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ABSTRACT 

 

In this work we investigate the use of perfect sampling methods within the context of 

Bayesian linear regression. We focus on inference problems related to the marginal 

posterior model probabilities. Model averaged inference for the response and Bayesian 

variable selection are considered. Perfect sampling is an alternate form of Markov chain 

Monte Carlo that generates exact sample points from the posterior of interest. This 

approach removes the need for burn-in assessment faced by traditional MCMC methods. 

For model averaged inference, we find the monotone Gibbs coupling from the past 

(CFTP) algorithm is the preferred choice. This requires the predictor matrix be 

orthogonal, preventing variable selection, but allowing model averaging for prediction of 

the response. Exploring choices of priors for the parameters in the Bayesian linear model, 

we investigate sufficiency for monotonicity assuming Gaussian errors. We discover that a 

number of other sufficient conditions exist, besides an orthogonal predictor matrix, for 

the construction of a monotone Gibbs Markov chain. Requiring an orthogonal predictor 

matrix, we investigate new methods of orthogonalizing the original predictor matrix. We 

find that a new method using the modified Gram-Schmidt orthogonalization procedure 

performs comparably with existing transformation methods, such as generalized principal 

components. Accounting for the effect of using an orthogonal predictor matrix, we 

discover that inference using model averaging for in-sample prediction of the response is 

comparable between the original and orthogonal predictor matrix. The Gibbs sampler is 

then investigated for sampling when using the original predictor matrix and the 

orthogonal predictor matrix. We find that a hybrid method, using a standard Gibbs 

sampler on the orthogonal space in conjunction with the monotone CFTP Gibbs sampler, 

provides the fastest computation and convergence to the posterior distribution. We 

conclude the hybrid approach should be used when the monotone Gibbs CFTP sampler 

becomes impractical, due to large backwards coupling times. We demonstrate large 

backwards coupling times occur when the sample size is close to the number of 

predictors, or when hyper-parameter choices increase model competition. The monotone 

Gibbs CFTP sampler should be taken advantage of when the backwards coupling time is 

small. For the problem of variable selection we turn to the exact version of the 
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independent Metropolis-Hastings (IMH) algorithm. We reiterate the notion that the exact 

IMH sampler is redundant, being a needlessly complicated rejection sampler. We then 

determine a rejection sampler is feasible for variable selection when the sample size is 

close to the number of predictors and using Zellner’s prior with a small value for the 

hyper-parameter c. Finally, we use the example of simulating from the posterior of c 

conditional on a model to demonstrate how the use of an exact IMH view-point clarifies 

how the rejection sampler can be adapted to improve efficiency.  

 

 

This work has not previously been submitted for a degree or diploma in any university.  

To the best of my knowledge and belief, this thesis contains no material previously 

published or written by another person except where due reference is made in the thesis 

itself. 

 

Jason Phillip Bentley 

(19th February 2009) 
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NOTATION 

f - density function. 

X - random variable(s). 

Xn - Markov chain. 

y - response vector (data). 

X - design matrix (data). 

H - hat matrix for X. 

c - hyper-parameter for Zellner's prior. 

γ - variable selection parameter (binary vector). 

Γ - state space for γ. 

β - vector of regression coefficients. 

e - random perturbations. 

σ 2 - variance. 

Γ(x) - gamma function. 

|A| - determinant of the matrix A. 

W - orthogonal design matrix. 

E - expectation. 

V - variance. 

|| a || is the norm of a. 
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ABBREVIATIONS 

AIC: Aikake Information Criterion. 

BF: Bayes Factor. 

BIC: Bayesian Information Criterion. 

BMA: Bayesian Model Averaging. 

BVS: Bayesian Variable Selection. 

CFTP: Coupling From the Past. 

DIC: Deviance Information Criterion. 

EB: Empirical Bayes. 

i.i.d.: independently and identically distributed. 

IMH: Independent Metropolis Hastings. 

LSE: Least Squares Estimator. 

MAP: Maximum A Posteriori. 

MC: Markov Chain(s). 

MCMC: Markov Chain Monte Carlo. 

MIP: Marginal Inclusion Probability. 

MLE: Maximum Likelihood Estimate. 

MPM: Median Probability Model. 

MSE: Mean Square Error. 

PPD: Posterior Predictive Density. 

RIC: Risk Inflation Criterion.



 

CHAPTER 1

INTRODUCTION

 
"In every phenomenon the beginning remains always the most notable 

moment."  

- Thomas Carlyle 

 
 

The linear model is a common and widely applied statistical model that has received 

much attention in the Bayesian literature. It is often a starting place for methods of 

analysis that are extended or adapted to more general classes of model. Of particular 

interest in this setting is the use of a random variable representing model configuration 

(Smith and Kohn, 1996).  

Using the Bayesian paradigm a posterior distribution can be derived providing a 

probability mass function for the model space. In creating such a posterior distribution, 

high probability models can be selected, variable selection may be performed, and the 

probabilities can be used in model averaging for either inference or prediction. 

The posterior distribution of model probabilities must be sampled from when the number 

of predictors is large. The posterior is typically proportional only, so Markov chain 

Monte Carlo methods are employed. The standard approach is to use a Gibbs sampler 

that samples from the conditional distribution of a binary vector representing model 

configuration. The state space is discrete and of size 2k where k is the number of 

explanatory variables. For large k it may take a long time to explore the state space and 

diagnosing convergence can be difficult.  
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Advances in MCMC, known as perfect sampling, have yielded methods that eliminate the 

burn-in problem. The most famous of the perfect sampling methods is coupling from the 

past (CFTP) (Propp and Wilson, 1996). CFTP samples exactly from the posterior 

distribution and provides independently, and identically distributed (i.i.d.) sample points. 

CFTP requires a monotone structure in the update function to avoid having to start a 

Markov chain (MC) from every state. CFTP can be applied to the Bayes linear model to 

sample from the posterior model probabilities. However, when using a Gibbs MC the 

predictor matrix must be orthogonal for the update structure to be monotone. 

Monotonicity is a useful property for greatly reducing the computational burden of 

CFTP. This restriction has prevented perfect sampling from being applied routinely to 

linear regression, as an orthogonal predictor matrix does not allow variable selection. 

Thus, not much work exists on tackling the problem from a linear regression point of 

view.  

Monotone CFTP has been of great use in signal reconstruction using orthogonal 

wavelets. The choices of priors and hyper-parameters for such applications are well 

defined, so little has been done to explore how robust the construction of a monotone 

Gibbs MC is to hyper-parameters and priors. However, model averaging can be used to 

great effect for modeling the response. Orthogonalization may have other consequences 

such as shrinking the model space and reducing computation time. Most work using 

wavelets and perfect sampling do not address the additional comparison between perfect 

sampling and the use of a standard Gibbs sampler on the orthogonal space. The specific 

aims of this research are: 

 

1. Assuming an orthogonal predictor matrix, check the robustness in the construction of 

monotone Gibbs MC to choices of priors and hyper-parameters. 

 

2. Determine the effect of using an orthogonal predictor matrix on inference using model 

averaging and the linear regression model. 

 

3. From three versions of the Gibbs sampler; standard with the original predictor matrix, 

standard with an orthogonal predictor matrix and perfect with an orthogonal predictor 



Chapter 1: Introduction 3
 

matrix, determine which is the best choice according to computational efficiency and rate 

of convergence to the stationary distribution. 

 

4. Provide further exploration of the application of the perfect sampling version of the 

independence Metropolis-Hastings algorithm for Bayesian variable selection. 

 

With these aims in mind the thesis is outlined as follows: 

In the remainder of this Chapter we review the use of a binary vector (γ) for model 

selection in the Bayes linear model. This provides a posterior distribution for model 

averaging and variable selection. We introduce and review the posterior mass function 

for γ. We cover issues relating to the use of the posterior model probabilities namely, the 

difficulties faced when the number of predictors becomes large and sampling is required. 

We review the fundamentals of simulating random variables from a posterior distribution 

using MCMC. The use of MCMC is then expanded upon with a discussion of perfect 

sampling variants of MCMC. Under the property of uniform ergodicity, the construction 

of couplings with Markov chains, CFTP, and perfect forwards simulation are covered. 

Finally, monotonicity properties and applications of perfect sampling in Bayesian 

statistics are discussed. 

In Chapter 2 we review the sufficient conditions for a monotone Gibbs MC. We consider 

common priors for the regression coefficients (β) and error variance (σ 2). This includes 

the conjugate formulation, which includes Zellner’s prior as a special case, and an 

adjusted form of Jeffreys prior. We also consider common choices for the model space 

prior such as the Bernoulli and truncated Poisson distributions, and general priors for the 

model size. We consider both a fully Bayes and special cases of an empirical Bayes (EB) 

approach. We also consider integration over hyper-parameters, such as c in Zellner’s 

prior. Finally, we consider three examples during the chapter, two for Zellner’s prior 

where one is a special informative case and the other an adjustment for outlier detection, 

and an example of a conjugate prior for the regression variance designed to provide a 

posterior with the mode equal to the classical unbiased estimate of the variance.   

In Chapter 3 we indulge in a numerical demonstration of the monotonicity of the Gibbs 

sampler for an orthogonal design matrix. We then show the relation between the partial 
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ordering required for monotonicity, and the nested model structure in linear regression. 

We then move to a discussion of orthogonalization methods and in particular, introduce 

the Lowdin transformation and two variants of the modified Gram-Schmidt 

orthogonalization procedure, yet to be explored in the literature. We briefly discuss the 

impact an orthogonal design matrix, and the required partial order has on posterior 

estimates. The second half of Chapter 3 is devoted to an exact exploration of the effect of 

using an orthogonal design matrix with four real datasets. We compare the four 

orthogonalization methods by looking at the expected model size and model competition. 

We then assess the use of W compared to X for in-sample prediction, using the deviance 

information criterion (DIC) extended to include integration over the model space. We 

also discuss the problems of using an orthogonal design matrix for out-of-sample 

prediction, and cross-validation methods for outlier detection. 

In Chapter 4 we look at the efficiency of sampling with variants of the Gibbs sampler. 

We review the standard and monotone Gibbs CFTP algorithms. We also discuss using a 

standard Gibbs sampler in tandem with an initial run of the monotone Gibbs CFTP 

sampler, to remove the need for burn-in assessment. Using the four real datasets from the 

previous Chapter 3, we investigate the convergence of the three methods to the posterior 

distribution of γ. We also record the convergence of quantities such as the DIC, expected 

model size, and the model averaged fitted values. These results are summarized using the 

computational time to provide a comparison of convergence in cpu time. A simulation 

study is conducted to compare the computational time of the three methods. Returning to 

the real datasets, information and the backwards coupling times are investigated. 

In Chapter 5 we review the particulars of the exact IMH algorithm, and then discuss and 

explore the relation to rejection sampling. This is followed by an investigation of the 

difficulties in finding an efficient bound for the marginal posterior of γ. We do however, 

find a way to obtain the optimal value when reducing the posterior to a function of the 

residual sum of squares only. Under these circumstances, we explore how efficient the 

rejection sampler is for various choices of hyper-parameters. The second part of this 

chapter moves to the posterior for the hyper-parameter c in Zellner’s prior conditional on 

γ. We review the use of rejection sampling and a second approach that allows a 

refinement of the proposal distribution, reducing the expected waiting time for exact i.i.d. 
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sample points. In the final chapter, Chapter 6, we summarize and discuss the findings of 

this work and provide topics of future research. 

1.1 Linear Regression and Bayesian Variable Selection 

The likelihood function for an independent and identically distributed (i.i.d.) sample D = 

(x1, ….., xn), with unknown parameter(s) θ,  for a given density function fθ is 

 
∏

=

=
n

i
ixff

1

)|()|( θθD . (1.1)

 

Standard likelihood methods maximize (1.1) to obtain estimates of θ, θ̂  known as the 

maximum likelihood estimate (MLE).  In Bayesian statistics, inference about θ involves 

the product of the likelihood function and a prior on θ, f(θ ), to obtain a posterior 

distribution,  f(θ | D), using Bayes' theorem for distributions: 

 
)()|(

)()|(
)()|()|( θθ

θθθ
θθθ ff

dff
fff D

D
DD ∝=

∫
. (1.2)

 

When the denominator is not available in closed form, we can specify the posterior up to 

a normalizing constant.  

1.1.1 The Model 

Let y be an n x 1 vector of measured responses and X be an n x (k + 1) matrix where the 

first column is a constant and the remaining k columns are the recorded predictors. We 

assume y may be modeled as a linear combination of the k + 1 columns of the predictor 

matrix X, plus a random perturbation (e), having a normal distribution with mean zero 

and constant variance 2σ , i.e. 

 eXβy +=  where ),0(~ 2
nINe σ . (1.3)

 

β = (β0 ,β1,...,βk) is a vector of regression coefficients measuring the effect of each 

column in X where β0  corresponds to the intercept. Including a column of ones in the 

predictor matrix to fit an intercept is common practice. 
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Heavy tail distributions such as the t distribution or Cauchy distribution may be used for 

e, which is common in econometrics (Draper and Smith, 1998). More recently, work on 

using symmetric exponentials and epsilon skewed distributions has been investigated 

(Elsalloukh et al, 2005). The aim of such choices is to improve the robustness of (1.3), 

reducing the sensitivity of estimation to extreme values of y. 

