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ABSTRACT

In this work we investigate the use of perfect sampling methods within the context of
Bayesian linear regression. We focus on inference problems related to the marginal
posterior model probabilities. Model averaged inference for the response and Bayesian
variable selection are considered. Perfect sampling is an alternate form of Markov chain
Monte Carlo that generates exact sample points from the posterior of interest. This
approach removes the need for burn-in assessment faced by traditional MCMC methods.
For model averaged inference, we find the monotone Gibbs coupling from the past
(CFTP) algorithm is the preferred choice. This requires the predictor matrix be
orthogonal, preventing variable selection, but allowing model averaging for prediction of
the response. Exploring choices of priors for the parameters in the Bayesian linear model,
we investigate sufficiency for monotonicity assuming Gaussian errors. We discover that a
number of other sufficient conditions exist, besides an orthogonal predictor matrix, for
the construction of a monotone Gibbs Markov chain. Requiring an orthogonal predictor
matrix, we investigate new methods of orthogonalizing the original predictor matrix. We
find that a new method using the modified Gram-Schmidt orthogonalization procedure
performs comparably with existing transformation methods, such as generalized principal
components. Accounting for the effect of using an orthogonal predictor matrix, we
discover that inference using model averaging for in-sample prediction of the response is
comparable between the original and orthogonal predictor matrix. The Gibbs sampler is
then investigated for sampling when using the original predictor matrix and the
orthogonal predictor matrix. We find that a hybrid method, using a standard Gibbs
sampler on the orthogonal space in conjunction with the monotone CFTP Gibbs sampler,
provides the fastest computation and convergence to the posterior distribution. We
conclude the hybrid approach should be used when the monotone Gibbs CFTP sampler
becomes impractical, due to large backwards coupling times. We demonstrate large
backwards coupling times occur when the sample size is close to the number of
predictors, or when hyper-parameter choices increase model competition. The monotone
Gibbs CFTP sampler should be taken advantage of when the backwards coupling time is

small. For the problem of variable selection we turn to the exact version of the
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independent Metropolis-Hastings (IMH) algorithm. We reiterate the notion that the exact
IMH sampler is redundant, being a needlessly complicated rejection sampler. We then
determine a rejection sampler is feasible for variable selection when the sample size is
close to the number of predictors and using Zellner’s prior with a small value for the
hyper-parameter c. Finally, we use the example of simulating from the posterior of ¢
conditional on a model to demonstrate how the use of an exact IMH view-point clarifies

how the rejection sampler can be adapted to improve efficiency.

This work has not previously been submitted for a degree or diploma in any university.
To the best of my knowledge and belief, this thesis contains no material previously
published or written by another person except where due reference is made in the thesis

itself.

Jason Phillip Bentley

(19™ February 2009)
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NOTATION
f - density function.
X - random variable(s).
X, - Markov chain.
y - response vector (data).
X - design matrix (data).
H - hat matrix for X.
¢ - hyper-parameter for Zellner's prior.
y - variable selection parameter (binary vector).
I' - state space for y.
B - vector of regression coefficients.
e - random perturbations.
o’ - variance.
I'(x) - gamma function.
|A| - determinant of the matrix A.
W - orthogonal design matrix.
E - expectation.
V - variance.

|| @ || is the norm of a.

X



ABBREVIATIONS
AIC: Aikake Information Criterion.
BF: Bayes Factor.
BIC: Bayesian Information Criterion.
BMA: Bayesian Model Averaging.
BVS: Bayesian Variable Selection.
CFTP: Coupling From the Past.
DIC: Deviance Information Criterion.
EB: Empirical Bayes.
1.1.d.: independently and identically distributed.
IMH: Independent Metropolis Hastings.
LSE: Least Squares Estimator.
MAP: Maximum A Posteriori.
MC: Markov Chain(s).
MCMC: Markov Chain Monte Carlo.
MIP: Marginal Inclusion Probability.
MLE: Maximum Likelihood Estimate.
MPM: Median Probability Model.
MSE: Mean Square Error.
PPD: Posterior Predictive Density.
RIC: Risk Inflation Criterion.



CHAPTER 1

INTRODUCTION

"In every phenomenon the beginning remains always the most notable
moment."

- Thomas Carlyle

The linear model is a common and widely applied statistical model that has received
much attention in the Bayesian literature. It is often a starting place for methods of
analysis that are extended or adapted to more general classes of model. Of particular
interest in this setting is the use of a random variable representing model configuration
(Smith and Kohn, 1996).

Using the Bayesian paradigm a posterior distribution can be derived providing a
probability mass function for the model space. In creating such a posterior distribution,
high probability models can be selected, variable selection may be performed, and the
probabilities can be used in model averaging for either inference or prediction.

The posterior distribution of model probabilities must be sampled from when the number
of predictors is large. The posterior is typically proportional only, so Markov chain
Monte Carlo methods are employed. The standard approach is to use a Gibbs sampler
that samples from the conditional distribution of a binary vector representing model
configuration. The state space is discrete and of size 2* where k is the number of
explanatory variables. For large k it may take a long time to explore the state space and

diagnosing convergence can be difficult.
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Advances in MCMC, known as perfect sampling, have yielded methods that eliminate the
burn-in problem. The most famous of the perfect sampling methods is coupling from the
past (CFTP) (Propp and Wilson, 1996). CFTP samples exactly from the posterior
distribution and provides independently, and identically distributed (i.i.d.) sample points.
CFTP requires a monotone structure in the update function to avoid having to start a
Markov chain (MC) from every state. CFTP can be applied to the Bayes linear model to
sample from the posterior model probabilities. However, when using a Gibbs MC the
predictor matrix must be orthogonal for the update structure to be monotone.
Monotonicity is a useful property for greatly reducing the computational burden of
CFTP. This restriction has prevented perfect sampling from being applied routinely to
linear regression, as an orthogonal predictor matrix does not allow variable selection.
Thus, not much work exists on tackling the problem from a linear regression point of
view.

Monotone CFTP has been of great use in signal reconstruction using orthogonal
wavelets. The choices of priors and hyper-parameters for such applications are well
defined, so little has been done to explore how robust the construction of a monotone
Gibbs MC is to hyper-parameters and priors. However, model averaging can be used to
great effect for modeling the response. Orthogonalization may have other consequences
such as shrinking the model space and reducing computation time. Most work using
wavelets and perfect sampling do not address the additional comparison between perfect
sampling and the use of a standard Gibbs sampler on the orthogonal space. The specific

aims of this research are:

1. Assuming an orthogonal predictor matrix, check the robustness in the construction of

monotone Gibbs MC to choices of priors and hyper-parameters.

2. Determine the effect of using an orthogonal predictor matrix on inference using model

averaging and the linear regression model.

3. From three versions of the Gibbs sampler; standard with the original predictor matrix,

standard with an orthogonal predictor matrix and perfect with an orthogonal predictor



Chapter 1: Introduction 3

matrix, determine which is the best choice according to computational efficiency and rate

of convergence to the stationary distribution.

4. Provide further exploration of the application of the perfect sampling version of the

independence Metropolis-Hastings algorithm for Bayesian variable selection.

With these aims in mind the thesis is outlined as follows:

In the remainder of this Chapter we review the use of a binary vector (y) for model
selection in the Bayes linear model. This provides a posterior distribution for model
averaging and variable selection. We introduce and review the posterior mass function
for y. We cover issues relating to the use of the posterior model probabilities namely, the
difficulties faced when the number of predictors becomes large and sampling is required.
We review the fundamentals of simulating random variables from a posterior distribution
using MCMC. The use of MCMC is then expanded upon with a discussion of perfect
sampling variants of MCMC. Under the property of uniform ergodicity, the construction
of couplings with Markov chains, CFTP, and perfect forwards simulation are covered.
Finally, monotonicity properties and applications of perfect sampling in Bayesian
statistics are discussed.

In Chapter 2 we review the sufficient conditions for a monotone Gibbs MC. We consider
common priors for the regression coefficients () and error variance (c?). This includes
the conjugate formulation, which includes Zellner’s prior as a special case, and an
adjusted form of Jeffreys prior. We also consider common choices for the model space
prior such as the Bernoulli and truncated Poisson distributions, and general priors for the
model size. We consider both a fully Bayes and special cases of an empirical Bayes (EB)
approach. We also consider integration over hyper-parameters, such as ¢ in Zellner’s
prior. Finally, we consider three examples during the chapter, two for Zellner’s prior
where one is a special informative case and the other an adjustment for outlier detection,
and an example of a conjugate prior for the regression variance designed to provide a
posterior with the mode equal to the classical unbiased estimate of the variance.

In Chapter 3 we indulge in a numerical demonstration of the monotonicity of the Gibbs

sampler for an orthogonal design matrix. We then show the relation between the partial
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ordering required for monotonicity, and the nested model structure in linear regression.
We then move to a discussion of orthogonalization methods and in particular, introduce
the Lowdin transformation and two variants of the modified Gram-Schmidt
orthogonalization procedure, yet to be explored in the literature. We briefly discuss the
impact an orthogonal design matrix, and the required partial order has on posterior
estimates. The second half of Chapter 3 is devoted to an exact exploration of the effect of
using an orthogonal design matrix with four real datasets. We compare the four
orthogonalization methods by looking at the expected model size and model competition.
We then assess the use of W compared to X for in-sample prediction, using the deviance
information criterion (DIC) extended to include integration over the model space. We
also discuss the problems of using an orthogonal design matrix for out-of-sample
prediction, and cross-validation methods for outlier detection.

In Chapter 4 we look at the efficiency of sampling with variants of the Gibbs sampler.
We review the standard and monotone Gibbs CFTP algorithms. We also discuss using a
standard Gibbs sampler in tandem with an initial run of the monotone Gibbs CFTP
sampler, to remove the need for burn-in assessment. Using the four real datasets from the
previous Chapter 3, we investigate the convergence of the three methods to the posterior
distribution of y. We also record the convergence of quantities such as the DIC, expected
model size, and the model averaged fitted values. These results are summarized using the
computational time to provide a comparison of convergence in cpu time. A simulation
study is conducted to compare the computational time of the three methods. Returning to
the real datasets, information and the backwards coupling times are investigated.

In Chapter 5 we review the particulars of the exact IMH algorithm, and then discuss and
explore the relation to rejection sampling. This is followed by an investigation of the
difficulties in finding an efficient bound for the marginal posterior of y. We do however,
find a way to obtain the optimal value when reducing the posterior to a function of the
residual sum of squares only. Under these circumstances, we explore how efficient the
rejection sampler is for various choices of hyper-parameters. The second part of this
chapter moves to the posterior for the hyper-parameter ¢ in Zellner’s prior conditional on
y. We review the use of rejection sampling and a second approach that allows a

refinement of the proposal distribution, reducing the expected waiting time for exact i.i.d.
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sample points. In the final chapter, Chapter 6, we summarize and discuss the findings of

this work and provide topics of future research.

1.1 Linear Regression and Bayesian Variable Selection

The likelihood function for an independent and identically distributed (i.i.d.) sample D =

(x1, ....., Xn), with unknown parameter(s) €, for a given density function fj is

f®16)=T ]/ 16). (1)

Standard likelihood methods maximize (1.1) to obtain estimates of 6, 0 known as the
maximum likelihood estimate (MLE). In Bayesian statistics, inference about € involves
the product of the likelihood function and a prior on &, f{#), to obtain a posterior

distribution, f{&| D), using Bayes' theorem for distributions:

£(0|D) L P10/ ©)
[r16)£(©O)do

o« f(D]6)f(6). (1.2)

When the denominator is not available in closed form, we can specify the posterior up to

a normalizing constant.

1.1.1 The Model

Let y be an n x 1 vector of measured responses and X be an n x (k + 1) matrix where the
first column is a constant and the remaining £ columns are the recorded predictors. We
assume y may be modeled as a linear combination of the £ + 1 columns of the predictor

matrix X, plus a random perturbation (e), having a normal distribution with mean zero

and constant variance o2, i.e.

y = XB +e where e ~ N(0,5°1,). (1.3)

B = (Bo,fr... L) is a vector of regression coefficients measuring the effect of each
column in X where £, corresponds to the intercept. Including a column of ones in the

predictor matrix to fit an intercept is common practice.
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Heavy tail distributions such as the ¢ distribution or Cauchy distribution may be used for
e, which is common in econometrics (Draper and Smith, 1998). More recently, work on
using symmetric exponentials and epsilon skewed distributions has been investigated
(Elsalloukh et al, 2005). The aim of such choices is to improve the robustness of (1.3),
reducing the sensitivity of estimation to extreme values of y.

Typically we seek to find a subset of predictors that adequately models y; this is variable
selection. In the Bayesian sense, we extend the standard linear regression model to treat
variable selection by introducing a binary parameter vector y = (¥, 1,...,7 ) that
represents the configuration of a specific model (Smith and Kohn, 1996; Kuo and

Mallick, 1998), so that
B,=81,,),fori=0,..k, (1.4)

where 4 denotes the indicator function for the set A. Hence y acts as a subset indicator
(7= 0 removes while y; = 1 includes the i-th predictor) on X, denoted X,. All models are
assumed to contain the intercept term so that yo=1andy € I = {1} x {0,1}*. Thus the
model space contains 2* models. The linear regression model (1.3) conditional on Y,

becomes

y=X,B, +e, (1.5)

and the likelihood function for (1.5) is

f(y|’\{,By,dz,X)NNH(Xyﬁy,O'ZIn). (16)

Assigning priors to the unknown parameters f3,, o, and v, the joint posterior is

fB,.0%71y.X) o f(y]7.B,.0°.X) f(B,.0°.71X), (1.7)

which can be factored as

SB,,0%7y.X) =B, 1057y, X/ (@ |7y, X)f(1]y,X), (1.8)
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in terms of the conditional posterior distributions for B,, and o, and the marginal
posterior distribution for y. Traditionally, some form of dependence structure is assumed

for the priors

fB,.0"11X)=fB,10°.7.X) f (o’ |X) [ (1), (1.9)

although alternate forms of dependence are possible. The most common alternative is

fB,.0 v X)=/B, 10°.7.X) f(c |7.X) (1), (1.10)

which has been explored in the literature, for example George and McCulloch (1997).

1.1.2 Posterior Model Probabilities

The marginal posterior distribution, f(y |y, X)1s

Faly.X) = [ r517.8,.6°X)fB,.0" |1, X)dB,do” , (1.11)

and is a non-standard mass function on 2" states. Using f/(y|y,X) a common model

choice is the mode of the posterior distribution, or the maximum aposteriori (MAP)

estimate:

?MAP: argmax{f(y|y,X)} (]12)

This selects the model with the greatest posterior probability given the data.

Maximization of f(y |y, X)is greatly simplified in the case where the predictor matrix is

orthogonal (Chipman et a/ 2001). The marginal inclusion probability (MIP) of y;, is

defined as

MIP;= Pr(y, =)= > f(v|y,X). (1.13)

{yely;=1}

This provides an intuitive measure of the relative importance of a predictor, and may be
used to rank the predictors. Those predictors which appear in higher probability models
frequently will have a high MIP and because we always include an intercept MIP, = 1.

The MIP can be used to define the median probability model (MPM) as
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MPM,; = 1,5, (MIP;) fori=0,....k. (1.14)

This model has been shown to perform well for prediction and is optimal under squared

error loss (Berger and Pericchi, 2001). To assess the model complexity of f(y|y,X), we
can obtain the posterior distribution and expectation for the number of

predictors,q € {0,....,k}, as ¢ = ¥, 7, -
flqly,X)= Zf (v]y.X),

{yel“:z 7i=q} (1 .1 5)
and
E[g1=> a/(q1y.X). (1.16)

Model competition in f(y|y,X) can be visually assessed using a cumulative probability

plot of sorted model probabilities: p,,..., p a5 P is the maximum marginal posterior
probability and p(zk)is the minimum marginal posterior probability. The faster the

cumulative sorted probability tends to 1, the indication of less model competition in the

posterior. In particular for a given threshold « € (0,1) we may define:

J
M, =min{j:) p, >a}. (1.17)
i=1

M, represents the smallest number of highest probability models required to account for
a probability of at least « in the posterior.

For plotting f(y|y,X) it is useful to use the decimal representation of y:

k

Ya = Decimal(y) = > 27T, (7,) . (1.18)

i=1
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Binary(yq,k) is the reverse operation, which recovers the binary sequence from the
decimal representation with & bits. Figure 1.1 provides an illustration of the quantities

defined above.

]?(Y'|y3}() 0.4
MAP = [X1, Xs] = binary(17,5)

012345
q
Probability E[q] = 2.33
0
0 Yd 31

X1 X2 X3 Xy Xsg
MIP 0.502 0431 0.336 0.492 0.568
Rank 2 4 5 3 1

MPM = [X;, Xs]

Figure 1.1 Representation of the marginal posterior for y and related quantities for a fictitious data
set. The larger bar plot is the posterior for y and the smaller plot is the posterior distribution for
model size. Also shown are the MAP and MPM models along with the expected model size and ranks
based on the MIP (Table: The green highlighted squares indicated those variables included in the
MPM). The sorted cumulative probability plot has been omitted, and in this example M, = 25, for «
=0.95.

1.1.3 Model Averaging and Inference
Being able to obtain f(y|y,X) lends itself naturally to BMA which deals systematically

with uncertainty in model selection (Brown et al, 2002; Hoeting, 2002; Hoeting et al,
1999; Liang ef al, 2001; Raftery et al, 1997; Wasserman 2000). The benefit of this, is to
avoid over-stating the precision of inference by avoiding conditioning on a single model.

Further, under squared error loss, BMA is optimal when performing out-of-sample
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prediction. For each model in I', we require inference about a quantity of interest (&)
such as parameters, or predicted response, conditional on the data. Using BMA we
weight the posterior distribution of @y by the posterior probability of y, producing an

average distribution for € across I':

fO1y.X)=> fO|y.X.7)/(v]y.X) - (1.19)

yell

The practical implementation of BMA can be hindered by computation of f(y|y,X) for

large I" which may not be available in closed form, the choice of prior probabilities for
each model f{y), and the number of models to be averaged over. Weights for BMA may
be constructed using the Aikake information criterion (AIC), the Bayesian information
criterion (BIC), or even Bayes factors (BF) using hyper-G priors and Zellner-Siow priors
(Montgomery and Nyhan, 2008). This differs from the approach we take explicitly using
the marginal posterior for y rather than a model selection criterion or BF. We consider
this approach more natural as weights based on selection criteria is strictly speaking
"model averaging", whereas using a posterior distribution to obtain the weights is
decidedly BMA. Montgomery and Nyhan (2008) also recommend that multiple priors
should be investigated for BMA to assess sensitivity. The y formulation is an example of
discrete model expansion. This is a special case of the more general continuous model
expansion where components are assigned Dirichlet priors (Draper, 1995). An example
of the continuous case is mixing over different forms of random effects in random effects
models (Lawson and Clark, 2002). Attempts have even been made to account for
uncertainty when selecting a link function in GLM's (Czado and Raftery, 2006).

When conducting linear regression analysis, there are three main inference problems. The
first is B or X, which answers questions about the effect of B in terms of magnitude and
direction, the importance of predictors in X, and in explaining the response y. The second
is in sample prediction and capturing features of y. The third is out of sample prediction
for future responses, given that we have already observed y and X. Most studies of
prediction in BMA use some form of cross validation approach, the data is partitioned
into a training set used for model fitting and a test set used to assess predictive

performance. The problem with such an approach is that the choice of size for the
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training and test sets involves a bias-variance trade-off that can be difficult to optimize in
practice.

In model averaging the posterior distribution of B is not straight forward, unlike that for
o . Due to the y formulation, the distribution and any point estimate of any component of
B is conditional on the inclusion probability for that predictor. Model averaging avoids
the difficult interpretation of the effect of a predictor which can vary depending on y due

to correlation with other predictors. The model-averaged posterior for f3 is

fB Ny, X,0?) e Y f(B 1y, X0 ) (| y. X)L, (7). (1.20)

yel

While this representation is relatively simple it is possible for the posterior to be more
complex i.e. appear multi-modal, due to the behavior of the estimated regression
coefficients in the presence of strong correlations.

The model-averaged posterior for o is more straightforward being required for all

models. The posterior is estimated as

f(@1y.X) =) f(c* |7.y.X) /(1 ]y.X). (1.21)

yel

When £k is small the un-normalized probability for every y eI’ can be calculated and
then normalized, providing f(y|y,X) exactly without the need for sampling using the

following steps:

1. Calculate: [f(’y1 |y,X),...,f(yd |y, X)], where d = 2* and f() is the un-normalized
probability mass function.

~ . d ~ .
2. Then for i = 1,...d, caleulate: f(y'|y,X)=f(v'|y.X)/D f(v/1y.X).

J=1

The Gray code (Savage, 1997) provides an efficient ordering of y such that only one
component is updated at a time while enumerating the model space. If k is large
numerical underflow can also be problematic as the less probable models become

negligible. Furthermore, it becomes time consuming and even infeasible (time-wise,
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memory-wise, or both) to proceed without some means of sampling from the posterior. It
is necessary to be slightly vague about what constitutes a "large" &, as it depends on the
amount of computing resources available. If the concern is not with model averaging, we
may obtain the MAP estimate using some optimization method such as an annealed
Gibbs sampler. Ultimately, a stochastic sampling method such as MCMC is typically

required to estimate posterior model probabilities.

1.2 Markov chain Monte Carlo.

The posterior for y is not a known standard parametric family mass function. Typically it
is also known only up to a normalizing constant, and so MCMC methods are typically
employed to generate sample points. If a MCMC approach is well implemented,
inference from 30,000 sample points under model averaging may well be satisfactory
even if we have 25 predictors (33,554,432 states!). Thus, at least for now and likely for
some time yet, an MCMC sampling procedure is necessary. Notice that in problems with
large k, the state space may become increasingly sparse so that the more probable models
become lost in a sea of small probability models. MCMC methods are designed to find
these high probability models by means of a stochastic search. Brute force calculation on

the other hand has no such mechanism and so can be described as undirected.

1.2.1 Markov Chains and Simulation

Let the sequence of random variables (X;, X3, Xj, ...), denoted {X,}, be a stochastic

process on a state space D with o-algebra § and let X, € D and E €§.

Definition 1.1: Markov Chain
The stochastic process {X,} with the property:

Pr(X,,eE|X,, X, ,.X,, X,)=Pr(X,,, €eE|X,), (1.22)
is a Markov Chain (MC).

The new state is dependent only upon the previous, and not the entire history of the chain.
This is the Markovian property. When D is discrete, the movement from time ¢ to #+1 is

defined by a matrix of transition probabilities P. The probability of moving from state i at



Chapter 1: Introduction 13

time 7 to state j at time #+1 is p, =Pr(x,,, = j|x, =) .For a finite state space with m

t+1

states, the stationary distribution /= (fi,.., f,) may be obtained by solving the equations:

/P =fand if =1. (1.23)

When D is continuous, the transition rules are specified by a transition kernel K:

Pr(X, cE|X,)= jK(x,,dx). (1.24)

In practice, when simulating X, it is convenient to consider the update function ¢ which
generates X as a function of X; and a pseudo-random number U,;:

X,..,=¢(X,,U,,) where ¢: Dx U — D, and Ue U. (1.25)

The update function represents the MC as a stochastic recursive sequence (SRS). In
Bayesian applications, to obtain a sample from the posterior f the update function is
constructed to have the limiting distribution f. The stationary distribution f'is a limiting
distribution with X; converging in distribution to f. The simulation of samples by this
method is known as MCMC. The necessary conditions of aperiodicity, irreducibility,
reversibility, and recurrence ensure that the MC is ergodic so f is guaranteed to exist
uniquely. For further details on these conditions, see Roberts and Casella (2004: Chapter
6). Under these regularity conditions the update function is a measure preserving
transform. With an ergodic MC the time average and sample space average are the same.
Consequently, a central limit theorem applies and so we may estimate expectations based
on the sample generated:

%Zh(xn) > E,[h(X)], (1.26)

n=1

where 4 is some measurable function. Traditional MCMC algorithms attempt to construct
an update function for which these conditions are observed and generate states that are

samples from f. The more common MCMC algorithms which are the random walk,
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independent proposal, and Gibbs samplers can be viewed as variants of the Metropolis

Hastings (MH) algorithm (Metropolis ef a/, 1953; and Hastings, 1970).

1.2.2 Metropolis-Hastings
The Metropolis-Hastings (MH) algorithm forms the basis for most MCMC samplers and

is presented in Algorithm I.

Algorithm I: Metropolis-Hastings.

Set:x; €D
Fori={2,..., N}

Propose: y ~ q( y, xi.1)
Generate: u ~ U(0,1)

Calculate: « = min{l Sa(xi,y) }

()9 x)
fu<a
Set: x; =y
Else
Set: x; = x4

q is a proposal density that is easy to simulate from, and generates a new candidate value
conditional on the previous value in the MC. MCMC algorithms begin from an arbitrary
initial state and run forward in time until it is believed that X, has converged to f. The
first m sample points are discarded as burn-in, so that

1

Sh(X,). (127)

E [h(X)]=

f[ ( )] N n=m+1
In practice, obtaining sample points that approximate f well requires knowledge of how
large m must be, which can be difficult to determine beforehand. Finding a suitable m can
be further complicated by the choice of starting state affecting the rate of convergence to
f (e.g. geometrically ergodic X,). Since the justification of MCMC is asymptotic, if it

were possible to run the chain for an infinite time we would have no concerns. Practically
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however, there is a necessity to impose a finite burn-in that can bias results. Convergence
diagnostics using the auto-correlation function are typically employed to estimate a
suitable burn-in period. Inference conducted using transformations or functions of the
original sample points must have the auto-correlation function calculated in each case to
estimate the burn-in and variance.

The first common implementation of the MH algorithm is to assume g(y,x) = g(y) so the
proposal density is independent of past values of x. The MH algorithm then simplifies to

the independence Metropolis-Hastings (IMH) sampler in Algorithm II.

Algorithm II: Independence Metropolis-Hastings.

Set: x; €D

Fori= {2,..., N}
Propose: y ~q(y)
Generate: u ~ U(0,1)

| f(y)q(xil)}

Calculate: o = min{

fG)a(y)
fu<a
Set: x; =y
Else
Set: x; = x4

Provided ¢ is not too different than f and has heavier tails the IMH algorithm will
generate well approximated samples from f. A second common implementation of the
MH algorithm is the Gibbs sampler. Let f (X) be a p dimensional density, assuming we
can sample easily from the univariate conditional density f (X;| X.) for all dimensions
where X.; = (Xi,...,Xi1,Xi+1. ..,Xp), the Gibbs sampler is Algorithm III.

The Gibbs sampler is a very adaptable algorithm and while the updated components must
remain constant, they may be updated sequentially in random order or even in blocks.
The Gibbs sampler will also permit the use of further MCMC algorithms such as the IMH
sampler to generate candidate values from f (X; | X.;). Notice that 1/ (X,-1 | (X1)i,- - -,(Xp-2)s,
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(X,)i-1) is both the proposal and target density in the standard Metropolis-Hastings

algorithm.

Algorithm III: Gibbs Sampler.

Set: X; €D
Fori= {2,...N}
Generate: (X)) ~f (X1 | (X2)its---»(Xp)i-1)
Generate: (X2); ~f (X2 | (X1)5(X3)i-15- .5 (Xp)ic1)
l
Generate: (Xp-1)i ~f (Xp-1 | (X1)iss-+ +s(Xp2)is (Xp)ic1)
Generate: (X,)i ~f Xy | (X1)iss- - -»(Xp-1)1)

Thus, the Gibbs sampler is a Metropolis-Hastings algorithm with an acceptance
probability always equal to 1.

Another common implementation is the random walk Metropolis-Hastings which we do
not cover here. From these very simple and powerful approaches a number of tricks exist
to improve mixing and convergence. For a great survey of such ideas and approaches
along with some computational aspects see books by Givens and Hoeting (2005, Chapter
7), Gamerman and Lopes (2006). The Gibbs sampler will be the prominent focus of later
chapters along with some attention to the IMH sampler. We now provide a brief history
of some MCMC approaches that have been used for variable selection in linear

regression.

1.2.3 MCMC for Variable Selection.

A vast number of MCMC methods exist for variable selection problems and we briefly
mention a few here. The Gibbs sampler, stochastic search variable selection (SSVS), and
the Swendsen-Wang algorithm use the conditional distribution for y to either
sequentially, randomly, or in clusters, update the binary model vector (Carlin and Chib,
1995; Dellaportas et al, 2002; George and McCulloch, 1993; Nott and Green, 2004).
Trans-dimensional or reversible jump methods (Green, 1995), and birth and death or

auxiliary variable methods (Stephens, 2000), generally allow the MCMC method to
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traverse the dimension of y. In particular the trans-dimensional approach includes a
transition between dimensions, while the birth and death process uses a stochastic
mechanism for either introducing or removing a dimension. More recently, the adaptive
IMH sampler (Nott, and Kohn 2005) uses adaptation of the proposal distribution while

generating sample points to improve convergence and mixing.

1.3 Exact Sampling with Markov Chains.

Exact MCMC (or perfect/exact simulation/sampling/MCMC) methods are traditional
MCMC without statistical error, the sample points are generated exactly according to the
stationary distribution f. Consequently these methods remove the need for a burn-in
period. Exact MCMC methods came about after Propp and Wilson (1996) laid the
foundation with their coupling from the past (CFTP) algorithm. The mechanism required
depends upon whether a backwards or forwards simulation method is chosen. In the
backwards case we require a coupling construction of Markov chains, while in the
forwards case a residual kernel is needed (coupling may also be required). In either case
we are bounding the rate of convergence of the MC. If the true rate of convergence is
poor or the bound is poor, then perfect sampling becomes impractical.

The definition and useful properties of a uniformly ergodic MC are introduced as for the
work to follow we need only consider the simpler case (especially with regard to perfect
sampling) of the uniformly ergodic case rather than the more general case of a
geometrically ergodic MC. We now review some basic theory related to the construction

and properties of coupling Markov chains.

1.3.1 Uniform Ergodicity

Let X, be a Markov chain on a state space D with o-algebra § so that xe Dand E € §.
We may define the transition probabilities for m iterations as

P"(x,E)=Pr(X,, €E|X, =x). (1.28)

t+m

This definition of the transition probabilities will be used in the definitions to follow.
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Definition 1.2: Uniformly ergodic MC
Xn — fat a geometric rate independent of the initial value Xy if, and only if there exist H
> 0 and r € (0,1) such that:

| P (x, E)= f(E)|I< Hr" , (1.29)

forallm, xe DandE €8, X, is said to be uniformly ergodic.

H is necessarily bounded when D is finite, hence a bounded discrete state space will
typically provide a uniformly ergodic MC. Uniform ergodicity is a stronger condition
than geometric ergodicity which we mention later in this chapter. Uniform ergodicity is
equivalent to the entire state space D being small in the sense of the minorization

condition (or Doeblin's condition).

Definition 1.3: Minorization condition
The subset S — D is (m, & q) small when

P"(x,E)>¢eq(E), (1.30)
for some probability measure q, € > 0, and positive integer m, and for all xe S
andE € 8. If S = D then the entire state space is small which is equivalent to uniform

ergodicity.

If the minorization condition holds or the MC is uniformly ergodic, we may define a

residual kernel as a mixture involving the original kernel and regeneration times.

Definition 1.4: The residual kernel

Where S satisfies the minorization condition the residual kernel is defined as:
R"(x,E)=(1-&)"'[P"(x,E)~£ q(E)], (1.31)

for some probability measure q( ), € > 0, positive integer m and for all x € S and E € 8.
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Definition 1.5: Regeneration times
If X, is uniformly ergodic there is a set of times:

{T,,T,,....} ~ Geometric(¢), (1.32)

such that when X, is in the (m,&q) small set S at Ty it will begin again (regenerate) from

q at Ti+;.

Hence, for each block {(X; ,X; ), (X;,X; ),..} of X, indexed by the regeneration
times (referred to as a tour) the process essentially begins again independently of, but
distributed identically to the last tour, i.e. the tours are i.i.d. If 7, #0 then we have a
delayed renewal process. The expectation of {7,,7},....} using the geometric distribution

1s /e

1.3.2 Construction and Properties of Coupled Markov Chains.

Coupling of probability measures (P) and random elements (X) on a singly measurable
space is useful for investigating the individual properties and similarities of P or X.
Consider the probability measures P; and P, on the measurable space (E, &), for the set £

with o-algebra .

Definition 1.6: Coupling of Probability Measures
The coupling {P,, P} is a probability measure P in (Ez, 52) where P, and P, are the

marginal distributions of P.

Now consider the random variables X' and X* defined on their respective probability

spaces (£2;, &, Py) and (£2, &,, P;) both in (E, &).
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Definition 1.7: Coupling of Markov Chains
The coupling {XI,XZ} is a new probability space (2, §, P) in (E*, &) where:

X'2 %" and X22 X2, (1.33)

D
and = is “tends to in distribution”, such that:

P(X',X*)™" is a coupling of P(X")" and P,(X*)", (1.34)

as in definition 1.6.

Definitions 1.6 and 1.7 are from Lindvall (2002). Perfect simulation deals with coupling
constructions using MCs (random processes). Thus, definition 1.7 for coupling random
elements is more useful. For good discussions on coupling and related ideas for MCs see
the books by Haggstrom (2002), Lindvall (2002), and Thorisson (2000). It should also be
noted that a number of definitions and conditions for coupling have been investigated and
discussed before the advent of exact sampling methods. Coupling is not new to MCMC,
or limited to use in perfect sampling. Convergence proofs and diagnostics have used
coupling (Johnson, 1998), and have been used to improve MCMC samplers e.g. antithetic
coupling for the Gibbs sampler (Frigessi et al, 2000). Furthermore, coupling measures
have a much longer history than that of perfect sampling, evident by the book by Lindvall
being first published in 1992.

Consider the two ergodic MCs an and an on the state space D.

Definition 1.8: Coupling with the Update Function
X', and X,* are coupled if:

¢({X;:X12}’Ut+1)_>{th+l’X12+l}' (135)

That is, the pair-wise coupling {X,', X,’} evolve jointly in time under the same update
function ¢ (set of transition rules) and realized randomness U. The coupling X, x5

must observe the following properties:
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1. X,/ and Xn2 behave like X, in their limiting distributions:

X' > f, X2 > f,asn— o, (1.36)

2. Once X,' and X,’ move to the same state they will evolve jointly and identically

from then on into the future:

If X/ =X then X, =X],Vi>0. (1.37)

The event at time m where both chains merge to form a single chain is called
coalescence. Coalescence occurs if, and only if, there is a non-zero probability that both
chains, regardless of their initial states, merge into a single state in finite time. The time

m at which coalescence occurs is known as the coupling time (C;).

Definition 1.9: Coupling Time

C: is a random finite time associated with the coalescence of a coupling:

C,=min{t>1:¢({X, ,, X }L,U)—> X, . (1.38)

We can generalize from the simple pair-wise coupling {X,', X,*} to subset coupling and
complete coupling. Subset coupling uses some collection of states from D, while
complete coupling arises when we couple all states in D, when D is discrete and finite. If
D is continuous we must couple all subsets, where the union of all subsets is equal to D.
The use of complete coupling is crucial to the application of CFTP.

The efficiency, by which we mean the rate at which the coupling converges to £, of any
coupling construct is bounded by the coupling inequality (Kendall, 2005). The coupling
inequality implies no coupling can be more efficient than the rate of convergence (or
mixing) of the underlying MC. A "good" coupling construction may be characterized as
"practical to implement" or "close to maximal". The second implies that one coupling
construction may be more efficient than another. Maximal coupling refers to the situation
where the coupling construction attains equality in the coupling inequality, and is often

referred to as the Vasershtein coupling. Maximal couplings are available for any weakly
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ergodic MC (Connor and Kendall, 2007; Lindvall, 2002; Thorisson, 2000), but are not
always practical to construct or compute explicitly, rarely being co-adapted. Co-adapted
coupling is when the progress of X,' is not dependent upon the future of X,* and vice
versa. This implies that the MCs X,' and X,” when viewed separately, are still Markovian
but the joint process {X,', X’} is not. Co-adapted coupling is the common coupling
construction used in exact MCMC (Burdzy and Kendall, 2000). The computational cost

of the coupling construction should also be minimal.

1.3.3 Perfect Backwards Simulation.

Propp and Wilson (1996) described how using repeated recursions into the past allow
generation of exact samples from f. The idea is that if X, were run from -oo (i.e. infinitely
far in the past) to time 0, we will have surely converged to f. The nature of a MC means
that the further we go into the past the smaller the influence of the initial state(s) on the
state at time 0. This means we need only go back "far enough" into the past to ensure

complete coupling has occurred by the time the chains reach time 0.

Theorem 1.1: (Propp and Wilson, 1996)
Any uniformly ergodic X, with a sufficiently large recursion into the past, such that

complete coupling occurs before time 0, will produce an exact draw from f at time 0.

Remark
The convergence rate of the MC must be non-negligible and the bound on the rate of
convergence induced by the coupling construction must not be poor, or conversely,

should be maximal or as close to maximal as possible.

The form of this theorem does ignore the practical consequences of using coupling and
the Markov property to construct an exact sampling algorithm. Foss and Tweedie (1998)
demonstrate the existence of a CFTP algorithm is equivalent to uniform ergodicity. They
do this by showing that successful coalescence in CFTP occurs if, and only if, X, is
uniformly ergodic. This is because when X, is uniformly ergodic the state space is small,

so there exists a probability of coalescence at each step. The number of steps we must
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move into the past to ensure coalescence is called the backwards coupling time (B,). For
any given realization of random numbers U for updating the coupled chains, there is a set
of possible backwards coupling times, where the smallest one is chosen for the sake of

efficiency. Let D be discrete with m states.

Definition 1.10: Backwards Coupling Time
B, is a random time that occurs post coalescence of the complete coupling, and is defined
as:

B, =min{t>1:¢({X .. X" ,U_, ., U ..U ,U)—> X,}. (1.39)

—t+12

We update all states simultaneously to detect complete coupling, so for some time in the
past the MC started in all states have coalesced, and by time zero occupy a single state.

The following properties apply to B;:

1. The backwards coupling time is always greater than the coupling time and has

the same distribution.

2. Any time greater than the backwards coupling time is also a backwards coupling

time for a given realization of U.

Propp and Wilson (1996) noted that the random variables C;, and B, have the same
distribution and are regeneration times.

