s Picture Archiving and Communication System (PACS). Images were anonymised,

then exported in Dicom-3 format, which is an open format supported by most

radiological equipment manufacturers [59]. Specifically, images were obtained at

a maximum of 2048 × 2500 pixels at 12 bits per pixel.
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Figure 1.2: A test image as a linear combination of eigen-
images: Each test image is represented as a linear combination of
eigenimages with associated weighting factors. The portion of the
test image that can not be represented by the eigenimages is called
the null space image.

All images were selected using a key-word search of the radiologist’s report

stored in the hospital’s Radiology Information System (RIS). Two groups of im-

ages were obtained: a training set of 77 normal images and a test set of 89 images.

The test images were further subclassified into normal or various pathologies (see

table 1.1). When initially building the prototype classification system, the test

set included only the 15 normal images and 15 images of pneumonia. For later

work, the test set was expanded to 89 images by obtaining another 59 images

with a variety of other pathologies.

The Canterbury Ethics Committee was informed of the nature of this Ph.D.

study in May 2003. The committee noted that all images used were acquired

during routine patient management and that they were de-identified by members

of the radiology department staff who have access to the images as part of their

normal clinical practice. The Committee therefore advised the research group
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Training set:
77 Normal radiographs

Test images:
15 Normal radiographs
15 Pneumonia
10 ET tubes, NG Tubes, chest drains and

other therapeutic devices
10 Nodules, carcinoma, and other lung

masses
11 Pneumothoraces of any type
13 Pleural effusions of any type
15 Left ventricular failure

Total 89

Table 1.1: Diagnosis found on each image: The groups of chest
images used in the study. The pathology represented on each image
was taken from the radiologist’s report. Training set images were
used for construction of eigenimages. Test images are then used for
evaluation of the system.

that no ethics approval was necessary for the project.

Before inclusion in the training set all images were manually checked by

the author to ensure that all images were high quality PA1 frontal radiographs.

Images were rejected if the subject was overly rotated, poorly inflated, or had the

extremities of the chest cavity excluded from the radiograph. Images were also

rejected if they contained implanted or overlying devices, such as pacemakers

or oxygen masks. ECG2 electrodes were allowed as these are present on a large

fraction of normal radiographs in the hospital.

For the test set, each image was checked by the author to ensure that the

image contained only the reported pathology. For the test set both PA and

AP3 images were included. Images were only rejected if part of the subject

was excluded from the radiograph. Images containing overlying medical devices

1 Postero-Anterior radiograph: The X-ray beam enters through the patient’s back and leaves

through their front.

2 Electrocardiogram: A recording of the electrical activity of the heart.

3 Antero-Posterior radiograph: The reverse geometry of a PA radiograph.
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or which had sub-optimal patient positioning were accepted, as these factors

constitute useful information for image interpretation.

As part of the radiographer’s normal routine for acquiring chest radiographs,

all images are intensity scaled to ensure that they are of a similar brightness,

using specific visual criteria. For example, in a properly exposed radiograph the

spinal vertebrae should be just visible behind the heart. This scaling of intensities

works well because most digital acquisition systems (e.g. CR systems) have a near

linear response to X-ray exposure. Apart from the normal radiographer quality

assurance, no specific quantitative tests were performed.

1.7 Structure of this thesis

Chapters 2 and 3 review the relevant statistics and algebra. The aim is to give

the reader an understanding of PCA for low dimensional problems so they can

extrapolate to the high dimensional problems found in eigenimage processing.

In particular, chapter 2 aims to familiarise the reader with the concept that

principal components (eigenimages) identify the direction of variance, while the

associated characteristic roots describe the magnitude of the variance. Chapter 3

highlights the relationship between PCA and the SVD. It emphasises the use of

the SVD to solve large PCA problems and discusses how the SVD can provide

an algebraic interpretation of PCA.

Chapter 4 describes a simple system for classification of chest radiographs as

either normal or abnormal. This prototype system is based on the original face

recognition system of Turk and Pentland. The chapter focuses on implemen-

tation issues involved with processing very high resolution images. The chapter

proves that, with modern computer hardware, eigenimage processing is a feasible

technique for chest radiographs.

Chapter 5 focuses on the pre-processing step of aligning all the images.

Because medical image registration is a very large topic, the chapter initially

outlines a taxonomy of registration systems and reviews commonly used meth-

ods. Following this, experiments compare four different semi-automated meth-

ods of registration, and assess their quality of alignment. The chapter concludes

that each registration method has advantages and disadvantages, with no single

method being ideal for all situations.
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Chapter 6 addresses the application of PCA to the training set. Experiments

study the clustering of training images within the complete image space, exam-

ining the dimensionality and spread of the cluster. Experiments then test the

effect of training set size on both clustering and computation time. It is inferred

that PCA does indeed allow the identification of a cluster of normal images,

and allows the cluster to be described to a known level of accuracy, both in di-

mensionality and spread. The chapter concludes with a discussion of the ideal

training set.

Chapter 7 studies the two parts of a test image– the column space image (the

portion represented by the eigenimages) and the null space image (the portion

not represented by the eigenimages). Initially the chapter describes a classifica-

tion scheme using Mahalanobis distance to compare column space images. Next,

classification is performed using residual analysis to compare the null space im-

ages. Both methods are shown to be more accurate for chest radiographs than

the prototype system in chapter 4, which is based on Turk and Pentland’s face

recognition system and used the Euclidean length of the column space image.

The chapter also investigates whether displaying the component images is a use-

ful form of image enhancement, to complement the original radiograph by high-

lighting areas of abnormality, improving the speed and accuracy of the reporting

clinician.

The final set of experiments, described in chapter 8, derives a new image

that uses information from both the column space and null space components.

The new image is referred to as the “remainder image” because it is derived

from a test image by subtracting the expected patterns and range of normal

variance. Classification based on the remainder image is shown to be better

than classification based on the column space or null space images alone. The

remainder image is also presented as an enhanced image which could be shown

to a reporting clinician. The remainder image is better suited to radiological

imaging problems, rather than traditional face recognition problems, as discussed

in section 1.1.

1.8 Summary

1. CAD systems aim to improve the speed or accuracy of image interpretation.
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2. Eigenimage processing is one of the most successful forms of image pat-

tern recognition. Its use in medical image processing is currently limited,

but successful implementation would allow a wide range of applications to

be tested. In particular success with chest radiographs would allow the

technique to be tested on other radiographs, CT images, and MRI images.

3. This thesis develops an eigenimage processing system for classification and

enhancement of frontal chest radiographs. A new derived image is devel-

oped which is suited to radiological problems.

4. The goal is to produce a system that will be used in a clinical practice.
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Chapter II

Principal components analysis

Principal Components Analysis (PCA) is a form of multivariate statistics.

Its goal is to describe a large set of inter-related variables as a much smaller

set of uncorrelated variables. It is often referred to as a form of dimensionality

reduction because it starts with a set of data with many variables (i.e. many

dimensions) and reduces it to a small set of variables (i.e. a smaller number of

dimensions). This is achieved using a linear transform. In statistical literature

the basis set of vectors for the transformation are called principal components,

and they are ordered so that the first few components retain most of the variation

present in all of the original variables.

This chapter outlines a derivation of PCA and its most common formula-

tion. It uses a two variable (i.e. two dimensional) numerical example to enable

the reader to understand PCA before extrapolating to higher dimensional prob-

lems. The chapter initially defines PCA and then introduces the concepts of

variance and co-variance as used in multivariate statistics. It then gives two

proofs for the theorem that the principal components can be found by calculat-

ing the eigenvectors of a sample co-variance matrix. Finally it discusses three

important PCA-related topics: spectral decomposition of a co-variance matrix,

Mahalanobis distance, and control ellipses.

The majority of the formulation and important results are from an excellent

text book by Ingrid Jolliffe [23]. Other good textbooks which cover PCA and

multivariate statistics in general are helpful as they highlight different topics and

terminology [24,25,60,61]. Jolliffe traces the PCA to the late 19th century when

both Beltrami and Jordan independently derived the Singular Value Decompo-

sition (SVD) in a form that underlies PCA [62,63]. However, it is accepted that

the first description of PCA in its modern form was by Pearson in 1901 and later

Hotelling in 1933 [64, 65]. As described in the previous chapter, the first use in
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imaging was by Turk and Pentland in 1991 who were the first to coin the term

eigenimage and eigenface [5, 6]. PCA is also called the Karhunen-Loève trans-

form, after Kari Karhunen and Michel Loève, or the Hotelling transform, after

Harold Hotelling.

2.1 Definition of principal components

If there are k random variables then these can be represented using the vector a

of k dimensions to represent this set of variables. The co-variances (or correla-

tions) between the variables are of interest because they describe the relationship

between each observed variable. This gives k2 variances and co-variances to anal-

yse. Therefore if k is very large it will not be helpful to look at these variances

alone. Instead, the goal of PCA is to look for a few (≪ k) derived variables that

preserve as much of the total variance as possible. In other words, the goal of

PCA is to find a linear transformation from a high dimensional space to a lower

dimensional sub-space while keeping the largest variance of the data.

To achieve this goal look for a linear function which transforms a onto a new

scalar variable z1 = uT
1 a, where z1 has a maximum variance. The vector u1 is a

column of k constants u11, u12, . . . , u1k giving

z1 = uT
1 a = 〈u1, a〉 =

k
∑

i=1

u1iai. (2.1)

Next, look for another linear function uT
2 a which transforms a onto the scalar

variable z2 which also has a maximum variance, but with z2 uncorrelated with

z1. Similarly look for further linear functions zi = uT
i a which are uncorrelated

with the other functions. Up to k derived variables can be found, although for

many real world problems most of the variance will be accounted for by fewer

derived variables, which is what we are hoping for.

There is some confusion over what to call ui and uT
i a. Many statisticians

call the derived variables zi the principal components. They refer to ui as either

the characteristic vector, vector of co-efficients, or vector of loadings, for the ith

principal component. In engineering literature ui is often directly referred to as

the ith principal component, eigenvector, or eigenimage. In Jolliffe’s book there

is a referenced discussion regarding what is the appropriate terminology [23]. In
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this thesis the engineering style nomenclature is used. This is consistent with

the style of Turk and Pentland in their pioneering paper on the use of PCA in

imaging. Thus ui is herein said to be the ith principal component or eigenimage.

An example of 50 observations of two highly correlated random variables is

given in figure 2.1. In a real world example this could represent the difference

from the population’s mean for 50 people’s height and weight. This data is then

transformed onto a basis which is uncorrelated, plotted in figure 2.2. These

transformed variables are z1 = uT
1 a and z2 = uT

2 a. In short each observation of

a has been projected onto a new basis ui to uncorrelate the observations.

In figure 2.2 there is more variance in the z1 direction than in the z2 direction.

For larger problems (k > 2) there are often significant correlations between the

variables and so the first few principal components will account for a majority

of the variance. For data where each measured variable represents true signal

plus random noise, it is expected that the true signal will be more correlated

than random noise, and hence more likely to be represented within low order

principal components while the noise is more likely to be represented in the high

order principal components.

For an imaging example, consider a set of p images each of n × m pixels.

Thus there are p observations of k = nm random variables, where each of the

variables are highly correlated. That is, the brightness of one pixel is correlated

with the brightness of other pixels, especially those in its neighbourhood within

the image.

2.2 Variance of multiple random variables

Before embarking on PCA-related theorems it is important to understand the

concepts of co-variance, co-variance matrices, and sample co-variance matri-

ces. Co-variance is a measure of how interdependent two variables are. The

co-variance matrix generalises variance from one variable to multiple variables

by forming a matrix of co-variances. A sample co-variance matrix is an estimate

of the population co-variance matrix found by sampling data.
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Figure 2.1: Plot of correlated random variables: Plot of p = 50
observations of a. Each observation of a has k = 2 correlated random
variables.
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Figure 2.2: Plot of uncorrelated random variables: p = 50 ob-
servations of k = 2 correlated random variables after transformation
to uncorrelate them. The variables are now z1 = uT

1 a and z2 = uT
2 a.
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2.2.1 Co-variance

Co-variance indicates the “lack of independence” of the two variables. That is,

how two variables vary with each other. A positive co-variance implies that as

one variable becomes larger then the other variable also tends to become larger.

A negative co-variance implies that as one variable become larger in the positive

sense the other variable becomes larger in the negative sense.

Consider the co-variance of two random variables x and y. The co-variance

of these variables is formally defined as:

cov [x, y] = E [(x − µ)(y − ν)] (2.2)

where E is the expected value and µ and ν are the expected values (i.e. means) of

x and y respectively. This definition can be shown to be equivalent to equation 2.3

for scalar variables and to equation 2.4 for vector variables.

cov [x, y] = E [xy] − µν (2.3)

cov [x,y] = E
[

xyT
]

− µνT (2.4)

For the data in figure 2.1, µ and ν are zero as the data is centred about the

origin. This is the reason that in eigenimage processing all images are intensity

centred about the mean image.

For most problems the co-variance of two variables is not known. However,

it can be estimated by sampling. Specifically for p observations

cov [x, y] = E [xy] − µν (2.5)

=
1

p

p
∑

i=1

xiyi −
1

p2

(

p
∑

i=1

xi

)(

p
∑

i=1

yi

)

(2.6)

It is worth noting that if x and y are independent then their co-variance is

zero. This follows because the definition of independent random variables is:

E [xy] = E [x] E [y] = µν (2.7)
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If x and y are real independent random variables and c is a constant, three

other important results should be noted. Equation 2.8 states that the co-variance

of a variable with itself is simply the variance of the variable. Equation 2.9 is

the commutative property while equation 2.10 is the homogeneity property.

cov [x, x] = var [x] (2.8)

cov [x, y] = cov [y, x] (2.9)

cov [cx, y] = c cov [x, y] (2.10)

2.2.2 The co-variance matrix

The co-variance matrix, often denoted Σ, is a matrix of co-variances between

elements of a vector. That is, if a is a column vector of n elements then the

co-variance matrix has the (i, j)th element being the co-variance between the ith

and jth elements of a when i 6= j and the variance of the ith element of a when

i = j.

Formally the co-variance matrix is defined as:

Σ = var [a] = E
[

(a− E [a]) (a − E [a])T
]

(2.11)

=























E[(a1 − µ1)(a1 − µ1)] E[(a1 − µ1)(a2 − µ2)] · · · E[(a1 − µ1)(ak − µk)]

E[(a2 − µ2)(a1 − µ1)] E[(a2 − µ2)(a2 − µ2)] · · · E[(a2 − µ2)(ak − µk)]

...
...

. . .
...

E[(ak − µk)(a1 − µ1)] E[(ak − µn)(a2 − µ2)] · · · E[(ak − µn)(ak − µk)]























(2.12)

=













cov[a1, a1] cov[a1, a2] · · · cov[a1, ak]

cov[a2, a1] cov[a2, a2] · · · cov[a2, ak]
...

...
. . .

...

cov[ak, a1] cov[ak, a2] · · · cov[ak, ak]













(2.13)
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It is worth noting that this matrix is symmetric and k × k square. It has

variances cov[ai, ai] = var[ai] along the diagonal.

Similar to equation 2.4 for co-variance it can be shown that an equivalent

definition for the co-variance matrix is:

Σ = var[a] = E[aaT ] − µµT (2.14)

where µ is the expected value of the a. That is, µ = E [a] = [µ1, µ2, . . . , µk]

An important result for PCA regarding the co-variance matrix is that for a

constant vector c,

var
[

cTa
]

= cT var[a] c. (2.15)

This is similar to equation 2.10.

In this thesis the standard notation Σ = var [a] is used for the co-variance

matrix as it generalises the concept of variance to multiple dimensions and is

consistent with the notation Σ = var [a] = cov [a, a] from equations 2.4 and 2.8.

Another common notation is Σ = cov [a]. The latter notation, while confusing,

is unambiguous because if “cov” has only one vector argument it refers to the

co-variance matrix. Alternatively if it has two scalar arguments then it refers to

the co-variance of two variables.

2.2.3 The sample co-variance matrix

In most problems the population co-variance matrix is not known. Normally

it must be estimated by sampling real data. This is similar to the sample co-

variance given in equation 2.6.

Specifically if there are p samples of a, these can be stored as ai where i =

1, 2, . . . , p. Then these samples can be written as a matrix of p column vectors,

A = [a1 a2 . . . ap]. Without loss of generality it can be assumed E[a] = 0, i.e.

the data is centred. Equation 2.4 then gives

Σ = var[a] = E
[

aaT
]

. (2.16)
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By sampling multiple occurrences of a this becomes

var[a] =
1

p − 1

p
∑

i=1

aia
T
i (2.17)

=
1

p − 1
AAT . (2.18)

The denominator term is p − 1 so that the sample’s co-variance is an unbiased

estimate of the population’s co-variance. For simplicity, in the remainder of this

chapter theorems use population co-variance matrices, although corresponding

theorems exist for sample co-variance matrices.

2.3 Calculating the principal components

Having defined the principal components and introduced the benefits of find-

ing them, it is now necessary to have a method to calculate them. Firstly the

important result is given, then two methods are described which prove the result.

The Result: For i = 1, 2, . . . , k, the ith transformed variable is given by

zi = uT
i a where the vector ui, is an eigenvector of the co-variance matrix

Σ = var[a] corresponding to the ith largest eigenvalue λi.

Put more simply, the principal components are the eigenvectors of the co-

variance matrix. They described a basis for the variables where the variance

of each variable is independent. The corresponding eigenvalue, often called the

characteristic root, describes the variance for each of the transformed variables.

2.3.1 Justification 1

The following is the method chosen by Jolliffe [23]. It is not a formal proof as it

only derives the results for the first two principal components, although higher

order principal components can be derived in a similar way. It is given here

because it is intuitive and therefore extremely useful in understanding PCA.

First consider the transformed variable z1 = uT
1 a. This has variance given by

var [z1] = var
[

uT
1 a
]

. (2.19)
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PCA seeks the vector u1 which maximises the variance of uT
1 a. However, this

maximisation is not solvable until u1 is constrained. We choose a normalisation

constraint uT
1 u1 = 1. That is, the sum of the squares of the elements of u1

equals 1. Other constraints such as maxj [u1j ] = 1 can be used but are outside

the scope of this thesis and readers interested in other constraints are again

referred to Jolliffe’s text [23].

To perform the maximisation, equation 2.15 is used to express the variance

of uT
1 a in terms of the co-variance matrix Σ

var
[

uT
1 a
]

= uT
1 Σu1 (2.20)

To maximise uT
1 Σu1 subject to uT

1 u1 = 1 the technique of Lagrange multipliers

is used. That is, maximise

uT
1 Σu1 − λ

(

uT
1 u1 − 1

)

(2.21)

where λ is the Lagrange multiplier. To find the maximum, look for where the

differential with respect to u1 is zero

Σu1 − λu1 = 0 (2.22)

Alternatively

(Σ − λIk)u1 = 0 (2.23)

where Ik is the k× k identity matrix. Thus λ is an eigenvalue of Σ and u1 is the

corresponding eigenvector. To find which of the k eigenvectors gives the most

variance, return to the quantity to be maximised

uT
1 Σu1 = uT

1 λu1 = λuT
1 u1 = λ (2.24)

This variance will be maximised when λ is the largest eigenvalue. That is, the

largest eigenvalue corresponds to the eigenvector which produces the largest vari-

ance for var
[

uT
1 a
]

. Since λ is the variance of uT
1 a, it is therefore also the variance

of z1.

For the second principal component, u2 is the eigenvector that corresponds

to the second largest eigenvalue, λ2, of the co-variance matrix Σ. This is similar
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to finding the first principal component except this time maximise uT
2 Σu2 with

the variance about the component being uncorrelated with the first component.

That is when the co-variance between the two is zero, cov
[

uT
1 a,uT

2 a
]

= 0,

cov
[

uT
1 a,uT

2 a
]

= uT
1 Σu2 (2.25)

= uT
2 Σu1 (2.26)

= uT
2 λ1u1 (2.27)

= λ1u
T
2 u1 (2.28)

= λ1u
T
1 u2. (2.29)

Hence

uT
1 Σu2 = 0 and uT

2 Σu1 = 0 (2.30)

when uT
1 u2 = 0 (that is when the principal components are orthogonal).

Similar proofs exist for i > 2. They are not presented here as more general

methods exist for finding the ith principal component. Returning to the original

diagram of 50 observations of two random variables shown in figure 2.1, and

having found u1, u2, λ1, and λ2, it is possible to add vectors representing u1 and

u2. This is given in figure 2.3. Since zi = uT
i a and var [zi] = λi, it can be said

that ui gives the direction of the variance while λi gives the magnitude of the

variance.

2.3.2 Justification 2

A second method for establishing that the principal components are eigenvectors

of the co-variance matrix is given in this section. While the method establishes

the conjecture for all principal components it is less intuitive than the method

in section 2.3.1. The best overview of the method is on the world wide web

on “Wikipedia” [66]. This method is equivalent to that in Edward Jackson’s

book “A User’s Guide to Principal Components” where he presents a method

for diagonalising a co-variance matrix [25].

Consider the matrix version of equation 2.1,

z = UT a (2.31)
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Figure 2.3: Plot of two correlated random variables with prin-
cipal components shown: The plot shows 50 observations of 2
correlated random variables. The principal component vectors have
been added to show how u1 points in the direction of the most vari-
ance. Note that u2 is orthogonal to u1 and points in a direction that
accounts for the remaining variance.
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where a is a vector of k random variables. To simplify the proof, assume a has

a mean of zero, E[a] = 0. The vector z represents the transformed variables

z1 . . . zk. The matrix U is a k × k projection matrix. We write U as a series of

column vectors

U = [u1 u2 . . . uk] (2.32)

As discussed previously, the projection of a (where the variables are corre-

lated) to z (where they are uncorrelated) is the goal of PCA. The result to be

established is that the columns of U are eigenvectors of the co-variance matrix of

a. This is done by looking at the co-variance matrix of z, then using substitution

and matrix algebra.

Equation 2.31 is constrained using the definition of PCA given in section 2.1:

the variables z1 . . . zk must be uncorrelated. This is done by constraining the

co-variance matrix var[z] = Λ to be diagonal. Specifically this ensures that

cov[zi, zj ] = 0 for i 6= j and cov[zi, zi] = var[zi] = λi. Thus the co-variance

matrix is

Λ =









λ1 · · · 0
...

. . .
...

0 · · · λk









. (2.33)

Note that for real values of zi, var [zi] must be positive. Hence λi ≥ 0 leading

to Λ being positive definite.

U is constrained such that its columns are orthonormal. Thus, U is an or-

thogonal projection matrix with the following properties

uT
i uj =

{

0 for i 6= j

1 for i = j
(2.34)

Ik = UUT = UT U (2.35)
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Examining Λ, the co-variance matrix of z gives

Λ = var [z] (2.36)

= E
[

zzT
]

(2.37)

= E
[

(

UT a
) (

UTa
)T
]

(2.38)

= E
[(

UT a
) (

aT U
)]

(2.39)

= UT E
[

aaT
]

U (2.40)

= UT var [a] U (2.41)

= UT ΣU (2.42)

Multiplying both sides by U yields

UΛ = ΣU. (2.43)

Substituting both equations 2.32 and 2.33 into equation 2.43 yields

[

λ1u1, λ2u2, . . . , λkuk

]

=
[

Σu1, Σu2, . . . , Σuk

]

. (2.44)

Comparing like columns gives

λiui = Σui for i = 1 . . . k (2.45)

which is the result to be proved, namely that the characteristic roots λi and

principal components ui are the eigenvalues and corresponding eigenvectors of

the co-variance matrix Σ = var[a]. If there are only r < k non-zero eigenvalues

of Σ then only the first r columns of U correspond to principal components.

2.4 The power spectrum

It is possible to decompose the co-variance matrix Σ into parts constructed of ui

and λi. This technique is known as either “the power spectrum” or “the spectral

decomposition” of Σ. It is useful as it allows understanding of how much of the

variance and co-variance of a is represented by each of the principal components.

Reviewing the relationship between the co-variance matrix Σ = var[a] and
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the co-variance matrix for the transformed variables Λ = var[z] given in 2.43,

right multiply both sides by UT to give

Σ = U Λ UT (2.46)

Given that Λ = var[z] is a diagonal matrix with λi along the diagonal, the right

hand side of equation 2.46 can be expanded, giving

Σ =
r
∑

i=1

λiuiu
T
i (2.47)

This is the spectral decomposition of the co-variance matrix Σ = var[a].

Although the terms are not strictly decreasing, λi decreases as i increases, while

uiu
T
i remains “about the same size” due to the normalisation constraint. Jolliffe

discusses this in detail in Chapter 2 and Section 6.1 of her book [23]. The spectral

decomposition demonstrates that studying the eigenvalues λi alone determines

how much of the variance of a is accounted for by each principal component [23,

24].

Using all the characteristic roots λ1 . . . λr, it is possible to calculate the total

variance, TV , contained within a co-variance matrix. Total variance is a useful

statistic because it can be calculated without computing the entire co-variance

matrix. Total variance is usually defined as the sum of the eigenvalues of the

co-variance matrix [23].

TV (Σ) =
r
∑

i=1

λi (2.48)

The right side of the equation is the trace of Σ. The trace of any matrix can

be found in two ways, either from the sum of the eigenvalues or the sum of the

diagonals [26]. For a co-variance matrix, the diagonal elements are the variance

of each variable (see equation 2.13). Hence the total variance can also be found

if the variance of the individual variables is known.

TV (Σ) =

k
∑

i=1

var[ai] (2.49)

In a similar fashion to total variance, it is possible to determine the amount
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of variance represented by only a few low order principal components. The

cumulative proportion of total variance (CPTV) spanned by the first q principal

components is given by:

CPTVq =

∑q
i=1 λi

∑r
i=1 λi

(2.50)

It is therefore possible to determine how many principal components to re-

tain in order to span the desired proportion of the total variance. Methods for

choosing the number of retained components are often referred to as “stopping

rules”.

