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Abstract: To support early design and design under risk, it is necessary to have 

methodologies to  process the various forms of uncertainties. Three independent 

dimensions of uncertainty are identified in the paper as certainty of analysis (epistemic 

uncertainty), random variability (stochastic variability and design indecision), and type 

of variable. The type of variable is further categorised into six scales that are broadly 

grouped into quantitative and qualitative. Common engineering modelling tools used 

for design do not operate well on combinations of random variables, qualitative 

variables, and imperfect knowledge. The hypothesis of this paper is that a modelling 

system could be developed to accommodate the multiple types of uncertainty that can 

exist during engineering design. This is worth doing as accommodating design 

uncertainty is an important  part of risk management in engineering.  The paper then 

proceeds to describe the way in which the design for system integrity (DSI) 

methodology meets these objectives. DSI may be used to create models with 

uncertain variables (including textual and non-ordered), given subjective and imperfect 

knowledge (including uncertain opinion). Consequently, DSI supports risk 

management in engineering design.    
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1   INTRODUCTION 

 

A characteristic of early design is the existence of imperfect knowledge and uncertain 

variables. However, conventional engineering design tools tend to be deterministic: 

they apply well defined mathematical relationships to variables that are known with 

certainty, with reserve or safety factors being used to compensate for the uncertainty 

that is expected to exist. These approaches have proved practical for detailed design 

operating within an existing body of knowledge. However, determinism can be 

problematic at early design stages, or when exploring new design envelopes, or when 

the design has a significant risk element.  

 

The hypothesis of this paper is that a modelling system could be developed to 

accommodate the multiple types of uncertainty that can exist during engineering 

design. This is worth doing as accommodating design uncertainty is an important  part 

of risk management in engineering.  The work is derived from the Design for System 

Integrity (DSI) methodology [1], and previous papers in this journal described the 

background [2],  and  a method for processing random quantitative variables through 

mathematically explicit models [3]. The present paper extends the scope to the 

processing of qualitative variables through imperfectly understood systems, a situation 

typical of design under risk.  The paper first establishes several dimensions of 

uncertainty, then identifies existing methodologies for qualitative variables, and finally 

describes the DSI approach.  
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2  DIMENSIONS OF UNCERTAINTY 

 

It is suggested that different forms of uncertainty exist in engineering design, 

expressible by three orthogonal dimensions. These are  (a) the epistemic uncertainty,  

(b) the stochastic uncertainty, and (c) the abstraction uncertainty. These dimensions 

are shown in Figure 1, and clarified below.  

 

Epistemic uncertainty (or certainty of analysis') describes the degree to which the body 

of knowledge can adequately predict system behaviour from input variables. The 

range, in decreasing order of completeness, covers: explicit  functions (axioms, 

mathematical equations), correlation (statistical regression), logic (Boolean) & rules, 

and opinion (which can be partitioned into knowledge and confidence [4], or support 

and plausibility [5]).  This range has been split into 'objective' and 'subjective' 

knowledge, with the separation  within ‘logic & rules’. 

 

The stochastic uncertainty  (or random variability) dimension describes the uncertainty 

about the precise value that the variable will take. It ranges from deterministic (no 

uncertainty), probabilistic (or stochastic, based on the likelihood of mutually exclusive 

events), interval (‘possibilistic’ fuzzy theory, set membership), to subjective probability 

(statements such as ‘likely’).  There are several sub-types of probabilistic variable 

including  a full probability distribution, histogram, decision tree, or single probability 

(e.g. success vs failure).  Also, there are several sub-types of interval variable 

including simple substitution of different  values (‘what-if-analysis’), interval analysis 
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(all values across a range are considered equally likely to occur), and a fuzzy set 

(different likelihoods across the range).  Design indecision (the designer has not yet 

decided on the value for a parameter) has been included as a type of random variable, 

although it is acknowledged that it is an interval rather than strictly random variable as 

the selection will not necessarily be based on the mean or other probability statistics. 