B, is dependent only on U, and the common state at time 0 is independent of any starting
state. Hence, the draw at time O is guaranteed to be an exact sample from f. Standard
CFTP is applicable for any uniformly ergodic X, provided we can detect coalescence for
the complete coupling. In the case of a continuous state space CFTP can be described in
terms of sets. The discrete states are replaced by sets that are non-over-lapping, and
whose union is the entire state space. Provided the constructed MC moving between sets
is uniformly ergodic, the usual CFTP construction will apply. Assume that D is discrete
and finite with states {d,,d,...,d,,} and note the random numbers u, must be reused.

CFTP may be implemented using the following pseudo code in Algorithm IV.
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Algorithm IV: Coupling from the past.

Set: coalescence = false.
Set: 1= 0.
While coalescence = false
Set: t=1¢-1.
Generate: v
Fori= {1,...,m}
Set: x! =d,
Forj={¢,t+1,...,-1}
Set: x},, =¢(x},u,.,)
If xg =x; =+ =x]'
Set: coalescence = true
Else

Set: coalescence = false

The most efficient sequence of backwards recursions, as indicated by Propp and Wilson
(1996), is a double till overshoot scheme that doubles the previous number of recursive
steps. In general, the chain does not reach stationarity by C;, hence taking the state at time
C; does not produce exact draws from f. This can be seen in Figure 1.2 for a simple
random walk on D = {1,2,...,20}. In particular, the update function is move up with
probability 0.5 and move down with probability 0.5, with reflections at the boundary.

The construction implies that the chains can only coalesce at the boundaries of D, so if
we sample the state at C,, we will only get the values 1 and 20. This is clearly incorrect as
the true f of this simple random walk is the discrete uniform distribution on D. The last
practical issue for CFTP is that an impatient user may induce bias by terminating runs
that take a long time to coalesce. However methods such as Fill's algorithm (Fill, 1998)

can avoid this problem.
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CFTF Random Walk: Monotone Recursion

State Space

o l l l l l
K0 a0 -40 30 20 -10 0
Time

Figure 1.2. CFTP for a simple random walk on D = {1,...,20}. After 3 successive recursions

(-15, -30, -60) , all chains have coalesced at the black dot (state 20) at t =-19.

1.3.4 Perfect Forwards Simulation

There is another class of exact simulation methods that utilize the fact that any uniformly
ergodic MC satisfies the minorization condition, allowing the use of regeneration times to
draw exact samples. Brooks et al (2006) show that any CFTP algorithm can be converted
into a forwards algorithm due to the very fact it is uniformly ergodic. They build on work
done by Hobert and Robert (2004) for estimating the minorization parameter & and
demonstrate this conversion by taking advantage of regenerations. Simulated tempering
involves constructing a MC that transitions between various levels of a heated (flatter)
target distribution to aid mixing. It was Meller and Nicholls (1999) who initially
observed that sampling from the "hottest" distribution introduced regenerations into the
MC. This was used within CFTP to produce exact samples. We now recount a brief

version of the theorem from Brooks et a/ (2006).
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Theorem 1.2: (Brooks et al, 2006)

If we have a uniformly ergodic MC X, (or equivalently the state space D is (m, & q)
small) with initial probability distribution Xy ~ q, some &> 0, and residual kernel R",
then starting X, in q, running for a random number of iterations t ~ Geometric(e)

independently of X,, and updating according to the residual kernel will produce an exact

draw from f.

Remark
This requires that g and the residual kernel R” are easy to sample from, and that £ must be
non-negligible as is the case for any perfect sampling method. Note that generally R™ is

easy to sample from when m = 1.

This theorem encompasses methods such as the multi-gamma sampler (Murdoch and
Green, 1998), read-once CFTP (Wilson, 2000), and the catalytic coupler (Breyer and
Roberts, 2000). Fundamental to the theorem is the mixture representation of f and the
residual kernel. The theorem represented in algorithmic form is the well known splitting
construction of Nummelin (1984), and Athreya and Ney (1978). This leads to an

algorithm for obtaining exact draws from f (Algorithm V), note that here m = 1.

Algorithm V: Perfect Forward Sampling:

Independently simulate xy~ g and ¢ ~ Geometric(¢).

Ifr=1
Set: x = xo
Else
Fori={1,..,t-1}
Generate: x;+; ~ R(x;, * )
Set: x =x;

Most forward perfect sampling algorithms may be viewed as intricate elaborations of this

rather simple algorithm. Notice this algorithm requires no coupling mechanism to
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generate exact samples. The practicality of this approach revolves around the estimate of
&, and the ability to generate samples according to the residual kernel.

The read-once CFTP also follows from the above representation and can be extended
without too much difficulty to unbounded state spaces. The perfect forward simulated
tempering algorithm of Brooks et al (2006) uses all the elements of Theorem 1.2 along

with a dominating chain on the random walk between temperature levels.

1.3.5 Monotonicity and Anti-Monotonicity

It is evident that for extremely large D detecting complete coupling is computationally
intensive. Bounding conditions are particularly useful as they can be used detect
complete coupling using a simple pair-wise coupling. For a more general discussion of
bounding chains see Huber (2004). We can simplify the CFTP algorithm by using two

extreme chains that bound all others:

XV -X=X". (1.40)

This requires the update function to have a monotone structure, and we must be able to
identify the starting values from which to begin the upper and lower chains. Such chains
may also be of use in forwards simulation. Dominating chains are a different form of
bounding condition that are required for perfect sampling with geometrically ergodic
MCs (Kendall, 2004), and as such we do not go into any detail in this thesis. The

definitions of monotonicity and a related property, anti-monotonicity are as follows:

Definition 1.11: Monotone Update Functions

The update function ¢ is monotone if for some partial ordering < of D:

X! =X =>¢X,,U,) = HX,U,). (1.41)

This means the chains run from the states x”andx”, act as upper and lower bounding
chains that sandwich the chains started in the states betweenx”andx”. Quite often

xY and x" are the minimal and maximal states of /. Anti-monotonicity implies the reverse

condition of monotonicity.
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Definition 1.12: Anti-Monotone Update Functions

The update function ¢ is anti-monotone if for some partial ordering < of D:

X! <X} =>¢X U, )= §(X],U,,) (1.42)

Each bounding chain is updated based on the current state of the other bounding chain,
i.e. the upper chain will use the current state of the lower chain to update, and vice versa.
Each anti-monotone chain is by itself not Markovian, but the joint process and the single
chain after coalescence are. A useful introduction to anti-monotone systems can be found
in Haggstrom and Nelander (1998). The monotone CFTP algorithm for both monotone
and anti-monotone update functions is given by the pseudo code in Algorithm VI
Assume that the upper chain is run from the maximum state of D (d,), and the lower

chain is run from the minimum state of D (d)).

Algorithm VI: (Anti)-Monotone CFTP.

Set: coalescence = false.

Set: t=0.

While coalescence = false
Set: t=1-1

Set: x’ =d,,and x" =d,

Generate: 1+
Forj={t,t+1,...,-1}

Set xY

Y= ¢(x”,u,,,) [For anti-monotone: x. = @(x,u,,)]

t+1
L __ L : . L __ U
Set x,,,= @(x,,u,,,) [For anti-monotone: x,,,= &(x, ,u,,,)]
U _ L
If x, =x,
Set: coalescence = true

Else

Set: coalescence = false
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In later chapters, we will discuss the monotone CFTP versions of the Gibbs sampler and
the IMH algorithm for BVS. We cover the monotone Gibbs MC in Chapter 2, and the
exact sampling IMH algorithm in Chapter 5. The IMH and slice sampler algorithms both
produce monotone MCs, (Schneider and Corcoran, 2004; Mira et al, 2001). The
monotonicity of the Gibbs MC will depend primarily upon the structure and order of the
conditional system for which it is specified. Figure 1.2 has been deliberately chosen to
show the monotonicity of the update using a simple random walk (RW). The edges
represent the chains started from states 1 and 20, at the boundaries of the state space. We
need only monitor these two chains to detect complete coupling and to use monotone
CFTP.

Other perfect sampling algorithms related to monotone methods partition the state space
so the update for each partition is monotone, such as multi-gamma coupler (Murdoch and
Green, 1998). Auxiliary variables may also be used to induce monotonicity in the update
function with the simplest example of this the slice sampler (Mira et al, 2001). Recent
work (Cai, 2005) has shown how to use non-monotone CFTP with a summary state. This
approach constructs a general non-monotone version of CFTP for application to area-
interaction point processes and birth-death processes. In particular, a single chain is
constructed that can be used to monitor the certain (sets of the state space that have
coalesced), and uncertain (sets of the state space yet to coalesce) parts of the chain. An
exact draw under CFTP is assured when the uncertain part of X, has vanished. This
requires defining the entire state space as a union of the certain and uncertain parts. This
approach requires a high degree of problem specific tailoring, so for more explicit details
we refer the reader to the article (Cai, 2005). Monotone CFTP is similar in that the
coalescence prior to time 0 means that by time 0, the uncertain part of D has vanished.
Murdoch (2000) also shows it is possible to use mixtures of chains to improve the
amenability of perfect sampling. Provided certain conditions are met the IMH sampler is
uniformly ergodic. In particular, it is possible to use hybrid chains for perfect sampling
on an unbounded states space. As an example, Murdoch uses a combined RW IMH chain
to sample exactly from a Cauchy distribution.

For good introductions to CFTP, perfect sampling, and monotone and anti-monotone

chains see any of the following: Dimakos (2001), Kendall (2005), Propp and Wilson
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(1999), Thonnes (2000), Givens and Hoeting (2005: Chapter 8), Roberts and Casella
(2004: Chapter 13), and (Lee, 2008).

1.4 Perfect Sampling and Bayesian Statistics

After discussing the basic principles involved in constructing perfect sampling methods
we now review the literature for applications in Bayesian statistics. From the literature, it
is clear that perfect sampling has abundant use in some areas, such as statistical physics,
stochastic geometry, and spatial statistics.

In the case of spatial statistics great advancements have been made, and is an area where
perfect sampling is now the sampling method of choice. Applications centre around
Poisson processes, birth and death processes, queuing models, and area-interaction
processes with both positive and negative attractions (Cai and Kendall, 2002; Ferrari et
al, 2002; Kendall, 1997, 1998; Kendall and Mpgller, 2000; Haggstrom et al, 1999;
Thonnes, 1999, 2000; Tweedie and Corcoran, 2001). This general applicability stems
from a "cross-over" trick (Kendall and Moller, 2000). For example, using two bounding
chains for a birth, a point may only be created in the lower chain if it passes the test in the
upper chain, and vice versa. This produces chains that bound the state space and so CFTP
can be used. However, these applications generally speaking do not involve Bayesian
statistics. There are also abundant examples of applications of perfect sampling in spatial
statistics and stochastic geometry. In particular, the Potts model, g-coloring graphs,
lattices, the Ising model, dimer models, ice-dimer models, and Markov random fields, are
among the common applications (Huber, 1998; Kendall and Thonnes, 1999).

Attempts have been made to extend perfect sampling to simple conditionally specified
models using distributions such as the auto-gamma, auto-Poisson, and auto-negative-
binomial distributions. The most common application is the auto-gamma model that is
used to describe the pump data set (Murdoch and Green, 1998; Mgller, 1999; Breyer and
Roberts, 2000). The pump data set records the counts (s) of failures for 10 pump systems
in a nuclear plant, along with the operation time (t) for each system. The auto-gamma

model, priors and posteriors are:
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Model:s, ~ Poisson (4,t,).
Priors: f(4,)~ Ga(a,b), andb ~ Ga(r,v), with a, r and v fixed. (1.43)

Posteriors: f (4, |b,s,) ~Ga(a+s,,b+t,), and f(b|X,S)~Ga(r+10a,v+22,k),

where A = (44,...,4) and S = (sy,...,8x). Murdoch and Green (1998) use the multi-gamma
coupler with Gibbs sampling to sample from the posteriors by obtaining bounds through
a restriction of the priors. Mgller (1999) again uses the Gibbs sampler, but relies on
methods from point processes to introduce bounding chains. Breyer and Roberts (2000)
also with a Gibbs sampler, apply the catalytic coupler to sample from the posterior
distributions for b and A.

Another area of interest has been finite mixture models. A k-component mixture model
for an observation (X) is:

k
Model:x~ > p, /,(x]9,).

i=1

Priors: p ~ Dirichlet(«, ..., ¢, ) where «,...,a, >0and 0 ~ f(0,) where 0, are (1.44)

the hyper-parameters for the prior if required.

Set version CFTP has been applied to sample from the posterior for simple 2- and 3-
component mixtures where only the mixing proportions are unknown and all other
parameters are assumed to be known (Hobert et al, 1999). The applicability of perfect
slice sampling and the catalytic coupler were investigated assuming only the number of
components in the mixture was known (Casella et al, 2002).

Perfect backwards simulated tempering, which is a monotone CFTP-like approach with a
dominating process, has been used to generate exact samples from the posterior
distributions of parameters for a generalized linear model (GLM) describing flour beetle
mortality (Mgller and Nicholls, 1999). The parameters (1, o, m), are assigned a normal,
an inverse gamma, and a gamma distribution as priors. The choice of hyper-parameters in
these priors is relatively weak. A second application to modeling radio carbon dating data
has also been investigated, where the data (date) are modeled as piece-wise Gaussian, and

the unknown mean parameter (for each date) represents the unknown true date. In this
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case there are 14 observations and so we must estimate the means &,...,6014. These values
all fall within an interval [L,U] which is itself contained within a larger (time) interval
[4,B], and L and U are considered unknown. Letting 6 = (é,...,614) and x = (L, U, 0) the
state space of the joint posterior for L, U and 0 is {x: A<L<U<B,0<[L,U]"}. The

perfect sampling algorithm is constructed to sample exactly from the joint posterior for L,
U and 6.

Two separate applications of exact MCMC to multinomial type data have also been
conducted. The first, from Green and Murdoch (1999), uses a perfect RWMH algorithm
to sample from the posterior for multinomial data using dirichlet priors. In particular,
they sample the allele frequencies of the ABO blood group (p, ¢ and ) defined on the
unit cube. The second approach uses the perfect forwards simulated tempering method
from Brooks et al (2006) for band analysis data. A group of Mallards have bands attached
at an early age, and the bands are retrieved upon the demise of the Mallard within a
certain time period. The likelihood is a product multinomial function with parameters (a,
b, A). The parameters a and b represent probabilities where b = (1-a). In this case, an
estimate of the likelihood is used to bound the convergence rate of the MC. The bound is
then used to generate geometric times for use in a forward perfect sampling algorithm
using a simulated tempering scheme. The appropriate number of tempered distributions is
obtained with the hottest distribution constructed to ensure the bounding RW will
coalesce in finite time. From this, perfect samples are obtained from the posterior
distributions of the parameters.

An application of the perfect forwards simulated tempering method from Brooks et al
(2006) to autoregressive time series is also described but not implemented. We also note
that in Carvalho and Corcoran (2005), perfect simulation has been used to find the
stationary distribution of autoregressive conditional heteroscedastic (ARCH) models, but
not for a Bayesian analysis. Murdoch and Meng (2001) apply an auxiliary variable
augmented version of CFTP and the read-once CFTP algorithm to sampling from
mixtures of normal and ¢ distributions, which are used as priors for Bayesian analysis.
The Bayesian linear model, the primary interest in this work, has had spectacular success
when a monotone Gibbs MC is available. The main indication from the literature is that

an orthogonal predictor matrix is the required condition for a monotone Gibbs MC. In
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Chapter 2, we will attempt to provide further insights into this. Most applications
involving curve and surface fitting use orthogonal decompositions of the original
measurements via wavelets or radial basis functions (Ambler and Silverman, 2004;
Holmes and Denison, 2002; Clyde et al, 1996; Holmes and Mallick, 1998, 2003; Lee et
al, 2005). In all of these examples, standard monotone CFTP using Gibbs MCs is used to
simulate from the posterior for model probabilities to facilitate variable selection and
model averaging. Two attempts so far have been made to move beyond the orthogonal
restriction. The first uses a bounded form of monotone CFTP with IMH (Schneider and
Corcoran, 2004) on the joint space for B and y. The second, known as the Gibbs coupler
by Huang and Djuric (2002), is a support set coupling technique that requires known
variance and regression coefficients. The underlying Gibbs MC is not monotone, but
bounds on the support of each component can be derived. These bounds are then applied
in the usual monotone CFTP fashion. In using the original predictor matrix and a Gibbs
Markov chain, the two most relevant methods from the literature are the Swendsen-Wang
algorithm (Huber 2003, Nott and Green, 2004), and the Catalytic coupler (Breyer and
Roberts, 2000). The Swendsen-Wang case for BVS (Nott and Green, 2004) uses a
method of introducing an auxiliary variable to treat the correlation structure as a spatial
field with interactions along edges. Despite this relation to the Ising model and the use of
block updates in the Gibbs sampler, the update structure of the Gibbs MC is not
monotone, however, there is a bounding chain available for the Swendsen-Wang
algorithm (Huber, 2003). This bounding chain is not compatible with the BVS
implementation of Nott and Green (2004), and so does not help facilitate perfect
sampling for posterior model probabilities. Note that for this setting if the predictor
matrix was in fact orthogonal, then no correlation exists between the predictors so that
the spatial representation is unnecessary.

The catalytic coupler (Breyer and Roberts, 2000) uses a rather more complex
construction to check for coalescence using random maps and a basin of attraction. This
requires introducing some distribution b(y), such that the ratio b(y)/f(y) is bounded. If this
condition is satisfied it is possible to construct the random map update according to the
required constraints, and then the basin of attraction can be used to check for coalescence.

In our case because we have no standard form for the posterior mass function of model
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probabilities, finding a bound for b(y)/f(y) is practically impossible without extensive
investigation of the posterior! This highlights the issues related to finding useful bounds
for practical perfect sampling. The use of exact IMH for the marginal posterior model
probabilities suffers from the need to find an efficient enough bound for detecting

coalescence provided it exists.

1.5 Summary

The fy-formulation in Bayesian linear regression allows the Bayesian statistical
framework to be extended to model selection. Further, the ability to create a posterior
distribution of model probabilities provides a true Bayesian approach to incorporate
model selection uncertainty into statistical analysis via model averaging. The posterior
for y when available in closed form, requires a stochastic sampling method to generate
sample points when the number of predictors is large. In Bayesian statistics the common
approach to do this is to use MCMC that generates approximate dependent samples from
the desired distribution using the Metropolis-Hastings algorithm. MCMC requires
diagnostics to determine an initial run of sample points to be discarded as burn-in. The
remaining sample points are used for inference under the assumption the sample points
after burn-in are in equilibrium. Exact or perfect sampling removes the need for burn-in
assessment by generating i.i.d. sample points exactly according to the required
distribution.

The use of exact sampling comes at the cost of requiring practical bounds on
convergence, coupling mechanisms and increased computer resources (run time and
memory). Exact MCMC has found great application for problems in statistical physics,
stochastic geometry, and spatial statistics. Attempts have been made to generalize
methods and improve their use however, for the most part exact MCMC methods remain
very specific to the inference problem they are applied.

For BVS, more exotic forms of exact sampling are not possible due to the lack of
available bounds. The monotone Gibbs sampler has been the best approach in terms of
implementation and speed. However, the predictor matrix must be orthogonal which
means variable selection is no longer possible for an existing set of non-orthogonal

predictors. The use of exact IMH has also been investigated and has had little success due
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to similar problems with finding a bound much in the same way the more complex

methods are not feasible.






CHAPTER 2

MONOTONICITY

"The practicing Bayesian is well advised to become friends with as
many numerical analysts as possible."

- Prof. J. Berger, 1985

In this chapter sufficient conditions are explored for the construction of a monotone
Gibbs MC to sample from f(y|y,X). We narrow our investigation by considering
Gaussian errors and prior distributions common to the literature that ensure closed form

expressions for f(y|y,X).

2.1 Monotonicity and Gibbs

To establish sufficiency for a monotone Gibbs MC for sampling from £ (y|y,X) X must

be orthogonal or orthonormal. Further, we require the marginal posterior for y be
available in closed form up to a normalizing constant. Assuming the predictor matrix is
orthogonal, there are a number of choices within the context of the linear regression
model for the error distribution, priors, and hyper-parameters therein. Under these
constraints we will consider some general choices in accordance with the literature.

We have already noted requiring f(y|y,X) in closed form limits the choice of the error
distribution which we assume is Gaussian. The most general form of priors assuming
Gaussian errors are the conjugate priors for B, and o . Beyond the conjugate class of

priors default choices such as Jeffreys prior are also available. Within these cases we
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must also consider the choice of hyper-parameters. Hyper-parameters are generally
independent of y however, some choices may depend upon y given a sensible justification
for doing so. It is also more likely that hyper-parameters will depend upon y when using
an EB approach compared to a fully Bayesian one.

Recall the likelihood function

1
207

f(y\%ﬁy,dzax)=(27T02)_"/26XP{— (Y—XYBY)T(y—XYBy)}, 2.1

and let f(B,, o’ |v,X) be the joint prior for B, o and f{y) the prior for y. The marginal

posterior distribution of y is

Jaly.X) = [ [ Fy 118,07 X)f®B,.0" |1, X)dp,do” . 2.2)

The posterior for y is proportional to the conditional density for v, i.e.

Pr(y, =1]y_,y,X) < f(y]y,X), (2.3)

and the conditional density used in the Gibbs sampler is

Pr(y, =1]v.,,y,X)
Pr(y, =01[y_,y,X)+Pr(y, =1[y_,y,X)
~ -1
N Pr(y, =0]v_.,y,X)
Pr(y, =1|v_.,y,X)

Pr(;/i =1 | Y—iaan) =
5 (2.4)

where v . =(¥s--sViysVi»---7;) and IN’r(}/i =1|v.,y,X) 1is the un-normalized
probability. We now recount a theorem from Dimakos (2001) for the component-wise

partial order: y”<y® if, and only if, " < y® for all i.

Theorem 2.1: Monotone Gibbs MC for Variable Selection

The Gibbs MC is monotone for the component-wise partial order if Pr(y;=1| y_,,y, X) is

increasing iny ;.
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Thus, considering (2.4) we require:

Pr(y, =1y, y,X) < Pr(y, =117y, X), (2.5)

or equivalently using (2.4) and (2.3):

S =1y, X) S0 v =11y,X)
S@U G =11y, X)) f(r? v =1]y.X)

(2.6)

It is this inequality we will use to check the sufficient conditions for a monotone Gibbs

MC for the priors and hyper-parameters explored in this chapter.

2.2 Uniform Prior for y

We now explore the fully conjugate, Zellner’s and Jeffreys priors assuming a uniform

prior for y.

2.2.1 Conjugate Priors

The normal likelihood suggests a Gaussian form for | o? and an inverse gamma form for
o?. These are the conjugate choice of priors for the linear regression model. Conjugate
priors are a common choice in Bayesian statistics. For exponential family distributions
conjugate priors are particularly useful, allowing straight forward integration to obtain

marginal posterior distributions. Let /(y) oc I and the joint prior for B and o conditional

on y with hyper-parameters ﬁy ,V,,a,b,be

/B,.07 1M=N, ,(B,.0°V,") 1G(a,b). 2.7)

N, denotes the multivariate normal distribution of dimension p, IG is the inverse gamma

distribution and g, = y'y — 1. The marginal posterior for y is

FOIYX) o VSV @by y - B (V) B +BIV,E) 2 (29

* _ T * T ~ . . . 2
where V, =(V, +X)X,), and B, =(X,y+V,B,). The joint posterior for f and o

conditional on y is
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SB,.07 11y, X) =N, (V) B)).07 (V)]
n +yTy—(B’;)T(V;)’I(B’;)+55Vyﬁy : (2.9)

IG|—+a,b
2 2
with posterior expectations
E[B, |7,0%,y,X]=(V,)'(B,), (2.10)
and
2b+y y—B) (VOB +BIV.B
E[Gz |'Y,y,X]: y y (By) ( 'y) (By) By yBy . (211)

n+2a-2

Using (2.4) and (2.8) the update probability for the Gibbs sampler is

Pr(y, =0[y_.y.X) _
Pr(}/i :1|'anan)

C ave [ T N oVvE V(R ar i 7 2.12)
|(Vyl:0) | |Vyl:0| 2b+y y_(B'y,zl) (Vy,zl) (By,=1)+ﬂyi=lvyi:1[$yi:1

vy e 2 LYY =B (Vo) B ) BV B
Y=l vi=1

Under the component-wise partial order we require (2.12) to be decreasing in 7y _,.
Assuming V is diagonal and X is orthogonal, for y" we obtain

Pr(y!" =01y%,y.X) _
Pr(y" =1]7".y.X)

(n/2)+a (213)

Vii +XiTXi 1— (BT)T(VH +XiTXi)_l(Bj)_EiTVii§i
vy 264y y = (B ) (Vy2) T (BY) + By Vi Lo By
and similarly for y*:

Pr(y” =01y%,y.X) _
Pr(y? =11y%,y,X)

(2.14)
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(n/2)+a

Vi T XI'TXi |:1 _ (B:)T(Vﬁ + XiTXi )_1 (ﬁ?) — EiTviiﬁi

2)* 2)% -1 2)* 2 2) @2
Vii 2b+y'y - (Bg,lo)T (V;l:)o) (Bf,i):o) + B«giigv;,z)oﬁé,lo

In (2.13) and (2.14) the square-root term and the  numerator

B (v, +X'X )" (B))—B/v,B, are constant for v, However, we cannot determine
which denominator is smaller due to the addition of the quadratic term ﬁf :oVy:oEy:o-

This means subjective choices of ﬁ are insufficient for a monotone Gibbs MC as we
cannot confirm (2.6).

Let ﬁy = 0, then (2.8) simplifies to

SOy, X) | VS|V S @b+ y Ty -y X, (V) XDy) 2, (2.15)

where V. = (V, + X X, ). The Gibbs update probability (2.4) follows as

Pr(y, =0|v_.y,X) _
Pr(y, =1|v_,y,X)

(2.16)

(n/2)+a

(V) 2V 5 72 204y y =y X, L (V) XLy
’(V;izl)_l ’1/2‘ \]N{—’lz1 ‘—1/2 2b+yTy_yTXyi:0(V;i:0)—l X;:Oy

For the component-wise partial order (2.16) must be decreasing in y_;,. Assuming V is
diagonal and X is orthogonal, for y:

Pr(y!" =01y0,y.X) _
Pr(y’ =1]7".y.X)

(n/2)+a (217)
Vii +X1’TX1' 1 yTXi(vii +X1'TX1')_1X1'Ty
Vi 2b+y"y -y XL (VoL + X0 X)Xy ’

and for y*:
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Py =017?,y,X) _
Pr(y? =11y%,y.X)

(2.18)

V..

12

(n/2)+a
Vi T XiTXi 1 yTXi(Vii + XiTXi)ilXiTy
2b+y y —y X (V2 + XX )Xy

The square-root and numerator (y' X, (v, + X! X,)™' Xy) terms in (2.17) and (2.18) are

constant when updating the i component. The denominator is smaller for v as the sum

of squares is increasing in the number of predictors. Thus, the term is smaller than for

v s0 it follows (2.17) > (2.18) confirming (2.6).

2.2.2 Zellner's Prior

Zellner’s G-prior (1986) avoids specification of the covariance structure and requires the
choice of only one hyper-parameter ¢ > 0. This has become a standard prior specification
for model selection. It is simpler to deal with than the conjugate regime while retaining
all the marginalization properties. The choice of ¢ in Zellner’s prior will have the greatest
impact on our posterior inference when using a flat prior for y. ¢ can be interpreted as a
measure of how much information is contained in the prior relative to the likelihood. If ¢
= 2, then the prior has 50% weight relative to the data. c is a scale parameter as it has
positive support and is used as a variance inflation parameter for X'X.

When specifying a value for ¢, small values indicate a strong prior, while large values
indicate a weak prior. Model selection using f(y |y, X) will behave similarly to the BIC
for ¢ = n and the RIC for ¢ = & (Kass and Wasserman, 1995; Foster and George, 1994;
Liang et al, 2008). EB procedures for Zellner’s prior either estimate ¢ for every model
(local EB), or for all models (global EB) by maximizing the corresponding likelihood
functions for ¢. The MLE is then used as an estimate of ¢ in Zellner’s prior. (Clyde and
George, 2004; George and Foster, 2000; Hansen and Yu, 2001).

Let f(y)oc1 and the joint prior for B, and o’ be

fB,.07 1. X,0)c N, (B,.co’(X[X,) ) (c")", (2.19)
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with hyper-parameters: EY ,c . The marginal posterior given by (2.2) is

q,+1 -n/2

_Ir 1 ~ ~ ~

frly.X,c)c(c+1) 2 |y'y- (cyTHYy— BinXy[SY +2yTXYBY) ,  (2.20)
c+1

where H, =X, (Xﬁ X, ) X§ . We can deduce from the derivation of (2.20) that the joint

posterior for By and o’is

A 1 ~ co?
7.y, X) =N B+ , XX )|
f(By |Yy ) q;/Jrl C+1BY C+1BY C+1( v 'y)
. . ,  (2.21)
n ~ ~ ~
IG(E,E{)’TY_E(CYTHY}’ - B, X7X,B, +2yTXyl37)D
with posterior expectations
E[B, |7,0%y, X]I=——f, +——p (2.22)
ARt c+l' " e+l '
and
Ty —(/c+ D)) ey H,y - B/ X X_B. +2y"X_B
E[UZ |"{’y’X]:y y ( (C+ ))(Cy yy B’y v yB’y + y yBy) ) (2.23)

n—2

where ﬁ ;= (X: X, ) Xiy . Using (2.20) and (2.4) the Gibbs update probability is

Pr(y, =0[y_.¥.X) _
Pr(y, =1|v_,y,X)

~ n/2 (224)

T ~ T ~ QT T n ~ o7
m yy-ay Hyl:ly+02Byi:1Xy[:1Xyi:1Eyi:1 —GY Xy,:lliy,:l ’

T ~ o7 ~ QT T ~ o7
yy-cy H, _y+c,B, X, X, B, —GY X, B,

where ¢, =c/(c+1), ¢, =1/(c+1) and ¢, =2/(c+1). From Theorem 2.1 we require
(2.24) to be decreasing in y_, for the component-wise partial order. Now suppose

7" =<1® then we require:
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rlsr(}/i(l) = 0 | ’Y(—li)a)I’X) =
Pr(y” =1|7v%,y,X)

- ~ - o (2.25)
ey Hy-c,B'X'X,B, +2,y"X,B,
( +1) 1 ly ly 2K i i Vi 3y i M
\(c - = = =
y'y-¢ yTHf,l,,):oy + czB;t):](;xf,i)foxf,li)zoﬂst)zo - CsyTX(yl,lo ml)zo
to be greater than or equal to
Pr(y” =01y%,y.X) _
Pr(y? =117y, X)
~ ~ ~ n/2 (226)
(c+D|1 ElyTHiy_EzﬂiTXiTXiBi +ESyTXiBi
{(c — = = = .
Y'Y =&y Hy 6B L XX Byl iy X B

It is clear we cannot determine if (2.25) > (2.26) due to the terms ﬁyT :OX;:OX%:OEFO
and yX, :Oﬁy:o in the denominator. Thus, as in the fully conjugate case we cannot use a

subjective choice of E if we wish to construct a monotone Gibbs MC when the predictor

matrix is orthogonal. Before dismissing this approach entirely we consider the following

example.

EXAMPLE 2.1

When using an informative prior it is possible to minimize the Kullback-Leibler distance
by choosing E for the full model and from this information projecting the equivalent
choices for sub-models as

B, =(X/X,)"'X!XB, (2.27)

There is some debate over the proper specification of the covariance matrix for the prior

on By, however, this does not apply when assuming X is orthogonal. The priors are

SB,.07 [1.X,0) N, (X]X,) " X[ XB,co?(X)X) ™) (67)7, (2.28)
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and f(y) oc 1. By substitution of (2.27) into (2.20) the posterior for y becomes:

q,+1 -n/2
-L c 1 - 2 -
frly.X,c)oc(c+1) 2 (yfy——yTHyy+—yTHyy——yTHyy)j (2.29)
c+1 c+1 c+1

where y = Xﬁ . We note we can re-arrange (2.29) to

q,+1

frly.X,e) c(c+1) 2

1 _ _ -n/2
(yTy—yTHyy+ﬁ(y—y)’Hy(y—y)j (2.30)

Using (2.30) and (2.4) the Gibbs update probability is

~ nl/2
Pr(v. =0lv .v.X 'vy—y'H, y+¢,(y-Y)'H, _(y-¥
Pr(y, =0]v...Y, )=m yTy yT vy Nz(y Z)T v (¥ {) @3
Pr(y, =117,y X) yy-y H, _y+&,(-y) H, ,(y-Y)

Again we find ourselves with the addition of a quadratic term which will be increasing in

q,- This is much the same as in the case of the conjugate and Zellner’s case with a general

~

choice of informative prior for § .

Let ﬁy = 0 then (2.20) becomes:

7qy7+1 -n/2
Sy, X,c)c(e+1) 2 (yfy—ﬁyTHYYJ ; (2.32)

and from (2.4) the Gibbs update probability is

~ T ~ T nl2
Pr(y, =0|Yf,~ay,X):m yy-ay H .y (2.33)
Pr(y, =1]y_,¥,X) y'y-¢y'H, _y

For the Gibbs MC to be monotone (2.33) must be decreasing iny _,, for the component-

wise partial order ¥ < y® . For y"") we obtain
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~ nl/2
Pr(y!" =0]v",y,X) ¢y Hy
Pr(, D _ 0) =+ I-— _1~ T ) (2.34)
Pr(y;” =1[y2,y,X) yy-cay H Ly
and for y:
~ nl2
Pr(y® =01y?,y,X) _ cy Hy
R ETSTINEY =Jc+D|1-— _1~ O . (2.35)
Pr(y;” =1[v2,y,X) yy-¢y H Ly

All terms in (2.30) and (2.31) are equal except for the term dependent upon the partial

order, yTHyIZOy. Because yTH(Yl[):Oy < yTH(yf)zoy, (2.35) has the smaller term in the

denominator and is smaller overall so, (2.34) > (2.35) as required.
For extreme choices of ¢ the residual sums of squares (RSS) with the ¢/(c+1) shrinkage

factor asymptotically tends to the standard residual sum of squares:

lim(y” (I, —=——H,)y) > (y' (1, - H,)y). (2.36)
e c+1

However the posterior distribution for y will degenerate as

lim(c +1) ™"

lim —0. (2.37)
This implies the (¢ + 1) term tends to zero at a rate dependent on ¢,. This means the null
model (g, = 0) has the slowest rate of approach to 0, and so in the limit of ¢ — oo will
become the most probable model in the posterior despite any evidence to the contrary.
This phenomenon is referred to as Bartlett's Paradox (Bartlett, 1957) and this limiting
behavior also applies to the BF.

EXAMPLE 2.2 Outlier Detection
From the results in Smith et al (1996) a form of weighted least squares for outlier

detection is possible. An augmented form of Zellner’s prior is proposed:

fB,.0 7. W,X)c N, (0,ca’(X;W'X))7) (6°)7, (2.38)
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where

W= : (2.39)

and where w, € {l,x} and c and « are hyper-parameters and « 1s a threshold for detecting

outliers. The joint posterior for y and W is then obtained as

Wy, Xy fo) /W[ [ £y |B,.07,0.X) fB,.07 |1, W,X)dB,do’,  (2.40)

The posteriors for y and W are

n

9y
SOy, X,W,0) e (e +1) 2(yTW'ly—ﬁyTW‘le(Xiw*Xy)‘1X§W‘1y) .4

and
SW ]y, X,y,c)cc

. w2 (2.42)
FW)|[ W™ (yTW"y - VWX, (XWX Xiw-lyj :

A Gibbs sampler can be used to sample from the posterior density of y and W, by noting
that

Pr(}/i :llyfjay)X’wac) oc f('Y | y:X:W)C)’
(2.43)
Pr(w, =x|v,y,X,W_,c) c f(W]y,X,y,¢).

where Y, = (V5o ViysVins---7y) and W_, =diag(w,,...,w,_,,w,

15--- W, ) . Conditional
upon a fixed sequence of weights the Gibbs MC will not be monotone. This is easiest to

see when considering (2.38), even if X is orthonormal (X;W™X_ ) will not be diagonal

when at least one w; is not equal to the rest. A partial order for monotonicity is also
unavailable for W and (2.42). This is because we need to express the hat matrix as a sum

over observations, as W is updated for each observation. This is not possible, and so
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exact sampling using a monotone CFTP Gibbs sampler for (2.42) is not possible.
However, if the number of observations is small (say n < 30) it would be possible to use

full CFTP with the Gibbs sampler.

Because Zellner’s prior for o is a special case of conjugate prior with V = X'X/c, by
p v

analogy it is clear that using Zellner’s prior with a fully conjugate prior for o* will be

monotone provided BY =0.