Often it is useful to graphically display the relative importance of the principal

components. This can be done using “scree plots”, introduced in 1966 by Catell,

where the eigenvalues of each component are plotted [67]. Various stopping rules

have been described based on the shape of this curve and other parameters.

These are discussed further in section 6.3.

2.5 Mahalanobis distance

A common metric for measuring the distance within the space of a vector of

random variables is “Mahalanobis distance”. The metric attempts to account

for any correlations within a multivariate data set and to be scale-invariant for

each variable [61, 68, 69]. For an observation ai of a vector random variable a =

[a1 . . . ak] of mean µ = [µ1 . . . µk] and a co-variance matrix Σ, the Mahalanobis

distance is defined as

DM(ai) =
√

(ai − µ)T Σ−1(ai − µ) (2.51)

Jackson’s text uses the same metric but refers to it as an “overall measure

of variability” for use in quality control systems. Both Jackson and Maess-

chalck et al. describe how the measure can be calculated from either the original

observation of ai or after transformation of the observation into the principal

component domain zi [25, 69]. The advantage of calculating Mahalanobis dis-

tance in the PCA domain is that when Σ is singular the distance can still be

calculated. When Σ is singular, it has at least one zero eigenvalue implying Σ−1

cannot be found. For eigenimage processing, the sample co-variance matrix is
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always singular, because it is formed from p observations of k variables, where

p < k.

Calculating DM(ai) in the principal components domain requires noting that

U is an orthogonal matrix and Λ is diagonal. Equation 2.46 therefore becomes

Σ−1 = UΛ−1UT (2.52)

If Σ is singular then Λ will also be singular. In this case the pseudo-inverse of

Λ is used for finding Λ−1. This only inverts the first r non-zero elements on the

diagonal of Λ.

With centred data (i.e. µ = 0), equation 2.52 can be substituted into equa-

tion 2.51 to yield

DM(ai) =
√

aT
i UΛ−1UT ai. (2.53)

Substituting equation 2.31 yields

DM(ai) =
√

zT
i Λzi (2.54)

=

√

√

√

√

r
∑

i=1

z2
i

λi
. (2.55)

If Σ is non-singular r = k, while if it is singular r < k.

In summary, Mahalanobis distance is a scalar measure of the distance of a

single observation ai from the expected value of a. The distance is measured

along each of the r (independent) principal components, scaled by the variance

along each component. Put another way, Mahalanobis distance transforms the

observation from a p-dimensional correlated multivariate distribution to an r-

dimensional uncorrelated multivariate distribution with a variance of 1 in each

dimension. For this reason, Mahalanobis distance forms the basis of Hotelling’s

T 2 significance test, where the T 2-distribution is the expected distribution of

uncorrelated multivariate data with variance 1 [61, 69].

2.6 Control ellipses

A control ellipse is used to determine a confidence interval around a clustered set

of multivariate data. For the example data in figure 2.1 a control ellipse aims to
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encompasses a known proportion of the data. Jackson’s text is a good reference

for control ellipses [25].

Univariate confidence intervals are calculated by the Student t-distribution.

A univariate 99% confidence interval is approximately 2.5 standard deviations

from the mean, i.e. a width of 2.5
√

λ. The Student t-distribution requires spec-

ification of the number of observations p (degrees of freedom) used to construct

the confidence interval. As the sample size approaches infinity the Student t-

distribution approximates a normal distribution.

If there are multiple independent variables then the single dimensional Stu-

dent t-distribution cannot be used to form multidimensional confidence intervals.

Instead, a multivariate confidence interval is used. Hotelling’s T 2 distribution is

a multivariate generalisation of the Student t-distribution and can be used to

form multivariate confidence intervals. Its use in multivariate significance tests

is similar to the t-distribution’s use in univariate significance tests.

To understand why a multivariate form of the t-distribution is used, con-

sider a vector of 100 independent variables. If each of the 100 independent

variable uses a one dimensional Student t-distribution to form 100 separate 95%

confidence intervals, then it is expected that five variables will lie outside their

individual single variable confidence interval. However, if the intention was to

form a confidence intervals where 95% of the time all 100 observations fell within

the confidence interval, then a different distribution is needed. i.e. rather than

finding 100 individual 95% confidence intervals, Hotelling’s T 2 distribution aims

to find one 95% confidence interval that spans the 100 individual variables 95%

of the time.

The T 2 distribution assumes that each variable is independent (i.e. uncorre-

lated) and of known variance λi. Similar to the univariate Student t-distribution,

it is both a function of the number of observations p used to construct the con-

fidence interval, and the desired confidence interval α. In addition, T 2 is also

a function of the number of independent variables r. Similar to the univariate

form, it approaches a multivariate normal distribution as p approaches infinity.

It is usually found from either the F -distribution or β-distribution [25,61,69,70].

34



T 2
r,p,α =

r(p − 1)

p − r
Fr,p−r,α (2.56)

∼= (p − 1)2

p
βr/2,(p−r−1)/2,α (2.57)

The F -distribution and β-distribution are found using lookup tables which are

available in most statistical packages. The second form, derived from the β-

distribution, is used when the mean and co-variance matrix are unknown, and

are therefore found by sampling, which may contain outliers [69]. The confidence

interval, or control ellipse, has a length of
√

T 2λi on each axis.

To return to the numerical example in figure 2.1, the transformed variables

z1 and z2 are independent with variances λ1 and λ2 respectively. There are

p = 50 observations with r = 2 independent patterns of variance. Choosing an

α = 0.99 confidence interval, T 2 is found to be 10.36. Thus, the control ellipse

for z1 and z2 has axes
√

10.36λ1 and
√

10.36λ2 respectively, i.e. the multivariate

99% confidence interval is 3.2 standard deviations from the mean, rather than

the 2.5 standard deviations that a univariate distribution would suggest. This

confidence interval can be transformed back onto the original variables a1 and a2

yielding an ellipse with a major axis along u1 and minor axis along u2. This is

shown in figure 2.4.

2.7 Summary

1. PCA is a multivariate statistical method in which highly correlated vari-

ables are transformed onto a basis of principal components where the vari-

ables are uncorrelated.

2. The majority of the variance in the data is in the low order components.

This allows high dimensional data to be efficiently represented by a few

variables.

3. The principal components can be found by calculating eigenvectors of the

co-variance matrix.
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Figure 2.4: Plot of two correlated random variables with con-
trol ellipse: The plot shows 50 observations of 2 correlated random
variables. A 99% control ellipse has been added. This ellipse has axes
of length given by

√
T 2λi
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4. The variance associated with each principal component is given by its char-

acteristic root λi. This is the eigenvalue corresponding to each eigenvector.

5. PCA can be used to form multivariate confidence intervals known as control

ellipses.
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Chapter III

The singular value decomposition

The Singular Value Decomposition (SVD) is an algebraic technique for fac-

toring any rectangular matrix into the product of three other matrices. Mathe-

matically and historically, it is closely related to Principal Components Analysis

(PCA). It is important because it allows rapid evaluation of the principal compo-

nents, as required in chapter 2. In addition it provides insight into the geometric

interpretation of PCA.

As noted previously, the SVD has long been considered fundamental to the

understanding of PCA. In Jolliffe’s monograph there is a short section on the

SVD [23]. However readers unfamiliar with the SVD are referred to either

Strang’s text on linear algebra or Golub’s text on matrix computations [26, 27].

Within the University of Canterbury there is a good master’s thesis covering

many important SVD theorems, as well as containing interesting historical in-

formation [71]. There are also many good introductions on the world wide web,

such as from the University of Wisconsin [72]. The SVD has other imaging ap-

plications beyond its use in PCA. These include filtering, watermarking, and

compression [73–78].

This chapter begins by defining the SVD, then provides a proof that the

SVD can be found for all rectangular matrices. After discussing the algebraic

interpretation of the SVD, it introduces the economy size SVD, the singular value

spectrum, and effective rank, and finally discusses the relationship between the

SVD and PCA.

3.1 Definition of the SVD

The SVD is the factorisation of any k × p matrix into three matrices each of

which have important properties. That is, any rectangular matrix A of k rows
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by p columns can be factored in to U , S, and V .

A = U S V T , (3.1)

where

• U is k × k and has columns which are the eigenvectors of AAT ;

• V is p × p and has columns which are the eigenvectors of AT A;

• S is a k×p diagonal matrix with r non-zero singular values on the diagonal,

where r is the rank of A. Each singular value is the square root of one of

the eigenvalues of both AAT and AT A. The singular values are ordered so

that the largest singular values are at the top left and the smallest singular

values are at the bottom right. That, is s1,1 ≥ s2,2 ≥ s3,3, etc.

Some authors use the terms “left support vectors” and “right support vectors”

to refer to the columns of of U and V respectively. A common synonym for

singular values is “spread values”.

Both U and V have the property of being orthogonal matrices. That is, the

columns of U and the columns of V are all orthonormal giving

I = UU = UT U, (3.2)

I = V V = V T V, (3.3)

∴ S = UT AV. (3.4)

The SVD can be shown to be valid for A having either real or complex

elements. In this thesis it is assumed all elements of A are real. Strang gives the

corresponding proof for complex A in which transposes are replaced by conjugate

transposes [26]. That is AT is replaced with AH .

3.2 Proof that all matrices can be factored

This section establishes that any matrix can be factored in to A = USV T with

the properties presented in the previous subsection.
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First note that a real symmetric matrix like AT A has a complete set of or-

thonormal eigenvectors vi which can be stored as the columns of V . Each vi is

p× 1. Also note that a symmetric matrix has real eigenvalues, γi. Both of these

results for symmetric matrices are discussed in Strang, section 5.5 [26], and can

be summarised:

AT Avi = γi vi, for i = 1, 2, . . . , p (3.5)

vT
i vj =

{

0 for i 6= j

1 for i = j.
(3.6)

Taking inner products of equation 3.5 with vi demonstrates that γi ≥ 0:

vT
i AT Avi = γi v

T
i vi (3.7)

∴ ‖Avi‖2 = γi. (3.8)

Now separate γi into the r non-zero eigenvalues (γ1 . . . γr), and the remaining

p−r values (γr+1 . . . γp) which are all zero. The latter are solutions to equation 3.7

for which both Avi and γi are zero.

For the non-zero eigenvalues (γ1 . . . γr) set si,i =
√

γi and ui = Avi/si,i. Note

that ui are all orthonormal. This is shown by expanding the inner product, then

substituting equation 3.7,

uT
i ui =

(Avi)
T Avi

s2
i,i

(3.9)

=
vT

i AT Avi

s2
i,i

(3.10)

=
γiv

T
i vi

s2
i,i

(3.11)

= vT
i vi (3.12)

=

{

0 for i 6= j

1 for i = j.
(3.13)

The r orthonormal basis vectors (u1 . . .ur) can be extended by Gram-Schmidt

orthogonalisation to a complete orthonormal basis of k vectors. This is covered in

41



chapter 3 of Strang’s text [26]. In brief, the Gram-Schmidt orthogonalisation is

performed by first choosing a vector b, then subtracting from b all components

in the directions of u1 . . .ur. Thus, b becomes orthogonal to all the vectors

u1 . . .ur. Then the vector b is normalised and stored as ur+1. The process is

repeated to find ur+2 to uk. Thus, the vectors u1 . . .uk will all be orthonormal

and can form columns of U .

It is now possible to find of all the elements of S. Starting with an element-

wise form of equation 3.4, then examining the results for j > r and j ≤ r gives

si,j = uT
i Avj . (3.14)

=

{

uT
i sj,juj for j ≤ r (because Avj = sj,juj)

0 for j > r (because Avj = 0)
(3.15)

The columns of U are orthonormal, implying uT
i uj = 0 except when i = j.

Thus for S = UT AV the only non-zero elements are the first r elements on the

diagonal, i.e. when i = j and j ≤ r. These non-zero elements are si,i =
√

γi for

i = 1 . . . r. Since S is a diagonal matrix, for convenience the singular values si,i

are often simply written as si.

Any rectangular matrix A of k rows and p columns can now be written as

A = U S V T (3.16)

where

A =









a11 . . . a1p

...
...

ak1 . . . akp









(3.17)

U = [u1 . . .ur ur+1 . . .uk] (3.18)

S =















si

. . .

sr

. . .















(3.19)

V = [v1 . . .vr vr+1 . . .vp] . (3.20)
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3.3 Algebraic interpretation

The SVD is useful because it gives important information about the k×p matrix

A. In particular, it gives an orthonormal basis for four fundamental spaces of A.

Therefore it also reveals the rank of A. Furthermore it provides a way to view

A as a map between the row space and column space of A.

3.3.1 The column space

The column space of a matrix is the sub-space spanned by the column vectors

of the matrix. Formally the column space of A is all values of y for which

Ax = y can be solved. It is known that all solutions to Ax are combinations

of the columns of A. It is also known that the first r columns of U provide

an orthonormal basis for the columns of A. Thus, the SVD provides the first r

columns of U which form the orthonormal basis for the column space of A.

If A has k rows, then the column space is an r-dimensional sub-space within

the k-dimensional space of real numbers, i.e. Rk.

3.3.2 The left null space

The left null space is the remaining sub-space of Rk not within the column space.

With reference to the SVD it is the remaining k − r columns of U , uk−r . . .uk.

Formally it is defined as the solutions for z such that zT A = 0.

3.3.3 The row space

The row space of A is the column space of AT . It is the space spanned by the

rows of A. It is an r-dimensional sub-space in Rp. Similar to the column space

the SVD gives an orthonormal basis for the row space, namely v1 . . .vr.

3.3.4 The null space

The null space of A is the left null space of AT . It is the sub-space in Rp not

in the row space. The SVD provides an orthonormal basis for the null space,

namely vp−r . . .vp.
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3.3.5 Rank

The rank of a matrix is defined as the maximal number of columns (or rows)

of A which are linearly independent. That is, it is the dimensionality of both

the row space and column space. Clearly from the SVD this is r, the number of

non-zero eigenvalues of AAT and AT A.

3.3.6 The economy size SVD

When considering the SVD of matrices for which the null space and left null

space are non-zero, it is often convenient to ignore the columns of U and V that

correspond to these null spaces. Several names have been given to this form of

the SVD; Matlab refers to it as the “economy size” SVD while others refer to

it as the “thin” SVD [27,79, 80].

Consider the SVD of A

A = [u1 . . .ur uk−r . . .uk]















si

. . .

sr

. . .















[v1 . . .vr vp−r . . .vp]
T . (3.21)

It is possible to ignore the columns of U and V which correspond to zero values

on the diagonal of S. This leads to

A = [u1 . . .ur]









si

. . .

sr









[v1 . . .vr]
T (3.22)

A = Ur Sr Vr (3.23)

where Ur is a matrix formed from the first r columns of U (corresponding to the

column space), Vr is a matrix formed from the first r columns of V (corresponding

to the row space), and Sr is the square diagonal matrix with the non-zero singular

values on the diagonal. Note that Ur is of k rows and r columns, Vr is of p rows

and r columns, and Sr is square with r rows and r columns.
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3.3.7 Linear transforms

Every linear transformation from Rp to Rk can be represented by a matrix A of

k rows and p columns. Such transformations are often referred to as linear maps

or linear operations. A linear transform is one that preserves addition and scalar

multiplication. This may be written as Ax = y, where x ∈ Rp and y ∈ Rk.

Any linear transform (e.g. A) maps the vector’s components which are in the

row space of A, onto the column space of A. However the vector’s components

within the null space of A are mapped onto zero.

If the SVD is used to factorise A, the operation Ax can be viewed as com-

prising a projection of x onto the orthonormal basis of the row space (v1 . . .vr),

then mapping the resulting vector onto the orthonormal basis of the column space

(u1 . . .ur) with si as a scale factor. This can be shown formally by considering

the transformation Ax = y using the economy sized SVD. The transform is then

y = Ax (3.24)

= U S V T x (3.25)

= [u1 . . .uk]















si

. . .

sr

. . .























vT
1 x
...

vT
p x









(3.26)

=
r
∑

i=1

si (v′
ix) ui. (3.27)

This result makes it clear why the SVD is so important, as it establishes

which components of x are in the row space. These components are the only

part which are mapped to the column space, whereas the components of x in the

null space correspond to zero values of si and are therefore mapped onto zero.

It is worth noting that the pseudo-inverse of A is based on the reverse mapping

of the column space back to the row space, with the left null space mapped to

zero. The pseudo-inverse is the best “least squares” inversion of a singular matrix.

It is normally constructed using the SVD and is described in detail in Appendix 1

of Strang’s text [26].

45



3.4 The singular value spectrum

As shown in section 2.4, it is possible to represent any symmetric matrix, such

as a co-variance matrix, as a spectral decomposition. A similar spectrum can be

found for non-symmetric matrices such as A. This spectrum is formed using the

SVD [27,81]. Equation 3.22 gives

A =

r
∑

i=1

siuiv
T
i . (3.28)

Since ui and vi are of unit length, uiv
T
i remains “approximately the same size”

for all i. It is possible to ignore contributions to A from terms with i > r, since

si = 0 for i > r.

Using the singular value spectrum it is possible to gauge the relative impor-

tance of components in determining the matrix A. Looking only at the singular

values (i.e. the square root of the eigenvalues) it is possible to determine the

relative importance of each eigenvector in determining the full matrix A.

The singular value spectrum of A is very closely related to the power spectrum

of the co-variance matrix AAT . This can be shown by right multiplying both

sides of equation 3.28 by AT .

AAT =

(

r
∑

i=1

siuiv
T
i

)(

r
∑

i=1

siuiv
T
i

)T

(3.29)

=

(

r
∑

i=1

siuiv
T
i

)(

r
∑

i=1

siviu
T
i

)

(3.30)

=

r
∑

i=1

s2
i uiu

T
i (from orthogonality of vi in eqn. 3.6) (3.31)

=
r
∑

i=1

γuiu
T
i (3.32)

which is the power spectrum described in section 2.4.
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3.5 Effective rank

As previously discussed, the rank of a matrix is the dimensionality of the row

space (or column space). Formally, it is the number of independent rows (or

columns) of a matrix. For many matrices where the elements are measured

experimentally this definition is too simplistic owing to the presence of noise or

rounding errors in calculations. Consider the matrix

A =

[

1 2

2 4

]

. (3.33)

This matrix has a rank of 1. As expected, it has two eigenvalues, namely 5 and

0 leading to one non-zero singular value, again implying a rank of r = 1.

Now consider the same matrix with noise added,

An =

[

1.1 2.1

1.9 4.1

]

. (3.34)

Formally this has a rank of 2. Its eigenvalues are approximately 5.1 and 0.1,

leading to r = 2 non-zero singular values. However it would be preferable to

acknowledge that the second non-zero eigenvalue is due to noise in the data, and

that the rank of An should be 1.

The goal of the effective rank is decide at what value one should consider

small singular values to be equivalent to zero for the purpose of calculating the

rank of A. In the example using An, the matrix with noise added, it may be

useful to choose a tolerance where eigenvalues less than 0.2 are considered zero,

thus allowing for noise in the system. Such a tolerance would make the effective

rank one. Effective rank is usually denoted by ǫ.

In many cases the appropriate method for choosing the tolerance for zero

singular values is not clear. A method for choosing the tolerance in PCA is

introduced in section 3.6, then evaluated experimentally later in chapter 6.

Once the effective rank of A is chosen it is possible to write the economy size

SVD with a rank of ǫ

A ≈ Aǫ = UǫSǫVǫ (3.35)

where Uǫ = [u1 . . .uǫ], Vǫ = [v1 . . .vǫ], and Sǫ is a diagonal matrix with the
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elements s1 . . . sǫ.

Aǫ is the closest rank-ǫ matrix to A (in a least squares sense). This can be

seen by considering the spectral form of the SVD

Aǫ =

ǫ
∑

i=1

siuiv
T
i . (3.36)

Increasing ǫ progressively adds smaller and smaller amounts to A. Readers re-

quiring a formal proof that this is indeed the best least squares approximation

are referred to Golub’s text [27].

3.6 Use of the SVD in PCA

As stated earlier, the SVD has long been known to be closely related to PCA.

Jolliffe gives an account of the historical derivations for the SVD and PCA, while

other authors have discussed the relationship in more detail [23, 25, 81–83].

The SVD is helpful in performing PCA when the co-variance matrix is very

large but of low rank, i.e. when p ≪ k. In addition, PCA theorems for de-

termining the number of significant principal components provide a method for

determining the effective rank of A.

The relationship can be observed by returning to PCA where the goal is

to find the eigenvectors (principal components) and eigenvalues (characteristic

roots) of a sample co-variance matrix. Thus PCA attempts to find ui and λi

from

λiui = Σui (3.37)

=
1

p − 1
AATui (3.38)

for the i = 1 . . . r non-zero eigenvalues.

Similarly, one of the results from the SVD is the relationship between the

column space (u1 . . .ur), and singular values (si =
√

γi) of A. Namely,

s2
i ui = AATui (3.39)

for the i = 1 . . . r non-zero singular values.
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3.6.1 Principal components analysis with large values for k

In chapter 2, a random variable a of k elements was defined. Taking p obser-

vations of a allowed formation of a data matrix in which each observation was

stored as a column of A. Thus, A = [a1 . . .ap] where A had p columns and k

rows. For the eigenimaging process, introduced in chapter 1, typical values are

p = 100 training images, each of k = 3 × 106 pixels per image. Thus p ≪ k.

When performing PCA the sample co-variance matrix Σ = 1
p−1

AAT is ex-

amined. This matrix has k × k dimensions, so therefore, if k is large then AAT

cannot be directly calculated or stored on a computer, and nor can its eigenval-

ues be found. However the matrix AT A has p× p elements. Hence, if p is small,

AT A can be calculated allowing V and S to be found. Using V and S the first

r columns of U can then be calculated. That is,

ui = Avis
−1
i for i = 1 . . . r. (3.40)

Hence using the SVD, the principal components can all be calculated without

the need to calculate the entire sample co-variance matrix.

To calculate the characteristic roots, note that the singular values in the SVD

are the square roots of the non-zero eigenvalues of AAT , while the characteristic

root of the sample co-variance matrix are the non-zero eigenvalues of Σ = 1
p
AAT .

From equations 3.38 and 3.39 it is possible to derive a relationship between the

singular values of A and the characteristic roots of Σ

λi =
s2

i

p − 1
. (3.41)

Interestingly, once the complete set of u1 . . .ur has been found the complete

economy sized SVD will have been calculated (A = UrSrV
T
r ). This highlights

that the principal components of a can be considered an efficient orthonormal

basis for the observations of a.

3.6.2 Effective rank in the context of PCA

In PCA it is important to determine the effective rank of the sample co-variance

matrix Σ. The effective rank of Σ is also the effective rank of A. The SVD
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allows for the determination of the effective rank of A by examining the num-

ber of significant singular values. From a PCA perspective, the effective rank

determines the number of principal components that represent true patterns of

variance, rather than components that arise due to noise in the data. From an

SVD perspective, the effective rank determines how much of the data matrix is

real signal, versus how much is noise.

As discussed in section 2.4, examining the eigenvalues associated with each

principal component determines of how much of the total variance is represented

by a given number of principal components. For example, choosing enough com-

ponents to represent 95% of the variance may be considered the appropriate

tolerance for the problem. The number of eigenvalues required to cover 95% of

the variance is then the effective rank, denoted ǫ, of A. It is usually less than

the true rank, r.

In a real world problem with p observations of k random variables it is likely

(owing to noise) that there are r = min(p, k) non-zero singular values. However,

using a stopping rule, such as the power spectrum discussed in section 2.4, it

may be determined that ǫ < r is an appropriate effective rank to cover 95% of

the variance in the set. In this example u1 . . .uǫ would represent true principal

components while uǫ+1 . . .ur represent noise. This is the method often used for

SVD based image compression and noise filtering [73–75,77, 78].

3.7 Notation for this thesis

Later in this thesis it is found that the column space and left null space are the

most useful of the four fundamental sub-spaces. In addition, it is found that

the effective rank of A is more important the actual rank. Hence the following

notation is used for these important sub-spaces:

C(A): The column space of A. Its dimensionality is the effective rank ǫ.

N (A): The left null space of A, with dimensionality k − ǫ.

The two spaces can be defined by their basis vectors

C(A) = {u1, u2, . . . , uǫ}, (3.42)

N (A) = {uǫ+1, uǫ+2, . . . , uk}. (3.43)
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The addition of the column space and left null spaces forms the complete k-

dimensional space of real numbers, Rk. Also, the column space is orthogonal to

the left null space. These two relationships are represented as

Rk = C(A) ⊕ N (A) (3.44)

C(A) ⊥ N (A). (3.45)

3.8 Summary

1. The principal components of a vector random variable are an orthonormal

basis for the column space of data matrix constructed from samples of the

random variable.

2. The SVD provides a method for finding the principal components for data

sets consisting of a few observations of many variables, i.e. for cases where

p ≪ k. This is the situation that often occurs in eigenimaging where there

are a few images, each of very high resolution.

3. The SVD allows one to find the characteristic roots λi of a data set from

the singular values si. Again, this is useful when p ≪ k.

4. The number of principal components is the rank of both A and AAT .

Similarly the number of significant principal components is the effective

rank ǫ of both A and AAT .
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Chapter IV

A prototype system for classification

This chapter describes a prototype system for using eigenimage processing to

classify frontal chest radiographs. The goal of this work was to develop code that

could handle the large images used in radiology, and to provide data for analysing

how eigenimaging works with respect to chest radiographs. This chapter focuses

on implementation with only a minor discussion of the results. The following

three chapters analyse and discuss the major aspects of the method, namely

image registration, processing of the training set, and processing of test images.

4.1 Aim

The aim of the prototype system is to take a test set containing both normal and

abnormal radiographs and classify each test image as either normal or abnormal.