Typically we seek to find a subset of predictors that adequately models y; this is variable 

selection. In the Bayesian sense, we extend the standard linear regression model to treat 

variable selection by introducing a binary parameter vector γ = (γ 0,γ 1,...,γ k) that 

represents the configuration of a specific model (Smith and Kohn, 1996; Kuo and 

Mallick, 1998), so that 

 )(}1{ ii γβ I=γβ , for i = 0,...,k , (1.4)

 

where IA denotes the indicator function for the set A. Hence γ acts as a subset indicator 

(γ i = 0 removes while γ i = 1 includes the i-th predictor) on X, denoted Xγ. All models are 

assumed to contain the intercept term so that γ 0 = 1 and γ ∈  Γ = {1} x {0,1}k. Thus the 

model space contains 2k models. The linear regression model (1.3) conditional on γ, 

becomes 

 eβXy γγ += , (1.5)

 

and the likelihood function for (1.5) is 

 ),(~),,,|( 22
nnf IβXNXβγy γγγ σσ . (1.6)

 

Assigning priors to the unknown parameters βγ, σ2, and γ, the joint posterior is 

 )|,,(),,,|(),|,,( 222 XγβXβγyXyγβ γγγ σσσ fff ∝ , (1.7)

 

which can be factored as 

 ),|(),,|(),,,|(),|,,( 222 XyγXyγXyγβXyγβ γγ ffff σσσ = , (1.8)
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in terms of the conditional posterior distributions for βγ, and σ2, and the marginal 

posterior distribution for γ. Traditionally, some form of dependence structure is assumed 

for the priors 

 )()|(),,|()|,,( 222 γXXγβXγβ γγ ffff σσσ = , (1.9)

 

although alternate forms of dependence are possible. The most common alternative is 

 )(),|(),,|()|,,( 222 γXγXγβXγβ γγ ffff σσσ = , (1.10)

 

which has been explored in the literature, for example George and McCulloch (1997).  

1.1.2 Posterior Model Probabilities 

The marginal posterior distribution, ),|( Xyγf is 

 ),|( Xyγf ∫ ∫= 222 ),|,(),,,|()( σσσ ddfff γγγ βXγβXβγyγ , (1.11)

 

and is a non-standard mass function on 2k states. Using ),|( Xyγf  a common model 

choice is the mode of the posterior distribution, or the maximum aposteriori (MAP) 

estimate:  

 MAPγ̂ = )},|({maxarg Xyγ
γ

f . (1.12)

 

This selects the model with the greatest posterior probability given the data. 

Maximization of ),|( Xyγf is greatly simplified in the case where the predictor matrix is 

orthogonal (Chipman et al 2001). The marginal inclusion probability (MIP) of γ i, is 

defined as 

 MIPi = ∑
=∈

==
}1:{

),|()1Pr(
i

fi
γ

γ
Γγ

Xyγ . (1.13)

 

This provides an intuitive measure of the relative importance of a predictor, and may be 

used to rank the predictors. Those predictors which appear in higher probability models 

frequently will have a high MIP and because we always include an intercept MIP0 = 1. 

The MIP can be used to define the median probability model (MPM) as 
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 MPMi = ]1,5.0[I ( MIPi ) for i = 0,...,k. (1.14)

 

This model has been shown to perform well for prediction and is optimal under squared 

error loss (Berger and Pericchi, 2001). To assess the model complexity of ),|( Xyγf , we 

can obtain the posterior distribution and expectation for the number of 

predictors, },...,0{ kq ∈ , as q = k
T

k :1:1 γγ . 

 ),|( Xyqf = ),|(

1

}:{

Xyγ
Γγ

∑
∑

=

=∈
k

i
i q

f
γ

,  
(1.15)

 

and 

 
E[q] = ),|(

0
Xyqqf

k

q
∑

=

. (1.16)

 

Model competition in ),|( Xyγf  can be visually assessed using a cumulative probability 

plot of sorted model probabilities:
)2()1( ,..., kpp . )1(p  is the maximum marginal posterior 

probability and 
)2( kp is the minimum marginal posterior probability. The faster the 

cumulative sorted probability tends to 1, the indication of less model competition in the 

posterior. In particular for a given threshold )1,0(∈α  we may define: 

 
Mα  = }:min{

1
)(∑

=

≥
j

i
ipj α . (1.17)

 

Mα  represents the smallest number of highest probability models required to account for 

a probability of at least α in the posterior.  

For plotting ),|( Xyγf  it is useful to use the decimal representation of γ: 

 
γd = Decimal(γ) = )(2 }1{

1
i

k

i

ik γI∑
=

− .  (1.18)
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Binary(γd,k) is the reverse operation, which recovers the binary sequence from the 

decimal representation with k bits. Figure 1.1 provides an illustration of the quantities 

defined above. 

 
Figure 1.1 Representation of the marginal posterior for γ and related quantities for a fictitious data 

set. The larger bar plot is the posterior for γ and the smaller plot is the posterior distribution for 

model size.  Also shown are the MAP and MPM models along with the expected model size and ranks 

based on the MIP (Table: The green highlighted squares indicated those variables included in the 

MPM). The sorted cumulative probability plot has been omitted, and in this example Mα = 25, for α 

= 0.95. 

1.1.3 Model Averaging and Inference 

Being able to obtain ),|( Xyγf  lends itself naturally to BMA which deals systematically 

with uncertainty in model selection (Brown et al, 2002; Hoeting, 2002; Hoeting et al, 

1999; Liang et al, 2001; Raftery et al, 1997; Wasserman 2000). The benefit of this, is to 

avoid over-stating the precision of inference by avoiding conditioning on a single model. 

Further, under squared error loss, BMA is optimal when performing out-of-sample 

),|( Xyγf  

MPM = [x1 , x5] 

 x1 x2 x3 x4 x5 
MIP 0.502 0.431 0.336 0.492 0.568 
Rank 2 4 5 3 1 

0 

Probability 

31 γd 

MAP = [x1 , x5] = binary(17,5) 

E[q] = 2.33 

0.1 

0 

0.4

0
q 

0  1  2  3  4  5
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prediction. For each model in Γ, we require inference about a quantity of interest (θ ) 

such as parameters, or predicted response, conditional on the data. Using BMA we 

weight the posterior distribution of θ |γ by the posterior probability of γ, producing an 

average distribution for θ  across Γ: 

 ),|(),,|(),|( XyγγXyθXyθ
Γγ

fff ∑
∈

=  . (1.19)

 

The practical implementation of BMA can be hindered by computation of ),|( Xyγf  for 

large Γ which may not be available in closed form, the choice of prior probabilities for 

each model f(γ), and the number of models to be averaged over. Weights for BMA may 

be constructed using the Aikake information criterion (AIC), the Bayesian information 

criterion (BIC), or even Bayes factors (BF) using hyper-G priors and Zellner-Siow priors 

(Montgomery and Nyhan, 2008). This differs from the approach we take explicitly using 

the marginal posterior for γ rather than a model selection criterion or BF. We consider 

this approach more natural as weights based on selection criteria is strictly speaking 

"model averaging", whereas using a posterior distribution to obtain the weights is 

decidedly BMA. Montgomery and Nyhan (2008) also recommend that multiple priors 

should be investigated for BMA to assess sensitivity. The γ formulation is an example of 

discrete model expansion. This is a special case of the more general continuous model 

expansion where components are assigned Dirichlet priors (Draper, 1995). An example 

of the continuous case is mixing over different forms of random effects in random effects 

models (Lawson and Clark, 2002). Attempts have even been made to account for 

uncertainty when selecting a link function in GLM's (Czado and Raftery, 2006). 

When conducting linear regression analysis, there are three main inference problems. The 

first is β or X, which answers questions about the effect of β in terms of magnitude and 

direction, the importance of predictors in X, and in explaining the response y. The second 

is in sample prediction and capturing features of y. The third is out of sample prediction 

for future responses, given that we have already observed y and X. Most studies of 

prediction in BMA use some form of cross validation approach, the data is partitioned 

into a training set used for model fitting and a test set used to assess predictive 

performance. The problem with such an approach is that the choice of size for the 
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training and test sets involves a bias-variance trade-off that can be difficult to optimize in 

practice. 

In model averaging the posterior distribution of β is not straight forward, unlike that for 

σ 2. Due to the γ formulation, the distribution and any point estimate of any component of 

β is conditional on the inclusion probability for that predictor. Model averaging avoids 

the difficult interpretation of the effect of a predictor which can vary depending on γ due 

to correlation with other predictors. The model-averaged posterior for β is  

 )(),|(),,,|(),,|( }1{
22

iii fff γσβσβ IXyγγXyXy
Γγ

∑
∈

∝ . (1.20)

 

While this representation is relatively simple it is possible for the posterior to be more 

complex i.e. appear multi-modal, due to the behavior of the estimated regression 

coefficients in the presence of strong correlations. 

The model-averaged posterior for σ 2 is more straightforward being required for all 

models. The posterior is estimated as 

 ),|(),,|(),|( 22 XyγXyγXy
Γγ

fff σσ ∑
∈

= . (1.21)

 

When k is small the un-normalized probability for every Γγ∈  can be calculated and 

then normalized, providing ),|( Xyγf  exactly without the need for sampling using the 

following steps: 

 

1. Calculate: )],|(~),...,,|(~[ 1 XyγXyγ dff , where d = 2k and )(~f  is the un-normalized 

probability mass function. 

2. Then for i = 1,...,d, calculate: ∑
=

=
d

j

jii fff
1

),|(~/),|(~),|( XyγXyγXyγ . 

 

The Gray code (Savage, 1997) provides an efficient ordering of γ such that only one 

component is updated at a time while enumerating the model space. If k is large 

numerical underflow can also be problematic as the less probable models become 

negligible. Furthermore, it becomes time consuming and even infeasible (time-wise, 
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memory-wise, or both) to proceed without some means of sampling from the posterior. It 

is necessary to be slightly vague about what constitutes a "large" k, as it depends on the 

amount of computing resources available. If the concern is not with model averaging, we 

may obtain the MAP estimate using some optimization method such as an annealed 

Gibbs sampler. Ultimately, a stochastic sampling method such as MCMC is typically 

required to estimate posterior model probabilities. 

1.2 Markov chain Monte Carlo. 

The posterior for γ is not a known standard parametric family mass function. Typically it 

is also known only up to a normalizing constant, and so MCMC methods are typically 

employed to generate sample points. If a MCMC approach is well implemented, 

inference from 30,000 sample points under model averaging may well be satisfactory 

even if we have 25 predictors (33,554,432 states!). Thus, at least for now and likely for 

some time yet, an MCMC sampling procedure is necessary. Notice that in problems with 

large k, the state space may become increasingly sparse so that the more probable models 

become lost in a sea of small probability models. MCMC methods are designed to find 

these high probability models by means of a stochastic search. Brute force calculation on 

the other hand has no such mechanism and so can be described as undirected.  

1.2.1 Markov Chains and Simulation 

Let the sequence of random variables (X1, X2, X3, …), denoted {Xn}, be a stochastic 

process on a state space D with σ-algebra F and let Xn ∈  D and ∈E F. 

 

Definition 1.1: Markov Chain 

The stochastic process {Xn} with the property: 

 )|Pr(),,....,,|Pr( 10111 ttttt XEXXXXXEX ∈=∈ +−+ , (1.22)

is a Markov Chain (MC). 

 

The new state is dependent only upon the previous, and not the entire history of the chain. 

This is the Markovian property. When D is discrete, the movement from time t to t+1 is 

defined by a matrix of transition probabilities P. The probability of moving from state i at 
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time t to state j at time t+1 is )|Pr( 1 ixjxp ttij === + .For a finite state space with m 

states, the stationary distribution f = (f1,.., fm) may be obtained by solving the equations: 

 
fP = f and 1

1

=∑
=

m

i
if . (1.23)

 

When D is continuous, the transition rules are specified by a transition kernel K: 

 ∫=∈+
E

ttt dxxKXEX ),()|Pr( 1 . (1.24)

 

In practice, when simulating Xn it is convenient to consider the update function φ which 

generates Xt+1 as a function of Xt and a pseudo-random number Ut+1: 

),( 11 ++ = ttt UXX φ  where φ : D x U → D, and U∈U. (1.25)

 

The update function represents the MC as a stochastic recursive sequence (SRS). In 

Bayesian applications, to obtain a sample from the posterior f the update function is 

constructed to have the limiting distribution f. The stationary distribution f is a limiting 

distribution with Xt converging in distribution to f. The simulation of samples by this 

method is known as MCMC. The necessary conditions of aperiodicity, irreducibility, 

reversibility, and recurrence ensure that the MC is ergodic so f is guaranteed to exist 

uniquely. For further details on these conditions, see Roberts and Casella (2004: Chapter 

6). Under these regularity conditions the update function is a measure preserving 

transform. With an ergodic MC the time average and sample space average are the same. 