2.2.3 Jeffreys Prior

The common alternative to avoid any hyper-parameter specification is Jeffreys prior.
Jeffreys prior is given by the square root of the determinant of Fisher information, I(0):

0) o [1(0)]" (2.44)

It is re-parameterization invariant meaning if we transform the parameter, the prior for
the transformed parameter is still Jeffreys prior. Because of the relation to the Fisher
information, when there is large information, we minimize the influence of the prior such
that it is as non-informative as possible. Priors like Jeffreys are considered a default
procedure and in practice should be used when we have a lot of data and few parameters,
i.e. when the likelihood will be very sharply peaked. Jeffreys prior does not satisfy the
likelihood principle, is improper, may lead to indeterminate BF, and for proper Bayesians
has little subjective justification with respect to prior information. Jeffrey noted in the
multi-dimensional case ad hoc adjustments to the prior were required and stressed these
priors for use in the uni-dimensional case as they may lead to incoherence or paradoxes
in the multi-dimensional case. For a more detailed discussion of Jeffreys prior see

Roberts (2001, Chapter 3). Following the derivation in Appendix B, Jeffreys true prior is

q,+1

B0 |7, X) o |XIX | 2 (02)_[2“) (2.45)

where ¢,= yT v — 1. Wasserman (2000) suggested an add-on adjustment to Jeffreys prior:
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T

f(B,07 |7.X) x (27) ) XX, [ o7, (2.46)

and in similar spirit we propose an adjusted form, with arbitrary penalty p > 0:

+1
9y & +1J

B, 11.X) e (p) 2 |XIX, | 2 (02)_[ 2 (2.47)

We will use Jeffreys prior to refer to (2.47) and refer to Jeffreys true prior to distinguish

(2.45) from (2.47). Let f(y)oc1 and the prior for B, and o be (2.47), then followin
v p Y g

(2.2) the marginal posterior for v is

9y
- n

Srly,X) oc(ij ’ (y'y-y'Hy) 2, (2.48)
27

_ .. . 2.
where H, = X, (X7X,)"' X . The joint posterior for B, and o~ is

T T
- . nyy-yHy
f(By’O-z | ’Y’y’X) = Nqy+1 (ByaO-Z(X«:Xy) 1) IG(E&#J D (249)
with posterior expectations
E[B, |v.0%y.X]1=B,, (2.50)
and
Ele? |v.y.X]=(y"y -y H,y)/(n-2). (2.51)
Following (2.4) the probability for the update of the Gibbs sampler is
~ T T n/2
Pr(y,=0[y_,y.X) _ |p |YY-Y H .y 2.52)
Pr(y, =1|v_.,yv,X) V27 |y'y-y'H, _y

For the component-wise partial order y’ < y® we require:
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~ n/2
Pr(y" =0[y%.y,X) _ [p |, y'Hy (2.53)
Priy” =11v0,yv,X) V2z| y'y-y'H]y

to be greater than or equal to
~ n/2
Pr(;” =01v%.v.X) _ [p |, y'Hy (2.54)
Priy® =1172,y.X) V2z| y'y-y'H Ly

Because y'H{ ;y < y H{’y it follows that (2.53) > (2.54), so using an adjusted

Jeffreys prior with an orthogonal predictor matrix is sufficient for a monotone Gibbs MC.

We note that in general for a Jeffreys prior of the form:

C(o?)™, where C is some constant w.r.t to o, (2.55)

a must be of the form:

qy—i-l

a= +d ,whered>1, (2.56)

in order to ensure monotonicity. Notice the posteriors for B and o? for Zellner's prior

with Ey = 0 become the same as those for Jeffreys prior in the limit ¢ — co. The penalty

terms (c+1)"“"""? and (p/27)™""* in the marginal posterior distribution of y for

Zellner’s and Jeffreys priors respectively are equivalent when p = 27(c+1).

2.3 Non-uniform priors for y

The choice of prior for y is an important component in determining the distribution of
mass for the marginal posterior for y. From (2.2) it is possible to assess the effect of
priors for y independent of the priors for B, and o?. Specifically, if the choice of priors
for B,, o and hyper-parameters are sufficient with an orthogonal predictor matrix for
monotonicity, then f{y) need only be constant for the i-th component or observe the

component-wise partial order to preserve monotonicity.
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2.3.1 Bernoulli class
Let the priors for 3, and o be Zellner’s prior (2.19) with Ey = 0 and the prior for y be

the Bernoulli distribution, i.e.

fy= Hw (l-w,)™. (2.57)

with hyper-parameters @, ,...,, . With (2.57) and (2.19) the posterior for v is

k
flyX) o (c+) 2 (yy-ay H,y) " []o/ (1-0) . (2.58)
i=1

The update probability (2.4) for the Gibbs sampler is

Pr(y, =0|y_,,y,X) _ 1/(c+1)(l—a)i)[1_ gy Hy ]n/z. o5

Pr(y, =1]v.,y,X) @, Y'y-cay'H, _y

M

Thus, (2.59) according to the component-wise partial order ¥’ < y‘* must be decreasing

in y... For y" we obtain:

Pr(y!" =0[y0.y.X) _ J<c+1)(1—“’f){1— gy Hy

nl/2
P : 2.60
Pr(y" =1|vy",y,X) o, M } (2.60)

y'y-Gy H{y

and for y?

- nl2
Pr(;/l.@):olyf),y,X):\/(C+1)(1—60,-)[1_ Gy Hy ] 2.61)

T)r(%'m =179y, X) w; y'y —ElyTHfley

We have already shown Zellner’s case with Ey = 0 is monotone (2.34 and 2.35) and the
additional (1-®,)/, is a constant for both y" and y*, so (2.60) > (2.61) and

monotonicity follows. Let @,,...,®, =7, then we obtain the constant Bernoulli prior for y.

k
fn=[]z"0-2)"", or equivalently f(g,) ~ Binomial(z,k) . (2.62)

i=1
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Using (2.62) (1-7)/7 replaces (1-w,)/ w, in (2.60) and (2.61) and again monotonicity
follows. A common extension to the constant Bernoulli prior (2.62) is to use the

conjugate beta hyper-prior for 7.

fyloy=7"(1-0)"", and f(z;a,b) = )

(-7, (2.63)

where a and b are hyper hyper-parameters and I" is the gamma function. Because of the

conjugate relationship it is straight forward to integrate out 7.

F(ll +b) atq, 1 k+b—q;,—l
1rlad) = o © o -
_F(a+b)F(a+qy)F(k+b—qy) (2.64)
B T(a)[ (D)L (k +a + b)

Then with the result in (2.64) we obtain, up to proportionality (which requires a and b are

independent of y), the Beta-Bernoulli prior:
f(rla,b)x T(a+q,)(k+b-q,). (2.65)

Let the priors for B, and o be Zellner’s prior (2.19) with EY = 0, and the prior for y be

the Beta-Bernoulli prior. The marginal posterior for y (2.2) is

fOly.X)oc (c+1) 2 (y'y-Cy H y)"’T(a+q )T(b+k—-q,),  (2.66)

which leads to the update probability for the Gibbs sampler:

Pr(y, =0]y.,.y.X) _J(+D(C/q,,~D|y'y-y'&H, y
Pr(j/i =1 | =L X) (a/q;/i:o +1) yTy _yTEl H}/,-:Oy

} , (2.67)

where C =b+k —1. According to theorem 2.1 (2.67) must be decreasing in y.; for the

required component-wise partial. For y(l):
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~ nl/2
Pr(y® =0]v%,y,X) Clqy),—1 y' cl H,y
B 1100 = e+ 2oV 11 1- — H(l) ,  (2.68)
Pr(y;” =1[v3.y,X) q,-+ y'y-y' ¢ Hy

and for 2"
Pr(v@® =0 v® C/q?, -1 = H "2
I'(}/ ’Y —i ’yi ) (C‘l‘l) q 1_ y Cl 1y (2 69)
Pr(y? =11vy7,y,X) al q(” +1 0 yy-y'eHy

Again all terms are known to permit monotonicity except for

Clq,,—12:Clq2, —1
a/q(l) +1 a/q(z) +1°

(2.70)

which we must show observes the required partial order. Both sides of (2.70) are the
same except for g, where: ¢;, <¢'”;, so we can describe both sides as a single function

of g, 1.e.

1
flg,)=——. (2.71)
a

This implies for monotonicity f (q“)) > f(q, ) v q“) < q(z) which is the definition of a
decreasing function, which requires /'(g,) <0.

C+a

f(qy)z—m-

(2.72)

Thus, because f'(q,) <0 it is a strictly decreasing function and is true for any choice of a

and b. It then follows that (2.68) > (2.69) and so provides a monotone Gibbs MC with an
orthogonal predictor matrix. The most common choice of @ = b is 1 which is a uniform

prior for 7.

2.3.2 Truncated Poisson Prior

Another prior for y which may be utilized is the truncated Poisson distribution, i.e.
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9y

kY )
S(Y|A) = (q j e Lo, .0(qy). (2.73)

q,

With Zellner’s prior (2.19) with Ey = 0 for B, and (2.73) the prior fory, we obtain the

posterior (2.2):
YA
Saly.Xyoc e+ vy —ayTHYy)‘"“( j et (2.74)
q, q,
The update probability (2.4) for the Gibbs sampler is
I ~ n/2
Pr(yi = 0 | Y—iaya X) — (C+1)(k _q;/,:O) yTy _clyTHy,:Iy (2 75)
Pr(y, =1]y_,y,X) 2 y'y-cyH, 5y
which gives:
~ n/2
Pr(y" =0]v",y,X) _ Jc+D(k-gq,’) . Gy'Hy (2.76)
Pr(y" =117y, X) A yy-gy Hy
and
~ n/2
Py =01y.y.X) _ Jle+DG-g)| ~ @y'Hy (2.77)
Pr(y” =1177,y.X) A y'y-cy Hyy

Now because ¢!, < ¢'” then:

4/(c+l)(/i€—q2)_0 . \/(c+l)(j ) , (2.78)

and so it follows that (2.76) > (2.77). Thus, the use of the truncated Poisson prior for y
provides a monotone Gibbs MC. Consider the more general case where we specify a
prior on g,. We then need to make the required adjustment in order to move to the y space

and derive the Gibbs update function.
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Assume a prior on ¢, not involving the binomial coefficient, we get the following
posterior:

K -1
] f(q,), (2.79)

4

FO ]y, X) o (c+ 1) (yTy - ayTHm'”{

which under Zellner’s prior gives the ratio in the Gibbs sampler as

Pr(y, =0]y_.y.X) _Jc+Dk-q,,) f(q,.)|y'y-cy'H, .y
Pr(y, =1]v.,,y,X) (q,0+D)  flg,.)|y y-cy H, _y

} . (2.80)

This leads to the monotonicity inequality

~ nl/2
Prr” =070,y %) _ Jle+Dlk-ai) f@k)],  ay'Hy 281)
Pr(y!" =179y, X) (@, +D)  flayl)|  y'y-ay H{ Ly

and
~ n/2
Pr(y® =01v.y.X) _ Jle+Dl-g2) f(q,2)|  ay'Hy (2.82)
Pr(y =11v9,y.X) (g2 +D)  f@2)| y'y-ay Hy

M (2) )}

(2)
Because ¢,°, <q,%, 9,-, <q

b and £ is fixed this implies:

k— q(l) b — q(2)

> . (2.83)
qy a,

so provided f{q,) is decreasing in g, then monotonicity is indeed preserved. It seems that
priors for y are passive with respect to monotonicity. The choice of prior for y can at best
preserve the monotonicity of the likelihood, but never induce a non-monotone likelihood
to be a monotone posterior. Any augmentation of other priors in order to cancel with
terms in the exchangeable class of priors works because we recover the underlying form
of the independence prior. Hence we may as well use an independence prior. From the
previous section, any case for an orthogonal X which is monotone for Zellner’s prior will

also be monotone for the cases of conjugate and Jeffreys priors.
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2.3.3 Integration over C

When c is treated as an additional parameter we may assign a hyper-prior for ¢, to obtain
a joint posterior for ¢ and y. Let the prior be f{y) and the hyper-prior for ¢ be f{(c), then the

joint posterior for y and c is

Fely,X)ec f(yly.X,0)f () f(c). (2.84)

The marginal posterior distributions for either y or ¢ are then

falyX) = f] £y 1.X,0) f(e)de (2.85)

and

flely, Xy (0, f(y|1.X.0) f(¥) - (2.86)

If ¢ is assumed to have positive integer support {1, 2, .... } then (2.85) gives the special

casc:

frly,X)ec f(Y)ZO_O‘,f(y |7, X,¢) f(e) . (2.87)

So we can perform inference on y after integration over ¢, which may or may not lead to
closed-form expressions. We can however, simplify by returning to an EB approach to
determine the most likely value of ¢ using the marginal posterior for c. For common
choices of priors for ¢ see Table 2.1.

The use of a flat prior for ¢ means the marginal posterior is an equally weighted sum of
all marginal posteriors of y over the specified range of ¢. Such an option will not yield a
proper posterior for ¢. The prior for ¢ must decrease to 0 quickly enough as ¢ — oo, in
order to ensure the variance is finite and the posterior for c is proper. Celeux ef al, (2006)
use a compatibility approach to create a posterior distribution for y that could be
integrated over c to produce the marginal distribution for variable selection. Note that the
power of 1 for ¢ in the compatibility prior could be replaced with some other a > 0, in

similar fashion to the hyper-G and hyper-G-n priors.
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Table 2.1 Choices of hyper-prior for the hyper-parameter c.

Class Prior
Compatibility Prior fle)yoce™ Taas (0
. a— 2 -al2
Hyper-G prior f(cla)= T(l +¢) Tjo, 0)(c), a>2
. a-2 )
Hyper-G-n prior f(cla)= 2—(1 +c/n) Tjo, 0)(c), a>2
n
e—n/Zc
Zellner-Siow f(c) = i Tj0,0)(€)

In practice, the prior of ¢ has finite support so that integrating out ¢ involves summation
for a range of ¢ = {1,2,3,......,cim} for some specified upper limit. This bears an
interesting relation to the fact that past a certain point the posterior will only ever select
the model with no predictor (intercept only), the null model. It seems that a practical
upper limit could be set with the idea in mind of minimizing the summation over a huge
number of marginal posteriors for y that only ever select the null model. The second is
that for inference on parameters we no longer have the posterior marginal distributions
for B and o available in closed form. We can however, compute the corresponding
expectations, for example see Celeux ef a/ (2006). This also means we now have a near
automatic procedure except that the user must define the upper limit on the summation
over c. In that work they propose a new family of priors for ¢ called hyper-G priors, and

hyper G-n priors (Celeux et al, 2006; Liang et al, 2008; Zellner and Siow, 1980).

Normally, for E =0,

Faly.X) = ffe+) 2 (yTy——yTHij f(e)de. (2.88)

c
c+1

Let the prior for ¢ be
fle)oc(c+1)7, (2.89)
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an improper version of the hyper-G prior with a = 2. The work by Liang et al (2008)
demonstrates this integration leads to a Gaussian hyper-geometric function which
requires an approximation and as such confirming monotonicity for this approach is

extremely difficult.

faly,X) (g, +D), F(n/2L(q, +3)/2,y H,y/y"y), (2.90)
where:
,Fi(a,b;c,z) =Z%zk,for lz] <1, where (x), =[(x+k)/T(x)  (2.91)
k=0 C k .

Typically however, the function is truncated and summed to a large value. Confirming

monotonicity, even sufficiency, is not straight forward if possible. Notice that for Jeffreys

prior, we cannot perform a similar integration like we do for ¢ in Zellner’s prior with Ey

= ﬁy . It is incorrect to interpret p as a scale parameter like c.

2.4 Empirical Bayes
We now look at EB methods for specifying hyper-parameters. In particular, we consider

the conjugate and Zellner’s case with Ey = ﬁy and then two examples of fully specified

EB conjugate priors for B, and o . Finally we return to integration over ¢ in the EB

setting.

2.4.1 An empirical Bayes choice for EY

Using the conjugate priors (2.7) let fy)c 1, Ey = ﬁy , and note Xiy = (XzXY)[Aiy the

posterior (2.8) can be expressed as

O]y, X) o Vv )™
(2.92)

n

2b+y"y-(V,B, +X]y)" (V, +X!X,)"(V,B, +X]y)+B.V,B,)

Using the identity:
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(V, + szv)_l - (szv)_l N (szv)_l(vv_l + (szv )_1)_1(X§X7)_1 ’ (2.93)

(2.92) becomes:

SOy, X) o V, V) 2b+y Ty -
. (294

———a

[BIV.B, +BIXIX B, +(B, —B) (V. +XIX )™ (B, -B)I+B/V,B,) > .

which simplifies to

n

SO1y.X) el V2V b +yTy -y Hy) 2 (2.95)
v v v

where V, =(V, + XYT X, ). The Gibbs update probability (2.4) is

~ % _ _ _ (n/2)+a
Pr(y, =01y_.v,X) _ [(V;o) 171V, L 7| 20+y y—y'H, Ly 256
Pr(y, =11v_.yv.X)  [(V, )7 "IV, L | 26+y'y-y'H, .y

For the component-wise partial order (2.97) must be decreasing in y_,. Takingy" and

assuming V is diagonal we obtain:

~ m ) . T (n/2)+a
Pr(yl = 0 | 'Y—l' ’y’ X) — vii + X[ X[ 1_ y Hly (2 97)
Pr(y" =11y9,y.X) v, 2b+y"y-y"H" )y

and for y?:

N (n/2)+a
Pr(y? =0]y?,y,X XX, "H,
r(y, Ly X) vt XX, y By _ (2.98)

Pr(y® =1]72,y.X) v, T 2beyy—y'Hy

i

We require (2.97) > (2.98) and all values are the same except for yTHyl:Oy where

y'H® y>y"H! y soindeed (2.97) > (2.98).

=0

Using Zellner’s prior (2.19) let f{y)ocl, E = ﬁy, then yTXYEY =yTHYy and

v

ﬁj XiXYEY = yTHyy , reducing (2.20) to
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q,+1

faly.X,e)ce+l) 2 (yy-y Hy)""? (2.99)

The Gibbs update probability (2.4) is

n/2
Pr(y, =01y, X) _ ﬁ{y y-y'H, ly] | (2.100)

Pr(y, =117..y.X) y'y-y'H, .y

The monotone Gibbs MC exists when (2.100) is decreasing iny _,. For v becomes:

~ n/2
Pr(y" =017, y.X) _ y'H,y
Pr(yD —1[vD (c+Dil-— T , (2.101)
Pr(y;” =11vZ.y,.X) y'y-y H)y

and similarly for y®

N nl2

Pr(y® =0y 'H,

Pr(y, Y5y X) e+ D|1-— y Ly _ (2.102)
y

Pr(y? =11v%,y,X) y'y-y'H,

All values are the same where y"H{” y> y"H{ y so that (2.101) > (2.102).

2.4.2 Fully empirical conjugate priors

We now move to investigate an example in the literature of fully EB priors for 3, and o’

and then an alternative.

EXAMPLE 2.3 Empirically based priors.
Cripps et al (2006) propose empirically based priors for f and o’ for use in variable

selection for the Bayesian linear regression model which depend on y. The prior they
propose for B, conditional on o is the same as Zellner’s prior with EY = ﬁy . The prior
for 0% is designed to be less informative compared to the marginal likelihood of o2, and
to provide an unbiased estimate of the variance via the mode of an inverse gamma

distribution. Cripps et a/ (2006) choose to keep the intercept in all models and use 1/ Jn,

and then centre the predictors so that
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1 0
X'X, = :
D, O { 0 A, } (2.103)

Let the joint empirical prior for 3, and o’ be

’ _ . Lo 0 x_ kG'y-y'Hy)
fB,o Iv,X)—Nw( 7,0{0 cz(Ay)_lDIG[z 1, 2-q) ] (2.104)

where x, ¢; and c; are hyper-parameters. With f(y) oc 1, the marginal posterior for y is

(g,-1) n+x-2 T T

) - - yy-y Hy

fly.X) (g +)™ (e, +1) 2 (n+x-q,) ? |———1
2(n—gq,)

J . (2.105)

where Cripps et al (2006) use ¢, = n*, ¢c; = n, and & = 7. We note (n-q,) can be thought of
as a degrees of freedom type term and that f (o) will have 2k possible values of b. From

(2.4) the ratio in the Gibbs sampler update probability follows as

Pr(y, =0]v_.,y,X)
Pr(y, =1]v_.y,X)

n+x-2 n . (2 106)

nrx—-q,) 2 (n-q, P[yy-yH _y]"
:m Yi= Vi= ¥i=

n+x—q, n=q,., ) |Y'y-y'H, y

Let Y <y, then by theorem 2.1 we require:

Pr(y" =07y, X)

1

Pr(y" =11v9,y,X)

n+x-2 n /2 (2.107)

o \ 2 o \2 T "
n+/(—ql_: n-q,. y Hl.y
=\(c, +D) [—éﬁ] ( Zf} {1 ’

n+K—q,, n—q,, y'y-y H) y

to be greater than or equal to

Pr(y> =072y, X)
Pr(y? =1|17?,y,X)

(2.108)
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n+xk-2 n

= n/2
— (C +1) n+K_q7(/,221 ? n_q}(ﬂzio 2 1 yT sz
- 2 - Ax - Ax .
(2) (2) T H(Zioy

n+x-qy’, n—q, y'y-y

The very right hand term involving the residual sum of squares has already been shown
to observe the component-wise partial order and /(c, +1) is a constant. Of the remaining

terms, we require:

n+x-2

_ 2
(MJ (2.109)

n+K—4q,_,

to be decreasing in 7y _,, This term is decreasing in y_, as the numerator will always be

smaller than the denominator noting the relation.
_,@ Lzl
% (2.110)
n—q,’

This term is increasing in g, because the denominator is smaller than the numerator which
violates the required component-wise partial order. This means we cannot determine

monotonicity.

We now describe an analogue to the empirically based prior of Cripps ef al (2006) using

the MLE for 2. Following Cripps et al (2006) let the joint prior for By and o’ be

k(y"'y-y H,y)
2n

fBy.07 |1.X) =N, ,(B,.coa’(X;X)™) IG(%—L J @2.111)

The mode of this prior corresponds to the MLE for o and the posterior for o is

(2.112)

n+x—2 (n+r)y'y —YTHYY)
2 2n ’

f@ 1. Xy) = IG[
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which has the mode of the distribution equal to the MLE for o>, The posterior for y with
f(y) <1 given by (2.2) is

q,+1

f@ly.X)c(c+l) 2 (y'y-y'H)y) 2. (2.113)

Thus the posterior for vy is in fact the same as that for the Zellner's case with ﬁy = ﬁy and

a non-informative prior on . Thus, it follows that the choice of priors (2.112) is
sufficient for a monotone Gibbs MC with an orthogonal design matrix by the results

above in (2.101) and (2.102).

2.4.3 Integration over C

Returning to the special case of EY = ﬁy it turns out that the integration becomes:

qy+1

FayX) e £y y -y H,y) 2 [(e+D) * f(e)de. (2.114)

From the priors in Table 2.1 with continuous support the easiest case to deal with is the
hyper-G prior. The hyper-G-n and Zellner-Siow priors are much more difficult to
integrate over ¢ even in this simpler setting.

q,+1 a 2

I(c+1)_ 2 (c+1) *dc=

7

This is straight forward to find as it is the reciprocal of the normalizing constant of the

prior which is of the same form as the penalty term. Let f(y) oc 1, then

n/2
Pr(y, =0]y_.y.X)_ (¢,0ta) |Y'y-y'H,y 2.116)
Pr(y, =117 ,¥.X) (g, +a-D) |y'y-y H, .y
Thus to show monotonicity we only need to demonstrate that:
(g, +a) (¢, +a)
- > 1= (2.117)

(q(l)o +a-1) - (q(Z)o +a—1).

Vi= Vi=
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This can be made clear be demonstrating that the ratio of the left-hand term over the

right-hand term in (2.117) is > 1. This is the case as by rearrangement we find:

(Q;}):o + a)(Qﬁlo +a)- (qx):o +a) S

(@ +a)g o + @)= (g2 +a)

(2.118)

All terms are equal except those subtracted and the larger term is subtracted in the
denominator making the ratio > 1. Note that this result generalizes to any choice of f{y)
that allows monotonicity. To complete the approach we must be able to sample from

f(c|v,y,X) and in this case:

flelr,y,X)= qﬁ%(l +¢) ez, (2.119)
Finding the CDF:
F(e)= %ﬂ-l ! () @5 g {1 - (ﬁjwa—nq : (2.120)
the inverse CDF is
Flu)=1-u)>" " -1, (2.121)

so we may use the inverse CDF method to generate random variables from the posterior
of ¢ after generating exact samples of y using a monotone Gibbs MC. Typically
integrating over ¢ will help remove the choice of this parameter from the posterior for y
which in turn helps with variable selection. As variable selection is not a valid option for
inference in this context, integration over ¢ in the posterior for y is only useful if we can

do the same to other posterior distributions such as the posterior predictive distribution.

2.5 Summary

In this chapter we have explored a number of possible choices of priors and hyper-priors
and the associated hyper-parameters and hyper hyper-parameters. Figure 2.1 and Tables

2.2 and 2.3 summarize these findings. To ensure clarity in the following discussion the
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prior for o* is IG(a,f3) so a can be used for the prior on ¢, and the prior for 7 is the

Beta(r,s).
=
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Figure 2.1 Diagram showing the paths of investigation for the sufficient conditions of a

monotone Gibbs MC in the Bayesian normal linear regression model.

Assuming Gaussian errors and using the conjugate class of priors (including Zellner’s
prior) in a fully Bayes approach we must set ﬁ =0 to obtain a monotone Gibbs MC. This
includes the Zellner’s projection prior in example 2.1. We may choose ﬁ to be ﬁ , aspart

of an empirical Bayes approach. In example 2.2 an extension using Zellner’s prior for
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outlier detection does not permit a monotone Gibbs MC for posterior model probabilities
or the posterior probabilities for outliers.

For the conjugate prior for o there is no justification for allowing the hyper-parameters
to depend on y in a fully Bayes approach. Any choice of « and £ in a fully Bayes
approach independent of y will provide a monotone Gibbs MC with an orthogonal design
matrix and an appropriate choice of prior for B. In an EB approach it makes sense to
allow « and fto depend on 7y as we are using the data to estimate parameters. In example
2.3 we demonstrate that using the classical estimate of regression variance does not allow
a monotone Gibbs MC, while using the MLE does. It should be noted that both these
cases deliberately avoid having o depend upon y. This does not strictly have to be the
case however, choosing o to depend on y may prevent simplification of the ratio in the

Gibbs sampler for confirming the sufficiency of monotonicity.

Table 2.2 Summary of Hyper-parameter conditions for the Conjugate Family of

priors for monotonicity

Description Condition(s)

The covariance matrix in the conjugate | Diagonal, positive definite.
Ve prior for By. Can be replaced with X'X.
- Prior estimates of the regression | () (fully Bayes) or ﬁy (EB).
b coefficients in the prior for By.

A scale parameter in the variance term | Independent of y.
‘ for the conjugate prior for B,.

The shape parameter in the conjugate | Independent of'y.
“ prior for o*.

The scale parameter in the conjugate | Independent of y or a function
p prior for o”. of y' (I, —H, )y (EB).

In a fully Bayes approach integration over c¢ is possible however demonstrating
monotonicity is far from straight forward. For an EB approach the integration over c is

greatly simplified and for the case of the hyper-G prior we demonstrate monotonicity of
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the posterior for any choice of a > 2. We also show how the inverse CDF method may be
used to generate samples from the posterior for ¢ conditional on y. The adjusted Jeffreys
prior we suggest with no hyper-parameters will always provide a monotone Gibbs MC

provided the design matrix is orthogonal.
Priors for y fall outside the rest of the investigation and we found that the Bernoulli class
will give a monotone Gibbs MC. Further, integration over 7 for the constant Bernoulli

prior using the conjugate beta distribution will provide a monotone Gibbs MC for any

choice of >0 and s > 0.

Table 2.3 Summary of Priors for y and monotonicity for an orthogonal X.

Priors Conjugate*  Zellner* Jeffrey
Uniform Yes (3) Yes (1) Yes (0)
Bernoulli Yes (k+3) Yes(k+1) Yes (k)
Constant Bernoulli Yes (4) Yes (2) Yes(1)
Beta-Bernoulli Yes (5) Yes (3) Yes (2)
T-Poisson No (4) No (2) No (1)
f(g)** Yes() Yes() Yes()

* Given the conditions for hyper-parameters in Table 2.2
** Provided the condition that f{g,) is decreasing as ¢, increases.

() The number listed in brackets indicates the number of hyper-parameters required. For the
conjugate and Zellner’s prior we assume ﬁ =0or ﬁy , further, for the conjugate case we assume

V as a single hyper-parameter. T-Poisson is the truncated Poisson. In the case of flg,) () is

necessarily left empty.

This of course requires that the posterior with a flat prior for y is monotone to begin with.
Any general prior for ¢, will permit a monotone Gibbs MC provided the prior probability
is decreasing with increasing model size, this includes the example of the truncated
Poisson prior.

From this we can tentatively make the following recommendations. In the conjugate class

Zellner’s seems the reasonable choice as it greatly reduces the number of hyper-
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parameters required by using the empirical covariance matrix, and we require ﬁ =0 and
some choice of c. We may prefer Zellner’s prior over Jeffreys prior when the likelihood
is weak (small ratio of n:k), and may also depend on whether inference is more sensitive
to ¢ or f{y). When the sample size is large the adjusted version of Jeffreys prior should be
a suitable choice given no requirement for hyper-parameter specification.

In an EB setting the suggested MLE based priors, or some variation therein, from
example 2.3 are necessary to provide a monotone Gibbs MC. It should be noted that the
posterior for y under this setting is essentially the same as that for the adjusted Jeffreys
prior. The Bernoulli class of priors for y retain monotonicity, while non-flat priors for y
may only preserve and not induce monotonicity. Priors specified on g, can also produce
monotone Gibbs MC provided the probability is decreasing in g,, an example of this is
the truncated Poisson prior. Through-out this investigation it also became apparent that
there does not appear to be any way to use a prior on y to induce monotonicity when the
posterior using a flat prior is not.

Future extensions to this work include investigating the Gibbs sampler constructed using
the hyper-geometric function as in Liang et a/ (2008) , and using auxiliary variables to
create a Gibbs sampler for y when using an error distribution that is not Gaussian. The
work in this chapter is an addition to current knowledge showing that an orthogonal
predictor matrix is not the single and only sufficient requirement, for a monotone Gibbs
MC. Finally, the results of this chapter also apply to wavelets applications, and any
univariate non-linear regression where the series can be decomposed into a collection of

orthogonal basis functions.



CHAPTER 3

ORTHOGONALITY

"The goal is to transform data into information, and information into
insight."
- Carly Fiorina, Hewlett Packard, 1999 - 2005

Having investigated and established a number of sufficient conditions for the
construction of a monotone Gibbs Markov chain in the Chapter 2, we now provide some
practical considerations of monotonicity and the inferential problems applicable when
using W. Explaining y requires variable selection (X and y) and determining the effect
the predictors have on y through B,. It is already well documented that linear regression
using an orthogonal predictor matrix does not permit variable selection. This suggests our
interest in y should be for use in BMA. Thus, the focus for investigating the impact of
orthogonalization is for the predictive modeling of y using BMA. This can also include
tasks such as outlier detection. The issue of how well modeling y using W compares with

that of X requires investigation.

3.1 Gibbs Update Probability

Recall the Gibbs update probability:

~ -1
Pr(y, =0[v_.,y,X)

Pr(y, =1]y_,y,X)=|1+=
Pr(yi :ll'Y—i’Y:X)

(3.1)
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where ﬁr(;@ =1]v,,y,X) < f(y|y,X), the un-normalized posterior. The analysis of a

signal using wavelets is an example where monotone Gibbs CFTP has been used
(Holmes and Denison, 2002). The signal is decomposed into a series of orthogonal or
orthonormal basis functions, so the Gibbs MC is monotone. Perfect sampling is then used
for model averaging and choosing a subset of basis functions for best explaining the
observed signal.

The Gibbs coupler, presented by Huang and Djuric (2002), is an elegant perfect sampling
method using support set coupling for model selection. This approach does not require X
to be orthogonal (the actual Gibbs MC is not monotone), instead requiring § and o’ be
known. Bounding chains on the support set {0,1} are constructed for sequential updating

of the support of % to generate samples from f(y|y,X). When B and o are unknown,

these bounding chains do not exist, preventing any extension of the Gibbs coupler to this
setting.

Using simulated data where the predictor matrix X contains a correlation structure, and
W is an orthogonalized version of X, we demonstrate the monotonicity of the Gibbs MC
numerically for £ = 4. Under Zellner’s prior with ¢ = n, we obtain the update probabilities

Pr(y, =1|v_.,y,X) in Table 3.1 for X and W. Table 3.2 contains the required

component-wise partial orderings. With some inspection, it is apparent that the update
probabilities for W satisfy Theorem 2.1, while those for X do not.

The consequences of the partial ordering have a natural interpretation in the context of
linear regression. The partial ordering reflects the nested model structure shown in Figure
3.1, where the probability of adding a variable to a model is greater than adding that same
variable to any of its sub-models. Other orderings might include a complete ordering
through the decimal representation of y or a partial ordering through ¢g,. However, the
decimal ordering does not translate into a natural model nesting structure and is therefore

less useful. The ordering on g, also has a similar limitation.
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Table 3.1 Gibbs Update Probabilities Pr(y, =1|y_,,y,X) for Fictitious Data, k =4

_—

i

Y-i

P O O O O
P B O O Fr » O O
b O+ O Fr O B+ O

0.3811
0.3138
0.2902
0.2256
0.3195
0.3159
0.2555
0.2139

1

0.4423
0.4512
0.4539
0.4636
0.4425
0.4514
0.4541
0.4638

0.4354
0.2125
0.4076
0.2228
0.3701
0.2140
0.3662
0.2112

|:| Original Design Matrix (X)

2

0.2115
0.2116
0.2116
0.2116
0.2116
0.2117
0.2117
0.2117

0.2920
0.2991
0.2690
0.3119
0.2149
0.2137
0.2120
0.2109

3

0.2556
0.2571
0.2556
0.2571
0.2646
0.2667
0.2646
0.2668

0.4389
0.4473
0.2149
0.2521
0.3674
0.3657
0.2120
0.2109

4

0.2448
0.2462
0.2448
0.2463
0.2515
0.2535
0.2515
0.2536

|:| Orthogonal Design Matrix (W)

Table 3.2 Component-wise Partial Orderings for k = 4

dec(y.) i Consequence of partial ordering for Comparable States
0 [000] <{[001],[010],[100],[0L1],[1O1],[110],[111]}
1 [001] <{[O1I1L[LO1],[111]}
2 [010] <{[O1T1L[110],[111]}
3 [011] <{[111]}
4 [100] <{[1O1L[110],[111]}
5 [101] <{[111]}
6 [110] <{[111]}
7 [111] >{[000],[001],[010],[100],[011],[101],[110]}
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G Cope G ) Gy (o)
o) (o) o) (o) ) (o)

Figure 3.1 The nested model structure for model comparison in linear regression, and it's

relation to the component-wise partial ordering of a monotone Gibbs Markov chain.

3.2 Orthogonality and f(y | y, X).

In practice, orthogonalization of X may arise for two reasons. The first is severe multi-
colinearity where X contains strongly correlated predictors. This can result in poor
numerical conditioning when calculating the inverse covariance matrix. An alternative is
to remove variables that are strongly correlated with other variables, and then use a
reduced design matrix. The second reason for orthogonalization is to reduce computation
time. An orthogonal design matrix allows faster computation of the residual sum of
squares. Any transformation should ideally retain as much of the correlation structure

with the response as possible.

3.2.1 Transformation Methods.

We now detail the methods that we use to generate an orthogonal design matrix W. For
fair comparisons between X and W, we construct W to have a constant in the first
column for the intercept term. This is done by centering each of the & predictors in X by

subtracting the column mean to obtain the centered version Xo. An appropriate transform
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of Xy is used to create the orthogonal version Wy. Each column is then divided by its
inner product so that it has unit length. Finally, a column with the constant 1/\n is
inserted to represent the intercept. This ensures no correlation with the other columns of
W, and so provides the orthonormal predictor matrix W.

To summarize:

1. Take the predictor matrix with no intercept X, and for i = {1,..,k} compute (Xo); =
Xi —(1/mY" X, Xiis the i-th column of X.

2. Use an appropriate transformation of the form: Wy = X(A.
3. Fori= {l,..k} compute W, =(W,),/+/(W,)’ (W,), and add a column of 1/Vn for

the intercept. (Wy); is the i-th column of Wy, and similarly for W.,.

We detail four methods for transforming X, into Wy. The first two of these methods are
based on eigenvalue decompositions. These are generalized principal components (GPC)
and the Lowdin transformation, an extension of singular value decomposition (SVD).
The other two methods use the modified Gram-Schmidt (GS) procedure with different
initial orderings of Xy. For the SVD and GPC methods, W is invariant to re-ordering of
X. However, because the GS procedure is sequential W is not invariant to a re-ordering

of X.

1. General Principal Components (GPC)
Clyde et al (1996), and Holmes and Mallick (1998), use GPC to orthogonalize X. We use
the approach as described by Clyde et al for transforming X,. Let U be a matrix of

eigenvectors, A be a diagonal matrix of eigenvalues and D be the diagonal of XX, . The

transformation is then:
R — D—l/z (XgXO)D71/2
R = UAU’ (3.2)
W, =X, (D7""*U)

Thus, A is D?U, R is a k x k matrix and W, represents the principal components formed

from Xy. There can be directions that correspond to small eigenvalues which have a high
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degree of correlation with y, so choosing a subset based on the size of the eigenvalues
can be misleading. However, it is important to note that because of model averaging this

1S not a concern.

2. Lowdin Transformation

The Lowdin transformation is an extension to the SVD. The Lowdin transformation is
designed to minimize the distance (Frobenius norm) between the matrix X and the
orthogonal version. The Frobenius norm is defined as the V(trace(X"X)) which is a
special case of the 2-norm for matrices. SVD is readily implemented by the orth(X)
function in Matlab or the svd(X) function in R, and is:

X, = USV’ (3.3)

where U is an n X k matrix with orthonormal columns, S is k£ x & diagonal matrix of
singular values of Xy, and V is k x k orthogonal matrix of right singular values of Xy. U

can serve as an orthogonal version of X, withA =(SV’)™', however because of the

property of the Lowdin transformation if we are to use the SVD procedure it makes sense
to use the Lowdin approach. The Lowdin transformation will construct:

W, =UV’. (3.4)

Which by the substitution of U=X_,(SV")™" can be expressed as W, = X,(SV')"'V’ so

A =(SV") 'V’ . For further details see (Beaver, 2007).

3. The Modified Gram-Schmidt (GS) Procedure
For the centered predictor matrix X, whose columns are in a prearranged order, let x;

denote the ™ column of Xo, w; be the i™ column of W, andw, =x, /| x, || where

| x, || = /x{ x, . The modified GS orthogonalization then proceeds as:
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X, W,
2 =Xy~ 1
Iw, |
X, W X, W
s =X - ; W, - 22 W,
[w i W, |l (3.5)
—x XWX W
k= 2k 2 1 2 k-1
w i Wy |l

The modified approach is designed to reduce the numerical instability that can occur with
the standard GS procedure. GS orthogonalization sequentially replaces each column in X
with a rescaled version of the residuals resulting from the regression of that column on
the preceding columns. Under the GS approach the A matrix is upper triangular. This
may be useful because we can retain a rescaled version of the best explanatory variable
from X. The main drawback to the GS method as highlighted by Clyde et a/ (1996) and
Holmes and Mallick (1998), is the requirement to order the columns of X prior to
transformation. Clyde et al (1996) and Holmes and Mallick (1998) do not discuss any
methods for ordering the predictors, and so there is little analysis on the use of the GS
method. We now describe the two methods we will use to order the columns of X, prior

to orthogonalization.

