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ABSTRACT : 
It is fast becoming common practice for civil engineering infrastructure and building structures to be designed to 

achieve a set of performance objectives. To do so, consideration is now being given to systems capable of sustaining 

minimal damage after an earthquake while still being cost competitive. This has led to the development of high 

performance seismic resisting systems, followed by advances in design methodologies. 

The paper presents the experimental response of four pre-cast, post-tensioned rocking walls with high-performing 

dissipating solutions tested on the shake-table at the University of Canterbury. The wall systems were designed as a 

retrofit solution for an existing frame building however, can also be used for the design of new, high-performance 

structures. The use of externally mounted dampers allowed numerous dissipation schemes to be explored including 

mild-steel dampers (hysteretic dampers), viscous dampers, a combination of both or no dampers. The advantages of 

both velocity and displacement dependant dissipation was investigated for protection against strong ground motions 

with differing rupture characteristics i.e. far-field and near-field events. 

The experimental results are used to verify a proposed design procedure for post-tensioned rocking systems with 

supplementary hysteretic and viscous dissipation. The predicted response compared well with the measured 

shake-table response. 
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1. INTRODUCTION  
The structural performance of precast structures with unbonded post-tensioning can surpass equivalently 

reinforced monolithic counterparts with respect to building structures (Priestley [1999], Kurama [2002], 

Pampanin [2005], Solberg et al. [2008]) and bridge systems (Kwan and Billington [2003] and Palermo et al. 

[2005]). This enhanced performance is due to inelastic deformation being lumped to a discrete number of 

specifically designed and detailed rocking interfaces. An example is illustrated in Figure 1 (a) and (b) where a 

post-tensioned, pre-cast rocking wall is installed with replaceable externally mounted mild steel dampers. In this 

example, the dampers are designed to yield in tension and compression and are restrained against buckling. This 

type of damper is termed a TCY hysteretic damper (tension-compression-yielding). As the wall displaces laterally 

an opening occurs at the rocking interface (Figure 1 (b)) elongating the dampers and the post-tensioned tendons. 

The ratio of the prestressed reinforcement (and axial load) to the non-prestressed reinforcement defines the energy 

dissipation and re-centring properties of the wall system – these two parameters give an indication of the expected 

maximum displacement and residual deformation of the system following dynamic response. This technology has 

been codified in the U.S. (ACI:T1.2-03 [2007]) and in New Zealand (NZS3101 [2006]) and is termed “Hybrid or 

Controlled Rocking” Technology. In this contribution a design procedure for post-tensioned rocking systems with 

supplementary dissipation is presented and supported with experimental shake-table testing. The results from a 

series of free vibration release tests are presented to quantify the contact damping associated with impact at the 

rocking interface. In particular, the free vibration response of two precast wall units is discussed; one having no 

supplementary dissipation and the other with a low level of hysteretic damping. Following from this, the 

shake-table was used to subject three precast walls to a strong ground motion. The input motion was scaled to a 

design acceleration spectrum representing a probability of excedance of 2% in 50 years i.e. a maximum 

considered event (MCE). The maximum displacement response is compared with the predicted displacement 

following the proposed design procedure. 

 

2. DESIGN OF POST-TENSIONED WALLS WITH SUPPLEMENTARY DISSIPATION 

Hybrid structures are inherently high performing and are generally associated with low damage. These systems 
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may in fact achieve much higher levels of performance when considering residual deformations, repair and 

downtime. A general load deflection response is shown in Figure 1 (c) with significant damage only occurring 

when excessive compression strains cause failure of the toe region, or rupture of the mild-steel or prestressed 

reinforcement occurs. Recommendations from Kurama et al. [1999], fib [2003], Priestley et al. [2007] have been 

used to define three performance objectives for post-tensioned wall systems: Immediate occupancy, damage 

control or life safety and collapse prevention. These performance objectives are discussed in further detail in 

Marriott et al. [2008] along with performance objectives related to the retrofit of existing structures with 

supplementary post-tensioned rocking walls. 