Consequently, a central limit theorem applies and so we may estimate expectations based 

on the sample generated: 

 
)]([)(1

1

XhEXh
N f

N

n
n →∑

=

, (1.26)

 

where h is some measurable function. Traditional MCMC algorithms attempt to construct 

an update function for which these conditions are observed and generate states that are 

samples from f. The more common MCMC algorithms which are the random walk, 
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independent proposal, and Gibbs samplers can be viewed as variants of the Metropolis 

Hastings (MH) algorithm (Metropolis et al, 1953; and Hastings, 1970). 

1.2.2 Metropolis-Hastings 

The Metropolis-Hastings (MH) algorithm forms the basis for most MCMC samplers and 

is presented in Algorithm I. 

 

Algorithm I: Metropolis-Hastings. 

Set: x1 ∈D 

For i = {2,..., N} 

 Propose: y ~ q( y, xi-1 ) 

 Generate: u ~ U(0,1) 

 Calculate: 
⎭
⎬
⎫

⎩
⎨
⎧

=
−−

−

),()(
),()(

,1min
11

1

ii

i

xyqxf
yxqyf

α  

If u ≤ α 

  Set: xi = y  

 Else  

  Set: xi = xi-1 

 

q is a proposal density that is easy to simulate from, and generates a new candidate value 

conditional on the previous value in the MC. MCMC algorithms begin from an arbitrary 

initial state and run forward in time until it is believed that Xn has converged to f. The 

first m sample points are discarded as burn-in, so that 

 
∑

+=−
≈

N

mn
nf Xh

mN
XhE

1
)(1)]([ . (1.27)

 

In practice, obtaining sample points that approximate f well requires knowledge of how 

large m must be, which can be difficult to determine beforehand. Finding a suitable m can 

be further complicated by the choice of starting state affecting the rate of convergence to 

f (e.g. geometrically ergodic Xn). Since the justification of MCMC is asymptotic, if it 

were possible to run the chain for an infinite time we would have no concerns. Practically 
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however, there is a necessity to impose a finite burn-in that can bias results. Convergence 

diagnostics using the auto-correlation function are typically employed to estimate a 

suitable burn-in period. Inference conducted using transformations or functions of the 

original sample points must have the auto-correlation function calculated in each case to 

estimate the burn-in and variance. 

The first common implementation of the MH algorithm is to assume q(y,x) = q(y) so the 

proposal density is independent of past values of x. The MH algorithm then simplifies to 

the independence Metropolis-Hastings (IMH) sampler in Algorithm II. 

 

Algorithm II: Independence Metropolis-Hastings. 

Set: x1 ∈D 

For i = {2,..., N} 

 Propose: y ~ q( y ) 

 Generate: u ~ U(0,1) 

 Calculate: 
⎭
⎬
⎫

⎩
⎨
⎧

=
−

−

)()(
)()(

,1min
1

1

yqxf
xqyf

i

iα  

If u ≤ α 

  Set: xi = y  

 Else  

  Set: xi = xi-1 

 

Provided q is not too different than f and has heavier tails the IMH algorithm will 

generate well approximated samples from f. A second common implementation of the 

MH algorithm is the Gibbs sampler. Let f (X) be a p dimensional density, assuming we 

can sample easily from the univariate conditional density f (Xi | X-i) for all dimensions 

where X-i = (X1,…,Xi-1,Xi+1,…,Xp), the Gibbs sampler is Algorithm III. 

The Gibbs sampler is a very adaptable algorithm and while the updated components must 

remain constant, they may be updated sequentially in random order or even in blocks.  

The Gibbs sampler will also permit the use of further MCMC algorithms such as the IMH 

sampler to generate candidate values from f (Xi | X-i). Notice that f (Xp-1 | (X1)i,,…,(Xp-2)i, 
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(Xp)i-1) is both the proposal and target density in the standard Metropolis-Hastings 

algorithm. 

 

Algorithm III: Gibbs Sampler. 

Set: X1 ∈D 

For i = {2,...,N} 

 Generate: (X1)i  ~ f (X1 | (X2)i-1,…,(Xp)i-1) 

 Generate: (X2)i  ~ f (X2 | (X1)i,(X3)i-1,…, (Xp)i-1) 

   � 

 Generate: (Xp-1 )i  ~ f (Xp-1 | (X1)i,,…,(Xp-2)i, (Xp)i-1) 

 Generate: (Xp )i  ~ f (Xp | (X1)i,,…,(Xp-1)i) 

 

Thus, the Gibbs sampler is a Metropolis-Hastings algorithm with an acceptance 

probability always equal to 1.  

Another common implementation is the random walk Metropolis-Hastings which we do 

not cover here. From these very simple and powerful approaches a number of tricks exist 

to improve mixing and convergence. For a great survey of such ideas and approaches 

along with some computational aspects see books by Givens and Hoeting (2005, Chapter 

7), Gamerman and Lopes (2006). The Gibbs sampler will be the prominent focus of later 

chapters along with some attention to the IMH sampler. We now provide a brief history 

of some MCMC approaches that have been used for variable selection in linear 

regression. 

1.2.3 MCMC for Variable Selection. 

A vast number of MCMC methods exist for variable selection problems and we briefly 

mention a few here. The Gibbs sampler, stochastic search variable selection (SSVS), and 

the Swendsen-Wang algorithm use the conditional distribution for γ to either 

sequentially, randomly, or in clusters, update the binary model vector (Carlin and Chib, 

1995; Dellaportas et al, 2002; George and McCulloch, 1993; Nott and Green, 2004). 

Trans-dimensional or reversible jump methods (Green, 1995), and birth and death or 

auxiliary variable methods (Stephens, 2000), generally allow the MCMC method to 
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traverse the dimension of γ. In particular the trans-dimensional approach includes a 

transition between dimensions, while the birth and death process uses a stochastic 

mechanism for either introducing or removing a dimension. More recently, the adaptive 

IMH sampler (Nott, and Kohn 2005) uses adaptation of the proposal distribution while 

generating sample points to improve convergence and mixing. 

1.3 Exact Sampling with Markov Chains. 

Exact MCMC (or perfect/exact simulation/sampling/MCMC) methods are traditional 

MCMC without statistical error, the sample points are generated exactly according to the 

stationary distribution f. Consequently these methods remove the need for a burn-in 

period. Exact MCMC methods came about after Propp and Wilson (1996) laid the 

foundation with their coupling from the past (CFTP) algorithm. The mechanism required 

depends upon whether a backwards or forwards simulation method is chosen. In the 

backwards case we require a coupling construction of Markov chains, while in the 

forwards case a residual kernel is needed (coupling may also be required). In either case 

we are bounding the rate of convergence of the MC. If the true rate of convergence is 

poor or the bound is poor, then perfect sampling becomes impractical. 

The definition and useful properties of a uniformly ergodic MC are introduced as for the 

work to follow we need only consider the simpler case (especially with regard to perfect 

sampling) of the uniformly ergodic case rather than the more general case of a 

geometrically ergodic MC. We now review some basic theory related to the construction 

and properties of coupling Markov chains. 

1.3.1 Uniform Ergodicity 

Let Xn be a Markov chain on a state space D with σ-algebra F so that Dx ∈ and ∈E F. 

We may define the transition probabilities for m iterations as 

 )|Pr(),( xXEXExP tmt
m =∈= + . (1.28)

 

This definition of the transition probabilities will be used in the definitions to follow. 
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Definition 1.2: Uniformly ergodic MC 

Xn → f at a geometric rate independent of the initial value X0 if, and only if there exist H 

> 0 and )1,0(∈r  such that: 

  ||)(),(|| mm HrEfExP ≤− , (1.29)

for all m, Dx ∈ and ∈E F, Xn is said to be uniformly ergodic.  

 

H is necessarily bounded when D is finite, hence a bounded discrete state space will 

typically provide a uniformly ergodic MC. Uniform ergodicity is a stronger condition 

than geometric ergodicity which we mention later in this chapter. Uniform ergodicity is 

equivalent to the entire state space D being small in the sense of the minorization 

condition (or Doeblin's condition). 

 

Definition 1.3: Minorization condition 

The subset DS ⊆  is (m, ε, q) small when 

 )(),( EqExP m ε≥ , (1.30)

for some probability measure q, ε > 0, and positive integer m, and for all Sx ∈  

and ∈E F. If S = D then the entire state space is small which is equivalent to uniform 

ergodicity.  

 

If the minorization condition holds or the MC is uniformly ergodic, we may define a 

residual kernel as a mixture involving the original kernel and regeneration times.  

 

Definition 1.4: The residual kernel 

Where S satisfies the minorization condition the residual kernel is defined as: 

 )](),([)1(),( 1 EqExPExR mm εε −−= − , (1.31)

for some probability measure q( ), ε > 0, positive integer m and for all Sx ∈ and ∈E F. 
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Definition 1.5: Regeneration times 

If Xn is uniformly ergodic there is a set of times: 

)Geometric(~,....},{ 10 εTT , (1.32)

such that when Xn is in the (m,ε,q) small set S at Tk it will begin again (regenerate) from 

q at Tk+1. 

 

Hence, for each block  ),...},(),,{( 11 2110 −− TTTT XXXX of Xn indexed by the regeneration 

times (referred to as a tour) the process essentially begins again independently of, but 

distributed identically to the last tour, i.e. the tours are i.i.d. If 00 ≠T  then we have a 

delayed renewal process. The expectation of ,....},{ 10 TT using the geometric distribution 

is 1/ε. 

1.3.2 Construction and Properties of Coupled Markov Chains. 

Coupling of probability measures (P) and random elements (X) on a singly measurable 

space is useful for investigating the individual properties and similarities of P or X. 

Consider the probability measures P1 and P2 on the measurable space (E, ξ), for the set E 

with σ-algebra ξ. 

 

Definition 1.6: Coupling of Probability Measures 

The coupling {P1, P2} is a probability measure P̂  in (E2, ξ2) where P1 and P2 are the 

marginal distributions of P̂ . 

 

Now consider the random variables X1 and X2 defined on their respective probability 

spaces (Ω1, F1, P1) and (Ω2, F2, P2) both in (E, ξ).  
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Definition 1.7: Coupling of Markov Chains 

The coupling }ˆ,ˆ{ 21 XX is a new probability space (Ω, F, P) in (E2, ξ2) where: 

 11 X̂X
D
=  and 22 X̂X

D
= , (1.33)

and 
D
=  is “tends to in distribution”, such that: 

 121 )ˆ,ˆ( −XXP  is a coupling of 11
1 )( −XP  and 12

2 )( −XP , (1.34)

as in definition 1.6. 

 

Definitions 1.6 and 1.7 are from Lindvall (2002). Perfect simulation deals with coupling 

constructions using MCs (random processes). Thus, definition 1.7 for coupling random 

elements is more useful. For good discussions on coupling and related ideas for MCs see 

the books by Haggstrom (2002), Lindvall (2002), and Thorisson (2000). It should also be 

noted that a number of definitions and conditions for coupling have been investigated and 

discussed before the advent of exact sampling methods. Coupling is not new to MCMC, 

or limited to use in perfect sampling. Convergence proofs and diagnostics have used 

coupling (Johnson, 1998), and have been used to improve MCMC samplers e.g. antithetic 

coupling for the Gibbs sampler (Frigessi et al, 2000). Furthermore, coupling measures 

have a much longer history than that of perfect sampling, evident by the book by Lindvall 

being first published in 1992. 

Consider the two ergodic MCs Xn
1 and Xn

2 on the state space D.  

 

Definition 1.8: Coupling with the Update Function 

Xn
1, and Xn

2 are coupled if: 

 },{)},,({ 2
1

1
11

21
+++ → ttttt XXUXXφ . (1.35)

 

That is, the pair-wise coupling {Xn
1, Xn

2} evolve jointly in time under the same update 

function φ (set of transition rules) and realized randomness U. The coupling {Xn
1, Xn

2} 

must observe the following properties: 
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1. Xn
1 and Xn

2 behave like Xn in their limiting distributions: 

 fXfX nn →→ 21 , , as n → ∞. (1.36)

 

2. Once Xn
1 and Xn

2 move to the same state they will evolve jointly and identically 

from then on into the future: 

 If 21
tt XX =  then 021 >∀= ++ iXX itit . (1.37)

 

The event at time m where both chains merge to form a single chain is called 

coalescence. Coalescence occurs if, and only if, there is a non-zero probability that both 

chains, regardless of their initial states, merge into a single state in finite time. The time 

m at which coalescence occurs is known as the coupling time (Ct ). 

 

Definition 1.9: Coupling Time 

Ct is a random finite time associated with the coalescence of a coupling: 

 })},,({:1min{ 2
1

1
1 ttttt XUXXtC →≥= −−φ . (1.38)

 

We can generalize from the simple pair-wise coupling {Xn
1, Xn

2} to subset coupling and 

complete coupling. Subset coupling uses some collection of states from D, while 

complete coupling arises when we couple all states in D, when D is discrete and finite. If 

D is continuous we must couple all subsets, where the union of all subsets is equal to D. 