The “reference for normal” is a training set of normal radiographs.

4.2 Method overview

The system is based on the face recognition system introduced in chapter 1, and

described by Turk and Pentland in their original papers [5,6]. In their system two

sets of images are obtained. The first is a training set of “known” face images.

The second is a set of test images. Some of these test images are “known” faces

while others are “unknown”. The known test images are new photos of people

already within the training set and the unknown test images are photos of people

who are not within the training set at all.

The steps involved in applying this method to chest radiographs were intro-

duced in chapter 1, but they are reviewed again here.

Image registration: Images are spatially aligned and centred with respect to
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intensity.

Processing of the training set: PCA is applied to the training set to calcu-

late the eigenimages.

Analysis of test images: Each test image is described as a combination of

the weighted eigenimages with one weighting factor per eigenimage. The

weighting factors are then used to classify each test image as either normal

or abnormal.

For the prototype system the training set consisted of 77 normal frontal ra-

diographs while the test set consisted of 15 normal radiographs and 15 images

of pneumonia. Images were all obtained in the manner described in section 1.6.

The experiments performed in this and subsequent chapters were all written in

Matlab, a numerical computing environment and programming language [80].

4.3 Image registration

Before eigenimage processing can be applied it is necessary to pre-process all im-

ages in both the training and test sets. Pre-processing involves three basic steps:

spatial registration, intensity centring, and forming the image into a column

vector. Spatial registration and intensity centring are shown in figure 4.1.

As stated in section 1.5.3, image registration is the process of aligning normal

structures in the set of images so that variation between images is mostly the

result of pathology rather than differences in radiographic technique and normal

anatomic variation. For the prototype system registration was performed using

a manual affine transformation with both lateral costophrenic angles and both

lung apices as landmarks. This technique is similar to the most commonly chosen

method for eigenface systems, where a manual affine transform is performed using

the mouth and eyes as control points [46]. In chapter 5 the method used here is

explained in more detail, and then compared with other registration techniques.

The registration steps for the prototype system are summarised as follows:

1. Four landmark points are manually identified on each image by the author,

a qualified radiologist. The points identified comprised both costophrenic

angles and both lung apices.
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Original Registration Centring

Figure 4.1: Pre-processing of images: The image on the left is
the original radiograph. The middle image is the result following
windowing, affine registration, and cropping. The right image is after
intensity centring.

2. The original image is multiplied by a windowing function to reduce the

effects of artefacts caused by subsequent cropping. The edges of this win-

dowing function are the identified landmarks, as they lie at the extremes

of the chest cavity.

3. An affine transformation is performed on the windowed image so that con-

trol points align with those of the average from the untransformed training

set. Affine registration allows for the spatial transforms of translation, ro-

tation, scaling, and shearing. The three control points chosen are derived

from the landmarks: both costophrenic angles and a point midway between

the lung apices.

4. The aligned images are cropped to m × n = 1784 × 1680 pixels with re-

spect to average control points. This excludes most of the extra-thoracic

information while ensuring that the chest cavity is fully represented.

Following registration the images undergo intensity centring. That is, the

empirical mean (“average image”) from the training set is calculated and then

subtracted from all images in both the training set and test set. This step is

55



referred to as intensity centring as after the subtraction the mean intensity of

the training set images is zero. This satisfies the requirement that the data is

centred, as explained in section 2.2.3, thus simplifying the PCA process.

After intensity centring all images from both the training set and test set are

formed row-wise into vectors, ai, with each pixel being one element of the vector.

Each vector is thus k × 1, where k = mn ≈ 3 × 106. While this step alters the

spatial relationship between the pixels, the order of the elements is arbitrary and

unimportant in the succeeding steps, providing it is the same for each image.

For the training set, the image vectors are formed into a data matrix A such

that each column of A is one image vector, ai. Thus A is k ≈ 3 × 106 rows

(pixels) by p = 77 columns (images). A is stored on disk as 77 separate files,

with each file containing one column of A at 16 bits per pixel.

4.4 Processing the training set

Following pre-processing of the radiographs, PCA is applied to find the principal

components of the training set, commonly referred to as eigenimage processing.

As presented in section 2.3 the principal components are the eigenvectors of the

co-variance matrix Σ = 1
p−1

AAT .

Unfortunately the co-variance matrix Σ is extremely large, with approxi-

mately k2 = 1013 elements, and it is too large to be stored on most comput-

ers. At 16 bits per pixel it would comprise approximately 50 petabytes of data!

However, as presented in section 3.6, it is possible to calculate the 77 principal

components and characteristic roots of Σ by studying the SVD of A. This is

A = U S V T . (4.1)

The columns of V are the eigenvectors of AT A. This is a square matrix

of p = 77 rows and columns. Thus, it can easily be stored in a computer’s

memory. However, the matrix A is around 1 gigabyte of data at 16 bits per

pixel. It is therefore necessary to find C = AT A while keeping A on disk.

This is performed doing the calculation one row at a time, reading the rows

into memory only as required and keeping a running total of C. Sample code

for this is given in figure 4.2. By examining the code it can be seen that the
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C = zeros( p , p ) ;

for i = 1:k

a = read one row of(A) ;

C = C + a’ * a ;

end

Figure 4.2: Sample Matlab code for finding AT A: The for loop
works by iterating over all k rows of A. It reads the p elements of
one row of A by accessing the p files on disk. Then performing the
multiplication one row at a time, while keeping a running total, stored
as C.

number of multiplications and additions increases linearly with increasing k and

quadratically with increasing p.

This process initially took around 15-30 minutes on the computer hardware

available near the beginning of this research project. Using hardware available

in the Electrical and Computer Engineering Department in 2006, it takes around

3-5 minutes. Further discussion on the speed of computation is presented in

section 6.6.

Having found AT A it is now possible to find both S and V . The diagonal

elements si of S are the square roots of the non-zero eigenvalues of AT A, while the

columns of V are the associated eigenvectors of AT A. To find these eigenvalues

and eigenvectors Matlab’s built in function eig() was used. This can find the

eigenvectors and eigenvalues of a 772 matrix in significantly less than a second.

The method used by Matlab for real symmetric matrices is the “DSYEV”

routine from the public domain software library “LAPACK” [84].

Having found S and V , it is possible to find the first r columns of U which

correspond to non-zero singular values. This was given in equation 3.40, and

repeated here for convenience.

ui = Avis
−1
i for i = 1 . . . r (4.2)

Alternatively using the economy sized SVD

Ur = A Vr S−1
r . (4.3)
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Thus, the principal components ui are found without ever calculating the com-

plete co-variance matrix Σ.

For speed, the Matlab code developed for this thesis uses the matrix form

given in equation 4.3. The code performs the multiplication in a similar manner

to finding AT A. That is, each row of A is read in individually, multiplied by

VrS
−1
r , then Ur is written to disk one row at a time. Like A, Ur is stored on disk

as r separate files each containing one column.

As noted previously, the eigenvectors ui are all within the same vector space

as the original registered radiographs, therefore it is possible to view them as

images. Figure 4.3 shows the first two eigenchests and 4.4 the last two eigenchests

respectively. Low order eigenchests represent frequent patterns of variance within

the training set, whereas high order eigenchests tend to look more noisy as they

represent variance which is less common within the training set.

1st eigenchest 2nd eigenchest

Figure 4.3: Low order eigenchests: The left image is the first
(lowest order) eigenchest. The right is the second eigenchest. These
image represent the variance patterns that are most common within
the training set.
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75th eigenchest 76th eigenchest

Figure 4.4: High order eigenchests: The left is the 75th eigenchest
and right is the 76th eigenchest. As expected these is the noisiest
image as it represent co-variance patterns that are less common in
the training set. It is worth noting that while these image appear
dramatic in high contrast, their actual contribution to any test image
is small due to their small characteristic roots.

4.4.1 Power spectrum

Once S has been found it is possible to study the power spectrum of the sample

co-variance matrix Σ. First the singular values si need to be transformed into

the characteristic roots of Σ. The relationship is explained in section 3.6.1 and

was found to be

λi =
s2

i

p − 1
. (4.4)

Once the characteristic roots λi are found they can be displayed as a scree

plot, shown in figure 4.5. As expected the low order characteristic roots are much

larger than the high order roots. The plot is helpful is showing how much of the

total variance is contained within the low order eigenimages.

The significance of the characteristic roots is discussed in detail in chapter 6

which focuses on processing of the training set. That chapter also experiments

with varying the number of images within the training set and altering the com-
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Figure 4.5: Scree Plot: The characteristic roots of the training set’s
co-variance matrix have been plotted. It is called a scree plot because
it resembles the accumulation of scree at the base of a steep mountain
slope [67].

position of the training set.

4.5 Analysis of test images

Once all the principal components have been found it is possible to approximate

each test image using a linear combination of the eigenchests. Parameters derived

from this linear combination are used for classification of images into normal or

abnormal. Chapter 7 discusses the processing of test images in significantly more

detail.
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Using Turk and Pentland’s method each test image t is written as a linear

combination of eigenchests plus a null space image, thus

t =

r
∑

i=1

wiui + n, (4.5)

where wi is the weighting factor associated with the ith eigenchest and n is the

null space image. The null space image is the portion of the test image not

represented by the basis of eigenchests (i.e. column space of A) and therefore

this portion of the image lies within the left null space of A.

For each eigenimage there is an associated weighting factor, wi. The weighting

factor is found by taking the inner product of the test image and the eigenimage,

wi = uT
i t = < ui, t > . (4.6)

Once all the weighting factors w1 . . . wr have been found, it is possible to find

the null space image by substitution into equation 4.5. While the original papers

of Turk and Pentland acknowledge that the representation of a test image by

the eigenimages is only an approximation, they do not find or use the null space

image.

4.5.1 Classification of test images

Following calculation of the weighting factors it is usual to use these to classify the

test images. For the original face recognition system test images were classified

as known or unknown, and for the prototype chest classification system test

images are classified into normal or abnormal. The method described by Turk

and Pentland used Euclidean length, and therefore this is the method chosen

for the prototype system [5, 6]. For each test image t the weighting factors are

calculated. Then the Euclidean length DE of the weighting factors is found by

DE(t) =

√

√

√

√

p
∑

j=1

w2
i,j (4.7)

The Euclidean lengths were calculated for the 15 normal test images and 15

abnormal test images, and are plotted as a cumulative probability function in
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Figure 4.6: Euclidean length of test image weighting factors:
Cumulative probability function of the DE for both the normal and
abnormal images. As hoped, the lengths for abnormal images tend to
be larger than for normal images.

figure 4.6. As expected DE for the abnormal images tends to be larger than DE

for normal images. In image space, an abnormal test image should be a point

away from the cluster of normal training images, and therefore the weighting

factors for this test image should be larger. This is similar to face recognition

systems where weighting factor vectors for known faces tend to have smaller

lengths than unknown faces. A more detailed discussion on weighting factor size

is in section 7.1.

Once DE has been found for each test image it can be used in a simple

classification scheme. The method is to classify all images with a Euclidean
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length less than a threshold value are classified as normal, while images with a

length greater than the threshold value as abnormal.

Using conventional terminology, images that are correctly classified are re-

ferred to as either true positives (truly abnormal) or true negatives (truly nor-

mal). Similarly, images that are incorrectly classified are referred to as false

positives or false negatives. Changing the cut-off at which an image is classified

as normal or abnormal changes the number of true positives versus false nega-

tives, and the number of true negatives versus false positives. Sensitivity is the

number of true positives, divided by the total number of (true or false) positives.

Similarly the specificity is the number of true negatives, divided by the total

number of (true or false) negatives.

A receiver operating characteristic (ROC) curve is a common method for

displaying the efficacy of a particular test [85, 86]. It plots sensitivity versus

specificity for different threshold values between normal and abnormal. For the

prototype system the ROC curve is shown in figure 4.7. By studying the curve

it can be seen that the Euclidean length classification scheme has predictive

value. That is, the test’s ROC curve lies above or to the left of the diagonal

line. However, all images chosen had been previously reported as normal or

abnormal by a fully qualified radiologist, then checked by the author to confirm

the diagnosis. It can be assumed that for the images in the test set a radiologist

would have a near ideal ROC curve. That is the sensitivity and specificity of the

prototype system is significantly worse than a qualified radiologist which suggests

that the current system is of limited clinical use without significant modification.

4.6 Checking the experimental code

When developing code for mathematical application it is important to ensure

the program is producing correct results. While this is part of the normal de-

bugging process, the methods used to check the system are listed here to aid

implementation by others.

After the code runs without errors the following four properties can be checked

to ensure that the system produces consistent results.

1. Check that all output matrices are the correct size.
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Figure 4.7: Receiver operating characteristic curve: This graph
plots specificity versus sensitivity. This measures the efficacy of a
diagnostic test. A test with no diagnostic value lies along the diagonal,
whereas an ideal test follows the upper left corner of the axis. The
Euclidean length classification system falls between the two extremes
suggesting that it is of diagnostic value.
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2. Check that the eigenimages have correct properties.

3. Check that the weighting factors for known test images are those expected.

4. Check that for known test images the variance associated with each prin-

cipal component is that expected.

Each of these are briefly discussed in the following subsections. These prop-

erties also apply to processing performed in subsequent chapters and hence were

used for testing that code from those chapters as well.

4.6.1 Size of output matrices

Following the calculations, the system should have produced r eigenimages each

of length k. Similarly each weighting factor vector should contain r elements.

Intermediate matrices such as S and V should be p × p, with S being diagonal.

For real world data that contains noise it is almost certain that r = p. That

is, the rank of A should be p. This is because the rank of A is defined as the

number of independent columns in A. For such data it is extremely unlikely that

any column of A is an exact combination of the other columns. Thus, all columns

of A are almost certainly independent. However, the effective rank ǫ may be less

than p (see section 3.5).

4.6.2 Properties of eigenimages

Each eigenimage is calculated indirectly from A, via V and S, as explained in

section 4.4. According to the SVD, U should be an orthogonal matrix, implying

that its columns are orthonormal. Thus

uT
i uj =

{

0 for i 6= j

1 for i = j
. (4.8)

For the prototype system this was indeed found to be the case within the precision

of the numerical computations.
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4.6.3 Weighting factors of known images

One special case is solving equation 4.5 for a test image which is part of the

training set. Specifically this is when t = ai. The weighting factors for the ith

training image are








w1

...

wr









= UT
r ai (4.9)

Using the economy sized SVD in equation 3.23 it is known

UT
r A = Sr Vr (4.10)

⇒ UT
r ai = Sr vi (4.11)

Thus if the weighting factors of the ith training image are found then they should

be exactly Srvi. Since Sr and Vr are already known this provides a convenient

method to check that the code for calculating the weighting factors provides the

expected results.

4.6.4 Variance of known images

It is known that the variance associated with an eigenimage is given by the char-

acteristic root. It is also known that using the training set images as test images,

as in the previous section, there are p = 77 measurements of the weighting fac-

tor associated with an eigenimage. Thus there are two ways to calculated the

variance associated with a particular eigenimage.

1. From the eigenvalue of the sample co-variance matrix, λi =
s2

i

p−1
.

2. From weighting factors found using the training images as test images,

var[wi,1 . . . wi,p].

Since the data used in both methods is identical, the results should be identical

if there is no error in the Matlab code. For code developed for the prototype

system, both methods produced identical results (within numerical precision).
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4.7 Conclusion

The prototype system demonstrates that technique used by Turk and Pentland

in their face classification system can be successfully applied to radiographs. This

work was presented at two New Zealand radiological meetings, one international

radiological meeting, and one international computer engineering meeting [87–

90].

The first conclusion from this work is that the method can be applied to the

large images found within radiology departments. The application of eigenimage

processing to radiological images is novel, and therefore a successful implemen-

tation is significant.

The second conclusion is that the classification system has predictive value,

although the predictive value of the system is less than that of a skilled radiol-

ogist. For other image types people have used eigenimage processing to find the

weighting factors, but then used different classification schemes to achieve bet-

ter results [55,57,58,91]. However, different classification schemes have different

advantages and disadvantages depending on the application.

For the prototype system some arbitrary decisions were made. Firstly, the

manual affine transformation was used as a convenient and fast registration sys-

tem. There are many other manual and automatic registration systems available

and it is necessary to evaluate the efficacy of these.

Secondly the training set included only 77 normal radiographs. The number

of images in the training set is likely to affect the usefulness of the system and this

needs to be tested. There is also the possibility of including abnormal images

within the training set as this will allow the eigenimages to better represent

pathology. This possibility is discussed further in sections 6.3.4 and 6.7.

For evaluating the prototype system there was a limited number of test im-

ages, with only one form of pathology (pneumonia). It will be important to

evaluate the system with a larger test set which includes a wider range of pathol-

ogy. This will provide insight on which pathologies are best detected with this

technique.

Now that it has been established that eigenimaging can be applied to radio-

graphs it is possible to consider developing a range of clinically useful applica-

tions. As well as CAD, other applications of eigenimage processing have included
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image compression and image enhancement, as discussed in section 1.5.

4.8 Summary

1. It is possible to apply eigenimage processing to frontal chest radiographs.

2. Classification is achievable, even if clinical efficacy is currently limited.

3. It is necessary to study the effects of using different registration systems.

4. It is necessary to study the effect of the size and composition of the training

set.

5. It would be valuable to study the processing of test images. In particular, it

would be helpful to attempt classification using more sophisticated metrics

than Euclidean length. Also, it is important to consider the information

not represented by the eigenimages (i.e. the null space image).

6. The test set needs to include more images with a wider range of pathologies.
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Chapter V

Registration

The aim of the experiments described in this chapter is to assess the effect

of different registration systems on eigenimage processing. As stated earlier,

image registration is the process of aligning two images with respect to normal

structures. In eigenimage processing, registration is applied to all images in both

the training and test sets.

The goal of registration is to remove variance that arises from patient po-

sitioning and normal anatomical variation, while preserving variation that aids

in diagnosis. That is, registration attempts to remove factors such as image

rotation, exposure, magnification, patient position, and patient size.

Image registration is also important elsewhere in medical image processing,

for example in digital subtraction angiography, temporal subtraction, image fu-

sion (e.g. PET-CT), and image guided surgery. Hundreds of articles, books, and

theses have been published on the subject with Pluim and Fitzpatrick finding

over 200 articles in 2003 alone [92]. Good review articles can be found in both the

engineering and medical literature [92–98]. Unfortunately most of the research

into medical image registration has been in the field of 3D neuroimaging, with

significantly less work published on chest radiograph registration.

This chapter introduces commonly accepted terms used to describe a registra-

tion system. Following this, there is a short review of several common methods

used in medical image processing, where it is found that all automatic meth-

ods for registering chest radiographs have significant flaws. Thus, four semi-

automatic methods were selected for evaluation in conjunction with eigenimage

processing. Experiments performed in this chapter examine the effect each reg-

istration routine has on the average image, training set variance, and accuracy

of classification.

For all other chapters of this thesis, registration was performed using a rigid
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global affine transformation based on manually selected control points. As noted

in the introduction, section 1.6, all images have their intensity manually scaled

by the radiographer. If this were not the case the registration system would also

need to remove variations in image exposure.

The work contained in this chapter was presented at an international optical

engineering conference [99].

5.1 Taxonomy of medical image registration

When discussing medical image registration it is important to accurately describe

both the alignment problem and the registration method used to solve it. An

article by van der Elsen presents a classification scheme for describing registration

techniques [100]. This classification scheme is widely used and provides a simple

method to describe medical registration systems. An overview of the scheme is

given below.

5.1.1 Source and target images

When describing alignment problems it is necessary to describe what is to be

aligned. By convention, a source image is aligned to a target by altering the

source image. Often both the source and target are images, although in some

situations the target may be a set of co-ordinates within the image’s domain. In

this chapter the target for automatic routines is a selected normal image. For

all other chapters, and the semi-automatic routines in this chapter, the target

is a set of co-ordinates for the average control points. Matlab’s registration

routines refer to the source and target as “input” and “base” respectively.

5.1.2 Dimensionality

Problems are described in term of the dimensionality of both the source and

target images. For example, the problem could involve registering a 2D frontal

chest image, onto a 3D chest CT. Registration systems exist for various combi-

nations of the source and target being 2D, 3D, or time varying data. For this

thesis, registration is always of a 2D source image onto a 2D target.
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5.1.3 Origin of image properties

Registration may be based on data intrinsic to the image or data extrinsic to the

image. Intrinsic information is data within the image, such as bony landmarks.

Extrinsic information is data not found within the image, such as table position

for CT images. This thesis uses intrinsic information, as only minimal extrinsic

information regarding the subject’s position is available.

5.1.4 Domain of transformation

This describes how the registration technique is applied. The term “local” is

used to describe how a small portion of the image is transformed, while “global”

is used to describe how the entire image is transformed. In a registration system

the local transformation can differ from the global transformation. Periaswamy’s

method, section 5.2.4, is an example in which the local transform is different from

the global transform.

5.1.5 Nature of the transformation

This describes how the data is transformed. Common terms include rigid, linear

conformal, affine, projective, curved, deformable, and elastic.

Rigid: These transformations only allow for translation, rotation, and reflection.

The underlying image is otherwise unaltered. Specifically, the distance

between any two points is unaltered in the source and registered image.

Under this transformation a square will remain a square of the same size.

Linear conformal: This is similar to rigid registration except images can be

scaled. Angles remain the same. Thus a square remains a square, but

possibly of a different size.

Affine: This allows for translation, rotation, scaling, and shearing. In this tech-

nique parallel lines remain parallel. A square may be transformed into a

parallelogram.

Projective: This is defined as a transformation in which straight lines remain

straight, but parallel lines may become divergent. This provides for a wide
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range of transformations with a square becoming any convex quadrilateral.

Curved, deformable, or elastic: These techniques allow a straight line to be

bent during the registration process. Synonyms include deformable reg-

istration and image warping. Registration models must define how much

deformation is allowed. Models which are globally elastic may be locally

inelastic. Under these transformations a square may become any shape.

Many registration systems use a combination of techniques. For example,

the method described by Periaswamy is “globally elastic and local affine” [96].

This means that over short distances within an image the transformation is affine

but different parameters for the affine transformation are used across the whole

image, leading to a globally elastic transformation.

5.1.6 User interaction

Systems require varying levels of user input. Systems are often classified as “inter-

active”, “semi-automatic”, and “automatic”. While it is difficult to objectively

quantify the level of user interaction, some systems require more than others. An

ideal system would be fully automatic and require no user interaction. However

such systems are very difficult to design and it is common to require some user

input.

5.1.7 Parameter determination and error metric

When registering two images the parameters for the transformation need to be

determined. Sometimes this is done explicitly from control points, or alterna-

tively it can be done using a metric quantifying “how unregistered two images

are”.

The affine registration used in the prototype system, chapter 4, was per-

formed using manually selected control points to determine the parameters of

the transformation. Other methods may involve automatically finding control

points to determine the transformation parameters. Lehmann describes a sys-

tem where landmarks are automatically found within medical images [101]. Sim-

ilarly, Zhao describes a system for chest radiographs where edges are detected

and aligned [102].
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For many automatic systems the parameters of the transform are based on an

error metric relating to how well registered any two images are. An error metric

allows for search systems to find the lowest error (i.e. best registration). There are

many error metrics used, but probably the most common is the mean squared

error. This is the mean of the squares of point wise difference in intensities

between image pairs. This metric is simple and fast to compute.

Two other common error metrics are the ratio of image uniformity and mutual

information. The ratio of image uniformity is the normalised standard deviation

of the ratio of image intensities. This method has the advantage of not requiring

the overall image intensity to be the same, but tends to lead to more difficult

optimisation problems. The mutual information metric is useful as it implicitly

handles variations in contrast and brightness although it is a very computation-

ally expensive method.

5.1.8 Multiple resolution approaches

In automatic registration systems it is often useful to perform the registration at

different scales. That is, images are aligned at a large scale (coarse alignment)

and then progressively aligned at smaller scale (fine alignment). Several meth-

ods can be used for multiresolution systems including Gaussian pyramids and

wavelet methods [4, 96, 103–106]. Multiresolution methods have several advan-

tages including:

• They tend to be faster because coarse alignment can have a larger step size.

• They tend to avoid local minima.

• Registration parameters can be different at different scales. For example,

at a coarse scale the registration can be more elastic than at a fine scale.

5.2 Review of common methods and existing software

The aim of this chapter is to assess the effect of different registration systems on

eigenimage processing. As such, it was decided to take well understood meth-

ods and apply them, rather than to develop and implement new methods. Un-
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fortunately there are no widely accepted routines developed for automatically

registering chest radiographs.

The lack of any commonly accepted routines most likely reflects the difficulty

in registering chest radiographs. Difficulties include the fact that radiographs

are projection images in which overlapping features need to be transformed in

different ways. For example in chest radiographs the anterior ribs might need to

translate to the left, while the overlapping posterior spine might need to translate

to the right. In this conflicting situation many algorithms produce very distorted

images. Automatically registering chest radiographs may be problematic because

any pathology present within a source image can make registering to a normal

target image unreliable. For example a large mass in the left side of the chest

could erroneously be registered so that it aligns with the heart in other images.

Since there are no widely accepted routines for registering chest radiographs,

several general routines and software packages designed for medical images were

tested. Methods reviewed in this chapter include Matlab’s semi-automatic

routines, a general purpose routine (Lucas-Kanade), and multipurpose med-

ical packages (AIR5 and Periaswamy’s routines). Of the automatic methods

(Lucas-Kanade, AIR5, and Periaswamy’s method), none worked sufficiently well

to make testing in conjunction with eigenimage processing worthwhile. However,

the problems encountered illustrate the difficulties in any automatic registration

system.

5.2.1 Matlab’s routines

Matlab’s Image Processing Toolbox contains several routines for image regis-

tration. They are all semi-automatic systems based on manually selected control

points [79, 80, 107]. Routines include linear conformal, affine, and projective.