 

Figure 1 Post-tensioned precast rocking wall system with externally mounted mild steel dampers 

 

Research has shown that post-tensioned rocking systems, in particular, are ideally suited to a Direct 

Displacement-Based Design (DDBD) framework (Priestley [2003] and Palermo et al. [2005]). With this in mind, 

a DDBD procedure is proposed for post-tensioned wall systems incorporating supplementary viscous and 

hysteretic dissipation devices (Figure 2). 

 

Figure 2: Design of post-tensioned walls with supplementary dissipation (adapted from Priestley et al. [2007]) 

 

The procedure builds upon traditional DDBD (Priestley et al. [2007]), equating the equivalent viscous damping 

(EVD) associated with the supplementary non-linear viscous dampers located at the rocking interface.  

While a summary of the design procedure is outlined here, a complete design example is presented in the 

appendix of the paper with more details. 

Step 1: The SDOF parameters are defined i.e. the displacement ∆∆∆∆d of the effective mass me at the effective height he. 

Step 2: The local damper coefficient Cvd is converted to a global damping coefficient Csys using Figure 3 (a) which is 

2) Convert local damper 

properties to system damping 

properties using Figure 3 (a) 

visvdvdsys NCC β=  

3) Evaluate EVD associated with 

the non-linear dampers using 

Figure 3 (b) and (c). 

Ω+= 10 aavisξ  

csys CC /=Ω  

4) Evaluate EVD associated with 

hysteretic dampers, ξhyst 

 

5) Combine EVD and reduce 

design displacement spectrum 

 

1) Define target displacement ∆∆∆∆d 

and SDOF parameters 

 

6) Determine effective period, 

effective stiffness and base shear 

of the SDOF system 
22

/4 eee TmK ⋅= π  
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based on the aspect ratio Ar of the section and the non-linearity of the damper αααα. 

Step 3: The system damping Csys is normalised with respect to critical damping Cc of the system defining ΩΩΩΩ. The 

EVD ξξξξvis is determined using Figure 3 (b) for far-field seismicity or (c) for near-field seismicity. 

Step 4: The hysteretic EVD ξξξξhyst is calculated based on the system ductility µµµµ and the moment ratio between the 

mild-steel reinforcement and the prestressed reinforcement λλλλ.  

Step 5: The total system EVD is computed and the design displacement spectrum is reduced by the damping 

reduction factor ηηηη, which then defines the effective period Teq.  

Step 6: The secant stiffness Keq multiplied by the displacement ∆∆∆∆d of the SDOF system defines the base shear Vb. 

 

 

Figure 3 System damping coefficient and equivalent viscous damping (EVD) relationships 

 

3. EXPERIMENTAL PROGRAMME 

An experimental programme was undertaken at the University of Canterbury to investigate both the cyclic and 

dynamic performance of 1/3 scale post-tensioned rocking wall systems with alternative energy dissipating 

mechanisms. The experimental programme was divided in two phases. The first phase investigated the response 

of post-tensioned walls subjected to high speed sinusoidal loading at increasing levels of amplitude and 

frequency from 0.1Hz through to 2.0Hz. In the second phase the dynamic response was examined from free 

vibration testing and earthquake excitation. For brevity, the free vibration response of two walls is discussed, 

followed by dynamic testing of three walls subjected to a strong ground motion. 

The shake-table test set-up is illustrated in Figure 4. A 3840kg pendulum mass was suspended by the laboratory 

crane. This set-up proved very effective in providing a consistent driving mass. Out-of-plane restraint of the 

wall was provided by steel channels with frictionless rollers located between the wall and steel channels. 

 

Figure 4 Shake-table set up (left) and precast wall specimens (right (a)-(d)) 
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The nomenclature used to identify each post-tensioned wall is HYxMS-yV where x is the number of TCY 

hysteretic dampers, and y is the number of viscous dampers located at the rocking interface (refer Table 1).  