The use of complete coupling is crucial to the application of CFTP. 

The efficiency, by which we mean the rate at which the coupling converges to f, of any 

coupling construct is bounded by the coupling inequality (Kendall, 2005). The coupling 

inequality implies no coupling can be more efficient than the rate of convergence (or 

mixing) of the underlying MC. A "good" coupling construction may be characterized as 

"practical to implement" or "close to maximal". The second implies that one coupling 

construction may be more efficient than another. Maximal coupling refers to the situation 

where the coupling construction attains equality in the coupling inequality, and is often 

referred to as the Vasershtein coupling. Maximal couplings are available for any weakly 
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ergodic MC (Connor and Kendall, 2007; Lindvall, 2002; Thorisson, 2000), but are not 

always practical to construct or compute explicitly, rarely being co-adapted. Co-adapted 

coupling is when the progress of Xn
1 is not dependent upon the future of Xn

2 and vice 

versa. This implies that the MCs Xn
1 and Xn

2 when viewed separately, are still Markovian 

but the joint process {Xn
1, Xn

2} is not. Co-adapted coupling is the common coupling 

construction used in exact MCMC (Burdzy and Kendall, 2000). The computational cost 

of the coupling construction should also be minimal. 

1.3.3 Perfect Backwards Simulation. 

Propp and Wilson (1996) described how using repeated recursions into the past allow 

generation of exact samples from f. The idea is that if Xn were run from -∞ (i.e. infinitely 

far in the past) to time 0, we will have surely converged to f. The nature of a MC means 

that the further we go into the past the smaller the influence of the initial state(s) on the 

state at time 0. This means we need only go back "far enough" into the past to ensure 

complete coupling has occurred by the time the chains reach time 0.  

 

Theorem 1.1: (Propp and Wilson, 1996) 

Any uniformly ergodic Xn with a sufficiently large recursion into the past, such that 

complete coupling occurs before time 0, will produce an exact draw from f at time 0. 

 

Remark 

The convergence rate of the MC must be non-negligible and the bound on the rate of 

convergence induced by the coupling construction must not be poor, or conversely, 

should be maximal or as close to maximal as possible. 

 

The form of this theorem does ignore the practical consequences of using coupling and 

the Markov property to construct an exact sampling algorithm. Foss and Tweedie (1998) 

demonstrate the existence of a CFTP algorithm is equivalent to uniform ergodicity. They 

do this by showing that successful coalescence in CFTP occurs if, and only if, Xn is 

uniformly ergodic. This is because when Xn is uniformly ergodic the state space is small, 

so there exists a probability of coalescence at each step. The number of steps we must 
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move into the past to ensure coalescence is called the backwards coupling time (Bt). For 

any given realization of random numbers U for updating the coupled chains, there is a set 

of possible backwards coupling times, where the smallest one is chosen for the sake of 

efficiency. Let D be discrete with m states. 

 

Definition 1.10: Backwards Coupling Time 

Bt is a random time that occurs post coalescence of the complete coupling, and is defined 

as: 

 }),,...,,},,...,({:1min{ 00121
1 XUUUUXXtB tt

m
ttt →≥= −+−+−−−φ . (1.39)

 

We update all states simultaneously to detect complete coupling, so for some time in the 

past the MC started in all states have coalesced, and by time zero occupy a single state.  

The following properties apply to Bt: 

 

1. The backwards coupling time is always greater than the coupling time and has 

the same distribution. 

 

2. Any time greater than the backwards coupling time is also a backwards coupling 

time for a given realization of U. 

 

Propp and Wilson (1996) noted that the random variables Ct and Bt have the same 

distribution and are regeneration times.  

Bt is dependent only on U, and the common state at time 0 is independent of any starting 

state. Hence, the draw at time 0 is guaranteed to be an exact sample from f.  Standard 

CFTP is applicable for any uniformly ergodic Xn provided we can detect coalescence for 

the complete coupling. In the case of a continuous state space CFTP can be described in 

terms of sets. The discrete states are replaced by sets that are non-over-lapping, and 

whose union is the entire state space. Provided the constructed MC moving between sets 

is uniformly ergodic, the usual CFTP construction will apply. Assume that D is discrete 

and finite with states {d1,d2,…,dm} and note the random numbers ut must be reused. 

CFTP may be implemented using the following pseudo code in Algorithm IV. 
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Algorithm IV: Coupling from the past. 

Set: coalescence = false. 

Set: t = 0. 

While coalescence = false 

 Set: t = t -1. 

 Generate: ut+1 

 For i = {1,…, m} 

  Set: i
i
t dx =  

  For j = {t, t+1,…,-1} 

   Set: ),( 11 ++ = j
i
j

i
j uxx φ  

If mxxx 0
2
0

1
0 === L  

  Set: coalescence = true 

Else 

  Set: coalescence = false 

 

The most efficient sequence of backwards recursions, as indicated by Propp and Wilson 

(1996), is a double till overshoot scheme that doubles the previous number of recursive 

steps. In general, the chain does not reach stationarity by Ct, hence taking the state at time 

Ct does not produce exact draws from f. This can be seen in Figure 1.2 for a simple 

random walk on D = {1,2,…,20}. In particular, the update function is move up with 

probability 0.5 and move down with probability 0.5, with reflections at the boundary. 

The construction implies that the chains can only coalesce at the boundaries of D, so if 

we sample the state at Ct, we will only get the values 1 and 20. This is clearly incorrect as 

the true f of this simple random walk is the discrete uniform distribution on D. The last 

practical issue for CFTP is that an impatient user may induce bias by terminating runs 

that take a long time to coalesce. However methods such as Fill's algorithm (Fill, 1998) 

can avoid this problem. 
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Figure 1.2. CFTP for a simple random walk on D = {1,...,20}. After 3 successive recursions  

(-15, -30, -60) , all chains have coalesced at the black dot (state 20) at t = -19. 

 

1.3.4 Perfect Forwards Simulation 

There is another class of exact simulation methods that utilize the fact that any uniformly 

ergodic MC satisfies the minorization condition, allowing the use of regeneration times to 

draw exact samples. Brooks et al (2006) show that any CFTP algorithm can be converted 

into a forwards algorithm due to the very fact it is uniformly ergodic. They build on work 

done by Hobert and Robert (2004) for estimating the minorization parameter ε, and 

demonstrate this conversion by taking advantage of regenerations. Simulated tempering 

involves constructing a MC that transitions between various levels of a heated (flatter) 

target distribution to aid mixing. It was Møller and Nicholls (1999) who initially 

observed that sampling from the "hottest" distribution introduced regenerations into the 

MC. This was used within CFTP to produce exact samples. We now recount a brief 

version of the theorem from Brooks et al (2006). 
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Theorem 1.2: (Brooks et al, 2006) 

If we have a uniformly ergodic MC Xn (or equivalently the state space D is (m, ε, q) 

small) with initial probability distribution X0 ~ q, some ε > 0, and residual kernel Rm, 

then starting Xn in q, running for a random number of iterations t ~ Geometric(ε) 

independently of Xn, and updating according to the residual kernel will produce an exact 

draw from f. 

 

Remark 

This requires that q and the residual kernel Rm are easy to sample from, and that ε must be 

non-negligible as is the case for any perfect sampling method. Note that generally Rm is 

easy to sample from when m = 1. 

 

This theorem encompasses methods such as the multi-gamma sampler (Murdoch and 

Green, 1998), read-once CFTP (Wilson, 2000), and the catalytic coupler (Breyer and 

Roberts, 2000). Fundamental to the theorem is the mixture representation of f and the 

residual kernel. The theorem represented in algorithmic form is the well known splitting 

construction of Nummelin (1984), and Athreya and Ney (1978). This leads to an 

algorithm for obtaining exact draws from f (Algorithm V), note that here m = 1. 

 

Algorithm V: Perfect Forward Sampling: 

Independently simulate x0 ~ q and t ~ Geometric(ε). 

If t = 1  

Set: x = x0 

Else  

 For i = {1,...,t-1} 

  Generate: xi+1 ~ R(xi, · ) 

 Set: x = xt 

 

Most forward perfect sampling algorithms may be viewed as intricate elaborations of this 

rather simple algorithm. Notice this algorithm requires no coupling mechanism to 
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generate exact samples. The practicality of this approach revolves around the estimate of 

ε, and the ability to generate samples according to the residual kernel. 

The read-once CFTP also follows from the above representation and can be extended 

without too much difficulty to unbounded state spaces. The perfect forward simulated 

tempering algorithm of Brooks et al (2006) uses all the elements of Theorem 1.2 along 

with a dominating chain on the random walk between temperature levels.  

1.3.5 Monotonicity and Anti-Monotonicity 

It is evident that for extremely large D detecting complete coupling is computationally 

intensive. Bounding conditions are particularly useful as they can be used detect 

complete coupling using a simple pair-wise coupling. For a more general discussion of 

bounding chains see Huber (2004). We can simplify the CFTP algorithm by using two 

extreme chains that bound all others:  

 LU XXX ff . (1.40)

 

This requires the update function to have a monotone structure, and we must be able to 

identify the starting values from which to begin the upper and lower chains. Such chains 

may also be of use in forwards simulation. Dominating chains are a different form of 

bounding condition that are required for perfect sampling with geometrically ergodic 

MCs (Kendall, 2004), and as such we do not go into any detail in this thesis. The 

definitions of monotonicity and a related property, anti-monotonicity are as follows: 

 
Definition 1.11: Monotone Update Functions 

The update function φ is monotone if for some partial ordering p  of D: 

 ),(),( 1
2

1
121

++⇒ tttttt UXUXXX φφ pp . (1.41)

 

This means the chains run from the states Ux and Lx , act as upper and lower bounding 

chains that sandwich the chains started in the states between Ux and Lx . Quite often 

Ux and Lx are the minimal and maximal states of f. Anti-monotonicity implies the reverse 

condition of monotonicity. 
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Definition 1.12: Anti-Monotone Update Functions 

The update function φ is anti-monotone if for some partial ordering p  of D: 

 ),(),( 1
2

1
121

++⇒ tttttt UXUXXX φφ fp  (1.42)

 

Each bounding chain is updated based on the current state of the other bounding chain, 

i.e. the upper chain will use the current state of the lower chain to update, and vice versa. 

Each anti-monotone chain is by itself not Markovian, but the joint process and the single 

chain after coalescence are. A useful introduction to anti-monotone systems can be found 

in Haggstrom and Nelander (1998). The monotone CFTP algorithm for both monotone 

and anti-monotone update functions is given by the pseudo code in Algorithm VI. 

Assume that the upper chain is run from the maximum state of D (dm), and the lower 

chain is run from the minimum state of D (d1). 

 

Algorithm VI: (Anti)-Monotone CFTP. 

Set: coalescence = false. 

Set: t = 0. 

While coalescence = false 

 Set: t = t -1 

Set: m
U
t dx = , and 1dx L

t =  

 Generate: ut+1 

 For j = {t, t+1,…,-1} 

  Set U
tx 1+ = ),( 1+t

U
t uxφ  [For anti-monotone: U

tx 1+ = ),( 1+t
L
t uxφ ] 

  Set L
tx 1+ = ),( 1+t

L
t uxφ  [For anti-monotone: L

tx 1+ = ),( 1+t
U
t uxφ ] 

If LU xx 00 =  

  Set: coalescence = true 

Else 

  Set: coalescence = false 
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In later chapters, we will discuss the monotone CFTP versions of the Gibbs sampler and 

the IMH algorithm for BVS. We cover the monotone Gibbs MC in Chapter 2, and the 

exact sampling IMH algorithm in Chapter 5. The IMH and slice sampler algorithms both 

produce monotone MCs, (Schneider and Corcoran, 2004; Mira et al, 2001). The 

monotonicity of the Gibbs MC will depend primarily upon the structure and order of the 

conditional system for which it is specified. Figure 1.2 has been deliberately chosen to 

show the monotonicity of the update using a simple random walk (RW). The edges 

represent the chains started from states 1 and 20, at the boundaries of the state space. We 

need only monitor these two chains to detect complete coupling and to use monotone 

CFTP. 

Other perfect sampling algorithms related to monotone methods partition the state space 

so the update for each partition is monotone, such as multi-gamma coupler (Murdoch and 

Green, 1998). Auxiliary variables may also be used to induce monotonicity in the update 

function with the simplest example of this the slice sampler (Mira et al, 2001). Recent 

work (Cai, 2005) has shown how to use non-monotone CFTP with a summary state. This 

approach constructs a general non-monotone version of CFTP for application to area-

interaction point processes and birth-death processes. In particular, a single chain is 

constructed that can be used to monitor the certain (sets of the state space that have 

coalesced), and uncertain (sets of the state space yet to coalesce) parts of the chain. An 

exact draw under CFTP is assured when the uncertain part of Xn has vanished. This 

requires defining the entire state space as a union of the certain and uncertain parts. This 

approach requires a high degree of problem specific tailoring, so for more explicit details 

we refer the reader to the article (Cai, 2005). Monotone CFTP is similar in that the 

coalescence prior to time 0 means that by time 0, the uncertain part of D has vanished. 