 

 

Figure 1: The uncertainty that exist in any analysis activity is represented here 

by three orthogonal dimensions: (a) the certainty of analysis, (b) the random 

variability, and (c) the type of variable. Each dimension has various categories, 

and the figure gives examples for each. The position of  conventional 

engineering analysis methodologies is illustrated by the block.   
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The abstraction uncertainty  (or type of variable) describes whether the variable is  

quantitative or qualitative  [6]. However, the distinction between these terms is loose, 

especially for "qualitative", so here the terms are defined by extending the four scales 

of Ackoff [7] to produce the six scales shown in Figure 2. Thus a ‘quantitative’ variable 

is either on a ratio (e.g. length) or interval (e.g. temperature 0 oC) scale. 

Correspondingly, a ‘qualitative’ variable would be ordinal-numerical (e.g. Moh 

hardness of minerals), ordinal-textual (e.g. ''hot, warm, cold''), nominal-numerical (e.g. 

jersey number on sport players), or nominal-textual (e.g. dishwasher soil types of 

''sauce, rice, jam'').  

 

Ratio
[length]

Interval
[temp oC]

Ordinal
numerical

[Moh hardness]

Ordinal textual
(weak order)

[hot,warm,cold]

Nominal textual
[sauce,rice,jam]

Nominal
numerical

[player number]

quantitative

qualitative

 

Figure 2:  Classification system to distinguish between qualitative and 

quantitative variables. Examples of each type are given in brackets. The arrows 

indicate the direction of decreasing information content.  
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A consequence of this structure is that no ordinal variable (even if numerical ) is 

considered quantitative. A variety of specialised design tools cover quantitative 

random variables, as described earlier [2].  Importantly, mathematical functions strictly 

only apply to quantitative variables. Unfortunately, this constraint is occasionally 

violated  by designers when they enter an ordered variable into a mathematical 

calculation. This problem has previously been identified by Scott and Antonsson  [8]  

as the ‘weak order’ problem. Some design methodologies, such as  quality function 

deployment (QFD) and fuzzy theory, potentially suffer from this problem. To what 

extent a violation compromises the results is perhaps unknowable since there is no 

tool with perfect accuracy against which to compare. Nonetheless, it is professionally 

prudent that designers acknowledge the existence of uncertainty in output calculations 

when using  ordered variables. 

 

The uncertainty model could be extended: a fourth dimension being the need to repeat 

the simulation for each alternative design concept (each concept may have a different 

uncertainty profile), and a fifth dimension as time variant (dynamic) simulation.   

 

Conventional engineering design calculations (engineering science) are shown in 

Figure 1 as being limited to explicit functions, no random variability (deterministic) and 

ratio (or interval) data types.  However, engineering designers occasionally have to 

design with knowledge that is inadequate for system modelling (low certainty of 

analysis).  Although research and development may increase certainty of analysis, this 

is usually at significant cost, and  thus this remedy may not always be available to the 
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designer.  Furthermore, there is often random variability in engineering problems, 

typically on quantitative variables in the form of manufacturing variability,  or 

load-capacity interference.  

 

Having established the types of uncertainty, the rest of this paper focuses on the 

methodologies for dealing with qualitative variables, and describes the DSI capabilities 

in this area.  

 

3  METHODOLOGIES FOR QUALITATIVE VARIABLES 

 

The typical problem with qualitative variables is that the certainty of analysis is usually 

also low. In addition, they may have random variability, which further compounds the 

problem.  An example of such a variable is dishwasher Soil Type (Figure 5). 

Established risk assessment methods of Monte Carlo analysis [9] and the Algebra of 

Random Variables [10] cannot accommodate this type of problem.  Nor  do  

engineering functional modelling systems address the problem, although there are 

possible exceptions such as prototypes using natural language fragments  [11].  

Quality function deployment (QFD) has some capabilities in this area as it transfers 

qualitative customer needs into a set of ranked engineering product attributes  [12].  