These are simple, fast, and well documented. Their effect on eigenimage pro-

cessing is investigated in section 5.3.

5.2.2 Lucas-Kanade

This method was first proposed by Lucas and Kanade in 1981, and is a fully

automated system that is has found wide use in non-medical image registration

and optical flow problems. The method involves finding a difference image be-
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tween the source and target. The source image is then warped to minimise this

difference image. A steepest descent algorithm is used to iteratively find the best

warp.

There are many variations on the method. Baker et al. have written two

good review articles on gradient descent algorithms and their subsequent articles

provide a unifying framework for many of the variations [108–114]. Their articles

and five technical reports are all available on the web and include working Mat-

lab source code [115]. However, this publicly available code was investigated but

found to be extremely slow and unworkable for even moderate sized radiographs.

5.2.3 AIR

“Automatic Image Registration” tools are a free set of image registration routines

for use with medical images. Version 1 of the software was used for registration

of PET images [116]. Version 5, the latest version, is available free of charge on

the world wide web [117].

The package can be used for:

• Intrasubject, intermodality registration. e.g. PET to MRI

• Intersubject, intramodality registration. e.g. MRI to MRI

• Subject to atlas registration.

The package provides for a variety of linear and non-linear models with mul-

tiple error metrics available. Data interpolation can also be performed using a

variety of methods. While the software is normally used for 3D data sets, it

has also been validated for registration of 2D brain MRI slices. It has not been

validated for chest radiographs.

The AIR5 routines are written in “C” and use a file format known as “Analyse-

7.5” or “SPM”. Exporting images from Matlab into this format can be achieved

using MRI toolbox-1.5 available as part of the open source “Bioelectromag-

netism Matlab Toolbox” [118].

On attempting to use this software for chest radiographs it became clear that

the intended use is for brain image registration, where images tend to be CT,

MRI, or PET. These classes of images are very different from chest radiographs,
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both in terms of both pixel/voxel size and intensity range. More importantly,

what is a reasonable deformation to align two brain images is quite different from

what is reasonable when aligning two chest radiographs, and it was not possible

to get sensible results using the AIR5 routines.

5.2.4 Periaswamy’s method

Periaswamy designed a general purpose system for deformable automatic medical

image registration [96, 119, 120]. The system is based on a multiscale approach

using Gaussian pyramids. Each transform is locally affine, but has a global

smoothing constraint. The error metric he employs is the mean squared error.

His Ph.D. thesis clearly describes the system and how to tune it to various

image types. The Matlab source code is available on the web, and the code is

well documented and performs well. He extends his method to provide reasonable

results with intensity variations across the image as well as missing data in the

image [121]. Background intensity gradients are common in MRI images, as

signal intensity tends to drop off further away from the receiver coil, but are

uncommon in radiographs.

Using the source code provided on the internet it was possible to evaluate the

technique. His code has many tunable parameters to suit different registration

problems. For example, it was possible to set parameters so that the routine

assumes there is no background intensity gradient within the image.

However there were problems with the computation time and the memory

requirement of his routines. Within his thesis he primarily focuses on brain

MRI images which are much smaller images than high resolution chest radio-

graphs. To overcome these processing limitations, the chest radiographs were

downsampled using Matlab’s imresize() function with bilinear interpolation.

Images were downsampled to 10% of their original width and height, giving just

1% of the original number of pixels (205 × 204). Despite this, the routine took

approximately fifteen minutes per image.

Figure 5.1 is an example of registering a normal source radiograph onto a

normal target image. The areas outside the thoracic cavity required significant

warping in order to perform the registration.

An important task for registration in eigenimage processing is to align an

76



50 100 150 200

50

100

150

200

250
−100 −50 0 50 100

−100

−50

0

50

100

Figure 5.1: Automatic deformable registration: Example of a
normal image undergoing a deformable registration process (Peri-
aswamy’s method). The technique is a mesh of small scale affine
transformations, but is globally smooth. The left image is post reg-
istration, while the right image is the optical flow used to transform
the source image.

abnormal image to a normal target image. This situation arises when the test

image to be classified contains pathology. Figure 5.2 displays the result regis-

tering an abnormal source image (right lower lobe pneumonia) onto a normal

target image. In this example the source image (not shown) had a large area of

increased pixel intensity at the right base. In order for the registration process

to align the abnormal source image to a normal target image it had to deform

the source image very significantly. The extreme deformation is visible in the

chest wall.

Based on these initial attempts at using Periaswamy’s deformable registration

routines several choices were made to improve the quality of registration for chest

radiographs.

Pre-processing of Image: It was clear that the deformable registration method

led to unexpected results outside the chest wall. For this reason each test

image was windowed, translated, and cropped based on the manually se-
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Figure 5.2: Automatic deformable registration 2: The left image
is a right lower lobe pneumonia following registration (Periaswamy’s
method) onto a normal target image. The right image is the optical
flow used to transform the source image. The presence of pneumonia
causes the registration process to extensively deform the chest in order
to match the abnormal source image onto a normal target image.

lected landmarks. This made the source images identical to those described

in section 5.3.3 and demonstrated in figure 5.4. While this pre-processing

no longer makes the system fully automatic it does reduce the effect of

extra-thoracic data, which is assumed to be extraneous to the classification

problem.

Minimum Pyramid size: The method uses a multi-resolution approach where

the image is registered from coarse to fine. The minimum pyramid size

is the width of the smallest resolution. For Periaswamy’s work on brain

registration it was reasonable to allow for very small deformation. Choosing

a larger the minimum size means that the registration is only done at larger

scales, thus restricting small deformations. This also significantly reduces

the computation time.

Width of the box used for the least squares estimate: Increasing this value
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alters the concept of “local,” allowing so-called local warpings over a wider

spatial area.

Following these changes to the parameters it was possible to decrease the

processing time to about eight minutes for a very small (219× 219 pixel) image.

Problems with chest wall distortion were reduced, but persisted as a significant

problem.

5.3 Methods assessed in conjunction with eigenimage processing

All of the automatic methods assessed were found to be both unreliable and slow

for chest radiographs. In particular the methods tended to fail when pathology

was present. Hence, four reliable and fast semi-automatic methods for image

registration were chosen to be tested in conjunction with eigenimage processing.

The four selected routines have a wide variety of properties and should therefore

provide insight into the effect of registration on eigenimage processing.

This section provides details on how each of the four semi-automatic methods

were performed. The methods are all based on Matlab’s routines. For all semi-

automatic methods the steps involved are:

1. Manually identify landmarks.

2. Window the area outside the chest cavity.

3. Apply one of the four registration routines.

For convenience the methods are labelled: translate, linear conformal, affine,

and random. It is presumed that the order of poorest registered to best registered

is: random, translate, linear conformal, affine.

5.3.1 Identification of landmarks

For the research presented in this thesis, four landmarks were identified when

each chest radiograph was imported into Matlab: both costophrenic angles

and both lung apices. The points were identified by the author, a fully qualified

radiologist. An example of the landmarks is given in figure 5.3. These landmarks
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are used for both determining the size of the chest cavity and then for subsequent

semi-automatic registration routines.

5.3.2 Windowing

Most chest radiographs have a large portion of the image representing structure

outside the chest cavity. This information is extraneous to the area of interest

on the radiograph. It was therefore desirable to remove this extra-thoracic area.

This was done using a technique known as windowing. Areas outside the chest

cavity (as determined by the landmarks) have their pixel intensity value set

to zero. Artefacts are common when an image undergoes cropping followed

by Fourier analysis. It is unknown if similar artefacts occur when an image

is cropped and the following processing is PCA. However, to reduce possible

artefacts a smooth cosine curve of 75 pixels width was used as a transition.

Figure 5.3 has an example of an image pre- and post- windowing.
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Figure 5.3: Windowing of an image: The left image is a source
image with the four landmark points identified by white crosses. The
right image is the same radiograph with the window routine applied
so that extra-thoracic information is minimised.
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5.3.3 Translation only registration

The “translate” method of registration allowed only translation of the source

image. No rotation or scaling was permitted. The magnitude of translation

in both the horizontal and vertical direction was controlled by the manually

selected landmarks. The images were then cropped so that the image frame was

the smallest bounding box that fitted all the landmarks from the training set.

Specifically the steps involved were:

1. The source image was windowed around the landmarks, as per section 5.3.2.

2. The centre of the landmarks was found. The vertical centre was defined as

halfway between the uppermost lung apex and the lowermost costophrenic

angle. The horizontal centre was defined as halfway between the right

costophrenic angle and the left costophrenic angle.

3. The source image was then translated so that the centre of its landmarks

lie on the origin in image space.

4. The image was then cropped to remove extraneous information. The size

of the bounding box was the smallest height and width that contained all

the landmarks from the training set images. This cropping ensured that

all images were of the same size despite the chest filling a different fraction

of the image.

The translation was performed using Matlab’s Image Processing Toolbox

imtransform() function with bilinear interpolation.

Two examples of translated images are given in figure 5.4. In these examples

the bounding frame of the image is much larger than the chest cavity of either

image. This is because the bounding frame must be large enough to accommodate

both the tallest and widest of the chest images.

5.3.4 Linear conformal and affine registration

The “linear conformal” and “affine” methods were the two other registration

routines assessed in conjunction with eigenimage processing. Again, both are
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Figure 5.4: Translation of images: Example of two images after
translation. The centre of all the landmarks is now at the origin
in image space (note the image axes). The image’s bounding frame
is larger than either of the chest cavities shown because some chest
cavities are much larger than the two examples shown here.

in Matlab’s Image processing toolbox. These forms of registration map prese-

lected control points on the source image to corresponding target control points.

Linear conformal transformations allow for translation, magnification, and

rotation of the source image. Affine transformations allow for translation, mag-

nification, rotation, and shearing of the image. Again the translation was per-

formed using Matlab’s Image Processing Toolbox imtransform() function with

bilinear interpolation. The steps for both transformations are similar:

1. The image was windowed around the chest cavity, as per section 5.3.2.

2. The source image’s three control points were derived from the previously

selected landmarks, and comprised both costophrenic angle landmarks and

a point midway between the lung apex landmarks.

3. The target image’s control points were the geometric centre of each control

point from the training set. i.e. the source image’s left costophrenic angle’s

control point was mapped onto the average location of the costophrenic

angle.
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Figure 5.5: Linear conformal and affine transformations: The
image on the left is post-windowing but pre-registration (i.e. the
source image). The source image’s control points are marked with
a cross, while the target control points are marked with a circle. The
centre image is the radiograph after linear conformal registration. The
image on the right is after affine registration.

4. Images were transformed using either an affine or linear conformal routine

from Matlab’s image processing toolbox.

5. Images were then cropped around the translated landmarks.

Figure 5.5 demonstrates one image before registration and the same image

after linear conformal registration and global affine registration.

5.3.5 Random orientation

For experimental purposes a form of registration was developed, labelled “ran-

dom,” where the images where deliberately made less registered than the starting

image. The method involved starting with the windowed and translated images

from section 5.3.3, then deliberately randomly rotating and translating the im-

age. This random orientation technique provided a simulated example of poorly

performed registration. Specifically the steps involved were:

1. The starting images were the post windowing, post translation images from

section 5.3.3
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2. Each image was randomly rotated. This was done using Matlab’s Image

Processing Toolbox’s imrotate() function using bilinear interpolation. The

angle of rotation was randomly chosen from a Gaussian distribution with

a mean of 0◦ and a standard deviation of 20◦.

3. Each image was translated. Again, this was done using Matlab’s built-in

functions. The x and y translations were calculated independently. Their

magnitude was randomly chosen from a Gaussian distribution with a mean

of 0 pixels and a standard deviation of 40 pixels.

5.4 Measuring the quality of registration

Having determined four methods of registration to test in conjunction with eigen-

image processing it is necessary to have some metric for comparing the quality of

registration. The two indirect methods chosen for measuring registration success

were: blur of the average image and training set variance. These indirect meth-

ods were compared to the one direct method for measuring registration success:

accuracy of classification.

5.4.1 Blur of the average image

As discussed in section 4.3, following registration it is necessary to find the em-

pirical mean of the training set, i.e. the “average chest”. Figure 5.6 shows the

average chest from the training set following the four forms of semi-automatic

registration routines.

As expected the average images are very blurry. The conjecture is that a set

of well registered images should produce a sharper average image. Conversely a

set of poorly registered images should produce an average image with more blur.

Therefore, comparing the blur in the average images should give an indication of

how well registered the images are. To enable the comparison a metric for this

blur is required.

Within an image, blur can come from a number of sources such as the im-

age capture device, movement, and poor focus. Most measurements of blur are

performed with the ultimate aim of deblurring an image. Often this is done by

estimating the PSF (point spread function) or the MTF (modulation transfer
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function). This usually involves modelling the image capture device, or having

an estimate of a sharp image [122–125].

Figure 5.7 shows the intensity profile for a vertical strip of each of the four

average images. To make direct comparison possible, average images from the

translate and random routines were cropped to be the same size as the aver-

age images from the linear conformal and affine routines. The intensity profiles

demonstrate that edges within all four average images are often wide and poorly

defined.

Random Translate

Linear conformal Affine

Figure 5.6: Comparison of average chests: The empirical mean
of the training set following the four different forms of registration.
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Figure 5.7: Profile of average chest images: The four graphs
show the intensity profile of a vertical strip from each of the average
images. The left end of each profile corresponds to top of the image,
while right end of each profile corresponds to the bottom of the image.
It can be seen that to measure blur by identifying edges is extremely
difficult due to the soft (wide) nature of the edges.

Within average images, blur predominantly arises from registration artefact.

There is no camera device to model, nor any sharp reference image to compare

to. To compare the blur in the four average images a “no-reference metric” is

required, i.e. one that does not need a camera model or a reference image.

One no-reference blur metric is to measure the width of edges within an

image [126, 127]. Both Canny and Sobel edge detection filters were used to

identify edges. However due to the very smooth nature of the edges neither filter
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could reliably detect the edges, making measurement of the width of the edges

unreliable. Thus, the metric was not useful.

Figure 5.8 displays the intensity histograms for the central region of each

average image. It can be seen that the range of intensities varies between the

four forms of registration. This was expected because blurry images often have

less contrast than sharp images.

There are many ways to measure the spread of pixel intensities within an

image. Three common methods are: image variance, interquartile range (IQR),

and image entropy. IQR is the range from the 25 percentile to 75 percentile.

Image entropy is measurement of randomness of the intensities and is calculated

as

ξ = −
∑

p log2(p) (5.1)

where p is the number of pixels at any given intensity [107].

These results for these three metrics are presented in table 5.1, but unfortu-

nately none of the metrics seem useful. While all place the randomly registered

image as being the most blurry, they are not consistent with respect to which av-

erage image is least blurry. The most useful metric is the average image variance

which places all four methods in the expected order.

Registration Method Variance Entropy (ξ) IQR
Random 1.19 ×105 6.86 582
Translate 1.73 ×105 7.01 738
Linear conformal 1.75 ×105 6.95 727
Affine 1.76 ×105 6.97 731

Table 5.1: Metrics of intensity spread for average images: It
is hoped that well registered images produce a sharp average image,
and therefore a wide spread of intensity values. As discussed in the
text, none of the metrics were found to be useful.

5.4.2 Training set variance

The aim of registration is to remove variance within the training set that arises

as a result of differences in radiographic technique. Therefore, a training set

composed of well registered images should have less total variance.
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Figure 5.8: Intensity histograms of average chest images: The
four graphs show the number of pixels at a given intensity within the
central portion of each image. The x-axis ranges from black (left) to
white (right). Better registration techniques produce average images
with more contrast. That is, there are more black and white pixels,
and fewer grey pixels. The image variance, IQR, and image entropy
aim to quantify this finding.
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As introduced in chapter 2, the sum of the eigenvalues of a training set’s

co-variance matrix is the total variance of the set. Using this knowledge the

total variance of the training set was calculated following each of the four semi-

automatic methods of registration. The results are given in table 5.2. The results

confirms that there is more variance in “worse registered” sets, than the “better

registered” sets. Using total variance the order of worse to best registered is:

random, translate, linear conformal, affine. This is the order intuitively expected

and that apparent by visual inspection of figure 5.6.

Registration Method Total Variance
Random 7.84 ×107

Translate 5.54 ×107

Linear conformal 3.69 ×107

Affine 3.26 ×107

Table 5.2: Variance of the training set after four registration
methods: The results confirm that total variance is greater in worse
registered set of images that better registered sets of images.

Examining the training set variance does give an indication of how well reg-

istered the images are. However, it does not necessarily give an indication of

which registration system produces the most useful system. This is because a

better registration system will remove more variance, but there is no guarantee

that the variance removed during registration is not diagnostic information.

5.4.3 Diagnostic accuracy

The goal of registration is to remove variance that is due to anatomical variation

and patient position, but to leave variance which is of diagnostic value. While

the methods discussed in sections 5.4.1 and 5.4.2 are interesting and may provide

indirect measures of the efficacy of a registration system, the final arbiter of the

quality of a registration system is the effect on diagnostic accuracy.

Figure 5.9 plots ROC curves for classification using each of the four regis-

tration processes. The best registration method should lead to the ROC curve

closest to the top left corner, however the lines for the four ROC curves cross.

This implies that for some pathologies one registration routine is better, while
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for other pathologies another routine is best. For example chronic obstructive

airways disease results in a chest cavity that is hyperinflated. The information

regarding chest cavity size would be lost in any registration process that allows

the image to be magnified. Thus, no single registration system is ideal for all im-

ages. This result was expected as some registration routines will remove variance

that contains diagnostic information

The affine routine is the best technique for the widest range of test images,

and hence this was used for the remainder of the thesis.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Random
Translate
Linear conformal
Affine

Figure 5.9: ROC curves from four registration routines: The
graph shows four ROC curves produced using the four different reg-
istration systems. The curves cross, suggesting that no one system is
ideal, and that while one registration system work best for one image,
another system performs best for a different image.

90



5.5 Conclusion

The aim of image registration is to remove as fully as possible the variation in the

test set that can be attributed to the radiographic equipment, methodology, and

to the size and build of the subjects. Unfortunately, “non diagnostic variance”

is not able to be clearly defined because what is diagnostic information for some

diseases is unimportant for other diseases.

While many automated registration techniques have been employed within

medical imaging, none are considered ideal for all chest radiograph registration

problems. Thus four semi-automatic routines were chosen for evaluation of the

effect of registration on the subsequent eigenimage processing. Fortunately, man-

ually identifying control points is acceptable for clinical practice.

Initially, two indirect measures of the quality of registration were assessed:

blur of average image, and total variance in the training set. Then a direct

measure of the quality of registration was tested: effect on the accuracy of clas-

sification.

It was found that while indirect methods provided some insight into how

much variance had been removed from the training set, they gave no indication

as to whether the registration method removed variance of diagnostic value. Only

directly measuring diagnostic accuracy was useful in determining the amount of

diagnostic information preserved.

For example, chronic obstructive airways disease is a common chest pathology

for which radiographs may lose diagnostic information during registration. In this

disease the lungs tend to be bigger than normal subjects, and any registration

process that removes the variation in lung sizes will be poor at classifying this

disease, despite the images appearing better registered.

Assessment of diagnostic accuracy from the four different registration systems

showed that no single registration routine was ideal. Each registration process

will have diseases for which the registration process preserves the most diagnostic

variance information while removing the most non-diagnostic variation, but no

registration process will be ideal for all diseases. There are several possible

solutions to this dilemma:

1. Once a complete eigenimaging system is implemented (that incorporates a
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particular registration system), test which pathology types are more reli-

ably classified.

2. Use no registration at all, but have a very large training set. This allows the

PCA to represent all variance. In this situation the eigenimages would be

able to represent all diagnostic information, but at the expense of requiring

enough eigenimages to also represent non-diagnostic information.

3. A compromise of the two extremes. For example, use a simple registration

system, such as translation only, but have a moderately large training set.

It was found that affine registration generally provided the most predictive

value relative to the other methods, although not for all diseases. In any pro-

duction system that uses eigenimage processing, the registration process would

need to be assessed with a view to practical issues (need for user input), image

types (chest radiographs versus MRI images), and pathology to be classified.

5.6 Summary

1. Image registration is an important and widely studied topic, but no con-

sensus exists as to what method is most appropriate for chest radiographs.

2. Automatic methods are slow and tend to fail when significant pathology is

present.

3. While a registration method may be optimal for one form of pathology, an-

other registration method may be optimal for a different form of pathology.

4. Based on the studies in this chapter, an affine registration system using

manually selected control points is a reasonable compromise of simplicity,

speed, and reliability.
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Chapter VI

Processing of the training set

This chapter discusses the goals, assumptions, and results of the processing

which was applied to the training set of normal images in the prototype system

presented in chapter 4. Analysis of the processing applied to each test image is

presented in chapter 7.

Initially the chapter discusses the goal of Principal Components Analysis

(PCA), namely to identify where training images are clustered within the com-

plete image space. Then the dimensionality and spread of the cluster is examined.

The effective rank ǫ of A (and therefore of the sample co-variance matrix) is dis-

cussed with reference to three common stopping rules used for PCA. The spread

of the cluster is analysed with respect to the characteristic roots, λi, of the co-

variance matrix. A training set containing both pathological and normal images

is analysed for dimensionality of clustering.

Following this, there is a discussion of the required number of images in the

training set, and to analyse this the effective rank is calculated for a range of

different sizes of training sets. Computation speed is measured for the various

sizes of training sets used.

Finally, there is a review of some methods for applying PCA to training sets

which contain very large numbers of images.

6.1 Clustering of training images

The application of PCA to the training set aims to identify a sub-space within

the complete image space in which training images are likely to be found. It is

expected that images from the training set form a cluster within the complete

image space. PCA identifies the centre of the cluster, a set of orthogonal direc-

tions which best represent the variance within the cluster, and the magnitude of
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variance in each direction.

For the prototype system described in chapter 4, the complete image space is

approximately 3×106 dimensions, i.e. one dimension per pixel in the images after

pre-processing. Eigenimage processing seeks a low dimensional sub-space which

spans the majority of the variance within the training set. In an attempt to

represent this diagrammatically, figure 6.1 shows a 3-dimensional image space,

into which is embedded a 2-dimensional sub-space with basis vectors derived

from the training set. In the diagram, image space is [a1, a2, a3], the training

set sub-space is [u1,u2], and the variance in each dimension of the sub-space is

λ1 and λ2 respectively. A set of concentric ellipses can therefore be constructed

with radii proportional to
√

λ1 and
√

λ2 representing the distribution of training

set images. One such ellipse is depicted in figure 2.4.

In order for figure 6.1 to be a useful representation of the formation of a basis

set for chest radiographs from a training set certain assumptions must be sat-

isfied. Paraphrasing these assumptions of eigenimage processing in radiological

terms gives:

1. There is an average normal radiograph. All other normal radiographs are

variations of this.

2. There are a limited number of ways in which a radiograph can vary from

the average, yet still be considered normal. For example, one way in which

a normal radiograph may vary is heart size.

3. Any variation will have a limited range. For example, the heart can be

either slightly bigger or smaller than the average heart, but still be within

the normal range.

The first of the above three statements is that an average normal chest ra-

diograph exists. This is represented in figure 6.1 by the location of the centre of

the disk with respect to the origin of image space. This assumption is examined

in section 6.2.

The second statement is that the training set has substantial variance in only

a few directions. In figure 6.1 this is depicted as a 2-dimensional sub-space within

the 3-dimensional complete image space. This assumption is tested in section 6.3.
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Figure 6.1: Clustering of training set images: A depiction of
the application of PCA to the training set. In the diagram, the high
dimensional complete image space is represented by a 3-dimensional
space [a1,a2,a3]. The training set images are expected to be clustered.
The basis vectors for this sub-space are u1 and u2 (principal compo-
nents). The sub-space is translated from the origin of image space by
the empirical mean of the training set, E [a]. The spread of the clus-
ter is related to the variance of the training set along each principal
component. Since the variance is given by λ1 and λ2 respectively, the
training set can be represented as a 2-dimensional elliptical disk with
axes of radii

√
λ1 and

√
λ2.
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The third statement is that variance in these directions is of limited magni-

tude. This is represented in figure 6.1 by the sub-space of training images being

a disk rather than a plane. This approximation is tested in section 6.4.

6.2 The centre of the cluster

Eigenimage processing assumes that there is an average image about which all

other images vary. It is easily calculated by

E[a] =
1

p

p
∑

i=1

ai. (6.1)

For the training set used in the prototype system the average chest is shown in

figure 6.2. All chest radiographs in the training set are variations of the average

chest radiograph. However, the utility of finding the average image is minimal

unless the other assumptions regarding the training set are shown to be valid.

Figure 6.2: The average chest radiograph: The image is the
average image from the training set of 77 normal chest radiographs
that was used in the prototype system.
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6.3 The dimensionality of the cluster

This section establishes that there are a limited number of ways in which nor-

mal images vary about the average image. Put another way, it establishes the

dimensionality of the cluster formed from the training set. Patterns of variance

identified by the PCA process will not necessarily be the same as those identified

by the human visual system.

In order to determine the dimensionality of the cluster the number of signif-

icant components must be determined. The number of significant components

is the effective rank of A, denoted ǫ. Characteristic roots for the non-significant

components are assumed to be zero within statistical tolerance.

In PCA texts, methods for determining the number of significant components

are often referred to as “stopping rules”. The goal of stopping rules is to ensure

that all retained components represent true signal, rather than noise.

Three methods of determining effective rank are studied in this chapter, al-

though several other methods have been described. The three methods were

chosen because: the first is simple and visually intuitive, the second is the

most common in software packages, and the third is recommended by major

texts [23–25,60].