Murdoch (2000) also shows it is possible to use mixtures of chains to improve the 

amenability of perfect sampling. Provided certain conditions are met the IMH sampler is 

uniformly ergodic. In particular, it is possible to use hybrid chains for perfect sampling 

on an unbounded states space. As an example, Murdoch uses a combined RW IMH chain 

to sample exactly from a Cauchy distribution.  

For good introductions to CFTP, perfect sampling, and monotone and anti-monotone 

chains see any of the following: Dimakos (2001), Kendall (2005), Propp and Wilson 
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(1999), Thonnes (2000), Givens and Hoeting (2005: Chapter 8), Roberts and Casella 

(2004: Chapter 13), and (Lee, 2008). 

1.4 Perfect Sampling and Bayesian Statistics 

After discussing the basic principles involved in constructing perfect sampling methods 

we now review the literature for applications in Bayesian statistics. From the literature, it 

is clear that perfect sampling has abundant use in some areas, such as statistical physics, 

stochastic geometry, and spatial statistics. 

In the case of spatial statistics great advancements have been made, and is an area where 

perfect sampling is now the sampling method of choice. Applications centre around 

Poisson processes, birth and death processes, queuing models, and area-interaction 

processes with both positive and negative attractions (Cai and Kendall, 2002; Ferrari et 

al, 2002; Kendall, 1997, 1998; Kendall and Møller, 2000; Haggstrom et al, 1999; 

Thonnes, 1999, 2000; Tweedie and Corcoran, 2001). This general applicability stems 

from a "cross-over" trick (Kendall and Møller, 2000). For example, using two bounding 

chains for a birth, a point may only be created in the lower chain if it passes the test in the 

upper chain, and vice versa. This produces chains that bound the state space and so CFTP 

can be used. However, these applications generally speaking do not involve Bayesian 

statistics. There are also abundant examples of applications of perfect sampling in spatial 

statistics and stochastic geometry. In particular, the Potts model, q-coloring graphs, 

lattices, the Ising model, dimer models, ice-dimer models, and Markov random fields, are 

among the common applications (Huber, 1998; Kendall and Thonnes, 1999). 

Attempts have been made to extend perfect sampling to simple conditionally specified 

models using distributions such as the auto-gamma, auto-Poisson, and auto-negative-

binomial distributions. The most common application is the auto-gamma model that is 

used to describe the pump data set (Murdoch and Green, 1998; Møller, 1999; Breyer and 

Roberts, 2000). The pump data set records the counts (s) of failures for 10 pump systems 

in a nuclear plant, along with the operation time (t) for each system. The auto-gamma 

model, priors and posteriors are: 
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Model: )(~ kkk tPoissons λ . 

Priors: ),(~)( baf k Gaλ , and ),(~ vrb Ga , with a, r and v fixed. 

Posteriors: ),(~),|( kkkk babf tsGas ++λ , and ),10(~),|( ∑++ kvarbf λGaSλ , 
(1.43)

 

where λ = (λ1,…,λk) and S = (s1,…,sk). Murdoch and Green (1998) use the multi-gamma 

coupler with Gibbs sampling to sample from the posteriors by obtaining bounds through 

a restriction of the priors. Møller (1999) again uses the Gibbs sampler, but relies on 

methods from point processes to introduce bounding chains. Breyer and Roberts (2000) 

also with a Gibbs sampler, apply the catalytic coupler to sample from the posterior 

distributions for b and λ. 

Another area of interest has been finite mixture models. A k-component mixture model 

for an observation (x) is: 

Model: ∑
=

k

i
iii fp

1

)|(~ θxx . 

Priors: p ~ Dirichlet ),...,( 1 kαα where 0,...,1 >kαα and )(~ hf θθ  where hθ are 

the hyper-parameters for the prior if required. 

(1.44)

 

Set version CFTP has been applied to sample from the posterior for simple 2- and 3-

component mixtures where only the mixing proportions are unknown and all other 

parameters are assumed to be known (Hobert et al, 1999). The applicability of perfect 

slice sampling and the catalytic coupler were investigated assuming only the number of 

components in the mixture was known (Casella et al, 2002).  

Perfect backwards simulated tempering, which is a monotone CFTP-like approach with a 

dominating process, has been used to generate exact samples from the posterior 

distributions of parameters for a generalized linear model (GLM) describing flour beetle 

mortality (Møller and Nicholls, 1999). The parameters (μ, σ, m), are assigned a normal, 

an inverse gamma, and a gamma distribution as priors. The choice of hyper-parameters in 

these priors is relatively weak. A second application to modeling radio carbon dating data 

has also been investigated, where the data (date) are modeled as piece-wise Gaussian, and 

the unknown mean parameter (for each date) represents the unknown true date. In this 
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case there are 14 observations and so we must estimate the means θ1,…,θ14. These values 

all fall within an interval [L,U] which is itself contained within a larger (time) interval 

[A,B], and L and U are considered unknown. Letting θ = (θ1,…,θ14) and x = (L, U, θ) the 

state space of the joint posterior for L, U and θ is }],[,:{ 14ULBULAx ∈≤<≤ θ . The 

perfect sampling algorithm is constructed to sample exactly from the joint posterior for L, 

U and θ. 

Two separate applications of exact MCMC to multinomial type data have also been 

conducted. The first, from Green and Murdoch (1999), uses a perfect RWMH algorithm 

to sample from the posterior for multinomial data using dirichlet priors. In particular, 

they sample the allele frequencies of the ABO blood group (p, q and r) defined on the 

unit cube. The second approach uses the perfect forwards simulated tempering method 

from Brooks et al (2006) for band analysis data. A group of Mallards have bands attached 

at an early age, and the bands are retrieved upon the demise of the Mallard within a 

certain time period. The likelihood is a product multinomial function with parameters (a, 

b, λ). The parameters a and b represent probabilities where b = (1-a). In this case, an 

estimate of the likelihood is used to bound the convergence rate of the MC. The bound is 

then used to generate geometric times for use in a forward perfect sampling algorithm 

using a simulated tempering scheme. The appropriate number of tempered distributions is 

obtained with the hottest distribution constructed to ensure the bounding RW will 

coalesce in finite time. From this, perfect samples are obtained from the posterior 

distributions of the parameters.  

An application of the perfect forwards simulated tempering method from Brooks et al 

(2006) to autoregressive time series is also described but not implemented. We also note 

that in Carvalho and Corcoran (2005), perfect simulation has been used to find the 

stationary distribution of autoregressive conditional heteroscedastic (ARCH) models, but 

not for a Bayesian analysis. Murdoch and Meng (2001) apply an auxiliary variable 

augmented version of CFTP and the read-once CFTP algorithm to sampling from 

mixtures of normal and t distributions, which are used as priors for Bayesian analysis. 

The Bayesian linear model, the primary interest in this work, has had spectacular success 

when a monotone Gibbs MC is available. The main indication from the literature is that 

an orthogonal predictor matrix is the required condition for a monotone Gibbs MC. In 
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Chapter 2, we will attempt to provide further insights into this. Most applications 

involving curve and surface fitting use orthogonal decompositions of the original 

measurements via wavelets or radial basis functions (Ambler and Silverman, 2004; 

Holmes and Denison, 2002; Clyde et al, 1996; Holmes and Mallick, 1998, 2003; Lee et 

al, 2005). In all of these examples, standard monotone CFTP using Gibbs MCs is used to 

simulate from the posterior for model probabilities to facilitate variable selection and 

model averaging. Two attempts so far have been made to move beyond the orthogonal 

restriction. The first uses a bounded form of monotone CFTP with IMH (Schneider and 

Corcoran, 2004) on the joint space for β and γ. The second, known as the Gibbs coupler 

by Huang and Djuric (2002), is a support set coupling technique that requires known 

variance and regression coefficients. The underlying Gibbs MC is not monotone, but 

bounds on the support of each component can be derived. These bounds are then applied 

in the usual monotone CFTP fashion. In using the original predictor matrix and a Gibbs 

Markov chain, the two most relevant methods from the literature are the Swendsen-Wang 

algorithm (Huber 2003, Nott and Green, 2004), and the Catalytic coupler (Breyer and 

Roberts, 2000). The Swendsen-Wang case for BVS (Nott and Green, 2004) uses a 

method of introducing an auxiliary variable to treat the correlation structure as a spatial 

field with interactions along edges. Despite this relation to the Ising model and the use of 

block updates in the Gibbs sampler, the update structure of the Gibbs MC is not 

monotone, however, there is a bounding chain available for the Swendsen-Wang 

algorithm (Huber, 2003). This bounding chain is not compatible with the BVS 

implementation of Nott and Green (2004), and so does not help facilitate perfect 

sampling for posterior model probabilities. Note that for this setting if the predictor 

matrix was in fact orthogonal, then no correlation exists between the predictors so that 

the spatial representation is unnecessary. 

The catalytic coupler (Breyer and Roberts, 2000) uses a rather more complex 

construction to check for coalescence using random maps and a basin of attraction. This 

requires introducing some distribution b(γ), such that the ratio b(γ)/f(γ) is bounded. If this 

condition is satisfied it is possible to construct the random map update according to the 

required constraints, and then the basin of attraction can be used to check for coalescence. 

In our case because we have no standard form for the posterior mass function of model 
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probabilities, finding a bound for b(γ)/f(γ) is practically impossible without extensive 

investigation of the posterior! This highlights the issues related to finding useful bounds 

for practical perfect sampling. The use of exact IMH for the marginal posterior model 

probabilities suffers from the need to find an efficient enough bound for detecting 

coalescence provided it exists.  

1.5 Summary 

The γ-formulation in Bayesian linear regression allows the Bayesian statistical 

framework to be extended to model selection. Further, the ability to create a posterior 

distribution of model probabilities provides a true Bayesian approach to incorporate 

model selection uncertainty into statistical analysis via model averaging. The posterior 

for γ when available in closed form, requires a stochastic sampling method to generate 

sample points when the number of predictors is large. In Bayesian statistics the common 

approach to do this is to use MCMC that generates approximate dependent samples from 

the desired distribution using the Metropolis-Hastings algorithm. MCMC requires 

diagnostics to determine an initial run of sample points to be discarded as burn-in. The 

remaining sample points are used for inference under the assumption the sample points 

after burn-in are in equilibrium. Exact or perfect sampling removes the need for burn-in 

assessment by generating i.i.d. sample points exactly according to the required 

distribution.  

The use of exact sampling comes at the cost of requiring practical bounds on 

convergence, coupling mechanisms and increased computer resources (run time and 

memory). Exact MCMC has found great application for problems in statistical physics, 

stochastic geometry, and spatial statistics. Attempts have been made to generalize 

methods and improve their use however, for the most part exact MCMC methods remain 

very specific to the inference problem they are applied.  

For BVS, more exotic forms of exact sampling are not possible due to the lack of 

available bounds. The monotone Gibbs sampler has been the best approach in terms of 

implementation and speed. However, the predictor matrix must be orthogonal which 

means variable selection is no longer possible for an existing set of non-orthogonal 

predictors. The use of exact IMH has also been investigated and has had little success due 
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to similar problems with finding a bound much in the same way the more complex 

methods are not feasible. 





 

CHAPTER 2

MONOTONICITY

 
"The practicing Bayesian is well advised to become friends with as 

many numerical analysts as possible." 

- Prof. J. Berger, 1985 

 

In this chapter sufficient conditions are explored for the construction of a monotone 

Gibbs MC to sample from ),|( Xyγf . We narrow our investigation by considering 

Gaussian errors and prior distributions common to the literature that ensure closed form 

expressions for ),|( Xyγf .  

2.1 Monotonicity and Gibbs 

To establish sufficiency for a monotone Gibbs MC for sampling from ),|( Xyγf  X must 

be orthogonal or orthonormal. Further, we require the marginal posterior for γ be 

available in closed form up to a normalizing constant. Assuming the predictor matrix is 

orthogonal, there are a number of choices within the context of the linear regression 

model for the error distribution, priors, and hyper-parameters therein. Under these 

constraints we will consider some general choices in accordance with the literature.  

We have already noted requiring ),|( Xyγf  in closed form limits the choice of the error 

distribution which we assume is Gaussian. The most general form of priors assuming 

Gaussian errors are the conjugate priors for βγ and σ 2. Beyond the conjugate class of 

priors default choices such as Jeffreys prior are also available. Within these cases we 
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must also consider the choice of hyper-parameters. Hyper-parameters are generally 

independent of γ however, some choices may depend upon γ given a sensible justification 

for doing so. It is also more likely that hyper-parameters will depend upon γ when using 

an EB approach compared to a fully Bayesian one.  

Recall the likelihood function 
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and let ),|,( 2 Xγβγ σf  be the joint prior for βγ, σ 2 and f(γ) the prior for γ. The marginal 

posterior distribution of γ is 

 ),|( Xyγf ∫ ∫= 222 ),|,(),,,|()( σσσ ddfff γγγ βXγβXβγyγ . (2.2)

 

The posterior for γ is proportional to the conditional density for γ, i.e.  