Method 1: Create X, with the columns ordered in descending magnitude of correlation

with y. The method will be abbreviated to GS;.

Method 2: Order the predictors based on the magnitude of the correlation with y but also
take into account the correlation structure of the resulting Xy. In particular, we set the
first predictor x; as the one with the strongest correlation with y, and then choose the next
predictor as the one that is both strongly correlated with y and weakly correlated with x;.
This is repeated sequentially until all predictors are ordered. Suppose the first j predictors
have been chosen and we must now choose the next one from the remaining predictors
whose indices are contained in the set V. For ieV, let r(x;y) and r(x;X;) be the
correlations between one of these remaining predictors (x;) with y and with the j-th

ordered predictor Xx;, respectively. Then the next ordered predictor is chosen as
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X, = argmin \/] r(x,x ) [+(1=|r(x;,y ) D - (3.6)

{Xibier

Thus, the next column in the ordered X, is chosen as the predictor with the minimum
distance (d) to the co-ordinates (0,0) using (3.6). This is repeated sequentially until all

predictors are ordered.

1
LX) ’
d » *
0

O |I"(X,‘,Xj)| 1

Figure 3.2 A graphical representation of Method 2 for ordering the predictors prior to
orthogonalization by the Gram-Schmidt method.

This method will be abbreviated to GS,. Both methods of ordering are justified in a
heuristic sense, and stop short of the partial least squares (PLS) method detailed in Clyde
et al (1996).

Two methods we do not review as discussed by Clyde et al (1996) are PLS and sliced
inverse regression. Partial least squares uses an eigenvalue decomposition of the
covariance matrix and then using y, sequentially adjusts the columns of X to produce an
orthogonal predictor matrix. Sliced inverse regression uses an eigenvalue decomposition
of a weighted covariance matrix, created by dividing y into 4 slices and calculating a

matrix of means. The resulting eigenvectors are then multiplied by the standardized
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version of X to create W. For studies to follow in this chapter the four methods GPC,

Lowdin, GS; and GS, will be investigated.

3.2.2 Posteriors and Point Estimates.

While a number of orthogonal transformation methods may be very similar, they can lead
to different posteriors for y. The posteriors of X and W are not directly comparable due to
the loss of interpretation for the predictors. The original posterior can be preserved by
orthogonalizing for every y however, this will not allow monotonicity. If we are
concerned with inference about y then interpretability in the orthogonal space is not an
issue. Further, if inference about y is not compromised by using W instead of X, then
orthogonalization is an approach that will allow efficient perfect sampling. Thus, we may
compare X and W based on the fitted response. To give an appreciation of these points
we use the ozone data as an example. Details of the ozone dataset may be found in

Appendix C.

Example: Ozone Data

In Figure 3.3 we plot the posterior distributions for y using X and the four W methods for
Zellner’s prior with ¢ = n and 7= 0.5. Figure 3.4 shows the BMA fitted y values for X
and the W methods, and the true values for observations 20 to 40.

Not only are the posteriors of X and W not directly comparable, but because the A
matrices in the transformation methods result in different mixing of X into the columns of
W, the posteriors for W are also incomparable with one another. Thus, the distribution of
mass can vary noticeably between different methods of orthogonalization. The posterior
mass for the orthogonalization methods are less dispersed than for X, with noticeably less
small probability models. In the case of the orthogonalization methods, the posterior mass
appears the most concentrated for the GS, method, while the Lowdin method has two
very similar separated patterns. The GPC and GS; methods occupy the upper half of the
state space with different distributions of mass. It is clear that while the posteriors for W
can vary noticeably in distribution from both X and other W methods, all provide suitable
weights for obtaining a BMA fitted response, which from Figure 3.4 is comparable

between all methods.
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Figure 3.3 Posterior model probabilities using X and W for the ozone data, for Zellner’s

prior with ¢ = n, a uniform prior for y.
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Fitted Model Average Response for the Ozone data
3 T T T T T T T

Response

0'5 1 1 1 1 1 1 1 1 1
20 22 24 26 28 30 32 34 36 38 40

Observation

Figure 3.4 Plot of the fitted response using BMA with X and W for the ozone data. As above

we use Zellner’s prior with ¢ = n, a uniform prior for y.

As mentioned, previous work has indicated proper BVS is not possible with an
orthogonal predictor matrix. However, it would be desirable to determine which of the
predictors in the X space are important while working in the W space, by using a statistic
to rank them. Since the transformation from X, to Wy can be expressed as Wy = XpA for
some k x k matrix A, we should be able to use A to get back to X for inference on the
relative importance of the predictors. Heuristically, some function of the MIP (Table 3.4)
and A should provide an estimate of the MIP for X. Table 3.3 shows the mixing
coefficients (the A matrix) for all four methods for the ozone data. The columns represent
the column of W and the numbered rows the columns of X. For example the first column
for GPC indicates that the first column in W was dominated by the second column of X.
For each of these columns we divided the values obtained by the largest absolute value so
that all values fall between -1 and 1, the dominant predictor from X is indicated by -1 or

1.
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Table 3.3 Mixing Coefficients for transforming X, for the ozone data into W, using

the four methods of orthogonalization.

X Column of W
1 2 3 4 5 6 7 8
1 0 0.00054 | -3.3E-05 | -0.00045 | 0.006155 1| -0.55186 0.01615
2 -1 | 0.025578 | -0.02021 | 0.000153 | -0.00299 | 0.003637 | 0.003279 -0.0005
3 0| -0.02099 | -0.01575 -1 0.3957 | 0.030988 | 0.061365 | -0.00487
8 4 0 0.00394 1| -0.11524 | -0.00765 | 0.003127 | -0.00022 | -0.00218
O] 5 0 1| -0.00854 | -0.20521 | -0.03382 | -0.10692 | -0.01171 | 0.009055
6 0 | -0.00415 | -0.00254 | -0.13697 -1 | 0.055275 | 0.018478 | -0.00445
7 0 0.0008 | 0.000104 | 0.007678 | 0.008755 | 0.867895 1| -0.06572
8 0 0 0 0 0 | 0.001062 0.00267 1
1 1] -0.11047 | -0.12068 | 0.027687 -0.6442 | 0.020333 | -0.21418 | 0.008471
2 | -0.0006 | 0.532464 | -0.00087 | -0.01863 | 0.017826 | 0.003093 | 0.003514 | -0.00042
3| -0.0272 | -0.03571 1| 0.200588 | 0.298821 | -0.24051 | 0.051891 | -0.00352
% 4 | 0.00190 | -0.23114 | 0.060972 1| 0.038669 | 0.017344 | 0.000221 | -0.00212
- 5| -0.0454 | 0.227672 | 0.093479 | 0.039796 1| 0.041833 | -0.03358 | 0.008304
6 | 0.00774 | 0.213617 | -0.40681 | 0.096513 | 0.226192 1| 0.023839 | -0.00363
7| -0.3359 1] 0.361656 | 0.005074 | -0.74819 | 0.098226 1| -0.04203
8 | 0.02551 | -0.23028 | -0.04711 | -0.09313 0.3552 | -0.02874 | -0.08069 1
1 0 0 -1 0.37826 | -0.01026 | -0.45081 | 0.270197 | -0.41157
2 1 | 0.004954 | 0.002244 | 0.002397 | 0.000455 | 0.008922 | -0.00529 | 0.002204
3 0 0 0 0 0 0 0 | 0.441922
) 4 0 0 0 0 0| -0.31715 | -0.02533 | 0.023198
O] 5 0 0 0| -0.13211 | -0.00965 | -0.01908 | -0.02115 | 0.009704
6 0 0 0 0 0 0| -0.63435 | -0.34283
7 0 1| 0.892332 1 | 0.046404 0.91477 -1 1
8 0 0 0 0 -1 1| 0.410961 | -0.28877
1 0 1] 0.054713 | -0.73377 | -0.52747 | -0.27642 | -0.35235 | -0.41157
2 1] 0.002177 | -0.00038 | -0.00307 | 0.003917 | 0.004035 | -0.00239 | 0.002204
3 0 0 0 0 0 0 0| 0.441922
A | 4 0 0 0 0 0| -0.23032 | 0.005164 | 0.023198
O 5 0 0 0 0 0 0 | 0.133365 | 0.009704
6 0 0 0| -0.92351 | 0.120546 | -0.21438 | 0.046025 | -0.34283
7 0 0 0 0 1| 0.150314 | -0.90558 1
8 0 0 1 1 | 0.034065 1 1| -0.28877

Because the GS method result in upper triangular A matrices, the situation is much

simpler than the GPC or Lowdin method. While it appears that essentially each column in

W is dominated by a unique column of X, some columns are dominated by a second. As

an example the sixth column of W under the GPC transformation is dominated by the

first column of X and the seventh column of X with a coefficient of 0.87. The Lowdin

transformation also demonstrates a case where due to the high degree of correlation
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between the second and seventh predictors in X, the coefficient matrix actually has two
columns dominated by the seventh predictor and none by the second. To ensure this
behavior was specific to the ozone dataset for the reasons mentioned, the same
calculation was performed for the physical dataset (Appendix C). The physical dataset
exhibited the expected behavior of each column in W being dominated by a column from
X. Note for the GPC method the first column of W is comparable to that of the GS
methods. This is because of the negligible coefficients for all other columns of X except

Xo.

Table 3.4 The marginal inclusion probabilities for the posteriors in Figure 3.3

Column of X/W
1 2 3 4 5 6 7 8
X 0.55 0.67 0.44 0.17 0.23 0.24 0.43 0.45
GPC 1 0.76 0.21 0.36 0.10 0.32 0.11 0.30
Low 0.40 1 0.21 0.20 0.87 0.12 0.12 0.31
GS, 0.67 1 0.17 0.15 0.16 0.21 0.47 0.27
GS; 0.94 1 0.18 0.13 0.12 0.28 0.10 0.34

Visual inspection of the A matrix and consideration of the MIP will provide an indication
of important variables however, there appears to be no coherent way to perform BVS.
When using an orthogonal predictor matrix, the magnitude of correlation determines the
rank using the MIP. From Table 3.4 it is clear that the MIP in W pick out columns
dominated by specific predictors. The first column of W under GPC is dominated by the
second predictor in X and has a MIP of 1. The second column of W for the Lowdin
transformation is dominated by the seventh predictor from X. The GS methods have been
returned to the original ordering from X, and as a result both are dominated by a rescaled
version of the second predictor from X. This is expected as the MIP for the first predictor
in W represents the second predictor in X only. Thus, it seems when using an orthogonal
transformation the focus of inference should be for y as BVS appears not to be possible.

When using an orthogonal predictor matrix the least squares estimate of the regression
coefficients is simplified. Further, any column of W will give the same estimated
regression coefficient irrespective of the other columns of W included in the model. The

least squares estimate for the i-th predictor maybe obtained as
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Bi=———. (3.7)

(3.7) simplifies further if W is orthonormal as W)W, =1. When a predictor matrix is

orthogonal the magnitude of the regression coefficients is dictated by the strength of
correlation with y. The posterior for B under W has a fixed location regardless of y, but
the variance shrinks as more predictors are included. With a non-orthogonal predictor
matrix both location and variance change with vy.

For the posterior of o2, the a parameter is typically independent of y, and b is a function
of the RSS for y, resulting in a decreasing expectation (or estimate using the mode) for o
% as g, increases. This decrease follows the required partial order for monotonicity due to
b involving the model dependent RSS term so that as more columns are included in the
predictor matrix for the orthogonal case, the fit improves and as such the estimated
variance reduces. This point relates to Example 2.3 from the previous chapter where the
classical estimate of the variance cannot be guaranteed to follow the required partial
order. We now provide an illustration of these facts using the ozone data and Jeffreys
prior. For Jeffreys prior we have the following expectations for the regression

coefficients and model variance:

EB, |v.y.X]=8,. (3.8)

and

Elo? |7y, X]=(y'y-y H,y)/(n-2). 3.9)

The classical estimator of the variance is

*=(y'y-y H,y)(n—k-1), (3.10)

where £ is the number of predictors. Beginning with the first column and an intercept the

next three columns of X or W are added sequentially as indicated by the sequence of
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numbers in the column headings of Table 3.5. Table 3.5 records the estimates of (3.8)-
(3.10) and W is obtained by the GPC method.

As discussed the estimate of ; varies with X and does not change for W. The classical
estimator of the variance shows both decreasing and increasing behavior as predictors are
added. This is a clear indication that it cannot be guaranteed to follow the required partial
order. Thus, for any posterior for o2, any estimate such as the mean or the mode that is in

the form of the classical estimator for variance, will never produce a monotone Gibbs

MC.

Table 3.5 Updating parameter estimates by adding one column at a time to X and W

(GPC method).

Added predictors
Predictor Matrix Quantity . - 123 1234
X E[B,] 0.0305 0.0192 0.0220 0.0221
W (GPC) E[B,] 2.991 2.991 2.991 2.991
X E[c?] 0.2364 0.1839 0.1765 0.1746
Classical &2 0.2334 0.1863 0.1812 0.1816
W (GPO) E[o?] 0.2130 0.1930 0.1880 0.1787
Classical & 0.2101 0.1954 0.1829 0.1858

3.3 W and X: A comparison

Variable selection is not possible so comparisons between a choice of W and X will rely
on measures associated with the in-sample prediction of y. To this end, we provide plots
of the residual sum of squares to investigate the concentration of posterior mass for y
when using W. This is accompanied by plots comparing model complexity and model
competition for the posterior of y. Finally, we use the DIC criterion extended to include
BMA to provide a comparison of X and W for in-sample prediction. Zellner’s prior and
Jeffreys prior are investigated for a range of values of ¢ and p respectively. We use the
constant Bernoulli prior for y and investigate a range of values of 7. We use four real data

sets; ozone, physical, bodyfat, and crime, see Appendix C for details.
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3.3.1 Shrinkage, Model complexity and Model Competition.

Figures 3.5 and 3.6 show the effect of orthogonalization on the residual sum of squares,

and in particular, the separation in the model space. We use the following two measures

_Y'y-y'Hy
y'y-y'H,y

_ y'y—-05y"H,y

R ,
g y'y-05y"H.y

,and R,

(3.11)

which are proportional to the RSS term in the posterior for Jeffreys prior (R;), and
Zellner’s prior with ¢ = 1 (R;). Both are divided by the corresponding RSS for the full
model so that the minimum value is 1.

In comparing R; and R; it is clear that while the patterns of separation are the same, the
posterior based on R; will be flatter than for R;. The shrinkage value of c¢/(c+1) shrinks
the sum of squares for each model towards zero, as the distribution when normalized will
be flatter. This will also have the effect of increasing model competition, which we will
elaborate on further in the work to follow.

The GS methods both seem to be relatively similar as both are dominated by the scaled
predictor from X with the greatest correlation with y. The GPC method is similar in
separation to the GS methods for the ozone and physical datasets. For the bodyfat and
crime datasets, the GPC method produces a number of layers and minimal separation
respectively. The Lowdin method is similar to the other methods for the ozone data. For
the physical and crime datasets there is almost no separation at all, and for the bodyfat
data there is a small amount of separation. This separation is what contributes to the
shrinkage effect in the posterior for y when using W. The move to W creates a separation

of models based on fit, while the spread over g, is similar between X and W.
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While the shrinkage effect helps direct the posterior to a smaller group of suitable
models, we do not wish this to be at the expense of increased model complexity. Ideally
the number of predictors included in the X space and the number of columns used from
W will be similar. Figures 3.7 and 3.8 show the expected model size for X and all W
methods, for both Zellner’s prior and Jeffreys prior over a range of 7 and penalty (c or p).
Recall the expected model size is defined as

flqly.X)= Z,f (v1y.X),

{verzz =} (3.12)

and

Elq]=> 4f (q]y.X). (3.13)

We record the E[g,] = E[¢] -1 which indicates the number of predictors included, while
omitting the contribution of the intercept which is common to all models. Thus, the result
is between 0 and k. For the ozone data (k = 8) the expected model size for X and all W
methods is similar over the range of 7 with a fixed penalty for Zellner’s prior and Jeffreys
prior. Over the range of penalty values, the model size is lower for Zellner’s prior for
lower penalties due to the flattening effect of the c¢/(c+1) term. Over the range of penalty
all methods are very similar and the expected model size is decreasing as penalty
increases. Notice that once the penalty exceeds exp(5), the expected model size for
Zellner’s prior and Jeffreys prior are very similar. For lower values of penalty and larger
values of 7, the orthogonal methods move slightly above X for expected model size. The
GS; and Lowdin methods obtain the highest expected model size compared to X. For
lower values of 7 and higher values of penalty the GS; and GPC methods obtain the
smallest expected model sizes. Notice that the GS, method shows little departure from X.
For the physical data for Zellner’s prior the penalties for X and the W methods are
similar. The GPC method stays the closest to X followed by both GS methods and the

Lowdin transformation. The Lowdin method attains the smallest model size for lower
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values of 7 and the greatest model size for larger values of z. Over the range of ¢ the
Lowdin method moves above X at around exp(3.5), reaches a peak at exp(8), and moves
below X around exp(9). Again the GS methods stay close to X, and the GPC method until
exp(9) has the smallest expected model size compared to X. The Jeffreys prior
demonstrates much different behavior. The Lowdin method for the entire range of 7 has a
much larger expected model size than the other methods. The GS, method also noticeably
exceeds the expected model size for X over all values of 7. The GS; and GPC methods
display the behavior observed for the ozone data over 7, where for lower values the
expected model size is below that of X, and above for larger values of 7. Jeffreys prior
over the range of penalty is again similar to Zellner’s prior for values larger than
approximately exp(5). The GS; and GPC methods are above X briefly for low penalty
values and then move below X for larger values. The GS, method is similar, but takes
much longer to move below X, and shows noticeable departure from X being well above
E[g,] of X for the intermediate values of penalty. Much as in the case for Zellner’s prior,
the Lowdin method presents the most extreme expected model size being well above X
until around exp(9).

At this point it serves to note that for smaller sample sizes (physical data), compared to
larger sample sizes (ozone data), the behavior of the orthogonalization method may be
less predictable or reliable. Clearly in this case the small sample size has been
problematic for the Lowdin method. The increased model size will in part be due to the
lack of separation in the residual sum of squares as demonstrated in Figures 3.7 and 3.8.
The bodyfat dataset shows noticeable separation between all the methods. This dataset
does have a large sample size, so the expected model size is not erratic, and for all
methods the shape of change is very similar. For Zellner’s prior and Jeffreys prior over 7,
all methods increase and all W methods have a larger expected model size than X. The
GS; method is the closest to X, followed by the GS; and GPC methods and finally, the
Lowdin method. Over the range of penalty the same separation and ordering as noted,
continues for Zellner’s and Jeffreys prior with the expected model size decreasing with

increasing penalty.
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Figure 3.7 Expected Model Size: Top 4 panels: Ozone data with k = 8, and n = 80. Bottom 4
panels: Physical data with k =10 and n = 27. For Jeffreys and Zellner’s priors (7= 0.5) the

plots use the same scale on the axis where p = 27(c+1).
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The crime data for Zellner’s prior shows all methods to be very similar and increasing
with 7. For Jeffreys prior over the range of 7z, the Lowdin and GPC methods are the
closest to E[g,] for X for larger values of 7, but are always above X. The GS methods are
close to X and move below around 7= 0.5. For Zellner’s prior over the range of penalty
the behavior is more dynamic compared to other datasets. The methods are all initially
similar and then between exp(4) and exp(6) the orthogonal methods move below X with
the Lowdin method attaining the smallest E[q,]. Above exp(6) the W methods move
above X with the Lowdin method attaining the largest expected model size, and GS;
staying the closest to X. Jeffrey’s prior shows decreasing behavior over the range of
penalty. The Lowdin and GPC methods stay strictly above X, while the GS methods for
smaller values are just below X and then move above X. Recall the definition of model

competition for f(y|y,X):

j
M, = min{j:Zp(i) Za}, (3.14)
i=1

where p,),..., p o, are sorted model probabilities in decreasing order and « € (0,1). If the

posterior is a point mass then provided o < 1, M, = 0, i.e. no model competition. We
record the model competition for & = 0.99, where we normalize M,, by dividing by (2).

The ozone data for Zellner’s prior and Jeffreys prior for 7 displays a concave shape for
model competition. In particular, the model competition for all values of 7 for both priors
is noticeably greater for X. The ordering of the W methods is consistent and the GS;
method has the lowest model competition followed by the Lowdin transformation, the
GPC method and finally GS;. For the range of penalty for Zellner’s prior, model
competition is strictly decreasing with X again being the largest. For Jeffreys prior,
model complexity increases slightly to a maximum around exp(4) and then decreases,
while X provides the greatest model complexity. Over the range of penalty for both
priors, the order of the W methods for increasing model complexity is the same as for 7
GS,, Lowdin, GPC, and GS,. For the physical data, the behavior between Zellner’s prior
and Jeffreys prior is very different. For Jeffreys prior over a range of 7 and penalty the

ordering of methods is the same.
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Figure 3.9 Model Competition: Top 4 panels: Ozone data with k = 8, and n = 80. Bottom 4
panels: Physical data with k =10 and n = 27. For Jeffreys and Zellner’s priors (7= 0.5) the

plots use the same scale on the axis where p = 27(c+1).
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The Lowdin method has the smallest model competition however, this is because from
Figure 3.7 it is clear that the Lowdin method for most values of 7 and penalty is close to
favoring the full model. The profile of the GPC and GS; methods for model competition
are the closest to X over the range of 7 and penalty. The GS, method shows the lowest
model competition next to the Lowdin method. For Zellner’s prior the Lowdin method is
very similar in model competition to X both over 7 and the penalty. The GPC method for
most values of 7 and penalty attains the lowest model competition. The GS methods are
intermediary to the Lowdin and GPC methods for model competition. Note that for the
plot for Zellner’s prior and 7, the GS methods are on top of each other. For the penalty
the GS; method departs from the GS, method around exp(5) and moves below GPC
around exp(6).

For the bodyfat data because # is large and used as the fixed penalty for choices of 7 the
model competition for Zellner’s prior and Jeffreys prior are almost identical. Interestingly
the Lowdin method has the lowest model competition, followed by GPC, GS; and GS,.
The Lowdin and GPC methods both stay below X for all values of z, while for values less
than 0.3 the GS methods move slightly above X. For the range of values for penalty the
model competition for values larger than around exp(5) appear similar. For Zellner’s
prior the model competition is much greater for smaller values of penalty, while for
Jeffreys prior there is a maximum around exp(2). For both priors, at large values of
penalty (>exp(7)) the GS methods move above X, and the GPC and Lowdin methods
remain very close to X. For Jeffreys prior the GS, method is closest to X, while the
Lowdin method has the lowest model competition followed by the GS; and GPC
methods. This behavior is similar for Zellner’s prior except, the GS; method remains
above GPC, and for values of penalty < exp(1.5) moves above GS,.

The crime data also shows noticeably different behavior between the priors. For choices
of 7 Jeffreys prior has a concave profile peaking around 0.6. The model competition for
X is much greater than for the W methods, where GPC has the lowest model competition
followed by the Lowdin method, GS; and GS;. Over the range of penalty there is a peak
around exp(3), and while it is not clear due to the comparison with Zellner’s prior, the
ordering is the same as for over z. For Zellner’s prior and 7, X has the largest model

competition and is noticeably larger than for Jeffreys prior.
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Figure 3.10 Model Competition: Top 4 panels: Bodyfat data with k = 13, and n = 250.
Bottom 4 panels: Crime data with k = 15 and n = 47. For Jeffreys and Zellner’s priors (7=

0.5) the plots use the same scale on the axis where p = 27(c+1).
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The Lowdin method attains the lowest model competition and for < 0.4 the GS methods
have lower model competition than GPC, and for 7> 0.4 this behavior is reversed. Over
the range of penalty the model competition between X and the W methods are not
dissimilar. As with the other datasets model competition is decreasing with increasing
penalty. The GS and GPC methods are similar, and for values of penalty less than
exp(2.5) exhibit the lowest model competition followed by the Lowdin method. For
values of penalty greater than exp(2.5) the Lowdin method has model competition lower
than the GS and GPC methods. Finally, around exp(7) all W methods are very similar
and by exp(8) this includes X also.

3.2.2 In Sample Prediction.

We now use the real datasets from above and the DIC criterion (Spiegelhalter et al, 2002)
to compare the in-sample predictive ability of X and W. We now review DIC and its
extension to include the model space. Posterior expected deviance generalizes naturally

for integration over v:

DEV = D(y) = j—210gf(y |0)(0|y)d® where 0 = (B,c°,Y) (3.15)

Extending this to assess BMA, an estimate of deviance is obtained by Monte Carlo

simulation by simulating 6; = [yj, (%), (]37)j ] sequentially as outlined.

1. Generate: y',...,y" ~ f(y]y,X)
2. Then forj = 1,...N generate: (o*) ~ f(c* |v.y.X), and (B,)’ ~ /(B, |¥'.(6*).¥.X).

By letting D(y,0) = -2 log f(y|®) we have D(y) = E[D(y,0)|y]. This means we can

estimate the deviance and its precision as

2

i[D(y,ﬂ_,-) -D(y)] (3.16)

J=1

~ L

D(y) ~ NZD(y,0 ), VID(Y)]=~ e

Jj=1

For BMA using Zellner’s prior, DIC can be estimated as
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DICr=p,+ D(y),

where p, = 3"[D,(y)~D(y,(B,,6; )1/ (v |y, X).

yel

(3.17)

where D, (y) = j ~2log f(y|0,7)/(®]y,y)d® with 0=(B,c°). B, and & are the

posterior expectations and may be replaced with other point estimates such as the median.

Monte Carlo simulation is necessary for Zellner’s prior and the required posteriors are

gt -n/2
F1y.X,0) o (c+1) 2 (yTy‘ﬁyTHvyj , (3.18)

T -1y T
where H, =X, (X, X,)" X, and

c

C
f(By’Gz |Y’y7X) = qu-H(C_

,%[yTy——yTHYy)D- (3.19)

[NSRIN

+1

2
n €O T -1
,— (X, X 1G
b, c+1( X0 J ( c+1

If the sample size is large or the prior is very weak as in Jeffreys prior, we can estimate

DICr as

DICr = 2E[g,] + 4+ > . D(y,(B,,6))f (¥ |y.X), (3.20)

yell

without the need for Monte Carlo simulation where again ﬁ , and (35 are the required

posterior expectations. The required posterior and expectations are

Srly.X) oc(ij ’ (y'y-y'Hy) 2, (3.21)
2

and

EB, 07,7,y X) =B, and E(c* |7,y,X) = (y"y -y H,y)/(n-2). (3.22)

Notice that (3.20) is equivalent to the model averaged AIC. For the most part, (3.17) and

(3.20) will be close to minimum when the probability mass of the posterior degenerates
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to 1. This occurs when the posterior selects the model that is most likely according to
DIC, and the expectations of the posterior distributions for p and o* coincide with the
maximum likelihood estimates. We compare all four methods of orthogonalization
against X for a range of values in 7 using the constant Bernoulli prior for y, considering a
range of values of ¢ and p for Zellner’s and Jeffreys prior respectively. The results are
done using the exact posterior for y. Thus, in the case of Jeffreys prior the results are
exact. For Zellner’s prior the DIC was estimated via Monte Carlo simulation with the
standard deviation kept to at most 0.05. The calculation of DIC is implemented using the
code Zellner.m and Jeffrey.m in Appendix D.

Figures 3.11 and 3.12 summarize the results of the DIC comparison. The grey band is the
DIC value using X £5, and represents a zone of indifference or equivalence. This is
suggested to be a rough indication that there is no real difference between two different
methods (Spiegelhalter et al, 2002). For the ozone data and Jeffreys prior, the only W
method that falls outside the equivalence zone is GS; when 7 < 0.3 and the penalty is
between exp(7) and exp(9). All other methods are comparable, and using DIC to rank the
methods, GS; is consistently the closest to X. For Zellner’s prior over 7 all W methods
are within £5 of X, while the GS; method again falls outside the equivalence zone for
penalties between exp(7) and exp(9). There is also very different behavior between
Zellner’s prior and Jeffreys prior for different choices of penalty due to the c¢/(c+1) term
in f(y|y,X)for Zellner’s prior. Thus, for the ozone data GS,, GPC and the Lowdin
methods appear suitable choices of orthogonalization method.

For the physical data using Jeffreys prior the GS; method slips above X+5 forz between
0.2 and 0.3, while the GS, method goes above at the very lower limit around 7 < 0.05.
For Jeffreys prior all methods except for the Lowdin method are within the equivalence
zone. The Lowdin method remains above the equivalence zone until 7> 0.85. In terms of
penalty, Jeffreys prior for the GS; method is above X+5 from exp(4.5) to exp(6.5), and
for values greater than exp(7) and exp(8) the GS, and Lowdin methods also go above

X+5 respectively. The GPC method remains within the equivalence zone.
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Figure 3.11 DIC: Top 4 panels: Ozone data with k = 8, and n = 80. Bottom 4 panels:

Physical data with k = 10 and n = 27. Grey regions represent DIC of X +5. For Jeffreys and

Zellner’s priors (7= 0.5) the plots use the same scale on the axis where p =2a(c+1).
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Figure 3.12 DIC: Top 4 panels: Bodyfat data with k = 13, and n = 250. Bottom 4 panels:

Crime data with k = 15 and n = 47. Grey regions represent DIC of X +5. For Jeffreys and

Zellner’s priors (7= 0.5) the plots use the same scale on the axis where p = 27(c+1).
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For Zellner’s prior over a range of penalty the GS; and GPC methods remain within the
equivalence zone, while the GS, method moves above the equivalence zone after
exp(5.6). The Lowdin method is above X+5 for penalty > exp(2.5) and shows dramatic
increasing behaviour > exp(8). For the physical data the most consistent method appears
to be the GPC method.

For the bodyfat data the sample size is large (n = 250), and so the DIC of Jeffreys and
Zellner’s priors for choices of 7 is very similar. In both cases the GS, method is the
closest to X followed by the GPC and GS; methods, and then finally the Lowdin method.
Both the GS, and GPC method remain within +5 of X for all values of 7 for Jeffreys prior
and Zellner’s prior. The GS; method is above X+5 for 7< 0.2 and the Lowdin method is
above X+5 for 7 < 0.35. For choices of penalty the GS, method stays within +5 of X for
both Jeffreys prior and Zellner’s prior. The next closest GPC, moves above X +5 for ¢ >
exp(8) for Jeffreys prior and Zellner’s prior. The GS; and Lowdin methods both move
above X +5 for both Jeffreys prior and Zellner’s prior when ¢ > exp(6). GS, and GPC
appear to be the best suited W methods for the bodyfat data.

For the crime data and Jeffreys prior, a number of methods fall below X, but not outside
the equivalence region. For choices of 7, the GS; method has the lowest values of DIC,
followed by the GPC, GS; and Lowdin methods. For choices of penalty less than exp(4),
the closest methods to X are the Lowdin and GPC followed by the GS methods. For
choices of penalty greater than exp(7), the methods in order of descending DIC are; GPC,
Lowdin, GS; and GS;. In particular, around exp(9) the GPC and Lowdin methods move
above X +5. For Zellner’s prior the order of methods is similar to Jeffreys prior although,
the values of DIC are above that of X. The closest method to X is GS, followed by GPC,
GS; and the Lowdin transformation. Again all methods remain within the equivalence
region. For choices of penalty under Zellner’s prior the GS, method stays the closest to
X, followed by the GPC, GS; and Lowdin methods. Around exp(8) all W methods move
above the X +5 boundary. It is reasonable to suggest that all W methods are suitable for
use with this dataset.

In general when the sample size is large and ¢ = n the value of DIC over values of 7 are
very similar. When # is small, Zellner’s prior tends to larger values of DIC due to

increased model competition. This behavior is also evident by the larger values of DIC
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for smaller values of c. Again the c/(ct+1) is responsible for the increased model
competition. Also notice that for Zellner’s prior the values of DIC decrease more rapidly
for the larger datasets, such as for the ozone and bodyfat datasets.

Overall it appears that the GS, method does remarkably well in attaining similar values of
DIC compared to X. The GPC consistently performs well, which is no surprise, given its
previous use in the literature. The GS; method performs moderately well however, the
Lowdin method has turned out to be much less effective than hoped. Apart from the
Lowdin case under Zellner’s prior for the physical data, the W methods appear very
competitive with X, except for some methods with extreme choices of 7 (i.e. near 0 or 1),
or extreme choices of penalty.

While DIC indicates comparable in-sample predictive ability, it is possible for the models
to produce quite different predictions. Model checks can be performed using the posterior
predictive distribution (PPD), which for Zellner’s prior is

- > 1 c
Sy, X, X,0) = T(n,uy,;[yTy —myTHyy]Eyj, (3.23)

. _ C groyrT 1Y S c &
where: Ey—[lm+me(XyXy) Xy}, HYZXY(C+1BJ and H7=X7(X§XY)X§.
For Jeffreys prior the PPD is

(y'y-y'H,y)
n

fE 17y, X.X) = T(n,XyBy, [, + X} (X;X,)" XY]J . (329

See Appendix B for the derivation of (3.23) and (3.24). For model checking we set X =

X, and use the following quantities. Let F; and F, ' be the corresponding posterior

predictive CDF, and inverse CDF averaged over y respectively for the i-th response. The

probability of being more extreme than y; is

min{F, (y,).1 - F, ()} (3.25)

If (3.25) is very small for many observations then the model may be inadequate.

Predictive coverage (PC) for an observation y; is defined as
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PCi = }[[ﬂ’l(a/Z),E’l(lfa/Z)](yi) ’ (3.26)

where « indicates the probability contained in the tails and 15 denotes the indicator

function for the set A. Thus, PC indicates whether the (1-«) equal-tail PPD interval
contains y;. Predictive coverage can then be summarized for all n as (l/n)Z:j:1 PC, .

Finally, the probability of observing a more extreme value than a statistic of y such as the

median, minimum, and maximum, can be used to check model adequacy. Let 7 be the
observed statistic of y, and /,,...,i7, represent m samples of this statistic generated by

simulating m samples of y from the PPD averaged over y. The probability of observing a
more extreme value is:

mind L3 @3 0. G2)
Much like (3.25) a small value indicates model inadequacy. While the measures (3.25) —
(3.27) cannot be used to categorically distinguish between competing methods, these
checks do provide an indication of comparability. The results from the datasets above are
extensive and as such are not provided in this thesis but may be obtained from the author
if required. The code used for model checking is provided in Appendix D under
ModelCheck.m.

Cases where the DIC of X and W were comparable were found to be similar using Model
checking. Predictive coverage was typically the same, we used « = 0.05, varying by only
one or two observations. The tail probabilities (3.25) were typically acceptable and for
some observations these values were similarly good or bad for X and W. In other cases X
had better values of (3.25) for some observations compared to W and vice versa. The
values of (3.27) were checked for the minimum, maximum and median. Again, the values
were typically very similar between X and W. For cases where the DIC of the W
methods moved outside the equivalence region, the model checking statistics indicated
some difference between X and W. Specifically, the main difference was the proportion
of low tail probabilities for observing a value more extreme than the observed response.

Under W this proportion of values increased greatly when W moved well outside the
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equivalence region. In extreme cases when the posterior supported the null model due to
extreme choices of penalty, the inference from model checking was poor. This agrees
with the results of DIC. This extensive analysis while having not indicated W is better
than X has definitely provided strong evidence that when modeling y using model
averaging, an appropriate orthogonal transformation will provide equally comparable
inference. These results are definitive for the datasets we have investigated however,
there is no reason why we cannot assume these results will generalize to other real

datasets analyzed using the Bayesian linear regression model.

3.3.3 Data splitting

As we have already discussed variable selection is not possible using W. However,
according to DIC, the use of W instead of X for fitting the response using BMA is
comparable and competitive. DIC is a measure for in-sample prediction however, there is
also out-of-sample prediction to consider. The main problem with using W instead of X
for out-of-sample prediction is the additional variability introduced by A. This extra
variability results in out of sample prediction less accurate for W than for X, and the
study in Cripps et al (2006) demonstrated this very point. Most studies use data splitting
to determine out of sample predictive accuracy. Thus, a training sample is used to
estimate regression coefficients and model weights, which are then used to fit a response
with the remaining samples of X. Some distance measure between the fitted response and
the remaining observations provides an indication of accuracy. While we haven’t found
any studies to support this point, it is reasonable to suggest that the larger the data
partition for X then the greater the variation in A and consequently W. This in turn
indicates that using leave one out cross-validation methods for detecting outliers may be

less reliable. The conditional predictive ordinate (CPO) is a leave one out measure using
the PPD for outlier detection. In (3.23) or (3.24) setting y = y, and X = x, where x; is the
i-th row of X, and y =y_; and X = X, the remaining data will give the CPO measure. This
represents the probability of observing y; conditional on the remaining data. A low value
indicates a potential outlier. When using X it is possible to use MCMC output to estimate
the CPO value without explicitly leaving out the i-th observation. From Gelfand and Dey
(1994) let 0 = (v,B,, 0. ) then
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CPO, = (3, |y X X)) = Imf(ﬁ\y)dﬂ , (3.28)

which can be approximated using MCMC output for ('y,By,O'Y2 ). This derivation relies

on the conditioning on X as the retained values in X are the same, irrespective of the
observation omitted. In constructing W we require A thus, this same property does not
apply when using W. One could assume A does not change by constructing A from the
full matrix. Either way, it is reasonable to assume for a large sample size and the
minimum leave one out should provide the smallest variations in A so that hopefully
outlier detection using CPO is comparable between X and W. This is clearly a direction

for future research.

3.4 Summary

We have reviewed a numerical example of the update probabilities for the Gibbs sampler
for X and W to demonstrate the difference between non-monotone and monotone
orderings. This partial ordering follows the nested model structure for model comparison
in linear regression.