However, limitations include sensitivity of output importance to the number of variants 

of a characteristic that are initially listed, and the  imposition of a numerical ranking on 

the customer requirements [13]. Also, QFD has no means to accommodate uncertainty 

in either the scoring or the relationships.  Bayesian methods of probabilistic reasoning 

may be used to model quantitative, but not qualitative, uncertainty. The uncertainty has 
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to be described explicitly by a probability distribution, which can be tedious, and it may 

be difficult to find a formal solution [14]. Bayesian methods require high certainty of 

analysis. Semi-quantitative simulation [15] uses numeric intervals to approximate 

ordinal numerical scales, producing quantitative outputs. Other qualitative scales are 

not accommodated. Fuzzy theory operates on ordered scales, both numerical and 

textual [16],  accommodating the uncertainty in converting an ordinal scale to an 

interval one, which few other systems provide. However, fuzzy theory is limited to 

models with relatively high certainty of analysis (mathematical or logical relationships 

including expert system rules), and may not be used on nominal data types. Other 

methodologies that assign numbers to variables on ordered textual scales include 

genetic algorithms [17], utility theory, and multi-criteria decision analysis [18], where 

multiple aspects of utility (some of which may be ordered variables) are aggregated 

into a single measure of worth.  They require high certainty of analysis, evident in the 

weighting function. 

 

The methods described above either cannot operate on qualitative variables, or only 

on ordered variables, and cannot accommodate low certainty of analysis.  Decision 

analysis [19] provides the most robust approach to modelling systems of (i) qualitative 

variables, (ii) with random variability, and (iii) low certainty of analysis.  A limitation of 

the method is that it works best with variables that have only a few probably states, 

since it uses a combinatorial approach which can be tedious when there are many 

states to evaluate. Another limitation is the reliance on expert opinion, and while this is 

treated in a transparent way, it is necessarily subjective and therefore potentially 

contentious.  
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The fact that there are limited options for modelling qualitative variables complicated 

the bigger objective of developing a methodology to handle both quantitative AND 

qualitative variables (as well as other types of uncertainty) in engineering design.  The  

novel solution embodied in the Design for System Integrity (DSI) methodology [1,2,3] 

was to use a discrete combinatorial [20] approach that  is simultaneously compatible 

with the algebra of random variables (for quantitative variables and perfect knowledge) 

and decision theory (for qualitative variables and subjective knowledge). Importantly, 

the resulting methodology is also able to handle the cases intermediate to these two 

main processes.  The quantitative process [3] is to take two input histograms and 

combine them in combinatorial manner using the given mathematical operator or 

decision table.  The qualitative process within  DSI is to use decision tables (termed 

maps) to determine an output qualitative variable (represented by a histogram) from 

two qualitative input variables (each represented by a histogram). The knowledge in 

the table is provided from expert opinion, and uncertain opinion at that.  

 

DSI has been embodied in a software system that provides a user interface and 

encapsulates the algorithms.  The software embodiment of DSI also includes 

catalogue features and multiple viewpoints, as support features for the engineering 

design environment.  
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4 OPERATION OF DSI  

 

The DSI process for qualitative variables is described by application to a subset of a 

model for wash performance of domestic dishwashers. A subsequent paper is 

intended to describe the broader context of the case study and the overall results. 

 

 

4.1   GENERAL OPERATING PRINCIPLES 

 

The sample problem is shown in Figure 3  (extracted from the DSI user interface) as a 

graph for determining Soil State from Soil Type and Soil Thermal Treatment  using a 

decision table (map). Both Soil Type and Soil Thermal Treatment are uncertain textual 

variables and there is no necessity to interpret any order within them. The map that 

relates them to the Soil State is given in Figure 4. 
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Figure 3: View of map operator in Design for System Integrity (DSI) software, 

showing that two inputs, Soil type and Soil thermal treatment are used to 

determine Soil state.  

 

 

Figure 4: Portion of map to convert soil type and soil thermal treatment into soil 

state. Numbers are probabilities where each column sums to unity.   
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For a given Soil Type (e.g. Sauce) and Soil Thermal Treatment (e.g. Fresh) the table 

shows the output Soil State and its variability in terms of probabilities (e.g. Soil State is 

0% probability of being Clean,  10% Soluble Film, 20% Fine Particulate, etc.). It is 

relevant to note that unlike the interval and fuzzy methods, the table does not need to 

contain mathematical expressions, nor is it necessary to transform the input variables 

to a numerical scale nor assume any order. The table simply expresses the belief 

system of an expert, and accommodates the uncertainty of that opinion by spreading 

the probability across multiple values (e.g. Soluble Film, Fine Particulate, etc. each get 

an allocation).  

