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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Master of Applied Science. 

An evaluation of Solanum nigrum and S. physalifolium biology 

and management strategies to reduce nightshade fruit 

contamination of process pea crops. 

By S.L. Bithell 

 

The contamination of process pea (Pisum sativum L.) crops by the immature fruit of 

black nightshade (Solanum nigrum L.) and hairy nightshade (S. physalifolium Rusby 

var. nitidibaccatum (Bitter.) Edmonds) causes income losses to pea farmers in 

Canterbury, New Zealand.  This thesis investigates the questions of whether seed 

dormancy, germination requirements, plant growth, reproductive phenology, or fruit 

growth of either nightshade species reveal specific management practices that could 

reduce the contamination of process peas by the fruit of these two weeds. 

The seed dormancy status of these weeds indicated that both species are 

capable of germinating to high levels (> 90%) throughout the pea sowing season when 

tested at an optimum germination temperature of 20/30 °C (16/8 h).  However, light 

was required at this temperature regime to obtain maximum germination of S. nigrum. 

The levels of germination in the dark at 20/30 °C and at 5/20 °C, and in light at 5/20 °C, 

and day to 50 % germination analyses indicated that this species cycled from non-

dormancy to conditional dormancy throughout the period of investigation (July to 

December 2002).  For S. physalifolium, light was not a germination requirement, and 

dormancy inhibited germination at 5/20 °C early in the pea sowing season (July and 

August).  However, by October, 100% of the population was non-dormant at this test 

temperature.  Two field trials showed that dark cultivation did not reduce the 

germination of either species. 

Growth trials with S. nigrum and S. physalifolium indicated that S. physalifolium, 

in a non-competitive environment, accumulated dry matter at a faster rate than 

S. nigrum.  However, when the two species were grown with peas there was no 

difference in dry matter accumulation.  Investigation of the flowering phenology and 

fruit growth of both species showed that S. physalifolium flowered (509 °Cd, base 

temperature (Tb) 6 °C) approximately 120 °Cd prior to S. nigrum (633 °Cd).  The fruit 

growth rate of S. nigrum (0.62 mm/d) was significantly faster than the growth rate of 
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S. physalifolium (0.36 mm/d).  Because of the earlier flowering of S. physalifolium it 

was estimated that for seedlings of both species emerging on the same date that 

S. physalifolium could produce a fruit with a maximum diameter of 3 mm ~ 60 °Cd 

before S. nigrum. 

Overlaps in flowering between peas and nightshade were examined in four pea 

cultivars, of varying time to maturity, sown on six dates.  Solanum physalifolium had the 

potential to contaminate more pea crops than S. nigrum.  In particular, late sown peas 

were more prone to nightshade contamination, especially late sowings using mid to 

long duration pea cultivars (777-839 °Cd, Tb 4.5 °C).  This comparison was supported 

by factory data, which indicated that contamination of crops sown in October and 

November was more common than in crops sown in August and September. Also, 

cultivars sown in the later two months had an ~ 100 °Cd greater maturity value than 

cultivars sown in August and September.  Nightshade flowering and pea maturity 

comparisons indicated that the use of the thermal time values for the flowering of 

S. nigrum and S. physalifolium can be used to calculate the necessary weed free 

period required from pea sowing in order to prevent the flowering of these species.  

The earlier flowering of S. physalifolium indicates that this species is more likely to 

contaminate pea crops than is S. nigrum.  Therefore, extra attention may be required 

where this species is present in process pea crops.  The prevention of the flowering of 

both species, by the maintenance of the appropriate weed free period following pea 

sowing or crop emergence, was identified as potentially, the most useful means of 

reducing nightshade contamination in peas. 

 

Keywords:  Pisum sativum, Solanum nigrum, Solanum physalifolium var. 

nitidibaccatum, weed, dormancy, germination, thermal time, flowering, fruit growth. 
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Chapter 1 General introduction 

1.1 The problem of nightshade contamination of 
process peas 
This research addresses the problem of contamination of process pea (Pisum sativum 

L.) crops by the immature fruit of two species of nightshade;  Solanum nigrum L. (black 

nightshade) and S. physalifolium Rusby var. nitidibaccatum (Bitter.) (hairy nightshade) 

in Canterbury, New Zealand.  Solanum nigrum and S. physalifolium compete with and 

contaminate both conventional and organic (Anon, 2001) process pea crops.  

Contamination of the harvested peas by the immature nightshade fruit necessitates 

separation of nightshade fruit from peas after harvesting, a difficult process, because 

the nightshade fruit is a similar shape, colour and density to peas.  Currently, no 

technology is available which can successfully separate peas and nightshade fruit that 

are of similar size.  The removal of contaminants in process peas is required for 

producing of a high quality product (Cawood, 1987).  Separation is also required as 

nightshade plant material, including fruit, contains toxic alkaloids (Brain and Turner, 

1971).  As an example, small (0–3 mm diameter) S. nigrum fruit are reported to have a 

solasodine concentration of ~ 0.08 % of dry weight (Eltayeb et al., 1997). However, this 

concentration reduces dramatically as the fruit diameter increases. 

Processors have a nil tolerance for nightshade fruit in peas for processing (A. 

White, Heinz Wattie’s Ltd, pers. comm.).  Growers’ payments for contaminated loads of 

peas are reduced by at least 15 %.  Deductions are greater if losses in crop weight 

following nightshade fruit removal exceed 15 %.  In cases of severe contamination, up 

to 50 % of the pea crop can be lost (A. White, Heinz Wattie’s Ltd, pers. comm.).  This is 

because, typically, in a nightshade-contaminated load of peas, the nightshade fruit are 

smaller than the largest size-grades of peas.  To remove the nightshade fruit from 

loads, the load is size graded through screens.  This results in the loss of all peas 

smaller than 8.7–9 mm.  This smallest size-grade is called ‘baby peas’.  This is a 

serious problem as these ‘baby peas’ are the most valuable fraction of the crop.  In 

some cases, additional screening with a larger mesh size may be required due to the 

continued presence of nightshade fruits after the first screening.   

Product losses can be considerable.  For example, the cost to a New Zealand 

processing company from nightshade contamination, in terms of product losses, was 

$79,000 ($70,000 for organic peas, $9,000 for conventional peas) in the 1999/2000 

season for the Gisborne, New Zealand operation (A. White, Heinz Wattie’s Ltd, pers. 
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comm.).  In the South Island of New Zealand production losses for the processing 

company Heinz Wattie’s Ltd from nightshade contamination were about $10,000 in the 

1999/2000 season.  Apart from losses associated with product loss, nightshade 

contamination also results in increased processing costs in comparison to non-

contaminated loads, due to the extra separation procedures required for contaminated 

loads.  Nightshade contamination is not confined to pea growers and processors in 

New Zealand alone (Healy, 1974; Cawood, 1987).  There are problems with 

nightshade contamination of process peas in the United States of America (Heider, 

1996), England (Gane, 1972; Knott, 1986) and France (Geoffrion, 2000).  

Organic production of pea crops is currently increasing in importance in New 

Zealand.  There were approximately 300 ha of certified organic peas, valued (to 

farmers) at approximately $600,000 gross margin, grown for Heinz Wattie’s Ltd in the 

2000/01 season, in New Zealand.  The management of nightshade weeds in organic 

process pea crops is more difficult than in conventional crops.  Currently available 

weed management practices, such as mechanical weeding, have a number of 

limitations, such as operations being restricted to periods during early pea growth 

stages, as later weeding negatively affects pea yields due to crop damage 

(Rasmussen, 1993).  Additional and/or alternative methods, other than repeated 

mechanical weeding, are required to assist with the management of weeds in organic 

peas while maintaining optimum pea yields. 

1.2 Justification 
The research presented in this thesis seeks to address the lack of information on 

seasonal nightshade contamination trends in process peas in Canterbury, and 

examines a number of factors that may contribute to seasonal contamination by 

nightshade.  This information is required to obtain a better understanding of the 

problem and to assist with the identification of possible causal factors that may 

contribute to seasonal nightshade contamination trends.  Information is also required 

on the biological attributes of S. nigrum and S. physalifolium contributing to process 

pea contamination in order to evaluate potential management strategies.  The 

contamination of process peas at harvest by nightshade fruit occurs by the co-

occurrence of three factors.  First, the nightshade emerges in the field at a time relative 

to the crop, that given suitable conditions, the nightshade may flower and initiate fruit 

growth prior to pea maturity.  Secondly, some nightshade plants escape or survive 

weed control measures and, thirdly, some plants successfully flower and produce fruit 

prior to the pea harvest.  Therefore, information is required that can address these 

three requirements and help ameliorate the negative effects. 
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Despite S. nigrum being reported as one of the most common weed species in 

the world (Holm et al., 1977) there is a lack of information on aspects of its biology 

relevant to the evaluation of non-herbicide management practices.  Solanum 

physalifolium has relatively recently naturalised in New Zealand (Healy, 1974), and 

there is little information on its field germination requirements.  The determination of the 

potential effects of seed dormancy on seasonal germination and emergence 

requirements for both species, during the process pea growing season in Canterbury, 

are required.  Dark cultivation has been reported to reduce the field germination of 

S. nigrum and S. sarrachoides Sendt. in the United States of America (Scopel et al., 

1994).  However, this practice has not been evaluated for nightshades in New Zealand, 

nor has the importance of light as a germination requirement during the pea sowing 

season been demonstrated.   

The flowering of nightshade is an aspect of development that is important to 

understand.  For S. physalifolium there is no published information on the phenology of 

its development and, for S. nigrum, there is also no published information on fruit 

growth after flowering.  Identifying the role of environmental factors influencing 

S. nigrum and S. physalifolium bud appearance and flowering, and measuring when 

these developmental stages occur, is important.  As well, describing fruit growth after 

flowering may facilitate estimates of when nightshade fruit will reach a size that will 

contaminate a process pea crop.  This information will allow better management of the 

risk of nightshade contamination. 

For S. nigrum and S. physalifolium growth, the effect of competition with a pea 

crop on nightshade growth is not well described.  Yet, it is reported that weed growth 

affects the volume of reproductive output (Thompson et al., 1991).  Thus, growth 

success may affect the volume of fruit produced by a plant;  this information gap also 

needs to be addressed.   

Sowing date alone can have a substantial effect on the competitive balance 

between a crop and its weeds, particularly where environmental conditions differentially 

affect crop and weed growth rates (Mohler, 2001a).  Environmental factors can affect 

weed development and can determine how successfully the weeds compete with 

(Oliver, 1979), or contaminate, a crop.  Surprisingly, there is little information on 

seasonal trends in nightshade contamination of process peas.  Anecdotal accounts 

from processing field staff from Heinz Wattie’s Ltd, operating in Canterbury, New 

Zealand indicate that the contamination of process peas by nightshade fruit is more 

common for crops that are processed in January than for earlier processed crops.  

However, there has been no formal analysis of seasonal trends in nightshade 
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contamination of process peas and there has been no analysis of the possible causes 

of variation in seasonal nightshade contamination. 

Finally, although this work focuses on nightshade biology and factors that affect 

nightshade contamination in pea crops in Canterbury, New Zealand the information 

gained will also be of use to pea growers and processors outside Canterbury. 

1.3 Research objectives 
These are : 

1. Analyse factory nightshade contamination records for seasonal trends in 

nightshade contamination and consider factors that may contribute to these trends. 

2. Describe the dormancy cycle and the field germination requirements of S. nigrum 

and S. physalifolium during the process pea growing season in Canterbury, New 

Zealand. 

3. Describe the growth and dry matter accumulation of S. nigrum and S. physalifolium 

when grown with and without process peas. 

4. Quantify the phenology in relation to bud appearance, and flowering and fruit 

growth of S. nigrum and S. physalifolium. 

5. Develop recommendations for growers and processors about the management of 

S. nigrum and S. physalifolium in process pea crops. 
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Chapter 2 :  Literature review 
 

2.1  Introduction 
 
This literature review provides a critical review of the relevant literature concerning the 

management of weeds in process pea crops, with particular attention to the 

management of weeds in organic pea crops.  The practice of, and factors affecting, the 

success of dark cultivation to reduce weed germination and emergence, as a possible 

additional weed management tool in organic agriculture, are discussed.  The literature 

on the dormancy, germination, emergence, growth, flowering phenology and fruit 

growth of Solanum nigrum and S. physalifolium is critically reviewed. 

 

2.2  Production of process peas 
 
In 2000, $NZ 40.6 million (60,000 tonnes) of process peas were exported from New 

Zealand (Kerr and Aitken, 2000).  They were the highest earning processed vegetable 

crop exported from New Zealand.   

The volume of pea production in a region is determined by a number of factors 

including throughput processing capacity, area grown, mean yield of shelled peas per 

cultivar and the length of season suitable for process pea production (Ottoson, 1973).  

If the processing capacity of a factory is constant, there are limited options for 

maximising or increasing the volume of peas produced in a region.  Extension to the 

season by late sowings is not a viable option due to the relative yield reductions from 

late sowings (Hardwick et al., 1979).  However, the season can be extended at the 

start, by sowing cultivars with a lower thermal time requirement early in the growing 

season, relative to the thermal time requirements of cultivars sown mid and late season 

(Cawood, 1987).  Other factors, such as soil type, can also affect planning (Ottoson, 

1973).  In Canterbury, light soils are sown first and heavy soils are, generally, sown 

later in the season.  Sowing starts in August and usually ceases in late November.   

 

2.2.1 Production of organic process peas 
 
Process peas grown in New Zealand for the organic market use large sieve size 

varieties to assist with potential screening to remove nightshade fruit (A. White, Heinz 

Wattie’s Ltd, pers. comm.).  Organic pea processors in the United States of America do 
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not use large sieve size peas due to customer requirements, and so are restricted to 

late season sowing to avoid nightshade contamination (A. McErlich, Small Planet 

Foods, Washington, United States of America., pers. comm.).  Processors in the United 

States of America are moving towards the use of afila (leafless) cultivars.  However, 

these have reduced the period within which tine weeding can be carried out due to their 

interlocking tendrils (A. McErlich, Small Planet Foods, Washington, United States of 

America., pers. comm.). 

Pea cultivars used in Canterbury for the organic market are leafy type varieties.  

Sowing rates are 330 to 350 kg/ha, with a drilling rate aimed at giving a field 

emergence (FE) of 120 plants/m2.  This is 10 plants/m2 higher than the FE for 

conventional peas to compensate for plant losses during tine weeding and to create a 

dense canopy.  CEDENCO, a processing company in Gisborne, New Zealand, has 

increased sowing rates of organic peas even higher and aims at an FE of 135 

plants/m2 in an effort to make the crop more competitive with weeds (A. Holmes, 

CEDENCO, pers. comm.).  Process pea density trials indicate that pea yield plateaued 

at 140 plants/m2, in one year of trials and 180 plants/m2 in the second year of trials 

(Lawson, 1982; Lawson and Topham, 1985).  For weed competition effects, even the 

presence of low weed biomass at high pea densities (194 plants/m2) negatively 

impacted on pea yield relative to weed free plots (Lawson, 1982; Lawson and Topham, 

1985).  The authors reported that weed management practices were still required to 

avoid yield losses even at high pea densities.   

Rolling of pea paddocks to assist harvesting with a pea viner is advocated 

either at pre-emergence or at a crop height of 50-100 mm (A. White, Heinz Wattie’s 

Ltd, pers. comm.).  Growers in Canterbury generally use 170 mm row spacings (A. 

White, Heinz Wattie’s Ltd, pers. comm.). 

 

2.2.2  Contamination of process peas 
 
Weed management, in both conventional and organic crops, is usually directed at 

minimising the competitive effect/interaction that weeds have on the crop being grown.  

The competitive production principle is defined as the situation when one species has 

an effect on the environment, which causes a negative response in the other species 

(Radosevich et al., 1997).  In some cases, however, the yield of the crop can be 

compromised not through competitive interactions with weeds but by weeds indirectly 

reducing crop yield through contamination.  With nightshade fruit the problem is the 

mixing of a contaminant that is similar to the harvested crop (Knott, 1986).  Isolation of 

the contaminant increases processing requirements and leads to product loss. 
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Other contaminants of process peas crops can also mimic small green peas, 

such as the flower buds of Cirsium arvense L. (Scop.) and Matricaria chamomilla L., 

and fruit from volunteer Solanum tuberosum L. plants (Gane, 1972; Knott, 1993).  

However, green nightshade fruit are the most technically difficult to isolate (A. White, 

Heinz Wattie’s Ltd, pers. comm.).  Surprisingly, this problem has received little research 

attention, with one report studying nightshade Solanum ptycanthum Dun. (eastern 

black nightshade) growth in peas.  Unfortunately, this study focused on yield reduction 

caused by competition rather than contamination (Croster and Masiunas, 1998).   

Only one study directly addresses the problem of nightshade contamination in 

processing crops.  The study was of S. ptycanthum and S. sarrachoides’ thermal time 

requirements for bud initiation, flowering and fruit growth, to 0.5 mm, from the 

dicotyledonary stage (Heider, 1996).  This study quantified the thermal time 

requirements for each species with and without competition from a mid season canning 

pea (cv. Rally, 738 °Cd maturity, Tb 4.44 °C) and a late season freezing pea (cv. Dual, 

821 °Cd maturity, Tb 4.44 °C), each at two sites.  One was irrigated on light sandy soils 

and one was unirrigated on a heavy soil.  A repeat year of trials in 1995 followed those 

in 1994.  For a single planting of each crop, nightshade seedlings were transplanted at 

weekly intervals into the crops or no competition plots.  Relevant findings were:  that 

only nightshades transplanted in the first three weeks from pea sowing developed 0.5 

mm fruit;  the nightshade species differed significantly and consistently in rates of 

development with S. sarrachoides having lower thermal time requirements for bud 

appearance, flowering and 0.5 mm fruit growth than S. ptycanthum.  The presence or 

absence of pea competition had no significant effect on the thermal time requirements 

for bud appearance or flowering.  From this data regression models were developed to 

predict nightshade development in pea crops.  However, these models were noted by 

Heider (1996) to be limited in usefulness for growers or processors as they were 

dependant on highly specific information.  This work provides useful information but 

does not include the nightshade species that are of concern in Canterbury, although 

S. ptycanthum is reported to have similar thermal time requirements for flowering as 

that of S. nigrum (McGiffen and Masiunas, 1992).  The effect of seasonal planting 

dates of peas on nightshade development is also not addressed by this study, nor is 

the relevance of 0.5 mm nightshade fruit as a threshold contamination identified.  

Some work on another contaminant species has been carried out.  El Titi (1986) 

reported Matricaria chamomilla buds as a problem process pea contaminant in a study 

of conventional growers fields in Germany, and identified that M. chamomilla seedlings, 

established at a pea growth stage of 100 mm, had a mean of 28-50 buds/plant at pea 

maturity.  Matricaria chamomilla seedlings that established one week later had a mean 

of only 5 buds/plant at pea maturity.  This indicates that, in the case of M. chamomilla 
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contamination of process peas, the timing of weed establishment relative to the crop is 

an important factor influencing the potential contaminant level at harvest. 

El Titi (1986) also reported that Solanum nigrum was not a problem 

contaminant in his study as flowering and fruiting of S. nigrum did not coincide with pea 

maturity.  The reason for this was that the sowing date of these crops (mid March to 

end of May) largely preceded the seasonal emergence (late spring/summer) of 

S. nigrum.  Elliot (1972) and Knott (1986) also identified the late seasonal emergence 

of S. nigrum in England as a factor, which may reduce the weed’s potential to 

contaminate late sown versus early sown peas.  An organic pea processor in the 

United States has ceased late season pea sowing because of the nightshade 

contamination problems of late season pea harvests (A. McErlich, Small Planet Foods, 

Washington, U.S.A., pers. comm.).  A study of S. ptycanthum competition (5 nightshade 

plants/m2) with peas noted that the degree of pea yield reduction appeared to be linked 

to variations in mean temperatures between trial years, and to within season effects 

where high temperatures (average 23.9 °C over a two week period) favoured 

S. ptycanthum growth (Croster and Masiunas, 1998).  Nightshades with a base 

temperature (Tb) of 6 °C have higher Tbs than those reported for most process pea 

cultivars (Alm et al., 1988; Oliver and Annandale, 1998).  If the flower and fruit 

development of S. nigrum and S. physalifolium respond to temperature in a similar 

manner to S. ptycanthum growth, then nightshade contamination problems in peas 

may be expected for peas grown in years with above average temperatures, or for 

sowing dates within a season that experience the highest average temperatures. 

These reports raise several questions regarding nightshade contamination in 

New Zealand.  Is there a seasonal emergence pattern in New Zealand that contributes 

to the potential for nightshade contamination?  Are other factors involved, such as the 

differing pea cultivar maturity thermal time requirements of early and late sown peas, 

and/or the possible effects of differences in mean temperatures for early (e.g. August) 

and late (e.g. November/December) sown peas, affecting the potential for nightshade 

contamination?  Finally, as with the case of S. ptycanthum, S. sarrachoides and 

Matricaria chamomilla seedlings, can a critical nightshade establishment period relative 

to the crop be identified, which also integrates sowing date and pea cultivar effects? 
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2.3 Weed management in process peas 
 

2.3.1 Organic weed management 
 
Organic production systems have a varied range of weed management methods and 

strategies (Parish, 1990), but in comparison to conventional production systems the 

number of curative rather than preventative management methods available is limited, 

due to the prohibition on the use of herbicides (Lampkin, 1990). 

Weed management methods fall into three broad categories (Radosevich et al., 

1997).  First, chemical control using herbicides and growth regulators.  Secondly, 

biological control procedures that use microorganisms, invertebrates and vertebrates to 

damage weeds.  Thirdly, cultural control procedures that manipulate cropping 

conditions to reduce the density and competitiveness of the weeds.  This includes crop 

rotation, tillage practices, mechanical weeding, residue management for weed 

suppression, choice of competitive cultivars, and the density and arrangement of crop 

plants (Mohler, 1996).  Organic weed control in broad acre crops currently relies, 

almost exclusively, on the last category, cultural methods.  Multiple, or combinations of, 

methods are often required to achieve the best outcome.  For example, suitable crop 

rotations must be planned, the timing of weeding operations should coincide with 

conditions that should desiccate weed seedlings.  Particularly competitive cultivars may 

also be selected to assist with weed management (Radosevich et al., 1997). 

 

2.3.2 Recommended weed management in organic pea crops 
 
The following are the weed management recommendations for organic pea growers in 

Canterbury, (A. White, Heinz Wattie’s Ltd, pers. comm.).  Growers are advised to:  

select fields for peas immediately after the pasture phase of their rotation;  avoid fields 

with a high weed pressure;  use stale seedbeds prior to sowing;  and use pre-

emergence tine weeding post sowing.  Post-emergence tine weeding should then be 

carried out when the peas are established (~ 2.5-leaf stage) to reduce damage to the 

peas, and on hot dry days.  Tine weeding should not be used after the crop has passed 

the 5-leaf stage. 
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2.3.3  Weed research relevant to organic pea production 
 
Information on the competitive effects of weeds on process peas yields is somewhat 

mixed.  Studies using natural field weed populations have reported that weeds cause 

yield reductions compared to weed free plots (El Titi, 1986; Croster and Masiunas, 

1998).  But for comparisons of natural weed populations at a range of densities, weed 

populations of < 80-100 plants/m2 had no effect on yield relative to weed free or 

herbicide treated plots (El Titi, 1986).  A comparison using sown Brassica hirta Moench 

at a range of densities (32-97 plants/m2) and emergence dates in un-weeded peas, 

reports that early emergence had a more significant effect on yield than did late 

emergence or weed density (Nelson and Nylund, 1962).  The early emerging weeds 

had greater negative effects on pod number, leaf area and pea yields than an increase 

in weeds from 32 to 97 plants/m2.  This indicates that reports of weed and pea 

competition that do not describe the timing of weed emergence relative to the crop 

such as El Titi (1986) and Reddiex et al.(2001) may incorrectly interpret the effects of 

density or weed biomass on pea yield.   

In addition, to reducing the competitive effects of weeds, there are additional 

reasons to manage weeds in process peas.  First, there is the risk of contaminants at 

harvest (Gane, 1972) and secondly, there are advantages to minimising weed seed 

inputs to the soil weed seed bank (Jordan et al., 1995; Jordan, 1996).  This is 

especially important as there is evidence that weed seed populations can increase 

under organic management.  For example, after three years of organic management an 

increase in weed seed bank populations from 4,050 to 17,320 seeds/m2 was reported 

in comparison to a conventionally managed trial (on the same site), where weed seed 

populations increased from 3,270 to 6,480 seeds/m2 (Albrecht and Sommer, 1998).  

Therefore, weed management in process peas, as part of a total farm weed seed bank 

management strategy (Dekker, 1999), is required to limit weed seed increases and 

potential problems for later crops. 

Agricultural soils hold large populations of weed seeds: for example, estimates 

of weed seed numbers in 15 Zea mays L. fields in the North Island of New Zealand 

ranged from 3,672 to 248,268 seeds/m2 (Rahman et al., 1997).  Weed seed burdens 

can be considerably depleted: for example, monthly cultivations (to 100 mm) over four 

years reduced seed numbers to 1 to 2 % of the original number (Rahman et al., 1998), 

and cultivation induced death of weed seeds may have important effects on long term 

weed seed populations (Jordan et al., 1995).  However, continual cultivation is not a 

practical or desirable method of crop production. 

Research on the effects of crop rotation on weed seed banks under organic 

management indicates that the rotation sequence and choice of crops has a substantial 
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effect on weed seed accumulation in the soil and that weeds have species-specific 

responses to different crop rotations (Jordan et al., 1995).  Information is limited as to 

the effect of crop rotations of the type practised by Canterbury pea growers on 

nightshade weed populations.  However, intensive Lycopersicon esculentum Mill. 

cropping with nil or minimal crop rotation is associated with increased nightshade weed 

populations in the United States of America (Lange et al., 1986). 

Herbicide resistance in nightshade weeds is a problem internationally (Lange et 

al., 1986; Kremer and Kropff, 1999).  A herbicide resistant (cyanazine, terbuthylazine, 

atrazine and prometryn) S. nigrum population has also been reported in the Manawatu, 

New Zealand (Harrington et al., 2001).  Apart for the independent development of 

herbicide resistance, the dispersal of seed by birds has been identified as a possible 

factor in the spread of herbicide resistant S. nigrum populations between some regions 

in Europe (Stankiewicz et al., 2001).  These reports indicate the potential for this 

problem to establish independently, or to be spread to other regions in New Zealand. 

The management of herbicide resistant weed populations often relies on 

cultural management methods in conjunction with specific herbicide strategies 

(Gorddard et al., 1996; Chauvel et al., 2001).  The requirement for successful cultural 

management strategies has lead to research on the biology of resistant or susceptible 

populations of S. nigrum (Kremer and Lotz, 1998a; Kremer and Kropff, 1998c).  This 

research contributes information relevant to organic and conventional management 

systems. 

 

2.3.4 Germination reduction strategies 
 
Cultivation during field preparation and after stale seedbed treatments can destroy 

newly germinated weed seedlings and weed seeds (Jordan et al., 1995).  However, the 

efficiency of such methods, particularly for final seedbed preparation prior to sowing of 

a crop, is questionable.  Cultivation can further stimulate or expose weed seeds from 

the seed bank in the emergence zone, and contribute to additional weed germination 

and emergence in the establishing crop.  For example, in over three years of trials for 

comparisons of beds, either rough harrowed (1), harrowing followed by raking (2), and 

harrowing followed by shallow rotary cultivation (3), the number of weeds for each 

treatment increased progressively, with, on average, 25 more weed seedlings/m2 for 

treatment 2 in comparison to 1, and, on average, 80 more weed seedlings/m2 for 

treatment 3 in comparison to 2 (Roberts and Hewson, 1971).  An additional rolling of 

each of the above treatments provided an additional 29 % increase in weed seedling 

emergence compared with not rolling (Roberts and Hewson, 1971).  This work 
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indicated that the finer and firmer a seedbed was prepared the greater the weed 

emergence.  In relation to weed management objectives, the stimulation of the 

germination and emergence of weeds by cultivation is possibly only an advantage 

where seed bank depletion strategies (Dekker, 1999) are desired, such as with stale 

seedbeds (Johnson and Mullinix, 1995). 

This disadvantage has lead to research to reduce the effects of cultivation on 

the germination of weed seeds that lie within the emergence zone of the soil surface at 

particular times, such as just prior to, and at, the sowing of a crop.  One possible 

method is the use of alleopathic cover crops to reduce weed seed germination.  For 

example, incorporating residues of Brassica napus L, Secale cerale L. or Triticum 

aestivum L. before sowing peas and tine weeding after pea emergence reduced weeds 

to densities at 30 days after sowing (DAS) that did not differ significantly from a 

herbicide (Metribuzin) treatment (Al Khatib et al., 1997).  However, pea populations 

were significantly reduced by the Secale cerale or Triticum aestivum incorporation, and 

the pea yield for the three green manure incorporation treatments were all significantly 

less than for the respective herbicide treatment.   

 

2.4 Dark cultivation 
 
One cultivation based weed germination reduction strategy is that of dark cultivation.  

This practice has been referred to as night cultivation, but work has demonstrated that 

the use of lightproof covers over cultivation equipment during daylight cultivation can 

also reduce weed seed germination, in some species (Scopel et al., 1994).  This is 

because exposure to light can enhance germination in some plant species.  Such 

species are defined as being positively photoblastic (Wessen and Wareing, 1969; 

Frankland and Taylorson, 1983; Milberg et al., 2000).  Cultivation in the dark can 

reduce the total weed seedling emergence and slow the germination rate of some light 

sensitive species relative to light cultivated soil (Scopel et al., 1994; Jensen, 1995; 

Botto et al., 1998).  However, reductions in the emergence of light sensitive weed 

species through dark cultivation have proved variable among seasons and trial sites 

(Scopel et al., 1994; Buhler, 1997; Botto et al., 1998). 

 

2.4.1 Theory of dark cultivation 
 
The use of dark cultivation is based on the assumption that buried, positively 

photoblastic seeds, receive a brief exposure to light during soil cultivation before 
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reburial; and that this exposure provides an adequate stimulus for germination.  For 

example, calculated laboratory threshold exposure times to induce germination of 

Cerastium fontanum Baumg and Silene noctiflora L. are 1 ms and for Rumex 

obtusifolius L. 0.5 s, for 1,000 µmole/m2/s (with a red to far-red ratio (R:FR) ratio of 

0.85) of light reaching the soil surface under cultivation equipment (Milberg, 1997).  

This light exposure during cultivation results in a significantly greater proportion of 

seedlings emerging from depth.  For example, in a trial area which was predominately 

Stellaria media Vill. significantly greater numbers of seedlings emerged from > 6 mm 

depth after light cultivation compared to dark cultivated plots (Jensen, 1995).  For non-

photoblastic species, or for positively photoblastic seeds left on the soil surface, or 

positively photoblastic seeds receiving light that penetrates the soil surface (~ 4 mm 

depending on soil type (Benvenuti, 1995), no differential response to light treatments 

during cultivation may be expected. 

The germination responses of seeds to light have been classified through laboratory 

based testing.  A full description of seed pre-treatment conditions is important as a 

seed’s light requirement is often dependant on particular seed pre-treatments (Van der 

Woude, 1989; Pons, 1992).  Species that germinate in response to a short duration 

light exposure (SDLE) (Milberg et al., 1996; Milberg et al., 2000) are classified as 

having a low energy response (LER) (Frankland and Taylorson, 1983; Pons, 1992).  

For seeds stimulated by red (R) light, a degree of inhibition can be demonstrated by 

subsequent exposure to far-red (FR) light (Schafer, 1976).  This occurs where the 

requirement for germination is a short duration light exposures (<1 hour), at an 

appropriate wavelength (light quality), but is largely independent of photon flux density 

(PFD) above a minimum threshold value (Pons, 1992).  An example of this type of 

response is:  in R. obtusifolius after a pre-treatment of 25 °C for 24 h and germination 

for 3 d at 25 °C in the dark, total germination was 17.5 %.  However, after a R light 

exposure (660 nm, 3.0 µmole/m2/s for 10 minutes) germination was 96.8 % (Kendrick 

and Heeringa, 1986).  Thus a total PFD of 1800 µmole/m2 provided a strong 

germination response.  Further testing at lower PFD’s established that a 50 % 

germination response only required 11 µmole/m2 (Kendrick and Heeringa, 1986).  

Testing of weed seeds stored in the field then retrieved and exposed to a light source 

(210 µmole/m2/s for five seconds, R:FR 0.85), indicated that 24 out of 44 species had 

significantly enhanced germination following light exposure (Milberg et al., 1996).  This 

response was shown equally by summer annual, winter annual, and perennial species 

(Milberg et al., 1996). 

A secondary type of LER is also reported, which is distinguished as a very low fluence 

response (VLFR).  Germination responses occur at PFD’s of < 1 µmole/m2, and 

germination responses can be elicited from R, FR and green light for species normally 
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only promoted by R light (Kendrick and Heeringa, 1986; Gallagher and Cardina, 1998b; 

Gallagher and Cardina, 1998c; Hartman and Mollwo, 2002).  This response has been 

demonstrated in laboratory stored Amaranthus retroflexus L. seed (Gallagher and 

Cardina, 1998c).  This VLFR mechanism is proposed to act as a germination 

mechanism for seed in the field (Gallagher and Cardina, 1998b; Gallagher and 

Cardina, 1998c; Hartman and Mollwo, 2002). 

 

2.4.2  Evaluations of dark cultivation 
 
A number of field trials have been undertaken that evaluated the effectiveness of dark 

cultivation (Scopel et al., 1994; Jensen, 1995; Buhler et al., 1997; Botto et al., 1998; 

Gallagher and Cardina, 1998d; Fogelberg, 1999; Botto et al., 2000).  Some general 

findings can be drawn from these studies. 

The emergence of particular weed species can be reduced by dark cultivation 

(Jensen, 1995; Botto et al., 1998) including S. nigrum (Scopel et al., 1994).  However, 

success rates were mixed, with light cultivations carried out at the same site in late 

winter, late spring and late summer, providing weed seedling counts relative to the 

night time control of 0, 0.8, and 2.0 respectively (Botto et al., 1998).  While the weed 

species composition at the site changed with season it was apparent that the individual 

species response differed with the season.  For eight weed species with seeds field 

stored and retrieved monthly, laboratory testing of light (40 µmole/m2/s for 12 h a day 

during germination), SDLE (210 µmole/m2/s for five seconds, R:FR 0.85) and dark 

germination responses indicated seasonal variations in light and SDLE responses, and 

some seasonal variability in dark responses (Milberg and Andersson, 1997).  Such 

seasonal variability may be linked to annual changes in weed seed dormancy status 

(Vleeshouwers et al., 1995; Baskin and Baskin, 1998).  This would appear to provide 

an explanation of seasonal variation in dark cultivation responses.   

However, the literature on dark cultivation indicates further temporal variability 

in response.  For example, a dark cultivation in mid May resulted in no significant 

reduction in emergence of S. ptycanthum compared to cultivation in the light.  With 

cultivation in late May, at the same site, there was a significant reduction in emergence 

of ~ 50 % for dark cultivation (Buhler, 1997).  Gallagher and Cardina (1998d) also 

reported variability of success between trials in short succession.  Such results are not 

consistent with the, generally, gradual annual cyclic light responses reported by Milberg 

and Andersson (1997).  This may indicate that additional factors other than season 

may also affect a species germination response to light.  There are a number of 

possible factors such as seed origin, mother plant, soil nitrate level, temperature/burial 
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depth and soil moisture effects in the literature, which may alter the light responses in 

positively photoblastic species. 

The origin and individual mother plant source of the seed may be important pre-

seed bank incorporation factors that influence the light sensitivity of seed.  An 

evaluation of seed collected from three separate populations after pre-treatment at 3 °C 

for 18 weeks for 25 species, reported that 21 of the species had significant differences 

in responses to light (10 µmole/m2/s for 14 h/day during germination), SDLE (same 

methods as Milberg and Anderson (1997)), or dark treatments (Milberg et al., 1996).  

For example, in one population of Rumex longifolius DC. 53 % of seed germinated in 

response to SDLE, while the other two populations had 5.5-6.1 % germination 

response to SDLE.  The cause of this variability may be differing environmental factors 

between environments affecting seed development and maturation.  This is known to 

influence germination requirements (Cresswell and Grime, 1981; Wulff, 1995).  For 

example, seeds of Chenopodium album L. low in endogenous nitrate are more dormant 

but more responsive to exogenous nitrate than seeds with high endogenous nitrate 

levels (Saini et al., 1986).  It is possible that different cohorts of weeds in a season 

produce different quality seed with differing responses to germination stimuli.  Even 

comparisons of seed from individual plants (n = 8) in a population (n = 8), for three 

species (Sinapis arvensis L., Spergula arvensis L., and Thlaspi arvense L.) showed 

intraspecific variability in dormancy (Milberg and Andersson, 1998a).  In addition, there 

was a significant plant by stratification interaction and a population by stratification 

interaction.  This indicated differential responses to seed pre-treatments among both 

plants and populations.  Seed pre-treatments such as stratification have a strong 

influence on a seed’s response to light (Van der Woude, 1989; Pons, 1992).  

Germination responses to pre-treatments can differ for seed from different plants 

(Milberg and Andersson, 1998a) and populations (Milberg and Andersson, 1998b), 

indicating that these factors may contribute to variable responses to dark cultivation for 

both within site and among site comparisons.  

Dark cultivation may, solely, control the light that a seed may receive during 

cultivation, but other factors (often acting in conjunction) within the soil environment 

also affect seed responses to germination stimuli, including light.  One such factor is 

soil nitrate, which, for example, stimulates Chenopodium album germination most when 

the seed is least dormant (Bouwmeester and Karssen, 1993a).  However, near 

maximum germination responses are obtained when KNO3 (50 mM) and R light (30 

minute R irradiations) act in conjunction (Bouwmeester and Karssen, 1989; 

Bouwmeester and Karssen, 1993a).  The action of light and nitrate providing near 

maximum germination responses are common in a number of weed species (Roberts 

and Benjamin, 1979; Karssen and Hilhorst, 1992).  Analysis of the effects of three 
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nitrate levels (0, 0.01, 0.1 mol/l) prior to pre-treatment at 3 °C for 10 d, and subsequent, 

exposure to a range of PFD’s (0, 0.4, 400, 4000, and 40,000 µmole/m2) for four weed 

species resulted in significant interactions between light and nitrate for three species 

(Milberg, 1997).  This indicated that germination responses for the three species in the 

presence of nitrate could not be predicted solely from PFD exposure.  From these 

results Milberg (1997) proposed that soil nitrate level can modify seed responses to 

light and may require consideration in dark cultivation trials.  However, how soil nitrate 

levels relate to field germination is complex. The rate of nitrate mineralization depends 

on soil temperature and soil moisture levels.  In addition, there are a number of 

influential site effects:  soil type; soil pH; soil depth; soil disturbance; plant uptake;  and 

microbial communities (Karssen and Hilhorst, 1992; Ritz et al., 1994). 