We reviewed orthogonalization methods beginning with a common method known as
generalized principal components. Following this, we recommended that if singular value
decomposition is used to obtain an orthogonal predictor matrix, then the Lowdin
transformation should be employed instead. This is because the Lowdin transformation is
based on SVD and minimizes the distance between X and W, with respect to the L
matrix norm. Discussions from previous literature suggested the Gram-Schmidt
transformation method might prove useful, but no methods for ordering X prior to
transformation were given. We use the modified GS approach, and provided two methods
for ordering the columns of X prior to transformation. We recommend a naive method
based on correlation with y, and another method partly inspired by partial least squares,
obtaining an order which accounts for the correlation structure in the predictors and with
y. This allowed us to use the GPC as a benchmark from the literature, and to trial three

new methods in the context of model averaging with an orthogonal predictor matrix.
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From this point we moved into numerical work. Using the ozone data set, we provided an
example of the posterior distributions for y, along with the MIP, the fitted model
averaged response, and the matrices required to transform X, into Wy. This example
demonstrated the posteriors can vary noticeably between the orthogonal methods, and are
not directly comparable with each other or the posterior for X. The fitted model averaged
values of y are also very similar between X and the orthogonal methods. While there is a
relation between the mixing coefficients in A and the MIP probabilities of the columns of
W, there appears to be no coherent way to use this information to obtain quantities that
reflect the marginal inclusion probabilities in the X space. We then considered the effect
of using W has on the posterior distributions of parameters such as B and o 2 In
particular, the partial ordering required for the Gibbs MC relies on certain properties of
point estimates under the posterior distribution for  and o

The plots of the residual sum of squares for the four datasets; ozone, physical, bodyfat
and crime, indicated the degree of shrinkage effect that can be obtained by moving to the
W space. In particular the distinction between “poor” and “good” models becomes much
clearer. As a result, the posterior model probabilities under W are more focused towards
a particular subset of models. The difference between Zellner’s prior and Jeffreys prior
with respect to ¢ and p was demonstrated by the shrinkage term. Due to the ¢/(c+1) term
in the posterior for Zellner’s prior in the residual sum of squares in the posterior for v,
using Zellner’s prior flattens the distribution of the residual sum of squares for small
values of ¢. We noted that while using W can focus the posterior mass, we would prefer
this not be at the expense of using more predictors than X. Studies of the expected model
size indicated the X and W are generally comparable for the average number of
predictors used. The physical dataset did show a large difference between the Lowdin and
the other orthogonalization methods, and the bodyfat data also showed some separation.
The comparison of model competition provided confirmation of the shrinkage effect
obtained by the residual sum of squares. It also again showed the difference, between
Jeffreys and Zellner’s prior for smaller choices of penalty. Specifically, the model
competition for small choices of penalty for Zellner’s prior is much greater than for

Jeffreys prior, even for large sample sizes.
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DIC using the plus or minus rule of 5 indicated that for the most part, the orthogonal
methods were equivalent to using X for modeling the response. This provides good
evidence that if we wish to model the response, and are not concerned with variable
selection, then we may use a monotone CFTP Gibbs sampler to generate i.i.d. samples

from f(y|y,X). It seems reasonable to suggest that the results and comparison are much

more stable for larger sample sizes as indicated by the ozone and bodyfat data. The GPC
method is well justified in its use in the literature, performing consistently well. Of the
three new methods the GS; method proved to be very competitive and certainly on par
with the GPC method. The GS; method did not perform particularly well in general, and
the Lowdin transformation also performed rather poorly in terms of DIC compared to X.

We also provided a brief discussion of out of sample prediction using W. Further
research is required to determine if, under any circumstances, such as a large ratio of n to
k, will allow W to be competitive for out-of-sample prediction for y. It also appears that
unless simplifying assumptions are made, outlier detection using the CPO measure is not

straight forward as it is when using X.



CHAPTER 4

GIBBS SAMPLING

"A statistical analysis, properly conducted, is a delicate dissection of

uncertainties, a surgery of suppositions."

- M.J. Moroney

In this chapter we investigate the effect of sampling. Specifically, we compare the
computational time for the standard and orthogonal Gibbs samplers and the perfect
sampler. We monitor convergence of estimators per sample, and the convergence in
distribution per sample and in real time. A larger simulation study is undertaken to
compare the sampling methods for larger choices of &k and n. We also explore factors
affecting the BCT, which is heavily related to the efficiency of any monotone Gibbs
CFTP. The factors affecting the BCT are information, and choices of hyper-parameters.
Finally, we consider two larger datasets and generate samples using the three different
approaches, analyzing the data as an analyst would in the real world. As part of this
analysis we record cpu-time, exploration of I, effective sample size, predictive coverage,

DIC, MIP, and tail probabilities for the minimum and maximum ofy.

4.1 Algorithms and Computation

We now review the algorithms used in this chapter along with a discussion of
computational aspects for calculating the Gibbs update probability. The computation of

the hat matrix and/or the least square estimates requires the most computational effort due
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to the (Xg XY)’1 term. In the case of an orthonormal matrix there is no requirement to
find this inverse as it is 1, and the hat matrix simplifies to WYWYT . In general, for an

orthogonal matrix W(W' W)W’ is a sum of the individual projection
matrices W,(W/W,)"' W | The pseudo code for a monotone CFTP Gibbs sampler for

f(y]y,X) is given in Algorithm VII.

Algorithm VII: Monotone CFTP Variable Selection Gibbs Sampler.

Set: coalescence = false.
Set: 7=-1.

While coalescence = false

Set: T=2T
Set: (y9)r = {1}, and (")r = {0},
Fort={T,...,-1}

Fori=1,..,k

Generate: (u,),,, ~U(0,1).
Compute: &, =Pr((7; ), =11 (¥5) 01> (12),,¥,X)
Compute: &, = Pr((7/), =11 (15),0s (15),.¥.X)
If (u; )1 < o

Set: (v,7"),., =1.
Else if (u; )1 > o

Set: (v,71),., =0.
Else

Set: (¥),,, =1,and (y/),,, =0

@)=

Set: coalescence = true
Else

Set: coalescence = false
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To manage the notation we have split y.; into those components already updated at time ¢,

and those yet to be updated, so let y_, represent those components with indices in
{l,...,i —1}andy_, those components with indices in {i +1,...,k} . Note if i = 1 then there is
no y_, and if i = k there is no y_,. Recall we must reuse the random number u,. To

simplify the computations in the orthogonal case we can pre-compute:

-1

nl/2
— cviH.
Pr(y, = 117,39, X) = | 1+ /e 1) . ’{1— ay 2.y ] . @D
T

y'y-cy'H, .y

so in this case we can pre-compute /(¢ +D)[(1-7)/7], y'y, ¢, =c/(c+1), n/2 and for

each column of W, y'H,y =y W, W/y.

Algorithm VIII: Variable Selection Gibbs Sampler.

Set: y, eIl
Fort=1,....N:
Fori=1,. .,k

Generate: u ~U(0,1).

Compute: o =Pr((7; )., =11 (Y.) > (V2)5 Y- X)

fu<fa

Set: (7,),,, =1.
Else

Set:(,),,, =0

In the case of X we can perform as follows:

n/2

L 4.2)

Y:=0

T ~_ T -1
1- -V, A _V

Pr(y, =117,y,X) = | 1 fle + 1)t 23t R
T |y y—clvy’:OAyi:Ov
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where again we pre-compute M[(l— 0)/7], vy, ¢, =cllc+1), n/2, as well as v =
X'y and A = X"X.

Beyond this, any further speed in the case of X requires the use of additional methods for
decomposing X"X. Smith and Kohn (1996) recommend using update procedures for the
Cholesky decomposition which is not easily implemented. Recent work by Eklund and
Karlsson (2007), use a simulation study and found that increased speed can be obtained
using Cholesky factorization and the sweep algorithm. We have employed all the usual
tricks to improve the speed of updating for the standard Gibbs sampler, including using
the centered matrix X, which can help to reduce dependence between components, and

improve the convergence of the Gibbs sampler.

4.2 Convergence and efficiency

Using the four datasets from the previous chapter, we now investigate the rate of
convergence of the standard Gibbs sampler, the perfect version and the Gibbs sampler
using W. To avoid the added complication of assessing burn-in for each standard Gibbs
chain in X and W, we draw starting points according to the true posterior distribution,
and use multiple chains. We use an orthogonalization method that performed well
according to the DIC, which we have taken as the GS, method. We have used Jeffreys
prior over Zellner’s, mainly for computational simplicity. All work for this chapter was
conducted on a stand-alone Compaq Presario 2500 laptop, running Mircosoft windows
XP, with Maltab 7.0, using an Intel Celeron 2.60Ghz processor with 512 MB of RAM.
This is done to help ensure some consistency in the recorded running times of the

sampling methods used in this chapter.

4.2.1 Convergence in Distribution

The measure we use for convergence in distribution is

DIfi—fi (4.3)

where f; is the true posterior probability, and fl is the estimated posterior probability, for

state i. (4.3) is proportional to the total variation norm:
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~ 2k A
1f =S =051 f; = 7. (4.4)
i=l1

We also monitor the convergence of the expected number of predictors included, DIC,
and the BMA fitted value for the first observation. The study was then run by selecting
starting points according to the true posterior distribution for the standard Gibbs samplers
for X and W. Then for each dataset for the three sampling methods, a chain of 50000
sample points was generated 100 times. For each chain the (4.3), E[gq,], DIC, and BMA
¥,» is updated every 1000 iterations for every chain. Figures 4.1 — 4.4 show these results.

We can see that of the three methods, the rate of convergence in distribution and the other
quantities is essentially equivalent for the exact sampler and the orthogonal Gibbs
sampler. This is not to suggest that the orthogonal Gibbs sampler is generating 1.i.d.
sample points, but certainly updating every 1000 sample shows little difference in
convergence. For the ozone, physical, and crime datasets, the orthogonal Gibbs sampler
appears to be converging approximately twice as fast as the standard Gibbs sampler. The
convergence rates per sample are much closer between the orthogonal and standard Gibbs
sampler for the bodyfat data.

The fact that the orthogonal Gibbs sampler shows very little dependence can be
confirmed by checking the auto-correlation function. As k increases, some small
differences do appear between the orthogonal Gibbs sampler and exact sampling for
convergence. This is due to the increased size of the state space. The most noticeable
effect is a longer persistence in variability surrounding the estimates of E[g,], DIC and for

the BMA y,. The standard Gibbs sampler clearly converges much more slowly than
either of the methods in the W space. As a result so do the estimates of expected model
size, DIC and BMA y,. The difference in the rate of convergence between X and W, is
partly controlled by the difference in model competition or equivalently, how much more
concentrated the posterior mass for W is compared to X. The bodyfat data has the closest

values of model competition compared to X, while the crime data has the largest.
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Figure 4.1 Convergence in distribution and various quantities for the ozone data using

Jeffreys prior with a uniform prior for y, p = 2z(n+1) and the GS; method for obtained W.

Top 4 panels opposite is for the standard Gibbs sampler for X, bottom 4 panels opposite is

for the monotone exact sampler using W, and the 4 panels above is for the standard Gibbs

sampler with W.
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Figure 4.2 Convergence in distribution and various quantities for the physical data using
Jeffreys prior with a uniform prior for y, p =2s(n+1) and the GS; method for obtained W.
Top 4 panels opposite is for the standard Gibbs sampler for X, bottom 4 panels opposite is
for the monotone exact sampler using W, and the 4 panels above is for the standard Gibbs

sampler with W.
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Figure 4.3 Convergence in distribution and fvarious quantities for the bodyfat data using
Jeffreys prior with a uniform prior for y, p =2z(n+1) and the GS; method for obtained W.
Top 4 panels opposite is for the standard Gibbs sampler for X, bottom 4 panels opposite is
for the monotone exact sampler using W, and the 4 panels above is for the standard Gibbs

sampler with W.
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Figure 4.4 Convergence in distribution and various quantities for the crime data using
Jeffreys prior with a uniform prior for y, p =2s(n+1) and the GS; method for obtained W.
Top 4 panels opposite is for the standard Gibbs sampler for X, bottom 4 panels opposite is
for the monotone exact sampler using W, and the 4 panels above is for the standard Gibbs

sampler with W.
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The bodyfat data has the smallest difference in the rate of convergence of all datasets and
the crime data has the largest. In all cases as k becomes larger and the state space

increases in size, the value of (4.3) increases which is to be expected.

4.2.2 Convergence in real time

The results above indicate that on a per sample basis, the standard Gibbs sampler with an
orthogonal predictor matrix and the exact sampler are by far the best approach,
converging similarly to the posterior distribution for y. However, the reader may note that
each approach requires different amounts of time to complete the required computation.
Thus, a useful addition to the above investigation is to look at the convergence to

f(v|y,X) in cpu-time. To this end, Figure 4.5 shows the median convergence statistic

for each dataset for each of the three methods plotted against the cpu-time in seconds
required to generate the number of samples used.

It is clear that after taking into account the computing time, the orthogonal Gibbs sampler
is by far the best approach, as it has the superior convergence properties of an orthogonal
design matrix and minimal computing time. For the ozone data the Gibbs sampler in X
required 5.26 seconds of cpu-time per 1000 sample points, the orthogonal Gibbs sampler
1.65, and the exact sampler 5.57. For the physical data the standard Gibbs sampler used
6.93 seconds of cpu-time per 1000 sample points, while the orthogonal Gibbs sampler
required 2.04, and the exact sampler 8.39. For the bodydata the Gibbs sampler with X
used 8.70 seconds of cpu-time per 1000 sample points, the Gibbs sampler with W used
2.72, and the exact sampler used 9.36. Finally, for the crime data the standard Gibbs
sampler required 11.31 seconds of cpu-time per 1000 sample points, the orthogonal
Gibbs sampler 3.16, and the exact sampler 12.33. In general as k increases, more
computing time is required and overall perfect sampling requires the greatest amount of
computing time.

Interestingly the computing times between the perfect sampler and the Gibbs sampler
using X are very similar. For these examples, the expected backwards coupling time is
close to 2, although slightly larger for the physical and crime datasets where the greatest

difference in computing time between the perfect sampler and the standard Gibbs sampler
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occur. Thus, from the study here, the orthogonal Gibbs sampler is approximately four

times as fast as the standard Gibbs sampler.
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Figure 4.5 Convergence in cpu time for the four data sets.

As such, because the initial recursion of the perfect sampler is equivalent to four steps
with the orthogonal Gibbs sampler, the exact sampler and standard Gibbs sampler are
essentially equivalent in terms of computing time. The difference that has made the exact
sampler take slightly longer than the standard Gibbs sampler is of course, those BCT
which are greater than 2. This suggests if the BCT is extremely close to 2, then
generating a single sample point for X is comparable to computing a single sample point
using perfect sampling for W. Again we note it may be possible to improve upon the
computation time of the Gibbs sampler using Cholesky updates, or the sweep algorithm.
Clearly if the mean BCT was to increase dramatically, then the computational viability of
the exact sampler compared to the Gibbs sampler in X may be called into question. This
suggests knowledge of conditions that impact the BCT may prove useful in determining a

choice between using the standard Gibbs sampler, and perfect sampling. Ultimately
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however, the standard Gibbs sampler using W will always be the fastest of the three
methods. The performance of the orthogonal Gibbs sampler does bear consideration.
Despite providing well approximated samples, the orthogonal Gibbs sampler nonetheless,
requires a burn-in assessment. Thus, it seems prudent to recommend a hybrid approach
between perfect sampling and standard MCMC. In particular, we use the monotone Gibbs
CFTP to identify a starting point as time zero, and then allow the single Gibbs chain to
continue forwards. This compromise takes full advantage of the reduced computing time
of the orthogonal Gibbs sampler, and the use of exact sampling to remove the burn-in
problem. The hybrid method will supplant the orthogonal Gibbs sampler in the following

section.

4.2.3 Computational efficiency

To add to the analysis of computational time because the previous analysis involves
relatively small datasets, we investigate the computational time involved in using a larger
number of predictors and sample sizes. This study required simulation of multiple
datasets. We use combinations of k£ = {30, 40, 50}, and » = {50, 100, 250, 500, 1000}.
Within each choice of & the size of the true model was also varied according to v =
{0.25k, 0.5k, 0.75k}. The simulated datasets did not have any extreme correlations
introduced, as such, the correlation between predictors was typically between -0.4 and
0.4. For each case we generated 100 datasets and generated 50000 sample points. We use
the standard Gibbs sampler on X (Gibbs), the hybrid method using the orthogonal Gibbs
sampler (Hybrid) and the monotone CFTP Gibbs sampler (Exact). The median cpu-time
to generate 1000 samples for each combination, along with the expected BCT for the
exact sampler is recorded in Tables 4.1a-c. The focus is on computing time, so we do not
include burn-in assessment for the standard Gibbs sampler. Clearly however, removing
an initial run of values will increase the cost of the remaining sample points. Thus, the
values reported are like a lower limit for the cpu-time per sample. The standard Gibbs
sampler is started from randomly chosen values of y. Note we use the same priors and

parameter specifications as in section 4.2.1.
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Table 4.1a Computation time for the 3 sampling methods using simulated data, k =
30, n = 50, 100, 250, 500, 1000 and v = 7, 15, 23. The GS, method was used to

orthogonalize the simulated data.

i i y cpu-time (seconds)/1000 sample points
Exact (BCT) Gibbs Hybrid

7 70.50 (5.14) 22.44 5.51

50 15 74.38 (5.44) 25.41 5.56

23 65.34 (5.29) 29.91 5.62

7 35.42 (3.31) 22.24 5.53

100 15 36.31 (3.39) 25.37 5.60

23 34.63 (3.36) 29.09 5.57

7 28.64 (2.87) 22.72 5.67

30 250 15 29.94 (2.93) 25.20 5.59

23 28.03 (2.82) 29.89 5.62

7 24.42 (2.43) 22.02 5.61

500 15 25.13 (2.59) 25.60 5.69

23 23.98 (2.36) 29.61 5.64

7 23.41 (2.07) 22.73 5.68

1000 15 24.37 (2.32) 25.41 5.78

23 22.26 (2.11) 29.55 5.76

Table 4.1b Computation time for the 3 sampling methods using simulated data, k =
40, n = 50, 100, 250, 500, 1000 and v = 10, 20, 30. The GS; method was used to

orthogonalize the simulated data.

i " y cpu-time (seconds)/1000 sample points
Exact (BCT) Gibbs Hybrid

10 160.8 (9.43) 31.45 8.03

50 20 164.9 (10.74) 34.91 8.05

30 157.1 (9.46) 39.67 8.06

10 65.02 (6.12) 31.83 8.06

100 20 66.31 (5.41) 34.01 8.05

30 62.63 (3.26) 39.86 8.06

10 38.24 (3.40) 31.72 8.03

40 250 20 38.94 (3.53) 34.03 8.10

30 37.03 (3.44) 39.10 8.05

10 31.42 (3.13) 31.74 8.09

500 20 32.03 (3.32) 34.18 8.04

30 29.98 (2.96) 39.59 8.08

10 25.41 (2.37) 31.59 8.05

1000 20 26.37 (2.40) 34.78 8.06

30 24.26 (2.29) 39.82 8.09
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Table 4.1c Computation time for the 3 sampling methods using simulated data, k =
50, n = 50, 100, 250, 500, 1000 and v = 12, 25, 38. The GS; method was used to

orthogonalize the simulated data.

i i y cpu-time (seconds)/1000 sample points
Exact (BCT) Gibbs Hybrid

12 269.5 (14.8) 43.12 10.11

50 25 277.0 (16.3) 47.76 10.15

38 265.8 (14.6) 51.22 10.18

12 97.62 (7.40) 43.53 10.14

100 25 99.01 (8.01) 47.92 10.16

38 97.55 (7.43) 51.31 10.20

12 46.97 (4.17) 43.08 10.17

50 250 25 47.84 (4.34) 47.93 10.19

38 46.11 (4.03) 51.11 10.21

12 37.42 (3.21) 43.88 10.14

500 25 38.03 (3.45) 47.89 10.15

38 36.98 (3.33) 51.13 10.20

12 31.41 (2.33) 43.34 10.18

1000 25 33.37(2.43) 47.45 10.19

38 30.26 (2.34) 51.32 10.21

We can see the following patterns emerging. The hybrid sampler is unaffected by
increasing sample size, and the number of predictors in the true model, but increases with
increasing k. In particular, there is an approximate 2.2 second increase in cpu-time from k
= 30 to 40, and from 40 to 50. The standard Gibbs sampler is also unaffected by
increasing sample size however, it is affected by k£ and v. This is due to the calculation of
the inverse covariance matrix. With increasing & this calculation requires more time and
while sampling is proceeding, if the size of the true model v approaches the size of &, then
on average the repeated calculation of the inverse requires more time. Compared to the
orthogonal Gibbs sampler the standard Gibbs sampler for small v can require 2-3 times
the required cpu-time, and for large v around 4-5 times the required cpu-time.

The patterns exhibited by the exact sampler require a bit more thought. The first is that
with decreasing n and increasing k, the necessary computing increases due to an increase
in BCT. The use of v complicates the relationship further. When v is close to & or 0, the
BCT decreases reducing the amount of cpu-time required. However, the algorithm is also

coded to take advantage of monotonicity so if the updated component is set to 1 for the
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lower chain, then the upper chain is also set to 1, without the need for computation. This
means the cpu-time should also be decreasing with increasing v as more components will
be 1 according to the lower chain. It is the interaction between these two aspects that
results in the increase, and slightly larger decrease, in cpu-time as v increases towards £.

The hybrid sampler is the most efficient method. Further, the results above agree with the
previous results that the perfect sampler is competitive with the Gibbs sampler for X
provided the BCT is close to 2. However, once burn-in is taken into account, the balance
of efficiency will likely shift towards the exact sampler. This also provides an indication
of how k and n affect the BCT namely, as the number of predictors increases or the

sample size decreases towards k the BCT increases.

4.3 Backwards Coupling Time

With the computational and convergence aspects investigated, we now move to
investigate the BCT, information, and the probability of coalescence, which are unique to

exact sampling and affect the efficiency of the exact sampler.

4.3.1 Information and BCT

We now investigate how information, and choices of hyper-parameter, affect the
backwards coupling time. Large BCT means the perfect sampler will be less
computationally competitive with the orthogonal Gibbs sampler. In assessing information
we use entropy. The measure of entropy for a univariate probability mass function is

called the Shannon entropy. For the natural logarithm (nat units), the Shannon entropy of

Srly.X) is

H) == f(y1y.X)log f(v]y.X). (4.5)

yell

We clarify now that as the measure of H becomes larger the entropy is increasing, which
implies the uncertainty associated with the corresponding random variable is also
increasing, corresponding to less information. We use the real datasets, and calculated
(4.5) for Zellner’s prior and Jeffreys prior for choices of ¢ and 7z, and we use all four

methods for obtaining W. The results are shown in Figures 4.6-4.9.
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Figure 4.6 Entropy of f(y|y,X)for the ozone data as penalty (C or p) increases for choices

of 7. The top four panels are for Zellners' prior and the bottom four are for Jeffreys prior.
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Figure 4.7 Entropy of 1(y |y, X)for the physical data as penalty (C or p) increases for choices

of 7. The top four panels are for Zellners' prior and the bottom four are for Jeffreys prior.
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Figure 4.8 Entropy of 1 (y|y,X) for the bodyfat data as penalty (C or p) increases for choices

of 7. The top four panels are for Zellners' prior and the bottom four are for Jeffreys prior.
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Figure 4.9 Entropy of f(y|y,X) for the crime data as penalty (C or p) increases for choices

of 1. The top four panels are for Zellner’s prior and the bottom four are for Jeffreys prior.
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Figure 4.6 shows the entropy using (4.5) for the ozone data. The entropy decreases as ¢
gets larger, and as 7 increase the curve moves further to the right showing a peak in the
extreme case of 7= 0.9. Notice that the entropy curves are all extremely similar for all
orthogonalization methods. The entropy curves for the physical data show similar
behavior to that of the ozone data for choices of 7 and penalty. However, the entropy
shows increased variability, and some differences have appeared between the W
methods. The most notable difference between the methods is the Lowdin, which shows
much lower entropy for small values of penalty for both Zellner’s prior and Jeffreys prior.
The behavior of the entropy at lower values of penalty is most noticeable for Jeffreys
prior.

For the bodyfat data again the Lowdin method stands out as having much less entropy
over moderate choices of penalty than the other W methods. This applies to both
Zellner’s prior and Jeffreys prior and again, lower values of penalty for Zellner’s prior
produces more variability in the values of entropy. Similar changes in entropy to the
previous datasets over 7 and penalty are also exhibited. Finally, for the crime dataset
while the entropy profiles appear slightly more erratic than for previous datasets, we
observe similar profiles within each prior for all W methods. Again we see the flattening
aspect for lower values of penalty for Jeffreys prior compared to Zellner’s prior. It is
clear the entropy is decreasing for extreme choices of 7 and penalty, and that entropy is
similar to the model competition statistic introduced in Chapter 1 and used in Chapter 3.
Both measures provide some indication of the concentration of mass in the posterior,
although the model competition measure has a more direct interpretation. With the
indications of entropy in mind, we now investigate the BCT.

We do not have a closed form expression to provide the parameter of a geometric
distribution to describe the distribution of backwards coupling times. We explore choices
of 7 with the penalty fixed at ¢ = n for Zellner’s prior and p = 2z(n+1) for Jeffreys as
before, and choices of penalty with 7 fixed at 0.5. From Figures 4.10 and 4.11 we can see

that in general, the BCT varies between the datasets and W methods.
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The differences can be attributed predominantly to sample size and information as the
physical data has the smallest sample size (27) and ratio of n:k (2.7) followed by the
crime data with 47 and 3.13. The larger datasets, ozone with n = 80 and a ratio of n:k of
10, and bodyfat with 250 and 19.2 both have BCT very close to 2. This indicates that for
datasets with » much larger than £, the BCT of the perfect sampler will be minimal. In all
cases for choices of 7and penalty the BCT displays convex behavior.

For choices of penalty with 7 fixed at 0.5, we see the BCT increases as 7 increase from 0
and then decrease again while approaching 1. This represents increasing and then
decreasing model competition, which is increasing and then decreasing entropy. For
choices of penalty, again as the penalty increases the BCT increases. As the penalty
becomes more extreme, the BCT decreases. This is due to increasing and then decreasing
model uncertainty or equivalently increasing and then decreasing entropy. Thus, it is
possible to reduce the BCT of the exact sampler with extreme values of 7 or penalty.
Comparing the orthogonalization methods we can see again these results are in line with
the entropy and model uncertainty. For the ozone data, it appears that the GS, method
predominantly has smallest BCT, followed by the GPC, Lowdin and GS; methods over
both 7 and ¢, for Zellner’s prior and Jeffreys prior. For the physical data using Zellner’s
and Jeffreys prior and a choice of penalty, the largest BCT is attained by the Lowdin
method, then GS,, GS; and GPC. For Zellner’s prior and Jeffreys prior over choices of 7
the order is Lowdin method, then GS,;, GS, and GPC. For bodyfat data the Lowdin and
GS; methods again are associated with the larger BCT, and the GS, and GPC methods
smaller backwards coupling times. Finally, for the crime data the Lowdin method has the

largest BCT, with the GS;, GS, and GPC methods all relatively similar.

4.3.2 Coalescence

The BCT is related to the probability of coalescence in a single sweep of the Gibbs
sampler. This in turn, is related to the sequence of probabilities for the coalescence of
each component. The maximum probability of remaining undecided for the update of a

single component is

Pr(y, =1ly_, ={L..1}) = Pr(y, =1]y_, ={0,....0) (4.6)
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The greater (4.6) the less likely a predictor will couple to a single value, increasing the
BCT. In a sense these distances also indicate the level of dependence between
components. If the distance in (4.6) is zero for each component, then the components are
independent and the posterior is a collection of independent Bernoulli random variables.
Under orthogonal transformation these distances can become very small. However, the
value of (4.6) can never be zero as this would require the residual sum of squares to be
non-decreasing with the number of predictors, which is not true for Gaussian least
squares. We also provide the posterior for vy, to show the relation to the probability of
remaining undecided.

As 7 increases the posterior moves towards the full model, as this happens, the
probability of remaining undecided becomes more evenly spread over the predictors. Of
particular interest is when 7= 0.1, or when c is large, both producing a posterior that is
distinctly bimodal. The bimodality is a result of the penalty. The two competing models
in decimal notation are 128 and 192, and correspond to the ¥ vectors {1 000 0 0 0 0},
and {1 10000 0 0}, see Figures 4.12a-b. Thus, we observe a great detail of uncertainty
surrounding the inclusion of the second predictor in W. This results in an increased
expected BCT. This is curious as the previous results with entropy mean for this scenario
the entropy would be minimal, i.e. assuming 2 competing models with equal probability
(4.5) is approximately 0.7. However for this scenario the less overlap in terms of included
predictors the greater the BCT thus, the BCT can be influenced by model competition
even in the minimal case of two competing models. For lower values of 7 and for
intermediate values of penalty the BCT increases as the posteriors exhibit more model
competition (greater entropy) and so as a result, the probabilities given by (4.6) increase.
Clearly the BCT is influenced by the amount of information and in particular, when £ is
large and n is small the BCT increases. Choices of hyper-parameters such as 7 and
penalty that maximize model competition will also drive up the BCT. Finally, bi-
modality in the posterior for y can also produce an increased BCT due to a large

uncertainty about whether a predictor should be included or not.
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4.4 Examples

We now attempt to emulate the conditions an analyst might face in the real world. We use
two real datasets. The first is the body measurement data which records 21 body
dimension measurements as well as age, weight, height, and gender on 507 individuals.
Weight is the response variable. The second is the baseball dataset, which records 27
performance statistics for major league baseball players (excluding pitchers) in the 1991
season. The players salary in 1992 is the response variable. Further details can be found
in Appendix C. We perform the analysis using X and the GS; orthogonalization method.
We use the Jeffreys prior as n for both datasets is large, 507 and 337 respectively, and set
p = 2n(n+1) with a uniform prior on y.

For both datasets we run the standard Gibbs sampler on X, the hybrid method for W, and
the perfect sampler for W, for 100000 iterations. The Gibbs sampler for X unlike the
samplers using W, requires burn-in assessment. We used three sub chains of length
50000 to help assess convergence. We inspected the auto-correlation and partial auto
correlation functions, while applying default methods such as Gelman and Rubin's,
Geweke's, and Heidelberger and Welch's convergence diagnostics. These diagnostics can
all be implemented routinely in the software R, using the CODA package. The burn-in
was then discarded prior to inference. We record the expected model size, DIC, state
space explored, predictive coverage for y (see 3.26), and tail probabilities for the
minimum and maximum of y, using 1000 samples of y for each model sampled. These
estimates are recorded in Table 4.2.

Plots of the 95% predictive regions for y along with the fitted values (first 50
observations) using model averaging for the baseball measurement data are given in
Figure 4.14, and for the body data Figure 4.16. Plots of the estimated f(y | y, X) are given
in Figures 4.13 and 4.15. It is clear that using the orthogonal transformation is
comparable for inference about y, both from the recorded predictive coverage and from
Figures 4.14 and 4.16. The predictive coverage is the same for the baseball data, and for

the body measurement data.
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Table 4.2 Results for the Body measurement and Baseball datasets

DataSet  Method  E[g,] DIC | (%) Min Max Coverage
Bod Gibbs X 9.07 270.76 9128 (0.054) 0.16 0.12 99.6%
Ik~ g s HybridW 122 273.25 8064 (0.048)  0.17 0.12  99.4%
- Exact W 12.2 273.43 8174 (0.049) 0.17 0.12 99.4%
Basebay] GiPPSX 745 685.02 17645 (0.013) 0.10 0.13  98.8%

Hybrid W  6.30 686.46 21058 (0.016) 0.09 0.14 98.8%

WEE12 practW 630 68638  21147(0.016) 0.09 0.14  98.8%

For both datasets the difference in predictive coverage between X and W is 1
observation, this is not overly concerning given the sample sizes involved. From Figures
4.13 and 4.15 the posteriors are the same for the perfect sampler and orthogonal Gibbs
sampler. In the case of the body measurement data the posterior using X appears more
concentrated than for W, however it is possible that 100000 samples was simply not
enough to allow sufficient exploration of the state space. For the baseball data, a similar
case is presented where the posterior for X has a larger concentration of mass at the mode
for the standard Gibbs sampler. Again dependence and insufficient exploration may be
responsible.

The expected model size under the posterior varies, for the body data the expected model
size for W involves 3 more predictors than that for X. For the Baseball data, the expected
model size equates to 1 more predictor for X than W. The number of models explored,
shows that for the body data the Gibbs sampler explored more models than the
orthogonal based methods, while for the Baseball example it explored much less. The
values in brackets indicate the percentage of the entire state space explored, in all cases
less than 0.1 of a percent of the space was explored. There was slightly more variation in
the tail probabilities for the minimum and maximum however, all methods are close and
indicate adequate performance using W.

In the plots of the 95% predictive region around the fitted values shows that the response
is fitted well after averaging over the number of models explored by each sampler. In
particular in the case of each data set the differences in these plots are minor. The
posteriors for y under W for both data sets are almost identical for the orthogonal Gibbs

and perfect samplers.
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4.13 The estimated posterior for y using the hybrid Gibbs sampler (top), exact sampler

(middle) and the standard Gibbs sampler (bottom) for the Baseball data.
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4.14 The fitted response (dot and circle), observed response (blue line) and 95% predictive

interval using the hybrid Gibbs sampler (top), exact sampler (middle) and the standard

Gibbs sampler (bottom) for the Baseball data.
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For the body data the posterior for X appears much less spread than for the posterior for
W, and has a much more dominant peak at probability 0.09, while the mode for W is
around 0.035. For the baseball data again the posterior using X is much more peaked and
less spread than for W, with the maximum probability at around 0.07, compared to 0.025.
In terms of efficiency for the body measurement data the Gibbs sampler generated 41.4
samples per second of cpu-time compared to 162 for the hybrid Gibbs sampler, and 40.1
for monotone Gibbs CFTP with a mean BCT of 2.025. For the baseball data the Gibbs
sampler generated 37.9 samples per second of cpu-time compared to 153 for the hybrid
Gibbs sampler and 38.2 for monotone Gibbs CFTP with a mean BCT of 2.030.

This comparison can be extended to include the sample size after burn-in for the Gibbs
sampler using X, and the effective sample size for both the Gibbs sampler using X and
the hybrid method. The burn-in for the Gibbs sampler in X was approximately 15000 for
the body measurement data and 21000 for the baseball data. Thus for burn-in, the
computational efficiency reduces to 35.2 and 32.21 samples per second of cpu-time
respectively. Effective sample size equates the dependent sample to the equivalent
amount of i.i.d. sample points. We use the function from the CODA package in R for
calculating the effective sample size. For the samples generated by the hybrid method the
effective sample was essentially the number of sample points generated. The effective
sample size for the Gibbs sampler for X was approximately 79000 (out of 100000 or
79%) for the body measurement data and 71000 (out of 100000 or 71%) for the baseball
data. Thus the efficiency of the standard Gibbs sampler reduces further to 32.7 and 26.9
samples per second of cpu-time for the body measurement and baseball datasets
respectively. Thus, the hybrid method is clearly the most efficient followed by monotone

Gibbs CFTP.

4.5 Summary

The orthogonal Gibbs sampler manages to attain similar levels of convergence compared
to the monotone Gibbs CFTP sampler, due to a minimal amount of dependence in the
Gibbs MC. This coupled with the improved computational efficiency of using an
orthonormal predictor matrix, results in the orthogonal Gibbs sampler being the most

efficient method per sample point, and for convergence in real time. For the minimal
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BCT of 2, the Gibbs sampler using X, and monotone Gibbs CFTP, are comparable in
terms of cpu-time per sample point. However, monotone Gibbs CFTP wins out due to the
superior convergence in real time. While we did not go into details in order to keep the
comparisons straight forward, other methods for obtaining the inverse covariance matrix,
such as the Cholesky updating method, may provide a further decrease in the cpu-time for
the Gibbs sampler. However, any advantage from this will likely be negated by the
requirement to discard samples as burn-in. Thus, unless the BCT is extremely large, exact
sampling will provide the greatest efficiency for convergence in real time, to the posterior
distribution of model probabilities.

The BCT is a crucial factor in the comparison between the efficiency of monotone Gibbs
CFTP, the Gibbs sampler in X and the hybrid method. Choices of rand penalty for
Zellner’s prior and Jeffreys prior, were investigated for the BCT and compared against
information in the posterior for y. Identifying the conditions under which BCT is close to
2 indicated that with » much larger than k, the exact sampler is most efficient.
Orthogonalization methods such as the GS, and GPC methods, tended to have the
smallest BCT. Choices of hyper-parameters than maximize model competition, large
probabilities of remaining un-coalesced, and sample size close to & can all produce a large
BCT. Finally, the real world examples re-iterated that the GS, method and
orthogonalization in general, are well suited to modeling the response, especially with
large n. Further, the best sampling method to use is either the hybrid or monotone Gibbs

CFTP sampler.



CHAPTER 5

EXACT IMH AND REJECTION SAMPLING

"Far better an approximate answer to the right question, which is often
vague, than an exact answer to the wrong question, which can always

be made precise."

- Tukey, 1962

Compared to the Gibbs sampler, the independence Metropolis-Hastings (IMH) algorithm
is assured monotonicity. This is because the update probabilities of the IMH MC have an
inherent minimum. Knowing the point in the state space for which this minimum occurs,
allows detection of complete coupling for the IMH chain. This means monotone CFTP is
readily available and because no transformation of X is required, variable selection is
possible.

Some unpublished work (Murray, 2004) has mentioned the relationship between IMH
and rejection sampling. We review the argument that for any target (f) and proposal (g)
distribution, the coalescence of the exact IMH sampler is also a rejection sampler f. This
point may make the notion of an exact IMH sampler obsolete. The relationship between
the IMH algorithm, rejection sampling and importance sampling was explored by Liu
(1996) using a detailed eigenvalue analysis. Liu (1996) concluded that the IMH sampler
1s asymptotically as efficient as rejection sampling for estimating expectations. Of
particular interest is that in discussing sample weights f/q;, Liu (1996) noted that the
largest value of this ratio is equivalent to the optimal choice of bound for an equivalent

rejection sampler, thus indicating that perfect IMH is indeed rejection sampling. Liu
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(1996) does not discuss perfect sampling which is unsurprising as this paper was
published the same year as the CFTP approach of Propp and Wilson (1996).