 

Once the knowledge in the map has been entered by the expert, and the model has 

been constructed using the graphical user interface in DSI, then it is time to run the 

system by asserting the values of the inputs. Here the Soil Type has been asserted to 

be as shown in Figure 5, and the Soil Thermal Treatment as in Figure 6, both of which 

are taken directly from the DSI user interface. The Soil Type distribution is based on 

the types and quantities of soils prescribed in the ANSI/AHAM [21] test for dishwashers. 

By asserting the inputs, the user is assigning probabilities, including zero probability, to 

the labels within the textual variables. If random variability were zero then the user 

would assign all the probability to one label, but in general will spread the total 

probability over multiple labels, as evident in Figure 5.
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Figure 5: Soil type shown as a histogram based on mass of various soils used in 

the ANSI/AHAM test.   
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Figure 6: The profile for Soil thermal treatment can range from ‘fresh’ to ‘burned’ 

soil. For the ANSI/AHAM test there is only a single value: ‘dried’. In this 

particular example it has also been asserted that some of the soil is ‘fresh’ and 

some ‘reheated’.   
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The output of the system is then calculated for each label of the output field. For 

example the probability of Soluble Film (within Soil State)  is determined as the sum of 

the product of the assert probabilities and the respective map probability. The final DSI 

result is shown in Figure 7, as the uncertainty in the Soil State variable. 
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Figure 7: Soil state is a combination of soil type and soil thermal treatment. It 

describes the important wash characteristics of the soil. 

 

The user may modify the profiles of the input assertions, e.g. set up another soil profile 

that includes more rice, to model the performance of the machine in a different market. 

In doing so the user reassigns the probabilities of the assertions only, and leaves the 

table probabilities unchanged. Alternatively, the table probabilities may be changed, 

but that corresponds to the expert changing the structure of the model. The table will 

have to be edited if one of the inputs gets a new qualitative item, for example if a new 

soil type ‘honey’ was added. If the table was not changed after such an insertion, then 

the DSI algorithm degrades gracefully by automatically creating an 'unresolved' label in 

the output to receive the probability contribution of the unexpected label.  
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4.2   DECREASING THE INFORMATION CONTENT  

 

It was stated above that DSI methodology is also able to handle cases of mixed 

variable type,  and this is now demonstrated.   In order to model some engineering 

systems it may be necessary to convert a higher order quantitative scale, (e.g. mass in 

kilograms: Figure  8), to  a lower qualitative scale (e.g. an ordinal textual scale 

‘underweight, light, medium, heavy, overweight’). The process may be necessary 

when the distribution contains too much information to be useful or practical to process. 

This is readily accomplished with a DSI map (Figure 9) to produce the required  textual 

description complete with uncertainty (Figure 10).  
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Figure 8: Random uncertainty in the variable 'Mass Quantitative' is expressed 

here as a probability distribution. 

 

Figure 9: Map for converting Mass (50..120) into a qualitative variable 

('Underweight ... Overweight’). The sum of each column sums to unity, and the 

analyst is free to distribute that total probability according to uncertain belief. 
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Figure 10: Qualitative output for mass, with uncertainty shown as a probability 

histogram. 

 

 

4.3   INCREASING THE INFORMATION CONTENT  

 

From the above discussion on the ‘weak order’ problem, it is clear that the conversion 

of a single qualitative variable into a quantitative variable lacks robustness,  although it 

is often done in design. However, it may be appropriate when the assignment is explicit 

[8]. The DSI maps provide just such an explicit assignment, in the form of stated beliefs 

(with their uncertainty).  Even so, it is difficult from a purist perspective to see many 

cases where a designer or systems analyst can robustly  make such a one-to-one 

conversion.  However, the case seems stronger where multiple sources of qualitative 
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information are to be combined into a single quantitative output variable, again 

providing this was based on defendable knowledge. In the process a higher order 

variable is created, hence the information content is increased (though it is still 

uncertain).  A DSI  map provides such a mechanism and the process is illustrated in 

Figure 11, which is a fragment of a DSI model for dishwasher wash performance.  