Most stopping rules are based on the spectral decomposition of the co-variance

matrix, first introduced in section 2.4. The decomposition is represented by

var [a] = Σ =
1

p − 1
AAT =

r
∑

i=1

λiuiu
T
i (6.2)

where p is the number of images in the training set, r is number of principal

components and the rank of Σ, while uiu
T
i is one “pattern of co-variance” within

the total co-variance matrix. As discussed in section 2.4, uiu
T
i remains “approx-

imately the same size” for all i because ui are all unit length. By studying only

the relative size of the characteristic roots λi (eigenvalues of Σ), it is possible to

determine how much of the total variance is represented by only a few principal

components.
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6.3.1 Scree plot

In 1966 Catell developed the scree plot as a means for graphically determining

the relative importance of each principal component of the training set [23, 67].

Figure 6.3 is an annotated version of the scree plot from the prototype system’s

training set. It demonstrates that there is an “elbow” at around 15 eigenval-

ues. Using Catell’s method, this suggests that only the first 15 components are

statistically significant.
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Figure 6.3: Scree plot with elbow: This demonstrates Catell’s
stopping rule where the number of significant components is defined
by the elbow. For the training set used in chapter 4 the elbow is at
around 15 components. This suggests that choosing ǫ = 15 would
allow the cluster to span all the significant patterns of variance. This
scree plot is the same as in figure 4.5, but is repeated here with the
elbow indicated.
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The scree plot method is interesting as it provides a visual guide to the number

of significant components. However, it is only a visual substitute for a proper

significance test and therefore it is not very reproducible. For the examples found

in many texts the elbow is easy to identify, but in many real world problems

(including chest radiograph analysis) it is much more subjective. For the data

presented here it is unclear whether the elbow occurs at 10 components when the

data first starts flattening out, or at 20 components when the curve is very flat.

Several authors have tried to improve the method, but unfortunately it remains

largely subjective.

6.3.2 Power spectrum

The simplest analytical method for determining the effective rank is to choose

ǫ so that a known proportion of the total variance is covered. The cumulative

proportion of total variation (CPTV ) is derived from the spectral decomposition

of the co-variance matrix given in equation 6.2. CPTV is the proportion of total

variance represented by choosing an effective rank of ǫ. Choosing ǫ to include

all the components will describe all the variance. CPTV was introduced in

section 2.4, and is given by

CPTV ǫ =

∑ǫ
i=1 λi

∑k
i=1 λi

(6.3)

Using data from the prototype system in chapter 4, CTPV is plotted in figure 6.4.

The “power spectrum” method allows choosing ǫ to cover a pre-determined pro-

portion of variance. Choosing ǫ = 57 allows normal images to vary in up to 57

independent ways and accounts for 95% of the total variance within the training

set of normal images (see figure 6.4).

The method is simple, quick, and found in many software packages. However,

many authors have argued that it makes no attempt to determine significant

variance. For example if 30% of the variance in the training set is from noise

then ǫ should be chosen to cover 70% of CPTV . Similarly, if only 1% of the

variance in the training set is from noise, then ǫ should be chosen to cover 99%

of CPTV . The decision of how much variance is due to noise versus signal is left

to the investigator, and in practice this decision can be very difficult.
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Figure 6.4: Cumulative proportion of total variance: Using the
training set data from chapter 4 a plot of the proportion of total vari-
ance covered by using only a subset of all the eigenimages. The x-axis
is the number of eigenimages used, and the y-axis is the proportion
of variance represented by retaining a particular number of principal
components. Using 57 eigenimages will represent 95% of the variance
found within the training set of normal images.
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6.3.3 Guttman-Kaiser criterion

A less subjective technique is to retain components with characteristic roots

above the average characteristic root. This method is recommended by most

major texts, and is sometime referred to as the Guttman-Kaiser criterion [23–

25, 60]. It was proposed by Guttman in 1954, but developed further by Kaiser

in the 1960’s [128, 129].

The rationale is that each component should account for more variance than

any single variable in the original set. For example, in a system where each

variable in the original data space has a variance of 1, significant components

should all have a variance greater than 1. Using this rationale it can be shown

that for unscaled data the cut-off for significant characteristic roots is the the

average characteristic root λ̄. Details can be found in most PCA texts [23–25,60].

Since this method was first proposed, there have been a significant number of

publications attempting to fine-tune it. In the 1970’s Jolliffe studied the method

using both simulated and real data and concluded that the cut-off should be

approximately 70% of the average characteristic root [130,131].

Applying the Guttman-Kaiser criterion with λi ≥ λ̄ to the data used for the

prototype system in chapter 4, it is found that the training set has an effective

rank ǫ = 14. This equates to 14 significant principal components. Using a cut-off

of 70% of the mean characteristic root, λi ≥ 0.7λ̄, suggests that an appropriate

effective rank is ǫ = 19.

6.3.4 Effective rank with pathology included in the training set

For the prototype system the training set only included normal images. If the

goal is to have eigenimages that can closely represent both normal and abnormal

images it is likely that the training set will need to include pathological images.

The benefits of having eigenimages that can represent pathology are discussed in

section 7.5. However at this point it is worth considering the effect of pathology

on clustering of the training set.

It is expected that adding pathological images will increase the dimensionality

of the cluster. That is, by including pathology new patterns of variance will be

introduced into the set. However, unless a sufficient number of examples of a

particular pathology are introduced, the extra patterns of variance may be of
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Figure 6.5: Scree Plot of training sets with and without
pathology: The two plots show the characteristic roots for train-
ing sets of containing 77 images. The first set contains only normal
images, while the second set contained a mix of 38 normal and 39
pathological images.

such a low power that they are indistinguishable from noise. For example, if the

training set includes only one image of a right upper lobe pneumonia, insufficient

variance may be added to produce a significant eigenimage.

To test the effect of including pathology, PCA was applied to a new training

set containing a mix of 38 normal images and 39 abnormal images. The total size

of the new mixed training set was the same size as that used in the prototype

system. Pathological images included pneumonia, lung masses, and heart failure.

Scree plots of both the original normal training set and the new mixed training

set are shown figure 6.5. The figure demonstrates that the characteristic roots
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of the training set containing a mix of pathological and normal images tend to

be larger than the training set containing only normal images, implying there is

more variance within the mixed set.

Using the Guttman-Kaiser criterion at a significance level of 0.7λ̄ the effective

rank of the training set containing pathology is 17, which is less than the effective

rank of the training set containing only normal images. The reduced effective

rank in the mixed training set suggests that while the pathological images intro-

duce more patterns of variance, these patterns have relatively low power. This

is because there is a wide variation in pathology. For example, two images of

pneumonia may be very different: one may have consolidation in the right lung

while the other has consolidation in the left lung. Introducing these images into

the training set introduces two new patterns of variance, both of low power. If

more examples of pneumonia were added then the power of these new patterns

of variance would increase, thus making them more likely to be significant.

In summary, it is possible to include pathology in the training set of images.

Unfortunately, due to the wide variation of appearances of “similar pathology”,

it will be necessary to have many examples of each form of pathology.

6.3.5 Choosing the effective rank of the training set

The three most popular methods for choosing the effective rank of the training

set, reviewed above, have indicated a range of possible values for the prototype

system. The range of values is ǫ = 14 . . . 57. This range reflects the uncertainty

in the statistical literature concerning which method is most appropriate.

Neither the scree plot nor the power spectrum method are ideal for eigen-

imaging. While the scree plot is conceptually useful it is remains a subjective

test. The power spectrum is good at determining the relative variance of each

component, but to be useful requires an estimate of the expected signal-to-noise

ratio. i.e., if the noise is expected to be 5% of the total variance, then the effective

rank ǫ should be chosen to span 95% of the total variance. For sets of images,

such as in the prototype system, it is difficult to estimate the signal-to-noise

ratio.

The Guttman-Kaiser criterion is more sophisticated because it estimates

which components are significant based on a measure intrinsic to the data. This
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method is still not ideal because there remains doubt as to exactly where the

cut-off for significance should be. However, it is an improvement over the power

spectrum method. Using the Guttman-Kaiser criterion with a 70% cut-off, the

effective rank is ǫ = 19.

In practice, for many eigenimaging problems the chosen effective rank is rela-

tively unimportant since the goal is to identify the important patterns of variance

in order to describe of a cluster of normal images. For many problems, identi-

fying the important (common) patterns of variance is adequate, i.e. low order

components. Remaining patterns of variance (i.e. high order components) may

or may not be statistically significant, but certainly the variance they represent

is of less magnitude than lower order components.

6.4 The spread of the cluster

Having identified the principal directions in multi-dimensional space along which

normal images vary about the mean, it is now possible to consider the magnitude

of their variance in each of these directions. With reference to figure 6.1, this is

the spread of images along each principal component.

From material on PCA presented in chapter 2, it is known that for any

particular principal component ui, the variance along the component is given by

the associated characteristic root λi. As mentioned in 3.6.1 the characteristic

roots of the sample co-variance matrix Σ = 1
p−1

AAT can be found from the

singular values of A by λi =
s2

i

p−1
. At this stage no reference has been made to

the shape of the distribution along each component, merely the variance of the

distribution.

Many theorems of PCA stopping rules assume that the original variables have

a multivariate normal distribution and therefore assume that the distribution

with respect to each principal axis is also normal. One of the few papers to

study the distribution of chest radiographs in image space concluded that a

multivariate normal (Gaussian) distribution is satisfactory [52].

Waternaux and Davis showed that even if the original variables are not mul-

tivariate normal, the distribution along each principal axis is still expected to

be normal so long as Σ and the fourth cumulant of the underlying univariate

distributions are finite [132, 133]. The fourth cumulant (called kurtosis) is given
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by

kurt[x] = E[x4] − 3(E[x2])2 (6.4)

where x is a single original variable, i.e. a single pixel’s intensity distribution

in the source images. Since each source pixel’s intensity is finite and small,

E[x4] and E[x2] should be also finite. Thus the kurtosis should be finite, again

leading to the expectation that the distribution along each principal component

is Gaussian, with variance λi.

Weighting factors for the images in the training set from the prototype sys-

tem in chapter 4 were calculated as per section 4.6.3. Each weighting factor

gives the location of a training image along each associated principal compo-

nent. Four example distributions of weighting factors are shown in figure 6.6,

along with superimposed Gaussian distributions each with a variance of λi. As

expected, the spread of images decreases with higher order principal components.

This is expected because the characteristic roots λi are smaller for higher order

components.

Figure 6.6 visually compares the distributions to the expected Gaussian dis-

tribution. To test this expectation, the Kolmogorov-Smirnov test can be used.

This is a widely accepted statistical test to establish whether a sampled distri-

bution could be from a known distribution [134]. The Kolmogorov-Smirnov test

analyses the data to accept to reject the null hypothesis that the distribution of

the training set images’ weighting factors along the ith principal component is a

Gaussian distribution with mean = 0 and variance = λi.

The two-sided Kolmogorov-Smirnov test computes a test statistic which is

the maximum difference between the sampled data and a specified probability

distribution, and if the test statistic is above a critical value the null hypothesis

is rejected. The critical value is a function of the confidence interval and sample

size. For these tests the confidence interval was chosen to be 99%, that is a

p-value=0.01, with a sample size of 77. The test is said to be two sided because

it allows the sampled distribution to be either to the left or right of the predicted

Gaussian distribution.

The results of the Kolmogorov-Smirnov test are shown in figure 6.7. No test

statistic is greater than the critical value and hence the null hypothesis cannot

be rejected for any principal component. Specifically, this means that based on
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Figure 6.6: Spread of the training set cluster: The four his-
tograms give the spread of the weighting factors from training set
images. Four example of principal components are shown: u1, u2,
u10, and u19. Each bar of a histogram represents the proportion of
images with a weighting factor in a particular range. Plotted on top of
each histogram is a Gaussian distribution of variance λi, normalised
so that the area under both the histogram and Gaussian distribution
are equal.
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Kolmogorov-Smirnov test statistic for each principal component. The
dotted line is the critical value required to reject the null hypothesis
for a p-value of 0.01. At this confidence level the null hypothesis was
unable to be rejected for any principal component.

the sample, the distribution of weighting factors for each principal component is

indistinguishable from a Gaussian distribution.

6.5 Estimating the number of training images required

In the prototype system the size of the training set was based on set sizes used

for face recognition systems. It is important to develop methods to estimate the

required training set size for chest radiographs, as this will influence how useful

eigenimage processing is for radiological images.

For face recognition many methods have been used to estimate the required
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training set size. The metric used to determine the number of required images

depends on the specific use of eigenimaging. For example, when designing a face

recognition system the training set may need to describe all possible human faces

to within a certain prescribed error. In addition, the number of images required

varies depending on the quality of images within a training set. For example,

variation in image size, lighting conditions, features (such as sun glasses), all

affect the required number of training images. For face recognition, authors have

claimed that between 20 and 200 eigenfaces are needed to cover an “acceptable”

range of variation [135,136].

The chest radiograph system aims to have the principal components represent

a reasonable amount of normal variation. Unfortunately, for chest radiographs

there is an extremely large number of identified “normal variants”, some of which

occur at a frequency of less than one in tens of thousands of people [85,137,138].

Thus it will never be possible to have a set of principal components that is

able to represent all normal variants. However it will be useful to develop some

understanding of the effect of changing the number of training images.

6.5.1 Experimental design

A series of experiments was performed to clarify the effect of changing the number

of training images. The goal was to find the characteristic roots, total variance,

and effective rank for a range of training set sizes. For these experiments the total

set of images included the 77 normal training images as well as the 15 normal

test images, thus giving a maximum set size of 92 images. This was achieved by

starting with a small training set, p = 2, then successively adding images until

the training set contained all the normal images. All images had previously been

registered as per the prototype system.

For all sizes of training set, p = 2 . . . 92, the following calculations were per-

formed:

1. The training set was constructed A = [a1 . . .ap].

2. The average image E[a] was found and subtracted from all the images.

3. AT A was found and its eigenvalues (s2
i ) calculated.
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4. The characteristic roots of Σ were derived and stored using the relationship

λi =
s2

i

p−1
.

5. The time taken to perform these calculations was recorded.

6. Total variance and effective rank were calculated from the characteristic

roots. Both the Guttman-Kaiser criterion and the power spectrum method

were investigated.

The order of the images was then randomly shuffled, and the above process

repeated for a total of n = 30 runs. Using this method it is worth noting that for

small training sets, e.g. p = 20, it is likely that the composition of the training set

for one run is very different from the other 29 runs. Conversely for large training

sets, e.g. p = 90, it is likely the composition of the set will be very similar to the

other 29 runs performed with p = 90.

Overall, the experiment involves finding characteristic roots for n × pmax =

2730 training sets, with the training set sizes ranging from p = 2 . . . 92 images.

The total time to run the calculations was approximately 200 hours.

6.5.2 Changes in total variance with training set size

As the number of images in the training set increases it is expected that the total

variance will increase until the sample co-variance matrix is formed by enough

samples to closely approximate the population co-variance. As discussed in sec-

tion 2.4, the total variance (TV ) in a training set can be found by summing up all

the characteristic roots. For the mth run this was done using the characteristic

roots calculated for training set.

TVm(p) =

p
∑

i=1

λi,p,m (6.5)

The total variance was then averaged over the n = 30 runs. The average TV (p)

is plotted in figure 6.8 with plus and minus one standard deviation plotted as

dotted lines.

When examining the data in figure 6.8 the mean of the 30 runs for calculating

TV (p) remains approximately constant for increasing p. This is expected because
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Figure 6.8: Changes in total variance with set size: The plot
demonstrates that the total variance (sum of the characteristic roots)
of the sample co-variance matrix tends to remain constant with in-
creasing the number of images in the training set. The sold line is the
average over the n = 30 runs for TVm(p), while the dotted lines are
plus and minus one standard deviation.

a sample co-variance matrix should be an estimate of the population’s co-variance

matrix and thus remain approximately constant over a range of sample sizes.

Also in figure 6.8 the range of TVm(p) over the n = 30 runs (as depicted by

the dotted one standard deviation lines) tends to decrease with increasing p. This

is expected for two reasons. Firstly, as the sample size increases the sample co-

variance matrix becomes a better estimate of the population co-variance matrix,

which leads a smaller range of TVm(p). Secondly, as discussed previously, for

large values of p the training sets are almost identical and therefore the range of
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TVm(p) will be small. Unfortunately, it is difficult to estimate which of the two

factors is most important.

6.5.3 Changes in effective rank with training set size

As the number of images in the training set increases it is expected that the

number of significant components will increase and therefore that the effective

rank of A and Σ will increase. This is because introducing new images can either

introduce new patterns of variance or make patterns already present statistically

significant.

For example, the training set may contain only a few examples of a normal

anatomic variant called an “azygous fissure”. This variant is normally present in

around 2% of chest radiographs, but is a small low intensity finding. Consider

that the variant is present within the training set, but that it is not statistically

significant using a test such as the Guttman-Kaiser criterion. Introducing a new

image containing this variant into the training set may allow the component to

become statistically significant, thus increasing the effective rank of the training

set. Then there is the question of which normal variants should be included in

the normal training set, as some normal variants are clinically important while

others become clinically important in conjunction with abnormal findings.

If the training set is small, when a new image is introduced it is likely that the

effective rank will increase. This is because it is likely that the new image contains

either a new pattern of variance or a pattern of variance that was previously not

statistically significant. If the training set is large, introducing a new image is

less likely to increase the effective rank. This is because if a training set already

well represents the population, it is unlikely that introducing a new image will

introduce a new pattern of variance, because such a pattern is likely to already

be represented. In summary, if the training set is large enough and represents

the population well, the rate of change of the effective rank should be slow when

increasing the number of images in the training set.

Section 6.3 described two methods by which the effective rank of Σ can be

automatically calculated: the power spectrum method and the Guttman-Kaiser

criterion. While the scree plot also finds the effective rank, it requires manually

identifying the “elbow” and is therefore subjective and less easily automated. To
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Figure 6.9: The power spectrum method for determining ef-
fective rank as a function of the number of training images:
The effective rank was calculated to span 50%, 70% and 90% of the
total variance, plotted as ǫ50, ǫ70, and ǫ90 respectively.

test the effect of changing the size of the training set has on effective rank, ǫ

was calculated for a range of sizes of training sets, i.e. for a range of values of

p. Both the power spectrum method and Guttman-Kaiser criterion were used to

determine the effective rank.

Using the power spectrum method to determine effective rank requires an

estimate of the relative signal-to-noise ratio for the system. The value of ǫ is

chosen to span the estimated significant fraction of the total variance. The

effective rank was determined so that the principal components would span 50%,

70% and 90% of the total variance. The effective rank as a function of set size

(ǫ50, ǫ70, ǫ90) was then averaged over the n = 30 runs. This is plotted in figure 6.9.
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It can be seen that when choosing to cover a larger portion of the total

variance, e.g. ǫ90, the effective rank tends to be larger and rapidly increases with

an increasing number of images in the training set. This is thought to be because

adding extra images to the training set adds more low power variance (which is

spanned by the low order eigenimages). However if a smaller portion of total

variance is required to be covered, e.g. 50%, then the effective rank tends to

be relatively stable after approximately 50–60 training images. This stability

is thought to be because adding an extra image is unlikely to alter high order

eigenimages (which represent the strongest 50% of variance).

Based on this experiment it is believed that to span any given proportion

of variance, there is a training set size for which the effective rank is relatively

stable with increasing training set size. Choosing to span 50% of the variance in

chest radiographs requires that training set should contain at least 50–60 images

for the effective rank to become stable. Similarly, choosing to span 70% of the

variance requires a training set of 80–100 images for the effective rank to be

stable, and choosing to span 90% of the variance requires a test set containing

more images than used in this study. It is postulated that a set size of 200–300

images may allow the effective rank to be stable with changes in set size, although

this cannot be tested using available data.

As previously introduced in section 6.3.3, the Guttman-Kaiser criterion con-

siders principal components significant if the associated characteristic root λi is

greater than the average characteristic root λ̄. This method can be fine-tuned

by adjusting the significance level relative to the average characteristic root. A

widely accepted value for significance is λi ≥ 0.7λ̄ [130, 131].

Figure 6.10 shows how the effective rank, determined using the Guttman-

Kaiser criterion, changes with increasing set size. The results imply that choosing

components that have characteristic roots λi ≥ 1.3λ̄ to be significant, requires

that the training set should contain 90-120 images for the effective rank to be

stable. However, using the preferred cut-off of λi ≥ 0.7λ̄ and extrapolating from

figure 6.10 it is again postulated that the effective rank will not be stable until

at least 200–300 test images are used.

Comparing the power spectrum method with the Guttman-Kaiser criterion,

a similar stability pattern is found for the effective rank as a function of the

number of training images. That is, when the number of training images is large
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Figure 6.10: The Guttman-Kaiser criterion for determining
effective rank as a function of the number of training im-
ages: The effective rank is determined by totalling the number of
characteristic roots above the average. Early work by Guttman and
Kaiser suggested a suitable cut-off was λi ≥ λ̄. Later work by Jol-
liffe suggested that λi ≥ 0.7λ̄ is more appropriate. For comparison
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the effective rank tends to stabilise (figure 6.10). However, the number of images

in the training set required for stability depends on the exact cut-off relative to λ̄.

In conclusion, using the Guttman-Kaiser criterion with λi ≥ 0.7λ̄, the effec-

tive rank of the training set in the prototype system (77 images) is ǫ = 19. It

is expected that adding more images to the training set would alter this effec-

tive rank. If the training set was greater than 200–300 images the effective rank

should be less sensitive to changes in training set size. Unfortunately, due to

difficulty in obtaining enough images, sets of this size could not be evaluated for

this study.

6.6 Computation speed

The tests in section 6.5.3 required performing eigenimage processing 30 times on

sets with p = 2 . . . 92 images. This gave an opportunity to time the processing

for a variety of training sets, thus allowing evaluation of speed. When this

research was started in 2002, processing for the prototype system, p = 77, took

around 15–30 minutes. By May 2006, there had been significant improvements in

computing hardware and the processing time was around 2–3 minutes. Although

computations were done using a small Linux cluster, the code developed did not

take advantage of parallel processing and therefore only ever ran on one node of

the cluster. These were 1GHz Pentium-III processors with 512Mb of RAM.

As introduced in section 4.4, the time for eigenimage processing of the train-

ing set increases linearly for increasing k and quadratically for increasing p. Fig-

ure 6.11 plots the average time taken for 30 runs of calculating AT A and its

eigenvalues. This is the computationally intensive part of eigenimage processing.

Using the graph to extrapolate to training sets of 200–300 images, it is expected

the processing time would be around 10 minutes. An experiment was performed

in which the training set images were duplicated four times, giving a total set

size of 308 images, and processing for this very large set took 12 minutes.

The code used to find AT A was introduced in figure 4.2. This code has two

instructions involving a significant computation time. The first is reading in a

row of A from disk. The total time for this should be a linear function of k (the

image size) and p (the number of training images). The second slow instruction

is finding C from the row of A. The total time for this instruction should be

115



0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

p

A
ve

ra
ge

ti
m

e
(s

ec
on

d
s)

Figure 6.11: Time for processing of the training set: Plot of
the average time to calculate AT A and it eigenvalues, for p = 2 . . . 92
images.

a quadratic function of p. Looking at figure 6.11, the graph is mostly linear

suggesting that for training sets up to p = 92 images the time to read all of the

rows of A from disk is more significant than the time to do the calculation for

finding C.

The finding that calculating AT is limited by disk access speed rather than

CPU speed was expected. This is because for each iteration of the loop in

figure 4.2 one row of A is read in, then C is computed. For p = 92, reading in

one row requires reading from 92 separate files stored on a network disk, which is

relatively slow. Computing C requires 922 multiplications and additions, which

should be very fast. Even if the disk access was fully optimised it is likely that

reading in the data will still remain much slower than the calculations.
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6.7 Altering the training set

Using the method described for the prototype system it should be possible to

calculate principal components for sets of radiographs containing 200–300 images.

This should be an adequate set size for the applications described in this thesis,

but there are occasions when it may be helpful to have either a very large training

set, or to regularly update the training set. There are several ways to do this.

Different names have been given to these methods, but incremental PCA and

sub-space PCA are commonly used terms [29, 45].

There have been many methods to incrementally adjust the size of the training

set, and these forms of PCA are commonly known as incremental PCA. However,

most methods have significant drawbacks. For example, while some methods al-

low for updating of the average image and the eigenimages, they are unable to

update the eigenvalues [139, 140]. Other methods update both the eigenimages

and eigenvalues, but assume that the average image remains constant [141]. One

method updates the eigenimages, eigenvalues, and average image but requires

keeping track of the full co-variance matrix, which is not feasible for large im-

ages [142].

Another method for performing PCA is to divide the training set into parts.

PCA is then applied to each part, thus finding multiple sub-spaces which are then

added. These techniques are often called sub-space PCA. A general method of

sub-space PCA is reviewed in section 6.7.2.

6.7.1 Motivations for altering the training set

There are several situations where it may be desirable to use a different approach

for performing PCA calculations than the approach presented in this thesis.

Possible motivations for adopting one of these more flexible forms of PCA include:

Large training sets: A large training set may be required for radiological im-

ages because of the large number of normal variants encountered. To con-

struct these large training sets, smaller sets may be added together [143].

Update the training set over time: As time passes it may be desirable to

update the set. This may be because of changes in the sample population

or variation in imaging techniques.
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Including pathology in the training set: A training set could be formed us-

ing sub-spaces such as normal, pneumonia, heart failure, or other pathol-

ogy. Each sub-space needs only enough images to represent that pathology

well, e.g. 300 normal images, 500 images of pneumonia etc. There is no

requirement for the relative population frequency of each pathology to be

known.

6.7.2 A general method for altering the training set

An important method of sub-space PCA was introduced by Hall et al. [144–146].