Soil temperature and soil moisture affect nitrate mineralization, these factors 

are also reported to affect seed light sensitivity.  The soil temperature or the storage 

temperature of imbibed seeds, stored in the laboratory, affects seed dormancy status 

(Vleeshouwers et al., 1995; Martinez Ghersa et al., 1997).  Generally, increases in soil 

temperature during early spring to mid summer are positively linked to increased 

germination capacity for summer annuals, until the induction of secondary dormancy 

(Bouwmeester and Karssen, 1989).  Gallagher and Cardina (1998c) reported 

significant temperature (20 or 30 °C) by light (0 or 300 µmole/m2 R light) interactions for 

buried seed of Amaranthus hybridus L., retrieved on 10 dates over two years.  

Temperature had a strong effect on the proportion of seed germinating at 0 µmole/m2 R 

light.  For example, at 20 °C only 30 % of seed germinated in the dark, while at 30 °C 

70 % of seed germinated.  These results indicate a temperature dependant light 

requirement.  Gallagher and Cardina (1998c) proposed that such responses may 

function in the field as a depth perception mechanism;  that seed in warmer soils near 

the soil surface had a low proportion of seed requiring light, and that the seed deeper in 

soil experiencing lower temperatures does have a light requirement.  This mechanism 

would also assist seed persistence.  This links with observations that cultivation 

equipment that inverts the soil such as mouldboard ploughing in daylight, generally, 

promoted greater relative weed emergence than night time ploughing (Scopel et al., 

1994; Botto et al., 1998). 

Soil moisture is another environmental factor that may affect seed light 

responses, as reduced soil moisture has implications for nitrate mobility.  Daylight 

tillage consistently gave higher Chenopodium album germination if the soil moisture 

was maintained at > -0.5 MPa (Botto et al., 2000).  The proposed cause of these soil 

moisture effects on seed light requirements is that dark germination was less sensitive 

to decreased soil moisture than that of light-induced seed germination. 
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2.5  The target weeds 
 

2.5.1  Taxonomy of the target weeds 
 
There is uncertainty over the taxonomic identity of the target weed species in this study, 

especially in different parts of the world (Edmonds and Chweya, 1997) (Table 2-1).  The 

species named Solanum sarrachoides was, in 1986, identified as two distinct species, 

with the name S. sarrachoides remaining and a new species S. physalifolium named 

(Edmonds, 1986).  The species, previously known as S. sarrachoides in New Zealand, 

was identified as S. physalifolium, and only this species is reported as present in New 

Zealand (Edmonds, 1986; Webb et al., 1988). 

 
Table 2-1. Latin and common names of three Solanum nightshade species. 

Latin name  Common name 
Solanum nigrum black nightshade 
Solanum sarrachoides hairy nightshade 
Solanum physalifolium hairy nightshade 

 

Differentiation between S. sarrachoides and S. physalifolium is important in 

terms of their biology.  For example, S. sarrachoides can develop into an erect bushy 

plant, is frost resistant and potentially an annual but will perennate (Edmonds, 1986).  

In contrast, S. physalifolium is strictly annual, with a prostrate spreading growth habit 

(Edmonds, 1986).  There is the possibility that other biological attributes may also differ 

significantly. 

Most descriptions of S. sarrachoides in the literature, particularly those 

discussing this species in Australia, New Zealand and North America, conform to those 

for S. physalifolium (Edmonds and Chweya, 1997).  Edmonds and Chweya (1997) 

specifically refer to the descriptions of Healy (1974), Henderson (1974), Ogg et al. 

(1981), Schilling (1981) and Symon (1981) as conforming to the morphology of 

S. physalifolium.  Accordingly, references to S. sarrachoides in later literature that refer 

to the above authorities for identification, will be treated as S. physalifolium. 

Solanum sarrachoides is reported to have a sporadic distribution in North 

America, and S. physalifolium is more common especially in the Plains and Pacific 

States and adjacent Canadian provinces (Edmonds, 1986; Edmonds and Chweya, 

1997).  However, since the identification of S. physalifolium in 1986, no North American 

based study refers to S. physalifolium, but S. sarrachoides is regularly cited 

(Hermanutz and Weaver, 1991; Scopel et al., 1994; Boydston and Hang, 1995; Heider, 

1996; Forcella et al., 1997).  In other regions of the world such as Australia, where prior 
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to 1986 S. sarrachoides was recognised, now only report the presence of 

S. physalifolium (Lazarides et al., 1997).  Or, in other regions such as Spain, the 

existence of both S. physalifolium and S. sarrachoides is reported (Sobrino and del 

Monte, 1994) and the particular species used in studies from this region is indicated 

(del Monte and Tarquis, 1997).  There is a distinct possibility that some post 1986 North 

American based studies were actually made on S. physalifolium rather than 

S. sarrachoides, due to identification problems (Edmonds, 1986; Edmonds and 

Chweya, 1997).  Because the identification of references to S. sarrachoides, especially 

from North America, is not certain, some references to the literature on S. sarrachoides 

will be made for two reasons.  First, due to taxonomic confusion the species described 

could be S. physalifolium and, secondly S. sarrachoides and S. physalifolium may 

behave in the same way under some circumstances. 

 

2.5.2 Solanum nigrum biology and ecology 
 
Solanum nigrum is a spring and summer annual weed with a worldwide distribution 

(Edmonds and Chweya, 1997).  This section of the review will concentrate on the 

literature about S. nigrum’s seed biology, plant growth, and flower and fruit 

development. 

 

Germination requirements - temperature 
Laboratory temperature requirements:  There are contrasting results reported for the 

importance of constant versus alternating temperatures for the germination of 

laboratory-stored seed.  Germination at constant temperatures was reported as 

successful in studies carried out in Israel, Spain, Kenya and Italy (Givelberg et al., 

1984; Agong, 1993; Benvenuti and Macchia, 1993; del Monte and Tarquis, 1997).  

However, work in the United Kingdom, the Netherlands, Sweden and New Zealand 

reported poor (< 10 %) or no germination at constant temperatures (Roberts and 

Lockett, 1978; Wagenvoort and Opstal, 1979; Teketay, 1998; Kremer and Lotz, 1998a; 

Bithell et al., 2002) (Appendix 1).  For example, Roberts and Lockett (1978) reported 

that at constant temperatures in the range 4-30 °C there was no germination of freshly 

harvested S. nigrum seed from five years of collections, or after 18 months storage of 

dry seed, or for seed stored in moist sand for 15 weeks (Roberts and Lockett, 1978).  

Givelberg et al. (1984) suggested that the reported differences in germinability with 

regard to alternating or constant temperature treatment differences may be due to 

some accessions of freshly harvested S. nigrum having primary dormancy. 
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Alternating temperatures are reported to increase germination for S. nigrum 

accessions that germinate poorly under constant temperatures (Bithell et al., 2002) 

(Appendix 1).  For example, comparisons of constant 20 °C and alternating 

temperature treatments of 20/12, 30/12 (12/12 h) gave 0 % germination at 20 °C but 

100 % germination at 20/12 °C and 30/12 °C (Teketay, 1998).  Stratification (5 °C for 0-

6 weeks) of some S. nigrum accessions prior to testing at alternating temperatures of 

9/25 °C (16/8 h) gave optimal germination responses.  The germination rate also 

responded positively to increased stratification period (Wagenvoort and Opstal, 1979). 

The minimum germination temperature has been examined in two studies of 

laboratory-stored seed, with a base temperature (Tb) of 8.4 °C reported for S. nigrum 

(Benvenuti and Macchia, 1993).  A comparison of S. nigrum accessions from three 

regions (cool/tropical, semi-hot/subtropical, hot temperate) in Spain reported respective 

Tb values of 7.5, 7.6, and 10 °C, and respective optimal temperatures (Topt) of 30, 20-

25, and 25 °C (del Monte and Tarquis, 1997).  The maximum temperature (Tm) at which 

the germination rate reached zero ranged from ~37-43 °C.  The results of Givelberg et 

al. (1984) broadly support this Tm range, with germination occurring at temperatures 

over 35 °C, and only some seed germinating at 40 °C. 

Laboratory testing of field stored seed:  Most of the literature regarding germination 

temperature requirements is based on the use of laboratory-stored seed.  The 

temperature requirements of seed stored in the field prior to laboratory testing may be 

more relevant to understanding the germination temperature requirements of S. nigrum 

seed in the soil seed bank.  This seed is exposed to natural conditions of soil 

temperature fluctuations, soil chemicals and moisture.  Two studies reported the 

temperature requirements of field-stored seed.  The first for seed buried one and two 

years in England reported a strict alternating temperature requirement.  Seed was 

tested from April to March, and a seasonal depression in germinability occurred from 

August to December each year for seed tested at 15/25 and 10/25 °C (16/8 h) (Roberts 

and Lockett, 1978).  Testing this seed at 15/30 and 10/30 °C produced minor 

germinability depression in August.  In all other months at all four test temperatures 

germinability approached 100 %.   

A second study in the Netherlands reported positive responses to constant 

temperatures (5-30 °C) following seed retrieval, but with differing minimum temperature 

requirements at the different seed retrieval dates (Kremer and Lotz, 1998a).  For 

example, for a triazine-susceptible accession (Achterberg) the lowest temperature 

germination was observed at 20, 15 and 10 °C for the February, March and May 

retrievals, respectively.  This indicated seasonal dormancy temperature thresholds, 

which were consistent with a summer annual type two response pattern, where, with an 
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additional loss of dormancy, the minimum temperature at which the seed will germinate 

declines (Baskin and Baskin, 1998).  Germination in May at 10 °C corresponded with 

soil temperatures (50 mm depth) at the burial site reaching 15 °C (Kremer and Lotz, 

1998a).  In this study germination percentage at 30 °C was lower than at 25 °C for all 

four accessions, and retrieval dates.  But germination rates were consistently higher at 

30 °C.  This indicated rapid germination of a possible non-dormant portion of the 

population and the possible induction of dormancy in the remainder of the population.  

These results differ from studies with laboratory-stored seed at, comparable, constant 

temperatures (Givelberg et al., 1984). 

 

Germination requirements - light 
Laboratory studies:  Solanum nigrum seed exhibits positively photoblastic light 

responses (Roberts and Lockett, 1978; Givelberg et al., 1984; Kazinczi and Hunyadi, 

1990; Teketay, 1998; Bithell et al., 2002) (Appendix 1).  For example, freshly harvested 

S. nigrum seed exposed to natural light for short periods during transfer between 

incubators, or germinated in light proofed dishes, was tested at alternating 

temperatures (10/25 °C, 10/30 °C, 15/25 °C and 15/30 °C, 16/8h light/dark durations).  

The mean germination for all temperatures from two seasons (1971, 1972) for light and 

dark treatments was 73 % and 11 %, respectively (Roberts and Lockett, 1978).  Studies 

of seed exposed to R and FR light indicated that S. nigrum, like many other species, 

has a positive germination response to R light and was inhibited by FR light (Roberts 

and Lockett, 1978; Kazinczi and Hunyadi, 1990).  Both studies indicated that for seed 

imbibed at high temperatures (15 or 20 °C) for 9 or 12 d, there was some sensitivity to 

FR light.  Such results may indicate that S. nigrum seed can exhibit VLFR responses 

after particular seed pre-treatments (Hartman and Mollwo, 2002).  This mechanism has 

been proposed to affect Amaranthus retroflexus seed that is close to the soil surface 

and is subjected to high temperatures in late spring and summer (Gallagher and 

Cardina, 1998c). 

Solanum nigrum seed germination is inhibited by light with a low R:FR ratio.  In 

a glasshouse study of filtered light treatments through Bergenia crassifolia (L.) Fritsch 

leaves (R:FR 0.08), after 21 d S. nigrum seed had not germinated under the leaves but 

71 % of seeds germinated under non-filtered light (Teketay, 1998).  The germination 

requirement for light of S. nigrum is not absolute, and the degree of additional 

proportional germination for light versus dark comparisons is moderated by a number 

of factors.  Storage of seed in moist sand in incubators at 4, 15 and 30 °C, or outdoors 

for 15 weeks and then exposed to intermittent light or darkness and tested in 

alternating temperatures of (4/25 °C, 17/23 °C, 10/25 °C, 10/30 °C, 15/25 °C, and 
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15/30 °C, 16/8 h) gave germinations of nearly 100 % regardless of light, storage 

temperature or site (Roberts and Lockett, 1978).  With one exception, for seed at all 

four storage conditions germinated at 17/23 °C, germination was 81.8 % and 15 % for 

the light and dark treatments respectively.  This suggests that in the absence of light, 

S. nigrum may have a more restricted germination temperature range.  In this case 

small temperature amplitudes may be a limitation to germination. 

Some chemicals such as gibberellin (GA) and potassium nitrate (KNO3) also 

positively, affect the germination of laboratory-stored seed of S. nigrum in the dark.  For 

example, S. nigrum seed germinated fully in the dark at 25 and 30 °C in the presence 

of either GA3 or GA4+7 (Givelberg et al., 1984).  The addition of KNO3 (0.2 %) to dark 

treatments of laboratory-stored seed also gave high germinations (36-94 %) compared 

to dark only treatments (2-12 %) (Roberts and Lockett, 1978).  In these tests, seed age 

comparisons indicated that older seed had a greater germination response to KNO3.  

Tests with seed stored in the field and retrieved also indicated that both GA3 (100-400 

ppm) and KNO3 (0.2 %) increased the germination of dark treatments of S. nigrum 

seed (Roberts and Lockett, 1978). 

Field studies:  A study of dark cultivation carried out in the United States of America in 

early summer reported a combined species emergence of S. nigrum and 

S. sarrachoides density of 4 plants/m2. Daylight cultivation gave significantly more 

nightshade seedlings (19 plants/m2) (Scopel et al., 1994).  However, this study did not 

report the proportion of S. nigrum to S. sarrachoides seedlings, making it difficult to 

identify the relative species contributions to the result.  The study also did not report on 

soil temperature, soil nitrate levels at the site, or an assessment of the dormancy status 

of the species.  This makes it difficult to identify the effect of the possible contributing 

factors to the result. 

 

Germination requirements - moisture 
A soil moisture content of 35-40 % has been reported as necessary for optimal 

germination.  Only 8 % germination was observed at 20 % soil moisture (Wakhloo, 

1964).  There are some studies on the effect of water potential (ψ) on S. nigrum seed.  

Using polyethylene glycol (PEG) to produce ψ’s of -0.1, -0.2, -0.4, -0.6, and -0.8 MPa, 

S. nigrum germination at 25 °C after two weeks in solution was 29, 35, 15, 2 and 0 % 

respectively (Givelberg et al., 1984).  Similarly, for ψ’s of -0.1, -0.3, -0.5, and -1.0 MPa, 

S. nigrum germination ranged from 35-75 % at -0.1 MPa for four accessions, but for all 

accessions at -0.3 MPa the germination was < 10 %, and at -0.5 MPa there was no 

germination (Kazinczi and Hunyadi, 1990).  Germination of S. nigrum may be 

hampered at -0.3 and may fail at -0.5 to -0.6 MPa.  These results indicate that 
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S. nigrum germination may be more susceptible to water deficits compared with other 

species such as Chenopodium album and Marrubium vulgare L.  For these species 

base ψ’s are -0.64 and -1.5 MPa, respectively (Lippai et al., 1996; Roman et al., 2000). 

 

Seasonal emergence 
In the United Kingdom a maximum daily soil temperature, at 20 mm depth, 

approaching 20 °C was associated with appreciable emergence of Solanum nigrum 

(Roberts and Lockett, 1978).  The start of emergence in the United States of America 

was observed when the maximum air temperature reached 20 °C (Ogg and Dawson, 

1984).  A mean soil temperature, at 50 mm depth, of 15 and 17 °C preceding the 

initiation of emergence was observed over two years in the Netherlands (Kremer and 

Lotz, 1998a).  An American study, in California, also reported that a 17 °C soil 

temperature, at 50 mm depth, was linked with the beginning of the seasonal 

emergence of S. nigrum (Keeley and Thullen, 1983). 

An 11 year study of seasonal S. nigrum emergence after monthly cultivation of 

plots in field studies at Levin, New Zealand reported a longer annual emergence period 

(ten months) in New Zealand than in the United Kingdom (five months) (Roberts and 

Lockett, 1978; Popay et al., 1995).  Emergence in New Zealand started in August when 

the mean maximum air temperature was ~ 14 °C.  The proportion of annual seedling 

emergence on a monthly basis was, September ~ 4 %, October ~ 7.5 %, November ~ 

11 % and December ~10 %.  The mean maximum temperature at the annual peak 

period of emergence (November) was ~ 18 °C (Popay et al., 1995).  May was the last 

month in autumn in which emergence was observed. 

 

Proportion of the seed bank to emerge, and seed viability 
In a two year study, based in Hawke's Bay, New Zealand the overall mean proportion of 

S. nigrum seed sown in trial plots that emerged from different cultivation treatments for 

combined spring and autumn seedling counts was 6.3 % (Hartley, 1991a).  However, 

higher emergence totals were reported for a study using spring cultivation in the 

Netherlands where emergence over the three months of spring and early summer was 

45 % (Kremer and Lotz, 1998a).  Roberts and Lockett (1978) in three separate (sown 

1966-68) studies of S. nigrum seed mixed with soil to a depth of 50 mm (and cultivated 

three times a year) in the field, demonstrated that in the first year 30-57 % of sown 

seed emerged, in the second year 9-13 %, and in the fifth year emergence was 1-3 %.  

Of the remaining seed 5-19 % was demonstrated to be still viable in subsequent 

glasshouse evaluations. 
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Emergence depth 
Grundy and Mead (1998) studied S. nigrum emergence depths, using lots of 300 

seeds, each buried at a range of depths in narrow bands.  The mean number of 

seedlings that emerged in the first year from five depths were: 0.1 for surface sown 

seed, 6.6 from 1.25 mm, 71.4 from 12.5 mm, 99.8 from 25 mm, 43.8 from 50 mm and 

no seed emerged from 100 mm (Grundy and Mead, 1998).  This indicated a non-

monotonic response for this species, with the maximum number of seeds not emerging 

from the surface.  A study of S. nigrum emergence for two triazine susceptible 

accessions report little difference in the emergence fraction for germinated seed buried 

at 10 or 20 mm, for seed at 40 mm emergence was generally halved and no seed 

emerged from 60 mm (Kremer and Lotz, 1998b). 

 

Cultivation effects 

A trial in which soil containing S. nigrum seed in pots where all pots were cultivated in 

March was carried out in the United Kingdom.  Additional cultivation in the late spring 

(May) increased S. nigrum emergence compared with later season additional 

cultivations in June, July or August (Roberts and Boddrell, 1983).  Field plot trials in 

New Zealand, using S. nigrum (at rates of 0, 2,500 to 5,000 seed/m2) surface sown in 

autumn, three cultivation treatments (autumn and spring, autumn only, spring only) with 

a rotary hoe to 75 mm depth, and a non-cultivation treatment, were undertaken 

(Hartley, 1991b).  For the 0 seed/m2 rate, the total number of unsown resident 

S. nigrum seedlings over two years was significantly greater in the autumn and spring 

treatment compared with the other treatments.  This indicated that frequency of 

cultivation may have a bigger effect than seasonal timing.  In the same trial, but with 

S. nigrum seed sown on the surface, cultivation after burial (autumn cultivation 

treatments) tended to produce the greatest emergence the following spring (Hartley, 

1991b).  This suggests that burial protects seeds from predation and decay over the 

winter, and/or that burial enhances the potential for later emergence. 

 

Dormancy 
Solanum nigrum has a non-deep physiological type of dormancy, and has a dormancy 

cycle that moves seeds from conditional dormancy to non-dormancy (Baskin and 

Baskin, 1998).  During progression from conditional dormancy to non-dormancy, 

dormancy alleviation is characterised by a widening of the germination temperature 

range and a reduction in the requirements for other germination promoters (Hilhorst et 

al., 1996).  Temperature is identified as the key factor influencing dormancy of spring 

and summer annual seeds (Vleeshouwers et al., 1995; Baskin and Baskin, 1998).  The 
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indication for S. nigrum seed is that minimum temperature requirements for 

germination are higher early in the season and lower late in the season (Kremer and 

Lotz, 1998a).  There is evidence for the induction of secondary dormancy occurring at 

the end of the emergence season in England (Roberts and Lockett, 1978).  Popay et 

al. (1995) suggest that the secondary dormancy of species such as S. nigrum is 

induced by low autumn temperatures and broken by low winter temperatures.  While 

Roberts and Lockett (1978) proposed that secondary dormancy is induced by high 

autumn temperatures and broken by low winter temperatures. 

 

Plant growth 
Solanum nigrum varies from a spreading habit to erect forms.  It has a fibrous root 

system with slender and herbaceous stems, leaf and stem shape are highly variable, 

being strongly affected by environment and genotype (Ogg et al., 1981). Nightshade 

species have sympoidal growth (dicototymous branching), where the lateral meristems 

overtake the apical meristem (Bassett and Munro, 1985).  Some studies have been 

made of the growth of widely spaced plants.  For plants widely spaced (0.5 × 0.7 m) 

and grown in West Java, plant leaf area peaked at 0.8 m2 78 d after transplanting.  The 

maximum relative growth rate of the whole plant occurred from 13-33 days after 

transplanting, with a mean relative growth rate of 0.13 g/g/d (Fortuin and Omta, 1980).  

The net assimilation rate during this period was 11 g m2/d.  A thermal time study of 

S. nigrum and S. ptycanthum growth (spaced at 0.3 × 0.9 m) reported that both species 

exhibited their most rapid growth after 900 oCd (McGiffen and Masiunas, 1992).  Plant 

growth responses to full sun or shade differ: S. nigrum plants produce larger leaves 

when in the shade (Fortuin and Omta, 1980).  Plants under a canopy receive low R:FR 

light.  Solanum nigrum plants growing in low R:FR (0.14 at 210 µmole/m2/s) exhibited 

significant increases in stem weight, internode length, plant height and stem to total 

weight ratios in comparison to plants grown in high R:FR (4.1 at 220 µmole/m2/s) light 

(Croster et al., 2003).   

 

Development of flowers, fruit and viable seeds 
Flowering: In a United Kingdom based study the number of days from seedling 

emergence to first flower, differed with the time of year.  Early season (April) 

glasshouse plants took 50-55 d, glasshouse plants that emerged later in the season 

took 40 d (June and July), while marked field plants took > 60 d for plants that emerged 

in May and 50 d in June (Roberts and Lockett, 1978).  Solanum nigrum flowers in 

California appeared 50-65 d after emergence for spring emerged seedlings; while 

summer emerged seedlings flowered in 35-45 d (Keeley and Thullen, 1983).  The 
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results of Keeley and Thullen (1983) are cited as demonstrating that S. nigrum is a 

short day plant (Bassett and Munro, 1985; Croster et al., 2003).  However, the shorter 

time to flowering in the summer may be the results of seasonal temperature effects 

confounding a possible photoperiod effect.  Other workers cite nightshade species as 

being day neutral (Hinckley, 1981).  Flowering of S. nigrum plants in a field trial 

occurred at approximately 600 oCd (Tb 6 °C) for plants established over a six week 

period (McGiffen and Masiunas, 1992).  However, this period is not sufficient to 

establish the effect of photoperiod.  Because of the sympoidal growth of nightshade, 

plants can continue to produce flowers and fruit until the end of the growing season 

(Bassett and Munro, 1985). 

Canopy shading reduces the PFD received by plants within the canopy, and it 

also affects light quality.  A growth chamber study (18/12 °C 14/10h) of constant light 

quality but variable light intensity (100 (377 µmol/m2/s), 56 (213 µmol/m2/s) and 35 % 

(133 µmol/m2/s) full light) on S. nigrum reported flowering was delayed by 5 d at the 

two lower light levels (Kremer and Kropff, 1999).  Another growth chamber study of 

S. nigrum and S. ptycanthum plants growing in low R:FR (0.14 at 210 µmol/m2/s) and 

high R:FR (4.1 at 220 µmol/m2/s) reported no significant effect of light quality on the 

time of flowering (Croster et al., 2003).  Heider (1996) reports that S. sarrachoides and 

S. ptycanthum °Cd requirements for development stages such as flowering was not 

significantly affected by competition with process peas.  However, S. ptycanthum 

flowering was delayed by up to two weeks in some study years for plants grown in 

competition with un-defoliated Glycine max L. (Merr.), compared with defoliated G. max 

(Quakenbush and Andersen, 1984).  The results of Croster et al., (2003) indicate that 

light quality does not affect the time of flowering, but it is difficult to reconcile whether 

the results of Quakenbush and Andersen (1984) and Kremer and Kropff (1999)  

indicate that differences in light intensity or temperature delays the time of flowering in 

nightshades.  Work with density effects on pea development indicated that delayed 

development in high density plots of peas may be due to lower temperatures within the 

canopy of the high density plots (Moot, 1993).  Thus delays to nightshade flowering 

could also be caused by canopy effects on temperature. 

Fruit and seed: Solanum nigrum is predominantly self pollinated (Edmonds and 

Chweya, 1997).  Tagging individual flowers and testing seed from the resulting, 

marked, fruit showed some germination of S. nigrum seed from 27 d after flowering and 

100 % germination from 32 d after flowering (Roberts and Lockett, 1978).  In California, 

viable seed was produced 63 d after seedling emergence for all except an early spring 

emergence, which took longer (Keeley and Thullen, 1983).  Seed maturity of S. nigrum 

was recorded at approximately 1000 oCd (McGiffen and Masiunas, 1992).  Mean seed 
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number/fruit in New Zealand was reported to be 70 in S. nigrum plants grown in 

Phaseolus vulgaris L. (Hartley, 1991a).  Overseas studies reported only about 60 

seeds/fruit for individually grown plants (Keeley and Thullen, 1983).  Crop competition 

is also reported to reduce seed numbers/fruit (Kremer and Kropff, 1998c). 

Solanum nigrum is reported to produce fewer fruit in response to increased 

shade.  At 50 % shade fruit production was half of that under full sun.  At 95 % shade 

fruit production was only 10-20 % of that in full sun (Fortuin and Omta, 1980).  Studies 

of the effect of shade on S. ptycanthum report similar results with the reduction in fruit 

number being identified as the result of fewer peduncles produced rather than a 

reduction in the number of fruit/peduncle (Croster et al., 2003).  Crop competition also 

affects fruit production, with the number of fruit/plant dropping from 12.6 to 3.4, and 

37.9 to 4.3 for comparisons of S. nigrum grown in pure stands, to plants grown with 

Zea mays, respectively, for two atrazine susceptible biotypes (Kremer and Kropff, 

1998c). 

 

2.5.3 Solanum physalifolium biology and ecology 
 

Solanum physalifolium 

There is less published information on the germination requirements and growth of 

S. physalifolium than for S. nigrum.  A study of laboratory stored S. physalifolium seed 

germination in Spain reported the optimal germination temperature was 30/15 °C over 

8/16 h (with a 12/12 h light/dark regime) (del Monte and Tarquis, 1997).  This study and 

a study in New Zealand report the presence of primary dormancy (Bithell et al., 2002) 

(Appendix 1). High temperatures were required to overcome germination inhibition.  It 

appears that dormancy also affected the estimation of Tb as a Tb of 21 °C was reported 

(del Monte and Tarquis, 1997).  Such a high Tb value does not conform with the field 

behaviour of the plant, or with reports for other closely related species.  Sobrino and 

del Monte (1994) reported that seed germination was enhanced by treatment with 

1,000 ppm of GA.  Edmonds (1986) noted that S. physalifolium seed was difficult to 

germinate, even after a pre-treatment with 2,000 ppm of GA (type not defined).  

Solanum physalifolium seed in New Zealand responded to KNO3 (0.2 %) but not GA3 

(0.05 %) (Bithell et al., 2002) (Appendix 1).  The number of seeds/fruit ranged from 15-

26 in fruits ranging in diameter from 4.3-6.7 mm (Sobrino and del Monte, 1994) 

Solanum physalifolium is a herbaceous annual, with a prostrate growth habit 

and abundant branching (Sobrino and del Monte, 1994; Edmonds and Chweya, 1997).  

There are two leaf types:  one with toothed leaves and an entire leaved variant.  Both 

are present in New Zealand (Edmonds and Chweya, 1997).  Solanum physalifolium 
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plants in the field flower and fruit throughout the autumn and summer until killed by the 

first frosts (Edmonds, 1986).  Besides seed dispersal by birds, fruit and seed dispersal 

is assisted by ripe fruit dropping from the plant if it is knocked or shaken (Sobrino and 

del Monte, 1994).  Mature fruit are dark green to brownish green and 6-9 mm in 

diameter (Edmonds and Chweya, 1997). 

 

Solanum sarrachoides 

Information on the biology of S. sarrachoides is presented due to problems of its 

taxonomic identification, as it is assumed that some of this work may refer to 

S. physalifolium (Edmonds and Chweya, 1997), alternatively that some aspects of the 

biology of the two species may be similar. 

Moist storage at low temperatures enhanced the germination of laboratory-

stored S. sarrachoides seed (Roberts and Boddrell, 1983).  Fresh laboratory stored 

seed exhibited primary dormancy (Roberts and Boddrell, 1983; Hermanutz and 

Weaver, 1991; Heider, 1996).  This dormancy was reported to abate after six months 

(Hermanutz and Weaver, 1991).  Baskin and Baskin (1998) report that S. sarrachoides 

had a dormant/non-dormant dormancy cycle, without a period of conditional dormancy.  

Germination studies of S. sarrachoides report that germination was achieved at 

alternating temperatures of 4/25 °C, 10/25 °C, 10/30 °C and 20/30 °C cycles of 8/16 h, 

or at a constant 25 °C and 30 °C once the primary dormancy of fresh seed had abated 

(Roberts and Boddrell, 1983).   

Comparison of dark and intermittent light treatments during germination tests 

gave similar results for the two treatments (Roberts and Boddrell, 1983).  Similarly 

comparisons between 14/6 h light and dark treatments tested at 15/5 °C, 20/10 °C, 

25/15 °C and 30/20 °C for two S. sarrachoides accessions indicated a significant light 

by temperature by accession interaction, where dark germination at the 15/5 °C 

temperature was low (~5 %), but ~70 % germination in the alternating light treatment 

for seed from one accession (Hermanutz and Weaver, 1991).  At the other 

temperatures for this accession, and the other accession at all temperatures, there was 

no significant effect of light treatments.  However, a mixed population of 

S. sarrachoides and S. nigrum were reported to have significantly reduced germination 

following dark cultivation (Scopel et al., 1994). 

The seasonal emergence patterns for S. nigrum and S. sarrachoides are 

reported to be similar, with seedling emergence greatest in May and June (Roberts and 

Boddrell, 1983).  A study of the yearly variation in seasonal emergence in United States 

cornfields for S. sarrachoides found an average emergence of 5.2 % of the known S. 

sarrachoides seed bank, with a minimal seasonal variation of 1.3 % and a maximum of 
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9.3 %.  Analysis of seasonal variation linked differences in germination to seasonal 

temperature differences (Forcella et al., 1997).  Trials of S. sarrachoides, using sown 

plots, had 15 % seedling emergence from seed over two years.  However, 97 % of 

these seedlings emerged in the first year (Ogg and Dawson, 1984).  Depth of tillage of 

S. sarrachoides plots had no effect on relative seedling emergence (Ogg and Dawson, 

1984).  Solanum sarrachoides can flower and fruit quickly under some conditions.  

Seedlings in growth rooms at 28/20 °C (14/10 h) flowered and produced some 

immature fruit by 35 d after emergence (Hermanutz and Weaver, 1991).  Heider (1996) 

noted that S. sarrachoides can exhibit rapid growth rates producing 2-3 times the 

biomass of S. ptycanthum for seedlings grown with or without peas. S. sarrachoides 

also had significantly lower thermal time requirements than S. ptycanthum for bud 

appearance, flowering, and initial fruit growth (Heider, 1996).   

 

2.6 Summary 
 

The literature reviewed indicated a number of information gaps and particular issues 

that need to be addressed in order to meet the objectives stated in the General 

Introduction.  There is limited information available for S. physalifolium.  However, 

some useful publications from North America on S. sarrachoides (Scopel et al., 1994; 

Heider, 1996) may actually be referring to S. physalifolium due to identification 

problems (Edmonds and Chweya, 1997).  Points regarding the five research objectives 

are: 

1. That seasonal nightshade emergence, pea cultivar, pea sowing date and 

seasonal temperatures are potential factors that may contribute to nightshade 

contamination. 

2. Knowledge of the dormancy cycle and germination requirements of S. nigrum 

and S. physalifolium in New Zealand is poor.  A number of factors (seed origin, 

soil temperature, soil moisture and soil nitrate levels) may affect the light 

responses of S. nigrum seed.  There is little information available on the 

dormancy of S. physalifolium seed. 

3. The growth of S. nigrum and S. physalifolium in peas has not been studied, but 

some relevant work on related nightshade species in peas has been undertaken. 

4. No information on the fruit growth of either the study species was apparent. 

5. There is, currently, an information gap with regard to specific S. nigrum and 

S. physalifolium management practices available for pea processors and 

growers. 
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Chapter 3 Processing factory contamination 
records – analysis for causal factors 
 

3.1  Introduction 
Investigations of weed problems often focus on the factors governing crop/weed 

competition at a single field or plant community level within a field.  Access to the 

nightshade contamination records from the Heinz Wattie’s Ltd, Hornby, Christchurch 

processing factory provided the opportunity to investigate a broader range of potential 

factors that may influence the occurrence of nightshade contamination. 

Process peas are contract crops managed and grown by farmers.  However, 

the choice of pea cultivar, sowing date and harvest timing are largely determined and 

managed by the requirements of the processing factory, and is influenced by site 

factors such as soil type (Cawood, 1987).  Fields with light or heavy soil are generally 

sown early and late in the growing season, respectively.  Sowing date, crop cultivar and 

harvest timing are factors reported to influence both crop/weed competitive interactions 

and the reproductive success of annual weed populations (Oliver, 1979; Quakenbush 

and Andersen, 1984; Ghersa and Holt, 1995; Khan et al., 1996; Anderson, 2000).  

Nightshade contamination can occur only if nightshade plants in a pea crop can flower 

and produce fruit prior to the pea harvest.  This chapter addresses the first research 

objective of this study, which is to analyse factory nightshade contamination records for 

seasonal trends in nightshade contamination and to consider causal factors for the 

contamination.  The hypothesis investigated is that factors independent of those that 

can be managed by farmers, such as sowing date, cultivar type and harvest timing do 

not influence the occurrence of nightshade contamination in process pea crops. 

 

3.2 Materials and methods 
 

Three seasons of process pea yield and contamination records (2000/01 (00/01), 

2001/02 (01/02), and 20002/03 (02/03)) were obtained from the Heinz Wattie’s Ltd 

Hornby factory.  The distribution of nightshade contamination cases during the pea 

processing season was investigated.  Monthly sowing date, using 1 to 5 to represent 

the months August to December, and year, were examined as factors in relation to the 

mean monthly proportion of contaminated crops using logit regression of binomial 

proportions: 
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log(p/(100-p)) 

where p = mean monthly proportion of contaminated crops (Genstat Sixth Edition© 

2002).  Predicted values for p were calculated by back transformation of y values 

(percentage contamination): 

100/(1 + exp(y)) 

For each season the pre-contamination period was defined as the period prior to any 

case of contamination occurring, and the contamination period as the period from the 

first case of contamination to the end of the sowing season.  Group and paired T-tests 

were made using the Bonferroni test for 95 % confidence intervals (Systat® Version 

9.01, 1998). 

 

3.3 Results 
 

3.3.1 Monthly sowing date effects 
 
Contamination records presented in terms of the sowing dates for process pea crops 

indicated some evidence of sowing date effects on the presence of nightshade 

contamination (Appendix 2).  Over the seasons 00/01, 01/02 and 02/03 no pea crops 

sown in August (mean number of crops sown 68.3) had nightshade contamination 

(Table 3-1).  Nightshade contamination was also observed only in one season for crops 

sown in September.  Mean values for the three seasons of contamination data 

indicated that the proportion of crops contaminated increased progressively from 

August to November (Table 3-1).  A small number of crops were sown in December in 

the 00/01 and 02/03 seasons, and of the 02/03 December sowings, 7.1 % were 

contaminated (Appendix 2). 

Table 3-1. Mean number (no.) of crops sown and contaminated, and percentage of 
crops contaminated over three seasons (00/01, 01/02 and 02/03), data 
from the Heinz Wattie’s Ltd, Hornby factory. 

 August September October November December 

No. sown 68.3 92.3 172.7 145.0 16.0 
No. contaminated 0 0.7 8.0 7.0   1.0 
% contaminated  0 0.6 4.8 5.6   3.6 

 

Two cases of nightshade contamination from organic farms were observed, one 

each in the 00/01 and 01/02 seasons (Appendix 2).  In 00/01, 01/02, 02/03 the number 

of organic fields was 26, 17 and 10 respectively.  For each season the proportion of 
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nightshade contaminated organic pea crops was 3.8, 5.9 and 0 %.  For conventional 

pea crops over the same period the respective values were 2.9 (n = 475), 5.4 (n = 

484), and 1.8 % (n = 508).  A T-test indicated that there was no significant difference (P 

> 0.05, d.f. = 2) in mean contamination levels between the two management types. 

For the period in each season, starting from when cases of nightshade 

contamination were first observed (11 October 00, 1 September 01 and 16 October 02) 

to the end of each season, organic pea crops had 9.1 (n = 11), 7.1 (n = 13) and 0 % (n 

= 10) crops contaminated, respectively.  For the conventional crops over the same 

period, the figures were 4.3 (n = 303), 6.2 (n = 403), and 3.1 % (n = 287).  A T-test 

indicated that there was no significant difference (P > 0.05, d.f. = 2) in contamination 

levels between the two management types for the period in which nightshade 

contamination occurred. 