Table 1 Details of the dissipation mechanisms and post-tensioning of the four precast walls 

Wall Post-tensioning details Damper device details 

HY0MS-0V 2 tendons each stressed to 50kN (0.323fpty) - 

HY0MS-4V 2 tendons each stressed to 30kN (0.194fpty) 4 viscous dampers (courtesy of FIP Industriale) 

HY4MS-2V 2 tendons each stressed to 20kN (0.130fpty) 4 viscous dampers plus 2 TCY mild steel dampers 

HY2MS-0V 2 tendons each stressed to 40kN (0.259fpty) 2 TCY mild steel dampers 

 

3.1 Construction details of the post-tensioned precast wall units 
Construction details of the walls were typical of precast construction with the inclusion of two PVC ducts 

running the height of the wall to locate the unbonded post-tensioned tendons. A fabricated steel angle was cast 

within the base of the wall for confinement of the toe region (Figure 5(b) and (c)). A recess was also cast into the 

top of the foundation to locate the precast wall when lowered into position. When the wall corrected located a 

high flow epoxy grout (Sikadur 42) was pumped under pressure around the recess and beneath the rocking 

interface. This provided ample shear transfer and prevented slip along the rocking interface. A cavity was 

located on the underside of the foundation to allow access to the tendon anchorages. 
The external dissipation devices were connected to the wall by stiff steel brackets Figure 5(b). These steel dissipater 

brackets were bolted to a steel plate which was fixed rigidly to side of the precast concrete wall Figure 5(c). Two steel 

plates were fixed to each side of the wall to accommodate a maximum of 3 dampers per side with two length options. 

 
(a) As-built post-tensioned wall (b) Connection detail (c) Reinforcement, confinement and 

steel bracket details 

Figure 5 Post-tensioned, precast wall unit (CAD images courtesy of T. Smith) 

 

3.2 Performance of the damper devices  
The performance of the dissipaters were extensively tested and quantified prior to testing within the precast wall. 

Cyclic testing of the TCY hysteretic dampers is presented in Figure 6 (a). The response is extremely stable as 

compression buckling is prevented due to a steel tube located over the yielding region. The steel tube is 

injecting with an epoxy grout for adequate restraint. Sinusoidal frequency testing of the non-linear viscous 

dampers (devices courtesy of FIP Industriale) is presented Figure 6 (b). The viscous dampers have a velocity 

power coefficient of αααα=0.15, therefore having relatively limited dependency on velocity. 

 

3.3 Selection of the earthquake records for dynamic testing 
A total of six ground motions (two records at each of the three intensity levels) were applied to each post-tensioned 

wall: the results from one record is given here. Careful selection of the records was required due the limitation of the 

shake-table which restricted the input velocity to approximately 240mm/s. Considering similitude scaling (for a 1/3 

scale model), the spectrum-scaled earthquake records could not exceed a velocity of 415mm/s without modifying the 

record. The records were scaled to the New Zealand uniform hazard spectrum NZS1170.5 [2004]. The ground motion 
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considered herein was recorded at Rio Dell Overpass, Cape Mendocino (Table 2). 

Table 2. Earthquake record subjected to post-tensioned wall units 

Earthquake record Recording Station Scaled PGA Scaled PGV [mm/s] Scale factor 

Cape Mendocino Rio Dell Overpass 0.382 434 0.992 

 

 

Figure 6. Supplementary damper properties 

 

4. EXPERIMENTAL RESPONSE 

4.1 Free vibration release testing 

Three release amplitudes were chosen: 2.5%, 1.5% and 0.5% of lateral drift. The damped response (when 

released from an amplitude of 1.5% drift - 31.5mm) is shown for two precast wall units in Figure 7. The 

damping associated with rocking (referred to as contact damping) for the post-tensioned wall with no 

mechanical dampers (HY0MS-0V) was then calibrated. 