 ),|(),,|1Pr( XyγXyγ fii ∝= −γ , (2.3)

 
and the conditional density used in the Gibbs sampler is 
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where ),,,,( 111 kiii γγγγ KK +−− =γ  and ),,|1r(P~ Xyγ ii −=γ  is the un-normalized 

probability. We now recount a theorem from Dimakos (2001) for the component-wise 

partial order: )2()1( γγ p  if, and only if, )2()1(
ii γγ ≤ for all i. 

 

Theorem 2.1: Monotone Gibbs MC for Variable Selection 

The Gibbs MC is monotone for the component-wise partial order if Pr(γi = 1| i−γ , y, X) is 

increasing in i−γ .  
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Thus, considering (2.4) we require:  

 ),,|1Pr(),,|1Pr( )2()1( XyγXyγ iiii −− =≤= γγ , (2.5)

 

or equivalently using (2.4) and (2.3): 
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It is this inequality we will use to check the sufficient conditions for a monotone Gibbs 

MC for the priors and hyper-parameters explored in this chapter.  

2.2 Uniform Prior for γ 

We now explore the fully conjugate, Zellner’s and Jeffreys priors assuming a uniform 

prior for γ. 

2.2.1 Conjugate Priors 

The normal likelihood suggests a Gaussian form for β|σ 2 and an inverse gamma form for 

σ 2. These are the conjugate choice of priors for the linear regression model. Conjugate 

priors are a common choice in Bayesian statistics. For exponential family distributions 

conjugate priors are particularly useful, allowing straight forward integration to obtain 

marginal posterior distributions. Let 1)( ∝γf  and the joint prior for β and σ 2 conditional 

on γ with hyper-parameters γγ Vβ ,~ , a, b, be 

 )|,( 2 γβγ σf = ),~( 12
1

−
+ γγ VβN σ

γq ),( baIG .  (2.7)

 

Np denotes the multivariate normal distribution of dimension p, IG is the inverse gamma 

distribution and qγ = γTγ − 1. The marginal posterior for γ is 
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where )(*
γγγγ XXVV T+= , and )~(*

γγγγ βVyXβ += T . The joint posterior for β and σ 2 

conditional on γ is 
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with posterior expectations  

 ],,,|[ 2 Xyγβγ σE = )()( *1*
γγ βV − , (2.10)

 

and 
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Using (2.4) and (2.8) the update probability for the Gibbs sampler is 
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(2.12) 

 

Under the component-wise partial order we require (2.12) to be decreasing in i−γ . 

Assuming V is diagonal and X is orthogonal, for )1(γ we obtain 
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and similarly for )2(γ : 
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In (2.13) and (2.14) the square-root term and the numerator 
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T
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T
iii

T
i vv βββXXβ ~~)()()( *1* −+ −  are constant for γi. However, we cannot determine 

which denominator is smaller due to the addition of the quadratic term 000
~~

=== iii

T
γγ βVβγ . 

This means subjective choices of β~  are insufficient for a monotone Gibbs MC as we 

cannot confirm (2.6). 

Let γβ
~  = 0, then (2.8) simplifies to 
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where )(*
γγγγ XXVV T+= . The Gibbs update probability (2.4) follows as 
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For the component-wise partial order (2.16) must be decreasing in i−γ . Assuming V is 

diagonal and X is orthogonal, for )1(γ : 
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and for )2(γ : 
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The square-root and numerator ( yXXXXy T
ii

T
iiii

T v 1)( −+ ) terms in (2.17) and (2.18) are 

constant when updating the ith component. The denominator is smaller for )2(γ as the sum 

of squares is increasing in the number of predictors. Thus, the term is smaller than for 
)1(γ so it follows (2.17) ≥ (2.18) confirming (2.6).  

2.2.2 Zellner's Prior 

Zellner’s G-prior (1986) avoids specification of the covariance structure and requires the 

choice of only one hyper-parameter c > 0. This has become a standard prior specification 

for model selection. It is simpler to deal with than the conjugate regime while retaining 

all the marginalization properties. The choice of c in Zellner’s prior will have the greatest 

impact on our posterior inference when using a flat prior for γ. c can be interpreted as a 

measure of how much information is contained in the prior relative to the likelihood. If c 

= 2, then the prior has 50% weight relative to the data. c is a scale parameter as it has 

positive support and is used as a variance inflation parameter for XTX.  

When specifying a value for c, small values indicate a strong prior, while large values 

indicate a weak prior. Model selection using ),|( Xyγf  will behave similarly to the BIC 

for c = n and the RIC for c = k2 (Kass and Wasserman, 1995; Foster and George, 1994; 

Liang et al, 2008). EB procedures for Zellner’s prior either estimate c for every model 

(local EB), or for all models (global EB) by maximizing the corresponding likelihood 

functions for c. The MLE is then used as an estimate of c in Zellner’s prior. (Clyde and 

George, 2004; George and Foster, 2000; Hansen and Yu, 2001).  

Let 1)( ∝γf  and the joint prior for βγ and σ 2 be 
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with hyper-parameters: c,~
γβ . The marginal posterior given by (2.2) is 
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where TT
γγγγγ XXXXH 1)( −= . We can deduce from the derivation of (2.20) that the joint 

posterior for βγ and σ 2 is 
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with posterior expectations  
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where yXXXβ γγγγ
TT 1)(ˆ −= . Using (2.20) and (2.4) the Gibbs update probability is 
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where )1/(~
1 += ccc ,  )1/(1~

2 += cc   and )1/(2~
3 += cc . From Theorem 2.1 we require 

(2.24) to be decreasing in i−γ  for the component-wise partial order. Now suppose 

)2()1( γγ p  then we require: 
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to be greater than or equal to 
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It is clear we cannot determine if (2.25) ≥ (2.26) due to the terms 0000
~~

==== iiii

TT
γγγγ βXXβ  

and 00
~

== ii γγ βyX  in the denominator. Thus, as in the fully conjugate case we cannot use a 

subjective choice of β~  if we wish to construct a monotone Gibbs MC when the predictor 

matrix is orthogonal. Before dismissing this approach entirely we consider the following 

example. 

 

EXAMPLE 2.1  

When using an informative prior it is possible to minimize the Kullback-Leibler distance 

by choosing β~  for the full model and from this information projecting the equivalent 

choices for sub-models as 

 βXXXXβ γγγγ
~)(~ 1 TT −= , (2.27)

 

There is some debate over the proper specification of the covariance matrix for the prior 

on βγ, however, this does not apply when assuming X is orthogonal. The priors are 
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and 1)( ∝γf . By substitution of (2.27) into (2.20) the posterior for γ becomes: 
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where βXy ~~ = . We note we can re-arrange (2.29) to 
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Using (2.30) and (2.4) the Gibbs update probability is 
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Again we find ourselves with the addition of a quadratic term which will be increasing in 

qγ. This is much the same as in the case of the conjugate and Zellner’s case with a general 

choice of informative prior for β~ . 

■ 

 

Let γβ
~  = 0 then (2.20) becomes:  
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and from (2.4) the Gibbs update probability is 
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For the Gibbs MC to be monotone (2.33) must be decreasing in i−γ , for the component-

wise partial order )2()1( γγ p . For γ(1) we obtain 
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and for γ(2): 
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All terms in (2.30) and (2.31) are equal except for the term dependent upon the partial 

order, yHy γ 0=i

T . Because yHy γ
)1(

0=i

T  ≤ yHy γ
)2(

0=i

T , (2.35) has the smaller term in the 

denominator and is smaller overall so, (2.34) ≥ (2.35) as required.  

For extreme choices of c the residual sums of squares (RSS) with the c/(c+1) shrinkage 

factor asymptotically tends to the standard residual sum of squares: 
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However the posterior distribution for γ will degenerate as 

 0)1(lim 2/)1( →+ +−
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γq

c
c . (2.37)

 

This implies the (c + 1) term tends to zero at a rate dependent on qγ. This means the null 

model (qγ = 0) has the slowest rate of approach to 0, and so in the limit of c → ∞ will 

become the most probable model in the posterior despite any evidence to the contrary. 

This phenomenon is referred to as Bartlett's Paradox (Bartlett, 1957) and this limiting 

behavior also applies to the BF.  

 

EXAMPLE 2.2 Outlier Detection 

From the results in Smith et al (1996) a form of weighted least squares for outlier 

detection is possible. An augmented form of Zellner’s prior is proposed: 
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 where 
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and where },1{ κ∈iw  and c and κ are hyper-parameters and κ is a threshold for detecting 

outliers. The joint posterior for γ and W is then obtained as 

 222 ),,|,(),,,|()()(),|,( σσσ ddfffff γγγ βXWγβXγβyWγXyWγ ∫ ∫∝ , (2.40)

 

The posteriors for γ and W are 
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and 
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A Gibbs sampler can be used to sample from the posterior density of γ and W, by noting 

that   

∝= − ),,,,|1Pr( cii WXyγγ ),,,|( cf WXyγ , 

∝= − ),,,,|Pr( cw ii WXyγκ ),,,|( cf γXyW . 
(2.43)

 

where ),,,,( 111 kiii γγγγ KK +−− =γ  and ),,,,( 111 kiii wwwwdiag KK +−− =W . Conditional 

upon a fixed sequence of weights the Gibbs MC will not be monotone. This is easiest to 

see when considering (2.38), even if X is orthonormal )( 1
γγ XWX −T  will not be diagonal 

when at least one wi is not equal to the rest. A partial order for monotonicity is also 

unavailable for W and (2.42). This is because we need to express the hat matrix as a sum 

over observations, as W is updated for each observation. This is not possible, and so 
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exact sampling using a monotone CFTP Gibbs sampler for (2.42) is not possible. 

However, if the number of observations is small (say n < 30) it would be possible to use 

full CFTP with the Gibbs sampler. 

■ 

 

Because Zellner’s prior for 2|σγβ is a special case of conjugate prior with V = XTX/c, by 

analogy it is clear that using Zellner’s prior with a fully conjugate prior for σ 2 will be 

monotone provided γβ
~  = 0.  

2.2.3 Jeffreys Prior 

The common alternative to avoid any hyper-parameter specification is Jeffreys prior. 

Jeffreys prior is given by the square root of the determinant of Fisher information, I(θ): 

 f(θ)∝ |I(θ)|1/2  (2.44)

 

It is re-parameterization invariant meaning if we transform the parameter, the prior for 

the transformed parameter is still Jeffreys prior. Because of the relation to the Fisher 

information, when there is large information, we minimize the influence of the prior such 

that it is as non-informative as possible. Priors like Jeffreys are considered a default 

procedure and in practice should be used when we have a lot of data and few parameters, 

i.e. when the likelihood will be very sharply peaked. Jeffreys prior does not satisfy the 

likelihood principle, is improper, may lead to indeterminate BF, and for proper Bayesians 

has little subjective justification with respect to prior information. Jeffrey noted in the 

multi-dimensional case ad hoc adjustments to the prior were required and stressed these 

priors for use in the uni-dimensional case as they may lead to incoherence or paradoxes 

in the multi-dimensional case. For a more detailed discussion of Jeffreys prior see 

Roberts (2001, Chapter 3). Following the derivation in Appendix B, Jeffreys true prior is 
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where  qγ = γTγ − 1. Wasserman (2000) suggested an add-on adjustment to Jeffreys prior: 
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and in similar spirit we propose an adjusted form, with arbitrary penalty p > 0: 
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We will use Jeffreys prior to refer to (2.47) and refer to Jeffreys true prior to distinguish 

(2.45) from (2.47). Let 1)( ∝γf  and the prior for βγ and σ 2 be (2.47), then following 

(2.2) the marginal posterior for γ is 
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where TT
γγγγγ XXXXH 1)( −= . The joint posterior for βγ and σ 2 is 
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with posterior expectations  

 ],,,|[ 2 Xyγβγ σE = γβ̂ , (2.50)

 

and  

 ],,|[ 2 XyγσE = )2/()( −− nTT yHyyy γ . (2.51)

 

Following (2.4) the probability for the update of the Gibbs sampler is  
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For the component-wise partial order )2()1( γγ p  we require: 
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to be greater than or equal to 
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Because yHy γ
)1(

0=i

T  ≤ yHy γ
)2(

0=i

T  it follows that (2.53) ≥ (2.54), so using an adjusted 

Jeffreys prior with an orthogonal predictor matrix is sufficient for a monotone Gibbs MC. 

We note that in general for a Jeffreys prior of the form: 

 C ασ −)( 2 , where C is some constant w.r.t to 2σ , (2.55)

 

α must be of the form: 

 
d

q
+

+
=

2
1γα , where d ≥ 1, (2.56)

 

in order to ensure monotonicity. Notice the posteriors for β and σ 2 for Zellner's prior 

with γβ
~  = 0 become the same as those for Jeffreys prior in the limit c → ∞. The penalty 

terms 2/)1()1( +−+ γqc  and 2/)2/( γπ qp −  in the marginal posterior distribution of γ for 

Zellner’s and Jeffreys priors respectively are equivalent when p = 2π(c+1).  