Logit regression of binomial proportions of the mean proportion of crops 

contaminated each month indicated that sowing month as a variate was significant (P < 

0.001, d.f. = 13).  A separate test for year effects indicated that year was not a 

significant variate (P > 0.05).  Predicted values and s.e. for the mean proportion of 

crops contaminated each month, from August to December, were 0.8 (0.36), 1.6 (0.44), 

3.0 (0.48), 5.6 (0.91) and 10.2 (2.71) respectively.  Figure 3-1 presents predicted and 

actual contamination values of the mean proportion of crops contaminated each month.  
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Figure 3-1. The relationship between % of crops contaminated and time of sowing, 

based on a logarithmic regression:  y = -5.44 + 0.652x.  The line is for the 
back transformed values for 100/(1 + exp(y)). 
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3.3.2  Cultivar effects within the period of nightshade contamination 
 
Comparisons of the pea cultivar composition, for the period in each season when 

nightshade contamination was first observed in crops, were made for each year.  For 

the six cultivars sown (Bolero, Bounty, Durango, Orbit, Prolific and Tyne) during the 

nightshade contamination period in each of the three seasons, each was contaminated 

in, at least, one season.  Some cv.s such as Bounty and Prolific were associated with 

nightshade contamination in every season.  For this period in the three seasons 20.5, 

10.9, and 4.9 % of crops respectively were sown with cv. Bounty, and 48.2, 34.0 and 

34.5 % of crops, respectively, were sown with cv. Prolific.  For the same seasons 3.2, 

9.1 and 14.3 % of cv. Bounty crops and 1.4, 10.2, and 4 % of cv. Prolific crops were 

nightshade contaminated. 

The cv. Bolero was associated with nightshade contamination in both the 00/01 

and 01/02 seasons, when the proportion of crops over this period which were sown in 

cv. Bolero was 15.8 and 25.3 %, respectively.  There was no contamination associated 

with this cv. in the 02/03 season when the proportion of crops sown in cv. Bolero was 

3.5 % (n = 10 crops).  Of the other cultivars (Durango, Orbit and Tyne), nightshade 

contamination occurred only in a single season.  For these cultivars, in each of the 

three seasons (00/01, 01/02, 02/03), the percentage of crops sown in each cultivar was 

low.  Less than 5 % of crops in the contamination period were sown with Durango and 

Orbit in the 01/02 season, and with cultivar Tyne in the 00/01 and 02/03 seasons (Table 

3-2). 

In terms of cultivar contributions to the number of nightshade contamination 

cases observed each year, Bolero in 00/01 and 01/02 contributed 71.4 and 15.5 %, 

respectively.  For cv.s Bounty and Prolific the figures for 00/01, 01/02, and 02/03 were 

14.3, 15.4 and 22.2 % for cv. Bounty and 14.3, 53.8, and 44.4 % for cv. Prolific.  Over 

the three seasons mean values for the cultivar contributions to the number of 

nightshade contamination cases in a season was 17.3 and 37.5 % for Bounty and 

Prolific, respectively.  T-tests of the yearly percentage contribution values to the total 

number of contamination cases versus their respective percentage values for the 

number of crops sown in each cultivar, over the contamination period indicated, for the 

cv.s Bounty and Prolific, gave no significant (P > 0.05, d.f. = 2) difference between 

percentage contribution and percentage sowing for either cultivar. 
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Table 3-2.  Cultivars (Cv.s) and % crops sown (for cultivars that contribute ≥ 5 % of 
crops sown) in two periods, when no nightshade contamination was 
observed (Pre-con.) or the period in which contamination was observed 
(Con.), and the number of crops sown (No. sown) in both periods for the 
2000/01-2002/03 seasons, data from the Heinz Wattie’s Ltd, Hornby 
factory. 

            2000/01 2001/02 2002/03 
Cv.s No. 

sown 
Pre-con. Con. No. 

sown
Pre-con. Con. No. 

sown 
Pre-con. Con. 

Bolero  99 29.1 15.8* 132 36.3 25.3* 126 52   3.5 
Bounty  63   0.6 20.5*  44      0 10.9* <          * 
Brule -   -    26     0   9.1 
Durango <   <         *  28   0.4   9.4 
Epic  42 24.0     0  28 35.0   2.2* <   
Orbit <   <    40     0 13.9* 
PF 400 <    34     0   8.4*  28 12.1   4.2 
Princess  25 14.3     0 <   -   
Prolific 147   1.7 48.2* 137     0 34.0* 103   1.8 34.5* 
Resal <   -   <     0   8.7 
Talbot  10   5.7     0  11 13.8     0  25 11.2     0 
Tere  36 20.6   0.7  22 15.0   2.5  24 10.8     0 
Tyne <    24     0   6.0* <   
* = crop contaminated,  - = not sown that year,  < =  < 5 % crops sown with the cultivar 
in either the pre-contamination or contamination periods. 
 

3.3.3 Cultivar effects between pre-contamination and contamination 
periods 
 
The distribution of cultivars through the season was grouped in relation to the first case 

of nightshade contamination each season.  Cultivars were selected that contributed ≥ 5 

% of the total number of crops sown for either the period in each season prior to the 

first contamination case (pre-contamination period), or occurring after the first case of 

contamination (contamination period) (Table 3-2).  Three groups of cultivars were 

apparent.  First, cultivars that were sown in both the pre-contamination and 

contamination periods (type 1).  These were the cv.s Bolero and PF 400.  Secondly, 

cultivars that were predominately sown in the pre-contamination period (type 2). These 

were the cv.s Epic, Princess, Talbot and Tere.  Thirdly, cultivars that were 

predominately sown in the contamination period (type 3).  These were the cv.s Bounty, 

Prolific, Tyne, Brule, Durango, Orbit and Resal.  A two group T-test comparing the 

thermal time maturity values for the type 2 and type 3 groups indicated the two groups 

differed significantly (P < 0.01, d.f. = 3).  Type 3 cultivars had ~ 100 °Cd (Tb = 5 °C) 

greater mean values than the type 2 cultivars.  Five out of seven type 3 cultivars were 

associated with nightshade contamination;  the two type 3 cultivars sown in 02/03 (cv.s 

Brule and Resal) were not associated with contamination.  No type 2 cultivars were 

nightshade contaminated. 
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3.4 Discussion 
 
The factory nightshade contamination records, when presented in terms of monthly 

sowing dates, appeared to support evidence of seasonal trends.  In particular, in each 

of the study years there was no contamination of August sown crops, and in only one of 

the three years was there contamination of a September sown crop (Table 3-1).  To 

correct for differences in the number of crops sown each month, analysis was made of 

the proportion of crops contaminated each month.  The proportion of crops 

contaminated peaked in October, for the 00/01 season, in November, for the 01/02 

season and in December in 02/03 (Figure 3-1).  However contamination of December 

sowings was irregular among years.  Binomial logit regression indicated that sowing 

month was a significant (P < 0.001) variable, with a progressive increase in the 

predicted mean monthly proportion of crops contaminated (Figure 3-1). 

There was no significant evidence that there was greater nightshade 

contamination in organic fields over the whole season, or during the period of 

contamination.  However, the small number of organic fields in these results (i.e. n = 10 

in the 02/03 season), and the small number of contamination cases means there is 

considerable uncertainty in this conclusion. 

Two possible causes for the effects of sowing month on contamination of crops 

are proposed. The first is of seasonal effects on nightshade phenology, the second pea 

cultivar effects.  Solanum nigrum, in particular, is identified as germinating late in the 

spring/early summer in European studies (Hakanson, 2003).  This late season 

emergence is considered to influence the ability of S. nigrum to contaminate early 

versus late sown process pea crops in Europe (El Titi, 1986; Knott, 1986).  However, in 

New Zealand at a study site in Levin, S. nigrum was reported to emerge over a ten 

month period compared with a five month period for a comparable study in England 

(Roberts and Lockett, 1978; Popay et al., 1995).  Canterbury processing factory field 

records indicate that nightshade weeds are present at the early crop growth stages for 

August and September sown crops (pers. comm. A. White, Heinz Wattie’s Ltd).  

Established S. nigrum plants, with reproductive buds and some open flowers, were 

observed in a pea crop close to harvest maturity, which had been sown in August 2001 

(S.L. Bithell, pers. observation).  These observations indicate that the seasonal 

emergence of S. nigrum may not be a contributing factor to monthly pea crop 

contamination trends in Canterbury.  The seasonal emergence of S. physalifolium has 

not been studied in New Zealand.  However, studies in the United States of America 

and the United Kingdom report that the timing of emergence for S. sarrachoides closely 

matched that of S. nigrum (Roberts and Boddrell, 1983; Ogg and Dawson, 1984). 
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Flowering and fruit growth are necessary for nightshade weeds to be able to 

contaminate pea crops.  Temperature may affect the flowering phenology of the 

nightshade relative to the pea crop.  Solanum nigrum is reported to be day neutral and 

to flower at approximately 600 °Cd (Tb = 6°C) (McGiffen and Masiunas, 1992).  

Differences in accumulated thermal time values prior to crop harvest for S. nigrum 

plants in crops sown, for example, in August versus those sown in November may 

contribute to the differential contamination observed for crops sown in these months 

(Table 3-1).  However, the pea cultivars sown in these months differ in terms of their 

thermal time maturity requirements, indicating that contamination may be linked to 

cultivar thermal time maturity effects and/or sowing date effects. 

Some field pea crop cultivars are reported to have differential competitive 

abilities with weeds (Wall and Townley-Smith, 1996; Pester et al., 1999).  However, 

evaluations of process pea cultivars for differential weed competitiveness are not 

apparent in the literature.  The nightshade contamination records indicated that two 

cv.s, Bounty and Prolific, were consistently associated with contamination when sown 

in the contamination period (Table 3-2).  Analysis of the percentage contribution to 

contamination cases each season for these two cultivars, during the period of 

nightshade contamination, indicated that for both cultivars, in proportional terms, the 

number of cases of nightshade contamination did not differ significantly (P < 0.05) from 

the proportion of crops sown with these cultivars.  That is, there is no cultivar effect.  

Contamination was also observed with other cultivars (Table 3-2), but a similar analysis 

was not attempted due to the largely single year cultivar contamination associations 

observed.  However, at least for the cv.s Bounty and Prolific, there is no evidence to 

suggest that nightshade contamination is more likely to occur for either cultivar.  On this 

basis, the results generally suggest that the risk of nightshade contamination for a 

cultivar is related to the number of crops sown with that cultivar i.e., a degree of 

exposure effect for crops sown during the nightshade contamination period.  However, 

in two cases, cultivars sown at less than the 5 % levels were contaminated (Table 3-2). 

Comparison of cultivar sowing distribution data for the pre-contamination and 

contamination periods each season indicated three types of cultivars (Table 3-2).  Type 

1 was sown in both the pre-contamination and contamination periods, while type 2 

occurred only in the pre-contamination period, and type 3 in the contamination period 

only.  Comparison of the thermal time maturity values for types 2 and 3 indicated that 

type 3 cultivars had significantly greater thermal time values.  This result is in 

agreement with reported process pea crop scheduling practices, where cultivars with 

comparatively low thermal time requirements are reported to be used early in the 

sowing season in comparison with the thermal time requirements of cultivars used later 

in the season (Cawood, 1987).  These differences in cultivar thermal time maturity 



36 

values could be a factor contributing to the observed seasonal distribution of 

nightshade contamination.  Nightshade weeds may have an increased ability to flower 

and produce fruit in pea cultivars with longer thermal time maturity values.  This is 

reinforced by the fact that these cultivars are sown mid to late season when higher 

mean temperatures may allow more rapid nightshade development relative to the pea 

crop. 

 

3.5 Conclusions 
 
1. There was evidence to support the alternative hypothesis that some factors not 

able to be managed by pea growers, such as sowing date and harvest timing 

may influence the occurrence of nightshade contamination. 

2. There is evidence that the proportion of crops contaminated with nightshade fruit 

increases progressively with pea sowing dates from August to December. 

3. There was no strong evidence to indicate that particular cultivars sown during the 

nightshade contamination period were more susceptible to contamination than 

others sown during this period. 
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Chapter 4 Germination requirements 

4.1  Introduction 
The dormancy status of seed with physiological dormancy can be assessed from the 

range of temperatures that seed will germinate at, germination rates, and from 

responses to factors such as light and nitrate (Karssen and Vries, 1983; Karssen and 

Hilhorst, 1992; Murdoch, 1998).  The germination requirements of field stored and 

laboratory tested weed species can be used to understand seasonal dormancy cycles 

and germination requirements (Bouwmeester and Karssen, 1993b).  From such an 

understanding specific management practices and/or predictive models of the 

germination behaviour of these species can be developed (Kremer and Lotz, 1998a; 

Vleeshouwers and Bouwmeester, 2001).  Establishing the germination requirements of 

a species by the use of freshly collected seed sources can, however, be made difficult 

by the presence of primary dormancy.  Primary dormancy is the failure of freshly 

collected seed to germinate in conditions under which non-dormant seed will readily 

germinate.   

New Zealand collected Solanum nigrum and S. physalifolium laboratory stored 

(5 °C) seed is reported to have primary dormancy (Bithell et al., 2002) (Appendix 1).  

Studies of S. physalifolium also report that primary dormancy impairs germination 

(Edmonds, 1986; del Monte and Tarquis, 1997).  However, primary dormancy of 

S. nigrum is reported in some studies (Roberts and Lockett, 1978; Wagenvoort and 

Opstal, 1979) but not in others (Givelberg et al., 1984; Bulcke et al., 1985; Agong, 

1993).  Givelberg et al. (1984) proposed that the differences between studies in the 

primary dormancy status of S. nigrum seed may be due to genotype effects.  Another 

factor that may contribute to these conflicting reports is the maturity of fruit from which 

the S. nigrum seed was processed.  Solanum nigrum fruit changes from green to black 

with increasing maturity.  Nightshade plants are indeterminate, and flower and produce 

fruit until they are limited by the environmental conditions (Edmonds and Chweya, 

1997).  Thus, nightshade plants can bear fruit with a range of relative maturities, 

including fruit colour.   

Seed maturity in relation to fruit maturity may be a contributing factor to 

dormancy polymorphism, as there is a report that S. nigrum seed from black fruit can 

be more dormant than seed from green fruit (Kazinczi and Hunyadi, 1990).  However, 

this study did not report if the fruits came from the one collection site.  Studies of other 

weed species indicate that seed dormancy status can differ significantly between 

collection sites (Milberg and Andersson, 1998a).  A comparison of seed from black and 

green S. nigrum fruit, from a single plant collection, indicated that seed from both green 
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and black fruit was dormant, but that seed from black fruit had a greater response to 

pre-germination chilling (Bithell et al., 2002) (Appendix 1).  This indicates, that in this 

case, seed from green fruit may be more dormant.  To confirm the relevance of this 

finding it is necessary to investigate the dormancy status of seed from black and green 

fruit from a number of collection sites.  The quantification of differences in seed viability 

between populations is also required to prevent differences in viability confounding 

apparent differences in dormancy status. 

A genetic study of S. nigrum populations identified S. sarrachoides as being not 

as closely related to S. nigrum as another common Solanum weed, S. luteum 

(Stankiewicz et al., 2001).  It appears that S. physalifolium may be more closely related 

to S. sarrachoides, given their similar morphologies, than S. nigrum (Edmonds, 1986; 

Edmonds and Chweya, 1997).  These differences may explain differences in 

germination requirements reported between the two species.  Studies of S. nigrum 

seed report that light is a germination requirement (Roberts and Lockett 1978; 

Givelberg et al. 1984).  However, light is not reported to be an important factor for the 

germination of S. physalifolium (del Monte and Tarquis, 1997).  Cultivation at night is 

reported to reduce the field emergence of S. nigrum compared with cultivation in 

daylight (Scopel et al., 1994).  Light was shown to be an important requirement for the 

germination of freshly harvested S. nigrum seed.  However, for seed that had been 

stored in moist sand for 15 weeks, light was only important for germination at 

alternating temperatures with narrow amplitudes (Roberts and Lockett, 1978).  These 

results indicate that the importance of light for germination may be affected by seed 

age and test conditions.  Furthermore, in other species, germination responses to light 

can interact with nitrate and soil moisture (Milberg, 1997; Botto et al., 2000).  Studies of 

some annual weed species report differences in light requirements following field burial 

or laboratory stratification among populations of the same species (Milberg and 

Andersson, 1998b).  The ability to identify the importance of light for germination in 

relation to some of these factors, including seasonal effects, would give information 

relevant to dark cultivation as a potential management tool.  Further, information on the 

dormancy of S. nigrum and S. physalifolium during the pea processing season in New 

Zealand may have implications for practices that seek to maximise weed seed 

germination as in the use of the stale seed bed technique (Johnson and Mullinix, 

1995). 

This chapter addresses the second research objective of this study, to describe 

the dormancy cycle and field germination requirements of S. nigrum and 

S. physalifolium seed during the process pea growing season in Canterbury, New 

Zealand.  From the literature a number of hypotheses were investigated: 
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1. The germination requirements of freshly harvested seed from black and green 

S. nigrum fruit does not differ, and the requirements of seed of S. nigrum 

collected from different sites does not differ.   

2. Field stored S. nigrum seed has a light requirement for germination that is 

constant and a static dormancy status.   

3. Solanum physalifolium seed does not have a light requirement. 

4. The germination of S. nigrum seed following SDLE at different dates would 

indicate no change in light requirements, and no variation in SDLE responses 

between S. nigrum seed lots from green and black fruit.  It was also hypothesised 

that S. physalifolium germination would not be affected by SDLE. 

5. The dormancy of field stored S. physalifolium seed and S. nigrum seed does not 

differ, as indicated by percentage germination at the sub-optimal temperature of 

5/20 °C, and time to 50 % germination.   

6. There are no differences in the germination requirements of field stored seed 

from black and green S. nigrum fruit. 

7. Dark cultivation will not reduce the field germination of S. nigrum, or 

S. physalifolium.   

 

 

4.2   Experiment 1 – A comparison of primary dormancy 
status 

This experiment was conducted to test the hypothesis that the germination 

requirements of freshly harvested seed from black and green S. nigrum fruit does not 

differ, and the requirements of seed of S. nigrum collected from different sites does not 

differ (hypothesis 1).   

4.2.1 Materials and methods 
 

Seed lots 
Three collections of S. nigrum seed from crops or field margins were made on 20 

March 2002.  Fruit were removed from plants by hand and fruit that were < 6 mm in 

diameter were rejected.  The fruit from each collection was sorted by colour (green or 

black) then processed separately.  The seed from the black (coded A) and green 

(coded B) fruit from the three collections provided six seed lots SN11A, SN11B, SN12A, 

SN12B, SN13A, and SN13B in total (Appendix 3).  For processing, the fruit were 

crushed and soaked in water for 24 h at room temperature.  Fruit material and seed 
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were separated by floatation and washing in cold water, then dried in indirect light at 

room temperature.  The seed was then dried at 30 °C for 36h, then cleaned with an 

Ottawa type seed blower.  It was then sieved (0.85 mm) and seed that passed through 

the sieve was rejected, the seed was then stored at room temperature for six days.  

 

Germination 
Six days after the completion of seed processing a factorial experiment with three 

replicates of 40 seeds per treatment was set up.  The four factors used were: seed lots, 

as listed above; nitrate, seed was placed on germination blotters dipped in KNO3 (N+) 

(0.2 %) or dipped in water (N-); light, where un-imbibed seeds were placed on 

germination blotters in the presence of light;  where dark (L-) treatments were placed in 

a clear zip lock bag (Mini grip 255 × 305 mm), inside a black polythene bag (510 × 380 

mm, 60 µm thickness) after counting 40 seeds into a Petri dish and sealing of the dish.  

The bags surrounding the dark treatments seeds were sealed immediately after the last 

seed had been placed on to the germination pad on completion of the last replicate of 

three.   The light (L+) treatment dishes were sealed in clear zip lock bags only.  The 

fourth factor was prechilling, where the seed, as prepared above, was prechilled (PC+) 

for 14 d at 10 °C in 24 h light, or was not prechilled (PC-). 

The non-prechilled seed treatments were placed directly into the germination 

cabinets at 20/30 °C (16 h low temperature/8 h hour high) with 24 h light.  The L+ 

treatments were placed on the top two shelves (under the light source) and L- 

treatments were placed on the bottom shelf.  The experiment was conducted in a 

Sanyo MIR 152 incubator with 24 h light, based at the Field Service Centre, Lincoln 

University.  The incubator was illuminated with a single 15 W (Toshiba FL 15 D) tube.  

The 8 h period at the higher temperature had a higher light intensity value than the 

lower 16 h temperature.  Mean light values and the range over a 24 h period for the 

incubator was 12.7 µmole/m2/s (range 10.1–15.5).  The light source provided a R:FR of 

3.6 at 20 °C.   

The prechilled treatments were placed into the cabinet at 20/30 °C after 14 d at 

10 °C with 24 h light.  In the cabinet, the L+ and L- treatments were placed as described 

above.  Germination of L+ treatments was assessed daily for 14 days.  An additional 1 

ml of water was supplied to all light treatment replicates on two inspection dates over 

the 14 days.  The L- treatments were inspected at day 14.  Germination was defined as 

radicle emergence, and germinated seeds were removed on inspection.  At the end of 

each experiment, at 14 d, the remaining seed was assessed for viability.  Seed that 

resisted gentle pressure by tweezers were recorded as being viable (Forcella et al., 

1992). 



41 

Analysis 
The percent of viable seed that had germinated was calculated.  Percentage data were 

arcsine transformed for statistical analysis.  Statistical analysis of the germination was 

by ANOVA using Systat® Version 9.01 (1998).  Where arcsine transformation yielded 

significantly different results from the analysis of non-transformed values, the arcsine 

results are presented in an appendix and non-transformed values are presented in the 

main text.  The results and discussion section only cite non-transformed values.  

Means separation tests were made using the Tukeys honestly significant difference test 

(HSD) (Zar, 1984).   

 

4.2.2 Results 
 

Seed lot had a significant effect (P < 0.001) on percentage of non-viable seed, with 

seed lot SN12B having significantly fewer viable seed than lots SN11A, SN12A and 

SN13A (transformed values Appendix 4, non-transformed values Table 4-1).  Lot 

SN11B had significantly more non-viable seed than lots SN11A, SN12A, SN12B and 

SN13A, but lot SN13B had significantly more non-viable seed than all of the other seed 

lots. 

 

Table 4-1.  Percent of non-viable seed as determined by the pressure test (Forcella et 
al., 1992) for six seed lots (A = seed of black fruit, B = seed of green fruit ) of 
forty seeds (Experiment 1). 

Seed lot Non-viable % 
SN11A    1.1 
SN11B    23.3 
SN12A     1.1 
SN12B   7.0 
SN13A   1.9 
SN13B 35.9 

 

Analysis of the arcsine transformed percentage germination (transformed 

values Appendix 6) of viable seed at 14 d for the four factors nitrate, prechill, light and 

seed lot indicated a significant (P < 0.001) four way interaction between the factors 

(non transformed values Figure 4-1).  In the absence of nitrate, prechill and light, seed 

from black Gisborne and green Manawatu fruit had significantly higher germination 

levels than both Lincoln seed lots (Figure 4-1, a).  In the presence of light only, seed 

from black Gisborne fruit and both the Manawatu seed lots germinated at higher levels 

than both Lincoln seed lots (Figure 4-1, b).  In the presence of prechilling only, all seed 

lots responded with significantly higher germination than seed from green Lincoln fruit, 
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and seed from black Gisborne and green Manawatu fruit had significantly higher 

germinations than the other seed lots (Figure 4-1, c).  In the presence of prechilling and 

light seed from green Lincoln fruit had a significantly lower germination than seed from 

black Gisborne and black Manawatu fruit (Figure 4-1, d).  In the presence of nitrate 

only, seed from green Gisborne fruit had a significantly higher germination than both 

the Lincoln seed lots (Figure 4-1, e).  Seed from green Manawatu fruit had significantly 

higher germination than both the green Gisborne and black Manawatu fruit.  Seed from 

black Gisborne fruit had a significantly higher germination than all other seed lots.   

In the presence of both nitrate and light, both Lincoln seed lots had significantly 

reduced germination compared with the other four seed lots (Figure 4-1, f).  Seed from 

black Gisborne fruit also had significantly higher germination than seed from green 

Lincoln fruit.  In the presence of nitrate and prechilling seed from black Lincoln fruit had 

significantly lower germination than seed from black Gisborne fruit and both Manawatu 

seed lots (Figure 4-1, g). Seed from green Lincoln fruit had a significantly lower 

germination than all the other seed lots.  In the presence of nitrate, prechilling and light 

there were no significant differences among seed lots and the germination approached 

100 % for all seed lots (Figure 4-1, h). 
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Figure 4-1.  The percentage germination of viable seed from green (G) and black (B) 
S. nigrum fruit collected from Lincoln (LU), Gisborne (GB) and the Manawatu 
(MW).  Seed was germinated at 20/30 °C in the presence (+) or absence (-) of 
light (L), and/or prechilling (PC) and/or nitrate (N), (Experiment 1). 
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4.3   Experiment 2 – The germination requirements of 
field stored Solanum nigrum and S. physalifolium seed  

This experiment was conducted to test the hypotheses that field stored S. nigrum seed 

has a light requirement for germination that is constant and a static dormancy status 

(hypothesis 2).  Solanum physalifolium seed does not have a light requirement 

(hypothesis 3).  The dormancy of field stored S. physalifolium seed and S. nigrum seed 

does not differ, as indicated by the percentage germination at the sub-optimal 

temperature of 5/20 C, and time to 50 % germination (hypothesis 5).  There are no 

differences in the germination requirements of field stored seed from black and green 

S. nigrum fruit (hypothesis 6). 

These hypotheses relate to the objective of describing the dormancy cycle and 

the germination requirements of the study species during the process pea sowing 

season in Canterbury.  To do this seed of both species was buried in 2001, and 

retrieved on ten dates, in 2002.  At each retrieval date seed was tested in light and dark 

at two temperatures.   

 

4.3.1 Materials and methods 
 

Seed lots 
Solanum nigrum and S. physalifolium plants were collected from crops or field margins 

between February and April 2001 (Appendix 3).  Seed from collections were processed 

and dried as described in Experiment 1, then stored at 5 °C.  Except that the fruit of 

S. physalifolium was processed as a single seed lot, as no separation for fruit colour 

could be made.  In May 2001, 100 seeds (four sub-samples of 25 seeds) from each lot 

were tested with 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) using a procedure for 

the Solanacae (Peters, 2000) with a 24 h staining time and with treated seed stored at 

25 °C.  Three seed lots (SN7A, SN7C, and SP3) with high levels of viability and 

sufficient seed quantities for the experiment were selected (Appendix 5). 

 

Field storage 
Two separate lots of seed for germination experiments were prepared for burial.  The 

first was of 450 seeds from the seed lots SN7A, SN7C, and SP3.  The second, of 225 

seeds was from the same seed lots.  The seed from each lot was placed in individual 

nylon mesh bags and tied with colour coded electrical wire.  Eight bags each with 0.23 

g of seed lot SP3 seed and eight bags each with 0.5 g of seed lot SN6A seed were also 
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prepared, to monitor seed moisture level.  Various combinations of seed lots, as 

indicated in Table 4-2, were placed into large ‘carrier’ nylon mesh bags with ~ 350 ml of 

soil.  At every second seed retrieval date a bag of SP3 and SN6A seed was included 

for moisture determination.  The small bags of individual seed lots were placed 

together in the centre of the soil mass, the large bag was then tied tightly with electrical 

wire.  Separate carrier bags were prepared for seed lot combinations of the 225 and 

450 seed batches. 

 

Table 4-2.  Carrier bags buried containing 2–3 seed lot combinations of either 450 or 
225 seeds/seed lot in individual bags.  Seed from S. nigrum (SN) (A = seed of 
black fruit, B = seed of green fruit) and S. physalifolium (SP) plants. 

Combination Seed lots of 450 seeds Seed lots of 225 seeds 
1 SP3/SN7A SP3/SN7A 

1 SP3/SN7A /SN7C SP3/SN7A /SN7C 

2 SP3/SN7A /SN7C SP3/SN7A 
 

The carrier bags were buried in Wakanui Silt Loam on 8 August 2001 in area H19, of 

the Horticultural Research Area, Lincoln University, at a depth of 75 mm to the centre of 

the bags, in a randomised design.  For each retrieval date a bag containing seed lots 

with 450 seeds, and a bag containing seed lots with 225 seeds were buried, together, 

side by side.  Bags for different retrieval dates were buried ~ 0.15 m apart.  A length of 

electrical wire from the neck of the carrier bag was attached to a coded metal disc at 

the soil surface.  Hourly soil temperature at a depth of 75 mm was recorded by a 

TinytagTM data logger, placed 0.4 m to the east of the burial area.  During the trial the 

area was hand weeded. 

 

Seed retrieval 
Bags were retrieved at ~ 2 week intervals from 15 July to 2 December 2002.  All bags 

retrieved in July were for those indicated as combination 1 in Table 4-2.  Combination 2 

bags were retrieved on 19 August, 3 September, 18 October and 2 November.  

Combination 3 bags were retrieved on 18 September, 3 October, 17 November and 2 

December.  The location of seed bags was made with the metal disc and retrieved a 

minimum of one hour after sunset, without the use of any lighting.  On retrieval bags 

were placed in double layer black polythene bags and were placed inside a light proof 

plastic container.   

The seed was taken to a dark room where seed lots were removed from the 

bags.  A 23 W (Phillips Ecotone PL Electronic T 827 PRO) light source, filtered through 

a dark green filter (Ilford 907 safe light filter), was used in the dark room.  This light 
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source, and a number of other light sources, were evaluated with a spectroradiometer 

(Licor 1800), with three replicate scannings, repeated four times.  At 50 mm from the 

filter the PAR was 0.030 µmole/m2/s, with a R:FR ratio of 0.6.  All seed lot bags except 

for the current lot being prepared were then returned to a light proof plastic container. 

 

Light and dark treatments 
The carrier bag containing lots of 450 seeds were used for this experiment, with the 

dark (L-) treatments being prepared first.  Twenty five seeds were counted into pre-

prepared glass Petri (90 mm) dishes containing a moistened Whatman grade 181 90 

mm paper under a water dipped seed germination blotter (Anchor Paper Co. Steel Blue 

Germination Blotters).  Water was then spray misted over the seeds and the Petri dish 

was sealed with plastic cling film.  A mean of 7 ml of water was used to pre-moisten the 

germination papers and sprayed over the seeds and the germination blotter.  Three 

dishes each containing 25 seeds were placed together on top of each other in a clear 

plastic zip lock bag.  The bag was sealed and then placed in a black polythene bag 

(380 × 510 mm, 60 µm thickness).  Following preparation of the L- treatments, seeds 

for the light treatments (L+) were transferred into an adjoining lighted (PAR of 21.0 

µmole/m2/s, R:FR 7.0) room where they were prepared as above.  However, no black 

polythene bag was used to cover the clear zip lock bag.  Light and dark treatments 

were prepared for the S. nigrum seed lot SN7A at each of the ten test dates this seed 

was retrieved from the field, and for lot SN7C for the eight dates this was retrieved.  

Seed of the S. physalifolium was retrieved on ten dates and light treatments were 

prepared at each date, but following the second retrieval date dark treatments for this 

species were prepared monthly instead of fortnightly. 

 

Soil nitrate testing 
For the retrievals from 31 July, except for 3 October, three 10 g soil samples were 

taken from the soil in each of the two carrier bags.  The six 10 g soil samples and two 

blanks were prepared using the 2M KCl extractable nitrate method of Blakemore et al. 

(1987).  This process was carried out on the day following a night retrieval of seed.  

The soil extract was stored at 4 °C before spectrophotometrical analysis with a Flow 

Injection Analyser (Alpkem FS3000).  Soil moisture was measured for each sample, by 

drying a 100 ml soil sample from each carrier bag at ~ 103 °C for 48 h. 
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Temperature treatments and germination conditions 
After treatment the prepared seed lots were transferred to Sanyo MIR 152 incubators 

with 24 h light, as described for Experiment 1.  Light levels in the germination cabinets 

were monitored periodically with a quantum sensor (Licor or Lambda Inst. Corporation).  

For these light regimes light intensity, was affected by the operating temperature of the 

incubator.  Mean light values and ranges over a 24 h period for the two alternating 

temperatures of 5/20 and 20/30 °C, were 7.3 µmole/m2/s (range 3.6–15.1) and 12.7 

µmole/m2/s (range 10.1–15.5) of PAR respectively. 

The seed from lots SN7A, SN7C, and SP3 for the L+ and L- treatments was 

germinated at two temperatures (5/20 and 20/30 °C) for 14 d.  Germination in the light 

treatments was inspected daily between 5 and 7 PM.   The dark treatments were 

inspected at 14 d.  All light treatments at 20/30 °C received 1 ml of water at 5 and 10 d 

after trial establishment.  All light treatments incubated at 5/20 °C received 1 ml of 

water 8 d after the trial was set up.  The definition of germination and counts of 

germinated and viable seed were performed as per Experiment 1. 

 

Analysis 
Analysis was performed and results presented as in Experiment 1.  With the addition 

that ANOVA with missing values, was used for the analysis of days to 50 % germination 

in Genstat Sixth Edition© (2002).  Means separation tests were made using the Tukey 

HSD test (Zar, 1984) 

 

4.3.2 Results 
 

Soil temperature 
Hourly temperature records from the seed burial site indicated that maximum 

temperatures of ~ 28 °C were recorded in December 2001. The lowest temperatures of 

~ 2.5 °C were recorded in July 2002 (Figure 4-2). 
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Figure 4-2.  Maximum and minimum daily soil temperatures recorded at a depth of 75 

mm at the seed burial site.  Dates of seed retrievals are indicated by �. 

 

Retrievals – Solanum nigrum seed 
Seed moisture values for S. nigrum seed ranged from 35.8 to 42.6 %, respectively.  

The soil moisture level in the soil burial bags ranged from 12.5 to 21.4 %. 

 

Germination percent of seed lot SN7A:  Seed lot SN7A had a mean 28.6 % non-viable 

seeds for the ten test dates (15 July to 2 December).  Analysis for the factors test date, 

temperature and light provided three significant (P < 0.001) two way interactions.  The 

transformed values for these three interactions are presented in Appendix 6, selected 

interactions are presented in this section.  For the interaction of test date and light 

(transformed values Appendix 6, non transformed values Figure 4-3), for germination in 

light, the percentage germination (59 %) significantly declined on the seventh test date, 

in comparison to the sixth (97 %) and eighth (98 %) test dates.  But for germination in 

darkness, significant increases in germination occurred on the third (79 %) and sixth 

(67 %) test dates in comparison to the preceding test dates (3 and 12 %, respectively).  

Percentage germination in darkness also significantly declined following the sixth test 

date.  At all test dates, germination in darkness was significantly lower than the 

germination in light.   
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Figure 4-3.  The percentage germination of viable seed of S. nigrum seed lot SN7A 
retrieved in 2002.  Seeds were germinated in light ◊ and dark ♦ for 14 d. 
(Experiment 2). 

 

For the interaction of test date and temperature, at 20/30 °C, there was 

significant variation between test dates, with germination at the third test (85 %) 

significantly greater than the preceding test (47 %) (transformed values Appendix 6, 

non transformed values Figure 4-4).  Germination at the sixth test date (79 %) also 

significantly increased in relation to the fourth test date (50 %), and percentage 

germination significantly declined for the four test final dates (range 41-52 %) following 

the sixth test date.  For germination at 5/20 °C, significant increases in germination 

were also observed at the third and sixth test dates in relation to the preceding test 

date.  However, at this temperature, a third significant increase was observed at the 

eighth test date (58 %) in comparison to the preceding test date (13 %), germination at 

this temperature also significantly declined for the last two test dates in comparison to 

the eighth test date.  Only at the seventh test date did germination differ significantly 

between germination at 5/20 °C (13 %) and 20/30 °C (47 %).   
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Figure 4-4.  The percent germination of S. nigrum seed lot SN7A at 20/30 °C (○), 5/20 
°C (□) for 14 d.  (Experiment 2). 

 

Germination percent comparisons between seed lots SN7A and SN7C:  For the eight 

dates (19 August to 2 December) where seed from lots SN7A and SN7C was retrieved 

and tested, an analysis of the factors seed lot, temperature, light and test date 

indicated a significant (P <0.001) four way interaction between these factors, this 

interaction is presented in Appendix 7.  There were also three significant three way 

interactions, each is presented in Appendix 7.  The interactions were:  test date, seed 

lot and temperature (P < 0.05);  test date, temperature and light (P < 0.001);  and seed 

lot, temperature and light (P < 0.001). There was no significant interaction between test 

date, seed lot and light.  Selected interactions are presented in this section. 

For the interaction between seed lot, temperature and light, percentage 

germination at all temperatures for both seed lots was significantly lower than for 

germination in light (transformed values Appendix 7, non transformed values Figure 

4-5).  However, for germination in darkness at 5/20 °C lot SN7C from black fruit was 

significantly higher (55 %) than for lot SN7A from green fruit (27 %).  The percentage 

germination of lot SN7C in darkness at 5/20 °C was also significantly greater than the 

germination of both lots germinated at 20/30 °C in darkness (SN7C 23 % and SN7A 20 

%).  Percentage germination in light was significantly higher at 20/30 °C that at 5/20 °C 

for both seed lots, but at neither temperatures did the percent germination in light differ 

between the two seed lots.   
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Figure 4-5.  The percent germination of two S. nigrum seed lots from green fruit (SN7A) 

and black fruit (SN7C) in light (open bars) and dark (filled bars) at 5/20 °C and 
20/30 °C (Experiment 2). 

 

For the interaction between test date, temperature and light, the percentage 

germination at 20/30 °C in light did not differ between test dates, but germination in 

light at 5/20 °C differed significantly with test date (transformed values Appendix 7, non 

transformed values Figure 4-6).  With percentage germination declining between the 

first (96 %) and second (72 %) test date, and fourth (92 %) and fifth (60 %) test dates, 

and sixth (95 %) and seventh (55 %) test dates.  Also significant increases in 

germination were observed between the third (40 %) and fourth (92 %) test date, and 

the fifth (60 %) and sixth (95 %) test date.  For germination in the dark at 5/20 and 

20/30 °C significant declines between the first and second test date were observed, 

and also from the fourth to the fifth test date.  For seed tested at 20/30 °C following the 

fifth test date there was a significant decline, and for seed tested at 5/20 °C following 

the sixth test date there was another significant decline.  For seed at both 

temperatures, when tested in darkness, germination significantly increased between 

the third and fourth test dates. 

Germination in light at 20/30 °C in light was significantly greater than 

germination at 5/20 °C in light except for the first, fourth and sixth test dates.  