Their method allows for adding and subtracting eigenspaces, while keeping track

of the eigenimages, eigenvalues, and average images without the need to compute

the entire co-variance matrix. The method can be used to add or subtract either

one or many images from a training set, thus performing either incremental PCA

or sub-space PCA.

The method involves considering the Singular Value Decomposition (SVD)

of a matrix X

AX − āX1 = UXSXV T
X (6.6)

where A is of k rows and pX columns and āX1 is the empirical mean of the set.

The eigenspace Θ(X) is defined to correspond to the first pX columns of UX , VX ,

and SX . Hall et al. noted that compared with traditional approaches, the key

difference is that they keep track of the mean image āX1.

Similarly, a second eigenspace Θ(Y ) is defined for the matrix Y , also of k

rows but of pY columns. These eigenspaces are then added by concatenating the

pair of collections, Z = [X, Y ].

Θ(X) = (UX , SX , VX , pX , āX) (6.7)

Θ(Y ) = (UY , SY , VY , pY , āY ) (6.8)

Θ(Z) = Θ(X) ⊕ Θ(Y ) = (UZ , SZ , VZ , pZ , āZ) (6.9)

The new eigenspace Θ(Z) is the addition of the column space and row space of

X to the column space and row space of Y . Depending on the intersection of the

eigenspaces the dimensionality is the same or less than the total dimensionality

of Θ(X) and Θ(Y ).
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Using Hall et al.’s approach, the computational expense of adding two eigenspaces

is O(s3), where s is the total number of non-zero singular values. For example,

suppose X and Y are composed of 500 images but the SVD of both yields only

100 significant singular values. In this situation the computation time for the

addition is O(2003), whereas computing the SVD for all 1000 images is O(10003).

Thus the technique allows for a very large training set constructed from smaller

sets. A good summary of the technique is given in their final article [146].

6.8 Conclusion

This chapter has established that normal chest radiographs are clustered in a

low dimensional sub-space of image space, with the cluster centred on the aver-

age image. Normal images tend to vary in a limited number of patterns. The

magnitude of variance for each pattern is limited and for the sample used in the

prototype system, it is indistinguishable from a normal (Gaussian) distribution.

The dimensionality of the cluster is difficult to estimate because there is no

single method for determining which eigenimages are significant. However, for

many applications this is unlikely to be a problem because higher order eigen-

images represent patterns with near zero variance. Using the Guttman-Kaiser

criterion the training set from the prototype system has 19 significant princi-

pal components. As the training set increases in size the number of significant

components increases, but the rate of increase tends to slow as the set gets larger.

The training set of 77 normal images used for the prototype system is likely

to have a sub-optimal number of images. It is sub-optimal because with this

small set size, the effective rank increases rapidly when the number of training

images increases. It would be preferable to have a set of at least 200–300 images,

because with this larger set size it is hoped that the effective rank would be more

stable. Despite the sub-optimal size of p = 77, the PCA process has identified

19 significant principal components (eigenimages)

Experiments suggest that for the high resolution images used in this thesis

the dominant factor in computation speed is reading data from the disk, and

this time increases linearly with increasing image size, i.e. increasing k. Thus

much larger data images, such as 3-dimensional CT images, could be used with

a linear increase in computation time. For chest radiographs it is possible to
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perform PCA for training sets with several hundred images without changes to

the method for the prototype system described in chapter 4.

Including pathology in the training set requires that the size of the training

set be much larger because the training set must include enough examples of each

pattern of variation for the eigenimages to be statistically significant. Given the

extremely large number of pathologies identifiable on chest radiographs and the

wide variety of appearances of each pathology, it is likely that an extremely large

training set would be required.

In the last few years there has been significant work on methods of incre-

mentally changing the training set, and more recently there has been work on

methods of adding or subtracting two training sets. These techniques may allow

eigenimage processing of the very large training sets that may be required for

some radiological applications.

6.9 Summary

1. Chest radiographs are clustered within a multi-dimensional image space.

2. Chest radiographs tend to vary from the average in a limited number of

ways. These are called principal components, ui.

3. The spread of images along each principal component is approximated by

a Gaussian curve with variance λi.

4. The number of significant eigenimages is the effective rank of A. Using the

Guttman-Kaiser criterion this is found to be ǫ = 14− 19 for the prototype

system.

5. The effective rank varies with the number of images within the training

set. While it does tend to stabilise, this is unlikely to occur until at least

200–300 chest radiographs, which is a larger training set than was feasible

to acquire for the purpose of this thesis.

6. It is possible to develop systems where eigenspaces are added, allowing very

large training sets to be constructed. This may be particularly relevant to
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enable stabilisation of effective rank for other radiological images such as

those from CT and MRI.

121



122



Chapter VII

Analysis of test images

This chapter studies the processing applied to the test images performed by

the prototype system described in chapter 4. Initially this chapter presents a

description of how each test image, t, is decomposed into constituent images,

as introduced in equation 4.5. That is, each test image is expressed as a linear

combination of eigenimages plus a null space image. This chapter aims to provide

both a visual interpretation and parameters for classification of both the column

space image and the null space image, i.e. the portion of the test image described

by the training set and the portion not described by the training set.

The work on visual interpretation of component images is motivated by ear-

lier work on faces which noted that the first few eigenfaces tend to represent

information such as lighting conditions and facial pose [147]. Other authors have

shown that using knowledge of the visual interpretation of components allows

adjustment of the relative importance of each component to improve classifica-

tion accuracy [37]. The work on visual interpretation in this chapter has been

presented at two image processing conferences [99, 148].

The test images used for this chapter are the test images from the proto-

type system, section 4.5. The set contains 30 known images: 15 normal and 15

abnormal.

7.1 Test images represented as linear combinations

The processing of a test image t involves projecting the image onto a new basis.

Specifically the projection is onto the basis u1 . . .uk, the orthonormal set of

vectors that span the complete image space. For chest radiographs this complete

image space is k = 3 × 106 dimensions. Formally, the projection is expressed as
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the linear combination

t =
k
∑

i=1

wiui. (7.1)

The basis vectors u1 . . .uǫ are the retained principal components (eigenimages)

of the training set, as initially found in the prototype system in section 4.4 and

discussed in detail in chapter 6. The remaining components uǫ+1 . . .uk are not

specifically determined, but span the remainder of the complete image space

not spanned by the principal components. With reference to the Singular Value

Decomposition (SVD) of A, the vectors u1 . . .uǫ span the column space while

uǫ+1 . . .uk span the left null space. As noted previously, for most eigenimaging

problems ǫ ≤ p ≪ k.

In view of the distinction between the column space basis vectors and the left

null space basis vectors, it is convenient to split equation 7.1 into two separate

parts:

t =
ǫ
∑

i=1

wiui +
k
∑

i=ǫ+1

wiui (7.2)

= c + n (7.3)

The first part, c, is the portion of the test image which lies in the column space of

A. This image has the eigenimages, u1 . . .uǫ, as its basis. The second part of the

image, n, lies in the left null space. Its basis vectors u1+ǫ . . .uk are not calculated.

As previously noted, for this thesis the part of a test image in the column space

is referred to as the column space image and the portion in the left null space is

referred to as the null space image. The null space image is always orthogonal

to the column space image since a left null space is always orthogonal to the

corresponding column space [26]. The separation of a test image into a column

space image and a null space image is shown diagrammatically in figure 7.1.

Similar to figure 6.1, image space is again represented by a 3-dimensional space

[a1,a2,a3], with the training set represented as a 2-dimensional elliptical disk with

axes
√

λ1u1 and
√

λ2u2.

The separation of a test image into a column space image and a null space

image allows for separate analysis of both parts. Section 7.3 discusses the in-

formation available from studying the column space image, while section 7.4
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Figure 7.1: Diagram of a test image separated into a column
space image and null space image: The diagram shows a test
image t represented as a part that lies within the column space and
a part that lies within the left null space, that is t = c + n. Similar
to diagram 6.1, the complete image space is 3-dimensional [a1,a2,a3]
while the training set sub-space is 2-dimensional (two principal com-
ponents). The column space image c = w1u1 + w2u2 lies in the plane
of the training set, while the null space image n lies outside and or-
thogonal to training set sub-space. For clarity of the diagram, the
column space image is shown to lie outside the control ellipse, but
this will not necessarily be the case.
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analyses the information available from the null space image. In chapter 8, a

method for using information from both portions of the test image is presented.

7.2 Length of column space and null space images

At this point it is convenient to examine the length of the column space and

null space images. From equation 7.2, any test image can be split into column

and null space images. Since it is known that the column space image must be

orthogonal to the null space image, Pythagoras’ theorem can be used to relate

the length of the images

‖t‖2 = ‖c‖2 + ‖n‖2 (7.4)

By substituting equations 7.2 and 7.3 into equation 7.4, the lengths for the

column space and null space images can established in terms of the weighting

factors w1 . . . wǫ. These lengths are

‖c‖ =

√

√

√

√

ǫ
∑

i=1

w2
i (7.5)

‖n‖ =

√

√

√

√‖t‖2 −
ǫ
∑

i=1

w2
i (7.6)

Using this simple method for calculating the length of the column space and

null space images it is possible to determine if a test image can be well represented

by a basis of eigenimages. The conjecture is that normal images should be

well represented by the training set and therefore have a large column space

component relative to the null space component. This method has been used by

several authors for different applications of eigenimage processing [35,36,73,135].

For the 15 normal images, the ratio of the length of the null space image

compared to the column space image is plotted in figure 7.2. This demonstrates

that for many normal images the null space image is as large as the column space

image. This again confirms that a training set of 77 normal images does not have

enough images to accurately identify many common patterns of normal variance.

This is in keeping with section 6.5 which postulated that the training set should

contain at least 200–300 images.
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Figure 7.2: Ratio of the length of null space and column space
image for the 15 normal test images: Crosses marks the ratio
for each of the 15 normal test images. The dotted line is the average
over the 15 images. The relatively large null space component for
these normal test images suggests that the training set of 77 normal
images contains too few images. If the training set better represented
these 15 normal test images then the ratio would be smaller.

A plot of the ratio for abnormal images is not presented because it is likely

that both component images will change when pathology is present, hence the

two components are studied separately. Section 7.3 examines how the column

space image changes when pathology is present, while section 7.4 examines how

the null space image changes.

7.3 The column space image

This section discusses the analysis of the portion of a test image that lies within

the column space C. The column space is a sub-space of the complete image

space. It has basis vectors given by the principal components of the training set.

C = {u1, u2, . . . , uǫ} (7.7)

For image compression systems, dimensionality reduction problems, and Turk

and Pentland’s original face recognition system, this is the only portion of the test

image considered [5,6,34,40]. Initially a visual interpretation of the information
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within each image is examined. Then an analysis of the weighting factors and

how they might be used for classification are discussed.

7.3.1 Visual interpretation of column space images

As stated earlier, it has been shown by other authors that some components have

more predictive value than others for representing certain features within a test

image. The aim of this section is to visually investigate the eigenimages, with

the hope of gaining a better understanding of what information they represent.

To visually study the column space images, they were reconstructed from

their principal components, but using a filter that emphasises either low or high

order components. When a signal is decomposed into its eigen-components and

the relative importance of these components adjusted, the technique is referred

to as eigen-domain enhancement. This is a common technique applied to MRI

signals before image reconstruction, although it is less widely used elsewhere in

image processing [149,150].

To produce an image which enhances either the low or high order components

the relative importance of each eigenimage is adjusted by introducing a filter

parameter for each principal component. This is shown in equation 7.8 where

an enhanced column space image, ce, is expressed as a linear combination of

weighting factors wi and eigenimages ui, but each component also has a filter

parameter fi corresponding to the ith eigenimage.

ce =

k
∑

i=1

fi wi ui (7.8)

It is possible to define many types of filters acting in the eigen-domain. For

this study two filters were chosen: “common pass” and “uncommon pass”. These

are analogous to high and low pass Fourier filters.

Common pass filters are defined as those in which low order eigenimages (e.g.

u1 and u2) are weighted more heavily than high order eigenimages (e.g. u76 and

u77). They are referred to as “common pass” because these eigenimages represent

patterns of variance that are common within the training set of normal images.

Similarly, an uncommon pass filter is defined as one with high order eigen-

images weighted more heavily than low order eigenimages. These high order
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Figure 7.3: Filter parameters for enhancing column space im-
ages: The graph shows the chosen filter parameter fi for common
pass (+) and uncommon pass filters (o). Thus enhanced images vi-
sually show which components of a test image are represented by low
order principal components and which parts are represented by high
order principal components

eigenimages represent uncommon patterns of variance within the training set.

For this study a cosine shaped filter was chosen, as graphed in figure 7.3. The

choice of a cosine shaped filter was arbitrary and another shape could easily be

substituted.

All 30 test images were enhanced in this manner. Figure 7.4 shows two exam-

ples from that test set: one normal and one showing right upper lobe pneumonia.

Both images have undergone registration and intensity centring.

Examples of common pass filtered images are given in figure 7.5. As ex-

pected, common pass images tend to look like the original image because they
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Normal image Abnormal image

Figure 7.4: Images to be enhanced in the eigen-domain: The
two images are examples of test images used to demonstrate enhance-
ment in the eigen-domain. The abnormal image is an example of a
right upper lobe pneumonia. Figures 7.5 and 7.6 show the same im-
ages after common pass and uncommon pass filtering.

are weighted towards components that are commonly found within the training

set. Parts of the test image not represented by the training set of normal images

are not visible. In the two example images, the right upper lobe pneumonia is a

pattern of variance not represented within the training set, and hence the pattern

for this pneumonia is not visible.

Two examples of uncommon pass filtered images are shown in figure 7.6.

These images tend to look more noisy as they are constructed from patterns

of variance that are uncommon within the training set. Again the pathological

finding of right upper lobe pneumonia is not clearly visible in the filtered image

because that pattern of variance is not found within the training set.

In summary, while the common and uncommon pass images contain different

information, neither is good at showing pathology. This is thought to be because

pathological features are not contained within the training set and therefore

cannot be represented by the eigenimage basis.
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Normal image Abnormal image

Figure 7.5: Images after common pass filtering: The two images
are the radiographs from figure 7.4 after processing by the common
pass filter. Note how the right upper lobe pneumonia, which should
be present in the abnormal image, is barely visible.

7.3.2 Classification using the column space image

The aim of this section is to improve on the Euclidean length metric that was

used for classification in the prototype system. The hope is that a better metric

may be obtained by comparing the location of a test image to the multivariate

confidence interval, the control ellipse, introduced in chapter 2. For ǫ > 2 the

hyper-dimensional analogue is a control ellipsoid.

Although section 7.3.1 showed the column space image does represent pathol-

ogy well, it is known that a difference in the column space between normal and

abnormal images does exist. In the prototype system, described in chapter 4, this

was demonstrated by the finding that classification was successfully performed

using the Euclidean length of weighting factors alone (figures 4.6 and 4.7).

Equation 7.2 and 7.3 express the column space image in terms of the weighting

factors and the eigenimages

c =
ǫ
∑

i=1

wiui. (7.9)
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Normal image Abnormal image

Figure 7.6: Images after uncommon pass filtering: The two
images are the radiographs from figure 7.4 after processing by the un-
common pass filter. Again, note how the right upper lobe pneumonia,
which should be present in the abnormal image, is barely visible.

As discussed, the column space image lies within C, an ǫ-dimensional space de-

fined by the basis vectors of the eigenimages. In addition, section 6.4 demon-

strates that the variance along each principal component is of limited magnitude,

given by the associated characteristic root, λi. In both figures 2.3 and 6.1, the

amount of variance associated with each characteristic root is represented by the

control ellipse.

To construct the multi-dimensional confidence interval (the control ellipsoid),

first note that any point g in the column space can be expressed in terms of the

eigenimage basis

g =
ǫ
∑

i=1

giui. (7.10)

To ensure that g lies on the surface of an ellipsoid, gi is constrained by

ǫ
∑

i=1

g2
i

(√

T 2
ǫ,p,αλi

)2 = 1 (7.11)
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Figure 7.7: Diagram of a control ellipse: The ellipse is the disc
in figure 7.1. In ǫ dimensions, where ǫ > 2, the ellipse’s analogue is
an ellipsoid. In the diagram the axes u1 and u2 are the two principal
components. c is the column space image, which can be represented
as c = w1u1 + w2u2. The point where the vector c intersects the
ellipse is g = g1u1 + g2u2.

where
√

T 2
ǫ,p,αλi is the radius of the ellipsoid along each eigenimage and T 2

ǫ,p,α is

Hotelling’s T 2 distribution, introduced in section 2.6.

The parameters of T 2
ǫ,p,α may be chosen as: α = 0.95 (95% control ellipsoid),

p = 77 (number of observations), ǫ = 57 (independent patterns of variance, i.e.

retained components). For the data presented here, the mean and co-variance

matrices have been found by sampling and may contain outliers. Hence the β-

distribution is used to calculate T 2 (see equation 2.57). Choosing to retain all

ǫ = 77 components is not possible because the β-distribution from which the T 2

distribution is derived is not defined for ǫ = p.

Figure 7.7 shows a two-dimensional representation of the sub-space formed

by the principal components of the training set. The column space image c is

shown in relation to the control ellipse. The point g is where the vector of the

column space image intersects the control ellipse. Formally, the vector from the

origin to g and the vector from the origin to c are co-linear. Specifically this is

rα g = c, (7.12)

where rα is a scalar quantity relating the column space image to control ellipse of

width α. If rα ≤ 1 then the column space image is either on or inside the control

ellipse. However, if rα > 1 then the column space image is outside the control
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ellipse. Thus, the scalar rα provides a natural measure for determining whether

the weighting factors of a test image fall within the expected normal range, as

determined by the characteristic roots.

Substituting equations 7.9 and 7.10 into equation 7.12 gives

ǫ
∑

i=1

rα gi ui =
ǫ
∑

i=1

wi ui. (7.13)

Since the ui are orthonormal, the corresponding terms on both sides of equa-

tion 7.13 can be equated yielding

rα gi = wi for i = 1 . . . ǫ, (7.14)

which is consistent with the geometry in figure 7.7. Substituting gi = wi/rα into

equation 7.11 gives

rα =
1

Tǫ,p,α

√

√

√

√

ǫ
∑

i=1

w2
i

λi
. (7.15)

This new control ellipsoid metric can be compared to the Euclidean distance

metric used for the prototype system (equation 4.7). Both metrics have a very

similar form, except that the control ellipsoid metric scales the weighting factors

wi by the variance along each component λi.

The control ellipsoid metric should also be compared to the Mahalanobis

distance introduced in section 2.5. It can be seen that the control ellipsoid metric

is the Mahalanobis distance of the column space image from the average image,

but scaled by T 2. That is, rα is the Mahalanobis distance from the column space

image to the average, relative to the expected distribution

rα =
DM(c)

T 2
ǫ,p,α

. (7.16)

Using the characteristic roots from the prototype system, the control ellipsoid

metric r0.95 was calculated for both the 15 normal and 15 abnormal test images.

Cumulative probability distributions for both the normal and abnormal images

are plotted in figure 7.8. Studying the distributions it can be seen that both

the normal and abnormal images have column space images which tend to lie
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Figure 7.8: Control ellipsoid metric: Plot of the cumulative prob-
ability distribution for r0.95. The metric is based on the relative dis-
tance of each column space image to the 95% control ellipsoid.

within the 95% control ellipsoid, although normal images tend to be closer to

the average image. That is, r0.95 tends to be smaller for normal images than

abnormal images.

If the cumulative probability distributions of the control ellipsoid metric and

the Euclidean length metric (cf. figure 4.6) are compared, it can be seen that

for the control ellipsoid metric the distributions are more separated than for the

Euclidean length metric. This suggests that the control ellipsoid metric is likely

to be better for classification than the Euclidean length metric. One method for

comparing the predictive value for both metrics is to compare the ROC curves.

Figure 7.9 plots ROC curves using both metrics. It confirms that the ellipsoid
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metric is a better classification metric for the column space image.

The area under a ROC curve (AUC) measures a test’s discrimination [85,86].

A test’s discriminatory power is the probability that, if a normal and an abnormal

test image are chosen, the image with the most abnormal metric will be correctly

classified as an abnormal image. Using the example in figure 7.9, if both a

normal and abnormal test image have their Euclidean length metrics calculated,

there is a 0.67 probability that the abnormal test image would have the largest

Euclidean metric. While discriminatory power is important in determining the

clinical utility of a test, the shape of the ROC curve is also often very important

because the clinical requirements could be for high specificity or high sensitivity,

rather than simply high overall discriminatory power.

For the tests in figure 7.9, the AUC for the Euclidean distance metric was

0.67, while the AUC for the control ellipsoid metric was 0.79, suggesting that the

control ellipsoid metric produces a test with better discriminatory power.

In summary, while the column space image does not contain all the informa-

tion regarding pathology, it is possible to use the weighting factors for classifi-

cation. The location relative to a control ellipsoid produces a metric which is of

more predictive value than the Euclidean length metric used for the prototype

system. This result is consistent with the finding by several previous authors

that Mahalanobis distance can produce better classification than the Euclidean

distance for face recognition systems [55, 56, 151].

7.4 The null space image

This section studies the null space image n. This is the part of a test image that

lies within the left null space N and is therefore not described by the retained

set of ǫ eigenimages. The left null space is given by,

N = {uǫ+1, uǫ+2, . . . , uk}, (7.17)

although for the processing performed in this thesis these basis vectors are not

explicitly calculated.

Study of the null space is described in Jackson’s text on Principal Components

Analysis (PCA) where it is referred to as “residual analysis” [25]. With respect
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Figure 7.9: Receiver operating characteristic curve for con-
trol ellipsoid metric: The ROC curve for classification using the
control ellipsoid metric and Euclidean length are plotted together for
comparison. The control ellipsoid metric produces a curve that is sig-
nificantly further towards the upper left region of the graph, thus it
provides better sensitivity and specificity than the Euclidean length
metric. Both ROC curves here are produced using ǫ = 57, whereas for
the prototype system all ǫ = 77 principal components were retained.
The AUC values are 0.67 for the Euclidean metric and 0.79 for the
ellipsoid metric.
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to eigenimage processing, Vaswani and Chellapa published an article in 2006 on

null space analysis for image and video classification systems [152].

Null space analysis is infrequently used within eigenimage processing because

if a test image is close to the training set, then most of the test image is rep-

resented by the eigenimages, i.e. the null space image is small. For the face

recognition system described by Turk and Pentland, all new faces should be

well described by the training set, hence the null space is unlikely to be useful.

However, for the prototype system described in chapter 4, the training set only

includes normal radiographs. Hence for a test image containing pathology or a

rare normal variation the null space image may be large. This makes null space

analysis worthwhile for processing of radiological images.

To calculate the null space image, each test image has its column space image

removed, thus

n = t −
ǫ
∑

i=1

wiui. (7.18)

The calculation is performed in this way because the basis vectors for the null

space are not found during the PCA process. For the data presented in this

section, the eigenimages are those from the prototype system. The effective rank

was chosen to be ǫ = 57 so that the eigenimages span 95% of the total variance.

7.4.1 Visual interpretation of null space images

Once again the technique of visual interpretation has been used to assess null

space images, in order to gain insight into features that may be present. Null

space images are displayed using absolute pixel values. That is, the brightness of

a pixel is proportional to the absolute (unsigned) value of the pixel. The images

are displayed as absolute images because this illustrates how far the test image is

away from the sub-space defined by the normal training set, for each dimension

in the image space (i.e. each pixel). Two examples of null space images are given

in figure 7.10.

It is also possible to show null space images on a grey scale from black (min-

imum) to white (maximum). For those pixels where the null space component

is zero, the pixel is displayed as grey. Pixels where the null space component

is negative are displayed as darker shades, while pixels where the remainder is
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Normal image Abnormal image

Figure 7.10: Null space images: The images are displayed with
intensity equal to the absolute value. The two images correspond to
those from 7.4. The normal test image produces an null space image
that is generally of low intensity. The abnormal test image produces
a null space image where there is a clearly noticeable area of higher
intensity corresponding to the right upper lobe pneumonia. Note that
both images are displayed using the same intensity scale.

positive are displayed as lighter shades. Example of these grey scale images are

in figure 7.11, although the author tends to find the absolute images are more

visually striking.

The null space images in figures 7.10 and 7.11 demonstrate that the null

space image derived from a normal test image is of low intensity. This is expected

because normal test images should be well represented by the basis of eigenimages

derived from the normal training set. For the abnormal test image, the null

space image has a region of high intensity where the right upper lobe pneumonia

is located. This is expected because the right upper lobe pneumonia is unlikely

to be a pattern of variance found in the normal training set, hence there are no

eigenimages present which are able to represent the pattern.
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Normal image Abnormal image

Figure 7.11: Null space images displayed using grey scale: The
two null space images from figure 7.10 are displayed using a grey scale,
rather than the absolute value.

7.4.2 Classification based on the null space

Having established that the null space image is likely to contain at least some

patterns representing pathology, it should be possible to perform classification

based on the null space image alone. However, there are few precedents within

image processing to determine which metric should be used for this classification

process. Using the geometry depicted in figure 7.1 a reasonable metric to use for

null space image classification is the length of the null space image.

Within the framework of PCA, the term residual analysis has been applied

to the study of null space information. Residual analysis is performed using the

Q-statistic or Q-metric which was introduced in 1957 to complement the use of

control ellipses [25,153] by analysing the variance not explained by the principal

components.

It transpires that the square of the Euclidean length of a null space image is
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identical to the Q-metric.

Q(n) =
k
∑

i=1

n2
i (7.19)

= nTn (7.20)

= DE(n)2 (7.21)

where ni is the intensity of the ith pixel. Thus there are two reasons to consider

equation 7.19 a good metric for comparing null space images.

Within image processing this metric is sometimes known as “image energy”.

The visual correlate of the Q-metric is image brightness. That is, for the absolute

null space images shown in figure 7.10, images with a large Q have more bright

pixels.