2.3 Non-uniform priors for γ 

The choice of prior for γ is an important component in determining the distribution of 

mass for the marginal posterior for γ. From (2.2) it is possible to assess the effect of 

priors for γ independent of the priors for βγ and σ 2. Specifically, if the choice of priors 

for βγ, σ 2 and hyper-parameters are sufficient with an orthogonal predictor matrix for 

monotonicity, then f(γ) need only be constant for the i-th component or observe the 

component-wise partial order to preserve monotonicity. 
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2.3.1 Bernoulli class 

Let the priors for βγ and σ 2 be Zellner’s prior (2.19) with γβ
~  = 0 and the prior for γ be 

the Bernoulli distribution, i.e. 
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with hyper-parameters kωω ,...,1 . With (2.57) and (2.19) the posterior for γ is 
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The update probability (2.4) for the Gibbs sampler is 
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Thus, (2.59) according to the component-wise partial order )2()1( γγ p  must be decreasing 

in γ-i. For γ(1) we obtain: 
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and for γ(2) : 
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We have already shown Zellner’s case with γβ
~  = 0 is monotone (2.34 and 2.35) and the 

additional ii ωω /)1( −  is a constant for both γ(1) and γ(2), so (2.60) ≥ (2.61) and 

monotonicity follows. Let τωω =k,...,1 , then we obtain the constant Bernoulli prior for γ.  
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Using (2.62) ττ /)1( −  replaces ii ωω /)1( −  in (2.60) and (2.61) and again monotonicity 

follows. A common extension to the constant Bernoulli prior (2.62) is to use the 

conjugate beta hyper-prior for τ.  
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where a and b are hyper hyper-parameters and Γ is the gamma function. Because of the 

conjugate relationship it is straight forward to integrate out τ.  
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Then with the result in (2.64) we obtain, up to proportionality (which requires a and b are 

independent of γ), the Beta-Bernoulli prior: 

 )()(),|( γγ qbkqabaf −+Γ+Γ∝γ . (2.65)

 

Let the priors for βγ and σ 2 be Zellner’s prior (2.19) with γβ
~  = 0, and the prior for γ be 

the Beta-Bernoulli prior. The marginal posterior for γ (2.2) is 
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which leads to the update probability for the Gibbs sampler: 
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where 1−+= kbC . According to theorem 2.1 (2.67) must be decreasing in γ-i for the 

required component-wise partial. For γ(1): 
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and for γ(2): 
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Again all terms are known to permit monotonicity except for  
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which we must show observes the required partial order. Both sides of (2.70) are the 

same except for qγ where: )2(
0

)1(
0 == ≤

ii
qq γγ , so we can describe both sides as a single function 

of qγ, i.e. 

 

1/
1/

)(
+

−
=

γ

γ
γ qa

qC
qf . (2.71)

 

This implies for monotonicity )2()1()2()1( )()( γγγγ qqqfqf ≤∀≥  which is the definition of a 

decreasing function, which requires 0)( ≤′ γqf .  
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Thus, because 0)( <′ γqf  it is a strictly decreasing function and is true for any choice of a 

and b. It then follows that (2.68) ≥ (2.69) and so provides a monotone Gibbs MC with an 

orthogonal predictor matrix. The most common choice of a = b is 1 which is a uniform 

prior for τ.  

2.3.2 Truncated Poisson Prior 

Another prior for γ which may be utilized is the truncated Poisson distribution, i.e. 
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With Zellner’s prior (2.19) with γβ
~  = 0 for βγ and (2.73) the prior for γ, we obtain the 

posterior (2.2): 
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The update probability (2.4) for the Gibbs sampler is 
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which gives: 
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and 
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Now because )2(
0

)1(
0 == ≤

ii
qq γγ  then: 
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and so it follows that (2.76)  ≥ (2.77). Thus, the use of the truncated Poisson prior for γ 

provides a monotone Gibbs MC. Consider the more general case where we specify a 

prior on qγ. We then need to make the required adjustment in order to move to the γ space 

and derive the Gibbs update function.  
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Assume a prior on qγ not involving the binomial coefficient, we get the following 

posterior: 
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which under Zellner’s prior gives the ratio in the Gibbs sampler as 
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This leads to the monotonicity inequality 
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and 
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Because )2(
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0 == ≤

ii
qq γγ , )2(

1
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qq γγ  and k is fixed this implies: 
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so provided f(qγ) is decreasing in qγ then monotonicity is indeed preserved. It seems that 

priors for γ are passive with respect to monotonicity. The choice of prior for γ can at best 

preserve the monotonicity of the likelihood, but never induce a non-monotone likelihood 

to be a monotone posterior. Any augmentation of other priors in order to cancel with 

terms in the exchangeable class of priors works because we recover the underlying form 

of the independence prior. Hence we may as well use an independence prior. From the 

previous section, any case for an orthogonal X which is monotone for Zellner’s prior will 

also be monotone for the cases of conjugate and Jeffreys priors.  
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2.3.3 Integration over c 

When c is treated as an additional parameter we may assign a hyper-prior for c, to obtain 

a joint posterior for c and γ. Let the prior be f(γ) and the hyper-prior for c be f(c), then the 

joint posterior for γ and c is 

 )()(),,|(),|,( cffcfcf γXγyXyγ ∝ . (2.84)

 

The marginal posterior distributions for either γ or c are then 

 dccfcfff )(),,|()(),|( XγyγXyγ ∫∝ , (2.85)

 

and 

 )(),,|()(),|( γXγyXy
γ

fcfcfcf ∑∝ . (2.86)

 

If c is assumed to have positive integer support {1, 2, .... } then (2.85) gives the special 

case:  
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So we can perform inference on γ after integration over c, which may or may not lead to 

closed-form expressions. We can however, simplify by returning to an EB approach to 

determine the most likely value of c using the marginal posterior for c. For common 

choices of priors for c see Table 2.1. 

The use of a flat prior for c means the marginal posterior is an equally weighted sum of 

all marginal posteriors of γ over the specified range of c. Such an option will not yield a 

proper posterior for c. The prior for c must decrease to 0 quickly enough as c → ∞, in 

order to ensure the variance is finite and the posterior for c is proper. Celeux et al, (2006) 

use a compatibility approach to create a posterior distribution for γ that could be 

integrated over c to produce the marginal distribution for variable selection. Note that the 

power of 1 for c in the compatibility prior could be replaced with some other a > 0, in 

similar fashion to the hyper-G and hyper-G-n priors.  
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Table 2.1 Choices of hyper-prior for the hyper-parameter c. 

Class Prior 

Compatibility Prior 1)( −∝ ccf  I{1,2,3, ...}(c) 

Hyper-G prior 2/)1(
2

2)|( acaacf −+
−

=  I[0, ∞)(c), a > 2 

Hyper-G-n prior 2/)/1(
2

2)|( anc
n

aacf −+
−

=  I[0, ∞)(c), a > 2 

Zellner-Siow 2/3

2/

)(
c

ecf
cn−

=  I[0,∞)(c) 

 

In practice, the prior of c has finite support so that integrating out c involves summation 

for a range of c = {1,2,3,…..,clim} for some specified upper limit. This bears an 

interesting relation to the fact that past a certain point the posterior will only ever select 

the model with no predictor (intercept only), the null model. It seems that a practical 

upper limit could be set with the idea in mind of minimizing the summation over a huge 

number of marginal posteriors for γ that only ever select the null model. The second is 

that for inference on parameters we no longer have the posterior marginal distributions 

for β and σ 2 available in closed form. We can however, compute the corresponding 

expectations, for example see Celeux et al (2006). This also means we now have a near 

automatic procedure except that the user must define the upper limit on the summation 

over c. In that work they propose a new family of priors for c called hyper-G priors, and 

hyper G-n priors (Celeux et al, 2006; Liang et al, 2008; Zellner and Siow, 1980). 

Normally, for 0~
=β , 
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Let the prior for c be 

 1)1()( −+∝ ccf , (2.89)
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an improper version of the hyper-G prior with a = 2. The work by Liang et al (2008) 

demonstrates this integration leads to a Gaussian hyper-geometric function which 

requires an approximation and as such confirming monotonicity for this approach is 

extremely difficult.  

 )/,2/)3(;1,2/()1(),|( 12
1 yyyHyXyγ γ

TTqnFqf ++∝ −
γγ , (2.90)

 

where: 
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Typically however, the function is truncated and summed to a large value. Confirming 

monotonicity, even sufficiency, is not straight forward if possible. Notice that for Jeffreys 

prior, we cannot perform a similar integration like we do for c in Zellner’s prior with γβ
~  

= γβ̂ . It is incorrect to interpret p as a scale parameter like c. 

2.4 Empirical Bayes 

We now look at EB methods for specifying hyper-parameters. In particular, we consider 

the conjugate and Zellner’s case with γβ
~  = γβ̂  and then two examples of fully specified 

EB conjugate priors for βγ and σ 2. Finally we return to integration over c in the EB 

setting. 

2.4.1 An empirical Bayes choice for γβ
~  

Using the conjugate priors (2.7) let f(γ)∝ 1, γβ
~  = γβ̂ , and note  γγγγ βXXyX ˆ)( TT =  the 

posterior (2.8) can be expressed as  
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(2.92)

 

Using the identity:  
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 1111111 )())(()()()( −−−−−−− +−=+ γγγγγγγγγγγγ XXXXVXXXXXXV TTTTT , (2.93)

 

(2.92) becomes: 
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(2.94)

 

which simplifies to 
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where )(*
γγγγ XXVV T+= . The Gibbs update probability (2.4) is 
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For the component-wise partial order (2.97) must be decreasing in i−γ . Taking )1(γ  and 

assuming V is diagonal we obtain: 
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and for )2(γ : 
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We require (2.97) ≥ (2.98) and all values are the same except for yHy 0=i

T
γ  where 

yHy )2(
0=i

T
γ ≥ yHy )1(

0=i

T
γ  so indeed (2.97) ≥ (2.98). 

Using Zellner’s prior (2.19) let f(γ)∝ 1, γβ
~  = γβ̂ , then yHyβXy γγγ

TT =
~  and 

yHyβXXβ γγγγγ
TTT =

~~ , reducing (2.20) to 
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The Gibbs update probability (2.4) is 
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The monotone Gibbs MC exists when (2.100) is decreasing in i−γ . For γ(1) becomes: 
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and similarly for γ(2): 
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All values are the same where yHy )2(
0=i

T
γ ≥ yHy )1(

0=i

T
γ  so that (2.101) ≥ (2.102). 

2.4.2 Fully empirical conjugate priors 

We now move to investigate an example in the literature of fully EB priors for βγ and σ 2, 

and then an alternative. 

 

EXAMPLE 2.3 Empirically based priors. 

Cripps et al (2006) propose empirically based priors for β and σ 2 for use in variable 

selection for the Bayesian linear regression model which depend on γ. The prior they 

propose for βγ conditional on σ 2 is the same as Zellner’s prior with γβ
~  = γβ̂ . The prior 

for σ 2 is designed to be less informative compared to the marginal likelihood of σ 2, and 

to provide an unbiased estimate of the variance via the mode of an inverse gamma 

distribution. Cripps et al (2006) choose to keep the intercept in all models and use n/1 , 

and then centre the predictors so that 
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Let the joint empirical prior for βγ and σ 2 be 
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where κ , c1 and c2 are hyper-parameters. With 1)( ∝γf , the marginal posterior for γ is 
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where Cripps et al (2006) use c1 = n2, c2 = n, and κ  = 7. We note (n-qγ) can be thought of 

as a degrees of freedom type term and that f (σ 2) will have 2k possible values of b. From 

(2.4) the ratio in the Gibbs sampler update probability follows as 
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Let )2()1( γγ p , then by theorem 2.1 we require: 
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to be greater than or equal to 
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The very right hand term involving the residual sum of squares has already been shown 

to observe the component-wise partial order and )1( 2 +c is a constant. Of the remaining 

terms, we require: 
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to be decreasing in i−γ , This term is decreasing in i−γ  as the numerator will always be 

smaller than the denominator noting the relation. 
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This term is increasing in qγ because the denominator is smaller than the numerator which 

violates the required component-wise partial order. This means we cannot determine 

monotonicity. 

■ 

 

We now describe an analogue to the empirically based prior of Cripps et al (2006) using 

the MLE for σ 2. Following Cripps et al (2006) let the joint prior for βγ and σ 2 be 
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The mode of this prior corresponds to the MLE for σ 2 and the posterior for σ 2 is 
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which has the mode of the distribution equal to the MLE for σ 2. The posterior for γ with 

1)( ∝γf  given by (2.2) is 
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Thus the posterior for γ is in fact the same as that for the Zellner's case with γβ
~  = γβ̂  and 

a non-informative prior on σ 2. Thus, it follows that the choice of priors (2.112) is 

sufficient for a monotone Gibbs MC with an orthogonal design matrix by the results 

above in (2.101) and (2.102). 