Germination in light at 20/30 °C was significantly greater than germination in darkness 

at both test temperatures on all test dates.  For seed at 5/20 °C, however, germination 

in light was significantly higher than germination in darkness at this temperature at five 

of the eight test dates.  Seed germinated at 5/20 °C in light had significantly higher 

germination than that in darkness at 20/30 °C, at all test dates.  For seed germinated at 
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5/20 and 20/30 °C in darkness, germination at 5/20 °C was significantly higher than at 

20/30 °C on two test dates. 
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Figure 4-6.  The percent germination of viable seed of two S. nigrum seed lots in light 
(open symbols) and dark (filled symbols) on eight dates.  Seeds were 
germinated at 20/30 °C (in light ○ and dark ●), 5/20 °C (in light □ and dark ■) 
for 14 d (Experiment 2). 

 

Days to 50 % germination of SN7A and SN7C:  The day at which 50 % germination 

(d50) was observed for lots SN7A and SN7C was significantly (P < 0.01) affected by the 

interaction of seed lot, retrieval date and temperature (Table 4-3).  For seed lots 

germinated at 5/20 °C it was notable that for a number of retrieval dates individual 

replicates or sets of three replicates did not reach 50 % germination prior to the final 

count at 14 d.  There was no significant variation between seed lots at 20/30 °C but 

there was at 5/20 °C, with individual seed lot d50 affected by retrieval date.  Lot SN7C 

had a faster germination than lot SN7A at the 17 November retrieval. 

 

Soil nitrate:  There was a nearly linear decrease in soil NO3 levels from the first to the 

third sample date (Table 4-4).  After this it was unchanged. 
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Table 4-3.  Days to 50% germination (d50) at 5/20 and 20/30 °C for two seed lots 
(SN7A, seed of green fruit and SN7C, seed of black fruit) of S. nigrum (s.e. = 
0.36, d.f. = 53, Tukey HSD = 1.99).  Means followed by the same letter in 
columns are not significantly different.  (Experiment 2). 

 d50 at 5/20 °C d50 at 20/30 °C 
Seed lot SN7A SN7C SN7A SN7C 

Retrieval date     
 19 Aug   9.3 a 11.0 b 3.0 a 3.0 a 
  3 Sept 12.3 c 12.3 ab 3.3 a 3.3 a 
 18 Sept 12.3 c     -3 3.0 a 3.3 a 
  3 Oct 10.0 ab 10.7 b 3.0 a 3.0 a 
18 Oct     -3     7.3 ab 4.0 a 3.0 a 
  2 Nov   9.7 a     9.7 a 3.0 a 3.0 a 
17 Nov 13.0 c1 11.0 ab2 3.7 a 4.0 a 
  2 Dec     -3     -3 4.0 a 4.0 a 

       superscript value = number of replicates not reaching 50 %  
       germination at 14 d. 
 

Table 4-4.  Soil NO3 levels (mg/kg dry soil) on eight sample dates, as indicated by a 
KCL extractable nitrate method (s.e. = 24.8, d.f. = 40).  Means followed by the 
same letter are not significantly different (Tukey HSD = 148.70).  (Experiment 
2). 

Sample date NO3 
13 Sept.   296.1 a 
27 Sept. 154.8 b 
25 Oct.     44.7 bc 
8 Nov.     9.2 c 
19 Nov.    21.9 c 
28 Nov.     9.6 c 
10 Dec.     7.2 c 
13 Jan.   15.3 c 

 
 

Solanum physalifolium seed 
Comparisons of percent germination:  The seed moisture content of S. physalifolium 

seed ranged from 25.0 to 38.9 %.  Germination at 5/20 °C progressively and 

significantly increased between the first, second and third test dates, but at 20/30 °C it 

was constant at about 100% (transformed values Appendix 8, non transformed values 

Figure 4-7).  There was no significant difference between light treatments at 20/30 °C, 

but at 5/20 °C on the third retrieval date (3 September) germination in the dark (94.7 %) 

was significantly higher than in the light (72.0 %).  At this, and the fourth test date (3 

October), germination in dark at 5/20 °C did not differ significantly from the germination 

in light or dark at 20/30 °C.  However, for both of these test dates the germination in 

light at 5/20 °C was significantly lower than germination in light or dark at 20/30 °C.   
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Figure 4-7.  The percentage germination of viable seed of field stored S. physalifolium 
seed lot SP3.  Seeds were germinated at 20/30 °C (in light ○ and dark ●) or 
5/20 °C (in light □ and dark ■) for 14 d. (Experiment 2). 

 

Species d50 comparisons 
Fifty percent germination was not achieved for S. physalifolium seed retrieved on 15 

July.  This also occurred for the S. nigrum lot SN7A at the 18 October retrieval and at 

the 2 December retrieval (Table 4-5).  For seed tested at 20/30 °C the d50 values for the 

S. physalifolium and S. nigrum did not differ significantly.  For seed tested at 5/20 °C 

the d50 values of the S. physalifolium seed lot were not significantly affected by retrieval 

date.  Germination of the S. physalifolium seed lot at 5/20 °C was significantly faster 

than both S. nigrum lots at all retrieval dates except on 2 November, and for lot SN7A 

on 19 August.  There was significant variation in d50 values for S. nigrum between test 

dates with the values for the 2 November and 19 August retrievals significantly lower 

than at other test dates, except the 3 October retrieval.  In addition, the 31 July and 17 

November retrieval was significantly greater than the 3 October retrieval.  
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Table 4-5.  Days to 50 % germination (d50) at 5/20 and 20/30 °C for seed lot SN7A of 
Solanum nigrum and of S. physalifolium (SP3) (s.e. = 0.32, d.f. = 72, Tukey 
HSD = 1.84).  Means followed by the same letter in columns are not 
significantly different.  (Experiment 2). 

 d50 at 5/20 °C d50 at 20/30 °C 
Seed lot SN7A SP3 SN7A SP3 

Retrieval date     
  15 July     11.7 bc -3 4.0 a 3.0 a 
  31 July  13.7 d  9.5 a1 3.3 a 3.0 a 
 19 Aug    9.3 a   9.7 a 3.0 a 3.0 a 
  3 Sept 12.3 cd 9.3 a 3.3 a 3.0 a 
 18 Sept 12.3 cd 8.3 a 3.0 a 2.0 a 
  3 Oct 10.0 ab   8.0 a 3.0 a 2.0 a 
18 Oct -3 9.0 a 4.0 a 2.7 a 
  2 Nov  9.7 a 8.7 a 3.0 a 2.7 a 
17 Nov  13.0 d1 8.3 a 3.7 a 2.0 a 
  2 Dec -3 8.3 a 4.0 a 3.0 a 

       superscript value = number of replicates not reaching 50 %  
       germination at 14 d. 

 

 

4.4   Experiment 3 – The effect of short duration light 
exposure effects on Solanum nigrum and 
S. physalifolium germination  

 

This experiment was conducted to test the hypothesis that the germination of S. nigrum 

seed following SDLE at different dates would indicate no change in light requirements, 

and no variation in SDLE responses between S. nigrum seed lots from green and black 

fruit.  It was also hypothesised that S. physalifolium germination would not be affected 

by SDLE (hypothesis 4).  Testing used the same field storage procedure as in 

Experiment 2, with burial of seed of both species in 2001, and testing on ten dates in 

2002.  

 

4.4.1 Materials and methods 
 

The seed lots used for this experiment were buried with those used in Experiment 2.  

For each retrieval date in Experiment 2 the bags containing batches of 225 seeds, as 

described in Experiment 2, were used for this experiment (Table 4-2).  Twenty five 

seeds were counted into Petri dishes and, at the completion of each count of 25 seeds, 
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water was misted over the seeds and the dish was placed into a light box.  The box 

contained an air cooled incandescent light (Eye Multi-metal Lamp, MF 400 X/U) with a 

remotely activated mechanical shutter with a timer control.  The shutter when open, 

exposed the Petri dish, which was in a light proof draw at the base of the light box, to 

the light.  The measured light intensity at the level of the base of the Petri dish, and 

with the shutter open, gave a PAR of 221.0 µmole/m2/s and a R:FR of 2.4.  Light 

measured with the shutter closed gave a PAR of 0.005 µmole/m2/s.  The replicates 

were exposed to one of three light treatments: 

1. 10 seconds with the shutter closed (PAR, 0.050 µmole/m2) 

2. exposed to 4.6 s light (PAR, 1,017 µmole/m2) 

3. exposed to 25.8 s light (PAR, 5,701 µmole/m2) 

After light exposure, dishes were sealed and covered with black polythene, as 

described in Experiment 2.  For each seed lot being tested at a retrieval date three 

replicates were exposed to each of the above three treatments.  The seeds were 

germinated at 20/30 °C for 14 d, as described for the L- treatments in Experiment 2.  

Testing of S. nigrum seed lot SN7A was made on ten test dates and lot SN7C, on four 

test dates.  Testing of S. physalifolium was not continued after the first two test dates.  

The analysis was performed, and presented as in Experiment 1. 

 

4.4.2 Results 
The results for each species are presented separately. 

 

Solanum nigrum 
Seed lot SN7A: There was a significant interaction (P < 0.001) between retrieval date 

and light duration (transformed values Appendix 9, non transformed values Figure 4-8).  

On no test date was there a significant difference between the 25.8 and 4.6 s light 

exposures.  For both of these treatments germination increased significantly at the 

third, fourth and fifth test dates compared with the first and second test dates.  

Germination declined significantly at the final test (2 December) compared with the 

seventh, eighth and ninth test dates.  Germination also declined significantly in the 4.36 

s light treatment at the sixth test date (65 %) compared with the third test date (100 %).  

The germination of the 0 s light treatment was significantly lower than both the 25.8 

and 4.6 s light treatments at the third (19 %), and the sixth to ninth test dates (range 0-

13 %).  Germination for this treatment was also significantly less (2 %) than the 25.8 s 

(52 %) treatment at the second test date.  Throughout the experiment germination in 
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the nil light treatment’s germination was generally lower than both the other light 

treatments. 
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Figure 4-8.  The percent germination of viable S. nigrum seed (SN7A) at 14 d.  Seeds 
were germinated at 20/30 °C, following exposure to 25.8 seconds light (○), 4.6 
seconds light (grey fill), and 0 s light exposure (· —●— ·). (Experiment 3). 

 

Seed lot comparisons:  There was a significant (P < 0.001) interaction between light 

duration and test date, and a significant (P < 0.001) interaction between seed lot and 

light duration (transformed values Appendix 9, non transformed values Table 4-6).  Test 

date, seed lot and light duration did not interact significantly.  For the interaction 

between light duration and test date at no test date did light duration differ with test 

date for the light durations of 4.6 and 25.8 s, but for the nil light duration treatment the 

November test (3 %) had significantly lower germination than the preceding four test 

dates (Table 4-6, a).  And the September test (68 %) had significantly higher 

germination than the August (32 %) and November (28 %) tests.  In addition the 

September value for the nil light duration treatment did not differ significantly from that 

of the 25.8 s exposure (85 %).  For the interaction between seed lot and light duration, 

seed lot SN7C had significantly higher germination for the nil light duration than lot 

SN7A (Table 4-6, b) 
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Table 4-6.  The percent germination of viable seed after 14 d at 20/30 °C for two seed 
lots (SN7A, seed of green fruit and SN7C, seed of black fruit) of S. nigrum on 
four dates and exposed to 25.8, 4.6 or 0 s of light prior to germination testing 
in the dark.  a) Test date and light duration interaction.  b) Seed lot and light 
duration interaction. (Experiment 3). 

a) Light duration (s) 0 s 4.6 s 25.8 s 
Test date    
19 Aug 33 99 100 
  3 Sept 85 99 95 

 18 Oct 33 88 95 
 2 Nov 1 96 97 

 
b) Light duration (s) 0 s 4.6 s 25.8 s 
Seed lot    
SN7A 25 94 97 
SN7C 51 98 97 

 

Solanum physalifolium 
Seed of SP3 was tested on 15 and 31 July 2002, the germination in each of the three 

light treatments was 100 % of viable seed.  Statistical analysis was therefore not 

possible due to the lack of variation in the variable.  Testing of SP3 seed in 2002 was 

discontinued after these tests. 

 

4.5   Experiment 4 – Dark cultivation effects on 
Solanum nigrum and S. physalifolium field germination  

This work was conducted to test the hypothesis that dark cultivation will not reduce the 

field germination of S. nigrum, or S. physalifolium (hypothesis 7).  To test this 

hypothesis two dark cultivation experiments (4A and 4B) were conducted, in 2001 and 

2002, respectively.   

 

4.5.1 Materials and methods 
 

Both experiments were carried out at Lincoln University, Lincoln (latitude 43°38' 

longitude 172°28'). 

 

Dark cultivation - Experiment 4A 
Trial area and design:  An area of field H19 in the Horticultural Research Area of 

Lincoln University was used for the trial.  The trial design consisted of five blocks (18 m 
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× 10 m).  Each block had two main plots (each plot 9 × 10 m) of S. nigrum or 

S. physalifolium.  In each main plot there were three sub plots (3 × 10 m) which were: 

un-covered cultivation and un-covered pea drilling by day; covered cultivation and 

covered pea drilling by day; un-covered cultivation and un-covered pea drilling after 

sunset.  Prior crop and trial use of the area was 1998-9 Avena sativa L., 1999-00 Zea 

mays and Chamaecytisus palmensis (Christ) Bisby et K. Nicholls, 2000-01 was 

Brassica campestris ssp. Pekinensis L.  Soil samples (20 × 150 mm depth cores), 

taken from the test area on 12 February 2003, gave soil test values of 17, 10, 14, 6 

(MAF units) and 5.7 for Olsen P, K, Mg, Ca, and pH respectively.  The area was 

ploughed in the autumn, and was grubbed six weeks prior to sowing nightshade seed. 

 

Nightshade establishment and treatment methods:  The main plots were sown either 

with a mixture of Solanum nigrum (SN1, SN2 and SN9B seed lots) or with a mixture of 

S. physalifolium (SP1, SP2, SP3 and SP4 seed lots) on 27 July 2001 (Appendix 3).  

The sowing rate was 100 viable nightshade seeds/m2.  The seed was drilled at a depth 

of 3.5-4 cm with a tractor driven Öyjord cone seeder.  The area was sprayed on the 26 

September with Glyphosate (active ingredient 360 g/l), 1 l/h with a Cropland boom 

sprayer fitted with 11-004 Teejet nozzles.  Water delivery rate was 232 l/hour at 300 

KPa, and the unit was driven at 8 km/h. 

The cultivation and sowing treatments were carried out on 1 October 2001.  

Prior to cultivation, a single soil moisture reading, at a depth of 120 mm, and soil 

temperature, at a depth of 105 mm, were recorded from every sub-plot.  Cultivation 

was with a Duncan Vibrotiller fitted with a rotating crumbler. 

The covers of the cultivator and the seed drill are shown in Appendix 10.  

Covered daylight cultivation and un-covered daylight cultivation was carried out 

between 1:20 and 2:00 PM.  A Sunfleck Ceptometer (Decagon) was used to record 

PAR under the covered and uncovered cultivation and sowing equipment.  To limit 

potential transfer of nightshade seed between main plots the coulters of the cultivator 

and drill were brushed and wiped clean of adhering dirt, as required.  Peas (cv. Bounty) 

were drilled at 296 kg/ha at 170 mm row spacings with a Fiona F873 (Schery 

Maskinfabrik) seed drill in daylight, for both treatments, between 3:10 and 3:45 PM.  

Night cultivation was initiated 1 h 30 min after solar sunset, cultivation and drilling 

occurred between 8:00 and 8:20 PM.  Night operations were completed with only the 

front lights of the tractor on. 

On 2 October 2001, in daylight, the exterior area from the plot edge to fence (~ 

6 m) surrounding and between the two areas of plots was sown with peas at twice the 
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plot density.  A 0.28 m edge area of each sub-plot, not sown by the Fiona seeder, was 

drilled with a hand operated cone seeder (Hans-Urlich Hege-Maschinbau) with three 

rows drilled into the 0.56 m between neighbouring sub-plots.  Twenty four mm of 

irrigation water was applied to plots on 19 December 2001. 

Sampling:  A sample area of 8.0 × 0.5 m in each sub-plot (10 × 3 m) was marked out.  

The sample area was divided into 8, 0.5 × 1 m sample areas, and a random number 

table was used to allocate the eight areas.  Three weed emergence sample areas, and 

five weed and pea dry matter (DM) and leaf area (LA) sample areas were allocated.  

Within the three emergence sample areas a 0.1 m2 rectangular quadrat was placed 

and the interior corners marked with plastic stakes (3 mm D).  These stakes were used 

to reposition the quadrat at later samplings.  In all emergence experiments, when 

analysed seedling density was calculated on a 1 m2 basis. 

Only nightshade species were counted in the three fixed quadrats on 13 

October and 21 October, and nightshades and some other weed species were counted 

between 1 and 4 November.  On 2 January 2002 the number of nightshade and 

Chenopodium album plants were counted in two fixed quadrats in three blocks only.  

The five DM and LAI areas were sampled on the 7 to 8 November, 16 November, 24 to 

25 November, 30 November to 1 December and 17 December.  On the 29 December 

one of the fixed emergence quadrats was also sampled.  At each of these dates the 

number of S. nigrum and S. physalifolium seedlings was counted. 

Analysis of the results of this experiment used the repeated measures analysis 

of variance, split plot procedure in Genstat 6th Edition © (2002) for counts of seedlings 

in fixed quadrats.  The analysis of variance split plot procedure was used for counts of 

seedlings from DM and LAI destructive sample quadrats. 

 

Dark cultivation - Experiment 4B 
Trial area and design:  Two separate experimental test areas were established for 

S. nigrum and S. physalifolium.  The S. nigrum area was a randomised block split plot 

design.  There were 10 blocks with six main plots per block.  Each main plot had a split 

plot treatment of S. nigrum seed sown, or a control.  This gave 120 experimental plots 

(sub-plots), of 2.65 × 0.6 m.  The main plot treatments were cultivation × S. nigrum 

seed source.  There were three cultivation treatments; un-covered cultivation during the 

day, covered cultivation during the day, and un-covered cultivation after sunset.  Two 

S. nigrum seed sources were used.  Three of the main plots were sown with seed from 

black fruit (SN11A) of S. nigrum, and three of the main plots were sown with seed from 
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green S. nigrum fruit (SN11B) (Appendices 3 and 5).  The three cultivation treatments 

and the two seed sources gave six main plot treatments per block. 

The S. physalifolium area was a randomised split plot design.  There were 20 

main plots and two main plot treatments; un-covered cultivation during the day, and un-

covered cultivation after sunset.  Each main plot had a split plot treatment of 

S. physalifolium seed (SP4) sown, or a control.  This gave 40 sub-plots of 2.65 × 0.6 m. 

 

Establishment and treatment methods:  The area used was in H18 of the Horticultural 

Research Area, Lincoln University.  This had previously consisted of grazed pasture 

(ex. pasture composition experiment, March 1995 to December 1999).  The pasture 

was sprayed off with Glyphosate (2 l/ha) in February 2002, and was top worked and 

ploughed in the third week of August.  In the first week of September the area received 

a final grub and roll.  Seed lot SN11A (from black fruit) and SN11B (from green fruit) 

S. nigrum seed for seeded plots were broadcast onto a 1.65 × 0.6 m area on 10 

September 2002 at 1000 viable seeds/m2.  On the same date, S. physalifolium SP6 

seed (area 3b) was sown using the same method at 193 viable seeds/m2 per plot. Seed 

was hand sown on to the soil surface.  After sowing all plots received two passes (in 

opposite directions) with a hand operated rotary hoe (S.E.P 1700 Special).  The rotary 

hoe shield and tines were cleaned when changing from seeded to unseeded plots.  

The mean cultivation depth was 100 mm. 

On 11 September 2002 seven additional plots, adjacent to area 3b and of the 

same size as above, were established to monitor soil nitrate level.  These plots were 

cultivated on 11 September and 21 November 2002, with two passes in opposite 

directions of the rotary hoe on each date.  A soil corer (50 mm D) was used to take a 

single soil sample to 80 mm depth from the centre of each plot.  Soil samples were 

taken on the 13 September, 27 September, 25 October, 8 November, 19 November, 28 

November, 18 December, and 13 January.  The seven samples and two blanks were 

prepared on the day of sampling using the 2M KCl extractable nitrate method as 

described for Experiment 2.  Soil moisture was measured for each sample, by drying a 

single ~ 150 ml sample from each plot at 105 °C for 48 h. 

For this experiment cultivation treatments were made on 14 November 2002.  

Weeds in the trial area were sprayed off on 13 November 2002 with an application of 

Interceptor (active ingredient pine oil 650g/litre) at the equivalent of 147 l/ha in 2,069 l 

of water/ha using a back pack sprayer with a foaming applicator nozzle.  On 14 

November 2002 soil moisture and soil temperature records, using the same equipment 

as for Experiment 4A, were taken from 10 plots diagonally across the experimental 

area.  Cultivation was with a S.E.P rotary hoe; a Perspex shield was fitted over the 
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rotary hoes tines in place of the usual metal shield.  The PAR transmission through this 

shield was measured at 55 % of incident PAR.  When covered with polythene no PAR 

was transmitted through the shield (Appendix 10). 

For the November 2001 cultivation, day light cultivation treatments of both 

areas was between 12:25–3:00 PM.  The PAR, using a Sunfleck Ceptometer, during 

cultivation of each sub-plot was recorded.  Night cultivation started 2 h 40 min after 

solar sunset, with cultivation occurring from 11:10 PM-2:15 AM.  Between sub-plots, the 

hoe tines and the shield were cleaned to limit nightshade seed transfer between plots.  

No light sources were used during the night cultivation.  A quantum sensor (Licor) 

positioned at the site recorded PAR levels during the course of the day and the night.  

Heavy rain, after sowing, caused soil capping; a light application of water (2 mm) was 

applied on the 26, 27, 28 and 30 December and on 2 January, at dusk, to soften the 

soil surface over night and facilitate seedling emergence. 

 

Sampling:  Emergence counts were made, using a randomly placed 0.05 m2 circular 

quadrat.  Three counts were taken per plot.  Nightshade emergence prior to the 

cultivation treatments in the area sown with S. nigrum seed was sampled on the 10, 11 

and 13 November and in the area sown with S. physalifolium seed on 13 November.  

After the November 2002 cultivation, on 10 December, the S. nigrum area was 

sampled and the position of the quadrats was marked.  This sampling was made in the 

S. physalifolium area on 12 December 2002.  On 17 December 2002 the marked 

quadrats in both experimental areas were sampled.   

 

Statistical analysis:  The three 0.05 m2 quadrat emergence counts from each sub-plot 

were averaged and weed numbers calculated on a per m2 basis for statistical analysis.  

Analysis of the results of these experiments used the repeated measures analysis of 

variance, split plot procedure in Genstat 6th Edition (2002).  Analysis of seedling counts 

after the cultivation treatments for the S. nigrum test area, used the precultivation 

treatment S. nigrum seedling counts as a covariate.  This covariate was significant (P < 

0.01) at the level of block and the block/main plot stratum.  Means separation tests 

were made using the Tukey HSD test (Zar, 1984) 

 

4.5.2 Results 
Results for experiments 4A and 4B are presented in chronological order. 
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Dark cultivation - Experiment 4A 
The mean soil moisture prior to the cultivation was 14.9 % (range 9-23 %) and mean 

soil temperature was 11.8 °C (range 11.6-12.2 °C).  The mean PAR recorded during 

uncovered daylight cultivation was 1,502 µmole/m2/s (range 1,158-1,652 µmole/m2/s), 

and during periods of covered daylight cultivation it was 1,496 µmole/m2/s (range 

1,427-1,536 µmole/m2/s).  During the uncovered sowing the mean PAR was 299 

µmole/m2/s (range 254-360 µmole/m2/s) and for the covered sowing it was 518 (444-

583 µmole/m2/s).  During cultivation and sowing at night the mean PAR was 0.3 

µmole/m2/s (range 0-0.7 µmole/m2/s).  The mean PAR under the stationary cultivator, 

when covered, was 0 µmole/m2/s and under the stationary uncovered cultivator it was 

899.4 µmole/m2/s (range 649-1,179 µmole/m2/s).  Similarly, under the stationary 

covered seeder the mean PAR was 0 µmole/m2/s, and under the stationary uncovered 

seeder it was 38.8 mol/m2/s (range 36.8-76.3 µmole/m2/s).  Values for PAR at night 

were 0 µmole/m2/s under both the cultivator and seeder. 

 

Weed seedling counts from fixed quadrats:  Only time had a significant effect (P < 

0.001) on the number of nightshade seedlings present (Table 4-7).  No other factor had 

a significant main factor effect and there was no significant interaction.  There were 

also no significant treatment effects for Chenopodium album and Spergula arvensis L. 

numbers (Table 4-8). 

 

Table 4-7.  Counts of nightshade (NS) seedlings/m2 (sample date s.e. = 25.0, 
cultivation s.e. = 23.9, d.f. = 48) for three cultivation treatments on three 
dates.  Means followed by the same letter in rows are not significantly 
different (Tukey HSD = 110.7).  (Experiment 4A). 

DAS 12 20 34 
Cultivation    

Cover 10 a 177 b 202 b 
Night 12 a 191 b 244 b 
Day 10 a 171 b 265 b 

 

Table 4-8.  Counts of Chenopodium album (s.e. = 24.5, d.f. = 16, Tukey HSD = 89.3) 
and Spergula arvensis seedlings/m2 (s.e. = 30.9, d.f. = 16, Tukey HSD = 
112.7) for three cultivation treatments.  Means followed by the same letter in 
columns are not significantly different as indicated by the Tukey HSD.  
(Experiment 4A). 

Cultivation C. album S. arvensis 
Cover 177 a 226 a 
Night 181 a 254 a 
Day 178 a 226 a 
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Weed counts from single non-fixed quadrats:  There was no effect of cultivation on 

weed counts from the non-fixed quadrats (Table 4-9).  However, there was a significant 

interaction (P < 0.01) between sample date and the main plot (sown with S. nigrum or 

S. physalifolium) (Table 4-10).  There was a significant decline in the number of 

S. nigrum seedlings for the final two sample dates compared to counts at 37, 54 and 60 

DAS of peas.  There were significantly more S. nigrum seedlings in the plots sown with 

S. nigrum at 46 DAS, than in plots sown with S. physalifolium on the same day. 

 

Table 4-9.  Counts of S. nigrum seedlings/m2 (s.e. = 15.0, d.f. = 16) for three cultivation 
treatments.  Means followed by the same letter in columns are not 
significantly different (Tukey HSD = 133.7).  (Experiment 4A). 

Cultivation S. nigrum 
Cover 279 a 
Night 275 a 
Day 222 a 

 

Table 4-10.  Counts of S. nigrum seedlings/m2 in plots sown with S. nigrum or 
S. physalifolium seed on six dates indicated as days after sowing (DAS) of 
peas (s.e. = 56.7, d.f. = 120).  Means followed by the same letter in rows are 
not significantly different (Tukey HSD = 197.4). (Experiment 4A). 

DAS 37 46 54 60 79 89 
Main plot       

S. nigrum 391 c 429 c  366 bc 425 c   172 ab   97 a 
S. physalifolium 227 a 215 a 208 a 292 a 163 a 117 a 

 

The analysis for the number of S. physalifolium seedlings indicated that only sample 

date had a significant effect (P < 0.05) (Table 4-11).  The greatest number of 

S. physalifolium seedlings was observed at 46 DAS of peas, and at 79 DAS the 

number of S. physalifolium seedlings was significantly lower than at 46 DAS. 

 

Table 4-11.  Counts of S. physalifolium seedlings/m2 on six different intervals (days 
after sowing (DAS)) (sample date s.e. = 7.69, d.f. = 120).  Means followed by 
the same letter are not significantly different (Tukey HSD = 22.28).  
(Experiment 4A). 

DAS 37 46 54 60 79 89 
No. seedlings 17.3 ab 34.0 b 21.0 ab 27.0 ab 11.0 a 13.7 ab 

 

Dark cultivation - Experiment 4B 
Pre-light cultivation emergence counts:  For the S. physalifolium test area, seed sown 

had a significant effect (P < 0.001) on counts of S. physalifolium (Table 4-12).  Analysis 

indicated that 4.5 % of the sown S. physalifolium seed had emerged at the pre-

cultivation count at 13 November.  For the S. nigrum test area, only one 
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S. physalifolium seedling was recorded (where half of the sub-plots were sown with 

S. nigrum).  Analysis of seedling counts for the factor seed sown and seed source 

(seed from green or black S. nigrum fruit) indicated that seed source had a significant 

effect (P < 0.05) but that seed sowing was not significant (Table 4-13).  Further analysis 

of main plot effects from this area indicated that main plots had a significant (P < 0.001) 

effect (Table 4-14).  This indicated that one side of the trial area had a significantly 

greater density of nightshade seedlings. 

 

Table 4-12.  The number of S. physalifolium seedlings/m2 in sown and unsown plots 
prior to cultivation treatments (s.e. = 1.32, d.f. = 19, Tukey HSD = 3.90).  
(Experiment 4B). 

Sown Not sown 
8.7 0.3 

 

Table 4-13.  a) The number of S. nigrum seedlings/m2 in main plots designated as 
black or green S. nigrum seed sources (s.e. = 13.45, d.f. = 58, Tukey HSD = 
38.05), b) and plots sown or not with S. nigrum seed (s.e. = 5.53, d.f. = 29, 
Tukey HSD = 15.98).  (Experiment 4B). 

a) Seed source Black Green 
 66 a 105 b 
b) Seed sown Sown Not sown 
 88 a  82 a 

 

Table 4-14.  The number of S. nigrum seedlings/m2 (s.e. = 21.11, d.f. = 45, Tukey HSD 
= 89.32).  Means followed by the same letter are not significantly different.  
(Experiment 4B). 

Main plots Seedlings 
1    14 a 
2  294 a 
3   32 a 
4     93 ab 
5 194 b 
6 150 b 

 

November cultivation:  The mean percent soil moisture prior to cultivation was 14.6 % 

(range 11-21 %) and the mean soil temperature was 16.8 °C (range 16.0-17.6 °C).  The 

mean PAR, recorded by the quantum sensor, during the daylight cultivation in the 

S. nigrum area, was 1,533 µmole/m2/s (range 1,170-1,790).  The mean PAR, recorded 

by the quantum sensor during the daylight cultivation in the S. physalifolium area, was 

979 and 987 µmole/m2/s (range 710-1,285) for the covered and un-covered plots, 

respectively.  During the night cultivation for both experimental areas the PAR was 0 

µmole/m2/s. 
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Post November cultivation treatment emergence counts:  Soil capping was a problem 

in the plots, as 66.9 mm of rain fell in the 10 days following the cultivation treatments.  

Repeated measures analysis indicated that seed sown was the only significant (P < 

0.001) factor for the analysis (Table 4-15, a).  Both time and cultivation had no 

significant effect (Table 4-15, b).  Analysis of counts of resident S. nigrum seedlings 

from this area indicated there was no significant cultivation effect (data not presented).  

Analysis indicated that 12.6 % of the sown S. physalifolium seed had emerged 34 d 

after the 14 November 2002 cultivation and 17.1 %, in total, for the pre and post 

November cultivation.  The repeated measures analysis for the S. nigrum area 

indicated that seed sowing had a significant (P < 0.001) effect, but that cultivation had 

no significant effect (Table 4-16).  Time interacted (P < 0.01) with seed source and 

seed sown (Table 4-16).  With significantly more seed present in plots sown with seed 

from black fruit at the second count date, this did not occur for plots sown with seed 

from green fruit.  Analysis indicated that 1.7 % of sown S. nigrum seed had emerged. 

 

Table 4-15.  The number of S. physalifolium seedlings/m2 from repeated measures 
analysis 27 and 34 d after cultivation a) seed sowing effects (s.e. = 2.51, d.f. = 
76, Tukey HSD = 7.09), b) cultivation effects (s.e. = 2.51, d.f. = 76, Tukey 
HSD = 7.09).  (Experiment 4B). 

a) Seed sown absent present 
 3.7 14.5 

b) Cultivation day night 
 9.8 8.4 

 

Table 4-16.  The number of S. nigrum seedlings/m2 from repeated measures analysis 
25 and 34 d after cultivation a) seed sowing effects (s.e. = 3.3, d.f. = 98, 
Tukey HSD = 9.3), b) cultivation effects (s.e. = 2.5, d.f. = 76, Tukey HSD = 
7.1).  Means followed by the same letter in rows are not significantly different.  
(Experiment 4B). 

a) Seed sown absent  present  
 17 34  

b) Cultivation day-no cover day-with cover night 
 26 a 27 a 23 a 

 

Table 4-17.  Solanum nigrum seedlings/m2 from repeated measures analysis for the 
interaction of time (days after cultivation) seed source and seed sown (s.e. = 
1.0, d.f. = 108, Tukey HSD = 2.8).  Means followed by the same letter in rows 
and columns are not significantly different.  (Experiment 4B). 

Seed source black fruit green fruit 
Seed sown absent  present absent  present 

Time     
25 19 b 35 d 13 a 31 c 
34 19 b 39 e 16 a   32 cd 
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Soil NO3 levels (mg/kg dry soil) increased significantly (P < 0.001) between the 

first and fourth sample date (Table 4-18).  Soil NO3 levels dropped significantly 

following the second cultivation of the plots on 21 November 2002, for tests made on 

28 November and 10 December 2002.  However, by the final sample date in January 

2003 soil NO3 levels had increased significantly compared to the November and 

December tests. 

 

Table 4-18.  Soil NO3 and NO3-N levels (mg/kg dry soil) on eight sample dates in 2002 
and 2003, as indicated by a KCL extractable nitrate method (s.e. = 62.2, d.f. = 
47).  Means followed by the same letter are not significantly different (Tukey 
HSD = 281.1).  (Experiment 4B). 

Sample date NO3 
13 Sept.    347 a 
27 Sept.     693 ab 
25 Oct.       1,154 abcd 
8 Nov.    1,639 bcd 

19 Nov.   1,945 cd 
28 Nov.     518 ab 
10 Dec.       900 abc 
13 Jan. 2,298 d 

 

 

4.6 Discussion 
 

4.6.1 Dormancy of freshly collected Solanum nigrum seed 
 

Collection site and fruit colour effects 
Two seed lots collected in Lincoln and tested in 20/30 °C for 14 d in light had low levels 

of germination (< 10 %) (Figure 4-1).  Results for S. nigrum seed collected from Lincoln 

and Gisborne, in 2001, and stored dry for 6-12 weeks at 5 °C before testing under the 

same conditions, for 21 d, also gave low germination levels of 12 and 23 %, 

respectively (Bithell et al., 2002) (Appendix 1).  However, the germination of a seed lot 

collected, in 2002, from Gisborne was ~ 70 % and both Manawatu seed lots had ~ 40 

% germination, after 14 d (Figure 4-1).  Furthermore, in the absence of light, pre-

germination chilling and KNO3 individual seed lots from the Manawatu and Gisborne 

had a ~30-35 % germination.  It is reported that S. nigrum seed collected in New 

Zealand had primary dormancy (Bithell et al., 2002) (Appendix 1).  The results from this 

present work indicate that primary dormancy is present to different extents in different 

seed lots (Figure 4-1), providing no support for the null hypothesis that the germination 
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requirements of freshly harvested S. nigrum seed collected from different sites does not 

differ (hypothesis 1).  

With regard to the effect of fruit colour, it was hypothesised that the germination 

requirements of seed from black and green fruit does not differ (hypothesis 1).  

However, there were significant differences in the germination between some seed lots 

of black and green fruit collected at the same site.  For example, for seed from the 

Manawatu, seed from green fruit had higher germination than seed from black fruit in 

the presence of prechilling or nitrate only (Figure 4-1).  This indicated some support for 

the report of Kazinczi and Hunyadi (1990), that seed from black S. nigrum fruit was 

more dormant than seed from green fruit.  However, the germination responses of seed 

from black and green fruit differed when comparing the germination of seed of the 

same fruit colour from different sites.  This indicates no consistent colour effect.  In 

addition, the most dormant seed of the six seed lots, in this present work, was seed 

from a seed lot of green fruit (Lincoln collection, seed lot SN11B).  The implication of 

the results from this present work is that for S. nigrum seed collected from different 

sites, and for S. nigrum seed from different coloured fruit, germination requirements will 

differ.   

 

Ranking the germination requirements of seeds with primary dormancy 
It is reported that there is no evidence to suggest that the mechanisms regulating 

primary and secondary dormancy differ for seed with physiological dormancy (Khan, 

1996; Foley, 2001).  Therefore, understanding the importance of different factors for the 

germination of seed with primary dormancy is also useful for understanding the effects 

of similar factors for seed with secondary dormancy.  Comparisons of the factors, light, 

pre-germination chilling and KNO3 when singularly present, indicated that pre-

germination chilling caused significantly higher germination of seed lots, compared with 

the two other factors (Figure 4-1).  There was no difference in seed lot germination 

between light and KNO3 treated seed.  This result agrees with the identification of 

temperature as the most important factor influencing the dormancy status of seed with 

non-deep physiological dormancy (Vleeshouwers et al., 1995).  

For the two factor combinations of pre-germination chilling and light, KNO3 and 

pre-germination chilling, and KNO3 and light (Figure 4-1).  Pre-germination chilling and 

light had a significantly greater effect on seed lot germination than the other two, two 

factor combinations.  All three factors were required to significantly increase the 

germination response of only one Solanum nigrum seed lot (SN11B).  This indicates 

that only for the most dormant S. nigrum seed is light, nitrate and prechilling necessary 

to maximise germination for seed tested at 20/30 °C.  It is reported that to achieve the 
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maximal germination of laboratory stored Chenopodium album and Capsella bursa-

pastoris L. seed with primary dormancy, that prechilling, light, and nitrate and 

alternating temperatures were required (Roberts and Benjamin, 1979).  However, this 

report was for work based on single seed lots.  The results of this present work indicate 

that the importance of the above factors can differ for seed from different sites.   

 

4.6.2   Dormancy and light 
It was hypothesised that:  field stored Solanum nigrum seed has a light requirement for 

germination that is constant due to a static seed dormancy status (hypothesis 2);  that 

S. physalifolium seed does not have a light requirement (hypothesis 3);  that the 

germination of S. nigrum seed following SDLE at different dates would indicate no 

change in light requirements, and no variation in SDLE responses between S. nigrum 

seed lots from green and black fruit, it was also hypothesised that S. physalifolium 

germination would not be affected by SDLE (hypothesis 4);  that the dormancy of field 

stored S. physalifolium and S. nigrum seed does not differ as indicated by percentage 

germination at the sub-optimal temperature of 5/20 °C, and time to 50 % germination 

(hypothesis 5);  and that there are no differences in the germination requirements of 

field stored S. nigrum seed from black and green fruit (hypothesis 6).  This section 

addresses the evidence for these hypotheses. 