While a damping model proportional to the tangent stiffness proved to be more accurate, sufficient accuracy 

could be achieved with a constant damping formulation (refer Figure 7 (a)). The calibrated damping was found 

to be approximately independent of the release amplitude when a constant damping model was used based on 

the secant stiffness at release i.e. a constant damping equal to 3.0% of critical damping, with critical damping 

formulated from the secant stiffness at release. This damping formulation has the advantage of being 

incorporated within a direct displacement-based design (DDBD) framework considering an elastic SDOF 

system with secant properties to the target displacement, Priestley et al. [2007]. While work is ongoing, the 

same proportion of damping appears appropriate for the post-tensioned wall with mechanical damping devices. 

This would suggest that the equivalent viscous damping associated with contact damping may be taken as a 

constant value of 3.0%, regardless of the target displacement, initial post-tensioning and supplementary 

dissipation.  

 

Figure 7: Free vibration release testing 
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4.2 Response to shake-table ground motion and performance evaluation 
The measured response of the three prototype walls is presented in Figure 8, while the maximum displacement 

response is also compared with the predicted displacement response in Table 3. Of the three prototype walls, the 

system with viscous dampers alone (HY0MS-4V) had the largest displacement response due the low EVD of the 

system. When combined with TCY dissipaters (HY2MS-4V), the maximum displacement response was 

significantly reduced. The system with TCY dampers alone (HY2MS-0V) returned the lowest maximum response. 

The magnitude of base shear is similar for all three walls – in fact each wall was designed to have a similar 

backbone but with varying energy dissipation. 

 

 

Figure 8. Experimental and predicted response of the three PT wall units under a MCE ground motion 

 

The design objectives for the post-tensioned walls considered a drift ratio of 1.0% at the 2/3MCE level and a 

drift ratio of 1.5% at the MCE level, however because each post-tensioned wall had subtle differences in EVD, 

the maximum response of each prototype was expected to differ slightly. The proposed design procedure was 

used to assess/predict the displacement response of each wall (HY0MS-4V, HY2MS-4V, HY2MS-0V) at the MCE 

hazard level. The predicted response is summarised in Table 3. The EVD in Table 3 is not an area-based 

damping; it is the EVD used to reduce the design spectrum based on calibration with time history analysis. The 

EVD includes mechanical damping of the devices and an additional 3% to account for contact damping (as 

discussed above). It is clear from Table 3 that the non-linear viscous dampers provide minimal damping capacity 

to the system. 

While no trends can be derived from a single ground motion, some conclusions from a design procedure can be 

made. A significant reduction in displacement response could be achieved with relatively minimal increase to 

the capacity of the damper. Furthermore, the velocity limitation of the shake-table (due to the oil flow rate 
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within servovalves) prevented important ground motion characteristics from being replicated; namely, records 

characterised with large velocity pulses, typical of near-fault ground motions. If larger table velocities were 

possible, the capacity of the viscous dampers were increased and there was a larger dependency on velocity i.e. 

αααα>0.5, the benefits of such a system would be more evident. In fact, extensive numerical studies have confirmed 

the benefits of combining viscous and hysteretic dampers within self-centring systems (defined as advanced 

flag-shape systems) for protection against near-fault effects (Kam et al. [2007]). Recently, these numerical 

studies have been extended to multi-storey moment resisting frame structures where the interested reader is 

referred to the following companion paper; Kam et al. [2008]. 

Table 3. Performance assessment and measured response of the post-tensioned walls 

 PT Wall HY0MS-4V PT Wall HY2MS-4V PT Wall HY2MS-0V 

Assessed EVD, ξ, ξ, ξ, ξeq 4.42% 10.27% 7.28% 

Predicted displ, ∆∆∆∆d 37.4mm (1.78% drift) 27.5mm (1.31% drift) 27.9mm (1.33% drift) 

Measured max displ, ∆∆∆∆max 35.0mm (1.67% drift) 27.6mm (1.32% drift) 28.7mm (1.37% drift) 

 

5. CONCLUSIONS 
Shake-table testing of post-tensioned rocking wall systems with viscous and hysteretic supplementary dampers 

demonstrated the dynamic response of the next generation, high-performance, self-centring systems. A series of 

free-vibration release tests allowed calibration of the EVD associated with contact damping. EVD equal to 3% of 

critical damping was found to represent the energy dissipation effectively, while tentative results indicated that this 

proportion of energy dissipation was independent on the amount of supplementary dissipation located within the wall. 