 

 

  

Figure 11: DSI model used to determine soil removal time using a map. The 

graph in the centre of the figure shows the operation. The inputs are the two 

distributions at the bottom of the figure, and the output is the top distribution. 
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The input called SoilStateT is a variable describing the condition and type of soil on 

dishware that are placed in a dishwasher. It is qualitative: nominal textual  since there 

is no ranking of the elements. The other input is Wash TemperatureT which is 

quantitative (interval scale), though it could be qualitative (nominal scale) if necessary. 

The map correlates these two inputs according to other knowledge, and uncertainty of 

that knowledge, that the expert has expressed in the map.  The output of Soil removal 

time T  is a series of numbers which would be interpreted as quantitative  (interval 

scale).   

 

4.4   CORRELATION TABLES  

 

Correlation tables are used (e.g. in Monte Carlo analysis) to correlate quantitative 

variables for which the usual assumption of independence does not hold. The DSI 

maps can be used for this purpose too. However the DSI maps are more powerful than 

conventional correlation tables as they:  

(i)  include uncertainty of the form ‘if inputs are A and B, then output is range Ci with 

probabilities pi’, and  

(ii)  they permit the inputs to be either quantitative or qualitative.  

 

DSI maps permit all the various combinations of quantitative and qualitative variables 

to be used together in one model.  Two of these cases have special names: two 

qualitative inputs producing a qualitative output is a decision table, and two  

quantitative inputs producing a quantitative output is a correlation table. The map 

methodology of DSI accommodates these two special cases as well as other ways of 
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combining qualitative and quantitative data.  DSI could be considered an extension of 

correlation tables towards qualitative variables, and equally as an extension of 

decision tables towards quantitative variables.  

 

 

5 DISCUSSION  

 

Addressing the hypothesis 

Returning to the original hypothesis, the above excerpts demonstrate the qualitative 

capability of DSI, and together with the previous demonstration of quantitative function 

[2], show that DSI is indeed able to accommodate multiple types of uncertainty as 

might  exist during engineering design. Benefits of the map approach of DSI are:  

(1) The map provides a traceable and defendable record of the expert’s opinion. 

(2) The existence of uncertainty of analysis is acknowledged and formally 

represented in the map. 

(3) The map accommodates all combinations of quantitative and qualitative 

variables.  

(4) The map provides for uncertain correlation tables.  

 

Comparison with other methodologies 

The two obvious alternatives to DSI are decision theory and fuzzy theory. Compared to 

standard decision tables, DSI subsumes the functionality and extends beyond it to 

cope with fully quantitative variables. Where the DSI map process departs from 

conventional decision tables is in the ability to accept quantitative inputs, and to 
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function as a correlation table. It also includes support for deviant variables (input 

labels that are not included in the decision table). 

 

Compared to fuzzy theory, (i) DSI is not limited to ordinal textual data ('hot..cold'), but 

can use nominal data (non-ranked) data as well, and (ii) DSI is not limited to high 

certainty of analysis. Fuzzy theory transforms the variable onto an interval scale, 

solves the problem in the mathematical domain, and transforms the result back to an 

ordinal textual scale, whereas  DSI solve the problem entirely  in the qualitative domain 

without needing to transform the variables. Another significant difference (not 

necessarily a superiority) is that DSI provides a probabilistic computation consistent 

with both decision analysis, the algebra of random variables, and Monte Carlo analysis, 

whereas Fuzzy theory provides a possibilistic computation based on interval analysis.   

 

The capabilities of decision theory and fuzzy theory are summarised in Figure 12, and  

of DSI in Figure 13. 
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Figure 12: Fuzzy theory and decision theory have different capabilities on the 

three dimensions of uncertainty.   
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Figure 13: Capabilities of DSI on the three dimensions of uncertainty.   