 

Methodology 
For studies of seed light responses it is reported that green light filters, as used in this 

present work, need to be used with caution, as significant germination responses to 

green light filters have been reported for some plant species (Baskin and Baskin, 

1979).  Germination responses to green filters are reported to be due to a VLFR status 

in the seed, where a positive germination response is observed to wavelengths and 

light intensities that do not normally stimulate germination (Pons, 1992; Hartman and 

Mollwo, 2002).  Nevertheless, such filters are commonly used (Roberts and Lockett, 

1978; Froud Williams et al., 1984; Benvenuti and Macchia, 1998; Murdoch, 1998; 

Benvenuti et al., 2001).  Because of possible green light stimulated germination effects, 

it is appropriate to acknowledge that the observed germination responses, especially 

for the dark control treatments, could include very low fluence responses.   

The use of green filters may confound the ability to detect the source of 

germination stimulation in dark treatments, i.e. whether germination in the dark results 

from a VLFR response or from an absence of light requirement.  However, it can be 

argued that in terms of evaluating the suitability of dark cultivation, that determination of 
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the cause of dark germination is not as important as firstly identifying whether it occurs 

or not.   

 

Germination requirements for light, and seed dormancy status  
Solanum nigrum:  The dormancy status of the S. nigrum seed changed during the test 

period in Experiment 2.  Changes in dormancy status are identified by the percentage 

germination at different temperatures, germination rates, and germination responses to 

other factors such as light (Karssen and Vries, 1983; Karssen and Hilhorst, 1992; 

Murdoch, 1998).  For seed lot SN7A there were significant differences in percentage 

germination, at both 5/20 and 20/30 °C, observed on a number of test dates (Figure 

4-4).  In addition, over the same period the d50 value at 5/20 °C exhibited significant 

variation between test dates, and also 50 % germination at two test dates was not 

achieved by 14 d (Table 4-5).  Similar variability in d50 values at 5/20 °C were also 

observed for another S. nigrum seed lot, SN7C, when tested at eight dates (Table 4-3).  

These results are consistent with the classification of S. nigrum as a species with 

dormancy that cycles from non-dormancy to conditional dormancy (Baskin and Baskin, 

1998). 

The light requirements for the S. nigrum seed lot SN7A in Experiment 2 were 

not constant, nor was there any simple pattern of a progressive decline or increase in 

light requirements when tested at ten dates, from early spring through to summer 

(Figure 4-3).  Rather, germination in darkness was low (< 20 %) at most test dates, but 

for two test dates significant peaks of germination (79 and 67 %) in darkness were 

observed for the interaction of light and test date (Figure 4-3).  Changes in light 

requirements are identified as being linked to changes in seed dormancy status 

(Hilhorst et al., 1996).  The results of this work indicate that the time frame required to 

observe such shifts in dormancy status for S. nigrum may be quite short, i.e. significant 

variation is observable, in some cases, between tests made at two week intervals 

(Figure 4-4).  One explanation may be that for short periods a VLFR dormancy status is 

present in this seed, but that this dormancy status is not sustained.  It is reported, for 

seeds of Lactuca sativa L., that sensitivity to light can differ by a factor of 108 for seeds 

chilled for 7 d at 3.5  °C before germination at 22  °C, in comparison to non-chilled seed 

germinated at 22  °C (Hartman and Mollwo, 2002).  Differences in imbibition 

temperatures of 4  °C are also reported to affect the VLFR sensitivity in Echinochloa 

crus-galli (L.) Beauv. (Taylorson and Dinola, 1989).  Although the test temperatures 

used in these previous two reports differ from the temperatures experienced by the 

seed in the field (Figure 4-2), it is possible that soil temperature may interact with the 

seed dormancy to induce periods of VLFR sensitivity.   
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Results from Experiment 2 also indicated that temperature interacted with light, 

and test date.  There was significantly higher levels of germination at 5/20 °C and 

20/30 °C for seed lot SN7A tested in darkness (Appendix 6).  This effect was also 

observed for another S. nigrum seed lot, SN7C, tested over eight test dates, but not for 

lot SN7A in comparison to lot SN7C (Figure 4-5).  For both of these seed lots 

germination at 20/30 °C provided greater differences between light and dark 

germination than testing at 5/20 °C (Figure 4-6).  A previous report for Solanum nigrum 

indicates that the amplitude of alternating test temperature can interact with light 

responses.  For S. nigrum seed, stored for 15 weeks at 4 °C in moist sand, before 

testing in alternating temperatures (16/8 h) of 17/23, 15/25, 10/25, 15/30, 10/30 and 

4/25 °C with respective amplitudes of 6, 10, 15, 15, 20 and 21 °C, germination in the 

dark was 4, 28, 51, 79, 90 and 90 %, respectively (Roberts and Lockett, 1978).  

Germination in the light at 17/23 °C was 85 %, while at all other temperatures the 

minimum germination in light was 99 %.  Other S. nigrum seed, stored in moist sand at 

17 or 30 °C or in the field for 15 weeks and tested at the same temperatures as above, 

had low levels of germination in the dark (4-30 %), only at 17/23 °C.  At the other test 

temperatures in the light or dark and at 17/23 °C in the light, there were high 

germination levels (71-100 %).  This report for S. nigrum seed indicates that a narrow 

temperature amplitude or differences in amplitude between temperatures of only 5 °C 

can limit germination in the dark regardless of seed storage temperature and for seed 

stored at low temperatures, the amplitude of test temperatures used in relation to mean 

temperature can have a large effect on germination in the dark.  Evaluations of the 

usefulness of mean temperature, temperature amplitude and thermoperiod as 

predictors of germination of Chenopodium album seed exposed to diffuse laboratory 

light indicated that the mean temperature was as reliable a predictor as the other 

variates (Murdoch and Roberts, 1997).  The results for Solanum nigrum in this present 

work and those of Roberts and Lockett (1978), however, indicate that mean 

temperature can be a poor predictor of germination of S. nigrum in the dark. 

Light may inhibit the induction of conditional dormancy that can occur when 

testing seed at high temperatures (Roberts and Totterdell, 1981).  For example, it was 

reported for Rumex crispus that light inhibited the induction of conditional dormancy 

when seeds were tested at temperatures of 15-25 °C (Roberts and Totterdell, 1981).  

This effect may be due to light counteracting the dark reversion of Pfr to Pr which is 

reported to occur at increased rates at high temperatures (Smith, 1995).  Germination 

of Solanum nigrum in the dark at 20/30 °C (mean temperature 23.3°C) may have 

induced conditional dormancy except for retrievals when the seed was non dormant 

and substantial germination occurred, as observed, for example for the mid-August and 

early October test of seed lot SN7A (Figure 4-3).  In comparison, 16 h at 5 °C in the 
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5/20 °C (mean temperature 10.0 °C) cycle may have prevented the induction of 

dormancy.  Alternatively, or additionally, the 16 h at 5 °C could also have broken any 

dormancy present in the seed at retrieval through a stratification effect.  Such 

dormancy would not have been broken by germination at 20/30 °C.  However, further 

examination of amplitude effects, not confounded by mean temperature differences and 

vice versa, are required to clarify the relative importance of these factors on the dark 

germination of S. nigrum. 

The light and dark treatments in Experiment 2 used a 24 h lighting regime, while 

the SDLE method in Experiment 3 used a brief light exposure followed by germination 

in darkness.  The SDLE method has been used to assess the effects on weed seed 

germination by the hypothetical flash of light that seeds receive during daylight 

cultivation before they are reburied (Milberg et al., 1996; Milberg, 1997; Gallagher and 

Cardina, 1998c).  The results of the SDLE method in this present work provided 

different germination results from that using 24 h lighting, with 24 h lighting on a 

number of test dates providing significantly higher germination than that for SDLE 

treatments exposed to light (data not presented).  This indicates that changes in 

dormancy status not evident with 24 h lighting, may be detected with SDLE testing 

(Figure 4-8).  This result is consistent with a report for the germination of five of eight 

weed species tested monthly, for 14 months, by Milberg and Andersson (1997).  In their 

experiment seed exposed to SDLE (5 s, 210 µmole/m2/s) in comparison to seed 

exposed to light (10-40 µmole/m2/s) 12 h/day, exhibited greater seasonal variability in 

percentage germination than the latter treatment. 

In this present work, four different general relationships between the 

germination responses of the SDLE and nil exposure treatments were apparent (Figure 

4-8).  First, for the initial test date in July no significant differences in germination 

between the three treatments were apparent, and germination percentage was of mid 

range values (range 34-71 %).  Secondly, for test dates in September, germination in 

light and darkness did not differ, with high levels of germination for all treatments 

(range 73-100 %).  A third relationship was apparent for seed tested on 19 August and 

in October and November, where low levels of germination for the nil light exposure 

was observed (range 0-19 %) but for seed exposed to light, moderate to high levels of 

germination were apparent (range 65-100%).  The fourth relationship was for the final 

test date there was no significant difference between the three treatments but 

germination was low (range 0-22 %).  This final test indicated that dormancy had 

inhibited the germination of all treatments. 

These SDLE results indicate that light may not be significantly important to the 

germination of S. nigrum seed in three situations:  when the germination percentage 
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indicates the seed is neither fully non-dormant or fully conditionally dormant, as for the 

first July test date;  when the seed is fully non dormant, as for the September test 

dates;  and when the seed is most dormant, as observed for the December test date.  

The results indicated that light was most the important factor controlling the 

germination of S. nigrum seed when the dormancy status was in transition from non-

dormancy to conditional dormancy, as observed for the October and November test 

dates.  Previous reports of date effects for SDLE germination responses are made 

(Gallagher and Cardina, 1998c).  For example, a report for work on Alopeccurus 

myosuroides Huds. seed indicates that date of testing affects the SDLE response 

where testing in summer gave no percentage germination differences between a SDLE 

(R light 5 min 0.2 W/m2) and nil light exposure, for seed tested at (16/8 h) 10/20 °C  

(Froud Williams et al., 1984).  However, in spring, germination differed by ~60 % 

between these treatments (Froud Williams et al., 1984).  In addition, as with the 

December SDLE result in this present work, it is reported for a species that the largest 

difference between a SDLE treatment and a nil light treatment occurred due to the 

induction of conditional dormancy occurring for nil light treatments prior to SDLE 

treatments.  Where the monthly testing of SDLE (described previously) and nil light 

exposures for Chenopodium suecicum J. Murr. indicated that the greatest difference in 

germination percentage between these two treatments occurred for the June test date, 

this test date preceded the induction of secondary dormancy for both treatments in July 

and August (Milberg and Andersson, 1997).   

 

Implications of changes in light requirements for Solanum nigrum:  Results from 

Experiment 2 did not support the null hypothesis that the light requirement for 

germination of Solanum nigrum seed is constant, and that seed dormancy status is 

static (hypothesis 2).  The results of Experiment 3 did not support the null hypothesis 

that the SDLE responses of S. nigrum seed would not differ between test dates 

(hypothesis 4).  Hypothesis 4 was supported partly in that no evidence was found to 

indicate that seed from different seed lots had different responses to SDLE, however, 

seed lots did have differing responses to nil light treatments at some test dates (Table 

4-6).  The findings have implications for the success of dark cultivation.  Both the 

results from Experiments 2 and 3 indicated that the period in which dark cultivation for 

S. nigrum may be successful, is limited (Figure 4-3 and Figure 4-8).   

 

Solanum physalifolium:  At no test date did seed of S. physalifolium demonstrate a 

positive requirement for light in either Experiment 2 or 3 (Figure 4-7).  In fact, at one 

test date of seed in September for Experiment 2, seed of S. physalifolium had a 
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significant negative response to light.  The SDLE also did not enhance percentage 

germination.  These results are consistent with a previous report for the germination 

requirements of S. physalifolium (del Monte and Tarquis, 1997).  These results 

supported the hypotheses that S. physalifolium does not have a light requirement, and 

that germination will not be affected by SDLE (hypotheses 3 and 4).  This indicates that 

a reduction of field germination by dark cultivation for this species is not to be 

expected. 

 

Dormancy processes in Solanum nigrum and S. physalifolium 
It was hypothesised that the dormancy of field stored S. physalifolium seed and 

S. nigrum seed does not differ, as indicated by percentage germination at the sub-

optimal temperature of 5/20 °C, and time to 50 % germination (hypothesis 5).  The 

results of Experiment 2 did not support this null hypothesis, with some evidence for 

different dormancy processes regulating the germination of S. nigrum and 

S. physalifolium.  For seed stored for approximately a year, in the field, and germinated 

at 5/20 °C, S. physalifolium germination was strongly inhibited at the first retrieval in 

July (Figure 4-7).  The percentage germination then progressively and significantly 

increased through to the November test date.  No such pattern was evident for the 

germination of S. nigrum seed lot SN7A when tested at this temperature (Figure 4-3 

and Figure 4-4).  Comparison of the d50 values for S. nigrum and S. physalifolium also 

indicated that S. nigrum exhibited significantly variable counts during the test period at 

5/20 °C (Table 4-5).  In comparison, the d50 values for S. physalifolium from 31 July to 2 

December 2002 did not vary. 

Baskin and Baskin (1998) classified Solanum sarrachoides as having a 

dormancy that cycles from non-dormancy to dormancy, with no period of conditional 

dormancy.  This classification was based on work on S. sarrachoides in 1983 (Roberts 

and Boddrell, 1983) which was prior to the splitting of S. sarrachoides, into 

S. sarrachoides and S. physalifolium (Edmonds 1986).  Thus, the work of Roberts and 

Boddrell (1983) could have been on S. physalifolium, or the dormancy cycle of 

S. sarrachoides may be similar to that of S. physalifolium.  Regardless of taxonomic 

difficulties, it is clear that the germination percentages and the d50 values of 

S. physalifolium (Figure 4-7 and Table 4-5) indicate a species in which seeds are fully 

non-dormant following the abatement of dormancy.  While, for S. nigrum, the variable 

responses for the same germination parameters indicate apparent continual dormancy 

induction and abatement, probably in response to environmental stimuli.  This 

regulation of S. nigrum germination may explain the lower emergence (1.7 %) of sown 
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seed following cultivation in Experiment 4B, in comparison with S. physalifolium (12.6 

% emergence).   

These differences in dormancy regulation between the two species have 

implications for crop weed interactions.  The relative time of crop and weed emergence 

is reported to significantly affect the yield of Zea mays more than absolute weed 

density (Massinga et al., 2001).  There is a similar report for process peas (Nelson and 

Nylund, 1962).  The dormancy regulation of germination for weeds such as Polygonum 

persicaria L. is reported to affect crop yield loss potential, by affecting the rate of weed 

emergence (Vleeshouwers, 1998).  Solanum physalifolium seed had significantly faster 

d50 values than S. nigrum under non-optimal conditions of 5/20 °C (Table 4-5) but 

equivalent field emergence requirements following germination (data not presented).  

These results indicate that S. physalifolium may emerge ~ 3 days prior to S. nigrum 

under non-optimal temperatures, and so S. physalifolium has a competitive advantage 

over S. nigrum, and this increases the contaminant potential of S. physalifolium. 

 

Seed lot effects on germination requirements, including light 
There were significant differences in the germination requirements among the 

S. nigrum seed lots in relation to a number of factors.  These results did not support the 

null hypothesises that:  the germination requirements of freshly harvested seed from 

black and green fruit, and from fruit collected from different sites does not differ 

(hypothesis 1);  and that the germination requirements of field stored seed from green 

and black fruit would not differ (hypothesis 6).  In addition, seed from black and green 

fruit in the SDLE testing responded differently to the nil light exposure (Table 4-6).  A 

number of factors may be responsible for these differences.  The results for the freshly 

collected seed implied differences in primary dormancy status among seed lots (Figure 

4-1).  Differences in germination requirements among populations suggest that 

dormancy characteristics may be environmentally induced (Wulff, 1995).  For example, 

the levels of endogenous nitrate in Chenopodium album seed influences dormancy.  

Chenopodium album seeds with low endogenous nitrate were more dormant, but were 

more responsive, to exogenous nitrate than seed with high endogenous nitrate levels 

(Saini et al., 1986).  The temperatures that seeds experience after-ripening can also 

affect their subsequent germination temperature optima (Baskin and Baskin, 1987). 

In this present work, there were significant differences in germinating field 

stored S. nigrum seed lots collected from the same plants but processed separately 

from black and green fruit (Table 4-7).  For example, for seed tested at 5/20 °C in 

darkness the seed from black fruit had significantly greater germination than seed from 

green fruit (Figure 4-5).  This indicates that qualitative differences in the light 
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requirements of these seeds probably existed prior to their burial.  The maintenance of 

differences between different seed lots of the same species following burial and testing 

is reported for a number of species (Milberg and Andersson, 1998b; Gallagher and 

Cardina, 1998c).  Reports indicate that the R:FR quality of light a plant with developing 

seed receives, can significantly affect subsequent light responses of the seed (Haynes 

and Klein, 1974; Benvenuti and Lercari, 1994).  Therefore, environmental factors could 

be responsible for the differences in levels of dark germination among S. nigrum seed 

lots from different sites and different coloured fruit.  However, the temperature 

responses of seed from black and green fruit also differed at some test dates following 

burial (Appendix 7).  This indicates additional differences in germination responses that 

may or may not be related to phytochrome.   

Genotype differences can also affect germination requirements.  For example, 

an intensive examination of variation among Chenopodium album populations after 

growth in a common environment provided evidence for genetic differences in 

temperature requirements for germination (Christal et al., 1998).  These differences 

were reported to have important implications for the speed of dormancy release and 

germination temperature optima.  Givelberg et al. (1984) proposed that reported 

differences in the primary dormancy status of Solanum nigrum seed may be due to 

genotype effects.  The significant variability observed in this work among seed lots of 

S. nigrum could be due to environmental and/or genotypic effects.  The collection of 

seed from different sites and growth of the seed at a common site followed by seed 

collection and testing is required to substantiate the possible role of genotype versus 

environmental effects (Baskin and Baskin, 1998).  Wulff (1995), however, observed that 

genotype can interact with environmental effects, so confusing the source of variation.  

Variability of S. physalifolium seed was not assessed as only seed from a single 

collection of S. physalifolium was tested.  This was a weakness in this work, as 

conclusions about the germination requirements of a species should be based on 

multiple seed lot comparisons (Milberg and Andersson, 1998b).   

The implications of these differences between seed lots are that it may be 

expected that the light requirements of S. nigrum seed from different coloured fruit will 

differ following burial.  This may affect the success of night cultivation, as seed from 

different sources in the soil seed bank may be expected to have a range of light 

requirements.  In addition, where the stimulation of germination is advantageous, such 

as with stale seed bed practices (Bond and Baker, 1990), the maximisation of 

germination will also be limited by the heterogeneous nature of the germination 

requirements for S. nigrum seed.  
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4.6.3 Assessment of dark cultivation effects 
 

Experiment 4A indicated that the cultivation treatments had no significant effect on the 

number of emerged S. nigrum seedlings (Table 4-9).  There was also no significant 

cultivation effect on S. physalifolium emergence (data not presented).  Counts of two 

other commonly occurring weed species also indicated that there was no significant 

reduction in these species (Table 4-8).  Of these species, Chenopodium album is 

reported to have reduced germination under dark cultivation (Jensen, 1995; Botto et 

al., 2000).  Experiment 4B had no significant cultivation effect for either Solanum 

nigrum or S. physalifolium (Table 4-15 and Table 4-16).  These results indicate that the 

germination of S. nigrum and S. physalifolium was not reduced in any dark cultivation 

experiment.  These results supported the hypothesis that dark cultivation would not 

reduce the germination of S. nigrum and S. physalifolium seed (hypothesis 7). 

 

Possible causes of variability 
Solanum nigrum germination had been reported to be reduced by dark cultivation 

(Scopel et al., 1994).  However the success of dark cultivation is reported to be 

variable, with this variability limiting the usefulness of the practice (Buhler, 1997; 

Fogelburg, 1998; Gallagher and Cardina, 1998d).  A number of factors in the literature 

were identified as contributing to the variability in response to dark cultivation.  Some of 

these factors may have contributed to the results observed for dark cultivation with 

S. nigrum. 

Soil moisture:  Soil moisture has been identified as a factor contributing to the success 

of dark cultivation practices for Chenopodium album and Datura ferox L. (Botto et al., 

2000).  For D. ferox, it was identified that VLFR responses required soil moisture levels 

higher than -0.5 MPa for up to 6 days after cultivation.  If this moisture level was 

maintained then germination following daylight cultivation significantly exceeded that 

following night cultivation.  However, it was reported for Amaranthus retroflexus that 

water-limited photoinduction of seed germination only occurred in dry mircosites or 

under extreme drought conditions (Gallagher and Cardina, 1998a).  In this work, 

irrigation did not precede or immediately follow the cultivation trials as pea growers are 

not advised to irrigate pea crops until after pea emergence (A. White, Heinz Watties’s 

Ltd, pers. comm.).  In addition, it would be expected that wetter soil conditions would 

contribute to a greater total weed emergence (Roberts and Potter, 1980).  The work of 

Botto et al. (2000) also indicated that the level of irrigation required to obtain a dark 

cultivation effect, contributed to significantly greater overall weed emergence compared 

with non-irrigated plots.  In the two trials, the soil moistures at the cultivation dates were 
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low at 14.5-14.9 %.  However, in the second trial, over 65 mm of rain fell in the 10 days 

following sowing, indicating that water limitation following cultivation should not have 

been a factor affecting the response. 

 

Soil nitrate:  In a laboratory study soil nitrate effects were hypothesised to be a factor 

contributing to variable dark cultivation success (Milberg, 1997).  Analysis of soil nitrate 

levels in soil surrounding the seed burial bags (Table 4-4), did not give a significant 

relationship with germination in the dark of SN7A seed (data not presented).  

Application of 0.2 % KNO3 to field stored S. nigrum seeds (SN7A and SN7C) caused 

significant increases in seed germination relative to dark treatments not receiving KNO3 

on approximately three of four test dates (data not presented).  Testing of cultivated soil 

NO3 levels in plots adjacent to the area used for the dark cultivation trials, in 2002, 

indicated that soil NO3 levels could reach levels equivalent to that used in the 

laboratory KNO3 testing (Table 4-18).  However, these levels did not occur until six to 

eight weeks after cultivation.  Levels ranged from 347-693 mg/kg dry soil at two and ten 

days after cultivation.  These results indicate that seeds would have to interact with soil 

NO3 levels that were considerably lower than those tested in this work, for NO3 to be 

considered as a factor capable of negating the effects of dark cultivation.  However, 

with species such as Amaranthus retroflexus low levels of NO3 (75 ppm) can cause 

significant increases in dark germination, with dark control of ~5 % germination and 

~45 % germination for seed receiving NO3 (Gallagher and Cardina, 1998b). 

 

Seed source:  In the 2002 trial resident S. nigrum seed showed no significant response 

to dark cultivation.  In this trial the sown S. nigrum seed was shown to have a light 

requirement for germination in laboratory testing prior to burial (data not presented), but 

this seed showed no significant response to dark cultivation.  Seed age effects may 

have been one possible explanation for the reduction in S. nigrum seedlings, following 

dark cultivation, reported by Scopel et al. (1994).  The area used by Scopel et al. 

(1994) was reported to have been in vegetable production prior to the trial, indicating 

that recent weed seed inputs to the soil seed bank may have been possible.  It is 

reported that for laboratory stored seed, freshly harvested seed had a greater light 

requirement than seed stored in moist sand for 15 or 50 weeks (Roberts and Lockett, 

1978; Kazinczi and Hunyadi, 1990).  This suggests that ‘recent’ seed may have 

stronger light requirements than seed resident in the soil seed bank for longer periods.  

However the results of Experiment 4B did not demonstrate any light cultivation 

differential response between ‘recent’ and ‘old’ seed. 
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Very low fluence responses:  The design of laboratory germination experiments in this 

work did not provide the ability to discriminate if VLFR were elicited by the use of a 

green filter.  However, it is possible that high levels of germination in the dark observed 

at some test dates may be due to VLFR responses in S. nigrum seed (Figure 4-3 and 

Figure 4-8).  If this effect occurs in the field then VLFR responses may have affected 

the levels of germination following cultivation in darkness.  There is disagreement in the 

literature over the effect of VLFR for dark cultivation.  A number of workers cite VLFR 

as a factor that contributes to the unreliability of dark cultivation because this effect can 

cause germination at very low light levels (Gallagher and Cardina, 1998a; Gallagher 

and Cardina, 1998b; Hartman and Mollwo, 2002).  Botto et al. (2000) state that VLFR 

are necessary to reduce germination when cultivating in the dark to control Datura 

ferox.  The VLFR was identified as being irreversible in D. ferox, thereby causing a 

greater relative germination following daylight cultivation than after dark cultivation.  For 

other species such as Amaranthus retroflexus and Rumex obtusifolius it is not clear 

from the literature whether the VLFR can be reversed through dark reversion or other 

processes following seed reburial (Kendrick and Heeringa, 1986; Gallagher and 

Cardina, 1998b).  Further work is required to demonstrate what the role of VLFR seed 

responses, such as for Solanum nigrum, are to the success of dark cultivation. 

 

Light intensity:  In all the daylight cultivation treatments, no cultivation took place at < 

1,000 µmole/m2/s.  This is consistent with the methods used in a number of previous 

dark cultivation trials (Jensen, 1995; Buhler, 1997; Gallagher and Cardina, 1998d).  In 

particular, the minimum PAR of >1,200 µmole/m2/s in the 2002 trials, meets with the 

minimum light intensity reported for two successful dark cultivation trials (Botto et al., 

1998; Botto et al., 2000).  Therefore, inadequate light probably does not explain the 

variability observed in the dark cultivation results.  

 

Seed dormancy and light requirements:  Differences in the light requirements for 

germination due to seasonal changes in dormancy status of a number of weed species, 

have been demonstrated.  These differences in seasonal light requirements were 

proposed as a potential source of variation in the success of dark cultivation (Milberg 

and Andersson, 1997).  Testing of S. nigrum SDLE and dark germination responses 

indicated that for the trial in November 2002, germination in the absence of SDLE 

would be significantly lower than in the presence of short term light exposures (Figure 

4-8).  However, the dark cultivation trial in November did not support these laboratory 

results.  A possible explanation is that S. nigrum seed resident in the seed bank had a 

different dormancy status to the seed that had been tested.   
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Another explanation of the lack of dark cultivation success for S. nigrum 

provided by the seed burial and germination studies is that reports indicate that for 

some species germination following SDLE and seed reburial may be controlled.  Dark 

cultivation is successful at reducing weed seed germination, due to the greater number 

of buried seeds germinating following daylight cultivation relative to dark cultivation 

(Jensen, 1995).  This effect appears to rely on the germination stimulus effect being 

irreversible.  If seed which received SDLE during cultivation does not germinate 

following reburial, then the differential effect of SDLE induced germination is not 

achieved.  Hence, irreversible germination responses following reburial may be crucial 

for light cultivation to cause higher levels of germination than dark cultivation.  

However, for two species, Rumex obtusifolius and Datura stramonium L. the induction 

of dormancy is reported for seed exposed to SDLE and then buried (Benvenuti and 

Macchia, 1998; Benvenuti et al., 2001).  The gaseous environment of the soil was 

implicated as interacting with phytochrome processes to induce dormancy (Benvenuti 

and Macchia, 1998).   

 

 

4.7 Conclusions 
1. The germination requirements for S. nigrum seed from black and green fruit from 

the same collection can be significantly different.  Solanum nigrum seed collected 

from different sites has different germination requirements, due to different levels 

of primary dormancy. 

2. Solanum physalifolium seed did not have a positive light requirement.  Solanum 

physalifolium had a progressive dormancy loss from July through to November.  

This dormancy significantly restricted germination in July and August at non-

optimal temperatures (5/20 °C).  The dormancy pattern of S. nigrum differed from 

that of S. physalifolium with the level of germination fluctuating at 5/20 °C 

throughout the process pea sowing season. 

3. The light requirements of S. nigrum seed were greatest immediately following the 

induction of conditional dormancy.  This may be the optimum time for dark 

cultivation.   

4. Dark cultivation did not reduce the emergence of S. nigrum seedlings and this 

practice is not recommended.  The germination of S. physalifolium will not be 

reduced by dark cultivation. 
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Chapter 5 Growth and dry matter production in 
Solanum nigrum and S. physalifolium 
 

5.1 Introduction 
The contamination of process pea crops by the fruit of Solanum nigrum and 

S. physalifolium occurs due to their successful flowering and fruiting prior to pea crop 

maturity.  This occurs because these weeds are successful competitors.  Factors 

identified as contributing to the competitive success of weeds and associated crop yield 

reductions are also relevant to the contamination potential of weeds. 

Early emerging cohorts of weeds in a crop usually have the greatest 

reproductive output (Fernandez-Quintanilla et al., 1986; Mohler and Callaway, 1995).  

For crops where the interval of time between sowing and crop harvest is not a 

phenological limitation to the development of later weed cohorts, it appears that the 

duration of growth and the growth environment affect the volume of weed reproductive 

output.  This was demonstrated for S. nigrum seedlings transplanted into Zea mays at 

3 and 38 days after crop emergence.  By crop maturity the weed plants in the first 

cohort had ~ 800 fruit each, while plants in the second cohort had ~ 200 each (Kremer 

and Kropff, 1998c).  There are similar reports for fruit production of different cohorts of 

Solanum ptycanthum growing in Glycine max (Quakenbush and Andersen, 1984; 

Stoller and Myers, 1989).  These reports do not however, provide the ability to 

determine the cause of reductions in reproductive output between the effects of time 

from initial flowering to that of plant growth effects caused by competition with a crop at 

different growth stages.  Both processes are probably taking place.  Yield reduction 

studies, identify the time of weed emergence relative to the crop as an important 

influence on the proportion of crop to LA at crop harvest.  The proportion of weed to 

crop LA was demonstrated to be linked to the degree of crop yield losses (Kropff et al., 

1992; Dieleman et al., 1995).  Thus, early emerging weeds have the potential to 

produce greater DM production than later emerging weeds, due to their early 

establishment that allows greater radiation interception. 

As for weeds within a cohort, the largest weeds produce the most seed 

(Thompson et al., 1991; Mohler and Callaway, 1995).  Thus, if phenological 

requirements have been met, it may be assumed that factors that negatively affect 

weed DM production in a cohort, will negatively affect their reproductive output.  This is 

demonstrated by the effect of limitations to radiation interception through shading on 

plants of the same age, which caused significant linear reductions in total DM 

production and numbers of fruit produced by Solanum nigrum (Singh, 1972; Fortuin 

and Omta, 1980) and S. ptycanthum (Stoller and Myers, 1989; Croster et al., 2003).  
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The number of fruit produced by a nightshade plant in a process pea crop is important, 

as the more nightshade fruit produced, the more likely it is that some of this fruit will be 

harvested with the pea crop, and/or the greater the volume of peas that may be 

contaminated. 

It is clear from reports for S. nigrum that factors affecting plant DM production 

affect the number of fruit produced per plant.  However, there is no published work on 

plant or fruit DM production of S. physalifolium, or comparisons between these two 

species, in the literature.  Anecdotal evidence indicates that S. physalifolium plants can 

be larger than S. nigrum (T.C. Chamberlain, pers. comm.).  For comparisons between 

weed species, morphological traits such as a weed species height, total LA and vertical 

LA distribution are shown to give competitive advantages in radiation interception 

(Stoller and Wooley, 1985; Legere and Schreiber, 1989; Mosier and Oliver, 1995; 

Hirose et al., 1996).  Differences in morphology and growth rate were reported to be 

responsible for the differences in DM production between S. ptycanthum and 

S. sarrachoides when both were grown with and without process peas (maturity 738 

°Cd, Tb = 4.4 °C).  Their respective DM production was ~ 4 and 12 g/plant with peas, 

and ~ 55 and 130 g/plant without peas (Heider, 1996).  The greater DM of 

S. sarrachoides in both environments was attributed to a faster initial growth rate and a 

denser leaf and stem morphology.  Information on the morphological characteristics of 

S. nigrum and S. physalifolium, and the relationship between DM production and fruit 

production when they are grown with and without peas, is relevant to developing an 

understanding of these species relative competitiveness and, thus, their contamination 

potential.  Such information may be useful in developing specific weed management 

practices. 

For some plant species it has been identified that particular growth criteria must 

be met for the initiation of reproductive development to occur.  For example, for an 

accession of Lupinus angustifolius L. flowering did not occur until 24 nodes had been 

produced regardless of sowing date (Gladstones and Hill, 1969).  There is no report in 

the literature, to indicate that nightshade species have growth criteria that must be met 

before the initiation of reproductive development.  For weed species, a greater degree 

of phenotypic plasticity may be exhibited than that of most agricultural crops (Ghersa 

and Holt, 1995). 

This chapter addresses the third objective of this study, to describe the growth 

and DM production of Solanum nigrum and S. physalifolium when grown with and 

without peas.  The hypothesis examined is that the production of DM between 

S. nigrum and S. physalifolium does not differ (hypothesis 1).  The second hypothesis 
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is that for both of these species reproductive initiation is not linked to particular growth 

thresholds (hypothesis 2). 

 

5.2 Methods 
 

In two of the following three sections the estimation of a contamination index (CI) for 

S. nigrum and S. physalifolium plants was calculated.  This was calculated as the 

number of fruit > 3 mm on a plant divided by the plant DM, excluding fruit DM. 

5.2.1 Growth of Solanum nigrum and S. physalifolium in the absence of 
peas 

 

Site description and experimental design:  The site used was in field H19 (see sections 

4.3.1 and 4.5.1).  The trial design was a randomised complete block design with four 

blocks.  Factors were species and sowing date.  The species were S. nigrum or 

S. physalifolium, and there were five sowing dates for each species giving a total of 40 

plots (1.2 x 5 m).  In each plot six seed sowing sites were established centrally down 

the length of the plot with the first site at 0.5 m in from the plot edge.  The remaining 

sites were spaced 0.8 m apart.  Soil samples (20 × 150 mm depth cores) taken for soil 

tests on 2 February, 2003, gave test values of 16, 9, 17, 7 (MAF units) and 5.2 for 

Olsen P, K, Mg, Ca, and pH, respectively. 

 

Temperature records:  Hourly air temperature at 0.2 m was recorded with a Hobo® H8 

4-Channel data-logger.  Temperatures were recorded from 22 August 2002 to 1 May 

2003.  However due to a programming error the logger was non operational from 1 

September 2002 to 26 September 2002.  A regression between the 75 mm soil 

temperature records from the H19 site (Figure 4-2) and soil and air temperatures from 

Ashley Dene (14 km from the experimental site) provided an accurate predictor of the 

missing 0.20 m air (r2 = 0.939) temperatures. 

 

Sowing, seedling emergence and plant development:  Seed of lots SN7C and SP3 

were germinated at 20/30 °C in 24 h light, as described for Experiment 2.  Germinated 

seeds were collected daily and following the methods of Kremer and Lotz (1998b), the 

seeds were stored in the dark at 5 °C, until a minimum of 48 seeds of both species had 

been collected.  On the day the minimum number of seeds for sowing had been 

collected, the pre-germinated seeds were sown at a depth of 15 mm in the late 
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afternoon.  Two to three seeds were sown together, in the same hole, at each site at 

each of the six plant sites per plot.  Sown seeds were hand watered at 1-2 day intervals 

until emergence.  Sowings were on 23 August 2002, 23 September 2002, 21 October 

2002, 21 November 2002 and 21 December 2002.  Hereafter, these sowings are 

referred to as the August, September, October, November and December sowings.  For 

the August, September, October and November sowings following initial emergence 

number of emerged seedlings was recorded every two days until emergence ceased.  

For the December sowing, the emergence of seedlings was not recorded.  Slug 

damage to seedlings was controlled with prills of Slugout (metaldehyde) at 3 g per 

plant site within a plot.  Where more than one seedling emerged per plant site (n = 6) in 

a plot, seedlings were thinned to one seedling at the 2–3 leaf stage.  The experimental 

area was weeded regularly throughout the experiment. 

 

Sampling:  For each plant from seedling emergence until flowering (observation of an 

open corolla) occurred, the leaf number was recorded weekly.  Coloured wire (0.8 mm 

D) was used to tag buds and clusters (set of flower buds on a single peduncle) to assist 

with monitoring.  Twice a week plants were inspected for flower bud appearance, and 

following bud appearance, for flowering and cessation of flowering, for each flower bud 

within the first two clusters of buds on a plant to flower.  Following the flowering of each 

bud in the two monitored clusters, measurements were made twice a week of the 

maximum fruit diameter of each fruit using vernier calipers.  When the calyx covered 

the young fruit, the calyx was included in the fruit diameter measurement.  A value of 

0.2 mm was subtracted from the fruit diameter measurement to account for the calyx.   

Plants were harvested on the day after a single fruit from both of the two 

monitored clusters on a plant had a diameter of ≥ 8.0 mm.  For a number of plants fruit 

growth had ceased prior to fruit reaching a diameter of ≥ 8.0 mm.  For these plants, a 

secondary harvest criteria was used where plants were harvested when the mean fruit 

growth of the three largest fruits on each of the two monitored clusters had a growth 

rate of < 0.1 mm/d for three consecutive measurements.  Plants were harvested by 

cutting the stem at ground level.  The roots were collected using a garden fork (depth 

200 mm). 

Of the harvested plants on each harvest date, a single plant from each plot was 

sampled according to the following proceedure.  First, all fruits were removed from the 

plant and calyx.  A sub-sampling procedure of the remaining leaf and stem material 

from each plant was used.  For plants less than 600 g (wet weight) approximately 25 % 

of their plant mass was sub-sampled, and for plants > 600 g approximately 12.5 % of 

their mass was sub-sampled.  The sub-samples were separated into: leaves; stems; 
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unopened buds, flowers, and calyces.  The leaves and stems were assessed for leaf 

area by a planar area meter (Licor 3100).  The fruit was size graded using sieves, with 

circular apertures, from a Kamas Westrup LA-LST seed cleaning machine.  Grading 

was in the following order ≥ 9 mm, ≥ 7 mm, ≥ 5 mm, ≥ 3 mm.  The remaining < 3 mm 

fruit was collected.  The number of fruit in each of the four largest size grades was 

counted.  The three components of each sub-sample and the five size grades of fruit 

and the non-sub-sample portion were then dried for 48 h at 65 °C in a forced air oven, 

and weighed.  Plants that were not sub-sampled were dried as described above.  

Roots were dried for 72 h at 65 °C. 

 

Post emergence irrigation:  Percentage volumetric soil moisture was recorded weekly 

to a depth of 0.20 m, with a Time Domain Reflectometry probe 

(HydrosenseTM,Campbell Scientific Australia Pty. Ltd.) from the base of a single plant in 

each of the eight plots for each monthly sowing date.  The field capacity, was 22.5 %.  