When subjected to recorded strong ground motion, the response of the wall was dependant on the type of mechanical 

dissipation adopted. A combination of viscous and hysteretic energy dissipation was found to be more effective at 

reducing displacements when compared to a viscous-only system with low energy dissipation capacity. 

The experimental testing was used to assess a proposed displacement-based design procedure for the design of 

post-tensioned precast wall systems with viscous and hysteretic supplementary damping devices located at the 

rocking interface. The procedure extends on current Direct Displacement-Based Design philosophies (DDBD) and 

was found to be an efficient and reliable tool for design. The predicted displacements compared well with those 

measured during testing (maximum error of 6.6%). Work is ongoing in this area to further confirm and validate the 

EVD associated with contact damping and the extension of the proposed design procedure to MDOF systems. While 

the full benefits of viscous dampers could not be experimentally verified due to the velocity limitation of the 

shake-table, numerical studies are able to confirm their enhanced performance, especially for protection against 

near-fault ground motions. 

 

6. APPENDIX: DESIGN EXAMPLE 
To illustrate the design procedure in detail, the following example outlines the design of a full scale prototype 

structure based on the geometry in Figure 1 (a). This particular post-tensioned rocking wall is constructed with four 

non-linear dampers (two layers of viscous dampers, Nvis=2) each with a damping coefficient of Cvd=73.88kNs
α
/m

α
 

and a non-linearity of αααα=0.153. In addition to the viscous dampers, a single layer (two dampers) of TCY mild-steel 

dampers with a diameter of ddiss=21mm and steel grade fy=300MPa, is also installed (see HY2MS-4V in Figure 4 (c) for 

more details). 

Step 1: A target design drift of 1.31% (∆∆∆∆d=82.5mm lateral displacement) is chosen for design. The MDOF system is 

converted to an equivalent SDOF system with an effective height of he=6.3m and an effective mass of 

me=38.934tonne. 

Step 2: The local damper coefficient Cvd is converted to a global damping coefficient Csys using Figure 3 (a). Given an 

aspect ratio of Ar=3.5, αααα=0.153 the local-global damper ratio is estimated as ββββvd=0.18 (followed by a refined 

calculation to equal ββββvd=0.20). The global damping coefficient Csys is computed; 
ααααβ mkNsmkNsNCC visvdvdsys /6.29220.0/88.73 =⋅⋅== . 

Step 3: The system damping Csys is normalised with respect to the critical damping Cc. i.e. 
csys CC /=Ω . The 

procedure is iterative as the effective period must be known in order to compute the critical damping of the system, 

mkNstsradmC eec /8.541934.38/96.622 =⋅⋅== ω . The normalised damping coefficient is thus 

055.08.541/6.29/ ===Ω csys CC . The EVD associated with the viscous dampers ξξξξvis is determined using Figure 3 

(b) for far-field seismicity or (c) for near field seismicity. This graphical relationship can be expressed as a linear 
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equation Ω+= 10 aavisξ  where a0 and a1 are a function of the damper’s non-linearity (αααα). For far-field seismicity 

and αααα=0.153, a0=-0.013 and a1=0.501, resulting in an EVD equal to ξξξξvis=1.4%.  

Step 4: The hysteretic proportion of EVD ξξξξhyst is based on the ratio of the mild steel reinforcement and prestressed 

reinforcement moment ratio (
msPT MM /=λ , found by a moment-rotation section analysis). The system is assessed to 

have a ductility of µµµµ=5.2 resulting in hysteretic EVD equal to ξξξξhyst=5.8%.  

Step 5: The total EVD ξξξξeq is summed together accounting for an additional 3% attributed to contact damping. The 

total EVD is thus ξξξξeq=1.4%+5.8%+3%=10.3%. The design displacement spectra is reduced by an amount equal to 

ηηηη=0.76 (Priestley et al. [2007]) resulting in an effective period of Teq=0.90sec.  