In PCA’s residual analysis, estimates of the distribution of Q are based on all

characteristic roots being calculated, but without all principal components being

retained. The characteristic roots from the non-retained components are used to

determine the maximum expected Q. That is, λǫ+1 . . . λk are used to determine

a maximum expected value.

Unfortunately, for eigenimage processing, while roots λǫ+1 . . . λp are found,

roots λp+1 . . . λk are not. This is because the sample co-variance matrix is made

from fewer observations than there are variables (p ≪ k). Thus, the methods for

estimating a maximum expected value for Q cannot be used.

Despite not being able to estimate a maximum expected value for Q, there

is still a good reason to choose it as a metric for performing image classification.

Fortunately, it is possible to measure Q for both sets of normal and abnormal

images, thus estimating Q’s distribution. Figure 7.12 shows an analysis of null

space image brightness Q for the 15 normal and 15 abnormal test images. The

plot confirms that abnormal images tend to be brighter than normal images, i.e.

abnormal images tend to have larger Q value.

Using the Q-metric it is possible to classify images as normal or abnormal.

This is performed in a similar manner to the classification based on column space

metrics. A ROC curve for this classification is shown in figure 7.13. The ROC

curve lies above and to the left of the diagonal line representing no predictive

value, and it has an AUC of 0.74. These confirm that classification based on the
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Figure 7.12: Null space image brightness: Plot of the cumulative
probability distributions of Q for normal and abnormal test images.
The plot demonstrates that abnormal images tend to be brighter than
normal images.

Q-metric does have predictive value.

7.5 Test image analysis with a mixed training set

In section 6.3.4 an experiment is described which aimed to demonstrate how

adding pathological images to the training set alters the eigenimages and charac-

teristic roots. That section concludes that such a training set would need to be

very large and should include a wide range of pathologies. Section 6.7 discussed

how such a training set might be constructed by adding smaller sets together.
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Figure 7.13: Receiver operating characteristic curve for classi-
fication using the null space image: Using the Q-metric classifica-
tion is performed to assign test images as either normal or abnormal.
The AUC for this test is 0.74.

Unfortunately, gathering enough images and developing appropriate routines to

do this is beyond the scope of this thesis. Despite being limited to training sets

containing only normal images, it is still worth considering how the analysis of

test images might be affected by a training set that contained a mix of normal

and pathological images.

If the training set were to include a wide range of pathologies, the column

space of A would contain patterns that represent pathology. Thus, in addition to

eigenimages that represent normal findings, there would be eigenimages which

represent patterns of pathology. The centre of the training set cluster would
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not be “the average normal image”, but rather it would simply be “the average

image”.

The classification scheme would need to identify the regions in eigenspace

that correlate to certain pathologies. It is not known if pathologies would cluster

in eigenspace, but there is reason to predict that similar pathologies could be

very spread out. For example, left lung pneumonia is unlikely to be close in

eigenspace to right lung pneumonia. The problem gets worse for diseases such

as lung cancer, which can occur anywhere within the lung. As mentioned in the

introduction to eigenimage processing, section 1.5, one method of coping with

this is to define separate sub-spaces for each class (i.e. pathology) to be identified

and then determine which sub-space a test image is closest to [45, 57, 58].

Understanding the effect on the null space image is simpler than understand-

ing the effect on the column space image. With a mixed training set the eigen-

images would be able to better represent pathology, hence there would be less

information contained in the null space image. Studying the size of the null

space could be used to determine if the training set contained enough forms of

pathology.

In summary, if pathological images were to be mixed into the training set,

the classification systems developed in this chapter would need to be altered.

A good starting point for this would be to measure the distance between the

cluster of normal images and a cluster associated with each class of pathology.

De Maesschalck describes a method for this using Mahalanobis distance [69].

7.6 Conclusion

Both the column space and null space images contain information that has pre-

dictive value for classification. Therefore, an ideal system for classification or

enhancement of chest radiographs would incorporate information provided by

both the column space image and null space image.

It is known that the column space does contain information useful for clas-

sification, because weighting factors tend to be larger for abnormal images than

normal images. That is, abnormal column space images tend to be further from

the centre of the cluster of normal images found using PCA. A good metric for

measuring this distance from the centre of the normal cluster is Mahalanobis
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distance, which is a good metric because it takes into account the variance asso-

ciated with each principal component.

Visual demonstrations show that pathology is more likely to appear in the

null space image than the column space image. This is thought to be because

abnormal patterns cannot be well represented by basis eigenimages formed from

a normal training set. Viewing null space images is helpful because pathology

is often demonstrated. Classification based on the null space image can be per-

formed using the Q-metric which visually correlates to image brightness.

Previous experiments to determine effective rank were inconclusive (section 6.3).

They suggested ǫ could range from 14 to 57 and thus there remains uncertainty

as to the effective rank that would provide maximum predictive value. While

the choice of effective rank could be optimised separately for the column space

and null space classification system presented in this chapter, it will be optimised

following implementation of a complete system that combines the column space

and null space information.

Chapter 6 concluded that a training set of 77 normal images was likely to

be too small. When studying the relative lengths of the null space and column

space images, it was seen that for normal test images the null space image is

large proportion of the image. Again, this confirms that the training set is too

small to accurately represent the large number of ways in which normal chest

radiographs may vary.

7.7 Summary

1. The column space images contain patterns of variance found within the

training set.

2. Weighting factors associated with each eigenimage tend to be larger for

abnormal test images compared to those for normal test images.

3. To improve classification, the importance of each weighting factor should

be adjusted relative to the control ellipsoid of the normal training set, by

using Mahalanobis distance.
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4. The null space image shows patterns of variance not found within the train-

ing set.

5. The length (or brightness) of the null space image, the Q-metric, can be

used to predict whether a test image contains pathology.

6. Comparing the lengths of the null space and column space image for normal

test images suggests that the training set is too small. This is in keeping

with findings from chapter 6.

7. The column space and null space images both contain diagnostic informa-

tion. An ideal classification or enhancement routine should incorporate

information from both images.

8. Following design of a system that incorporates both column space and null

space information, the effective rank needs to be optimised to maximise

discrimination.
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Chapter VIII

The remainder image

This chapter develops and investigates a new derived image, referred to as

the “remainder image”, r. The remainder image is formed from a test image

by subtracting the component of the test image which falls within a control

ellipsoid that circumscribes the cluster of normal training images. This is a

novel technique developed for this thesis.

The decision to derive the remainder image is based on the work on null

space analysis presented in section 7.4. That work concluded that when using a

training set of normal images, a good method for classification is to study the

“part of an image not represented by the training set”. In that section, the part

not represented by the training set was interpreted to be solely the null space

image. However, considering the null space image alone is too simplistic because

for a pathological test image the column space image is likely to be further from

the centre of the control ellipsoid than is the case for normal images. Thus there

are two ways in which a test image can be “not represented by the training

set”: in its column space component, and in its left null space component. The

remainder image attempts to take into account information from both the column

space and null space images.

This chapter introduces the remainder image both diagrammatically and

mathematically. Following this, a classification routine is presented, based on

the Q-metric introduced for null space classification schemes.

For any control ellipsoid used to circumscribe a cluster of normal training

images there are two parameters, α and ǫ, which adjust the span of the ellipsoid.

These parameters adjust the dimensionality (effective rank) and width (propor-

tion of the cluster spread to be spanned) of the control ellipsoid. Section 8.3.2

optimises these two parameters to provide a maximum predictive value for the

classification routine.
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Finally the chapter visually presents selected test images and their associated

remainder images. These images demonstrate that the remainder image can be

used as a form of image enhancement as well as in classification routines.

8.1 Definition of the remainder image

The remainder image is defined as the component of any test image that lies

outside the control ellipsoid. Two separate situations occur:

The column space image is inside the control ellipsoid (rα ≤ 1): In

this situation the only part of the test image not represented by the cluster

of normal training images is the portion orthogonal to the plane of the

control ellipsoid (i.e. the null space image). This is represented in the left

diagram of figure 8.1.

The column space image is outside the control ellipsoid (rα > 1):

In this situation the test image is outside the cluster of normal images in

two separate respects. Firstly it has a part that lies orthogonal to the plane

of the control ellipsoid (i.e. the null space image). Secondly its location on

the plane of the control ellipsoid is further from the average image than

expected. In this situation, the remainder image is the vector from the

closest point on edge of the control ellipsoid to the test image. This is

represented in the right diagram of figure 8.1.

This definition ensures that the remainder image contains all the information

about the component of a test image outside the control ellipsoid. Specifically it

includes information from both the column space component and the null space

component.

The two situations are represented mathematically by

r =

{

t − c for rα ≤ 1,

t − g for rα > 1.
(8.1)

Both rα and g were introduced in section 7.3.2.
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Figure 8.1: Diagrams of remainder images: These diagrams il-
lustrate the two possible cases for the remainder image r. In the
left diagram the column space image lies inside the control ellipsoid
(rα ≤ 1). In this situation, the remainder image is the part of the test
image that is orthogonal to the plane of the control ellipsoid. In the
right diagram the column space image is outside the control ellipsoid
(rα > 1). In this situation the remainder image is the vector between
the edge of the control ellipsoid at location g and the test image. As
in previous diagrams, the control ellipsoid is here represented as a two
dimensional ellipse on the plane defined by the basis vectors for the
column space C; u1 and u2. The left null space N is represented as
a single dimension orthogonal to the plane of the column space. For
eigenimage processing the dimensionality of the null space is k − ǫ,
with basis vectors uǫ+1 . . .uk.

8.2 Calculating the remainder image

For simplicity, the method for calculating the remainder image will initially be

separated into the two situations described in section 8.1. First presented will

be the case where the column space image is within the control ellipsoid. Next

will be the case of the column space image being outside the control ellipsoid.

Finally the two expressions for the remainder image are combined to give a single

simpler representation.

The control ellipsoid metric rα is used to decide whether the column space

image c lies within the control ellipsoid. The position of the column space image
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relative to the edge of the control ellipsoid is given by rα. It was developed in

section 7.3.2, and expressed in equation 7.15.

If c lies within or on the control ellipsoid, the remainder image is the test

image minus the entire column space image.

r = t − c for rα ≤ 1 (8.2)

= t −
ǫ
∑

i=1

wiui. (8.3)

This is identical to the null space image from section 7.4.

If the column space image lies outside the control ellipsoid, the remainder

image is the test image minus the nearest approximation to the test image which

lies inside the control ellipsoid. If g is the point at which the vector from the

origin to c intersects with the control ellipsoid (section 7.3.2), the remainder

image is given by

r = t − g for rα > 1 (8.4)

= t −
ǫ
∑

i=1

giui (8.5)

where gi is found from gi = wi/rα (as per equation 7.14). This leads to

r = t − 1

rα

ǫ
∑

i=1

wiui. (8.6)

Thus, the remainder image can be calculated for the two situations in fig-

ure 8.1

r =

{

t −
∑ǫ

i=1 wiui for rα ≤ 1

t − 1
rα

∑ǫ
i=1 wiui for rα > 1

. (8.7)

This can be simplified into a single expression

r = t − 1

r′α

ǫ
∑

i=1

wiui

{

r′α = 1 for rα ≤ 1

r′α = rα for rα > 1.
(8.8)
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8.3 Classification using the length of the remainder image

If the remainder image contains information regarding how “far from normal” a

test image is, then it should be possible to use the remainder image for classi-

fication. It is possible that the remainder image is better for classification than

either the null space or column space images alone, as it contains information

from both.

8.3.1 The Q-metric for remainder images

In order to perform classification, a metric must be developed to allow compar-

ison of two remainder images. The most obvious metric to use is the Q-metric

introduced in section 7.4.2. This is the square of the length of r:

Qr = rT r = ‖r‖2 (8.9)

The larger Qr is, the “further away” a test image is from the cluster of normal

images.

Interestingly, Qr can be calculated in two ways: either by finding r, or by

using several derived variables. The second method is useful because in some

situations it may be computationally faster than calculating r. To develop this

faster technique, consider an expansion of Qr,

Qr = ‖r‖2 (8.10)

=

∥

∥

∥

∥

∥

t − 1

r′α

ǫ
∑

i=1

wiui

∥

∥

∥

∥

∥

2

(8.11)

= ‖t‖2 + 2

〈

t,
−1

r′α

ǫ
∑

i=1

wiui

〉

+

∥

∥

∥

∥

∥

−1

r′α

ǫ
∑

i=1

wiui

∥

∥

∥

∥

∥

2

. (8.12)

To simplify the second term, note from equation 4.6 that < t,ui >= wi. To

simplify the third term, note from equation 4.8 that ui are orthonormal. Qr
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therefore simplifies to

Qr = ‖t‖2 +
−2

r′α

ǫ
∑

i=1

w2
i +

1

(r′α)2

ǫ
∑

i=1

w2
i (8.13)

= ‖t‖2 −
(

2

r′α
− 1

(r′α)2

) ǫ
∑

i=1

w2
i

{

r′α = 1 for rα ≤ 1

r′α = rα for rα > 1.
(8.14)

To understand this result, again consider Qr for the two situations, when c

is either inside or outside the control ellipsoid.

Firstly, for the case when c is inside the control ellipsoid, r′α = 1, which leads

to

Qr = ‖t‖2 −
ǫ
∑

i=1

w2
i for rα ≤ 1. (8.15)

This result is expected because when rα ≤ 1, the remainder image is exactly

the null space image. Therefore, Qr is the square of the length of the null space

image, which was given in equation 7.6.

Next consider the case when c is outside the control ellipsoid, i.e.

r′α = rα > 1. (8.16)

For this situation the expression enclosed in brackets in equation 8.14 is con-

strained to

0 <

(

2

rα

− 1

(rα)2

)

≤ 1. (8.17)

Thus, the length of the remainder image will be longer than the null space image,

but shorter than the test image itself. This is in keeping with the geometry

illustrated in the right hand diagram of figure 8.1.

8.3.2 Optimisation of ǫ and α

The Q-metric expressed in equation 8.14 has two variables that can be optimised:

ǫ, the effective rank of the normal training set, and α, the width of the control

ellipsoid. Hence, Qr depends on both the choice of effective rank and the choice

of the width of the control ellipsoid.

Appropriate choices for the effective rank of the cluster of normal training

images was investigated in section 6.3, but a range of possible values remained.
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The full range ǫ can be from 1 to p, although the Guttman-Kaiser criterion

suggests that only 14–19 eigenimages are statistically significant from the training

set of 77 normal radiographs (section 6.3.3). It is hoped the optimum value of

ǫ might be in this range because this would confirm that the Guttman-Kaiser

criterion is useful in determining the number of eigenimages to retain.

The Q-metric also depends on the width of the control ellipsoid, which is

determined by α. The graph in figure 7.8 shows the location of column space

images relative to an α = 0.95 control ellipsoid. It is unknown what width of the

control ellipsoid maximises the predictive value of Qr. Noting that the abnormal

images tend to be further from the centre of eigenspace, it seems likely that the

most predictive width will be when normal images tend to be within the control

ellipsoid but abnormal images tend to be outside. The range of possible values

for control ellipsoid width is 0 < α < 1. If α = 0, then the control ellipsoid is

of zero width and rα is undefined. If α = 1, then the control ellipsoid needs to

span all possible normal images and is therefore of infinite width.

To optimise the values of α and ǫ, the Q-metric of each test image was calcu-

lated for a range of values of α and ǫ. This was able to be performed reasonably

quickly, since the limiting steps when calculating Qr using equation 8.14 are find-

ing ‖t‖ and wi . . . wp. These variables do not depend on α or ǫ and so only need

to be calculated once per test image, rather than for every combination of α and

ǫ.

For the two experiments (presented in sections 8.3.3 and 8.3.4), α ranged

from 0.01 to 0.99, with increments of 0.01, while ǫ ranged from 1 to 77. To

compare the success rates of classification using different combinations of α and

ǫ, the area under their ROC curves (AUC) was compared.

The use of AUC for comparing classification success was discussed in sec-

tion 7.3.2. It is worth remembering that area under a ROC curve is only one

way to estimate classification accuracy. For some clinical situations it may be

preferable to maximise sensitivity, specificity, or another indicator of classifica-

tion accuracy. For example, with a junior clinician working in the emergency

department it would be sensible to maximise sensitivity, rather than AUC. This

would to ensure that the clinician does not miss an abnormality on the radiograph

and inadvertently send the patient home.

It should also be remembered that neither the small nor large test set is
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composed of random images. Rather, the sets contain selected images to allow

development of eigenimage processing. Ideally α and ǫ would be optimised using

a very large set of random images.

In summary, classification was performed for a range of values of α and ǫ.

The values which maximise AUC are the optimum effective rank and width of

the control ellipsoid.

8.3.3 Small test set: 15 abnormal images

In this experiment, Qr was calculated for the 15 normal and 15 abnormal test

images using a range of values of α and ǫ. The test sets were those used in

chapter 7, allowing direct comparison with the previous classification systems

that used either the column space image or null space images alone.

Figure 8.2 shows a contour plot displaying the AUC as a function of both

α and ǫ. It demonstrates that the maximum AUC is 0.800, which occurs when

α = 0.05 and ǫ = 15. This is better than the AUCs for either the null space

classification or column space classification systems, which had AUCs of 0.79 and

0.74 respectively. It is also worth noting that there is a “low ridge” where the

AUCs are nearly identical. This ridge extends from the bottom near ǫ = 10 on

the graph.

8.3.4 Large test set: 74 abnormal images

The same process for optimising α and ǫ was then applied to the larger test

set containing 15 normal images and 74 abnormal images. This test set was

introduced in chapter 5 for studying the effect of registration. The contour plot

from this experiment is shown in figure 8.3. The optimum values were similar

to those of the small test set, α = 0.17 and ǫ = 8, producing a maximum AUC

of 0.833. Again, there is a low ridge in the AUC along α = 0.25 and ǫ = 8 to

α = 0.01 and ǫ = 15. Hence the results are in keeping with the results from the

small test set.

The maximum AUC is higher than that from the smaller test set, implying

that the test images used for the larger set are easier to differentiate from the

normal images than those in the small test set. This finding, coupled with the

maximum AUC occurring along a low ridge, suggests that optimisation should
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Figure 8.2: Optimisation of α and ǫ, small test set: This con-
tour plot shows the relative values of AUC as a function of α and ǫ.
Darker areas represent higher values of AUC. The asterix marks the
maximum value of AUC, 0.800, which occurs at α = 0.05 and ǫ = 15.

be performed with a very large test set containing random images.

8.3.5 Optimum effective rank

The optimum predictive value of the remainder image is when the effective rank

is chosen to be in the range ǫ = 8 to ǫ = 15. Increasing the ǫ above this range

decreases the predictive value of the remainder image. This finding is consistent

with the Guttman-Kaiser criterion, which suggested that only 14–19 eigenimages

are statistically significant. Again, it would be useful to have a much larger test

set than is available for this thesis to more accurately identify the optimum

effective rank.
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Figure 8.3: Optimisation of α and ǫ, large test set: This contour
plot shows the relative values of AUC as a function of α and ǫ. The
asterix marks the maximum value of AUC, 0.817, which occurs at
α = 0.02 and ǫ = 14. There is a low ridge of high AUC values lying
in the region of α = 0.25, ǫ = 8 to α = 0.01, ǫ = 15. The maximum
value lies off this ridge due to small variations in the surface. A
more sophisticated approach would be to smooth the surface before
choosing the maximum value of AUC.
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The Guttman-Kaiser criterion attempts to determine which eigenimages to

retain by testing for statistical significance. It assumes that non-statistically

significant eigenimages do not provide a good basis for representation of the

variance within the normal set.

8.3.6 Optimum ellipsoid width

The optimisation of α ≈ 0.10 means that the control ellipsoid spans about 10% of

the expected range of normal column space images. Readers should note that α

is an indirect measure of control ellipsoid width. Specifically, it is the proportion

of normal images spanned by the control ellipsoid. Figure 7.8 shows that column

space images closest to the centre are about half way between the centre and the

edge of the 95% control ellipsoid. This implies that for α = 0.02, the width of

the control ellipsoid is around one third that of an α = 0.95 control ellipsoid.

To understand the results of optimising α, cumulative probability distribu-

tions were plotted for the location of the column space images relative to the

optimum control ellipsoid (α = 0.17 and ǫ = 8). These distributions are shown

in figure 8.4 and demonstrate that for the more normal images (i.e. small values

of rα), r0.17 is approximately one or less, implying that the entire column space

image is removed from the test image. For the more abnormal images (i.e., large

values of rα) r0.17 is in the range of 1.5 to 3. Thus, for these more abnormal

images approximately 30–60% of the column space image is removed from the

test image.

Figure 8.4 demonstrates that the control ellipsoid is at optimum width when

most normal, and all pathological images lie outside it. Thus the conjecture is:

the optimum width of the control ellipsoid is when as much of the column space

image is removed as possible, while ensuring that the portion of the column space

image not removed can discriminate between normal and abnormal.

8.3.7 Classification at optimum ǫ and α

Having found values for the ǫ and α that maximise AUC, it is interesting to return

to the Qr values that produced this AUC. The distributions of the Qr metric for

normal and abnormal images are shown in figure 8.5. The distributions are more

separated than the Q-metric distributions in the last chapter which used the null
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Figure 8.4: Location of image on the optimum control ellip-
soid: In this plot the edge of the control ellipsoid is at r0.17 = 1. This
corresponds to the g in figure 8.1.

space images alone, figure 7.12.

Using the Q-metric at α = 0.17 and ǫ = 8 it is possible to produce a ROC

curve. Specifically, this is the ROC curve with the maximum AUC, and is shown

in figure 8.6. It is a better ROC curve than those from the column space and

null space classification schemes, figures 7.9 and 7.13 respectively.

8.4 Scattergram of test images

The location of the test image along the axis representing the ith eigenimage

is given by wi. In addition, the length of the null space component can be

established from equation 7.6. Thus it is possible to produce scattergrams of
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Figure 8.5: Values of the Q-metric at optimum ǫ and α: Using
α = 0.17 and ǫ = 8 the cumulative probability distributions of Qr are
plotted for the test set containing 15 normal and 74 abnormal images.

real data, presented in the form used in figure 8.1. A scattergram for the 15

normal chest radiographs is presented in figure 8.7. The optimum control ellipsoid

(α = 0.17 and ǫ = 8) is shown on the plane formed by the first two eigenimages.

It should be noted that in the plane of the first two eigenimages, most column

space images lie within the control ellipsoid even though the graph in figure 8.4

demonstrates that for maximum predictability most column space images lie

outside the control ellipsoid. The explanation for this is that for a column space

image to lie outside the control ellipsoid, it only needs to be outside it in one of

the ǫ = 8 dimensions.
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Figure 8.6: Optimum Receiver Operating Characteristic curve
for classification using the remainder image: Using α = 0.17
and ǫ = 8, image classification was performed to assign test images
as either normal or abnormal. These values of α and ǫ produce the
optimum ROC curve, with an AUC of 0.837.
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Figure 8.7: 3D scattergram of normal images: This scattergram
mimics the diagram in figure 8.1. Each dot represents one test image.
The x-y plane is the first two dimensions of the ǫ = 8 dimensional
control ellipsoid. The width of the ellipse plotted on this plane is the
ellipsoid with the most predictive value, i.e. α = 0.17. The z-axis
plots the length of the null space image. The null space is a very
high dimensional space, with basis uǫ+1 . . .uk, and is therefore very
difficult to represent in a diagram. There is one outlier, and this is
discussed in the text.
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8.5 Viewing the remainder image: enhancing abnormal features

The remainder image is what is left when patterns from the training set of nor-

mal images are removed. These remainder images can be used as a form of image

enhancement, similar in many ways to other enhancement systems, such as tem-

poral subtraction [12, 14, 15]. In temporal subtraction, the enhanced image is

the difference between a current image and a previous image, making areas of

new pathology more apparent. Similarly, the remainder image demonstrates the

difference between the actual image and what is represented by the training set

of normal images. It is possible that the removal of the “normal” component will

make pathology more apparent to the clinician.

Because the remainder image is a “difference image,” it has been shown as an

absolute image, similar to the null space images of section 7.4.1. Black pixels are

where the pixel intensities in the source image are well explained by the control

ellipsoid formed from the normal training set. Conversely bright (white) pixels

are where the pixel intensities in the source image are not well explained by the

control ellipsoid. For the purpose of this thesis, remainder images shown with

these display parameters will be referred to as enhanced images.

For each test image in the following sections both the original image and the

remainder (enhanced) image are presented. The original image is a radiograph

after registration, but before intensity centring. Specifically, it is the test image

plus the average image: a + E [a].

To allow comparison between images the window and level settings (intensity

range from black to white) are the same for all original and enhanced images.

8.5.1 Normal images

Figure 8.8 shows enhancement of a normal chest radiograph. This is a normal

test image, rather than a normal image from the training set. Although there

is some brightness in the enhanced image, it is generally quite dark. In other

words, most of the patterns found within this normal test image are also found

within the normal training set.

162



Original image Enhanced image

Figure 8.8: Enhancement of a normal test image: A normal
test image shown before and after enhancement. The image on the
left is the image following registration. The image on the right is the
remainder image.

8.5.2 Abnormal images

Figure 8.9 shows an example of right upper lobe pneumonia. In the enhanced

image the area with pneumonia is brighter than the normal areas. This is likely

to be because the area of abnormality in the right upper lobe is not within the

control ellipsoid of the normal training set. The successful enhancement of this

pathology is a pleasing result.

Figure 8.10 demonstrates enhancement of a chest mass, in this case a probable

carcinoma. The area of abnormality is bright on the enhanced image, similar to

the right upper lobe pneumonia. The left upper corner of the enhanced image

(i.e., the patient’s right side) is also very bright, because the chest mass has

affected the shape of the chest cavity. The deformed chest cavity made image

registration difficult for this corner of the image, producing an area not well

represented by the normal training set.