Plots for each monthly sowing were irrigated when the mean soil moisture was 50 % of 

field capacity.  Individual plants were irrigated with a dripper irrigation system that 

delivered 2.1 l/h.  Irrigation was applied for three hours per application. 

 

Analysis:  Analysis of above ground DM including fruit at harvest and DM 

accumulation, was made on all harvested plants (n = 192).  For this data set analysis 

with missing values was used in Genstat Sixth Edition© (2002).  The standard error of 

these means was calculated using a procedure for unequal group sizes (Kramer, 

1956).  The Tukey HSD for comparison of means with unequal samples sizes was 

calculated as the mean Tukey HSD value for each pair of values in the comparison.  

The remaining analysis was made with the General Linear Model in Systat® Version 

9.01 (1998).  The rate of leaf appearance, in days and leaf number from emergence to 

bud appearance on 50 % of plants within a plot, was calculated (n = 40).  For the plants 

sampled for fruit, leaf and stem components, two of these plants, from each plot, were 

randomly selected for analysis (n = 80).  For all analyses, variates were analysed for 

the factors block, sowing date, species and the species by sowing date interaction.  

Linear regression was used for the analysis of fruit DM and plant DM relationships.   
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5.2.2 Growth of Solanum nigrum and S. physalifolium in the presence of 
peas 

 

Growth in Experiment 4A 
Trial site:  These comparisons of the growth of the two nightshade species and peas 

were from the continuation of Experiment 4A (see Chapter 4).  The experimental area, 

establishment procedures, sample areas and weed seedling counts are described in 

section 4.5.1. 

 

Sampling:  On the 31 October 2001 the number of emerged pea plants was counted in 

one fixed quadrat per sub-plot of Experiment 4A, described in Chapter 4.  Destructive 

0.1 m2 samples from each plot were made on the 7 to 8 November, 16 November, 24 to 

25 November, 30 November to 1 December and 17 December 2001.  On 29 December 

2001 two samples were taken, one from a fixed emergence quadrat area, and a yield 

sample was taken from between the two previous sample points.  At this time the peas 

and large weeds were cut to ground level with shears.  Small nightshade plants were 

cut to ground level with a scalpel and stored separately.  Plant samples were stored at 

5 °C prior to measuring their green area (GA).  The GA is the planar area of leaves and 

stems of seedlings.  Pea maturity was determined by sampling peas from the area 

sown outside the plots, and samples from 22 December, 24 December, 27 December, 

and 28 December 2001 were taken to the Heinz Wattie’s Ltd, Hornby factory and 

tested with a tenderometer.  The final harvest was taken on 29 December 2001, 

following a mean tenderometer reading of 99.4, on 28 December. 

For the six pea and weed sample dates the number of nightshade seedlings in 

each leaf number class was counted for each species.  The DM of peas, S. nigrum, 

S. physalifolium and the combined mass of the other weed species present was 

determined after drying for 48 h at 65 °C in a forced air oven.  On all of the six dates 

except 24 to 25 November peas, the GA for the samples of S. nigrum, and 

S. physalifolium was determined using a planar area meter (Licor 3100).  A sub-

sampling procedure was used for the pea samples on the last sampling date.  The GA 

of the other weed species was determined on four dates.  For the pea yield harvest 

sample, pods were hand shelled, and the peas > 5 mm were weighed to determine 

their fresh and DM yield.  On 19 November, 16 December and 30 December 2001 

Sunfleck Ceptometer readings were taken, above and below the canopy, from 24-30 

subplots. 
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Analysis: Statistical analysis indicated that the cultivation treatments in Emergence 

Experiment 1 had no significant effect (P < 0.05) on the number of S. nigrum seedlings 

following cultivation, as indicated by the Tukey HSD (Table 4-17).  It also had no effect 

on the number of S. physalifolium seedlings.  In the plots sown with S. nigrum and 

S. physalifolium there were no significant sowing effects for either species, with the 

exception of one count of S. nigrum seedlings at 46 DAS (Table 4-18).  Because of the 

lack of cultivation and species sowing treatment effects, statistical analysis was made 

for the factors sample date and block only, using the General Linear Model (GLM) in 

Systat® Version 9.01 (1998).  Means separation tests were made using the Tukey HSD 

test (Zar, 1984).  Comparisons of growth parameters between S. nigrum and 

S. physalifolium were made using paired T-tests in Systat®.  Logit regression of the 

number of nightshade plants with fruit from each species against the mean population 

density at the final sampling date was carried out using Genstat Sixth Edition© (2002). 

 

Nightshade  growth in an organic pea crop at harvest  
Sampling:  A commercial organic process pea field (field A6, Kowhai Farm, Lincoln 

University) was sampled for nightshade plants on the day of harvest (15 January 

2003).  The crop had been sown on 31 October 2002 and had a FE of 135 pea 

plants/m2.  Mature nightshade plants were collected by cutting at ground level from a 

0.1 m2 area.  Twenty five S. nigrum and 19 S. physalifolium plants were collected and 

stored at 5 °C.  Each plant was assessed for the number of leaves, fruit clusters per 

plant and the number of clusters that contained any fruit.  The maximum length of each 

plant was also measured.  Dry matter was determined after drying for 48 h at 65 °C.  

On the basis of their flower and fruiting development, the most mature 19 S. nigrum 

plants were selected for comparison with the 19 S. physalifolium plants. 

 

Analysis: Analysis used the two sample T-tests in Systat® Version 9.01 (1998), pooled 

variances were used where the Bonferroni Adjusted Probability test indicated the 

variances did not differ significantly, and separate variances were used where the 

variances differed significantly.  Linear regressions of plant DM exclusive of fruit DM 

and fruit number (> 3 mm) and fruit DM were made. 
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5.3 Results  
 

5.3.1 Growth of Solanum nigrum and S. physalifolium in the absence of 
peas 

 

There were progressive increases in mean air temperature over the sowing dates 

(Figure 5-1). 
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Figure 5-1.  Minimum, mean and maximum daily air temperature recorded at the 

experimental site at a height of 0.20 m from 23 August 2002 to 30 March 
2003.  The five sowing dates (S1-S5) are indicated. 

 

Plant establishment 
Poor emergence in some months and some loss of seedlings to slugs resulted in 

reductions from the planned six plants per plot (Appendix 11).  Rainfall for each month 

including August 2002 to April 2003 was 30, 43, 86, 32, 32, 15, 44, and 75 mm.   

 

Dry matter at harvest 
The harvest criteria used resulted in mean days to harvest for both species of 142, 113, 

93, 87 and 85 for the August, September, October, November and December sowings, 

respectively.  Both nightshade species grew into dense sprawling shrubs (Appendix 
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12). For plant DM there was a significant (P < 0.001) sowing date by species 

interaction (Table 5-1).  Plant DM did not differ significantly over the sowing dates in 

S. nigrum, but for S. physalifolium the October sowings plants were significantly 

heavier than at the other sowing months, except September.  For the August sowing 

plant DM did not differ significantly between the two species, but for the other four 

sowing months there were significant differences between the species.  Solanum 

physalifolium plants (88.7 g/plant) were significantly (P < 0.001) heavier than S. nigrum 

plants (30.3 g/plant) at all sowing dates.  For growth rate there was a significant (P < 

0.001) sowing date by species interaction.  Dry matter accumulation did not differ 

significantly in S. nigrum, but in S. physalifolium the August value (0.42 g/d/plant) was 

significantly less than at all other sowings.  The October value in S. physalifolium was 

significantly greater than the November and December values.  Overall, 

S. physalifolium (0.87 g/d/plant) had a significantly greater growth rate than S. nigrum 

(0.30 g/d/plant) (Table 5-1). 

 

Table 5-1.  Dry matter (DM) (g/plant), and growth rate (g/d/plant) from sowing for 
Solanum nigrum (SN) and S. physalifolium (SP) plants.  Interaction DM/plant 
(s.e. = 6.23, d.f. = 179, Tukey HSD = 27.89) and species effect (s.e. = 2.77, 
Tukey HSD = 7.7), growth rate interaction (s.e. = 0.061, d.f. = 179, Tukey 
HSD = 0.272) and species effect (s.e. = 0.027, Tukey HSD = 0.075).  Means 
followed by the same letter within and between columns for the same factor 
are not significantly different.  An * indicates a significant species main effect. 

 DM excluding roots Growth rate 
Sowing SN SP SN SP 
August    32.3 a    59.9 bc 0.23 a 0.42 a 
September    33.2 a   110.3 cd 0.30 a   0.96 bc 
October   31.5 a 123.9 d 0.32 a 1.23 c 
November   32.3 a  82.0 c 0.37 a 0.94 b 
December   22.3 a  67.7 c 0.26 a 0.80 b 
     
Mean   30.3*  88.7 0.30* 0.87 

 

Plant leaf area and leaf:stem ratio 
For plant leaf area (PLA) there was a significant (P < 0.05) species by sowing date 

interaction (Table 5-2).  Sowing date did not affect S. nigrum PLA, but in 

S. physalifolium the September, October and December values were significantly 

higher than the August value.  At all sowing dates except August, S. physalifolium 

(0.511 m2/plant) had a significantly higher PLA than S. nigrum (0.191 m2/plant).  The 

S. nigrum plants (1.40) had a significantly (P < 0.001) higher leaf:stem DM ratio value 

than S. physalifolium plants (1.08) (Table 5-3).  The leaf area ratios (LAR) of 61.9 and 

63.3 mm2/g of S. nigrum and S. physalifolium, respectively, did not differ significantly, 

nor did they interact with sowing date (data not presented).  There was also no 
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significant differences for any factors for the respective green area ratio (GAR) values 

of 69.8 and 74.4 mm2/g (data not presented).  The leaf weight ratios of 0.362 and 0.350 

g leaves/g plant of S. nigrum and S. physalifolium respectively, also did not differ 

significantly (P < 0.05) or interact with sowing date (data not presented).  However, the 

stem weight ratio of 0.264 and 0.330 of S. nigrum and S. physalifolium, respectively, 

differed significantly (P < 0.001) (Table 5-3). 

 

Table 5-2.  The plant leaf area (PLA) m2/plant for Solanum nigrum (SN) and 
S. physalifolium (SP) plants.  Interaction of PLA (s.e. = 0.0505, d.f. = 67, 
Tukey HSD = 0.2245), species effect (s.e. = 0.0226, Tukey HSD = 0.0639).  
Means followed by the same letter within and between columns for the same 
factor are not significantly different.  An * indicates a significant species main 
effect. 

 PLA  
Sowing SN SP 
August        0.251 abc     0.379 bc 
September     0.217 ab   0.592 d 
October     0.158 ab   0.631 d 
November     0.195 ab     0.453 cd 
December   0.134 a   0.499 d 
   
Mean 0.191* 0.511 

 

Table 5-3.  Leaf:stem DM  ratio and stem:plant DM ratio for Solanum nigrum (SN) and 
S. physalifolium (SP) plants, Leaf:stem (s.e = .040, d.f. = 67, Tukey HSD = 
0.113), stem:plant DM (s.e = .012, d.f. = 67, Tukey HSD = 0.052).  An * 
indicates a significant species main effect. 

Leaf:stem DM Stem:plant DM 
SN SP SN SP 

1.40* 1.08 0.26* 0.33 
 

Leaf appearance and number at bud appearance 
For leaf appearance rate at bud appearance on 50 % of plants from emergence, there 

was a significant (P < 0.05) sowing date by species interaction (Table 5-4).  Leaf 

appearance rate did not differ significantly in S. nigrum, but in S. physalifolium the 

August sowing had a significantly lower rate of appearance, 0.15 leaves/day, than the 

October and November values (0.90-0.92 leaves/day).  There was no significant 

species effect on leaf appearance rate.  For total leaf number at bud appearance there 

was a significant (P < 0.01) sowing date by species interaction.  Leaf number did not 

differ significantly for S. nigrum, but in S. physalifolium the August sowing had 

significantly fewer leaves than the September and October sowings.  Overall, 

S. physalifolium had significantly (P < 0.05) fewer leaves (30.5) than S. nigrum (37.3). 
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Table 5-4.  Leaf appearance rate (leaves/d) to bud appearance on 50 % of plants, and 
total number of leaves at bud appearance on 50 % of plants for Solanum 
nigrum (SN) and S. physalifolium (SP) plants.  Leaf appearance interaction 
(s.e = 0.087, d.f. = 21, Tukey HSD = 0.415) and species (s.e = 0.043, Tukey 
HSD = 0.127), leaf number interaction (s.e = 4.38, d.f. = 27, Tukey HSD = 
20.15) and species (s.e = 1.99, Tukey HSD = 5.66).  Means followed by the 
same letter within and between columns for the same factor are not 
significantly different.  An * indicates a significant species main effect. 

 Leaf appearance rate Leaf number 
Sowing SN SP SN SP 
August  0.46 ab 0.15 a 40.0 b  9.9 a 
September  0.76 bc   0.70 bc 46.9 b 40.8 b 
October 0.67 bc 0.92 c 34.1 b 45.0 b 
November 0.77 bc 0.90 c 29.3 ab   27.7 ab 
December - - 36.2 b   29.0 ab 
     
Mean   0.67    0.66     37.3*     30.5 

 

Fruit production at harvest 
The number of fruit ≥ 9 mm was low, with ten S. nigrum plants of the 40 selected 

S. nigrum plants in this data set producing a mean of 1.3 fruit ≥ 9 mm/plant.  Of the 40 

S. physalifolium plants sampled none produced fruit ≥ 9 mm.  Due to the small 

numbers of fruit ≥ 9 mm the fruit were pooled to give a fruit size grade of ≥ 7 mm.  The 

number of fruit in each of the 3-5, 5-7, and > 7 mm size classes differed significantly 

with species (Table 5-5). Solanum physalifolium produced ~140, 210 and 30 more fruit 

per plant in each of the respective size grades than S. nigrum.  The species by sowing 

date interaction was not significant and sowing date had no effect on fruit size classes. 

 

Table 5-5.  Mean number of fruit per plant in three size grades: 3-5 mm, 5-7 mm, > 7 
mm in Solanum nigrum (SN) and S. physalifolium (SP).  Effects, all d.f. = 67, 
3-5 mm (s.e = 10.01, Tukey HSD = 28.31), 5-7 mm (s.e = 14.20, Tukey HSD 
= 40.18), > 7 mm (s.e = 7.00, Tukey HSD = 19.80).  An * indicates a 
significant species main effect. 

 Fruit/plant 
 SN SP 

3-5 mm 56.2* 201.3 
5-7 mm 41.4* 261.7 
> 7 mm 34.4*   76.0 

 

Solanum physalifolium produced significantly more total fruit DM, at 8.7 g, than 

S. nigrum, at 2.2 g (Table 5-6).  Fruit DM was not affected by sowing date and there 

was no interaction between sowing date and species.  The harvest index (HI) of 

S. physalifolium (0.125) was significantly (P < 0.001) higher than in S. nigrum (0.077).  

The sowing date by species interaction was not significant, but the sowing date was 

significant (P < 0.01) (data not presented).  The August and September values of 0.080 



92 

and 0.078 were significantly lower than the December value of 0.137 (s.e. = 0.013, d.f. 

= 67, Tukey HSD = 0.054).   Solanum physalifolium with a CI value of 7.8 had a 

significantly (P < 0.001) higher CI, than S. nigrum with a value of 4.8 (Table 5-6).  For 

CI, sowing date did not significantly interact with species, but there was a significant (P 

< 0.001) sowing date response (data not presented).  Values ranged from 4.9-5.3 for 

the first three sowings.  However, in the December sowing the value had increased 

significantly to 8.8 (s.e. = 0.694, d.f. = 67, Tukey HSD = 2.89). 

 

Table 5-6.  Total fruit DM per plant (g), harvest index (HI) and contamination index (CI) 
for Solanum nigrum (SN) and S. physalifolium (SP) plants.  Effects, all d.f. = 
67, DM fruit (s.e = 0.511, Tukey HSD = 1.45), HI (s.e = 0.008, Tukey HSD = 
0.023), CI (s.e = 0.44, Tukey HSD = 1.24).  An * indicates a significant 
species effect. 

 SN SP 
DM fruit/plant  2.2*  8.7 
HI     0.077*     0.125 
CI 4.8* 7.8 

 

5.3.2 Growth of Solanum nigrum and S. physalifolium in the presence of 
peas 

 

Growth of Solanum nigrum and S. physalifolium from Experiment 4A 
Monthly rainfall for October, November and December 2001 was 63, 70, and 33 mm, 

respectively.  Pea emergence was observed on 11 October (10 DAS), when 

populations of nightshade weeds were estimated to be below 10/m2.  Pea density at 31 

October was 152 plants/m2.  At 41 DAS the mean pea height was 203 mm.  At 49 DAS 

transmission of PAR, at a height of 20 mm, was 29.0 % of the above canopy PAR.  By 

78 and 90 DAS these values were 1.1 and 1.8 %, respectively.  The fresh weight yield 

of shelled peas > 5 mm was 1,110 g/m2, giving a DM of 253.4 g/m2.   

Pea DM reached 874 g/m2 at the final sample date (89 DAS), while weed DM 

reached 125 g/m2 at this date (Figure 5-2).  The number of nightshade seedlings for 

each species significantly declined over the sample period (Tables 4-18 and 4-19).  

There was a strong decline in small seedlings with four leaves or fewer (Appendix 13).  

Paired T-tests of the mean DM/plant for S. nigrum and S. physalifolium provided no 

significant differences between the two species at any of the six sample dates (Figure 

5-3).  Final DM for S. nigrum and S. physalifolium was 0.029 and 0.017 g/plant, 

respectively. 



93 

Days after sowing
30 40 50 60 70 80 90 100

D
M

 (g
/m

2 )

0

200

400

600

800

1000
Pea 
Weed 

 
Figure 5-2.  Pea and weed (excluding nightshade species) dry matter (DM) (g/m2) at six 

sample dates after the sowing of the peas.  Error bar = Tukey HSD value. 
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Figure 5-3.  Solanum nigrum and S. physalifolium dry matter (DM) g/plant, for plants 

growing in a pea crop at six sample dates after the sowing of the peas.  Error 
bar = Tukey HSD value. 

 

The GA for peas and weeds, excluding the nightshade species, are presented 

in Figure 5-4.  Pea GA had reached 4.87 GA/m2 at 60 DAS, this had declined 

significantly to 3.75 GA/m2 at 89 DAS.  At 60 DAS the weed GA was 0.71 GA/m2, there 

was no significant GA decline or increase for the weeds after this sample.  The 

GA/plant values for Solanum nigrum and S. physalifolium indicated significant sample 

date variation (Figure 5-5).  However, paired T-tests indicated that only at 79 DAS were 

there significant differences between the two species.  At 79 DAS S. nigrum plants had 

significantly (p = 0.05) greater GA/plant than S. physalifolium plants, but overall there 

was no significant species main effect. 
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Figure 5-4.  Pea and weed (excluding the two nightshade species) green area (GA) 

m2/m2 (GA) at six and five sample dates respectively.  Error bar = Tukey HSD 
value. 
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Figure 5-5.  Solanum nigrum and S. physalifolium green area (GA) per plant 

(mm2/plant), for plants growing in a pea crop at five sample dates after the 
sowing of the peas.  Error bar = Tukey HSD value. 

 

The green area ratio (GAR) of the S. nigrum plants was not significantly 

affected by sample date, this differed from the effect of sample date indicated by the 

Tukey HSD value (Table 5-7).  The GAR of S. physalifolium plants was significantly (P 

< 0.01) affected by sample date, with the value at 60 DAS being greater than at 37, 79 

and 89 DAS.  Paired T-tests for each sample date indicated that at 37, 79 and 89 DAS 

S. nigrum had a significantly (P < 0.01) higher GAR than S. physalifolium, and that over 

all dates there was a significant (P < 0.001) difference between the two species with 

values of 1,717 and 975 mm2/g, respectively. 
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Table 5-7.  Green area ratio (GAR) (mm2/g) per plant Solanum nigrum (SN) and 
S. physalifolium (SP) growing in a pea crop for five samples at days after 
sowing (DAS).  Effects:  d.f. = 141, SN (s.e. = 338.2, Tukey HSD = 1,324.7), 
SP (s.e. = 207.2, Tukey HSD = 811.6).  Values followed by a different letter 
within a column are significantly different.  An * indicates a significant species 
effect. 

 GAR 
DAS SN SP 
37  1,122 a*   512 a 
46 2,450 b   1,226 ab
60   2,045 ab 1,727 b 
79    1,501 ab*   681 a 
89    1,468 ab*   728 a 

   
Mean     1,717* 975 

 

Three S. nigrum and twelve S. physalifolium plants, at the final harvest, had fruit 

present from the 30 LA and the 30 pea yield quadrats.  Nightshade plants with fruit 

were etiolated and lodged within the pea canopy (Appendix 12).  Two sample T-tests, 

comparing a number of growth and fruit parameters, indicated there were no significant 

differences for any parameter between the species (Appendix 14).  Logit regression 

indicated that there were significantly (P < 0.001, d.f. = 2) more S. physalifolium 

(density 13.7 plants/m2) plants with fruit than S. nigrum (density 107 plants/m2) plants 

with fruit (Table 5-8). 

 

Table 5-8.  Proportion of Solanum nigrum (SN) and S. physalifolium (SP) plants 
bearing fruit at the final sample date.  An * indicates a significant species 
effect. 

 Plants with fruit 
 SN SP 

LA quadrats (3 m2) 0.9 % 19.5 % * 
Yield quadrats (3 m2)   0 %   9.8 % * 

 

Nightshade growth in an organic process pea crop 
Comparisons between the two species of leaf number, plant DM and plant length did 

not indicate any significant differences between the species (Table 5-9).  Only a small 

number (4) of S. nigrum plants had fruit, and for two of these plants total fruit DM was < 

0.01 g, only one S. physalifolium plant did not have fruit.  There were significant 

differences (P < 0.05) for the following fruiting parameters: the number of clusters with 

fruit, the number of fruit in each of the size classes, maximum fruit diameter, fruit DM, 

HI and CI.  Plant DM, excluding fruit was a significant (P < 0.001) predictor for both 

nightshade species of total fruit DM, and the number of fruit > 3 mm on a plant (Table 

5-10). 
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Table 5-9.  Plant dry matter (DM), height and number of fruiting parameters including 
harvest index (HI) and contamination index (CI) for 19 Solanum nigrum (SN) 
and 19 S. physalifolium (SP) plants sampled from a commercial organic pea 
crop.  (Significance indicated from Bonferroni Adjusted Probability test.) 

 SN SP p 
Leaf number     52.8      68.2 ns 
Plant DM including fruit (g)         1.04         1.60 ns 
Plant DM excluding fruit (g)         1.04         1.51 ns 
Plant length (mm) 357 399 ns 
    
Number of clusters with fruit         0.42         3.6 < 0.05 
Total number of clusters        8.6        11.2 ns 
Number of 0 - 2.9 mm fruit          0.53          7.8 < 0.05 
Number of 3 - 4.9 mm fruit          0.32          3.6 < 0.05 
Number of 5 - 6.9 mm fruit          0.05          3.3 < 0.05 
Maximum fruit diameter (mm)        0.8          4.6 < 0.05 
Fruit DM (g)            0.002              0.091 < 0.05 
HI            0.001              0.041 < 0.05 
CI          0.14            0.39 < 0.05 

 

Table 5-10.  Regression results (r2 values) of plant dry matter (DM) excluding fruit 
against fruit DM and the number (No.) of fruit greater than 3 mm diameter, for 
19 Solanum nigrum (SN) and 19 S. physalifolium (SP) plants. 

 SN SP 
Fruit DM   0.648***   0.712*** 
No. fruit > 3mm   0.664***   0.865*** 
***P < 0.001 

5.4 Discussion 
 

Differences in dry matter production 
The DM production of S. physalifolium, when grown under non-competitive conditions, 

was significantly greater than S. nigrum at all sowing dates except August (Table 5-1).  

The differences in DM production between S. nigrum and S. physalifolium were 

supported by the growth rate values, where for all except the August sowing, of 

S. physalifolium (0.87 g/d/plant) had significantly higher growth rates than S. nigrum 

(0.30 g/d/plant) (Table 5-1).   

When S. nigrum and S. physalifolium plants were grown in a field trial with peas 

or collected from a commercial pea crop there were no significant differences in DM 

between the two species (Table 5-9 and Appendix 14).  Heider (1996) reported that 

S. sarrachoides plants produced greater DM than S. ptycanthum plants by pea harvest, 

for both seedlings growing in bare ground, and within process peas where weeds were 

controlled with herbicide.   
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Heider (1996) also reported that by the time of pea harvest S. sarrachoides and 

S. ptycanthum seedlings transplanted into peas had approximately 10 % of the DM of 

plants transplanted into bare ground on the same date.  The DM production of 

S. sarrachoides and S. ptycanthum plants in the pea crops was 3.3 % and 1.2 %, 

respectively, of the DM of the non-competitively grown plants (Table 5-1 and Table 5-9).  

For fruiting plants from the pea trial sown in October 2001 the mean DM/plant values 

were only 1.0 and 0.1 % for S. nigrum and S. physalifolium, respectively, at 89 DAS 

(Appendix 14). 

A number of possible explanations exist for these differences.  In the pea trial 

and in the commercial pea crop, the nightshade plants had naturally germinated in the 

field.  The counts of seedling classes from the pea trial indicated that there may have 

been a range of emergence times in both species (Appendix 13).  Such differences 

may have confounded comparisons and also affected weed growth responses through 

differential competition. 

In addition, the pea trial had a high density of peas (151 plants/m2) giving a final 

crop DM of 874 g/m2, and the area was not weeded, which contributed to a high final 

non-nightshade weed DM at harvest (125 g/m2) (Figure 5-2).  A previous study of non-

weeded process pea plots in Canterbury, reported weed and crop DM values at pea 

maturity of only 9.3 and 521 g/m2, respectively (Reddiex et al., 2001).  Weed density 

was not assessed in the commercial pea crop.  The use of transplants by Heider (1996) 

and the control of additional weed pressure may have provided competitive advantages 

for the nightshade seedlings in relation to the crop and other weed species in his work, 

thereby giving a greater total DM production relative to nightshade plants grown in bare 

ground.  Thus, the reason for the DM production values of S. nigrum and 

S. physalifolium being 0.1-3.3% of the non-competitively grown plants when grown with 

peas, is probably due to the effects of weed pressure and the time of establishment.  

Similarly, the lack of differences between S. nigrum and S. physalifolium may be the 

result of the competitive effects identified above.  This has the implication that in a 

competitive growing environment the greater potential growth of S. physalifolium may 

not be realised. 

Further work using controlled emergence times or transplants and crop and 

weed density studies are required to substantiate the finding that the growth of 

S. physalifolium is not superior to that of S. nigrum when growing in a pea crop.  

However, these results suggest that current pea crop management may be adequate to 

limit the potentially greater DM accumulation of S. physalifolium. 
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Morphological differences and plasticity 
One of the greatest differences for the non-competitively grown nightshade plants was 

the difference in PLA between the species.  The PLA of S. physalifolium was 

significantly higher than that of S. nigrum at all dates, except August, and there was, 

overall, a significantly higher species mean for S. physalifolium (0.511 m2/plant) than 

for S. nigrum (0.191 m2/plant) (Table 5-2).  However, at no date in the pea trial was the 

mean PLA of S. physalifolium significantly higher than that of S. nigrum.  In fact, at 79 

DAS the opposite occurred (Figure 5-5).  This indicates that different growth responses 

may occur for these two species when they are grown with peas.  Initial LA 

development is identified as being an important growth parameter in identifying 

competitive species particularly in conjunction with a high relative growth rate (Seibert 

and Pearce, 1993; Wall, 1995).  However, the non-competitive growth trial only 

investigated PLA values at harvest, thus it was not possible to determine if the greater 

PLA of S. physalifolium was the result of initial differences in PLA at the seedling stage. 

The GAR values for S. nigrum when grown with peas were greater than those 

for S. physalifolium (Table 5-7).  Solanum nigrum is reported to have significant 

increases in LAR and decreased leaf mass per unit area in response to increased 

shade levels (Fortuin and Omta, 1980).  In the non-competitive trial the GAR, LAR and 

leaf weight ratios values between the two species did not differ significantly.  The 

greater ability of S. nigrum than S. physalifolium to either regulate leaf mass per unit 

area or non-leaf DM investments in environments where competition for radiation 

affects plant growth, indicates that S. physalifolium may be a poorer competitor than 

S. nigrum in such environments.  Solanum nigrum and S. physalifolium values for 

DM/plant, GAR/plant and GA/plant, at each sample date, were calculated from all the 

seedlings in each sample.  Seedling counts on the basis of leaf number indicated that 

for each successive sample date an increasingly greater range of seedlings with 

different leaf numbers were present (Appendix 13).  Therefore the interpretation of 

these values may require some caution, as the differing contributions of leaf number 

seedling classes at different sample dates may have affected comparisons. 

Physiological factors may have also affected the observed growth responses in 

both the non-competitive and competitive trials.  There is some evidence in the 

literature that S. nigrum may have superior photosynthetic efficiencies when grown in 

shade.  Differences in the quantum yield of S. nigrum for plants in full sun or shade (80 

%), were better maintained than that of Amaranthus cruentus L. (Sattin et al., 1992).  

Unfortunately, there is no similar information apparent in the literature for 

S. physalifolium but there was some evidence that growth processes may differ 

between the two species.  For example, in the non-competitive trial, the growth rate 

and PLA of S. physalifolium did not differ from that of S. nigrum in August, but did for all 
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later months (Table 5-1).  In addition, the leaf appearance rate for S. physalifolium at 

bud appearance, was significantly less than for the later months (Table 5-4).  These 

results could be due to deviations from the optimum temperature range for 

photosynthesis of this species, which would result in a decline in radiation use 

efficiency.  This has been reported for the effect of temperature on Zea mays growth 

(Andrade et al., 1993).  Mean temperature differences during growth were identified as 

contributing to the differential competitive ability of Solanum ptycanthum when grown 

with peas, with S. ptycanthum competing more successfully during periods of high 

mean temperatures (23.9 °C) (Croster and Masiunas, 1998).  The August sowing of 

this work experienced the lowest temperatures, with mean temperatures in both August 

and September at some dates below 10 °C (Figure 5-1).  This may indicate that 

S. physalifolium has a higher minimum optimum temperature range than S. nigrum, as 

the August DM accumulation rate for S. nigrum did not differ significantly from those 

observed in later months.  If this is correct, the implication is that the greater growth 

potential of S. physalifolium relative to S. nigrum may not be evident when low 

temperatures are limiting.  However, this work did not identify a threshold value. 

 

Using growth to identify reproductive initiation 
An evaluation of leaf number at flower bud appearance was made to test if a readily 

identifiable growth threshold, such as leaf number, could be used to identify the 

initiation of reproductive development.  The results of leaf number for S. nigrum 

indicated no significant variation by sowing date (Table 5-4).  However, plants had from 

~30 to ~47 leaves/plant at bud appearance.  A number of S. nigrum plants from the pea 

trial were observed to have buds on plants with seven leaves (data not presented).  

This suggests that a growth threshold of leaf numbers prior to bud appearance may not 

exist in S. nigrum.  For S. physalifolium, sowing month produced significant variation in 

the number of leaves/plant at bud appearance.  This indicates that for this species 

there is no evidence to suggest that bud appearance was linked to a leaf number 

threshold.  These results confirm a plasticity of growth response capacity present in 

many weed species (Elmore et al., 1994). 

 

Fruit production 
Non-competitive growth comparisons between the two species indicated that 

S. physalifolium produced a greater number of fruit (Table 5-5), had a greater HI and 

importantly, in terms of contaminant potential, a greater CI than S. nigrum (Table 5-6).  

When these species were grown with peas, a significantly greater proportion of 

S. physalifolium than S. nigrum plants produced fruit by the time of pea harvest (Table 
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5-8).  For plants of a similar DM from a pea crop, S. physalifolium plants produced 

more fruit and had a higher CI than S. nigrum (Table 5-9).  This indicates that the timing 

of initiation of reproductive development, between the two species, probably differed.  

Differences in the time of flowering are investigated in more detail in Chapter 6. 

Independent of phenology, in both species, contamination potential was linked 

to growth effects, as plant size was positively associated with fruit DM and the number 

of fruit per plant > 3mm (Table 5-10).  Nightshade fruit of 3 mm is estimated to be a 

minimum fruit diameter for the contamination of process peas (data not presented).  

Thus plant size can effect potential contamination.  Similar results are reported for 

Amaranthus retroflexus and Chenopodium album where it was reported that for a given 

tillage or mulch treatment, the majority of weed seed was produced by the largest 

plants in both species (Mohler and Callaway, 1995).  Therefore, factors that limit the 

growth of these species can be used to manage the risk of nightshade contamination.  

Although competition between plants occurs for nutrients, water and radiation, a 

number of studies identify the success of competitive interactions between crops and 

weeds as being linked with factors which affect radiation interception (Stoller and 

Wooley, 1985; Akey et al., 1990; Kropff et al., 1992; Barbour and Bridges, 1995; 

Blackshaw et al., 2000).  If the growth limitation to S. physalifolium in pea crops is 

similarly caused by radiation limitation, then attention to factors that limit radiation 

interception for weeds are required.   

Increases in crop density were reported to affect weed PAR interception, so 

negatively affecting weed DM production including weed seed production in Triticum 

aestivum L. crops (Blackshaw et al., 2000).  Increased pea density has also been 

reported to negatively affect weed growth in process peas (Lawson, 1982; Lawson and 

Topham, 1985).  However, pea yields ceased to increase above pea densities of 140 

and 180 plants/m2 in two separate years of trials (Lawson, 1982).  Current 

recommendations to organic pea growers are for a FE of 120 plants/m2.  It seems 

possible that that pea sowing density could be further increased to help control 

nightshade.  This question requires further research.  However, in terms of limiting the 

growth of weeds, it is clear that minimising events that cause low pea populations such 

as drilling errors, or poor seed quality, or soil capping reducing FE densities are also 

important.   
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5.5 Conclusions 
 

1. Solanum physalifolium grown in the absence of competition produced more 

DM, and grew faster than S. nigrum.  However, the DM production of 

S. physalifolium and S. nigrum did not differ when they were grown in a process 

pea crop. 

2. Growth parameters for both nightshade species exhibited plasticity in relation to 

the growth environment.  Solanum nigrum exhibited a greater GAR than 

S. physalifolium when grown with peas, but not without peas.  This growth 

response to the environment may make S. nigrum more competitive in radiation 

limited environments than S. physalifolium. 

3. Leaf counts did not provide a useful means of identifying bud appearance in 

either nightshade species due to their growth plasticity. 

4. Differences in fruit production between the two species were due to differences 

in their phenology with regard to reproductive initiation.  However, for plants of 

either species that had initiated flowering, plant size was positively related to 

the amount of fruit produced.   
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Chapter 6 Flowering and fruit phenology 

6.1 Introduction 
The analysis of seasonal records of nightshade fruit contamination of process peas in 

Canterbury, indicate a trend that nightshade contamination occurs in the second half of 

the sowing season (Section 3.3.3).  Fruits of both Solanum nigrum and S. physalifolium 

can cause this contamination, although it is not known if either species predominately 

causes the contamination or if seasonal factors affect the potential of either species to 

contaminate process peas differentially. 

Time to flowering of S. nigrum is strongly influenced by seasonal field 

temperatures (Keeley and Thullen, 1983).  A study of the thermal time requirements of 

S. nigrum and S. ptycanthum reported that flowering occurred at a value of 

approximately 600 °Cd (Tb 6°C) in both species.  However, it was not reported if this 

value was related to the initiation of flowering or a proportional flowering value such as 

50 % flowering (McGiffen and Masiunas, 1992).  There is no information on the 

flowering phenology of S. physalifolium in the literature, but it would be useful for 

evaluating the risk of contamination for this species.  Similarly, there is no published 

information on fruit growth rates for either species.  The rate of fruit growth is important, 

as this will affect the ability of the nightshade fruit to reach a diameter that will 

contaminate process peas. 

Crop competition with Glycine max is reported to slow the flowering of 

S. ptycanthum (Quakenbush and Andersen, 1984).  However, other studies of this and 

other nightshade species reported that crop competition does not appear to affect the 

timing of development.  For example, in S. ptycanthum and S. sarrachoides it was 

reported that competition with pea crops did not significantly affect the time of bud 

appearance or flowering (Heider, 1996).  There is a similar report for S. nigrum and 

S. sarrachoides growing with and without Lycopersicon esculentum Mill. (Hinckley, 

1981).  Further, light quality did not affect the time of flowering of S. ptycanthum or 

S. sarrachoides (Croster et al., 2003).  Crop competition is also reported not to affect 

the flowering time in Raphanus raphanistrum L. (Cousens et al., 2001). 

This chapter addresses the fourth objective of this study, to quantify the 

phenology of both nightshade species in relation to flower bud appearance, flowering 

and fruit growth.  To study these factors an experiment was conducted using the two 

nightshade species when grown under non-competitive conditions.  The first 

hypothesis investigated was that flower bud appearance and flowering of 

S. physalifolium does not differ from that of S. nigrum (hypothesis 1).  Solanum 

sarrachoides and S. physalifolium are morphologically reported to be very similar 
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(Edmonds, 1986).  While S.  sarrachoides is reported to flower ~ 80 °Cd before 

S. ptycanthum (Heider, 1996).  A comparison of S. ptycanthum and S. nigrum reported 

that the flowering requirements of these two species did not differ (McGiffen and 

Masiunas, 1992).  The hypothesis investigated for fruit growth, was that fruit growth 

rates for the two species do not differ (hypothesis 2). 

Comparisons indicated that pea cultivars sown during the contamination period 

had significantly greater thermal time requirements than cultivars sown prior to 

contamination occurring in the growing season (see section 3.3.3).  Mean temperatures 

also increase over the pea sowing season.  From these observations it was 

hypothesised that nightshade contamination for late sown peas and pea cultivars with 

mid to high thermal time maturity requirements would not differ from early sown peas or 

peas with short thermal time maturity requirements (hypothesis 3). 

6.2 Methods 

6.2.1 Nightshade development experiment 
 

The site description, sowing dates, bud appearance, flowering and fruit growth data 

collection methods, and temperature data for this experiment are described in Chapter 

5 (see section 5.2.1). 

 

Analysis:  Hourly thermal time values were calculated by: 

 

°Ch = (hourly temperature - Tb)/24 

 

If the hourly temperature value was < Tb no value was calculated.  Calculation of 

phenological intervals used a Tb of 6 °C (Alm et al., 1988).  The hourly thermal time 

values were summed to provide thermal time values for various plant phenological 

periods. 