 

 

Limitations of DSI   

The DSI decision tables can model problems that can be formulated as two uncertain 

input variables that subjectively or objectively determine an output variable. It does 

however require probabilities of those input variables, and will not accommodate 

subjective likelihood (e.g. “highly unlikely”). It is also dependent on expert opinion, 

which naturally is always subjective even if informed. This is possibly unavoidable, and  

common to other established methodologies in risk assessment. Useful results may 

nonetheless be obtainable. When the results of the analysis are used only within the 

organisation, then subjectivity may not be an issue as an analysis with imperfect 
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information will often provide more of a competitive advantage than no analysis, and 

the expert usually has a relationship of acceptance with the organisation. This situation 

is typical of engineering design. However,  in the larger  risk assessment environment 

these provisos may not hold, especially where other protagonists (e.g. the public or the 

courts) may question the validity of the expert opinion. The work therefore connects 

with risk assessment [22] and risk perceptions [23], though these interesting topics are 

beyond the scope of the present paper.   

 

6 CONCLUSIONS  

 

Following earlier papers in the series [2, 3], this paper presented the Design for System 

Integrity (DSI) methodology, especially its processes for qualitative variables. It was 

shown that a modelling system could be developed to accommodate the multiple types 

of uncertainty that can exist during engineering design, including the processing of 

qualitative variables through imperfectly understood systems.  To clarify the problem, 

the paper identified several independent dimensions of uncertainty. The abilities of 

existing methodologies to accommodate qualitative variables were reviewed. The 

principles of DSI were explained, particularly its ability to operate on uncertain textual 

non-ordered variables given subjective and imperfect knowledge (including uncertain 

opinion). DSI has the ability to downgrade the information content in a variable, where 

the primary variable contains too much information to be practical. It can also upgrade 

the information content of a variable (e.g. an ordinal variable to an interval one), and 

the conditions under which this is valid were discussed.  Conceptually, DSI combines 

the functionality of correlation tables and decision tables, and is able to operate on both  
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quantitative and qualitative variables in the same model. 

 

The originality in the work is that  DSI  accommodates multiple types of uncertainty, 

namely certainty of analysis, random variability, and type of variable, within a single 

methodology.  These multiple forms of uncertainty appear in the engineering design 

process, and the value of DSI is consequently its support for decision making under 

uncertainty, i.e. risk management in engineering design.    

 

It is intended that a future paper will describe the application of the DSI methodology to 

a case study in engineering design. 
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List of captions 
 
Figure 1:  The uncertainty that exist in any analysis activity is represented here by three 

orthogonal dimensions: (a) the certainty of analysis, (b) the random variability, and (c) 
the type of variable. Each dimension has various categories, and the figure gives 
examples for each. The position of  conventional engineering analysis methodologies is 
illustrated by the block.   

 
Figure 2:   Classification system to distinguish between qualitative and quantitative variables. 

Examples of each type are given in brackets. The arrows indicate the direction of 
decreasing information content.  

 
Figure 3:  View of map operator in Design for System Integrity (DSI) software, showing that two 

inputs, Soil type and Soil thermal treatment are used to determine Soil state.  
 
Figure 4:  Portion of map to convert soil type and soil thermal treatment into soil state. Numbers 

are probabilities where each column sums to unity.   
 
Figure 5:  Soil type shown as a histogram based on mass of various soils used in the ANSI/AHAM 

test.   
 
Figure 6:  The profile for Soil thermal treatment can range from ‘fresh’ to ‘burned’ soil. For the 

ANSI/AHAM test there is only a single value: ‘dried’. In this particular example it has 
also been asserted that some of the soil is ‘fresh’ and some ‘reheated’.   

 
Figure 7:  Soil state is a combination of soil type and soil thermal treatment. It describes the 

important wash characteristics of the soil. 
 
Figure 8:  Random uncertainty in the variable 'Mass Quantitative' is expressed here as a 

probability distribution. 
 
Figure 9:  Map for converting Mass (50..120) into a qualitative variable ('Underweight ... 

Overweight’). The sum of each column sums to unity, and the analyst is free to 
distribute that total probability according to uncertain belief. 

 
Figure 10:  Qualitative output for mass, with uncertainty shown as a probability histogram. 
 
Figure 11:  DSI model used to determine soil removal time using a map. The graph in the centre of 

the figure shows the operation. The inputs are the two distributions at the bottom of the 
figure, and the output is the top distribution. 

 
Figure 12:  Fuzzy theory and decision theory have different capabilities on the three dimensions of 

uncertainty.   
 
Figure 13:  Capabilities of DSI on the three dimensions of uncertainty.   
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