In this chapter we begin by reviewing the exact IMH sampler, detecting coalescence and
the relation to rejection sampling. This is followed by a discussion of how this relation
removes the need for the backwards framework of CFTP and the relation to regeneration.
The efficiency of IMH and rejection sampling is also discussed. We briefly review the
variable selection method of Schneider and Corcoran (2004) and show it is rejection
sampling. We then explore perfect sampling for f(y|y,X) for Zellner’s prior and
Jeffreys prior using exact IMH/rejection sampling. The common problem is the inability
to establish effective bounds. The general idea will be to construct the proposal
distribution to reduce f/g to a function of the residual sum of squares. We investigate the
efficiency of such an approach for choices of penalty and 7 for the constant Bernoulli
prior for y. The second part of this chapter deals with Zellner’s prior and generating exact
samples from the posterior of the hyper-parameter ¢ conditional on y. We investigate the
efficiency of a standard approach, before moving to the interesting case of thinking about

rejection sampling as exact IMH to improve efficiency.
5.1 Perfect Sampling with the IMH Sampler

5.1.1 Exact IMH

Let x be a vector of data and a be an unknown parameter. Assigning a prior to a ( f(a))
by Bayes theorem the posterior f(a|x)oc f(x|a)f(a). Let g(a) be a proposal
distribution for generating i.i.d. candidate values, with g(a) chosen to be heavier in the
tails than the target density f'(a | x). The acceptance probability for moving from state a to

a' for the independence Metropolis-Hastings sampler is

| f(@19g()

a(a,a’) = min{ Fa X)q(a')} for f(a|x)g(a")>0, (5.1)

and 1 if f(a|x)q(a’)=0. The update function of a MC constructed using the IMH

sampler is monotone according to the acceptance probabilities. The minimum state based
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on the ordering of & occurs at the maximum of the ratio between the posterior and
proposal distributions:

/,) | f(@)

> so thata(a
q9(a,) q(a)

a)<a(a_,,a)forall ae A, (5.2)

m?

where a_, denotes all states in A excluding a,,. The starting state (a,,) for the exact IMH

algorithm is subsequently defined as

fa]®) } 53)

a, =arg max{
q(a)

acA

This means if we can identify the maximum for the ratio of the posterior to the proposal
for all a, we have identified the point at which the smallest acceptance probability occurs.
This point can be identified by finding the derivative:

d [ flalx
da{ q(a) } G4

setting equal to zero and solving for a. If no closed form solution exists optimization
methods may be used to identify a,, numerically, provided (5.4) exists. We now discuss

some special cases of (5.3). Let g(a) = f(a) which requires that f (a) be proper, then
(5.3) becomes:

a, =argmax

acA

=argmax{f(x|a)} (5.5)

acA

{ f(x]a)f(a) }
f(a)

Thus, if we use the prior as the proposal distribution we can simplify the search for the
starting point. This approach is particularly useful when closed form expressions for

maximum likelihood estimates are available. Let g(a) oc 1then

a, = argmax{ JACIRY } =argmax{f(a|x)}. (5.6)

acA 1 acAd

Thus, the starting point for the exact IMH algorithm using (5.6) is the mode of the
posterior distribution. The IMH algorithm can also be bounded by finding
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CZ{M}forallaeA, (5.7)
q(a)
such that
f(a|x)
a(a,,a)2 { Ca(a) } . (5.8)

If the bound is good enough and we can determine it, we do not require knowledge of a,,.
However, all choices of bound will result in a perfect sampler less efficient than using a,,
which is the optimal choice of C.

Under the partial ordering of acceptance probabilities, we need only monitor a path from
an to assess the backwards coupling time. This is because the ordering is based on the
acceptance probabilities and as such, the lower path will be the hardest state in the state
space to move from. Hence, when the lower path accepts a move so will the upper path,
or any other chain started from any other state of A resulting in coalescence. This means
the lower path need only be run, reducing the computational effort to a single chain only.
The IMH CFTP algorithm is given in Algorithm IX.

The exact IMH CFTP sampler moves backwards in time, until a move from a,, to another
state is finally accepted indicating complete coupling. The algorithm then proceeds
forwards until time zero to obtain an exact sample, reusing the random numbers and
generated proposal values. For the bounded case, find C at (1) omit (2), and the
probability for detecting coalescence (3) is

_ : f(at+l)
a, = mln{ 1, —Cq(am)} ) (5.9)

After detecting coalescence the forward propagation of the IMH chain to time zero
proceeds as normal. Work by Corcoran and Tweedie (2000) showed the distribution of

backwards coupling times (7) for the exact IMH sampler is geometric:

— (1= p)™ __4(a,)
f()=01=-p)"p1, ,(T) where p= Fa o (5.10)



Chapter 5: Exact IMH and Rejection Sampling 149

Algorithm IX: Exact IMH CFTP sampler

Find initial minimum state a,,. (1)
Set: coalescence = false.
Set: = 0.
While coalescence = false
Set: t=1¢-1.
Set: a; = a,;. (2)
Generate: a,,, ~g(a) and u,,, ~ U(0,1).

Compute: a, = min{ 1 ,M} 3)
f(am )q(aHl)
If Uy < Ol
Set: coalescence = true.

Fori= {t+2,¢+3,....,0 }

Compute: a = min{ 1, M}.
f(ai—l )q(a;)
Set ai = ai—l .

The mean of the geometric distribution is the expected backwards coupling time:
E[T]=p'. Using (5.10) requires ¢ and f are known exactly and not just up to

normalizing constant.

5.1.2 Coalescence and Rejection Sampling

It turns out the exact IMH CFTP sampler is in fact redundant, as the approach for
detecting coalescence is rejection sampling. Let P(a) be the probability of accepting the
proposed point a in standard rejection sampling:

Py~ L@l

(@ (5.11)
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(5.11) may be used to generate exact samples using Algorithm X provided

Cq(a) = f(a|x)forall ae A.

Algorithm X: Rejection Sampler

Find C and set: v= 0.
While v < n:
Generate: a’' ~ g(a) and u ~ U(0,1).

Compute: o = f(a—|,x)
Cq(a’)
fua
Set: v=v+ 1.

Set: a, =a'.

For detecting coalescence with the exact IMH sampler:

_f@l® qa,)

P , .
@ q(a) f(a, |x) .12
where a,, is defined as in (5.3). We can re-write (5.12) as
f(a|x)
=" .
P(a) Cala) (5.13)

where C = f(a,, | x)/q(a, ). Thus (5.11) and (5.13) are of the same form so it suffices to
show that Cg(a) > f(a|x) holds for all a. Taking Cq(a)> f(a|x) and substituting C

we have:

1%§?mw2ﬂwm, (5.14)

which can be re-expressed as

f(a, 1), f(alx)
q(a,)  q(a)

(5.15)
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Notice that this is now equivalent to the partial order required for the IMH CFTP sampler
which is clearly true given the definition of a,. It is also clear that with respect to the
rejection sampler this is the optimal choice of C, and is the minimum value such that

Cq(a) = f(a|x). In the case of bounded IMH the same relationship applies, except the

value of C is no longer the optimal choice. Figure 5.1 makes this relationship clear.

Coalescence and Rejection
I:I5 T T T T T

0.45 -

0.4

C = max{fla)ylal}

0.35

0.3

0.25

Density

0.2

0.15

0.1

0.051

Figure 5.1 The maximum ratio of the target to proposal and the relationship to the optimum

choice of C for a rejection sampler.

This can also be demonstrated with the following toy example.

Toy Example

Let X = {1,2,3,4} with the corresponding posterior probabilities f{x) = [0.13 0.19 0.42
0.26], and let the proposal distribution be g(x) =[0.15 0.35 0.25 0.25]. Clearly x,, is at x =
3 and the corresponding probabilities of accepting a move from x,, to any other x is [0.52

0.32 1 0.62]. Taking these probabilities and multiplying by the probability of proposing



152 Chapter 5: Exact IMH and Rejection Sampling

each x will indicate the relative proportions of sample points generated at coalescence.
These values are [0.077 0.116 0.25 0.155]. Due to rounding it is not immediately obvious
that these values are proportional to f however, dividing by the sum we obtain [0.13 0.19

0.42 0.26].

This along with the previous mathematical argument makes it very clear that the points

generated at the detection of coalescence are indeed exact draws from f.

5.1.3 Forwards Simulation and Regeneration

The way we detect coalescence is actually a rejection sampler so that unlike traditional
CFTP the point of coalescence is an exact draw from f. This means we may abandon the
backwards coupling framework and use forward coupling as the point of coalescence is
an exact draw. This provides along with the rejection sampler for generating 1.1.d. sample
points, the option to generate exact dependent samples by recording all sample points
from an IMH chain after the first sample point generated by rejection. This is in essence a
forwards coupling algorithm and eliminates the need to assess burn-in.

Using a simulated data set with £ = 10 and » = 100 for Zellner’s prior with ¢ = n and a
uniform prior for y we show the relation between coupling times, coalescence and
regeneration. Figures 5.2a-c show a sequence of plots from an actual realization using the
rejection sampling and coupled IMH chains run from all states.

From Figure 5.2a we can see the IMH chain started from every state has coalesced by the
time the chain has turned blue. From the previous discussion this implies the point at
which the chain turns blue is the point of coalescence and an exact draw from f. This
point should coincide with a rejection sampler, using the same sequence of random
numbers and proposed values, for the same choice of C. The blue chain also represents a
sequence of exact dependent draws from f. In Figure 5.2b the red line shows how we can
monitor a single chain, started from the state where the maximum of the f/g occurs, to

detect coalescence.
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Figure 5.2a Forward IMH for generating exact dependent sample points.
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Figure 5.2b The rejection sampler for the same sequence of candidate values and uniform

random numbers.
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Figure 5.2¢ The relation between coupling, rejection sampling and independent tours for

regeneration times.

More importantly, the sequence of red squares represents the three sample points
generated by rejection sampling. The first red square clearly coincides with the
coalescence of the IMH chain. Finally in Figure 5.2c, we can see that the process of
complete coupling repeats itself so we can visualize the regeneration times of the MC.
Each colored region represents a restart of the coupled IMH chain from all states. As
expected, these coincide with the points produced by the rejection sampler. Each
sequence between the rejection points represents a tour, and so indicates the rejection
points as regenerations in the IMH chain. The beauty of this demonstration is that it ties
together the ideas of IMH, rejection sampling and regeneration. We have often mentioned
the coupling times and regeneration times are of the same distribution however, in this
example, they have the exactly the same geometric distribution which is also the
distribution of waiting times for the rejection sampler.

As mentioned, we can use rejection sampling to find a single point of coalescence and

then run an IMH chain forward from that point on. This chain will be a dependent
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sequence of exact draws, as the starting point of the IMH chain is an exact draw under
rejection sampling. The drawback to this, is the poor exploration of the state space and
large dependence in the IMH chain when the proposal is dissimilar to the target. Thus, a
large number of samples will be required to approximate the posterior distribution well
despite an exact guarantee. This of course, is akin to an automatic procedure for assessing
burn-in, but we obtain dependent sample points instead of i.i.d.

This brings us back to an interesting point from the previous chapter. Perfect sampling is
efficient when the underlying MC is rapidly convergent to the distribution of interest. In
terms of efficiency there is little difference between the exact IMH sampler and rejection
sampling. The recursion to detect coalescence will come at the same computational cost
as the rejection sampler. The IMH CFTP sampler however, requires storage of all random
numbers for re-use in the forwards propagation after complete coupling. Thus, it seems
reasonable to argue that because monotone IMH CFTP requires more memory than

rejection sampling, then rejection sampling should be preferred.

5.1.4 The Joint Approach of Schneider and Corcoran (2004)
We now review the exact implementation of the bounded IHM algorithm by Schneider
and Corcoran (2004) for BVS in Bayesian linear regression. They use a joint estimation

approach for both  and y, so:
B =70, (5.16)

where @ is the corresponding regression coefficient. This is to produce a mixture
distribution prior for B, so that for a given vector of B, y can be recovered as the positions
where elements of B are non-zero.

The likelihood function is

{B.2)=z exp{—%z(y —2ﬂixi)T<y—2ﬂ[X[)}, (5.17)

where z = (1/¢%). The priors used are
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ﬁ|z~N(&,1Vj, z~G(1,ﬁj, and f(y)oc 1, (5.18)
z 2°2

where &, V, v and A are hyper-parameters to be chosen and G is the gamma distribution.

Choosing the proposal distributions to be:

mzw[f,,lvj, Z~G(””,ﬁj,and fpyect, (5.19)
z 2 2
then we require the maximum of the ratio:
(B, z 1 & &
—Z(E/z ) exp{—EZ(y—ZﬁiXi)T(y—ZﬂiX[)}- (5.20)
i=l i=l

The minimum bound is not available in closed form however, we know that exp(-x)
where x > 0 will always be < 1. Thus the bounded IMH algorithm is used with C = 1. To
simulate samples of B, g, elements are randomly selected and set equal to one, and then 3
is simulated from the required normal distribution. Their results show that while this
approach works, it is computationally intensive requiring large BCT even for small
values of k. Finally as we have shown in 5.1.2, this exact IMH sampler is a rejection
sampler at the point of coalescence. This requires noting that because with (5.20) we have

shown C > f/q it then follows that Cq > f, as detailed above for the bound.

5.2 Variable Selection using exact IMH

The requirement to find the maximum of the posterior divided by the proposal (5.3), the
likelihood (5.5), or the posterior (5.6) is a great hindrance to the use of exact IMH for

generating exact samples from f(y|y,X). This is because it is a large discrete state
space, and the starting point cannot be found without some examination of f(y |y, X), as

the derivative for y is unavailable. We introduce an approach for rejection sampling from

f(v|y,X) for Zellner’s prior and Jeffreys prior, and a special case using Jeffreys prior.



Chapter 5: Exact IMH and Rejection Sampling 157

5.2.1 Zellner and Jeffreys

These approach we are about to outline will rely upon the fact that residual sum of
squares is minimized when ¥y is the full model. While there is no straight forward manner
in which to show this (such as with a derivative), the argument follows from the least
squares optimization view point. In least squares, the optimization minimizes the sum of

squares error (SSE) with respect to the regression coefficients . Thus,

min SSE(B) = min > (v, - X B)° (5.21)

where X; is the i-th row of X. Because this optimization is essentially unconstrained it is
weakly smaller with an increasing number of predictors. This can be put down to the fact
that the addition of any predictor, even with only minimal correlation, will provide some
reduction in the SSE even if almost negligible. This property is perhaps better known as
the reason for the R-square value being unsuitable for model selection. As the number of
predictors included in the model increases the R-square does also. This suggests that if
we can use ¢ to reduce the posterior for y to a function of the RSS, then the bound is the
max {RSS} allowing the use of rejection sampling.

The target distribution using Zellner’s prior is

q,+1 n

Sy, X) o (c+) 2 (y'y-Gy Hy) (7). (5.22)

where ¢, =c/(c+1) and H, =X (X7X,)" X} . With the proposal density ¢(y) we require:

q,+1
(c+D) 2 (y'y-¢y H,y)""? f(y)
¥, = argmax s : (5.23)
yel q(v)

to perform perfect sampling with the IMH algorithm, or equivalently optimal rejection

sampling. By setting g(y) = (c+ 1)~ 7(y) (5.23) becomes:

y, =argmax{(y’y - ayTHyy)‘”“} . (5.24)

yel
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Given the assertion in relation to (5.21) choosing y to be the full model satisfies (5.24),
and so provides the starting point for IMH and the bound necessary for rejection
sampling. If we choose f{y) to be the constant Bernoulli prior, then we can summarize the

proposal distribution as

k 7qy+l .
q(qy)~[q J(CH) (-0 ", (5.25)

which can be normalized by dividing by the sum. This proposal is also simple to obtain
even when £ is large. To propose candidate values of y using (5.25) randomly choose ¢,
according to (5.25) then choose g, positions in y to be set equal to one. Of course (5.25)

may be simplified further by taking f(y) 1.

Taking a similar approach for Jeffreys prior the target distribution is

FOy,X) e (p/2m) " (yTy —yTHYy)fif(y), (5.26)

We require the starting point y,, to detect complete coupling or use rejection sampling.

Letting g(y) be the proposal density, we require:

/272_ —q7/2( Ty, TH -n/2
v = argmax (p/27) yy-y H,y)" f(y) . (5.27)
yell ‘I('Y)
Letting g(y) = (p/27) “"* f(7),
v, =argmax{(y'y -y H, y)""?}. (5.28)

yell

(5.28) 1s again maximized when we use the full model.
With these two methods in mind we compute the efficiency of the rejection sampler

exactly when £ is small using:

E[T] = f(v,.)/q(v,). (5.29)
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We investigate different values of 7 and penalty for Zellner’s prior and Jeffreys prior. The

results are presented in Tables 5.1 and 5.2.

Table 5.1 Efficiency of rejection sampling for choices of 7

Data Prior r

(n,k) 01 02 03 04 05 06 07 08 09
Ozone V4 157 | 45.5 94
(80,8) J 72.0 | 12.6
Physical z 217 | 112 | 7.12 | 497 | 365 | 2.76 | 2.12 | 1.65 | 1.29
(27,10) J 988 | 150 | 16.4
Bodyfat Z 1032
(250,13) J 1108
Crime Z 20.6 | 17.0 | 13.8 | 109 | 839 | 6.21 | 441 | 2.95 | 1.84
(47,15) J 330

Table 5.2 Efficiency of rejection sampling for choices of penalty

Data Prior c/p

(n,k) 1 5 10 50 100
Ozone Z 143 | 546 | 17.0

(80,8) J 249 | 88.7 | 192

Physical V4 1.03 | 1.22 | 1.58 | 9.12 | 40.2
(27,10) J 186

Bodyfat Z 12.9 | 429 | 2891

(250,13) J 1632 | 6414

Crime Z 1.02 | 1.19 | 1.50 | 9.53 | 61.3
(47,15) J 6427

Z is Zellner’s prior, J is Jeffreys prior, and the grey boxes represent cases where the
expected waiting time per sample point is greater than the size of the state space (2"). For
choices of 7, ¢ is set equal to n, and for values of penalty, 7 = 0.5. As with other
comparisons we set p = 27z(c+1).

The first major difficulty is the number of instances where the rejection sampler is
impractical. This is not unsurprising as the rejection sampler or the IMH sampler will be
less efficient when the prior which is the proposal conflicts strongly with the function of
the RSS. This will generally be the case as the full model provides the bound and the
prior/proposal is essentially a mechanism for penalizing the RSS. In the case of 7 when it

favors complex models, thus agreeing with the RSS, the efficiency is manageable. For
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Jeffreys prior the smallest manageable value of 7is 0.7 for the physical dataset, 0.8 for
the ozone data and 0.9 for the bodyfat and crime data. For Zellner’s prior the bodyfat and
ozone datasets need values of 7 greater than 0.9 and 0.8 respectively. The physical and
crime data sets have very manageable waiting times for all values of z. This is because
the sample size is small and with ¢ = n, the shrinkage term c/(c+1) results in a very flat
function of the RSS.

For varying values of penalty the Jeffreys prior becomes inefficient for values between 10
and 50 for the ozone data, 1 and 5 for the physical and crime data, and between 5 and 10
for the bodyfat data. For Zellner’s prior rejection sampling becomes inefficient between
10 and 50 for the ozone and bodyfat data, and between 100 and 500 for the physical and
crime datasets. This definitely provides the indication that for Zellner’s prior with
reasonable choices of 7and small values of ¢ is a more than adequate method to generate
exact samples from f(y |y, X). Thus, when £ is large and the sample size is small the
rejection sampler with Zellner’s prior and ¢ = n is a competitive choice for sampling
from £ (v [y, X).

For Jeffreys prior we may choose p to be 27 so that there is no penalty for model
complexity letting the role fall explicitly to the choice of f{y). This allows the proposal
distribution to simply be the prior for y which we take to be the constant Bernoulli prior.
As above we investigate the efficiency of choices of 7 for the four real datasets. The

results are presented in Table 5.3.

Table 5.3 Efficiency of rejection sampling for choices of 7 for Jeffreys prior with p =

2z
Data(n,k) T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ozone (80,8) 78.7 | 283 | 12.5 | 6.44 | 3.65 | 2.24 | 1.46
Physical (27,10) 227 | 63.5 | 21.9 | 873 | 3.90 | 191
Bodyfat (250,13) 3316 | 593 | 141 | 41.1 | 139 | 529 | 2.21
Crime (47,15) 8888 | 1082 | 182 | 39.1 | 10.0 | 3.00

The grey squares again represent cases where the expected waiting time is greater than

the size of the state space. Compared to the results from Tables 5.1 and 5.2, a larger range
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of values for 7 are viable but still require larger values. The ozone and bodyfat data is
reasonable for values of 7 greater than 0.3, and 0.4 for the physical and crime datasets.

We now use examples to illustrate the use of this rejection sampler.

5.2.2 Examples

We use the special case of Jeffreys prior above to illustrate the variable selection for the
ozone data and Zellner’s prior for the crime data and compare the MIP to the true values.
We then proceed with an example using two larger datasets where we do not have the

true values to compare against.

Example 1: Ozone Data and the Special Case of Jeffreys Prior.

For the ozone data set we use the special case of Jeffreys prior where we set p = 2. Then
using the constant Bernoulli prior we set 7 = 0.3. Using the rejection sampler, 1000
sample points were generated and the true MIP compared with those estimated from the

sample. The results are shown in Table 5.4.

Table 5.4 True and Estimated MIP from the Rejection Sampler for the Ozone Data

Predictor 1 2 3 4 5 6 7 8
True 0.781 1 0.783 | 0.709 | 0.382 | 0.451 | 0.463 | 0.511 | 0.802
Estimated | 0.779 | 0.782 | 0.711 | 0.382 | 0.449 | 0.462 | 0.511 | 0.801

The MIP are very well estimated using the 1000 exact sample points. The maximum
waiting time was 558 with a mean of 83. While this provides a great illustration of the
use of the rejection sampler in this context, the number of evaluations required far
exceeds the size of the state space. This indicates, much in line with the results above,
that variable selection with the rejection sampler is possible. However, there is the
additional requirement that the number of function evaluations required to generate
samples should be much less than the size of the state space. If this is not the case, then

direct calculation of the exact posterior would be preferable.
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Example 2: Crime Data and Zellner’s Prior.
Using the crime data we set ¢ = n =47 and 7= 0.4 for the constant Bernoulli prior. Using
the rejection sampler 5000 sample points were generated. Table 5.5 shows the MIP

estimated using the generated sample and the true MIP.

Table 5.5 True and Estimated MIP from the Rejection Sampler for the Crime Data

Predictor 1 2 3 4 5 6 7 8 9
True 0.106 0.102 0.113 0.249 0.235 0.096 0.097 0.098 0.153
Estimated | 0.091 0.102 0.112 0.250 0.248 0.094 0.098 0.098 0.149
Predictor 10 11 12 13 14 15
True 0.090 0.096 0.131 0.127 0.126 0.093
Estimated | 0.090 0.096 0.138 0.130 0.122 0.096

Even with only 5000 samples from a state space of size 2'° most estimates apart from that
for the fifth predictor are within less than 0.01 of the true value. The mean BCT was

11.20 with a maximum of 79, and generated 55 samples per second of cputime.

Example 3: Larger k and Zellner’s Prior.

In this example we do not have the true values to compare against. We use the larger
datasets, body measurements and the baseball datasets from the examples at the end of
previous chapter. This is to explore the observation that using Zellner’s prior with
moderate values of ¢ and 7 should allow perfect sampling to be feasible. Using the body
measurement data first, there are 24 predictors and a sample of 350. We choose ¢ = 200
which is almost half of ¢ = n and as above use 7= 0.4. The rejection sampler was used to

generate 1000 sample points and the estimated MIP are given in Table 5.6.

Table 5.6 Estimated MIP from the Rejection Sampler for the Body Measurement
Data

Predictor 1 2 3 4 5 6 7 8 9

Estimated | 0.082 0.109 0.102 0.113 0.115 0.124 0.091 0.130 0.093
Predictor 10 11 12 13 14 15 16 17 18
Estimated | 0.195 0.289 0348 0.146 0378 0.203 0.140 0.225 0.203
Predictor 19 20 21 22 23 24
Estimated | 0.175 0.094 0.128 0.084 0.276 0.127
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The rejection sampler required 7.879 seconds of cpu-time per sample point or
equivalently 0.127 sample points per second of cpu-time. The mean waiting time was
5288.7 with a maximum of 44590. In total the number of candidate points required to
generate 1000 samples was 10569646, which is 31.5% of the size of the state space 2.
The fact that the rejection sampler was actually feasible is related to how flat the posterior
is. The flatness of the posterior is clearly reflected in the consistently low values of MIP,
with the largest values at 0.348 and 0.378. Despite this, the MIP still provide an
indication of relative importance. This is indicated by the predominant selection of
predictors 11, 12, 14 and 23 which correspond to the predictors chest girth, waist girth,
hip girth and height respectively. The selection of these predictors is no surprise as they
represent measurements of large body structures and height. For the baseball data, we
truncate the dataset to the first 50 sample points to provide a small » with large & in
comparison to the large n and k of the body data, and again generate 1000 sample points
with the rejection sampler. We use ¢ = 50 and 7= 0.4. The estimated MIP are shown in

Table 5.7.

Table 5.7 Estimated MIP from the Rejection Sampler for the Baseball Data

Predictor 1 2 3 4 5 6 7 8 9
Estimated | 0.075 0.091 0.221 0.192 0.125 0.100 0.144 0.192 0.117

Predictor 10 11 12 13 14 15 16 17 18
Estimated | 0.108 0.099 0.091 0958 0.877 0.103 0.080 0.090 0.085

Predictor 19 20 21 22 23 24 25 26 27
Estimated | 0.095 0.100 0.137 0.156 0.097 0.112 0.100 0.119 0.094

The rejection sampler required 6.292 seconds of cpu-time per sample point or
equivalently 0.159 sample points per second of cpu-time. The mean waiting time was
3945 with a maximum of 29714. In total the number of candidate points required to
generate 1000 samples was 3945158, which is 2.94% of the size of the state space, 2°.
Much like for the body measurement dataset, the MIP are mainly low values. However,
there is a clear indication for predictors 13 (free agent) and 14 (arbitration) with MIP of
0.958 and 0.877 respectively. These predictors are significant as both represent cases

where the player is in a position to negotiate either directly, or indirectly their salary.
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These predictors also represent the cases where the player is in the best positions to

market themselves to potential teams.

5.3 The Conditional Distribution of Cc

The parameter ¢ in Zellner’s prior has received a great deal of attention under the focus of
variable selection (Liang ef al, 2008; Celeux et al, 2007). However, another aspect of this
process is for model averaging. If the weights for averaging are independent of ¢ then so
too must be the posterior distributions we average over, such as the posterior for B, or the
posterior predictive distribution for y. Given we can in some cases integrate out ¢ in the
posterior for y, we could then generate samples values of ¢ conditional upon vy as follows:

Generate: f(y|y,X).
Generate: f(c|vy,y,X). (5.30)

Generate: f(B, |v,¢,y,X) or f(¥[7,¢,5,X,X).

Liang et al (2008) have already demonstrated that the integration over ¢ results in a
hyper-geometric function, however if no closed form is available then presumably some
sort of Monte Carlo approximation can be employed if & is small enough. The simplest
case is to consider when we do not need to sample from y and can obtain the posterior
explicitly. Clearly even with this possible integrating over c it still requires producing
sample points from the posterior for c. We now detail an efficient rejection sampler for

doing so. Using Zellner’s prior the posterior for ¢ conditional on y is

flelryXye(e+D) > (¢'y-——=y"Hy) * f(). (5.31)

q,+1
¢
C
Again taking the initial approach of setting g(c) = f(c), and because for the penalty term
the smallest ¢ is preferred while the second term prefers ¢ to infinity, we choose the
hyper-G-n prior as it is a good match for the sparseness of (5.31) ignoring the

contribution from the prior. The hyper-G-n prior with parameter a > 2 is

fcla)= “2—;2(1 +¢/n) " Tio.(c). (5.32)
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In order to have g(c) = f(c) we must be able to simulate from f{c). The CDF of (5.32) is

a _2 c s ~ n (a=2)/2
F(c)= -(|).(1+t/n) dt—|:1—(n+cj } (5.33)

2n

and the inverse CDF is

F'w)=n[(1—u)>"“? ~1]. (5.34)

Thus, we can use the inverse CDF method to generate samples from (5.31) for use in the
rejection/exact IMH algorithm. The optimal bound via the maximum of the ratio of the

target to the proposal can be obtained by differentiating:

Sy, X) S E 5.35
o (c+1) (yy —Y Hyyj : (5.35)

with respect to c. The resulting derivative is

q, +1 s 3
—( 72 J(c+1) 2 ly'y-——y'Hy| ..

c
c+1

n+2 ’
gt - TH
-0.5(c+1) 2 (yTy—LyTHij ’ n( Y Yy]
c+

(5.36)

1 C(e+1)?

Setting (5.36) equal to zero and solving:

Y T
ny Hy-(q, +Dy'y

Cm = . T - T : (5.37)
(¢, +Dy'y-y H)y)

This means the starting point for detecting coalescence for the exact IMH sampler is

(5.37) and the value of C the ensures Cq(c) > f(c|v,y,X) is (5.35) evaluated at (5.37).

Note because we do not have the normalizing constant for (5.35) we cannot simply
calculate the efficiency of the rejection sampler. The code for this rejection sampler is
provided in Appendix D under cRejectionl.m. We use this rejection sampler for the
posterior for ¢ conditional on the full model and the null model for the ozone, physical,

bodyfat and crime datasets with a = 3 for f{c). Ten thousand sample points were
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generated in each case and the density histogram plotted with the overlay of an inverse
gamma density fitted by MLE (Figures 5.3 and 5.4). Table 5.8 records the minimum,
mean and maximum waiting times for the rejection sampler.

The ozone data is much flatter for the null model than the full model. This is because the
posterior of ¢ according to (5.35) will become flatter as the RSS become larger. This is
not always the case however as it is difficult to assess where the mode of the posterior
will be. For the ozone data in both cases the fitted inverse gamma distribution does a
good job, although it does appear to undercut the true density to the right of the mode
where the density is rapidly decreasing into the right hand tail. The crime data show
similar behavior to the ozone data as the distribution of ¢ conditional on the null model is
flatter than for the full. The inverse gamma approximations also perform well with
similar undercutting of the estimated true density to the right of the mode.

The physical data shows different behavior and in fact the conditional density for c is
flatter for the full model than the null model. This is because the mode for the full model
i1s much further to the right than for the null model. For both the full and null model the
inverse gamma approximation over-estimates the mode and undercuts at the right of the
mode similarly to the ozone and crime datasets. For the bodyfat data the posterior of ¢
conditional on the null model is flatter than that for the full model. The inverse gamma
distribution for the null model over estimates the mode and undercuts the right hand tail
more extensively than any of the other examples.

The inverse gamma distribution for the full model undercuts the mode and only slightly
the right hand tail. Overall it does appear the inverse gamma distribution can provide a
decent approximation to conditional posterior of c¢. The reason for this line of
investigation will become clearer later in this section. It is also worth noting that the
mode of the distributions above can be used to estimate ¢ for a local empirical Bayes
approach.

Table 5.8 shows the efficiency of the rejection sampler for each set of samples generated
for Figure 5.3 and 5.4, where N = null model, F = full model. The efficiency is an artifact
of how well the posterior and the proposal distribution agree. This means any

distributions that are not flat or have a mode far from zero will be the least efficient.
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Table 5.8 Efficiency of the Rejection Sampler for the Conditional Posterior of C

Ozone Physical Bodyfat U.S. Crime

N | F N | F N | F N | F

Minimum 1 1 1 1 1 1 1 1
Mean 24 4.3 4.1 12.3 23 11.1 2.0 4.9
Maximum | 17 34 36 107 16 87 16 45

Due to the increased flattening for the posterior conditional on the null model, the mean
waiting time is smaller than for the full model unless the mode of the full model is much
further from zero than for the null model. Overall the most efficient case for the null
model is the crime data with a mean of 2 and a maximum of 16. The most costly under
the null model is the physical data at 4.1 and 36. For the full model the most efficient is
the ozone data with a mean waiting time of 4.3 and a maximum of 34. The least efficient
is the physical data with 12.3 and 107. The comparison between efficiency for all cases is
determined by how flat the distribution is, and where the mode is located. If the
distribution is flat and has a mode close to zero the posterior agrees with the proposal and
so the rejection sampler is efficient.

This approach was recommended for inference when integrating over ¢ so we use the

ozone data as an example.

Ozone Example
We now look at the difference in model averaging for integration over ¢ by comparing

f(v]y,X,c) and f(y|y,X). We use the ozone data and present the posterior distribution

of observation 5 and By. We chose a = 3 and 7 = 0.45 to weakly penalize model

complexity. The posterior for f(y|y,X) was obtained by Monte Carlo integration using

simulation from f{c) for every y.

Figure 5.5 shows f(y|y,X,c), f(y]y,X) and f(c|y,X). Comparing the two posteriors

for y, integrating over c¢ appears very similar but in this case produces less model
uncertainty. This is because as ¢ gets larger the posterior mass concentrates and then
eventually moves towards the null model. Form the marginal posterior of ¢ most of the
density falls between 50 and 1500 so that most values of ¢ are larger than ¢ = n = 80

resulting in the more concentrated posterior.
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This means integrating over c is certainly a desirable approach for variable selection.
Table 5.9 shows the MIP for the posteriors in Figure 5.5. Again we can see predictors 1,
2, 3, and 8 have increased MIP for f(y|y,X) compared to f(y|y,X,c), while
predictors 4, 5, 6, and 7 have decreased MIP. Figure 5.6 shows the comparison of the

posterior distributions of ys and By for f(y|y,X) and f(y|y,X,c). Similarly to the
results above we find the posteriors of ys and Bo for f(y|y,X) exhibit less spread than

the equivalent distributions with ¢ = 80. In both cases the posterior of 9 is conditional
upon an estimate of o which we take as the posterior expectation of the model averaged
posterior for o. The estimate of o* is a function of the residual sum of squares term

including the c¢/(c+1) shrinkage term.

Table 5.9 Comparison of the Marginal Inclusion Probabilities for f(y|y,X,c)

and f(y|y,X).
Predictor 1 2 3 4 5 6 7 8
f(yly.X,e=n) | 044 0.64 028 0.09 0.15 0.13 040 025
Sy, X) 052 0.67 031 0.07 013 0.12 037 027

Thus, because the values of ¢ are predominantly larger when integrating over c the
shrinkage term ¢/(c+1) in the variance estimate will be closer to 1. This implies if most of
the posterior density of ¢ is supported by values larger than ¢ = n, then the variance will
on average be smaller according to the posterior distribution for >, This also applies to
the PPD where the variance is a function involving the RSS term with the shrinkage
factor of ¢/(c+1).

As noted earlier it appears from Figures 5.3 and 5.4 that the posterior for ¢ can be
reasonably approximated by an inverse gamma density. This suggests an inverse gamma
proposal that matches the target well could make a very good proposal distribution. The
idea is that in thinking about exact IMH we could increase the efficiency with suitable
estimates, by finding the starting point as a function of the parameters of the proposal
distribution. Such an approach provides a rejection sampler with the benefit of a direct
way to think about adaptation to improve efficiency. Assuming an inverse gamma

proposal with parameters v and w, and using hyper-G-n prior we can find ¢, with:
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q,+1 _n
+1 2 T _L TH 2 1+ / —al2
df(c | "{aan) — i(c ) (y y C+1y «,yj ( ¢ n) 5 (538)
dc dc ¢ exp(-w/ c)
which is:
q,+1 —-al2
— +1
et) 2 (%](1 +"j
af(clv.y,X) _ 2 n)
dC W c n/2
eXp(— j(yTy —yTHyyj
c c+1

_q7+1 TH c TH
"M+l 2 n _Y yy+ y 72y
(c+1)  (c+])

" . (n+2)/2 . al2
a2 [y vma) 147
c c+1 n

7qy+l c —(a+2)/2
ac™ ' (c+1) 2 (1 + j
n

nl2
neXp(— Wj(yry—c yTHyyj
c c+1

P Xk
(—v—1)c" (c+1) 2 [1+Cj
n

nl/2 -
w C
exp(— j(yTy—yTHyyj
c c+1

_qy+1 c -al2
we™ M (c+1) 2 [1+j
n
w c nl/2
¢’ eXp(— )(yTy —yTHyyj
c c+1

(5.39) can be arranged into a polynomial expression, hence there is more than one

(5.39)

possible solution. Thus we must solve:

4 3 2
O=rc" +rc +rc +nc+r, (5.40)
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where:

ro="y-y H,y) g, +a-2v-1)

7y, = (yTy—yTHYy)(qy —2vn+2w)+(2yTy—yTHyy)(a—2v)+...
(q,—n-3)y'y+2y H)y

ry=Qw-2vm)2y y-y H,y)+2wn(y'y -y ' H,y)+ (2-n)ny ' H,y +... (5.41)
(qyn—3n+a—2v—2)yTy

rn=MWw-n —vn+2wn)2yry—2wnyTHyy

r=2wny'y

Restricting the solutions of (5.40) to the positive real line and then from the remaining
candidate values taking the correct choice as the value that maximizes (5.38) we obtain
¢ and the required bound C. The efficiency of this approach relies on the choice of v and
w. This requires that estimation of v and w from a posterior sample converges to some
value. Using the first approach with g(c¢) = f(c) we generated 100 batches of 10000
sample points and for each we estimated v and w using MLE after 100, 200, 300,... and
so on sample points. The results are shown in Figure 5.7 where we have chosen y to be
the full model. Using these estimated values of v and w we also recorded the
corresponding value of ¢, to be used in the new rejection sampler shown in Figure 5.8.
Figure 5.8 also plots various quantiles of the posterior to show where the estimates of ¢,
fall in relation to the tails.

From Figure 5.7 the plot for each parameter v and w shows clear convergence towards
values of approximately 4.3 and 700 respectively. The variability, ignoring the extreme
values, in the estimates of v and w requires around 3000 sample points before stabilizing.
From Figure 5.8 we can see that the value of ¢, is converging to a point (approximately
290) just outside the 75™ percentile of the posterior distribution. This agrees with the
observation in figure 5.4 where the posterior appeared to dominate the proposal in the
right hand tail close to the mode. Provided we have enough samples we can obtain a
suitable approximation to the posterior using the estimated parameters. Using the
estimated parameters from the ten thousand sample points generated as shown in Figures

5.3 and 5.4 we run the modified rejection sampler with the inverse gamma proposal.
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Figure 5.7 The convergence of parameter estimation for the inverse gamma approximation.

v is chosen to be the full model.