Thermal time accumulation from sowing was initiated one hour after the last 

pre-germinated seed was sown.  The thermal time intervals for the various 

phenological stages were calculated by ceasing thermal time accumulation at midday 

(12:00) on the day of bud appearance or flowering.  Bud appearance and flowering of 

plants was considered to be on the date when one visible bud or flower was present on 

50 % of plants in a plot. 

Two methods of fruit growth analysis were used.  Both were based on the 

selection of one fruit from each of two monitored clusters on a plant.  Fruit were 
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selected on the basis that flowering of the bud was observed and that the fruit from this 

bud reached a minimum diameter of 7 mm prior to plant harvest (n = 353).  The first 

growth analysis method was based on the calculation of 95 % of maximum fruit 

diameter for fruit in the data set.  Both days from flowering and the thermal time to 95 

% of maximum diameter were calculated. 

The second method of fruit growth analysis used was based on the calculation 

of mean fruit growth in relation to thermal time values at each measurement date after 

flowering for each fruit for the set of 353 fruit.  A Gompertz curve of the form: 

y = A + Cexp(-exp(-b(x-m))) 

was then fitted using Genstat 6th Edition (2002) for the thermal time (x, °Cd) values 

versus fruit diameter (y, maximum fruit diameter mm) for observations from flowering 

for each fruit.  Subsequent analysis was made of maximum diameter (C), maximum 

growth rate (Cb/e) and average growth rate (C/duration of growth (4/b)). 

Fruit diameter (y, mm) was predicted using the equation with thermal time (x, °Cd): 

x = (LOG((EXP(b*m))/(LOG(C/y)))/b) 

The analysis used was the GLM in Systat® Version 9.01 (1998).  For all analyses, 

variates were analysed for the factors block, sowing date, species and the species by 

sowing date interaction.  Means separation tests were made using the Tukey HSD test 

(Zar, 1984).  For the comparisons of fruit growth means, which had unequal sample 

numbers, the standard error of these means was calculated using a procedure for 

unequal group sizes (Kramer, 1956).  The Tukey HSD value for comparison of means 

with unequal sample sizes was calculated as the mean Tukey HSD value for each pair 

of values in the comparison.  Linear regression was used to examine the relationship 

between mean fruit DM versus fruit diameter.  For regressions of the mean 

temperature, mean temperature was calculated from the mean number of days of each 

species for each planting date for two periods:  50 % emergence to 50 % flowering;  

and sowing date to 50 % flowering.  Analysis of phenological intervals from 50 % 

emergence was limited to the first four sowing dates, as 50 % emergence for the 

December sowing was not observed (see Section 5.2.1). 

 

6.2.2   The effect of sowing date and cultivar on the potential for nightshade 
contamination 
Four process pea cultivars with varying thermal time requirements were selected from 

the literature (Table 6-1).  Using the same hourly air temperature data as cited in Figure 

5-1, the date of pea maturity, using a Tb of 4.5 °C, was predicted from sowing for six 

dates (from 23 August to 6 December) at three weekly intervals.  The thermal time 
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accumulation, using a Tb of 6.0 °C, was also calculated for the predicted date of pea 

maturity from the pea sowing date.  For sowing dates where it was predicted that 

S. nigrum or S. physalifolium preceded pea maturity, the thermal time weed free period 

with a Tb of 6.0 °C between the predicted nightshade flowering and that of the 

cessation of accumulation at pea maturity was calculated.  Using the temperature data, 

the thermal time weed free period was then calculated in terms of the number of days 

from the pea sowing date. 

 

Table 6-1.  Thermal time values (°Cd) for four pea cultivars from sowing to crop 
maturity (Tb of 4.5 °C) (Mikkelsen, 1981; Friis et al., 1987).  (Values in 
brackets are the CV %). 

Pea cultivar Maturity °Cd 
Avola 692 (6.0) 
Freezer 69 729 (8.6) 
Visto 777 (5.7) 
DSP 839 (5.0) 

 

6.3 Results 

6.3.1 Nightshade development experiment 
 

Flower bud appearance (BA) 
The days from seedling emergence to BA on 50 % of plants were significantly (P < 

0.001) affected by the interaction between species and sowing date (Table 6-2).  In 

both species there were significant decreases in the day counts to BA for each later 

sowing date, but in the August and November sowings S. physalifolium took 

significantly fewer days to BA than S. nigrum.  Solanum physalifolium, overall required 

51 d to BA, this was significantly (P < 0.001) fewer than for S. nigrum (60 d).  The 

thermal time to BA was also significantly (P < 0.01) affected by the species by sowing 

date interaction, with S. nigrum requiring more thermal time for BA in the August 

sowing than in the October and November sowings.  Values for S. physalifolium were 

not significantly affected by sowing date, and were significantly lower than those for 

S. nigrum in August and November.  Overall, S. nigrum had a significantly (P < 0.001) 

higher value of 434 °Cd than that of S. physalifolium (352 °Cd).  For the period from 

sowing to BA only S. nigrum was significantly (P < 0.01) affected by sowing date.  The 

August and November values were greater than those observed for October and 

December.  Values for S. physalifolium were significantly greater those for S. nigrum in 

the August and November sowings.  The overall species means also differed 
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significantly (P < 0.001).  Solanum physalifolium had a significantly lower value (401 

°Cd) than S. nigrum, (482 °Cd). 

 

Table 6-2.  Days (d) and thermal time (°Cd) values from emergence to bud appearance 
(BA), and °Cd from sowing to BA for S. nigrum (SN) and S. physalifolium (SP) 
plants.  Effects:  day count interaction (s.e. = 1.6, d.f. = 21, Tukey HSD = 7.8) 
and day species effect (s.e. = 0.8, Tukey HSD = 2.4), BA °Cd from 
emergence interaction (s.e. = 14.4, d.f. = 21, Tukey HSD = 68.6) and BA °Cd 
species effect (s.e. = 7.2, Tukey HSD = 21.2), BA °Cd from sowing interaction 
(s.e. = 16.0, d.f. = 27, Tukey HSD = 77.4) and BA °Cd species effect (s.e. = 
7.2, Tukey HSD = 20.7).  Means followed by the same letter within and 
between columns for the same factor are not significantly different.  An * 
indicates a significant species main effect. 

 d from emergence °Cd from emergence °Cd from sowing 
Sowing SN SP SN SP SN SP 
August    87 g   67 f 496 c 337 a 537 d 377 a 
September    62 ef   58 de   428 bc   362 ab 480 cd 403 abc 
October   51 cd   49 c 407 b   383 ab 453 abc 429 abc 
November   39 b   31 a 407 b 323 a 480 d  401 ab 
December     -     - - - 457 bc 395 ab 
       
Mean   60*   51  434*  352 482* 401 

 

Flowering 
Days from emergence to flowering of 50 % of plants were significantly affected by 

sowing date and species.  Solanum physalifolium required significantly (P < 0.001) 

fewer days (79 d) to flower than S. nigrum (67 d) (Table 6-3).  There was a significant 

(P < 0.001) decline in the number of days to flowering from emergence, with ~42 d 

difference between the August and November sowing (Table 6-4).  The thermal time 

values from emergence to flowering on 50 % of plants also gave no significant 

interaction, but there were significant species (P < 0.001) and sowing date (P < 0.05) 

effects.  Solanum physalifolium had a lower thermal time requirement (509 °Cd) than 

S. nigrum (633 °Cd) (Table 6-3).  Sowing date had no effect on thermal time to 

flowering.  There was a significant (P < 0.001) species effect on the thermal time to 

flower.  Solanum physalifolium (562 °Cd) required fewer thermal units than S. nigrum 

(686 °Cd) (Table 6-3). 

Solanum physalifolium plants required significantly fewer days (13 d) to 

progress from BA to flowering than did S. nigrum (18 d) (Table 6-3).  For this interval, 

there was no significant interaction between species and sowing date, or was there a 

significant sowing date effect.  For thermal time values for the interval from BA to 

flowering, there was a species effect, with S. nigrum (188 °Cd) having a significantly (P 

< 0.001) higher value than S. physalifolium (138 °Cd) (Table 6-3).  Sowing date had a 

significant effect (P < 0.001) on the thermal time required for BA to flowering (Table 
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6-4).  The August value was significantly lower than the November and December 

values.  There was no significant interaction for thermal time values for this interval.  

Comparison of the days between the flowering on the first and second of the two 

monitored clusters indicated a significant (P < 0.001) species effect, with S. nigrum 

requiring fewer days (3 d) than S. physalifolium (5 d) (Table 6-3).  Sowing date had no 

significant effect for this variate, and there was no significant interaction of sowing date 

by species. 

 

Table 6-3.  The flowering intervals of S. nigrum (SN) and S. physalifolium plants in 
days and thermal time (°Cd).  Effects:  days from emergence (s.e. = 1.0, 
Tukey HSD = 2.8), °Cd from emergence (s.e. = 9.3, Tukey HSD = 27.3), °Cd 
from sowing (s.e. = 9.2, d.f. = 27, Tukey HSD = 26.5), days from bud 
appearance (BA) (s.e. = 0.4, Tukey HSD = 1.1), °Cd from BA (s.e. = 3.6, 
Tukey HSD = 17.4), days from cluster one to cluster two (s.e. = 0.3, d.f. = 27, 
Tukey HSD = 0.9).  An * within a row indicates a significant difference 
between species. 

Interval SN SP 
From emergence (days) 79* 67 
From emergence (°Cd) 633* 509 
From sowing (°Cd) 686* 562 
From BA (days) 18* 13 
From BA (°Cd) 188* 138 
Cluster one to cluster two (days) 3* 5 

 

Table 6-4.  Sowing dates effects on flowering from emergence in days (s.e. = 1.4, d.f. = 
21, Tukey HSD = 5.87), thermal time (°Cd) from emergence (s.e. = 13.1, d.f. 
= 21, Tukey HSD = 51.9), °Cd from bud appearance (BA) (s.e. = 8.1, d.f. = 
27, Tukey HSD = 39.0) for S. nigrum (SN) and S. physalifolium (SP) plants.  
Means followed by the same letter in single columns are not significantly 
different. 

Sowing Days from 
emergence 

°Cd from 
emergence 

°Cd BA to 
flowering 

August  99 d 587 a 148 a 
September  76 c 563 a 152 ab 
October 65 b 570 a 155 ab 
November 52 a 565 a 174 b 
December     -     - 188 b 

 

Base temperatures 
There was a significant relationship between rate to flower from emergence and mean 

air temperature for both species (Figure 6-1).  From the regressions, a Tb of 6.24 °C for 

S. nigrum and 5.66 °C for S. physalifolium, were calculated.  The thermal time 

requirements for flowering from emergence were 583 °Cd and 499 °Cd for S. nigrum 

and S. physalifolium, respectively.  Similarly, analysis of the rate to flowering for the 

period between sowing and 50 % flowering also gave significant (P < 0.001) linear 

relationships in both nightshade species.  There was a Tb of 5.42 °C and thermal time 
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requirement of 707 °Cd, and Tb of 4.70 °C and thermal time requirement of 628 °Cd, 

respectively, for S. nigrum and S. physalifolium (data not presented). 
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Figure 6-1.  The mean temperature from 50 % emergence to 50 % flowering, for four 
sowings of Solanum nigrum (y = -0.01070 + 0.0017159 (x), r2 = 0.993, P < 
0.01) and S. physalifolium (y = -0.01134 + 0.002003 (x), r2 = 0.973, P < 0.01). 

 

Fruit growth 
In the set of 353 fruit that were analysed, 192 fruit were from S. nigrum and 161 were 

from S. physalifolium.  The thermal requirement from flowering to 95 % maximum fruit 

diameter was affected by species (P < 0.001).  Solanum nigrum required less thermal 

units (154 °Cd) than S. physalifolium (239 °Cd) (Table 6-5).  Sowing date had a 

significant effect (P < 0.001).  The August (191 °Cd) sowing required significantly less 

thermal time to reach 95 % maximum fruit diameter than the December sowing (207 

°Cd) (Table 6-6).  The daily growth rate was significantly (P < 0.001) affected by 

species with S. nigrum having a faster growth rate (0.62 mm/d) than S. physalifolium 

(0.36 mm/d) (Table 6-5).  Species effects on daily growth rate did not interact with 

sowing date.  However,  sowing date did have a significant (P < 0.001) effect (Table 

6-6).  Fruit growth rates in December were significantly lower than in the previous four 

months.  The thermal time growth rate was significantly (P < 0.01) affected by species 

and S. nigrum had a greater thermal growth rate (0.056 mm/°Cd) than S. physalifolium 

(0.033 mm/°Cd) (Table 6-5).  For this thermal growth rate there was no species by 

sowing date interaction, but sowing date was significant (P < 0.001).  The December 
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sowing value (0.0041 mm/°Cd) was significantly lower than values for the previous four 

months (Table 6-6). 

 

Table 6-5.  Species effects for thermal time (°Cd) from flowering to 95 % of final 
maximum fruit diameter (s.e. = 2.6, Tukey HSD = 7.3), and growth rates from 
flowering to 95 % of final maximum fruit diameter for mm/d (s.e. = .007, Tukey 
HSD = 0.020), and mm/°Cd (s.e. = 0.0020, Tukey HSD = 0.0056) for 
S. nigrum (SN) and S. physalifolium (SP).  All d.f. = 340.  An * indicates a 
significant species effect. 

 SN SP 
°Cd 95 % 154* 239 
mm/d     0.62*     0.36 
mm/°Cd      0.056*     0.033 

 

Table 6-6.  Sowing dates effects for thermal time (°Cd) from flowering to 95 % of final 
maximum fruit diameter (s.e. = 4.1, Tukey HSD = 16.0) and growth rates from 
flowering to 95 % of final maximum fruit diameter for mm/d (s.e. = 0.0116, 
Tukey HSD = 0.0449), and mm/°Cd (s.e. = 0.0010, Tukey HSD = 0.0039).  All 
d.f. = 340.  Means followed by the same letter in single columns are not 
significantly different. 

Sowing °Cd for 95 % 
growth 

mm/d from 
flowering 

mm/°Cd from 
flowering 

August  191 a 0.52 b 0.046 b 
September  192 ab 0.52 b 0.045 b 
October 194 ab 0.49 b 0.046 b 
November 199 ab 0.49 b 0.043 b 
December 207 b 0.43 a 0.041 a 

 

The growth curve values indicated that maximum fruit diameter (C) was 

significantly (P < 0.001) affected by species.  Solanum nigrum (8.8 mm) had a greater 

C value than S. physalifolium (8.1 mm) (Table 6-7).  Maximum fruit diameter was not 

significantly affected by sowing date and sowing did not interact with species.  The 

maximum growth rate (GR) was significantly (P < 0.001) faster in S. nigrum (0.068 

mm/°Cd) than in S. physalifolium (0.044 mm/°Cd) (Table 6-8).  Maximum GR was 

significantly (P < 0.001) affected by sowing date, but there was no sowing date by 

species interaction.  Sowing date values for August (0.066 mm/°Cd) and September 

(0.060 mm/°Cd) were greater than those in December (0.048 mm/°Cd).  The maximum 

GR for the August sowing was also significantly greater than values for the October 

and November sowings. 

The mean GR was significantly (P < 0.001) affected by species, with the values 

for S. nigrum (0.037 mm/°Cd) greater than that for S. physalifolium (0.024 mm/°Cd) 

(Table 6-7).  The mean GR was also significantly (P < 0.001) affected by sowing date, 

with the mean GR in August greater than that in December (Table 6-8).  The August 
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sowing mean GR was also significantly greater than values for the October and 

November sowings.  Sowing date did not interact with species for this variate. 

 

Table 6-7.  Species effects for maximum fruit diameter (C) (mm) (s.e. = 0.05, Tukey 
HSD = 0.14), maximum growth rate (GR) (mm/°Cd) (s.e. = 0.0014, Tukey 
HSD = 0.0037) and mean GR (mm/°Cd) (s.e. = 0.0007, Tukey HSD = 0.0020) 
for S. nigrum (SN) and S. physalifolium (SP) fruit.  All d.f. = 340.  An * 
indicates a significant species effect. 

 SN SP 
C 8.8* 8.1 
Max GR 0.068* 0.044 
Mean GR 0.037* 0.024 

 

Table 6-8.  Sowing date effects on maximum growth rate (GR) (mm/°Cd) (s.e. = 
0.0021, Tukey HSD = 0.0082) and mean GR (mm/°Cd) (s.e. = 0.0012, Tukey 
HSD = 0.0045) for S. nigrum (SN) and S. physalifolium (SP) fruit from 
flowering.  All d.f. = 340.  Means followed by the same letter in single columns 
are not significantly different. 

 Maximum GR Mean GR 
August  0.066 c 0.036 c 
September  0.060 bc 0.032 bc 
October 0.055 ab 0.030 ab 
November 0.053 ab 0.029 ab 
December 0.048 a 0.026 a 

 

Prediction of fruit diameter 
The predicted thermal time values, to a maximum fruit diameter of 3 mm, were affected 

by the species by sowing date interaction (P < 0.001) (Table 6-9).  Values for S. nigrum, 

were not affected by sowing date but values for S. physalifolium for the October, 

November and December sowings were lower than for the August and September 

sowings.  Overall, S. nigrum (75 °Cd) took significantly (P < 0.001) less thermal time to 

reach 3 mm diameter than S. physalifolium (140 °Cd). 

For thermal time to 5 mm fruit diameter, species and sowing date interacted 

significantly (P < 0.001).  Sowing date did not significantly affect the values for 

S. nigrum.  However, in S. physalifolium values for the October, November and 

December sowings were significantly greater than that in the August sowing.  Overall, 

S. nigrum (120 °Cd) had a significantly (P < 0.001) lower 5 mm value than 

S. physalifolium (209 °Cd). 
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Table 6-9.  The predicted thermal time (°Cd) values for the period from flowering to a 
maximum fruit diameter of 3 and 5 mm for S. nigrum (SN) and 
S. physalifolium (SP).  Effects:  all d.f. = 340, 3 mm interaction (s.e. = 4.7, 
Tukey HSD = 21.2) and species effect (s.e. = 2.1, Tukey HSD = 5.8), 5 mm 
interaction (s.e. = 9.7, Tukey HSD = 43.5) and species effect (s.e. = 4.3, 
Tukey HSD = 12.0).  Means followed by the same letter within and between 
columns for the same factor are not significantly different.  An * indicates a 
significant species effect. 

 3 mm °Cd  5 mm °Cd  
Sowing SN SP SN SP 
August  75 a 109 b   112 a 163 b 
September  74 a 124 b   118 a 187 bc 
October 73 a 159 c   114 a 244 c 
November 70 a 147 c   113 a 214 c 
December 85 a 161 c   141 ab 235 c 
     
Mean   75* 140   120 * 209 

 

6.3.2 Results of estimated pea sowing date and pea cultivar effects on 
nightshade development 
Figure 6-2 shows that in all pea cultivars examined S. physalifolium would flower prior 

to pea maturity.  However, S. nigrum can only flower prior to pea maturity in sowings, 

which are later than September for the cv. Freezer 69, and for all sowings of cv.s Visto 

and DSP. 

Estimation of the thermal time weed free period between nightshade flowering 

and pea maturity indicated that the thermal time weed free period increased with later 

sowing dates of the same cultivar (Table 6-10).  However, the estimation of this same 

weed free period interval in days indicated a decline in day count duration with later 

sowings for the same pea cultivar (Table 6-10). 
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Figure 6-2.  Plot of six sowing dates of four pea cultivars a) Avola, b) Freezer 69, c) 
Visto, d) DSP against thermal time.  Dashed line (― ― ―) indicates the 
thermal time of pea maturity (Tb of 4.5 °C) from sowing, the bars indicate the 
accumulation of thermal time with a Tb of 6.0 °C at pea maturity for each 
sowing.  The error bars (Tukey HSD 27.3 °Cd) indicate the predicted 
flowering date of Solanum nigrum (○) (633 °Cd) and S. physalifolium (∆) (509 
°Cd) from emergence at the day of pea sowing.  Error bars below the 6.0 °C 
Tb thermal time accumulation bar, indicate that predicted nightshade flowering 
occurs prior to pea maturity. 
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Table 6-10.  a) Predicted thermal time (°Cd, Tb 6.0 °C) weed free periods to prevent 
flowering of S. nigrum (SN) and S. physalifolium (SP) plants from the day of 
pea sowing, for four pea cultivars (°Cd maturity values in brackets, Tb of 4.5 
°C):  Avola (692 °Cd), Freezer 69 (Fr. 69) (729 °Cd), Visto (777 °Cd) and DSP 
(839 °Cd).  b) Predicted duration of weed free period in days from sowing, 
values in brackets are the Tukey HSD value (27.3 °Cd) in days. 

a) SN SP 
Pea 
cultivar 

Avola Fr. 69 Visto DSP Avola Fr. 69 Visto DSP 

Sowing 
date 

        

23 Aug. - -  18    72   68 102 142 196 
13 Sept. - -    30    86   81 113 154 210 
4 Oct. - -    40    96   90 123 164 220 
25 Oct. - 7  50  103   98 131 173 227 
15 Nov. - 15    58  110 106 139 182 234 
6 Dec. - 20    63  118 113 144  187 242 
b) SN SP 
Pea 
cultivar 

Avola Fr. 69 Visto DSP Avola Fr. 69 Visto DSP 

Sowing 
date 

        

23 Aug. - - 7 (10) 23 (8) 20 (8) 28 (6) 38 (6) 52 (7)
13 Sept. - - 6   (6) 19 (8) 19 (8) 27 (6) 36 (3) 43 (5)
4 Oct. - - 11   (7) 19 (4) 18 (4) 22 (4) 30 (5) 37 (4)
25 Oct. - 1 (5) 7   (4) 16 (3) 15 (3) 20 (4) 29 (4) 34 (3)
15 Nov. - 4 (7) 11   (3) 16 (3) 15 (2) 18 (3) 22 (2) 27 (3)
6 Dec. - 1 (4) 6   (3)   13 (3) 12 (3) 15 (2)  19 (3) 24 (3)

 

6.4 Discussion 
 

6.4.1 Nightshade development  
 

Thermal time or day counts? 
The results indicate that days from 50 % emergence to BA was the phenological 

interval associated with flowering most affected by sowing date (Table 6-2), but the 

number of days from BA to flowering did not differ with sowing date in either species 

(Table 6-3).  However, for the interval of BA to flowering thermal time values 

significantly increased in both species (Table 6-4). 

The variation in thermal time values appear to have been caused by the 

duration of this interval in days not changing for any of the five sowings, while mean 

temperatures increased with later sowings (Figure 5-1 and Figure 6-1).  This made 

thermal time estimates a less useful predictor of flowering from BA compared with day 

counts because of the significant monthly variation.  For the interval from sowing to 
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flowering and emergence to flowering, thermal time was a useful predictor, as values 

for this interval were not affected by sowing date. 

For fruit growth, day counts and thermal time values both indicated significant 

declines from early to late sowings (Table 6-6 and Table 6-8).  If fruit growth was not 

positively related to temperature then this may be a partial explanation for the decline 

in growth rates based on thermal time, and the increase in the thermal time 

requirement to 95 % of the final maximum fruit diameter (Table 6-6 and Table 6-8), but 

not for the decline in growth rate in terms of days (Table 6-6).  This indicates that other 

and/or additional factors may have been responsible for the declining growth rates.  For 

example, it is reported that, independent of water availability, fruit growth rates for 

Lycopersicon esculentum increase with temperatures from 15 to 20 °C, but do not 

increase from 26 to 31 °C (Thompson et al., 1999). 

 

The effect of nightshade species on bud appearance, flowering, and fruit growth 
There were significant differences between the two nightshade species.  Solanum 

physalifolium plants produced reproductive buds and flowered significantly earlier than 

S. nigrum plants (Table 6-2 and Table 6-3).  There were differences of ~ 120 °Cd 

between the species in time to 50 % flowering (Table 6-3).  The earlier reproductive 

phenology of S. physalifolium may explain why a significantly greater proportion of 

S. physalifolium plants than S. nigrum plants bore fruit in the trial with peas (Table 4-

10), and why greater numbers of S. physalifolium than S. nigrum plants from a 

commercial pea crop on the day of pea harvest had fruit (Table 4-11). 

Differences in the thermal time requirement for the flowering of related Carduus 

species have been used to assist with the identification of morphologically similar 

species (McCarty, 1985).  That differences in flowering requirements between the two 

nightshade species were observed was not unexpected, as differences in thermal time 

requirements for BA and flowering were reported for S. nigrum and S. sarrachoides 

(Hinckley, 1981) and for S. sarrachoides and S. ptycanthum (Heider, 1996).  Values of 

640 and 655 °Cd were reported for BA of S. sarrachoides and S. ptycanthum, and 777 

and 862 °Cd for flowering of S. sarrachoides and S. ptycanthum by Heider (1996).  A ~ 

600 °Cd flowering value was previously reported for both S. ptycanthum and S. nigrum 

by McGiffen and Masiunas (1992).  The figure of ~ 600 °Cd cited by McGiffen and 

Masiunas (1992) is substantially lower than that cited by Heider (1996) for 

S. ptycanthum, but the figure cited by McGiffen and Masiunas (1992) for S. nigrum 

agrees closely to that observed for the flowering of S. nigrum (633 °Cd) from 

emergence in this work (Table 6-4). 
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Differences in thermal time values between studies may be caused by different 

methods being used to calculate thermal time, for the study of Heider (1996), a Tm of 

40 °C and no Topt was used.  However, it is important to note in this present work that 

the maximum hourly temperature was never > 34 °C (Figure 5-1).  This indicates the 

inclusion of a Tm function with a value of 40 °C would not have altered the reported 

values.  One cause of differences in the values between trials may be the lack of a Topt 

function, where thermal time accumulation may overestimate actual growth or 

development when the temperature exceed the Topt.  Hinckley (1981) estimated Topt 

values of 24 and 28 °C for S. nigrum and S. sarrachoides growth, respectively, from a 

Tb of 10 °C and a Tm of 40 °C.  Interestingly, these Topt values are lower than the Topt of 

28.2 °C reported for process peas (Olivier and Annadale, 1998).  The Topt values cited 

by Hinckley (1981) do not agree with reports of the growth of another nightshade 

species in peas, where S. ptycanthum growth was observed to be more competitive 

with peas during periods of high mean temperatures (23.9 °C) (Croster and Masiunas, 

1998).  This report and anecdotal accounts indicate that nightshade species may have 

a higher Topt value than peas.  More work is required in this area to improve the 

methods used to calculate thermal time of nightshade species. 

Other factors may also have affected the thermal time estimates.  Studies of 

other weed species report differences in flowering requirements for different 

populations of the same species (Andersen et al., 1985; Warwick et al., 1987).  This 

indicates that there may be a genetic basis to differences in the flowering requirements 

among some weed populations. 

Although the time of flowering differed between S. nigrum and S. physalifolium 

comparison of mean fruit growth rates indicated that S. physalifolium fruit grew slower 

than S. nigrum fruit (Table 6-5 and Table 6-6).  This indicates that for S. physalifolium 

and S. nigrum plants, which flower at the same time, S. nigrum fruit will reach a greater 

diameter more quickly.  There is a nil tolerance for the presence of any nightshade fruit 

in process peas.  However, there is a minimum size nightshade fruit that can 

contaminate peas.  This minimum size is determined by the pea viner used to harvest 

the peas, which causes some selection of pea and nightshade fruit sizes.  A small 

survey of pea sizes from the weighbridge at a processing factory (Heinz Wattie’s Ltd, 

Hornby), indicated that the minimum diameter of nightshade fruit capable of causing 

contamination was about 3 mm.  Solanum physalifolium fruit will reach a diameter of 3 

mm, at about 140 °Cd and for S. nigrum about 75 °Cd after flowering (Table 6-9).  

However, from the mean thermal time flowering values for the two species 

S. physalifolium could produce fruit of 3 mm diameter at ~ 60 °Cd prior to S. nigrum 

plants.  Thus, despite the slower fruit growth rates of S. physalifolium this species has 
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the potential to contaminate process peas after less thermal time than for S. nigrum.  

This is due to the earlier flowering of S. physalifolium. 

 

Base temperatures, evaluation and implications 
A Tb of 6 °C was used for the thermal time analysis, this value was calculated in a 

growth cabinet trial as the Tb for mainstem leaf production of S. ptycanthum (Alm et al., 

1988).  This value has been used in other studies of nightshade phenology and growth 

(McGiffen and Masiunas, 1992; Heider, 1996).  The range of planting dates used in this 

present work provided the ability to evaluate Tb values for flowering in both species.  

The evaluation of a Tb for flowering of S. nigrum does not appear to have been 

reported in the literature, and the only previous report of a Tb for S. physalifolium, 

based on germination studies, gave a value of 21.0 °C (del Monte and Tarquis, 1997).  

This value was acknowledged by the workers to have been affected by the presence of 

primary dormancy.  Work with other species indicates that different Tb’s can occur for 

different phenological stages.  For example, Triticum aestivum L. is reported to have a 

Tb of 3.3 °C for the interval from emergence to floral initiation, but the interval from 

anthesis to maturity had a significantly different Tb, of 8.9 °C (Angus et al., 1981).  

However, this present work did not provide evidence that the Tb of either species 

differed greatly from that based on the Tb for the leaf expansion rate of S. ptycanthum 

(Alm et al., 1988).  Although the degree of variability of this Tb, for either species, was 

not investigated in further detail, the results indicate that using a Tb of 6 °C gives an 

accurate calculation of thermal time.  These results indicate that the earlier flowering of 

S. physalifolium compared to S. nigrum probably occurs because of a lower total 

thermal requirement and a slightly lower Tb. 

 

6.4.2 Pea sowing date and cultivar effects on the potential for nightshade 
contamination 
The comparisons of nightshade flowering and pea maturity adopted the approach that 

the flowering of the nightshade plants would not be slowed by growth in a crop.  As a 

number of studies had indicated this to be the case (Hinckley, 1981; Heider, 1996).  

However, one study indicated that flowering could be delayed in a crop (Quakenbush 

and Andersen, 1984).  Basing comparisons on the assumption that nightshade 

development would not be slowed in pea crops, provided a risk averse approach to the 

development of nightshades in pea crops.   

The mean flowering values for S. nigrum and S. physalifolium (Table 6-2) were 

compared to their predicted thermal time accumulation for a Tb of 6 °C, and to that of 

the predicted maturity date, using a Tb of 4.5 °C, for four pea cultivars sown on six 
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dates (Figure 6-2).  This indicated that S. physalifolium could flower prior to or at pea 

maturity for all pea cultivars regardless of their sowing date.  For S. nigrum flowering 

prior to pea maturity occurred in three pea cultivars (Freezer 69, Visto and DSP).  

These comparisons indicate that S. physalifolium has a greater potential to 

contaminate process peas than S. nigrum. This is because this species flowers earlier 

than S. nigrum and earlier relative to pea crop maturity.  This implies that for fields 

where S. physalifolium is present, additional attention to weed management may be 

required to grow uncontaminated process peas. 

It has been reported, for a North American study, for April and May sowings of 

eight weed species and the process pea cv. Perfection Freezer, that the growth rates of 

most of the weeds relative to the peas was greater in the May sowing (Nelson and 

Nylund, 1962).  Most of the weed species would be more serious competitors for late 

sown rather than early sown peas.  These results indicate that sowing date can affect 

competitive interactions between weeds and peas, and this was probably due to 

differences in the optimum temperature requirements between the weed species and 

peas.  Similarly, it was reported, in Canterbury, that Cirsium arvense another 

contaminant species of process peas had a faster growth rate in late sown (9 

November) peas versus peas sown on October 6 (McGill, 1999).  Comparisons of the 

thermal time flowering requirements of S. nigrum and S. physalifolium indicated that 

different sowing dates can cause differential nightshade development relative to pea 

maturity (Figure 6-2), due to the faster development of the nightshades at the later 

sowing dates. 

For August sown cv. Freezer 69 predicted crop maturity preceded the flowering 

of S. nigrum (Figure 6-2), but for later sowings (November and December) of the same 

cultivar the predicted flowering time of S. nigrum shifted to precede pea maturity.  Thus, 

the risk of contamination due to nightshade flowering preceding that of pea maturity 

increased with the later sowing of some cultivars.  These seasonal effects have 

implications for the predicted duration of the weed free period required to prevent 

flowering of nightshades prior to pea crop maturity. 

The thermal time flowering values of S. nigrum and S. physalifolium give the 

ability to predict the thermal time weed free period required to prevent flowering of 

these nightshade species in peas (Table 6-10).  Studies of the duration of the weed free 

period necessary to prevent weed seed production in Zea mays, Glycine max and 

Brassica oleracea var. capitata L. crops have been made (Miller and Hopen, 1991; 

Swanton et al., 1999; Swanton et al., 2001).  The prevention of weed seed production 

is, in methodology, comparable to the goal of preventing nightshade fruit production in 

process peas.  While the effect of different sowing dates of crop weed competitive 
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interactions is reported in the literature (Oliver, 1979; Khan et al., 1996; Spandl et al., 

1998; Anderson, 2000), the effect of crop sowing date on weed reproductive phenology 

appears to have been largely overlooked.  Heider (1996) reported that for weekly 

transplantings of Solanum sarrachoides and S. ptycanthum into trials of two process 

pea cultivars, seedlings of neither species transplanted 21 d or later after pea sowing 

produced fruit by pea maturity.  This indicates that a weed free period of approximately 

three weeks could prevent S. sarrachoides and S. ptycanthum fruit contaminating pea 

crops for the single sowing date used by Heider (1996). 

However, analysis of the effects of sowing date on the predicted weed free 

period of cv. Freezer 69 (729 °Cd) that had a comparable maturity value to one to the 

cultivars (738 °Cd) used by Heider (1996) (Table 6-10) indicated that the thermal time 

weed free period required to prevent, for example, S. physalifolium from flowering from 

the date of pea sowing changed with sowing date (Table 6-10). Calculation of the 

length of the required weed free period for different sowing dates of this cultivar, 

indicated that the number of days required for the weed free period changed from 28 ± 

3 d for an August sowing to 15 ± 1 d for a December sowing (Table 6-10).  Thus, day 

value weed free period prescriptions, such as that proposed by Heider (1996), based 

on trials with a single sowing date may need to be viewed with caution.  Such 

prescriptions could be either too short for early pea sowings, or too long for late 

sowings.  This is particularly true if the pea seedlings are past the 2.5 leaf stage (A. 

White, Heinz Wattie’s Ltd, pers. comm.) as mechanical weeding of peas when carried 

out at inappropriate pea growth stages causes yield reductions (Rasmussen, 1993). 

Comparisons of the thermal time requirements for flowering and fruit growth of 

S. nigrum and S. physalifolium for hypothetical sowings of pea cultivars indicated that 

weed free periods based on these thermal time requirements may offer a useful route 

to assist with the management of nightshade contamination, including limiting 

nightshade weed seed inputs into the seed bank.  However, field trials will be required 

to validate this approach.  This method appears especially relevant to crops such as 

process peas, as the short duration of process pea crops mean that the success of 

weeding operations made over a relatively short period following crop emergence 

should be effective through to crop harvest.  In crops with longer durations to harvest, 

such as Zea mays, the success of weeding during early crop growth does not 

necessarily prevent fruit production by weeds such as S. nigrum.  Solanum nigrum 

seedlings established 38 days after crop emergence can still produce a substantial 

number of fruit prior to Zea mays harvest for ensilage (Kremer and Kropff, 1998c).  

Thus, this approach appears limited to use for short duration crops, or crops that can 

be weeded at a later crop growth stage. 
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6.5   Conclusions 
 

1. Plants of S. physalifolium initiate reproductive buds and flower before 

S. nigrum.  The fruit growth rate of S. nigrum is greater than in S. physalifolium.  

However, S. physalifolium can produce fruit of 3 mm diameter before S. nigrum.  

Therefore, S. physalifolium has a greater potential to contaminate process peas 

than S. nigrum. 

2. Late pea sowings had a greater risk of contamination by both S. nigrum and 

S. physalifolium.  This risk of contamination was also greater for late sowings of 

mid range to late maturity pea cultivars.  Cultivars with short maturity values 

could be used for late sowings to reduce the risk of nightshade contamination. 

3. The current cultivars could continue to be used and the risk of nightshade 

contamination managed by basing the duration of weed free periods on the 

thermal time requirements for flowering of the nightshade species in relation to 

pea crop cultivar maturity and s owing date. 
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Chapter 7 General discussion and 
recommendations for nightshade management in 
process pea crops 

 

7.1 Introduction 

Aspects of the biology of Solanum nigrum and S. physalifolium were examined to 

identify factors relevant to the management of these two weed species in pea crops.  A 

knowledge of the biology of problem weeds is required for the development of 

management strategies (Mortensen et al., 2000).  Both nightshade species had 

different seed dormancy characteristics.  The germination of S. nigrum seed under non-

optimal conditions (5/20 °C) exhibited cyclical shifts between non-dormancy and 

conditional dormancy throughout the pea sowing season.  The germination of 

S. physalifolium seed under these non-optimal conditions was only restricted early in 

the pea sowing season (July to August).  These results indicate that the field 

germination of S. nigrum will be affected by its dormancy status throughout the pea 

sowing season.  For S. physalifolium, dormancy will not affect germination from 

October to early December as the seed is fully non-dormant (Figure 4-7).  In the 

absence of peas the DM production of S. physalifolium was superior to that of 

S. nigrum.  When grown with peas the DM production of both nightshade species was 

reduced to a low level.  However, relative reductions in the DM production of 

S. physalifolium were greater than for S. nigrum, indicating that a competitive growth 

environment may limit the growth of S. physalifolium more than S. nigrum. 

The flowering phenology of the two species differed.  Solanum nigrum flowered 

later than S. physalifolium (Table 6-3), but the fruit growth rate of S. nigrum was greater 

than that of S. physalifolium (Table 6-5).  Comparisons indicated that because of the 

earlier flowering of S. physalifolium that this species could produce fruit of a diameter 

capable of contaminating process peas approximately 60 °Cd prior to S. nigrum.  