Step 6: The effective stiffness is computed and the base shear is calculated as 

kNmmkNKV eqeqb 5.1550825.0/1885 =⋅=∆= . A final base shear reduction factor φφφφBL is applied, based on 

numerical calibration. This reduction factor recognises the reduction in displacement response of a bilinear loading 

envelope when compared to a linear elastic loading envelope (with secant stiffness to the target displacement). The 

design base shear is thus equal to kNkNVV bBLb 1475.15594.0* =⋅== φ . 

 

7. ACKNOWLEDGEMENTS 
The authors acknowledge Dr Gabriella Castellano from FIP Industriale for the use of four viscous dampers and the 

assistance of Mr Masoud Maghaddasi during construction and testing. Financial support from the FRST projects; 

“Future Building Systems” and “Retrofit Solutions for New Zealand Buildings” is greatly appreciated. 

 

REFERENCES 
ACI:T1.2-03. (2007). ACI Manual of Concrete Practice-Special Hybrid Moment Frames Composed of Discretely Jointed 

Precast and Post-Tensioned Concrete Members. 

fib. (2003). Seismic Design of Precast Concrete Building Structures, International Federation for Structural Concrete, 

Lausanne, Switzerland. 

Kam, W. Y., Pampanin, S., Carr, A. and Palermo, A. (2007). "Advanced Flag-Shape Systems for High Seismic Performance 

Including Near-Fault Effects." NZSEE Conference, Palmerston North, New Zealand. 

Kam, W. Y., Pampanin, S., Palermo, A. and Carr, A. (2008). "Implementation of advanced flag-shape (AFS) systems for 

moment-resisting frames structures." 14WCEE, Beijing, China. 

Kurama, Y. C. (2002). "Hybrid post-tensioned precast concrete walls for use in seismic regions." PCI Journal, 47:5, 36-59. 

Kurama, Y. C., Sause, R., Lu, L. and Pessiki, S. (1999). "Seismic Behaviour and Design of Unbonded Post-Tensioned 

Precast Concrete Walls." PCI Journal, 44:3, 72-89. 

Kwan, W.-P. and Billington, S. L. (2003). "Unbonded posttensioned concrete bridge piers. I: Monotonic and cyclic 

analyses." Journal of Bridge Engineering, 8:2, 92-101. 

Marriott, D., Pampanin, S., Palermo, A. and Bull, D. (2008). "Dynamic Testing of Precast, Post-Tensioned Rocking Wall 

Systems with Alternative Dissipating Solutions." Bulletin of the NZSEE, 41:2. 

NZS1170.5. (2004). "Structural Design Actions, Part 5: Earthquake actions." Standards New Zealand, Wellington. 

NZS3101. (2006). "Concrete Structures Standard: Part 1-The Design of Concrete Structures." Standards New Zealand, 

Wellington. 

Palermo, A., Pampanin, S. and Calvi, G. M. (2005). "Concept and Development of Hybrid Solutions for Seismic Resistant 

Bridge Systems." Journal of Earthquake Engineering. Vol. 9, no. 6, pp. 899-921. Nov. 2005. 

Pampanin, S. (2005). "Emerging solutions for high seismic performance of precast/prestressed concrete buildings." Journal 

of Advanced Concrete Technology, 3:2, 207-223. 

Priestley, M. J. N. (1999). "Preliminary results and conclusions from the PRESSS five-storey precast concrete test 

building." PCI, 44:6, 42-67. 

Priestley, M. J. N. (2003). Myths and Fallacies in Earthquake Engineering, Revisited. 

Priestley, M. J. N., Calvi, G. M. and Kowalsky, M. J. (2007). Displacement-Based Seismic Design of Structures, IUSS 

PRESS, Pavia, Italy. 

Solberg, K., Dhakal, R. P., Bradley, B., Mander, J. B. and Li, L. (2008). "Seismic performance of damage-protected 

beam-column joints." ACI Structural Journal, 105:2. 

 

 