176 Chapter 5: Exact IMH and Rejection Sampling

otarting Paint for Exact IMH using Adaptation

1':":":' [ T T T T T T T T T
hlin-kax

A -Eth-BEth Percentile

an0 B nter-Cuartile Fange |
hedian

700
/OO

LE 500

0.95
400

300 =

H0.5

0.25
0.05

100

| | | | 1 | 1 | 1
1000 2000 3000 4000 5000 B000 7000 8000 S000 10000
sample Size

Figure 5.8 Convergence of the estimated value of C,, and the relation to the posterior

distribution for C. y is chosen to be the full model.

Table 5.10 Efficiency of the Rejection sampler with adapted values.

Ozone Physical Bodyfat Crime
N | F N | F N | F N | F
Minimum 1 1 1 1 1 1 1 1
Mean 1.02 1.06 1.12 125 126 1.04 1.08 1.11
Maximum 3 4 5 8 6 4 4 5

Ten thousand sample points are generated and the efficiency of the rejection sampler is
estimated for comparison with Table 5.10. The code for this rejection sampler is given in
Appendix D under cRejection2.m.

Comparing Table 5.8 to Table 5.10 there is a dramatic increase in efficiency. For all
datasets the mean waiting time is close to one. This indicates that the inverse gamma

distribution is a suitable approximation so that the rejection sampler is close to i.i.d.
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sampling but not quite. The largest waiting time is 8 and the smallest is 3. These results
clearly indicate the benefit of thinking about rejection sampling and exact IMH as one
and the same. The approach is straight forward and greatly improves the efficiency. The
reader may be wondering why we have no results starting from a default proposal
distribution such as the IG(1,1). The reason for this is in this application the efficiency
and numerical stability of the solution is unfortunately very sensitive to the choice of
parameters in the proposal. Specifically in order to have good efficiency and a suitable
starting value the mode of the proposal and target must be similar otherwise the target
will dominate the proposal far out in the right hand tail. This is undesirable as the

proposal should have heavier tails than the target.

5.4 Summary

The use of the exact IMH sampler appears to be redundant as the detection of coalescence
is a rejection sampler for the target distribution. This relationship was not unknown, and
provides an elegant demonstration of the relation between rejection sampling and IMH as
well as the relationship between BCT, coupling times and regeneration times. Ultimately,
the rejection sampler should be the preferred option for exact sampling with exact IMH.
The method of Schneider and Corcoran (2004) is also detecting coalescence using
rejection sampling and so a rejection sampler could have been used without the need for
the added forward propagation.

With these facts in mind, we then investigated the use of rejection sampling for the
marginal posterior for y. Noting that the RSS is weakly decreasing in the number of
predictors by virtue of Gaussian least squares optimization, then reducing f(y |y, X) to a
function of the RSS only will allow us to find a bound for rejection sampling.

We provide the methodology to perform the reduction for both Zellner’s and Jeffreys
prior by choosing the proposal distribution to be a function of the penalty term in the
posterior and f(y). The distribution of mass under the prior for y and the strength of the
penalty will have a marked impact on the efficiency of the rejection sampler. This is
because IMH sampling and equivalently rejection sampling, will be inefficient when the
proposal is at odds with the posterior. Thus, the more extreme the penalty, or the more

mass under the prior supporting small models, the longer the expected waiting time for
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generating sample points. The results using the real datasets using the constant Bernoulli
prior for y supports this conclusion. Generally values of 7 > 0.7 and small values of
penalty are required for the rejection sampler to be feasible. Further examples
demonstrated that sampling under Jeffreys prior will typically be inefficient even with p
=2

Zellner’s prior however is feasible when c is relatively small. The results using the crime
data and larger datasets indicated that rejection sampling can indeed be efficient. For the
moment efficiency refers the mean waiting time and number of proposals required. This
is because the Gibbs sampler may have a faster rate of convergence in real time. This is
clearly a comparison for future work.

In the example from Schneider and Corcoran (2004), a fictitious data set with k =3, n =
20 and conjugate priors were used. The recorded minimum, maximum and mean
backwards coupling time for that example was 2, 4257 and 543 respectively. This
suggests that rejection sampling in this case is remarkably inefficient, so while appealing
in theory clearly has limited appeal based on practicality. There is crucial distinction
between their method and the rejection sampler used here. In our case if the required
number of proposals is larger than 2*, then direct calculation of the posterior should be
preferred, however, this is not possible for the approach of Schneider and Corcoran
(2004).

Having provided a way to generate exact samples for BVS from the marginal posterior of
Y, it is reasonable to conclude from the results for the real datasets that Zellner’s prior is
preferred to Jeffreys prior when £ is large and » is small. Using ¢ = n and no available
prior information for [ should allow a moderately efficient rejection sampler to be used
for BVS as described.

The method of the exact IMH/rejection sampling is closely related to the use of perfect
simulated tempering in both the backwards or forwards context. The use of these methods
is a possibility for future research, although it is unlikely to prove much more efficient
than the standard rejection sampler. This is because the waiting times will be the same as
for the rejection sampler and will provide an estimate of the mean waiting time for the

perfect forwards simulated tempering.
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With the promising results of the rejection sampler for f{y |y, X) we then moved to the
case of generating exact samples from the marginal posterior for ¢ conditional on y. This
bears relevance for model averaging when ¥y is integrated over c¢. The second motivation
was to demonstrate how thinking of exact IMH and rejection sampler as one and the same
provides a useful perspective for improving the efficiency of a rejection sampler.

The marginal posterior for ¢ conditional for y is typically quite flat as is the hyper-G-n
prior. This means using the prior for ¢ as the proposal distribution produces a small
amount of conflict between the target and proposal and hence, an efficient rejection
sampler. This provides a method of generating sample points and showed the posterior
can be well approximated by an inverse gamma density. With this in mind, the next step
was to find a starting point for the exact IMH, and hence optimal bound for rejection
sampling as a function of the parameters of the proposal density.

The solution of the derivative was not available in a simple form and has multiple
solutions. However, with the appropriate restrictions one of the root solutions to a
polynomial function provided the optimal bound. Using samples generated by the first
rejection sampler simulation results showed good convergence of the estimated
parameters for the proposal distribution and consequently, the value of ¢, for reasonable
sample sizes. Consistent tail behavior may be an issue for future research as if the
positive solutions are too far from mode of the posterior, then we are no longer
dominating the target in the tails with the chosen proposal density. Further, future
research will involve reviewing literature to find densities where the ideas discussed

above can, and have yet to be applied, to various posterior densities in Bayesian analysis.






CHAPTER 6

DISCUSSION AND CONCLUSIONS

"Some problems are so complex, that you have to be highly intelligent
and well-informed, just to be undecided about them."

- Laurence J. Peter

We now discuss and summarize the finding of this research. We break this discussion up
into sections, following the aims outlined in the first chapter, and discuss each in turn.
This is followed by a more general discussion, recommendations and an outline of future

research.

Assuming an orthogonal predictor matrix, check the robustness in the construction
of monotone Gibbs Markov chains to choices of priors and hyper-parameters.

The construction of a Gibbs monotone MC is not as straight forward as simply having an
orthogonal predictor matrix. Previous work (Kuo and Mallick, 1998; Holmes and
Denison, 2002) has mainly focused on the fully conjugate case, including Zellner’s prior.
Assuming X is orthogonal, the error distribution should be Gaussian, and the priors for 8
and o’ are restricted to the conjugate class, or non-informative type priors such as
Jeffreys prior.

For the conjugate class of priors (including Zellner’s) and a fully Bayesian approach, we

cannot obtain a monotone Gibbs MC if we choose prior subjective values of B. This

constraint also includes the special case of Zellner’s projection prior. Otherwise, with ﬁ
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= 0, and any choice of @ and b for the inverse gamma prior for o *, monotonicity is
available with an orthogonal predictor matrix. Introducing weighted least squares for the
purpose of detecting or guarding against outliers, produces a covariance matrix that is no
longer orthogonal. Thus, methods such as those in Smith ez a/ (1996) cannot be improved
by perfect sampling with a monotone Gibbs MC.

For priors on y, the literature assumes either flat, or constant Bernoulli priors, which will
indeed allow a monotone Gibbs Markov chain, provided the choices of prior for B and o’
do so. We extend this to the case of assuming a beta hyper-prior, for the choice of 7in the
constant Bernoulli prior. For any choice of hyper hyper-parameters in the beta hyper-
prior, a monotone Gibbs MC is possible provided other conditions are met as above. It is
possible to specify a generic prior on the g, space, and obtain a monotone Gibbs MC
provided flg,) does not involve the binomial coefficient, and is non-increasing for
increasing ¢,. An example of this is to use a truncated Poisson distribution for g,.

Recent work by Cripps et al (2006), allowed the hyper-parameters of the prior for o2 to
depend on v thus, taking an EB approach to variable selection and model averaging.
Specifically, Cripps et al (2006) choose hyper-parameters for f{o?) to obtain the classical
estimator for variance as the mode of the posterior distribution of 2. For the associated
posterior for y the Gibbs MC is not monotone. We then used an analogue of the approach
of Cripps et al (2006) by using the MLE of the variance. The Gibbs MC is monotone for
this choice. This highlights an interesting issue for EB methods in this context. Hyper-
parameters can be chosen to produce an estimator of a certain form for a posterior
distribution dependent on y. The estimator, such as the mean, can typically be expressed
as a function of parameters for that posterior distribution. The dependence on y requires
these parameters must also observe the required partial order, otherwise monotonicity is
unavailable. The shape parameter of the inverse gamma distribution typically cannot
depend on ¥y, as this prevents monotonicity.

Recent work on Zellner’s prior involves assigning a prior to ¢ (Celeux et al, 2007). If we
assume the hyper-G prior of Liang et al (2008) and use the MLE of B in Zellner’s prior,
then a closed form expression for the posterior for y integrated over c is available. This

posterior with an orthogonal predictor matrix will permit a monotone Gibbs MC.
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Determine the effect of using an orthogonal predictor matrix on inference using

model averaging and the linear regression model.

Clyde et al, (1996) provide four methods of orthogonalization for use in transforming a
non-orthogonal predictor matrix. The GS procedure was noted by Clyde et al (1996) and
Holmes and Mallick (1998), however the requirement to order the columns of X before
use deterred any attempt to use it in practice. Holmes and Mallick (1998) are the first to
use an orthogonal transformation and then use the monotone Gibbs CFTP, for the
Bayesian linear model for a standard regression problem. Holmes and Mallick (1998)
provide little detail on suitable methods for orthogonalizing in the regression context.
Thus, the kind of extensive analysis of Clyde ef a/ (1996) and the application of perfect
sampling with the monotone Gibbs sampler, have yet to be done together. In this context
we applied three new methods of orthogonalization. The first, the Lowdin method, is
invariant to the order of columns in the X space and is an extension of SVD. SVD is a
way to obtain an orthogonal design matrix in its own right, and recent work by Beaver
(2007) shows the Lowdin transformation minimizes the L? matrix norm between X and
W. The other two methods use the modified GS transformation, and so depend on the
order of the columns of X. We suggest an initial naive method of ordering based on the
correlation between y and X, and a slightly more complicated method, by taking account
of the correlation between predictors. This approach was inspired by the partial least
squares approach, which uses y in the orthogonalization of X.

Using W instead of X has a number of effects. The most obvious is the ability to access a
monotone CFTP Gibbs sampler, per the sufficiency requirements established in Chapter 2
and discussed above. W also induces a larger disparity between a collection of good and
bad models, as such, the posterior mass becomes more concentrated compared to the
posterior using X. This shrinkage effect was evident in plots of the residual sum of
squares, model competition, and entropy. The expected model size for y does not appear
to be vastly different for W compared to X. The DIC study and model checking provided
strong evidence, that for most choices of the hyper-parameters 7, ¢ and p, the use of W

instead of X provides comparable performance for in-sample prediction. However, in
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using W we sacrifice variable selection, and possibly out-of-sample predictive ability.
There was some suggestion that the use of orthogonal transformations may also be more
reliable in large sample situations, or certainly when n is much larger than k. The use of
W also provides faster computation of the posterior, and the Gibbs update probabilities.
The use of W also aids convergence by reducing the dependence between the
components in y. These points coupled with the additional concentration of mass in the
posterior under W, suggests that a Gibbs MC in the W space, should display superior real
time rates of convergence compared to the equivalent sampler using X. This is indeed
what we observed.

The DIC and model checking studies indicated that the GPC, as found in previous work,
was a consistent and reliable method for transformation. The GS, method also proved to
be extremely consistent and reliable, offering a new method of orthogonalization for use
in practice. The GS; and Lowdin transformation methods, were less reliable and as such,
we would have to recommend some caution if using these methods. Clyde et al (1996)
felt they could not recommend any particular orthogonal method they investigated, as an
optimal choice. While we cannot suggest an optimal choice either, because of the more
extensive empirical investigation, it seems based on these results that the GPC method is

a reliable option, as is the GS, method.

From three versions of the Gibbs sampler; standard with the original predictor
matrix, standard with an orthogonal predictor matrix and perfect with an
orthogonal predictor matrix, determine which is the best choice according to

computational efficiency and rate of convergence to the stationary distribution.

We compared monotone Gibbs CFTP using W, and the Gibbs sampler in the X space.
We also considered the competitiveness of the standard Gibbs sampler using an
orthogonal predictor matrix, which then gave rise to a hybrid method. There was no
indication of a substantial difference based on inference between the orthogonal Gibbs
sampler and the perfect version. The standard Gibbs sampler requires a similar amount of
computing time to monotone Gibbs CFTP when the BCT is minimal. However, the

monotone Gibbs CFTP will converge faster in real time. The comparison is complicated
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by burn-in for the Gibbs sampler and the incomparability of the posteriors for X and W.
The requirement for burn-in will reduce the efficiency of generating usable sample points
with the Gibbs sampler for X. The shrinkage effect allows the Gibbs sampler for W to
converge faster than the equivalent sampler for X.

For the monotone Gibbs CFTP, we also spent time investigating factors affecting the
BCT. This is because if the BCT increases, then monotone Gibbs CFTP becomes less
computationally competitive with other sampling methods. Results suggest that
decreasing information or increasing k, increases the BCT. Information is related to the
ratio of the sample size to the number of predictors. If 7 is close to k a lot of uncertainty
surrounds the inclusion of predictors, as a result, there is a lot of model competition in the
posterior for y which is indicated by entropy. This result can be affected by the choice of
hyper-parameters. Hyper-parameter choices that reduce model competition and hence
entropy, will reduce the BCT. These choices are typically extreme values such as 0 and 1
for 7, and small (<10) and extremely large (>10°) for ¢ or p. These extreme choices
generally drive the posterior towards the null or full model. The exception to this rule is
demonstrated by considering the maximum probability of remaining un-coalesced for the
perfect sampler. The example we use demonstrates how even though extreme values of
penalty reduce the entropy, the BCT can still be noticeable because of a large probability
or remaining un-coalesced for a single component. This can occur when the posterior is
transitioning towards the null model as the penalty increases. Bi-modality occurs as the
mass shifts from the model with the two most important predictors, to a model containing
only one. This can introduce a large probability of remaining un-coalesced for the
predictor included in one model and not the other. This in turn can increase the BCT.

The orthogonal Gibbs sampler, proved to be more computationally efficient than the
perfect sampler. What is interesting is the comparable convergence to the perfect
sampler. In particular, the convergence was similar per sample point, and the minimal
dependence in the orthogonal Gibbs chain can be shown with auto-correlation plots. This
leads to an effective sample size for the examples we investigated, essentially equivalent
to the number of samples generated. This means from a practical point of view, the
dependent chain is essentially as good the i.i.d. sequence from monotone Gibbs CFTP.

The convergence in real time provided even more support for the efficiency of the
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orthogonal Gibbs sampler. This evidence leads to the suggestion of using a combination
of perfect sampling, and the standard orthogonal Gibbs sampler. This hybrid approach
uses monotone Gibbs CFTP to detect a starting point at time zero, and then the single
coalesced Gibbs chain is allowed to continue onwards from time zero. This removes the
burn-in issue, but retains the maximum computational efficiency from using an
orthogonal Gibbs sampler. Monotone Gibbs CFTP has the advantage of i.i.d. points and
the hybrid method is almost as good with less computing time. Thus, we recommend
either approach, as both are more efficient than the Gibbs sampler for X, when modeling
the response under model averaging. Ultimately the choice lies with the user however, we
suggest monotone Gibbs CFTP should be used when the BCT is minimal and the hybrid

method otherwise.

Provide further exploration of the application of the perfect sampling version of the

independence Metropolis-Hastings algorithm for BVS.

Rejection sampling is the method by which we detect coalescence in monotone CFTP
using the IMH sampler. This suggests that perfect sampling with IMH is a redundant
concept, as there is no reason to use the recursive framework for exact IMH, when we
can use rejection sampling whenever exact IMH is possible. The perfect sampler of
Schneider and Corcoran (2004) for BVS is also a rejection sampler.

We manipulate the proposal distribution for IMH, so the required bound for rejection

sampling may be found as a function of the residual sum of squares. For Zellner’s prior
with E = 0 and Jeffreys prior, rejection sampling is only feasible for choices of hyper-

parameters that minimize the difference between the posterior and proposal. Using
Zellner’s prior when 7 is close to k, and choosing ¢ = n, the rejection sampler was
efficient enough for practical use. The difference between the method of Schneider and
Corcoran (2004) and our work, is their method was inefficient, requiring thousands of

samples to generate one exact value for very small values of £, in their case 3. However,
their approach is able to incorporate a prior choice for ﬁ The rejection sampler we

propose cannot.
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The rejection sampler for the marginal posterior distribution for ¢, allowed a
demonstration of how useful it can be to think of a rejection sampler as an IMH sampler.
The approach provided a framework that allowed the efficiency of the rejection sampler,
to be improved though adaptation of the proposal. Specifically, empirical estimates of the
parameters for the proposal distribution can be adapted, as we generate samples from the
posterior. Even though the rejection sampling using f(c) as the proposal was quite

efficient the adaptation improved the efficiency noticeably.

General comments

Holmes and Mallick (1998) were the first to apply perfect sampling to the Bayes linear
model for a regression problem, and subsequent work by Holmes and Denison (2002)
focuses on the wavelets case explicitly. The wavelets case decomposes the response into
a series of orthogonal basis functions, which are then used as predictors to reconstruct the
response. For regression we already have existing non-orthogonal predictors. This is the
crucial difference between the linear regression problem and the wavelets regression
problem. Further, for the wavelets case typically the series length (n) must be a power of
2, and the decomposition generates n separate basis functions as predictors. Thus, with &
= n we can expect the BCT to be larger for the wavelets case, compared to standard
regression where n >> k. This may seem trivial and while BCT are often reported in
previous work, no discussion is given on why the two may differ. In the work by Lee et
al (2005) even though BCT were around 16 to 31 which seems long by comparison to the
regression case, clearly this is not as extreme as it can get. This suggests that the analysis
done on both sufficient conditions for monotonicity, BCT and the comparison of a hybrid
orthogonal sampler compared to the perfect sampler, are all relevant to the wavelets case.
In particular, the work we have done suggests we may improve the BCT with choices of
hyper-parameters, and that the hybrid approach may also be useful.

A point of interest in this work is the additional investigation of Jeffreys true prior. We
note ad hoc adjustments of this fashion have been done before by Wasserman (2000). The
motivation behind use of the adjusted Jeffreys prior is to allow the sensible introduction

of a suitable penalty term. Thus, if # is large, k is small and no subjective information is
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available, there should be little objection to the use of the adjusted Jeffreys prior. Note
that such a prior may not be a reasonable suggestion for the wavelets work as n = k. In
particular, the monotone Gibbs CFTP is well suited to cases with larger n and small £,
and so we suspect would typically be employed with perfect sampling. We also note that
the alternate Jeffreys prior performed well for inference when modeling y, but did not
provide an efficient rejection sampler for BVS for some reasonable choices of hyper-

parameters.
Recommendations

The recommendations we make following the work of chapters 2, 3 and 4 are as follows.
When modeling the response y orthogonalize using either the GPC or GS; method, then:
1. If k is large and n >> k use perfect sampling and Jeffreys alternate prior as we
have strong information from the data and a minimal BCT
2. If kislarge and # is close to k& use the hybrid approach to avoid the large BCT due
to little information from the data. Use Zellner’s prior with a standard choice for ¢
such as ¢ = n.
When choosing hyper-parameters, avoid choices that disrupt monotonicity, or choices

that greatly increase the BCT for case 2 above.
1. For Zellner’s prior set ﬁ =0.

2. For the conjugate prior for o avoid choices of ¢ and b that result in the posterior
mean or median corresponding to the classical estimator of variance.

3. Avoid extreme choices of 7, ¢ or p.

From chapter 5:
1. Exact IMH is redundant as it is built on rejection sampling, thus the rejection
sampler should always be used when ever exact IMH can.
2. When performing variable selection use the rejection sampler when 7 is close to £,

k is large and use Zellner’s prior with ¢ = n, ﬁ = 0. Choose the value of 7in the

constant Bernoulli prior as required.
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3. If a maximizable expression for the ratio of a posterior to a proposal distribution
can be obtained, then we may use empirical estimates of those parameters as

sampling progresses to improve the efficiency of rejection sampling.
Future Work

We now highlight some avenues for future research that have arisen as a consequence of

the work presented in this thesis.

1. Determine if a monotone Gibbs sampler for error distributions other than the
Gaussian, can be constructed for BMA in linear regression.

2. Alternative perfect sampling methods to those discussed in this thesis for joint
posteriors. Joint posterior of interest in Bayesian linear regression may include for
example, the joint posterior for variable selection and outlier detection.

3. Determine if out-of-sample prediction under suitable conditions, such as large n
and an orthogonal design matrix, is competitive with out-of-sample prediction
using X.

4. Determine if simulated tempering can be more efficient than the rejection sampler
in chapter 5.

5. Extend a rejection sampler (or other perfect sampling method) to the marginal
posterior for y forﬁ #0.

6. Conduct a literature review for suitable posteriors where solutions of the starting
point for exact IMH, is available as a function of the parameters of the proposal
distribution. This will allow the rejection sampler to be adapted for increased
efficiency.

7. Investigate in detail, the relationship between rejection sampling and Fill’s
algorithm.

8. Examine if perfect sampling within a larger Gibbs chain (Metropolis within Gibbs

for example) provides any improvement to convergence and/or inference.
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In summary, from a theoretical standpoint perfect sampling is an elegant and appealing
method to generate exact i.i.d. sample points from posterior distributions in Bayesian
analysis. However, practical considerations complicate the desire to use perfect sampling
as a standard tool. First of all, constructing a perfect sampling algorithm for a specific
problem can be difficult at best, and impossible at worst. The rate of convergence of the
underlying MC, dictates the distribution of geometric waiting times for generating perfect
samples, and so may only be as efficient as the underlying MC. Perfect sampling
algorithms typically require greater computing effort, both in terms of calculation and
memory. The main disadvantage with MCMC is the requirement to assess the burn-in
period, which perfect sampling removes the need for. Thus, perfect sampling with all its
theoretical appeal is likely to be a sought after sampling method for some time to come.
In recent times perfect sampling has received less attention with a shift towards adaptive
MCMC methods; however, perfect sampling is a topic well worth the research, despite

the potential difficulties.
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APPENDIX A: Probability Distributions

We omit the continuous uniform and discrete densities, and provide those probability
distributions that are of particular relevance to the work in this thesis.

Bernoulli

Notation: X ~Br(p)
Form: p(x)=p (- p)lix I[{0,1} (%)

Conditions: 0 <p <.

Beta

Notation: X ~Be( a, )

F@+f) o

Form: p(x) = T(@)T(B)

(I- x)ﬂ_l I[[0,1] (%)

Conditions: «, f > 0.

Binomial

Notation: X ~Bi(n, p)

.....

Form: p(x) = {ijx(l_p)n_xl{o n} (%)

Conditions: 0<p <1, ne{l,2,..}.

Geometric

Notation: X ~Ge(p)
Form: p(x)=(1- p)H p]{l,z }(x)

seen

Conditions: 0 <p <.

Inverse-Gamma

Notation: X~1G( a, )
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ﬂa —(a+1)
Form: p(x) = @x exp(=B/x) 1, ) (x)
Conditions: «, f > 0.
Normal
Notation: X ~Np(0,XZ )
Form: p(x)=Q2x) " |2 exp[— 0.5(x-0)" 27" (x— 9)]

Conditions: T is a p by p positive-definite symmetric matrix; x, 0 € RP.

Poisson

Notation: X ~Po( 1)
Form: p(x)=——

Conditions: A > 0.

Student-t

Notation: X ~Sty(v,0,X)

Form: p(x) =

F((V+p)/2)/r(v/2) |:1 N (X _B)T Z_l (X _0):|[V+2pj
JE|r)"?

Conditions: v> 0, X is a p by p positive-definite symmetric matrix; x,0 e RP.

v
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APPENDIX B: Derivation of Posteriors

B.1 Conjugate Priors:

Priors:
fB,.07 |1)=N, ,(B,.0°V,") 1G(a,b), with f(y) =1

Posterior for y:
falyX) =[] ra.B,.07 ly.X)d,do”
« [[f(y17.8,.0°.X) /B, |v.0°,X)f(c” | X)f(1)dp,do”

x [{N,(X,B,.0°L)N, ,,(B,.0°V,")dp, IG(a,b)dc”

q,+1

1
oc(27) V|2

I{IGXP[— 2;2 (X876~ X,B,)+®B, ~B,)"V, B, —ﬁy)))}dﬁy}...
(o )["qz’m]l exp{— %}dcz
o

9, +1 1
-7 o= 1
=Q2m) 2 |V, Zj{jexp{— — {yTy+p§x§xy|3y—zﬁgxﬁyﬂazvygy...

n+q,+1

+ﬁYTVyﬁy—2B:VyﬁyﬂdBy} (0-2)[2+ 5 exp{—%}daz

—@m) |V Hjexp{— 1 [[l‘y—(Vy‘*‘XzXY)IQ(§Y+VYEY)]T~-~

20

e (V, +XIX)IB, —(V, +X§Xy)‘1(X§y+Vyﬁy)]ﬂdﬁy}...

1 ~ ) -~
...exp{— o~ 'y X"y +V,B) (V, +X'X )" (Xy+V,B) + pjvypy)}

(o’ )_[’H?HMJ_] exp{— iz}doz
o
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v =Xy + VBT (V, +X:XY)1(X§y+VYEY)J+b} }doz
1 !
oo V2V, +X5X)7 2.

(2b +y'y-Xly+V,B) (V, +X/X )" (X]y+V,B,)+B,V,B, )5

Joint posterior for p and o™
fB,.0” 1.y, X) =/B,10°.7.y.X) [ |1.y.X)

Yy=B) (V) (B)+BIV,B,

* _ * * _ n
=N, al(V))" B,).0° (V)" 11G D +ab+ 2

. * T L I
where: V, =(V, +X,X,),and B, =(XTy+V,B,).

B.2 Zellner’s Prior:

Priors:
fB,.0% [1.X.0) % N, (B,.co(X]X,)™) (67)", with f(y) = 1

Posterior for y:
f@ly. X0 =[[f(.B,.0°|y.X.c)dB,do
< [[fy|7.B,,07.X) /B, |1.67.X,e)f(c” | X) f(v)dB,do”

x [{IN,(X,B,.0°1)N, ,(B,.co’(X]X,))dp, (o) do?

q,+1 1

w2re) 2 [(XIX,)[ 2.

. J.{J‘exp{_ 2;2 (y_XYBv)T(y_XYBV)+%(BY _EY)TX"?XY(ISV _ﬁy)):ldﬁy}"'
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n+q,+1 B
. (0"2)_[ : ] ldaz

q7+1

=Q2rc) 2 |(XIX)7"] 2.

.. j{jexp{_

1 1
e [yTY"‘BngXyBy _2B§X:y +ZB§X§X»'[5V
NESON

..+l§jxjxyﬁy—gﬁ§xgxyﬁyﬂdpy}(az)[ ? ]Idaz
C C

+1

_@re) KX
c+1 c A 1 ~ ror c 1 ~
. j{jexp{ [(ﬁ ——f,-—B,) xyxy(ﬂy——ﬁy——ﬁy)ﬂdﬁy}---
c+1 c+1 c+1 c+1

eee CXI){—-

1 T c T T I T l 577w & 2 v @
20° (y y_c+1y XY(XYXY) X7y+c+1ﬁ7XYXYB7_c+1y XYBY

n+q,+1

. (0'2)[ ? ]Idaz

q+1

= (c+1) 2[(0)2

.. exp{_
q, +1

-n/2
- T ¢ T l srory & 2 Tv §
x(c+l) ? (y Y- 7Y Hy)"*‘mﬁyxyxyﬁy—ﬁy Xyﬁyj

-1

1 T c T l ~rorv & 2 I'v B 2
o (y y_c+1y Hyy+c+1B7X7XYﬁy_c+ y XYBY do

Joint posterior for  and o’

1, 110X =N, i T
c+1

c+1 7" c+1

n 1
1G| —,— -
(22{}’}’

Posterior Predictive distribution:

T Dl wT o T o
1(cy H,y-B,X,X,B, -2y XYBY)D

SFIXXy.1.0=] fF10°.XX.y,7.0) /(0 |y, X,7,¢) do” where

fG10* XXy .0 =] fF0*B.X1)fB, |0°.y.X.7.c) dp, for the newly observed data:
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¥IB,.X,.0° ~N,(X,B,,0°1,), hence§ =X B. + o0& where &~ N, (0,1,), and for the posterior

for B we havep, |o°,y,X,y,c~ NqH( B+ ! E 1(X X,)” Jhence
’ +

c+1 7 c+1 c

Cc A 1 ~ c -
B, :(mﬂy +ﬁﬂ )+o-‘/ag where, ¢~ N, (O,(XiXY) .
~ S c =X 1~ c
It follows: y =X ( B B ) ‘/—g + o€ = [—B +— B j ‘/ X E+eE
e+l c+1 c+1 c+1 c+1

C

therefore: (¥ | o, X, X,y,v,¢)~ N,,| X, ﬁy +LEY ,o’[1, +L)~(§(X§Xy)‘l)~(y]
c+1 c+1 c+1

fFIXXy,y) =] fF1eXXy.nf (0 |y, X,y)do’
1 = 2 C T, ~vT A
=|N e , I +—X (XX X
'[ ( (c+1 c+lﬁyjo-[m c+1 (X, X,) V]J

1 ~ ~ 2 ~
IG =, = —— vHy+—BIX'X p. ———vyv'X do?
(2 2[y y 1y Yy c+1By . X, B, 17 YBy]j

* (o exp[— ; (¥~ Xm, 1z, 17 (7 - iyuy)}

1 olvwT o 2 T o 2
~[y” y——y Hyy+mﬁyXyXyBy 17 XVBY]}JG

(e I exp[—
+1

cC 1~ ~ c A 1 ~
where: X, :[Im +—XJ(X;X,) 1XY},amduY :XY( B +—[iyJ

c+1 c+1"7  c+1

r _ o c 1 - - 2 - (n+m)/2
o (y—uy)rﬁyl(y—uy)+yTy—c—yTHyy+zBfX§Xyl37 —c—yTXYBY}

L +1 +1
_ nem))2
. : n(i—uyl)TZN;l(i—uZ) . _—
v S R - R
yy——SyTHy+— BIXIX B, - yX,,
=T| n,n,, c+1 c+1 c+1 z,

n

B.3 Jeffreys Prior:



Appendix 197

Derivation:

Jeffreys prior is obtained from the following relation:

17 B,.0%) 1B, %)=/~ E[H(B,.0)|
Where I is the expected Fisher Information matrix and H is the Hessian matrix. The log

likelihood is:

U(B,,0%) =~(n/2)In(27) = (n/2)In(c*) - — (y - X,B,)" (y - X,B,)

207

1
207

(B,,0)=—(n/2)In(27)—nlno - (y- XYBY)T(y -X,B,)

The grey boxes contain the equivalent derivation for o instead of o>. We can derive the

first partial derivative w.r. to By simultaneously using matrix calculus:

ol(p,.0°)
B,

1 T T
5 S (2Xy+2X(X,B)

1 T T
- ?(va -X,X,B,)
Now the second partial derivative:

0*U(B,0°) 1
? = ?(_ijy)
Y

_E{azf(ﬁy,az)] X)X,
oB, 2

o)

Now considering o2, we obtain the first partial derivative:

o/B,,0°) _ n 1

+
oo’ 207 2(c?)

A m L y-X B (vy-X,B,)
oo o O

S(y-X.B) (y-X,B,)

Now the second partial derivative:
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o, ,o°) n 1 .

Y _ _ _x _x

6(02)2 2(02)2 (02)3 (y yBy) (y VBy)

_no’ =2(y-X,B,)" (y-X,B,)
2(0_2)3

6%([;7,0-)_ no 3 3 Too
a(o_)z _? 4(y Xypy) (y Xypy)

o
_ 10’ =3(y-X,B,) (y-X,B,)

4
(o)

Now taking the negative expectation:

e o*(P,,0) _ [no®-2no’
5(0‘2)2 2(02)3

n
- 2(0_2)2

_E o*((P,.0) _ [no®=3nc’
o) | ot

Cross Products for /3 and o *:

_Elzazf(liy,oj):l

1
=-Ff-——X"y-X’X
aﬂ]a(GZ) |: (0_2)2( Vy Y VBY):|

: Xz(XVBY _XYBY)

T (@)
=0

) E{azz(py,a)

=2 T T
5ﬂj80' }__E[?(va XVXYBV):l

2 or
- ;XY (Xvﬁv _Xvﬁv)

=0

Therefore:
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XX, 0
IB,.0%)= -7 o n
202
1 X’X, 0
IB,,0)=—| " 7
lo2 0 2n
and so:
(g + n _
[IB,.0M)|=(c7) """ XX, 5
n (g, +
=5|x§xy (o)
and
[IB,.0)|=(c*) " |X]X, |2n(c7)"
“on|XIX, (6P
Hence,
f'B,,0")c|1B,,07)]
oc| szy |1/2 (0_2)—(q,+3)/2
and
17 ®B,,0)c 1P, ,0)
oc| szv |1/2 (0)—(qy+2)
Priors:

L+l
4y 1 ,[LJA

fB,.0 [1.X) < (p) > [XIX, |2 () ' ? ], with £ (y) oc 1

Posterior for y:

a1y, Xy =[[fa.B,.07 1y, X)dp,do’

« [[f(y17.8,.0°.X)gB,.0” 1. X)g(v)dp,do”

qy 1 q,+1

“(p) 2 IXIX, [ N,,(xyﬁy,azl,»dﬂy}(a%_[z]_1 do?

199



200 Appendix

o (p) * X)X, || {j exp[— 1 (y—XYBY)T(y—XYBy)}dBY}---

2
20
n+q,+1

...(02)_[ ) do?

~(p) XX, P | {jexp[—é(yfyﬂsiX:XyBy —2B5X§Y)}dﬁy}~-
...(az)[n?] do?

=(p) XX, |*...

: f{fexp{_ 1 (yTy—yTHyyHBy—ﬁy)Txixy(Bv‘ﬁv))}dﬁy}m

20
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...(0'2)_[ ) do?

oc (p)_7 |X§Xy |E I{Iexp|:_ 12 (By _l}y)TXZ[wa(l;y _ﬁy):|dﬁy} °ce
20
...(02)_[ ? j_ exp{— 12 (yTy—yTHyy)}a’G2
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4 1 4, 1

o (p) * IXIX, |2 @27) 2 [(XIX,)7" |2

L 1
...I(az) 2 exp{— 5o (yTy—yTHYy)}a’O'2

KA )

2 _Z

o [ﬁj (y'y-y'Hy)y) 2

2
Joint posterior for p and o
fB,.0’ 1y, X)) =fB,10%7.y.X) (0’ 1,y,X)

T T
« _ nyy-y Hy
=qu+1(By,02(X§Xy) D) IG(E’#J

Posterior Predictive distribution:
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¥IB,.X,.0° ~N,(X,B,,0°1,), hence§ =X B, +0F where &~ N, (0,1,,), and for the posterior for § we
have B, |o”,y, X,y ~ Nqﬁl(ﬁy,O'Z(Xng)*l) hencep, =P, + e where e~N, ,(0,(X;X)™).

It follows: y = )N(y (|A3y +0¢)+0€ = )N(Yﬁy +a()~(y£+5) , therefore:
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APPENDIX C: Datasets

Ozone Data
Response: Ozone concentration (ppm)
[k,n]: [8,80]
Size of I": 256
Description : Ozone concentration at Upland, CA, USA.
Source: R Software, Package {forward}
Predictors:
x': Temperature F (max for the day) x": Vandenburg 500 millibar height (m)
x’: Inversion base height, feet x%: Humidity, percent
x": Daggett pressure gradient (mm Hg) x': Inversion base temperature, degrees F
x*: Visibility (miles) x*: Wind speed, mph
Description/Comments:

This data set consist of the first 80 observations from a data set containing up to 360
observations from Breiman, L and Friedman, J. (1985), “Estimating Optimal
Transformations for Multiple Regression and Correlation”, Journal of the American
Statistical Association, 80, 580-598. We use log(ozone) as y.

References:

Atkinson, A.C. and Riani, M. (2000), Robust Diagnostic Regression Analysis, First
Edition. New York: Springer, Table A.7.

Physical Data
Response: Mass (kg)
[k,n]: [ 10,22 ]
Size of I 1024
Source: http://www.statsci.org/data/oz/physical.txt
Predictors:
x': Forearm (Maximum circumference) x%: Calf (Maximum circumference of calf)

x”: Bicep (Maximum circumference) x': Height (Height from top to toe)
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x’: Neck (Distance around neck, x*: Waist (Distance around waist,
approximately halfway up) approximately trouser line)

x*: Chest (Distance around chest directly x’: Head (Circumference of head at eye
under the armpits) level)

x": Shoulder (Distance around shoulders, x'’: Thigh (Circumference of thigh,

measured around the peak of the shoulder =~ measured halfway between the knee and

blades) the top of the leg)

Description/Comments:

The weight and various physical measurements for 22 male subjects aged 16 - 30 were
recorded. Subjects were randomly chosen volunteers, all in reasonable good health.
Subjects were requested to slightly tense each muscle being measured to ensure
measurement consistency. All predictors are measurements in cm. There was no need to
log transform the response variable the residuals are very well behaved.

References:

Larner, M. (1996). Mass and its Relationship to Physical Measurements. MS305 Data

Project, Department of Mathematics, University of Queensland.