Figure 8.11 demonstrates a chest drain in a pneumothorax. The chest drain

is not well seen in the enhanced image. This is probably because it covers a
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Original image Enhanced image

Figure 8.9: Enhancement of a right upper lobe pneumonia:
The area of abnormality in the source image is very bright in the
enhanced image. It is hoped that this will improve a clinician’s ability
to identify the abnormality.

small area of the image, is not very bright, and mimics normal ribs. The nipple

jewellery is well seen because the metal appears as a very bright structure in the

source image. The pneumothorax enhances strongly despite the low intensity

of its change in the original image. This is likely to be because it is large and

therefore present in many pixels.

8.6 An outlier image

In figure 8.5 it can be seen that there is one test image that has a Q-metric

about 3 times that of any other normal image. In fact this normal image has

a Q-metric greater than any of the truly abnormal images. This results in the

ROC curve in figure 8.6 crossing the diagonal line. This image also shows up as

an outlier on the scattergram in figure 8.7, as well the probability distributions

plotted in figures 7.8, 7.12, 8.4.

The original and enhanced forms of this outlier image are shown in figure 8.12.

It can be seen that the original image is under-exposed, and this has resulted
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Original image Enhanced image

Figure 8.10: Enhancement of a right central chest mass: The
large central chest mass has enhanced well. The left upper corner
of the enhanced image is also bright because of the deformed chest
cavity.

in the image being too bright. This was not appreciated early in the research

because some of the viewing software automatic determination of window and

level values. In particular, automatically determining window and level settings

is Matlab’s default behaviour. When viewing the image with the same window

and level settings as other images (in figure 8.12) the under-exposure that caused

this image to be an outlier becomes more apparent.

The registration system used for this thesis makes no attempt to account for

exposure variations because the radiographer manually performs intensity scaling

to ensure that the radiographs all appear similar using the hospital’s default

window and level values. A review of all the other training images and test

images indicated that no other images were of an incorrect intensity. The most

likely explanation for the outlier is that the radiographer incorrectly adjusted

the image intensity, or forgot to do so. The reporting radiologist is likely to have

simply adjusted the viewing parameters during their reporting process without

mentioning it in their report.

In summary, “normal image 088” is an outlier due to technical reasons as-
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Original image Enhanced image

Figure 8.11: Enhancement of a right pneumothorax with chest
drain in situ: The bright area just above the right hemi-diaphragm
is the sub-pulmonic component of the pneumothorax. It is well seen
on the enhanced image, but less well seen on the original image; thus
enhancement could potentially aid a clinician in spotting the abnor-
mality. The image also contains a chest drain and nipple jewellery.

sociated with image acquisition. In hindsight a more rigorous quality assurance

process for source images may have excluded the image. Possible methods in-

clude both subjective assessment and objective measurements of images [154].

However, it is pleasing that it was readily identified using the remainder image

and Q-metric. In addition, it highlights the need to assess the system with a

large set of random images.

The outlier image was removed from the test set and the optimisation of AUC

performed again, generating the ROC curve shown in figure 8.13. Excluding the

outlier image brings the system’s maximum predictive score (AUC) to 0.897 with

α = 0.13 and ǫ = 8, a very encouraging result.

8.7 Synthetic images

The remainder image combines information from the column space image and

null space image for classification. It is possible to generate images that the clas-
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Original image Enhanced image

Figure 8.12: Enhancement of the outlier image from the nor-
mal training set: The image on the left is the original image. It
is presented here using the same window and level settings that were
used for all the other images. If window and level settings are chosen
to be approximately twice those of other images then the radiograph
appears normal. As discussed in the text, this required change in dis-
play settings is most likely due to failure of the radiographer to man-
ually adjust the brightness. The brightness of the enhanced image
thus reflects that the image is underexposed, rather than containing
pathology.

sification system will consider normal, but are in fact generated using a random

location within the control ellipsoid. These images are referred to as “synthetic”

images. The purpose of producing synthetic images is to establish that since the

control ellipsoid circumscribes normal images, choosing a random point within

the control ellipsoid should visually appear similar to a normal radiograph.

One way to generate a synthetic image which will be classified as normal is

to choose c to lie within the control ellipsoid and then choose n so that it is both

orthogonal to c and of similar length to measured null space images. Choosing c

and n to have these characteristics ensures that Qr is of a similar value to normal

test images.

The method for generating a synthetic normal image z is summarised as:

167



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
en

si
ti

v
it
y

1 - Specificity

Figure 8.13: Optimum Receiver Operating Characteristic
curve for classification when the outlier image is removed:
Using α = 0.13 and ǫ = 8, image classification was performed to as-
sign test images as either normal or abnormal. These values of α and
ǫ produce the optimum ROC curve, with an AUC of 0.897.
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1. Generate a column space image that lies within the control ellipsoid. Store

this as cz.

2. Generate an arbitrary image, say x, to use as a starting point for the null

space image.

3. Use Gram-Schmidt orthogonalisation to make x orthogonal to cz. Store

this as y.

4. Multiply y by a scalar b, so that the length of by is similar to measured

null space images. Store by as the null space component nz .

5. Add the null space and column space components together to form the

synthetic image, z.

Using this technique the column space will always be within the control el-

lipsoid and so the remainder image will be exactly represented by the null space

image. Scaling the null space image ensures that Qr is always of a value that is

considered normal.

8.7.1 Detailed method of producing synthetic normal images

A column space image that lies within the control ellipsoid is generated by adding

together the first ǫ eigenimages, with the associated weighting factors, wi. Specif-

ically,

cz =
ǫ
∑

i=1

wiui (8.18)

where each wi is randomly chosen from a normal distribution with a mean of

zero and a variance of λi.

A k-dimensional vector x with randomly chosen elements is used as the start-

ing point for finding nz. This starting vector is then manipulated using Gram-

Schmidt orthogonalisation to remove all parts of x that are in the same direction

as each eigenimage [26].

y = x −
ǫ
∑

i=1

< x,ui > ui (8.19)
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While y now has the most important property of null space images (it is

orthogonal to the column space image) it may be so long that nz would be

classified as abnormal. Hence, the length of the null space component must

be made similar to that of normal test images. From figure 7.2 it can be seen

that for normal test images the expected ratio of the length of the column space

image to the length of the null space image (‖nz‖
‖cz‖

) is 1.2. Therefore y needs to be

multiplied by a scalar b so that the length of nz is appropriate. More formally,

nz = by (8.20)

where b is found from

b = 1.2
‖cz‖
‖y‖ (8.21)

Finally, the synthetic image is formed by adding its null space and column

space components

z = cz + nz. (8.22)

8.7.2 Viewing synthetic normal images

Figure 8.14 contains a synthetic image and its enhanced version. The display

parameters are the same as those used for all other original and enhanced images

shown in this chapter.

The synthetic image was generated using Gaussian noise as a starting point

for producing the null space image. That is, x was chosen such that each pixel’s

intensity was normally distributed with a mean of zero and variance of one.

Gram-Schmidt orthogonalisation was performed to ensure that y was orthogonal

to the column space, and then scaled to ensure that the relative length of the

column space image and null space images was 1.2. The column space image is

a random point within the control ellipsoid.

The synthetic image in figure 8.14 looks like a normal, but noisy, chest ra-

diograph. The enhanced image is dark with the only features resulting from

the Gaussian noise and orthogonalisation used in the image’s construction. This

result was expected because the synthetic image was generated to be a “normal

image”.

The result is that a synthetic image can be chosen to lie within the control
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Original image Enhanced image

Figure 8.14: Enhancement of a synthetic image: The image on
the left is a synthetic normal image. It has been generated by setting
the column space component to be a random point within the cluster
of normal images, while the null space image uses Gaussian noise as
its initial value. The enhanced image is dark and featureless.

ellipsoid. Such images visually appear similar to a normal radiographs. This

is a helpful result because it adds further weight to the conjecture that normal

images are clustered within the control ellipsoid.

8.8 Conclusion

Previous chapters in this thesis concluded that applying Principal Components

Analysis (PCA) to a training set of normal radiographs allows identification of

a region within image space that represents “normal images”. The eigenimages

are an orthonormal set of basis vectors for this region. The width of this region

is found using the characteristic roots. This region is referred to as the control

ellipsoid. Normal chest radiographs are expected to be clustered in this region.

Once the control ellipsoid has been found it is possible to remove parts of a

test image that lie within this volume. The part not within the volume is referred

to as the remainder image. This remainder image can be used for classification
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schemes using the Q-metric. Alternatively, it can be displayed as an enhanced

image in which areas of abnormality are brighter than normal areas.

For the test set of 15 normal images and 74 abnormal images the maximum

predictive value (area under the ROC curve) was 0.837. This is a good result and

confirms that using the Q-metric of a remainder image is better for classification

than earlier schemes based solely on the null space or column space images.

This was an expected result because the remainder image combines information

regarding the distance of a test image from the normal cluster, both with respect

to the distance from the hyper-plane defined by the principal components and

the in-plane distance from the centre of normal.

An outlier included in the 15 normal test images is thought to result from

failure of manual intensity correction by the radiographer. Excluding the out-

lier image from the test set improves the classification accuracy to nearly 90%.

Although images used in this thesis should have had their intensity manually cor-

rected by the radiographer, it would be possible to add an intensity correction

step to the registration process if required.

Optimisation of the two parameters of Qr, namely ǫ and rα, suggests that

for maximum predictability the dimensionality of the normal cluster is near to

the number of significant principal components found using the Guttman-Kaiser

criterion. The optimal width of the normal cluster occurs when normal images

are just at the edge of the control ellipsoid. This maximises the separation of

normal and abnormal images in the hyper-plane of the control ellipsoid.

8.9 Summary

1. The remainder image is a derived image that can be used for classification

and enhancement schemes.

2. The maximum predictive value achieved was 0.897. This value was de-

termined using the selected sets of normal and abnormal images. The

maximum predictive value for a larger random set of images may be differ-

ent.

3. The optimum effective rank for maximum predictive value is near to the
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Guttman-Kaiser criterion for estimating the number of significant compo-

nents.

4. The optimum width of the normal control ellipsoid for maximum predictive

value is such that as much as possible of the normal variance is represented,

while still ensuring that abnormal images lie outside the control ellipsoid.

5. Depending on the clinical situation, the registration process may need to

include correction for exposure variation between radiographs.
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Chapter IX

Conclusion

Eigenimage processing is a technique that identifies a cluster of images within

a high dimensional image space. This cluster is described by a small number of

orthogonal basis vectors, with each image’s location being a limited distance

along each basis vector. In particular, when using a normal training set, eigen-

image processing identifies a cluster of normal images and allows the concept of

“normal” to be expressed in a particular way:

• The centre of the cluster of normal images is the average chest radiograph.

Variations of normal tend to be close to this.

• There is a limited number of ways in which normal images tend to vary

about the average image. These common patterns of variance are the

eigenimages.

• For each pattern of variance there is a limited magnitude of variation, given

by the characteristic roots, which may still be considered normal.

The development of the remainder image used this description of normal to

subtract normal features from test radiographs. The remainder image can be

used for classification or be presented directly to a clinician as a form of image

enhancement.

9.1 The work in this thesis

Chapters 1, 2, and 3 introduced the radiological problem, background infor-

mation on eigenimage processing, and the mathematical method. Experiments

performed in later chapters implemented and refined a classification and enhance-

ment system suitable for the radiological problem.
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Development of the prototype system, chapter 4, demonstrated that eigen-

image processing can be applied to high resolution chest radiographs. This is

significant because to date very little work has been published on the application

of Principal Components Analysis (PCA) to medical images. Chest radiographs

are a large 2-dimensional medical image, hence the success in building the pro-

totype system suggests that PCA can be applied to other similarly sized medical

images. This conclusion is significant to both clinical radiology and image pro-

cessing.

The work on image registration, chapter 5, was important because it high-

lighted the complexity of alignment problems. One registration system that was

ideal for all situations could not be identified. However registration using an

affine transformation based on manually selected control points was found to

be a reasonable compromise. It is simple, fast, and reliable in the presence of

pathology. This registration system could be integrated into clinical practice

with either a radiographer or radiologist identifying the landmarks. None of the

fully automatic registration methods assessed were fast enough for clinical use,

and were very unreliable when significant pathology was present.

Chapter 6 studied the application of PCA to a training set of normal images.

It demonstrated that PCA is good at identifying and describing the cluster of

normal images. The chapter also concluded that the number of significant pat-

terns of variance will usually be much less than the number of images within the

training set. The experiments concluded that a training set of 77 normal images

was too small, and that 200-300 images would be better. The time to process

such a training set is reasonable on modern computer hardware. The chapter also

concluded that increasing the image size (e.g. higher resolution or 3-dimensional

images) linearly increased the computation time for increasing numbers of pixels

or voxels. This is a significant result as it allows future work on much larger

images, such as those generated by CT or MRI.

The work in chapter 7 showed that both the column space and null space

images contain diagnostic information. Turk and Pentland’s original approach

used only the column space image. This difference arises because in their work

the training set represented all possible images, whereas for the work in this

thesis the training set only contains normal images. Knowing that both the

column space and null space images contain diagnostic information changed the
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approach to the classification scheme. In particular it became clear that the

system would need to include information from both component images.

Chapter 8 developed a new derived image, the remainder image, which com-

bined information from the column space and null space images. It showed that

the remainder image was better for a classification scheme than either the col-

umn space or null space image alone. The work identified the optimal width

and effective rank of a control ellipsoid which circumscribes the cluster of normal

radiographs. Unfortunately it was evident that a much larger set of test images

should be used in the optimisation process.

For the remainder image, the Q-metric can be used as a measure of “how

abnormal” an image is. Classification using the Q-metric gave a maximum pre-

dictive value of around 90%. This is very encouraging, although it must be

remembered that the value was calculated using selected images. It is unknown

what the value would be if the test set contained a random selection of abnormal

images.

In addition to its use in a classification scheme, the remainder image can also

be shown to clinicians to help identify areas of abnormality within an image.

This work looks promising, but its clinical utility needs to be evaluated by a

range of clinicians with differing radiological skills.

9.2 Future Work

The successful application of eigenimage processing to frontal chest radiographs

is encouraging. It suggests that other related statistical image processing routines

may also be helpful for medical image processing. In addition it implies that the

technique could be applied to other image types such as those from CT and MRI.

It is hoped that eigenimage processing will find routine use within radiology.

9.2.1 Related statistical techniques

One limitation of PCA is that it seeks an efficient basis to represent variance,

but makes no attempt to find a basis that maximises the ability to differenti-

ate between classes. The derivation of the remainder image takes advantage of

this by using PCA to efficiently represent normal images. However, it would be

interesting to try other statistical techniques, such as Linear Discriminant Anal-
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ysis (LDA), that aim to maximise discrimination [56]. Another possibility is to

combine two or more statistical techniques into a single system [51].

Another limitation of PCA is that it identifies patterns of linearly independent

variance. It would be useful to attempt non-linear analysis. An example of linear

variance of two correlated variables was given in figure 2.1. If the graph were

to have the observations scattered around a circle then PCA would struggle to

identify two linear patterns of variance, even though the variable would clearly

not be independent. Jackson’s text discusses this in detail [25]. Methods for non-

linear component analysis include Kernel-PCA, curvilinear components analysis,

and independent components analysis [44, 51, 54].

9.2.2 Increasing the number of images

The study presented in this thesis used an arbitrary number of images for both

the training and test sets. Experiments in chapter 6 suggested that a larger

training set could be helpful in identifying more significant eigenimages. Experi-

ments in chapter 8 suggested that a larger test set could improve the optimisation

process and better establish the strengths and weakness of the system.

Using the Guttman-Kaiser criterion the training set of 77 normal images

produced 14–19 significant eigenimages. This number was in keeping with the

optimal rank of the control ellipsoid. It is hoped that by extending the training

set to several hundred images many more significant eigenimages could be iden-

tified. This should improve the classification scheme and image enhancement.

With a view to expanding or incrementally updating the training set, there

has been significant work on combining eigenspaces; the most promising work

is by Hall et al. [144–146]. Using their method it would be possible to have a

training set in the order of hundreds to thousands of images.

In chapter 8, there were difficulties in identifying optimal values for the ef-

fective rank and width of the control ellipsoid. While the experiments identified

a range of possible values, a larger test set would allow for better optimisation.

In addition the images in the test set were not randomly selected and to better

assess the system a random selection of test images should be used.
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9.2.3 Extension of the work to other image types

Within radiology, chest radiographs are often quickly interpreted by radiologists,

while the large data sets from CT and MRI can be very slow to interpret. For

these large data sets a significant amount of time is spent identifying abnormal

features within hundreds or thousands of normal images. If eigenimage processing

could be applied to CT or MRI images then its impact on clinical practice may be

greater because the potential time saving is greater. There are three main issues

to be explored when extending to these larger data sets: registration, training

set size, and computer processing time.

Image registration problems are very different for 3-dimensional images com-

pared with the 2-dimensional case. In some respects registration can be easier

since there are no overlapping features, but the complexity of the image can make

it harder. Fortunately, as noted in chapter 5, 3-dimensional image registration

is a well researched area.

An important issue in extending the technique to other image types is deter-

mining the size of the training set required. Large complex 3-dimensional data

sets may require a very large number of training images to produce enough sta-

tistically significant eigenimages. Again, this is an area where incremental PCA

techniques may be helpful [144–146].

Chapter 6 showed that the processing time for PCA tends to be linear when

increasing the image size. Images from CT and MRI can be up to 10–20 times

as large as chest radiographs (in term of pixels). While this means processing

would be slow on current hardware, it is likely to be practical within the near

future.

9.2.4 Possible uses within radiology

The enhancement of each test image is fast compared to processing of the training

set. In the experiments performed processing each test image took about one

minute using non-optimised Matlab code on standard PC hardware. However,

an optimised system taking advantage of the parallel nature of the computations

and run on typical radiology workstations could be up to twenty times faster.

This is an acceptable processing time for integration into hospital workflow.

There are two obvious locations for implementing eigenimage processing within
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a department’s infrastructure: either as a preprocessing step before the image

is sent to a radiologist’s workstation, or directly in the radiologist’s viewing

software. Previously there have been successful attempts to integrate other forms

of image enhancement into radiology department workflows as a preprocessing

step [155].

Within the clinical environment the Q-metric could be used to assign a pri-

ority to each image. Currently in radiology departments there is often a worklist

of unreported radiographs. The radiologist selects an image to report without

prior knowledge of the possibility of it being abnormal. The Q-metric could be

used to indicate how likely an image is to contain an abnormality. This would

improve workflow by ensuring that the most abnormal radiographs are reported

first, enabling any changes in patient management to occur as soon as possible.

Also within a clinical environment, the enhanced images could be shown

alongside (or after) the original radiograph, as a form of “second check” for the

reporting clinician. Such a system would be most valuable if the system was

extended to larger image types. If eigenimage processing was able to alert the

radiologist to the likely areas of abnormality, it could significantly improve the

speed and accuracy of reporting.

Within the research field, it may be possible to use eigenimage processing to

identify areas of abnormality not currently recognised by radiologists. This may

be possible because the PCA often identifies patterns of variance that differ from

those identified by a radiologist. In addition PCA can identify very low power

patterns that may be overlooked by a radiologist.

As introduced in section 6.5.3 an important question is which normal variants

should be included within the training set. This is a complex question that could

only be fully assessed by a clinical trial in which several training sets are used, and

the enhanced images assessed by groups of clinicians with different skill levels.

The difficulty in deciding which normal variants to include in the training set

arises because a skilled clinician may benefit from having normal variants brought

to their attention, while a less skilled clinician may be misled into attributing

too much significance to a minor finding.

In this thesis ROC curves were used to display the success of classification,

using the AUC to compare two ROC curves. Although this is a common method

of comparing tests within medicine, there are other methods which could be in-
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vestigated [85, 86, 138]. Most importantly, the method chosen should reflect the

clinical application. For example, if the goal is to assist a junior clinician to con-

firm an image is truly normal, then the most appropriate measure of the system’s

success is its ability to detect abnormality (the test’s sensitivity). However, if

the goal is to assist a senior radiologist to interpret a complex radiograph, then

the most appropriate measure of success is the ability to identify a particular

disease with certainty (the test’s specificity).

9.3 Summary

1. Eigenimage processing can be successfully applied to the high resolution

images found within radiology.

2. The application of PCA to a training set of images identifies the important

patterns and magnitudes of variance within a training set. If the set con-

tains normal images, then eigenimage processing identifies normal patterns

of variance, with a known level of accuracy.

3. Identifying the normal patterns of variance allows these patterns to be

removed from test images, leaving a remainder image. The remainder image

can be used for classification or as a form of image enhancement.

4. The success of the application of PCA to radiological images suggests that

other related statistical techniques could also be attempted.

5. Important future work could involve extending the technique to new image

types, such as CT or MRI images. In these data sets the radiologist often

has to identify abnormal features within a very large number of normal

images, which can be very time consuming. Application of eigenimage

processing may significantly improve the speed of image interpretation.
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Appendix A

Publications

A.1 Citable papers

1. A Butler, P Bones, and M Hurrell. A prototype system for enhancement

of frontal chest radiographs using eigenimage processing. Australasian Ra-

diology, Accepted, pending publication.

(This is the journal of the Royal Australian and New Zealand College of

Radiologists. It is Australasia’s largest and most widely read radiology jour-

nal.)

2. P Bones and A Butler. Enhancement of chest radiographs using eigenimage

processing. In Proceedings of the Society for Photo-optical Instrumentation

Engineers Vol. 6316 Image Reconstruction from Incomplete Data III, 2006.

ref. 63160C, 12 pp.

(This paper was presented by Associate Professor Bones on behalf of the

team, at the SPIE conference on image reconstruction in San Diego. This

is an important international conference for image processing.)

3. A Butler, P Bones, and M Hurrell. A method to enhance frontal chest

radiographs in the eigen-domain. Proceedings of Image and Vision Com-

puting New Zealand, 2005, pp 363-368.

(This is New Zealand’s largest Computer Vision conference and covers

many aspects of automated pattern recognition.)

4. P Bones and A Butler. Eigen-analysis for classifying chest X-ray images.

In Proceedings of the Society for Photo-optical Instrumentation Engineers

Vol. 5562 Image Reconstruction from Incomplete Data III, 2004. pp 88-96.
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(This paper was presented by Associate Professor Bones on behalf of the

team, at the SPIE conference on image reconstruction.)

A.2 Abstracts in scientific proceedings

1. A Butler, P Bones, and M Hurrell. Enhancement of frontal chest radio-

graphs using eigenimage processing. In Australian Radiology, Vol. 50, Sup.

1, 2006. ppA6.

(This is the largest and most prestigious radiological conference in Aus-

tralasia. This abstract and presentation won the “Philips Medical Systems

Radiology Paper Prize”.)

2. A Butler, P Bones, and M Hurrell. Eigenimage Processing of High Res-

olution Chest Radiographs. In Proceedings of the Radiological Society of

North America, 90th Scientific Assembly and Annual Meeting, Dec. 2004.

(This is the largest and most prestigious radiological conference in the

world, attracting more than 60,000 delegates annually.)

3. A Butler, P Bones, and M Hurrell. Classification of Chest Radiographs us-

ing Eigenimage Processing. In Proceedings RANZCR New Zealand Branch

Annual Scientific Meeting, Jul. 2004.

(This is the premier New Zealand scientific conference for radiology.)

4. A Butler, P Bones, and M Hurrell. Eigenimage Interpretation of Frontal

Chest Radiographs. In Proceedings RANZCR New Zealand Branch Annual

Scientific Meeting, Jul. 2003.

(This is the premier New Zealand scientific conference for radiology.)

A.3 Publicity and popular press

1. “Canterbury Medical Research Foundation Open Day”, Aug. 28, 2005

(This is Canterbury’s largest open day for Medical Researchers to present

their work to the public. I represented the radiology research group talking

to members of the public about current radiology research.)

202



2. “Radiologist’s university research to benefit his daily work“

“The Chronicle,” Oct. 20, 2005. (Vol 40, num 17.)

(This is the University of Canterbury Staff newsletter. The article detailed

the “GE-Medical Systems Prize”.)
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Appendix B

Awards

1. “Health Research Council, Clinical Research Training Fellowship”, 2006.

(This fellowship provides a stipend for a medical specialist for up to three

years full time study to complete a Ph.D. It was awarded for the final year

of my thesis.)

2. “R. H. T. Bates Postgraduate Scholarship”, 2006.

(This scholarship is awarded by the Royal Society of New Zealand in mem-

ory of Professor Bates. It is awarded to a Ph.D. student whose research

aims to apply information theory or image processing to studies in medicine,

the physical sciences, astronomy or engineering. No financial benefit was

available from this award due to conflict with the HRC award.)

3. “Philips Medical Systems Radiology Paper Prize”, 2006.

(This prize is for the best presentation by a junior radiologist in the radi-

ology section of the annual scientific meeting of the Royal Australian and

New Zealand College of Radiologists. A junior radiologist is either a stu-

dent member or a fellow who has held their specialist qualifications for not

more than four years.)

4. “Entré 10k Challenge”, 2006.

(In this competition teams prepare a short venture summary on their enter-

prising idea. Julian Maclaren and myself prepared a business plan which

focussed on commercialising eigenimage processing. There are ten equal

winners for this competition.)

5. “GE Medical Systems Prize”, 2005.

(This is the top research prize of the Royal Australian and New Zealand
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College of Radiologists. It is awarded to the best research proposal by a

student member or fellow of less than ten years.)

6. “Obex Medical Education Award: South Island Radiology Registrar Award”,

2004.

(This prize is for the best presentation of original research by a South Island

Radiology Registrar.)

7. “Obex Medical Education Award: South Island Radiology Registrar Award”,

2003.

(This prize is for the best presentation of original research by a South Island

Radiology Registrar.)
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