These differences have implications for the prevention of nightshade contamination in 

process pea crops.  To prevent S. physalifolium flowering in pea crops required longer 

weed free periods than for S. nigrum (Table 6-10).  Solanum physalifolium was capable 

of flowering prior to pea crop maturity in short maturity pea cultivars in which S. nigrum 

would not have flowered. 
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7.2 Possible nightshade control techniques 

 

7.2.1 Cultivation 

It has been reported that germination of S. nigrum seed is stimulated by cultivation 

(Roberts and Lockett, 1978; Roberts and Boddrell, 1983; Ogg and Dawson, 1984; 

Hartley, 1991b; Popay et al., 1995).  It is this stimulatory effect that dark cultivation 

practices attempt to inhibit.  However, in this work dark cultivation did not restrict the 

germination of S. nigrum (Table 4-7 and Table 4-16), even though laboratory tests had 

demonstrated a positive light requirement for germination.  In contrast, there was no 

positive light requirement for the germination of S. physalifolium in laboratory tests and, 

as with S. nigrum, dark cultivation had no effect on the field germination of this species.  

Therefore, the use of dark cultivation to control these two nightshade species in pea 

crops is not recommended.  In S. nigrum laboratory germination studies indicated that 

light requirements varied with the test date, test temperature and seed lot (Appendix 7).  

Thus, the possible usefulness of dark cultivation is compromised by the lack of a 

consistent light requirement for S. nigrum germination.  In addition, there was some 

evidence that factors in the soil environment, such as nitrate, can supplant the light 

requirement for germination.  Knowledge about methods to ensure S. nigrum has a 

light requirement for germination is required for the success of dark cultivation for the 

control of S. nigrum seed germination. 

Comparisons between the two species showed a much higher proportion of the 

seed bank for S. physalifolium (13 %) could be stimulated to emerge than for S. nigrum 

(2 %) in response to cultivation, in November 2002.  The differences in proportional 

emergence appear to be related to the difference in dormancy types between 

S. nigrum and S. physalifolium, with S. physalifolium seed having periods of non-

dormancy.  This period of non-dormancy occurred from October to early December 

(Figure 4-7), indicating that a germination maximisation strategy for seed of 

S. physalifolium during these months, by the use of stale or false seed beds (Mohler, 

2001b), may provide a way to deplete the seed bank of this species prior to pea 

sowing. 

Stale seed beds utilise the stimulation of weed germination and emergence 

caused by cultivation.  The emerged seedlings are then destroyed with methods 

intended to stimulate minimal additional weed germination (Mohler, 2001b).  Herbicides 

are applied prior to or at the time of crop sowing in conventional systems (Oliver et al., 

1993; Johnson and Mullinix, 1995).  In organic systems an equivalent practice would 

be flame weeding prior to sowing (Balsari et al., 1994).  The false seed bed system 
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uses additional shallow cultivations following the initial seed bed preparation to destroy 

seedlings and to further stimulate weed emergence  (Mohler, 2001b).  The success of 

these seed bed methods can be improved by rolling and by irrigation to improve weed 

seed germination (Roberts and Hewson, 1971; Bond and Baker, 1990; Hutcheon et al., 

1998). 

 

7.2.2 Site selection 

Comparisons of the thermal time requirement for flowering of S. nigrum and 

S. physalifolium with the maturity time of a number of process pea cultivars indicated 

that S. physalifolium poses a greater threat to the contamination of process peas than 

S. nigrum (Figure 6-2).  It is, therefore, recommended that fields of process peas with 

S. physalifolium require additional attention to prevent contamination.  Solanum 

physalifolium is a relatively new weed to New Zealand (Webb et al., 1988).  Interviews 

with farmers growing process peas indicated that S. physalifolium was not recognised 

by most farmers (data not presented).  Therefore, it is recommended that extension 

services for farmer identification of this weed species are required.  Inspections of 

spring or summer crops in fields to be used for process peas may be useful to establish 

the historical presence or absence of S. physalifolium.  Where it is not known if 

S. physalifolium is present in a process pea crop or not, it would appear appropriate to 

adopt a risk averse based method of weed management.  This would be for weed 

management practices to eliminate the risk of nightshade fruit contamination being 

based on assumption that S. physalifolium is present, although this could increase the 

costs of weed management. 

 

7.2.3 Sowing date 

Analysis of processing factory nightshade contamination records indicated that 

nightshade contamination was more common in mid and late season sown peas.   For 

example, mean contamination was 4.8 % and 5.6 % for crops sown in October and 

November, while the figures for August and September were 0 % and 0.6 % (Table 3-

1).  Comparison of the thermal time values for flowering of the two nightshade species 

with crop maturity values for a number of pea cultivars, indicated that flowering of 

nightshades could occur earlier relative to crop maturity for late sowings, due to 

increases in the mean temperature during the pea sowing season (Figure 6-2).  

Manipulation of sowing date is identified as a useful means to assist with the 

management of crop weed interactions (Khan et al., 1996; Anderson, 2000).  However, 

currently, altering the sowing dates of process peas does not appear to be a viable 
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option for the management of nightshade contamination, as approximately 65 % of the 

total number of pea crops are sown in October and November each year (Table 3-1).  

Avoiding of mid and late sowings would lead to large scale production losses in order 

to avoid what can be a costly problem, but which is usually limited to a small number of 

crops in each season (Table 3-1).  Other factors also limit the manipulation of the 

sowing date of process peas as a strategy to reduce nightshade contamination, as 

sowing dates, within a region, are also related to factors such as soil type (Ottoson, 

1973).  Farms in areas with light soils are usually sown prior to farms in areas with 

heavy soils (A. White, Heinz Wattie’s Ltd, pers. comm.). 

 

7.2.4 Weed free periods to prevent nightshade flowering 

Processing factory staff use predicted thermal time maturity values for peas to 

schedule pea planting and factory processing (A. White, Heinz Wattie’s Ltd, pers. 

comm.).  The crop yield reduction effect of weeds that emerge prior to the emergence 

of process peas is reported to be greater than that of weeds emerging after crop 

emergence (Nelson and Nylund, 1962).  Comparison of predicted pea maturity thermal 

time values from the date of sowing and date of pea emergence, to the thermal time 

flowering values for S. nigrum and S. physalifolium, indicated that nightshades 

emerging prior to crop emergence have a greater potential to flower prior to crop 

maturity (data not presented).  Therefore, for these reasons the calculation of weed 

free periods should be made from the crop sowing date. 

Comparison of the thermal time requirement for the two nightshade species with 

that of a number of process pea cultivars indicated that the thermal time between 

nightshade flowering and pea maturity would be the weed free period necessary to 

prevent flowering of the nightshade species, and so potential crop contamination.  

However, the comparisons indicated that the necessary duration of the weed free 

period differed with the thermal time maturity value of the pea cultivar, and also differs 

with different pea sowing dates for the same pea cultivar (Table 6-10).   This implies 

that specific weed free periods need to be calculated for each different maturity value 

of a pea cultivar, for different sowing dates.  For example, the predicted weed free 

period, in days, to prevent S. physalifolium flowering for the cv. Freezer 69 was 28 d for 

a 23 August sowing and 15 d for a 6 December sowing, while for the cv. Visto the 

respective values for the same two sowing dates were 38 and 19 d (Table 6-10). 

It is not recommended that farmers calculate the necessary thermal time weed 

free period.  Rather, that the necessary weed free period be calculated in day values 

for cultivars and sowing dates by the use of mean seasonal temperature records, as 

are currently used by the factory staff to schedule pea sowing and maturity dates.  
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Field officers from the processing factory could then advise farmers of the necessary 

weed free period in days for the cultivar and sowing date they are using.  Farmers have 

little choice over the cultivar and sowing date of peas grown under contract for 

processing.  Therefore, it is necessary that processing factory field officers provide 

farmers with information on the implications for nightshade management for the pea 

cultivars they are sowing. 

 

7.2.5 Pea cultivar effects 

The planting of cultivars with lower thermal time requirements early in the season is 

used as a method to extend the length of the processing season by providing early 

season harvests (Cawood, 1987).  Factory contamination records show that the pea 

cultivars, which are contaminated with nightshade, are of long maturity types.  On 

average, these cultivars have a ~ 100 °Cd (Tb = 5 °Cd) greater thermal time 

requirement than pea cultivars sown prior to contamination occurring (see Section 

3.3.3).  Thus, pea cultivars with a greater thermal time maturity value are associated 

with nightshade contamination. 

Using long duration pea cultivars increases the ability of nightshades to flower 

before the peas are mature.  Therefore, for farms or fields identified as having a high 

risk of nightshade contamination, it is recommended that early maturing pea cultivars 

should be sown to reduce the contamination risk.  However, the effect of using such 

cultivars with lower thermal time values on crop yield will need to be assessed.  This is 

because the earlier flowering of early pea cultivars is associated with a reduced LA 

(Aitken, 1978) and, thus reduced radiation interception capabilities, with reduced 

photosynthate which is also associated with reduced pea yields (Meadley and 

Milbourn, 1970; Munier-Jolain et al., 1998).  Sowing date also affects the yield of 

process peas, for example, the yield of the long maturity cv. DSP is reported to be 

reduced at late sowings (Milbourn and Hardwick, 1968; Hardwick et al., 1979).  This 

effect could be more pronounced in short maturity pea cultivars if sown late in the 

season when there are higher mean temperatures. 

 

7.3   Recommendations for further work 
1. The concept of weed free periods to prevent nightshade flowering requires 

validation by field trials.  In addition, this method of using the thermal time for 

development of other contaminants of peas, such as Cirsium arvense buds, may 

be a useful tool for the management of these species. 
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2. During the period of low seed dormancy in Solanum physalifolium, the use of 

germination maximisation cultivation strategies to deplete seeds in the soil seed 

bank may be a useful way to reduce the density of this weed.  It is recommended 

that the use of stale and false seed beds be investigated as management 

practices suitable for seed bank depletion of these weeds. 

3. The literature for some species report that germination can be controlled 

following SDLE if the seed is buried (Benvenuti and Macchia, 1998; Benvenuti et 

al., 2001).  Investigations into the usefulness of dark cultivation should investigate 

this as a potential factor contributing to the reported variable success of dark 

cultivation. 

4. The presence or absence of VLFR responses in S. nigrum requires further 

investigation.  

5. Work is required to investigate what the response of S. physalifolium is to shade, 

and if factors such as crop density or pea leaf type can be used to assist with the 

management of this nightshade species. 

6. Improvements in the use of thermal time to predict S. nigrum and S. physalifolium 

flowering could be made by the determination of Topt and Tm values for the period 

from emergence to flowering for both of these species. 

7. Evaluation of the requirements of S. nigrum and S. physalifolium for bud 

appearance and flowering when grown with peas is required. 

8. Evaluation of seed production of S. nigrum and S. physalifolium plants growing in 

a range of crops that typically form part of a rotation with process peas, would 

provide information relevant to the crop selection compatible with process peas in 

a rotation. 

9. Reports from New Zealand indicate that weed seed losses are higher after a 

period of nil cultivation following a crop, than for cultivated ground. (Hartley, 

1991b; Rahman et al., 2001).  A comparison of the effect of direct drilling with 

conventional cultivation following seed production in crops infested by S. nigrum 

and S. physalifolium, on the weed seed bank of populations and subsequent 

densities in pea crops of these species, is required.   
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ABSTRACT 

As part of a study of the biology of black nightshade (Solanum nigrum) and 
hairy nightshade (Solanum physalifolium) in New Zealand, the germination 
requirements of freshly harvested seed stored at 5°C were investigated.  
Previous studies of black nightshade germination have given conflicting 
evidence for optimum temperature regimes.  In this study alternating 
temperature, pre-germination chilling and light were all required to germinate 
black nightshade seed.  Seeds of hairy nightshade germinated only when 
treated with potassium nitrate (0.2%), suggesting the presence of a primary 
dormancy.  The relevance of these results to field germination and management 
of freshly shed seed is discussed. 
Keywords: Solanum nigrum, Solanum physalifolium var. nitidibaccatum, 
germination, primary dormancy, light requirement. 
 

INTRODUCTION 
Vegetable processors in New Zealand report processing losses of premium 
small grade ‘baby’ peas (Pisum sativum L.) due to contamination by fruit of 
Solanum nigrum L. (black nightshade) and Solanum physalifolium Rusby var. 
nitidibaccatum (Bitter) Edmonds (hairy nightshade). Organic growers of process 
peas in particular have had contamination problems. In the past two years over 
7% of organic process pea fields in Canterbury had nightshade contamination 
(A. White, pers. comm.).  There is a need for relevant biological information on 
problem weeds for developing ecologically based management strategies 
(Mortenson et al. 2000).  Understanding the germination requirements of these 
weeds is useful to develop strategies to either minimise or maximise 
germination at different management phases.   
Most previous studies on germination of black nightshade seeds after a period 
of storage report high levels of germination at constant temperatures (Givelberg 
et al. 1984; del Monte & Tarquis 1997; Kremer & Lotz 1998).  However some 
studies report an alternating temperature requirement (Roberts & Lockett 1978; 
Wagenvoort & Opstal 1979).  Similarly reports differ regarding black 
nightshade’s germability when freshly harvested, with most studies reporting no 
primary dormancy (Givelberg et al. 1984; Bulcke et al. 1985; Agong 1993) but 
one study reporting primary dormancy (Roberts & Lockett 1978).  Studies of 
black nightshade also report light as a germination requirement (Roberts & 
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Lockett 1978; Givelberg et al. 1984).  From these studies it was hypothesised 
that constant temperatures and light would provide high levels of germination in 
New Zealand populations of black nightshade and that freshly harvested seed is 
not dormant.  
Reported germination requirements of hairy nightshade differ to those of black 
nightshade (del Monte & Tarquis 1997).  The hypothesis for hairy nightshade 
germination in this study was that alternating temperatures would provide high 
levels of germination (del Monte & Tarquis 1997) but that freshly harvested 
seed would be dormant (Roberts & Boddrell 1982). 
 

METHODS 
Seed collection and processing 
Plants were collected from crops or field margins where herbicides had not 
been used for a minimum of 2 years.  Three collections of fruit from black 
nightshade plants (one from a Gisborne farm and two from a Lincoln farm) and 
one from hairy nightshade plants (from a Lincoln farm) were made from 
February to April 2001.  Both the Lincoln green and mature black fruit where 
collected from the same plants on the same date.  Seed was extracted from fruit 
> 6 mm in diameter, and seed from green and black nightshade fruit was 
processed separately.  The seeds were initially stored at 5°C, then in April they 
were dried at 30°C for 36 h, before being returned to 5°C.  In May, 100 seeds 
from each collection were tested for viability with 2,3,5-triphenyl-2H-tetrazolium 
chloride (TTC) using the procedure for the Solanaceae (Peters 2000) with a 24 
h staining time at 25°C. 
Four experiments using three replicates of 25 seeds/treatment were conducted 
with the seed collections.  Experiments were initiated when seed had been 
stored for 6-12 weeks.  The duration of all alternating temperature treatments 
was 16 h at the low temperature and 8 h at the high temperature.   
 
Experiment 1 
Three black nightshade collections and one hairy nightshade collection 
were germinated in 24 h light at constant temperatures of 10, 15, 20 or 
25°C.  After 14 days all material was transferred to 20/30°C with 16:8 h 
light:dark for 7 days.   
Experiment 2 
Two black nightshade collections in a factorial design were tested at two 
pre-germination chilling levels, 5 days at 5°C or no chilling, and 8 
temperature regimes, constant temperatures of 10, 15, 20 or 25°C for 14 
days, or alternating temperature of 10/15, 5/20, 10/25 and 20/30°C for 21 
days.  After 14 days material from the constant temperature regimes were 
transferred to 20/30°C for 7 days.   
Experiments 3a and 3b  
Two identical experiments used a hairy nightshade collection and two 
black nightshade collections which were treated with potassium nitrate 
(0.2% KNO3), gibberellic acid (0.05% GA3) or water.  A repeat experiment 
was set up 3 days after the first experiment.  Both experiments used a 24 
h light regime and 20/30°C temperature.   
Experiment 4 
Seeds from a hairy nightshade collection and two black nightshade 
collections were pre-germination chilled at 10°C for 18 days under two 
light treatments, 24 h light or 24 h dark where germination containers were 
covered with black polythene.  They were then subjected to three 
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temperature regimes of 10/15, 5/20 and 20/30°C and the two light 
treatments for 14 days.  Dark treatments were inspected after 14 days in 
the alternating temperatures.  This final experiment used seeds that had 
been stored for 21-25 weeks.   
All experiments used the following procedures or materials.  Cuisine Queen 500 
ml (internal size 142 x 97 mm) containers with moistened germination blotters 
were used to hold the seeds during germination.  Moisture was maintained by 
the addition of water as required.  Replicates from light treatments were 
inspected every 2-3 days.  At the end of each assay (at 14 or 21 days) seed 
that resisted gentle pressure by tweezers was recorded as viable.  
Statistical analysis used SYSTAT 1999 version.  Only significant main 
effects and interactions are reported.  When two species were included in 
the same assay, species were analysed separately. 
 

RESULTS 
Experiment 1  
All black nightshade collections had 0% germination at 10 and 15°C, and 
minimal germination at 20 and 25°C (Table 1).  Germination was high after 14 
days pre-germination chilling at constant temperatures followed by 7 days at 
20/30°C, with maximums of 56, 85 and 96% for seed from green Lincoln, black 
Lincoln and black Gisborne fruit respectively.  Black fruit from Lincoln 
germinated to higher levels than that of green fruit from Lincoln.  There was no 
germination of hairy nightshade at any temperature.  In black nightshade there 
was a significant interaction between seed collection and pre-germination 
chilling temperature treatment (Table 1). 
 
TABLE 1: Mean1 germination (%) of three black nightshade seed 
collections at constant temperatures after 14 days in experiment 1, and at 
7 days after transfer to 20/30°C.  
 

 Lincoln Gisborne 
 Green fruit Black fruit  Black fruit  

Days prior to 
transfer to 
20/30°C 

Temperature    

14  20°C    0 0 2.7   
14  25°C 4.0 0 1.3  

Days after 
transfer to 
20/30°C 

Temperature 
prior to 
20/30°C 

   

7  10°C 56.0 a2 82.7 a 96.0 a 
7  15°C 44.0 b 85.3 a 90.7 a 
7  20°C 33.3 b 40.0 b 93.3 a 
7  25°C  9.3 c 6.7 c 48    b 

    
Interactions and main effects       
14 day pre-germination chilling 
(PGC) 

P<0.001      

Seed collection P<0.001      
PGC x Seed collection P<0.001      

1Mean of 3 replicates.   
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2Means followed by the same letter within columns are not significantly (P<0.05) 
different using Fischer's Least Significant Difference test. 
 
Experiment 2  
In experiment 2 a 5 day 5°C pre-germination chilling and imbibition 
treatment had no effect on total germination (Table 2).  Pre-germination 
chilling treatments for 14d at 10, 15 or 20°C increased (P<0.05) 
germination in comparison to the control for both seed collections.  There 
was a significant (P<0.01) interaction between seed collections and 14 day 
pre-germination chilling temperature.  Germination at alternating 
temperatures other than at 20/30°C was negligible (data not presented).  
The maximum germination response to the 14 day pre-germination chilling 
treatment was at 10 or 15°C for seed from green Lincoln fruit.  For seed 
from black Gisborne fruit it was at 10, 15 or 20°C.   
 
TABLE 2: Mean1 germination (%) after 7 days at 20/30°C of black 
nightshade seeds in experiment 2.  Seeds were given 0 or 5 days pre-
germination chilling at 5°C, followed by 14 days pre-germination at 
constant temperatures of 10, 15, 20 or 25°C.  Control seeds were 
germinated at 20/30°C for 21 days after pre-germination chilling at 5°C for 
0 or 5 days.  
 
 Green Lincoln 

fruit 
Black Gisborne fruit

Days of pre-germination chilling at 5°C 0 5 0 5 
Days pre-

germination chilling 
Pre-germination 

chilling 
temperature 

    

0 - 12.0 c2 16.0 c 22.7 c 49.3 b 
14 10°C 64.0 a 65.3 a 97.3 a 97.3 a 
14 15°C 61.3 a 72.0 a 94.7 a 94.7 a 
14 20°C 30.7 b 34.7 b 84.0 a 85.3 a 
14 25°C  8.0c 13.3 c 62.7 b 45.3 b 

    
Interactions and main effects     
Seed collection P<0.001    
14 days pre-germination chilling (14d 
PGC) 

P<0.001    

Seed collection x 14d PGC P<0.01    
1Mean of 3 replicates.   
2Means followed by the same letter within columns are not significantly (P<0.05) 
different using Fischer's Least Significant Difference test. 
 
Experiment 3 
In the two chemical experiments there was no difference (P>0.05) between 
experiments for both species, therefore the means of both experiments are 
presented (Table 3).  For black nightshade GA3 significantly (P<0.05) increased 
germination of seed from green Lincoln fruit but not (P>0.05) that of seed from 
black Gisborne fruit.  In both black nightshade seed collections KNO3 increased 
(P<0.05) germination compared to the control.  There was a significant 
interaction (P<0.001) between seed collection and chemical treatment.  For 
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hairy nightshade germination was increased by KNO3 (P<0.05), mean 
germination being 74.7% at 11 weeks. 
 
Experiment 4 
There was no germination of black nightshade at 10/15°C and hairy nightshade 
did not germinate at all.  For black nightshade there was a significant (P<0.01) 
interaction between temperature, seed collection and light treatments (Fig. 1).  
Light treatments gave higher (P<0.05) germinations than the dark treatments at 
5/20 and 20/30°C, except for seed from green Lincoln fruit at 5/20°C.   
 
 
 
 
 
 
 
 
TABLE 3: Mean1 germination of black nightshade and hairy nightshade 
seeds in experiment 3.  Seeds had been treated with water, KNO3 or GA3 
after 21 or 77 days of alternating temperatures of 20/30°C. 
 

 Black nightshade after 21 days Hairy nightshade Lincoln 
fruit 

 Green Lincoln 
fruit  

Black Lincoln fruit 21 days 77 days 

Control  9.3 b 50.0 b   0.7 b   0.7 b 
KNO3 36.0 a 95.3 a 22.7 a 74.7 a 
GA3. 39.3 a 50.7 b  3.3 b 10.7 b  
     
Interactions & main effects    
Black nightshade   Hairy 

nightshade  
 

Seed collection P<0.001 Chemicals P<0.001 
Chemicals P<0.001   
Chemicals x seed collection P<0.001   

1Mean of two experiments 
2Means followed by the same letter within columns are not significantly (P<0.05) 
different using Fischer's Least Significant Difference test. 
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FIGURE 1: Mean germination after 14 days for black nightshade from two 
seed sources, green Lincoln fruit and black Gisborne fruit at 10/15, 5/20 
and 20/30°C under 24 h light or dark conditions in Experiment 4. 
 

DISCUSSION 
Germination requirements 
Previous studies of black nightshade reported high levels of germination at 
constant temperatures of 25 or 30°C for seed stored at room temperature for 2 
months after collection (Givelberg et al. 1984) or stored at 5°C for 6 months 
(Benvenuti & Macchia 1993).  In the present study testing at 10-25°C constant 
temperatures gave low germination (Table 1).  Viability tests of the collections 
used indicated that the collections had adequate (mean TTC 77.2%) levels of 
apparent viability.  Further an estimate of viability post-assay (data not 
presented) supported the assumption that only a small proportion of the 
apparently viable seed was germinating.  Poor germination of freshly collected 
seed at constant temperatures has been reported for black nightshade.  Freshly 
collected seed in 5 different years of collections did not germinate at constant 
temperatures ranging from 4-30°C (Roberts & Lockett 1978).  The same seed 
germinated when tested at alternating temperatures of 10/25, 10/30, 15/25 and 
15/30°C (Roberts & Lockett 1978).  In the present study alternating 
temperatures of 10/15, 5/20, 10/25 and 20/30°C with black nightshade seed did 
not result in appreciable germination except at 20/30°C (Table 2).  Pre-
germination chilling for 14 days at 20°C and below prior to alternating 
temperatures of 20/30°C increased (P<0.05) germination (Table 2).  This 
agrees with the report of Wagenvoort & Opstal (1979) where laboratory stored 
black nightshade seed stratified at 5°C prior to alternating temperatures of 
9/25°C (8 and 16 h respectively) gave the highest germination.   
In the present study the germination of hairy nightshade at alternating 
temperatures including pre-germination chilling was unsuccessful.  Roberts & 
Boddrell (1983) obtained germination of 80% at 20/30°C for seed stored for 3 
months.  In the present study there was no germination at this temperature for 
seed stored for 3 months.  It is possible that the dormancy status of the seed 
influenced their germination response.  Only KNO3  treatment resulted in 
significant germination (P<0.05) (Table 3).  This effect of KNO3 on germination 
of black nightshade has not been previously reported.   
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Primary dormancy 
In the present study the requirement for pre-germination chilling prior to 
exposure to alternating temperatures provides evidence of dormancy restraints 
on germination in black nightshade (Tables 1 and 2).  Dormancy restraints on 
germination of fresh black nightshade seed were reported by Roberts & Lockett 
(1978).  Givelberg et al. (1984) proposed that some genotypes of black 
nightshade may have primary dormancy.  Alleviating dormancy by pre-
germination chilling and subsequent testing for light requirements showed that 
the light requirement was retained after dormancy alleviation by pre-germination 
chilling (Fig. 1).  This may have implications for reduction of weed seed 
germination in species that have a light requirement for germination (Scopel et 
al. 1994). 
Hairy nightshade apparently exhibited primary dormancy.  Previously successful 
testing conditions (Roberts & Boddrell 1982) did not induce germination in our 
study.  However, it appears that KNO3 may alleviate this dormancy restraint 
(Table 3).  Dormancy had not been reduced after 6 months storage at 5°C in 
our New Zealand seed.  One month was previously reported as the duration of 
primary dormancy of hairy nightshade seeds when stored at room temperature 
(Roberts & Boddrell 1982).  The 5°C storage in the present study may have 
prolonged dormancy in this species. 
Primary dormancy in freshly collected black nightshade and hairy nightshade 
seed implies that the seed will not germinate immediately after shedding.  Weed 
seed numbers are reported to decline markedly from autumn to spring due to 
natural processes in uncultivated fields (Rahman et al. 2001).  Delayed or 
inhibited germination of fresh seed of these two weed species may support the 
use of alternative management strategies, such as direct drilling or fallow over 
the autumn/winter period, following crops where the management of these 
species has not been successful.  This would allow for predation and decay of 
fruit and seeds at the soil surface. 
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Appendix 2 

 

Table A2-1.  Summary of factory nightshade contamination records, number (No.) of 
crops sown, No. and % of crops contaminated for the month the crop was 
sown for the 2000/01, 2001/02 and 2002/03 seasons. Data from Heinz 
Wattie’s Ltd, Hornby factory. 

 August September October November December 
2000/01      
No. sown  26 101 158 186   4 

No. contaminated 0    0   12*     2   0 
% contaminated 0    0      7.6        1.1   0 

      
2001/02      
No. sown  79 106 179 120 - 

No. contaminated    0    2     7   17* - 
% contaminated    0       1.9          3.9     14.2 - 

      
2002/03      
No. sown 100  70 181 129 28 

No. contaminated    0    0     5    2   2 
% contaminated    0    0        2.8       1.6       7.1 

     *indicates an organic crop included in total.  - = no crops sown 
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Appendix 3 
 

Table A3-1.  Seed lot code, collection date, region, site, and number (No.) of Solanum 
nigrum (SN) and S. physalifolium (SP) plants seed was collected from.  For 
each species collection codes with the same numeral e.g. 6A and 6B are 
separate seed lots from the same collection. 

 
Seed lot 

code 
Collection 

date 
Region Collection 

site 
SN fruit colour No. plants 

per collection
SN 2 4/2/01 Lincoln Kowhai A3 green & black 15 

SP 1 4/2/01 Lincoln Kowhai A3  15 

SP 2 24/2/01 Lincoln Kowhai A3  >100 

SP 3 12/3/01 Lincoln FSC  53 

SN 3 10/3/01 Lincoln Kowhai A4 green 81 

SN 6A 30/3/01 Gisborne Laudon black 39 

SN 6B 30/3/01 Gisborne Laudon green  

SN 7A 30/3/01 Lincoln Kowhai A2 green 184 

SN 7C 30/3/01 Lincoln Kowhai A2 black  

SN 8A 9/4/01 Gisborne Holmes black 73 

SN8B 9/4/01 Gisborne Holmes green  

SN 9A 9/4/01 Lincoln Kowhai A4 black 93 

SN9B 9/4/01 Lincoln Kowhai A4 green  

SP4 9/4/01 Lincoln FSC  35 

SP6 21/2/02 Lincoln D2/FSC  63 

SN10A 21/2/02 Lincoln D2/FSC black 53 

SN10B 21/2/02 Lincoln D2/FSC green  

SN11A 20/3/02 Lincoln D2/FSC black 111 

SN11B 20/3/02 Lincoln D2/FSC green  

SN12A 20/3/02 Gisborne Holmes black 151 

SN12B 20/3/02 Gisborne Holmes green  

SN13A 20/3/02 Manawatu Hogg black 37 

SN13B 20/3/02 Manawatu Hogg green  

            Kowhai = The Heinz-Wattie’s Organic farm, Lincoln University, FSC = Field  
            Service Centre, Lincoln University, HWA = a Heinz Wattie’s Australasia contract 
            growers property, Laudon = G. Laudon’s property, Gisborne, Holmes =  
            A. Holme’s property, Gisborne, Hogg = R. Hogg’s property, Manawatu. 
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Appendix 4 
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Figure A4-1.  Arcsine transformed percent germination of viable green (G) and black 

(B) S. nigrum fruit collected from Lincoln (LU), Gisborne (GB) and the 
Manawatu (MW).  Seed was germinated at 20/30 °C in the presence (+) or 
absence (-) of light (L), and/or prechilling (PC) and/or nitrate (N) (s.e. = 4.23, 
d.f. = 96).  The error bar is the Tukey HSD value (21.37).  (Experiment 1). 
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Table A4-1.  Arcsine transformed percent of non viable seeds from six S. nigrum seed 
lots (A = seed of black fruit, B = seed of green fruit) of forty seeds (s.e. = 1.40, 
d.f = 138).  Means followed by the same letter are not significantly different 
(Tukey HSD = 5.66) (Experiment 1). 

Seed lot No. non-viable 
 SN11A 3.2 a 
 SN11B   28.0 c 
 SN12A     3.7 a 
SN12B  13.8 b 
SN13A   6.1 a 
SN13B 36.2 d 
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Appendix 5 
 
Table A5-1.  TTC viability and TSW values for S. nigrum (SN) and S. physalifolium 

(SP) seed lots, and values for seed collections for seeds/plant, TTC results, 
TSW and ratio of seed from green to black fruit (G:B seed) for SN collections 
where coloured fruit was processed separately. 

 
 Values for seed 

lots 
Values for collections 

Seed lot 
code 

TTC TSW Seeds/plant TTC TSW G:B seed

SN 2 93 0.727 322 93 0.727  
SN 3 69 0.687 556 69 0.687  
SN 6A 67 0.828 306 51 - .89/.11 
SN 6B 49 -*    
SN 7A 79 0.690 163 83 0.704 .78/.22 
SN 7C 95 0.754     
SN 8A 95 0.753 323 83 0.732 .40/.60 
SN8B 65 0.699     
SN 9A 100 0.875 353 66 0.782 .86/.14 
SN9B 60 0.766     
SN10A 87 0.860 143 83 0.852 .28/.72 
SN10B 71 0.832     
SN11A 94 0.755 1154 78 0.681 .58/.42 
SN11B 66 0.628     
SN12A 91 0.761 67 78 0.696 .79/.21 
SN12B 74 0.680     
SN13A 81 0.712 893 75 0.711 .46/.54 
SN13B 68 0.711    
       
SP1 99 0.932 182    
SP2 100 0.932 -    
SP3 98 0.978 492    
SP4 -** 0.814 593    
SP6 83 0.881 101    

           * SN6B was discarded due to fungal infection prior to TSW analysis, SP4 TTC is          
a missing value. 
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Figure A6-1.  The arcsine transformed percent germination of viable seed of S. nigrum 
seed lot SN7A.  Seeds were germinated in light ◊ and dark ♦ for 14 d (s.e. = 
3.8, d.f. = 72) at ten test dates. The error bar is the Tukey HSD value (19.8).  
(Experiment 2).  
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Figure A6-2.  The arcsine transformed percent germination of S. nigrum seed lot SN7A 
at 20/30 °C (○), 5/20 °C (□) for 14 d (s.e. = 3.8, d.f. = 80) at ten test dates.  
The error bar is the Tukey HSD value (19.9).  (Experiment 2). 
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Figure A6-3.  The arcsine transformed percent germination of viable seed of S. nigrum 
seed lot SN7A.  Seeds were germinated at at 20/30 °C, 5/20 °C in light (L+) 
and in the dark (L-) for 14 d, (s.e. = 1.7, d.f. = 80).  Bars with different letters 
are significantly different (Tukey HSD = 6.3).  (Experiment 2). 
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Figure A7-1.  Arcsine transformed percent germination of viable seed of 
Solanum nigrum seed lots a) SN7A, seed of green fruit and b) SN7C, seed of 
black fruit.  Seeds were germinated at 20/30 °C (in light ○ and dark ●) or 5/20 
°C (in light □ and dark ■) for 14 d at eight test dates (s.e. = 4.9, d.f. = 128).  
The error bar is the Tukey HSD value (28.9).  (Experiment 2). 
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Figure A7-2.  The arcsine transformed percent germination of viable seed of two 

S. nigrum seed lots from green fruit (SN7A) and black fruit (SN7C) in light 
(open bars) and dark (filled bars) at 5/20 °C and 20/30 °C (s.e. = 1.7, d.f. = 
128).  Bars with different letters are significantly different (Tukey HSD = 7.4). 
(Experiment 2). 
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Figure A7-3.   The arcsine transformed percent germination of viable seed of two 
S. nigrum seed lots in light (open symbols) and dark (filled symbols) on eight 
test dates.  Seeds were germinated at 20/30 °C (in light ○ and dark ●), 5/20 
°C (in light □ and dark ■) for 14 d (s.e. = 3.4, d.f. = 128).  The error bar is the 
Tukey HSD value (18.4). (Experiment 2). 
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Figure A7-4.  The percent germination of arcsine transformed viable seed of two 
S. nigrum seed lots from green fruit (SN7A, open symbols) and black fruit 
(SN7C, symbols with cross hair, +).  Seeds were germinated at 20/30 °C (○), 
5/20 °C (□) on eight dates for 14 d (s.e. = 3.5, d.f. = 128).  The error bar is the 
Tukey HSD value (18.4). (Experiment 2). 
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Figure A8-1.  Arcsine transformed percent germination of viable seed of field stored 

S. physalifolium seed lot SP3.  Seeds were germinated at 20/30 °C (in light ○ 
and dark ●) or 5/20 °C (in light □ and dark ■) for 14 d on six test dates (s.e. = 
3.0, d.f. = 48).  The error bar is the Tukey HSD value (16.6).  (Experiment 2). 
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Figure A9-1.  The arcsine transformed percent germination of viable S. nigrum seed 
(SN7A) at 14 d.  Seeds germinated at 20/30 °C, following exposure to 25.8 s 
of light (○), 4.6 s of light (grey filled circle), and 0 s light exposure (— · ● · —) 
on ten test dates (s.e. = 6.0, d.f. = 60).  The error bars are the Tukey HSD 
value (32.2).  (Experiment 3). 

 

Table A9-1.  The arcsine transformed percent germination of viable seed after 14 d at 
20/30 °C for two seed lots (SN7A and SN7C) of S. nigrum seed retrieved on 
four dates and exposed to 25.8, 4.6 or 0 s of light prior to germination testing 
in the dark.  a) Test date and light duration interaction (s.e. = 3.6, d.f = 48).  
Means followed by the same letter in columns are not significantly different 
(Tukey HSD = 17.7).  b) Seed lot and light duration interaction (s.e. = 2.6, d.f 
= 48).  Means followed by the same letter in columns and rows are not 
significantly different (Tukey HSD = 10.6). (Experiment 3). 

 
a) Light duration (s) 0 s 4.6 s 25.8 s 
Test date    
19 Aug 32 b 88 a 90 a 
  3 Sept 68 c 88 a 85 a 

 18 Oct 28 b 73 a 83 a 
 2 Nov   3 a 81 a 85 a 

 
b) Light duration (s) 0 s 4.6 s 25.8 s 
Seed lot    
SN7A 22 a 81 c 85 c 
SN7C 44 b 84 c 86 c 
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Plate A10-1. Duncan cultivator with cover on, behind the tractor. 

 
Plate A10-2.  Covered seed drill behind the tractor. 

 
Plate A10-3.  S.E.P. rotary hoe with Perspex shield covered during cultivation. 
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Appendix 11 
Table A11-1.  Number of Solanum nigrum and S. physalifolium seedlings to emerge, 

and the number of mature plants harvested per plot (6 m2) for five sowing 
dates in 2002.  

  S. nigrum S. physalifolium 
Sowing Plot Seedlings Plants Seedlings Plants 
August  1 14 5 10 5 
 2 12 6 11 5 
 3 16 6 11 5 
 4 15 6 8 5 
September  1 17 6 10 4 
 2 15 4 6 3 
 3 15 5 6 5 
 4 13 6 5 4 
October  1 13 4 10 4 
 2 14 6 15 6 
 3 11 5 15 5 
 4 16 4 11 4 
November 1 9 4 7 3 
 2 9 4 11 4 
 3 10 5 11 5 
 4 17 5 8 4 
December 1 9 5 17 6 
 2 14 5 12 5 
 3 15 4 16 6 
 4 16 6 16 6 
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Plate A12-1. A Solanum physalifolium plant prior to harvest in the non-competitive growth 

trial. 

 
Plate A12-2. A Solanum nigrum plant prior to harvest in the non-competitive growth trial. 

 
Plate A12-3.  A Solanum physalifolium plant with fruit at pea harvest in the pea trial. 
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Figure A13-1.  Counts of Solanum nigrum (SN) and S. physalifolium (SP) seedlings 

grown with peas, presented in relation to seedling leaf number, from 30 0.1m2 
quadrats on six sample dates from Experiment 4A. 
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Appendix 14 
 
Table A14-1.  Plant dry matter (DM), plant height and number of fruiting parameters 

including harvest index (HI) and contamination index (CI) for three Solanum 
nigrum (SN) and eight S. physalifolium (SP) plants with fruit at pea harvest 
from Experiment 4A.  (Significance indicated from Bonferroni Adjusted 
Probability test). 

 SN SP p 
Leaf number      13.6       10.0 ns 
Plant DM including fruit (g)          0.32          0.13 ns 
Plant DM excluding fruit (g)          1.04          1.51 ns 
Maximum length (mm)  281  156 ns 
GA mm2  323  152 ns 
GAR mm2/g 1657 1450 ns 
    
Number of fruit < 5 mm         3.0          3.0 ns 
Number of fruit > 5 mm           0.67            0.88 ns 
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