Bodyfat Data
Response: Percentage bodyfat
[k,n]: [13,250]
Size of T 8192
Source: http://www.amstat.org/publications/jse/v4n1/datasets/fat.dat
Predictors:
x": Age (years) x*: Thigh Circumference (cm)
x’: Weight (pounds) x": Knee Circumference (cm)
x*: Height (inches) x'’: Ankle Circumference (cm)
x*: Neck Circumference (cm) x'!: Extended Biceps Circumference (cm)
x”: Chest Circumference (cm) x'%: Forearm Circumference (cm)
x%: Abdomen Circumference (cm) x'?: Wrist Circumference (cm)

x': Hip Circumference (cm)
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Description:

Percentage of body fat estimated for 251 men using an underwater weighing technique.
The logit transformation was used for y and the negative result truncated to zero was
removed.

References:

Johnson, W. R. (1996) Fitting Percentage of Body Fat to Simple Body Measurements.
Journal of Statistics Education Vol. 4 (1).

U.S. Crime Data

Response: Rate of crime per head of population in US states

[k,n]: [ 15,47 ]

Size of T 32768

Source: R Software, Package {MASS}

Predictors:

x': percentage of males aged 14-24 x’: number of nonwhites per 1000 people
x’: indicator variable for a southern state x'’: unemployment rate: urban males 14-24
x’: mean years of schooling x'': unemployment rate: urban males 35-39
x*: police expenditure in 1960 x'?: gross domestic product per head

x": police expenditure in 1959 x": income inequality

x%: labor force participation rate x'*: probability of imprisonment

x’: number of males per 1000 females x'”: average time served in state prisons

X': state population

Description:

Data set records the crime rate in 47 U.S. states for various demographic predictors. All
explanatory variables except x> were log transformed.

References:

The U.S. crime data has been analyzed often in the literature for variable selection such
as Cripps et al (2006) and Liang et al (2008). It was first presented and analyzed in:
Vandaele, W. (1978) “Participation in illegitimate activities; Ehrlich revisited,” In:
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Blumstein, A., Cohen, J., Nagin, D. (Eds), Deterrence and Incapacitation. National
Academy of Science Press, Washington, DC, 270 — 335.

Body Measurement Data

Response: Weight (in kg)
[k,n]: [ 24, 507]
Size of T: 16777216

Source: http://www.sci.usq.edu.au/staff/dunn/Datasets/applications/biology/body.dat
Predictors:
x': Biacromial diameter (cm) x": Navel girth (cm)

x”: Biiliac diameter (pelvic breadth) (incm)  x'*: Hip girth (cm)

15

x”: Bitrochanteric diameter (cm) x ~: Thigh girth (cm)
x* Chest depth (cm) x'¢: Bicep girth (cm)
x”: Chest diameter (cm) x'": Forearm girth (cm)
x’: Elbow diameter (cm) x'®: Knee girth (cm)
x’: Wrist diameter (cm) x"’: Calf girth (cm)

x*: Knee diameter (cm) x*°: Ankle girth (cm)
x’: Ankle diameter (cm) x*': Wrist girth (cm)
x'’: Shoulder girth (cm) x**: Age (years)

x'": Chest girth (cm) x>: Height (cm)

x'2: Waist girth (cm) x**: Gender; 1 for males and 0 for females
Description:

The data give 21 body dimension measurements as well as age, weight, height, and
gender on 507 individuals. The 247 men and 260 women were primarily individuals in
their twenties and thirties, with a scattering of older men and women, all exercising
several hours a week.

References:

Grete Heinz, Louis J. Peterson, Roger W. Johnson, and Carter J. Kerk. Exploring

relationships in body dimensions. Journal of Statistics Education, Volume 11, Number 2.
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Baseball Data

Response: Salaries ($1000) of 337 Baseball players in 1992

[k,n]: [ 27, 333]

Size of T 134,217,728

Description: The 27 variables collected are performance statistics from 1991, no
baseball pitchers are included.

Source: http://www.amstat.org/publications/jse/von2/datasets.watnik.html

Predictors:

x': batting average x'”: runs/sos

x”: on base percentage (obp) x'°: hits/sos

x": runs scored (runs) x'": homeruns/sos

x*: hits x'®: rbi/sos

x": doubles x": walks/sos

x% triples x*: obp/errors

x’: homeruns x> runs/errors

x": runs batted in (rbi) x*: hits/errors

x’: walks x>*: homeruns/errors

x'?: strike outs (s0) x**: sos*errors

x'": stolen bases (sb) x> sbs*obp

x'2: errors x°: sbs*runs

x': free-agent x*": sbs*hits

x'*: arbitration

Description:

Performance statistics were collected for Major league players excluding pitchers along
with the following years salary. Per analysis done in the reference below we remove the
influential outliers observations: 205 268 284 322, and log transform the response
variable.

References:

M.R. Watnik (1998), "Pay for Play: Are Baseball Salaries Based on Performance",

Journal of Statistics Education, Volume 6, number 2
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APPENDIX D: Matlab Code

We now list the main functions used in this research, we do not include code used in the
summary and production of figures from the output results of these functions. For full
details on input and output arguments see the relevant code. All main functions (listed
below in alphabetical order) have been made stand alone, thus no call structure for the
required sub-routines is required. This means all required sub functions that are not
standard Matlab functions are contained therein.

The functions in alphabetical order are:

. cRejectionl.m

. cRejection2.m

. GibbsOSampler.m

. GibbsPerfect.m

. GibbsSampler.m

. gRejection.m

. Jeffrey.m

. ModelCheck.m

O 0 I N »n B~ W N =

. Zellner.m

function [sampc m par] = cRejectionl(y,X,g,a,N)

%%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%
%Rejection sampler for the conditional distribution of c using Zellner’s %

%prior. The prior for c is the Hyper-G-n. %
%INPUT: y is the response vector %
% X is the predictor matrix %
% g is the chosen model %
% a is the hyper-hyper-parameter for the hyper-G-n prior %
% N is the number of samples to be generated %
%OUTPUT:samp is N i.i.d samples from the required conditional posterior %
% for c. %
% m is the N waiting times to generate each sample point %
% par is the a and b parameters of an 1.G. distribution that %
% approximates the conditional posterior of c %

%%%6%%%%%%%%%%%6%%%%%%%6%%% %% % %% %% %% %% %% % %% %% %% % Y6%%% %% %% 6% % %% %% %% % % %% % %% %% %% %%

n =length(y); v = 2/(a-2); count = 1; C1 = -(sum(g)/2); %constants
C2 = y"*y; Xg = X(:,g==1); C3 = y"*Xg*inv(Xg"*Xg)*Xg"*y; C4 = -n/2; %constants
cm = -(sum(g@)*C2-n*C3)/ (sum(g)*(C2-C3)); %maximum
bound = ((cm+1)"C1)*((C2-(cm/(cm+1))*C3)"C4); %optimal bound
while count <= N
steps = 1; %relative to the previous accepted point
check = 0;
while check == 0;
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VV = rand;

prp = -n*(((vw-1)*)-1)/((vv-1)"Vv); %propose a new value

prmove = (Cl*log(prp+1)+C4*log(C2-(prp/(prp+1))*C3))-log(bound);

%acceptance probability

if rand <= exp(prmove)
sampc(count) = prp; %store accepted value
m(count) = steps; %store length of run for accepted value
check = 1; %sample point obtained

end
steps = steps + 1;
end
count = count + 1; %update sample count
end
par = gamfit(l./sampc); %calculate Inverse Gamma Approximation
par = [par(l) 1/par(2)];

function [sampc m] = cRejection2(y,X,g,a,r,s,N)

%%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%
%Rejection sampler for the conditional distribution of c using Zellner’s %

%prior. The prior for c is the Hyper-G-n. %
%INPUT: y is the response vector %
% X is the predictor matrix %
% g is the chosen model %
% a is the hyper-hyper-parameter for the hyper-G-n prior %
% r and s are the required parameters for an I.G. approximation to %
% the conditional posterior of c %
% N is the number of samples to be generated %
%OUTPUT:samp is N i.i.d samples from the required conditional posterior %
% for c. %
% m is the N waiting times to generate each sample point %

%%9%6%%%%%%%%%%%6%%%%%%%6%% % %% % %% %% %% %% %% % %% %% %% % %% % %% %% 6% % %% %% %% % % %% % %% %% %% %%

n =length(y); Cl1 = -(sum(@)/2); C2 = y"*y; Xg = X(:,g==1); count = 1;
C3 = y"*Xg*inv(Xg"*Xg)*Xg"*y; C4 = -n/2; v = 2/(a-2);
[cmv bb] = solvepolycm(C2,Xg,C3,n,g9,a,r,s);
cm = cmv(bb==max(bb))
bound = max(bb) %optimal bound
while count <= N
steps = 1; %relative to the previous accepted point
check = 0;
while check == 0;
VV = rand;
prn 1/gamrnd(r,1/s); %propose a new value
prp = (((prn+1)"(C1))*((C2-(prn/(prn+1))*C3)"(C4))*. ..
(@+(prn/m)*(-a/2)))/ ((prn*-(r+1))*exp(-s/prn));
if rand <= (prp/bound)
sampc(count) = prn; %store accepted value
m(count) = steps; %store length of run for accepted value
check = 1; %sample point obtained

end
steps = steps + 1;
end
count = count + 1; %update sample count
end

function [cmv bb] = solvepolycm(A,Xg,B,n,g,a,v,w)

%the w must be as the parameter for the IG

q = sum(g)-1;

%these are the polynomial coefficients

rl=-A+B+q*A-q*B+a*A-a*B-2*v*A+2*v*B;

r2=q*A*n+q*A-A*n+2*a*A-a*B-4*v*A+2*v*B+2*W*A-2*Ww*B+2*B-3*A-q*B*n-. . .
2*V*A*n+2*v*B*n;
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r3=g*A*n-n*n*B-3*A*n+a*A-2*v*A+4*W*A-2*W*B+2*n*B-2*A-4*v*A*n+2*v*B* . _ .
N+2*W*A*n-2*w*n*B;

r4=-2*A*n-2*v*A*n+2*w*A-2*w*n*B+4*w*A*n;

r5=2*w*A*n;

cof = [rl r2 r3 r4 r5]; cm = roots(cof);

for j = 1:length(cm)
cmr(J) = isreal(cm@));

end

cmvl = cm(cmr==1); cmv = cmvl(cmv1>0);
for i = 1:length(cmv);

bb(i) = (((emv(i)+1)"(-(q+1)/2))*((A-(cmv(i)/(cmv(i)+1))*BI"N(-- ..
n/2))*((1+(cmv(@)/n))(-a/2)))/ ((emv (i) (v+1)) *exp(-w/cmv(i)));

end
function [dec runtime] = GibbsOSampler(y,X,gstart,tau,penalty,shrink,N)
%%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%

%Perfect Gibbs sampler for Bayesian variable selection with an orthogonal %
%design matrix W in linear regression using Zellner®"s prior or Jeffreys %

%prior with the binomial prior for gamma %
%INPUT: y is the n.l response vector %
% X is n.(k+1) design matrix %
% gstart is the specified starting value for the Gibbs sampler, it %
% must contain a 1 in the first position and be of length k+1, %
% it may be obtained using the perfect sampler %
% tau is the choice of hyper-parameter in the constant Bernoulli %
% prior (using tau = 0.5 corresponds to a uniform prior) %
% penalty and shrink specify whether Jeffreys prior or Zellner"s %
% prior is used. For Jeffreys penalty corresponds to p = 2*pi* %
% penalty with shrink = 1. For Zellner®"s prior penalty = (c+1) %
% and shrink should be set to c/(c+l). %
% N is the number of samples to be generated %
%OUTPUT:dec is an N.1 vector of samples represented in decimal form %
% runtime is the required cputime to generate the N samples, memory %
% for output storage %

90%%%%%%%%%%%%%% %% %% %% %% %% %% %% %% %% %% 6% %% %% 6%

t = cputime;
[n kK] = size(X); i = 1; samp = zeros(N,k);
for 1 = 1:k; hats(1) = y"*X(C,D*invXC, D "X, D)X, D "*y; end
A = [y™*y sgrt(penalty)*((1-tau)/tau) n/2 shrink];
samp(1,:) ExactStart(hats,A,k);
while 1 <
i=i 1
g = samp(i-1,:); %take previous value
for j = 2:k %Gibbs sampler
[P1] = UpdateOrth(g,j.,hats,A); %calculate the P(gi=1)
gd) = rand <= P1;
end % for j = 2:k+1
samp(i,:) = g; %record updated vector as the next g vector

N
+

end

runtime = (cputime - t);

dec = bin2dec(num2str(samp(:,2:k),"%1.¥")); %turn vectors into dec values, can
do a max of 52 values!

function P1 = UpdateOrth(g,j,hats,A)

%%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%

%Update function for the conditional distribution of the posterior for %
%model probabilities %
%INPUT: g is current binary vector %
% J is the current component being updated %

% hats is the of individual Sums of Squares for each predictor %
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% A is various constants as above n the binomial %
%OUTPUT:P1 is the probability the component is = 1. %
%6%%%%6%6%6%%%%%%6%6%%%% % %6%6%6%% % % %%6%6%%% %% %6%6%6%%% % %6%6%6%% % % % %6%6%%% % % %%6%6% %% % % %6%6%6%% % % % %% %
g0 g; 9g0(J) = 0; gOhat = sum(hats(g0==1));

P1 = 1/(1+exp(log(A(2)) + A3)*(log(1-((A(4)*hats(§))/(A(1)-(A(4)*g0hat)))))));

function [dec bct runtime] = GibbsPerfect(y,X, tau,penalty,shrink,N)

%6%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%
%Perfect Gibbs sampler for Bayesian variable selection with an orthogonal %
%design matrix W in linear regression using Zellner®s prior or Jeffreys %

%prior with the binomial prior for gamma %
%INPUT: y is the n.l response vector %
% X is n.(k+1l) design matrix %
% tau is the choice of hyper-parameter in the constant Bernoulli %
% prior (using tau = 0.5 corresponds to a uniform prior) %
% penalty and shrink specify whether Jeffreys prior or Zellner's %
% prior is used. For Jeffreys penalty corresponds to p = 2*pi* %
% penalty with shrink = 1. For Zellner®"s prior penalty = (c+tl) %
% and shrink should be set to c/(c+l). %
% N is the number of samples to be generated %
%OUTPUT:dec is an N.1 vector of samples represented in decimal form %
% runtime is the required cputime to generate the N samples, memory %
% for output storage %

%%9%6%%%%6%%%6%%%%6%%%6%6%%%6%%%6%6%%%6%%% %6%%%6%6%% %6%%%6%6%%%6%%% %6%%%6%6%% %% %% %% % %6 %6%% %% %% %% %%

t = cputime; [n k] = size(X); v = 0; samp = zeros(N,k); bct = zeros(N,1);
for 1 = 1:k; hats(1) = y"*X(C,D*invX(, D "X, D)X, D" *y; end

\ v + 1;

m 1;

kil =k - 1;

gl = ones(1,k);

g0 = [1 zeros(1,k1)];

u = rand(kl,m);
while ~isequal(g0,g9l)
u = [rand(k1,m) u]; m = 2*m; gl = ones(1,k); g0 = [1 zeros(1,k1)];
for i = 1:m % iterate from the past
for j = 2:k % Gibbs sampler
P10 = UpdateOrth(go0, j,hats,A);
g0(@) = u@-1,i) < P10;
if g0(g) == 1;
g1(J) = 1; % by monotonicity: if g0(J) is 1, so must gl1(J)
else P11 = UpdateOrth(gl,j,hats,A);
g1() = u(@-1,i) < P11;
end

end % for j = 2:k

end % for 1 = 1:m
end % while ~isequal(g0,g9l)
samp(v,:) = g0; bct(v) = m;
end %runtime loop
runtime = (cputime - t);
dec = bin2dec(num2str(samp(:,2:k), %1.f")); %turn vectors into dec values, can
do a max of 52 values!

function P1 = UpdateOrth(g,j,hats,A)
%9%%%%%%%%%%%N%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%

%Update function for the conditional distribution of the posterior for %
%model probabilities %



Appendix 211

%INPUT: g is current binary vector %
% J is the current component being updated %
% hats is the of individual Sums of Squares for each predictor %
% A is various constants as above n the binomial %
%OUTPUT:P1 is the probability the component is = 1. %
%6%%6%%6%%6%%6%%6%6%6%%6%%6%%6%6%6%6%6%%6%%6%%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%%6%%6%
go g; 9g0(J) = 0; gOhat = sum(hats(g0==1));

P1 = 1/(1+exp(log(A(2)) + A3)*(log(1-((A(4)*hats(§))/(A(1)-(A(4)*g0hat)))))));
function [dec runtime] = GibbsSampler(y,X,gstart,tau,penalty,shrink,N)

%%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%
%Gibbs sampler for Bayesian variable selection in linear regression using %

%Zellner"s prior or Jeffreys prior with the binomial prior for gamma. %
%INPUT: y is the n.1 response vector %
% X is n.(k+1l) design matrix %
% gstart is the specified starting value for the Gibbs sampler, it %
% must contain a 1 in the first position and be of length k+1 %
% tau is the choice of hyper-parameter in the constant Bernoulli %
% prior (using tau = 0.5 corresponds to a uniform prior) %
% penalty and shrink specify whether Jeffreys prior or Zellner"s %
% prior is used. For Jeffreys penalty corresponds to p = 2*pi* %
% penalty with shrink = 1. For Zellner"s prior penalty = (ct1l) %
% and shrink should be set to c/(c+l). %
% N is the number of samples to be generated %
%OUTPUT:dec is an N.1 vector of samples represented in decimal form %
% runtime is the required cputime to generate the N samples, memory %
% for output storage %

%%%6%%%%%%%%%%%6%%%%%%%6%%% %% % Y%%%% %% %% %% % %% %% %% % Y %%% %% %% %% % %% %% %% % % %% % %% %% %% %%

t = cputime; %start recording the time for the Gibbs sampler
[n k] = size(X); %k includes the intercept
samp = zeros(N,k); %storage
samp(l,:) = gstart; %first row of sample is starting gamma vector
w = X"*y; V = X"*X; A = [y"*y n/2 sqrt(penalty)*((1-tau)/tau) shrink];
%constants
i = 1; %track sample size
while 1 < N %running time
i =1+ 1;
g = samp(i-1,:); %take previous value
for j = 2:k %Gibbs sampler
[P1] = Update(V,g,j,A,vv); %calculate the P(gi=1)
g(d@) = rand <= P1;
end % for j = 2:k+1
samp(i,:) = g; %record updated vector as the next g vector
end
runtime = (cputime - t); %record cputime not including conversion of g to dec
dec = bin2dec(num2str(samp(:,2:k),"%1.¥"));
%turn vectors into dec values can do a max of 52 values!

function [P1] = Update(V,g,j,A,vVv)

%%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%

%Update function for the conditional distribution of the posterior for %
%model probabilities %
%INPUT: g is current binary vector %
% J is the current component being updated %
% hats is the of individual Sums of Squares for each predictor %
% A is various constants as above n the binomial %
% vv Is the covariance matrix for the full model %

%OUTPUT:P1 is the probability the component is = 1. %
%9%6%%%%%6%%6%%%%%6%%6%%%%%6%%6%%%% %% %% % %% 6% %% % %% %% %% %6 %% %% %% % %% 6% %% % %% 6% %% % %% 6% %% % %
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gl = g; 91(d) = 1; g0 = g; go(@) = O;

Vgl =inv(V(gl==1,g1==1)); Vg0 = inv(V(g0==1,g0==1));

P1 = 1/(1+exp(log(A(3)) + AR)*(log(A(L)-A(4)*vv(gl==1)"*Vgl*vv(gl==1))-...
log(A(1)-A(4)*vv(g0==1) "*Vg0o*vv(g0==1)))));

function [GPC Low GS GS1] = OrthDesign(Xo,y)

%%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%
%Gibbs sampler for Bayesian variable selection in linear regression using %

%Zellner"s prior or Jeffreys prior with the binomial prior for gamma. %
%INPUT: y is the n.1 response vector %
% X is n.(k+1l) design matrix %
% gstart is the specified starting value for the Gibbs sampler, It %
% must contain a 1 in the first position and be of length k+1 %
% tau is the choice of hyper-parameter in the constant Bernoulli %
% prior (using tau = 0.5 corresponds to a uniform prior) %
% penalty and shrink specify whether Jeffreys prior or Zellner®s %
% prior is used. For Jeffreys penalty corresponds to p = 2*pi* %
% penalty with shrink = 1. For Zellner®s prior penalty = (c+tl) %
% and shrink should be set to c/(c+l). %
% N is the number of samples to be generated %
%OUTPUT:dec is an N.1 vector of samples represented in decimal form %
% runtime is the required cputime to generate the N samples, memory %
% for output storage %
06%%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%0%6%0%6%6%6%6%6%0%6%0%6 6% 0% %0 %6 0% 0% %% %% %%
[n K] size(Xo); X

Xo(:,2:k); Int = ones(n,1)./sqrt(n);
= X(z,1)-mean(X(:,1)); end %centre every predictor

for i 1:k-1; X(:,1)
%%%%%Principal ComponentsiieleieYeoeY6Y6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%0%696%6%6%6%0%6 0% 6% 6% 6% %% %%
D = diag(diag(X"*X)."0.5); A = D*(X"*X)*D; [U V] = eig(A); PCl = X*(D*V);
%U is eigen vectors, V is eigen values.

for i = 1:(k-1); PC2(:,i)=PC1(:,i)./norm(PC1(:,i)); end; GPC = [Int PC2];
%%%%%SVD to Lowd i n%%%%%%%%%%6%%%%%%%6%6%6%%% % %%6%6%%% % % %6%6%%% % % %%6%6%%% % % %6%6%6%%% % %%%%

[M N K] = svd(X,0); SV = [Int M]; %economy size decomposition
ASV = (N*K"); Low = M*K"; Low = [Int Low];

%%%%%G ram—Schm § dt%%%%%%%%%%%%%%6%%6%%6%%6%%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%6%%6%6%6%%6%

[Gs1]
[6s2]

cgrschol(y,X); GS1
cgrscho2(y,X); GS2

[Int GS1]; %method 1
[Int GS2]; %method 2

function [A] = cgrschol(y,X)

% Created by A. Trujillo-Ortiz, R. Hernandez-Walls, A. Castro-Perez

% and K. Barba-Rojo

% Facultad de Ciencias Marinas

% Universidad Autonoma de Baja California
% Apdo. Postal 453

% Ensenada, Baja California

% Mexico.

% atrujo@uabc.mx

% Copyright. September 28, 2006.

[mag pos] = sort(abs(corr(y,X)), "descend”);
X = X(:,pos); %re-ordering of X based on correlations
A = X; [m n]=size(A);
for j= 1:n
R(1:3-1,1)=AC,1:J-1)"*A(:,1);
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AC:,3)=AC.0)-AC, 1 J-1)*R(1:j-1,7);
RA.J)=norm(A(:.1));
ACLI)=ACG.DD/RA.D);

end

return,

function [A] = cgrscho2(y,X)

% Created by A. Trujillo-Ortiz, R. Hernandez-Walls, A. Castro-Perez

% and K. Barba-Rojo

% Facultad de Ciencias Marinas

% Universidad Autonoma de Baja California
% Apdo. Postal 453

% Ensenada, Baja California

% Mexico.

% atrujo@uabc.mx

% Copyright. September 28, 2006.
% This copyright does not include the sub-routine orderyX
[X order] = orderyX(y,X); X = X(:,order); %re-order X based on correlation
%with y and X
A = X; [m n]=size(A);
for j= 1:n
R(L:j-1,§)=AC:,11j-1)"*AC:,§);
ACL)=ACL3)-AC,1:5-1)*R(1:J-1.]);
R(J,!)=norm§A(:,!)?;
ACL1)=ACGL3)/RAL1):
end
return,

function [Xnew order] = orderyX(y,X)

[n k] = size(X); [mag pos] = sort(abs(corr(y,X)), "descend”);
Xnew(:,1) = X(:,pos(1)); %the most correlated variable with y
order(1) = pos(1); mag = mag(2:k); pos = pos(2:k); %remove the Ffirst predictor
chosen
for i = 2:(k-1)
stage2 = abs(corr(Xnew(:,i-1),X(:,pos))); %the correlation between the most
correlated variable with y and repeat this in a loop for k.
d = sqrt((stage2.”2)+((1-mag)."2)); %vector operations for distances
ind = find(d==min(d));
Xnew(:,i) = X(:,pos(ind)); %make the next predictor that which minimizes
the distance to 0,1 or min corr with previous Xnew and max corr with y
order(i) = pos(ind);
pos = setdiff(pos,pos(ind)); %need to update pos vector by removing the
most recent added variable
mag = setdiff(mag,mag(ind));
end

order(:,k) = pos;
function [samp count] = gRejection(y,X,penalty,shrink,tau,M)

%%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%
%Rejection sampler for the conditional distribution of c using Zellner’s %

%prior. The prior for c is the Hyper-G-n. %
%INPUT: y is the response vector %
% X is the predictor matrix %
% tau is the choice of hyper-parameter in the constant Bernoulli %
% prior (using tau = 0.5 corresponds to a uniform prior) %
% penalty and shrink specify whether Jeffreys prior or Zellner"s %
% prior is used. For Jeffreys penalty corresponds to p = 2*pi* %
% penalty with shrink = 1. For Zellner®"s prior penalty = (c+1l) %

% and shrink should be set to c/(c+l). %
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% M is the number of samples to be generated %
%OUTPUT:samp is N i.i.d samples from the required conditional posterior %
% for c. %
% count is the N waiting times to generate each sample point %

%%%6%%%%%%%%%%%6%%%6%%%%6%% % %% % Y6%%% %% % %6%6%% %% %% %% % Y6%6%% %% %% %6% % %% %% %% % %% % %% %% %% %%

format long g;
[n k1] = size(X); k = k1-1; d = 27k; A = y"*y; XX = X*"*X; BX = (X"*y); N = n/2;
%constants
for 1 = 1:k1
Q(i)=(nchoosek(k, (i-1))*((penalty)-(i/2)))*(taur(i-1))*((1-tau)™M(k-(i-1)));
end; Q = Q./sum(Q); %calculate proposal density
B = ((y"*y-shrink*y*"*X*inv(X"*X)*X"*y)”~-N); %compute bound
cn =0; v =0;
while cn < M
g = zeros(1,k); q = randsample(O:k,1,"true”,Q);
if g > 0; g(randsample(l:k,q))=1; g = [1 g]; else; g = [1 zeros(1,k)]; end
%generate a proposal gamma
RSS = (BX(g==1)"*inv(XX(g==1,9==1))*BX(g==1)); %hat matrix
P = ((y"*y-shrink*RSS)"-N)/B;
if rand <= P
cn =cn + 1
samp(cn) = bin2dec(num2str(g(2:k1))); %store decimal
%samp(cn,:) = g; %can choose to store g requires more memory
count(cn) = v;
v = 0;
end
v =V + 1;
end

function [P Pqg Eqg Map Med Marg yBMA DIC] = Jeffrey(y,X,penalty,tau)

%9%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%

%Posterior for gamma for Jeffreys prior with the binomial prior for qg. %
%INPUT: y is the n.l1l response vector %
% X is n.(k+1l) design matrix %
% tau is the choice of hyper-parameter in the constant Bernoulli %
% prior (using tau = 0.5 corresponds to a uniform prior) %
% penalty should be set p = 2*pi*(c+1l) to mimic the penalty of %
% Zellner"s prior. %
% and shrink should be set to c/(c+l). %
%OUTPUT:P is the normalized posterior probability for eacg gamma %
% Pgqg is the posterior probability of the model sizes 0:k %
% Eqg is the expected model size %
% Map is maximum aposteriori estimate model %
% Med is the median probability model which incldues all predictors %
% with MIP > 0.5 %
% Marg are the MIP %
% yBMA is the model averaged fitted response %
% DIC is the model averaged DIC %

90%%%%%%%%%%%%% %% %% % %% %% %% % %% %0906 %0%0%0%0%6%0 %6060 %0 %6060 %6 %066 6% %% %% %% %% %%

format long g; [n k1] = size(X); %constants
k = k1-1; d = 27k; C2 = log(penalty/(2*pi)); AA = y"*y; %constants
P = zeros(1,d); S=P; Q =P; D=P; AIC = P; W = P; %storage
for 1 = 1:d %loop through models
g = [1 str2num(dec2bin(i-1,k)")"]; %generate a single gamma vector to be
evaluated

Xg = X(:,9==1);

S(1) = sum(g)-1; %the sum of gamma
bhat = inv(Xg"*Xg)*Xg"*y;
Q(i) = log(AA-y"*Xg*bhat); %the log of the quadratic term

sighat = exp(Q(i))/(n-2); %the posterior expectation
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DIC(i1) = -2*(sum(log(normpdf(y,Xg*bhat,sqrt(sighat))))) + 2*S(i) + 4; %This
is also DIC
end %end loop which has generated two vectors of values one for each quadratic
term in
%the posterior and the second for the sum of the gamma vector.
for i = 1:d; B = ((((S(i)-SU~=i))/2)*C2)+N*(Q(1)-QU~=1)));

P(1) = (A + sum(exp(B)))"-1)*((tauS(1))*((1-tau)"(k-S(i))));
end; clear Q;
P = P./sum(P); %renormalize after adding the proportional prior
for i = 1:d; yhat(:,i) = P(i)-*yhat(:,1); end %multiply each models predicted
values
%by the posterior probability
dec = Find(P==max(P)); Map = [1 str2num(dec2bin(dec-1,k)")"]; %find the MAP
Marg = Margprob(P,k); %Marginal inclusion probabilities this includes 1 for the
intercept
Med = [1 Marg>=0.5]; %calculate the median model
for i = 1:k+1; Pgg(i) = sum(P(5==(i-1))); end %Posterior for model size
yBMA = sum(yhat,2); rBMA = y - yBMA; %the sum across rows and model averaged
residuals

Eqg = sum(P.*S); clear S
for i = 1:k+1; Pqg(i) = sum(P(S==(i-1))); end
DIC = sum(P.*DIC);

function M = Margprob(P,k)

Mat = zeros(2™k,k); for i1 = 1:27k;
Mat(i,:) = P(i)*[str2num(dec2bin(i-1,k)")"]; end; M = sum(Mat);

function [tails PC tailstats] = ModelCheck(y,X,P,shrink,N,a)

%%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%

%Function for checking model adequacy in linear regression using tail %
%probabilities for the observations and statistics of y (min, max, median,%
%std. dev.) and the predictive coverage. %
%INPUT: y is the n.1 response vector %
% X is n.(k+1l) design matrix %
% P is the (27k).1 vector of posterior probabilities. %
% shrink specify whether Jeffreys prior or Zellner"s prior is used. %
% For Jeffreys shrink = 1. For Zellner®"s prior shrink = c/(c+1).%
% N is the number of samples to be generated for each model from the%
% PPD to estimate tail prob for statistics of y. %
% a is the tail probability for the (as2), 1-(a/2) interval for %
% assessing predictive coverage.

%OUTPUT:taills is an N.1 vector of tail probabilities model averaged for %
% each observation. %
% PC is the modelaaveraged predictive coverage under the PPD. %
% tailtstats are the tail probabilities for the min, max, median and%
% std. dev. of y. %

%%%6%%%%%%%%%%%6%%%%%%%6%% % %% % Y6%%% %% %% %% % %% %% %% % Y6%6%% %% %% %6% % %% %% %% % % %% % %% %% %% %%

[n k1] = size(X); k = k1 -1;
for i = 1:length(P)
g = [1 str2num(dec2bin(i-1,k)")"];
[tprob PCi(i) pval] = PPD(y,X,d,N,shrink,a);
tprobl(:,i) = P(i).*tprob;
pvall(i,:) = P(i).*pval;
end
tails = sum(tprobl,2);
tailstats = sum(pvall,l);
PC = sum(PCi.*P)*100;

function [tprob PCi pval] = PPD(Y,X,g,N,shrink,a)
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format long g; n = length(y); Ig = eye(n); Xg = X(:,9==1);

Hg = shrink*Xg*inv(Xg"*Xg)*Xg"; sig = ((y"*(lg-Hg)*y)/n)*(lg + Hg); mu = Hg*y;
ytrans = (y - mu)./(sgrt(diag(sig))); %transform to a standard t r.v.

PCi = sum(abs(ytrans) <= tinv(1-(a/2),n))/n;

tprob = tcdf(ytrans,n); %from -inf to x so the left hand tail
tprob(find(tprob>=0.5)) = 1-tprob(find(tprob>=0.5));

Y = MVTpRnd(n,mu,sig,N); %simulate from the PPD

sumin = min(Y); A = min(y); pval(1) = min(sum(sumin<=A)/N,sum(sumin>=A)/N);
sumax max(Y); B = max(y); pval(2) = min(sum(sumax<=B)/N,sum(sumax>=B)/N);
sumed median(Y); C = median(y); pval(3d) =
min(sum(sumed<=C)/N,sum(sumed>=C)/N) ;

sumstd = std(Y); D = std(y); pval(4) = min(sum(sumstd<=D)/N,sum(sumstd>=D)/N);

function Y = MVTpRnd(v,mu,sig,N)

p length(mu); Y = zeros(p,N); sigl = zeros(p,p); sigl = diag(diag(sig));
X csmvrnd(zeros(p,1),sigl,N); s = sqgrt(chi2rnd(v,N)./v);
for i = 1:N; Y(,i) = (X(i,:)./s(i))"+mu; end

function [P Pqg Eqg Map Med Marg yBMA DIC] = Zellner(y,X,c,tau,dic,tol,v)

%9%%%%%%%%%%%%%%Iason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%%
%Posterior for gamma for Zellner®s prior with the binomial prior for qg. %

%INPUT: y is the n.l1l response vector %
% X is n.(k+1l) design matrix %
% tau is the choice of hyper-parameter in the constant Bernoulli %
% prior (using tau = 0.5 corresponds to a uniform prior) %
% c choice of c in Zellner®s prior %
% dic is a ~=1, 1 option 1 = compute dic, ~=1 = do not compute DIC %
% tol minimum error (standard deviation) for the simulation estimate%
% of deviance and DIC %
% v is the numer of samples to generate in simulation of deviance %
% between each check of the simulation error %
%OUTPUT:P is the normalized posterior probability for eacg gamma %
% Pqg is the posterior probability of the model sizes 0:k %
% Eqg is the expected model size %
% Map is maximum aposteriori estimate model %
% Med is the median probability model which incldues all predictors %
% with MIP > 0.5 %
% Marg are the MIP %
% yBMA is the model averaged fitted response %
% DIC is the model averaged DIC %

90%%%%%%%%%%%% %% %% %% %% %% %% %% %% %% %% %0000 %6000 %0066 %0606 % 6% %%

format long g; [n k1] = size(X); k = ki1-1;
C2 = log(c+l); N =n/2; 1 = 1:
P = zeros(1,d); S =P; Q = P; DIC
for i = 1:d %loop through models
g = [1 str2num(dec2bin(i-1,k)")"]; %generate a single gamma vector
Xg = X(:,9==1); %predictor matrix adjusted by gamma
Hg = Xg*inv(Xg"*Xg)*Xg"; %hat matrix

d; %constants

d = 2°k; C1 = c/(c+l); %constants
= P; yhat = zeros(n,d); %storage

; BIC

bhat = C1*inv(Xg"*Xg)*Xg"*y;

yhat(:,i) = Xg*bhat;

S(i) = sum(g)-1; %the sum of gamma

Q(i) = log(y"*(1-(C1*Hg))*y); %the log of the quadratic term

sighat = exp(Q(i))/(n-2); %the posterior expectation
W((i1) = -2*(sum(log(normpdf(y,Xg*bhat,sqrt(sighat)))));
end %end loop which has generated two vectors of values one for each quadratic
term in
%the posterior and the second for the sum of the gamma vector.
for i = 1:d; B = ((((S(1)-SF~=i))/2)*C2)+N*(Q(1)-Q(~=1)));
P(i) = (@ + sum(exp(B)))*-1)*((tauS(i))*((1-tau)~(k-S(i))));
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end; clear Q;

P = P./sum(P); %renormalize after adding the proportional prior

for 1 = 1:d; yhat(:,i) = P(i).*yhat(:,i); end %multiply each models predicted
values by the posterior probability

dec = find(P==max(P)); Map = [1 str2num(dec2bin(dec-1,k)")"]; %find the MAP
Marg = Margprob(P,k); %Marginal inclusion probabilities this includes 1 for the
intercept

Med = [1 Marg>=0.5]; %calculate the median model

for i = 1:k+1; Pqg(i) = sum(P(S==(i-1))); end %Posterior for model size

yBMA = sum(yhat,2); %the sum across rows and model averaged residuals

Eqg = sum(S.*P); clear S

if dic == 1;[Dev] = PostExpDevzZell(y,X,P,v,c,tol); else; dic = "NA"; end
%calculate Deviance

pd = dev-sum(VV.*P); DIC = dev + pd;

function M = Margprob(P,k)

Mat = zeros(2™k,k); for i1 = 1:27k;
Mat(i,:) = P(i)*[str2num(dec2bin(i-1,k)")"]; end; M = sum(Mat);

function [Dev] = PostExpDevzZell(y,X,P,n,c,tol)

sd = 10;

[D] = DevSimzZell(y,X,P,c);

while sd > tol

for i = 1:n

[Dev(i)] = DevSimZell(y,X,P,c);

end

D = [D Dev]; m = length(D);

sd = sqre((1/m)*((1/m)*sum(D."2-mean(D)"2)));
end

Deviance = mean(D);

function [Dev] = DevSimzZell(y,X,P,c)

[n k1] = size(X); k = k1 - 1; CDF = cumsum(P);

g = PostGamSimX(CDF,k);

Xg = X(:,g==1); bhat = inv(Xg"*Xg)*Xg"*y;

B = ((y"*y)/2)-((c/(2*(c+1)))*y "*Xg*inv(Xg "*Xg)*Xg"*y); %beta parameter
sig2sim = 1/gamrnd(n/2,B~-1,1,1); %simulate sigma2

bhatsim = csmvrnd((c/(c+1l))*bhat, ((sig2sim*c)/(c+1))*inv(Xg"*Xg),1l);
Dev = -2*(sum(log(normpdf(y,Xg*bhatsim®,sqrt(sig2sim)))));
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