2.4.3 Integration over c 

Returning to the special case of γβ
~  = γβ̂ it turns out that the integration becomes: 
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From the priors in Table 2.1 with continuous support the easiest case to deal with is the 

hyper-G prior. The hyper-G-n and Zellner-Siow priors are much more difficult to 

integrate over c even in this simpler setting.  
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This is straight forward to find as it is the reciprocal of the normalizing constant of the 

prior which is of the same form as the penalty term. Let 1)( ∝γf , then 
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Thus to show monotonicity we only need to demonstrate that: 
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This can be made clear be demonstrating that the ratio of the left-hand term over the 

right-hand term in (2.117) is ≥ 1. This is the case as by rearrangement we find: 
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All terms are equal except those subtracted and the larger term is subtracted in the 

denominator making the ratio > 1. Note that this result generalizes to any choice of f(γ) 

that allows monotonicity. To complete the approach we must be able to sample from 

),,|( Xyγcf  and in this case:  
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Finding the CDF: 
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the inverse CDF is 

 1)1()( )1/(21 −−= −+−− aquuF γ , (2.121)

 

so we may use the inverse CDF method to generate random variables from the posterior 

of c after generating exact samples of γ using a monotone Gibbs MC. Typically 

integrating over c will help remove the choice of this parameter from the posterior for γ 

which in turn helps with variable selection. As variable selection is not a valid option for 

inference in this context, integration over c in the posterior for γ is only useful if we can 

do the same to other posterior distributions such as the posterior predictive distribution. 

2.5 Summary 

In this chapter we have explored a number of possible choices of priors and hyper-priors 

and the associated hyper-parameters and hyper hyper-parameters. Figure 2.1 and Tables 

2.2 and 2.3 summarize these findings. To ensure clarity in the following discussion the 
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prior for σ 2 is IG(α,β) so a can be used for the prior on c, and the prior for τ  is the 

Beta(r,s). 

 

 
Figure 2.1 Diagram showing the paths of investigation for the sufficient conditions of a 

monotone Gibbs MC in the Bayesian normal linear regression model.  

 

Assuming Gaussian errors and using the conjugate class of priors (including Zellner’s 

prior) in a fully Bayes approach we must set β~  = 0 to obtain a monotone Gibbs MC. This 

includes the Zellner’s projection prior in example 2.1. We may choose β~  to be γβ̂  as part 

of an empirical Bayes approach. In example 2.2 an extension using Zellner’s prior for 
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outlier detection does not permit a monotone Gibbs MC for posterior model probabilities 

or the posterior probabilities for outliers.  

For the conjugate prior for σ 2 there is no justification for allowing the hyper-parameters 

to depend on γ in a fully Bayes approach. Any choice of α and β in a fully Bayes 

approach independent of γ will provide a monotone Gibbs MC with an orthogonal design 

matrix and an appropriate choice of prior for β. In an EB approach it makes sense to 

allow α and β to depend on γ as we are using the data to estimate parameters. In example 

2.3 we demonstrate that using the classical estimate of regression variance does not allow 

a monotone Gibbs MC, while using the MLE does. It should be noted that both these 

cases deliberately avoid having α depend upon γ. This does not strictly have to be the 

case however, choosing α to depend on γ may prevent simplification of the ratio in the 

Gibbs sampler for confirming the sufficiency of monotonicity. 

 

Table 2.2 Summary of Hyper-parameter conditions for the Conjugate Family of 

priors for monotonicity 

 Description Condition(s) 

Vγ 
The covariance matrix in the conjugate 

prior for βγ. Can be replaced with XTX.

Diagonal, positive definite.  

β~ γ 
Prior estimates of the regression 

coefficients in the prior for βγ. 
0 (fully Bayes) or γβ̂  (EB). 

c  
A scale parameter in the variance term 

for the conjugate prior for βγ.  

Independent of γ.  

α 
The shape parameter in the conjugate 

prior for σ 2. 

Independent of γ. 

 

β 
The scale parameter in the conjugate 

prior for σ 2. 

Independent of γ or a function 

of yHIy γ )( −n
T (EB). 

 

In a fully Bayes approach integration over c is possible however demonstrating 

monotonicity is far from straight forward. For an EB approach the integration over c is 

greatly simplified and for the case of the hyper-G prior we demonstrate monotonicity of 
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the posterior for any choice of a > 2. We also show how the inverse CDF method may be 

used to generate samples from the posterior for c conditional on γ. The adjusted Jeffreys 

prior we suggest with no hyper-parameters will always provide a monotone Gibbs MC 

provided the design matrix is orthogonal. 

Priors for γ fall outside the rest of the investigation and we found that the Bernoulli class 

will give a monotone Gibbs MC. Further, integration over τ for the constant Bernoulli 

prior using the conjugate beta distribution will provide a monotone Gibbs MC for any 

choice of r > 0 and s > 0. 

 

Table 2.3 Summary of Priors for γ and monotonicity for an orthogonal X. 

Priors Conjugate* Zellner* Jeffrey 

Uniform Yes (3) Yes (1) Yes (0) 

Bernoulli Yes (k + 3) Yes (k + 1) Yes (k) 

Constant Bernoulli Yes (4) Yes (2) Yes(1) 

Beta-Bernoulli Yes (5) Yes (3) Yes (2) 

T-Poisson No (4) No (2) No (1) 

f(qγ)** Yes( ) Yes( ) Yes( ) 

 

* Given the conditions for hyper-parameters in Table 2.2 

** Provided the condition that f(qγ) is decreasing as qγ  increases. 

 ( ) The number listed in brackets indicates the number of hyper-parameters required. For the 

conjugate and Zellner’s prior we assume β~  = 0 or γβ̂ , further, for the conjugate case we assume 

V as a single hyper-parameter. T-Poisson is the truncated Poisson. In the case of f(qγ) ( ) is 

necessarily left empty. 

 

This of course requires that the posterior with a flat prior for γ is monotone to begin with. 

Any general prior for qγ will permit a monotone Gibbs MC provided the prior probability 

is decreasing with increasing model size, this includes the example of the truncated 

Poisson prior. 

From this we can tentatively make the following recommendations. In the conjugate class 

Zellner’s seems the reasonable choice as it greatly reduces the number of hyper-
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parameters required by using the empirical covariance matrix, and we require β~  = 0 and 

some choice of c. We may prefer Zellner’s prior over Jeffreys prior when the likelihood 

is weak (small ratio of n:k), and may also depend on whether inference is more sensitive 

to c or f(γ). When the sample size is large the adjusted version of Jeffreys prior should be 

a suitable choice given no requirement for hyper-parameter specification.  

In an EB setting the suggested MLE based priors, or some variation therein, from 

example 2.3 are necessary to provide a monotone Gibbs MC. It should be noted that the 

posterior for γ under this setting is essentially the same as that for the adjusted Jeffreys 

prior. The Bernoulli class of priors for γ retain monotonicity, while non-flat priors for γ 

may only preserve and not induce monotonicity. Priors specified on qγ can also produce 

monotone Gibbs MC provided the probability is decreasing in qγ, an example of this is 

the truncated Poisson prior. Through-out this investigation it also became apparent that 

there does not appear to be any way to use a prior on γ to induce monotonicity when the 

posterior using a flat prior is not. 

Future extensions to this work include investigating the Gibbs sampler constructed using 

the hyper-geometric function as in Liang et al (2008) , and using auxiliary variables to 

create a Gibbs sampler for γ when using an error distribution that is not Gaussian. The 

work in this chapter is an addition to current knowledge showing that an orthogonal 

predictor matrix is not the single and only sufficient requirement, for a monotone Gibbs 

MC. Finally, the results of this chapter also apply to wavelets applications, and any 

univariate non-linear regression where the series can be decomposed into a collection of 

orthogonal basis functions. 



 

CHAPTER 3

ORTHOGONALITY

 
"The goal is to transform data into information, and information into 

insight." 

- Carly Fiorina, Hewlett Packard, 1999 - 2005 

 

Having investigated and established a number of sufficient conditions for the 

construction of a monotone Gibbs Markov chain in the Chapter 2, we now provide some 

practical considerations of monotonicity and the inferential problems applicable when 

using W. Explaining y requires variable selection (X and γ) and determining the effect 

the predictors have on y through βγ. It is already well documented that linear regression 

using an orthogonal predictor matrix does not permit variable selection. This suggests our 

interest in γ should be for use in BMA. Thus, the focus for investigating the impact of 

orthogonalization is for the predictive modeling of y using BMA. This can also include 

tasks such as outlier detection. The issue of how well modeling y using W compares with 

that of X requires investigation.  

3.1 Gibbs Update Probability 

Recall the Gibbs update probability: 

 1
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where ),|(),,|1r(P~ XyγXyγ fii ∝= −γ , the un-normalized posterior. The analysis of a 

signal using wavelets is an example where monotone Gibbs CFTP has been used 

(Holmes and Denison, 2002). The signal is decomposed into a series of orthogonal or 

orthonormal basis functions, so the Gibbs MC is monotone. Perfect sampling is then used 

for model averaging and choosing a subset of basis functions for best explaining the 

observed signal.  

The Gibbs coupler, presented by Huang and Djuric (2002), is an elegant perfect sampling 

method using support set coupling for model selection. This approach does not require X 

to be orthogonal (the actual Gibbs MC is not monotone), instead requiring β and σ 2 be 

known. Bounding chains on the support set {0,1} are constructed for sequential updating 

of the support of γi to generate samples from ),|( Xyγf . When β and σ 2 are unknown, 

these bounding chains do not exist, preventing any extension of the Gibbs coupler to this 

setting.  

Using simulated data where the predictor matrix X contains a correlation structure, and 

W is an orthogonalized version of X, we demonstrate the monotonicity of the Gibbs MC 

numerically for k = 4. Under Zellner’s prior with c = n, we obtain the update probabilities 

),,|1Pr( Xyγ ii −=γ  in Table 3.1 for X and W. Table 3.2 contains the required 

component-wise partial orderings. With some inspection, it is apparent that the update 

probabilities for W satisfy Theorem 2.1, while those for X do not. 

The consequences of the partial ordering have a natural interpretation in the context of 

linear regression. The partial ordering reflects the nested model structure shown in Figure 

3.1, where the probability of adding a variable to a model is greater than adding that same 

variable to any of its sub-models. Other orderings might include a complete ordering 

through the decimal representation of γ or a partial ordering through qγ. However, the 

decimal ordering does not translate into a natural model nesting structure and is therefore 

less useful. The ordering on qγ also has a similar limitation. 
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Table 3.1 Gibbs Update Probabilities ),,|1Pr( Xyγ ii −=γ  for Fictitious Data, k = 4 

γ-i    \   i 1 2 3 4 
0 0 0 0.3811 0.4423 0.4354 0.2115 0.2920 0.2556 0.4389 0.2448 
0 0 1 0.3138 0.4512 0.2125 0.2116 0.2991 0.2571 0.4473 0.2462 
0 1 0 0.2902 0.4539 0.4076 0.2116 0.2690 0.2556 0.2149 0.2448 
0 1 1 0.2256 0.4636 0.2228 0.2116 0.3119 0.2571 0.2521 0.2463 
1 0 0 0.3195 0.4425 0.3701 0.2116 0.2149 0.2646 0.3674 0.2515 
1 0 1 0.3159 0.4514 0.2140 0.2117 0.2137 0.2667 0.3657 0.2535 
1 1 0 0.2555 0.4541 0.3662 0.2117 0.2120 0.2646 0.2120 0.2515 
1 1 1 0.2139 0.4638 0.2112 0.2117 0.2109 0.2668 0.2109 0.2536 

 

 Original Design Matrix (X)  Orthogonal Design Matrix (W) 
 

 

 

 

Table 3.2 Component-wise Partial Orderings for k = 4 

dec(γ-i) γ-i Consequence of partial ordering for Comparable States 

0 [0 0 0] ≤ { [0 0 1], [0 1 0], [1 0 0], [0 1 1], [1 0 1], [1 1 0], [1 1 1] } 

1 [0 0 1] ≤ { [0 1 1], [1 0 1], [1 1 1] } 

2 [0 1 0] ≤ { [0 1 1], [1 1 0], [1 1 1] } 

3 [0 1 1] ≤ { [1 1 1] } 

4 [1 0 0] ≤ { [1 0 1], [1 1 0], [1 1 1] } 

5 [1 0 1] ≤ { [1 1 1] } 

6 [1 1 0] ≤ { [1 1 1] }  

7 [1 1 1] ≥ { [0 0 0], [0 0 1], [0 1 0], [1 0 0], [0 1 1], [1 0 1], [1 1 0]} 
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Figure 3.1 The nested model structure for model comparison in linear regression, and it's 

relation to the component-wise partial ordering of a monotone Gibbs Markov chain. 

 

3.2 Orthogonality and f(γ | y, X). 

In practice, orthogonalization of X may arise for two reasons. The first is severe multi-

colinearity where X contains strongly correlated predictors. This can result in poor 

numerical conditioning when calculating the inverse covariance matrix. An alternative is 

to remove variables that are strongly correlated with other variables, and then use a 

reduced design matrix. The second reason for orthogonalization is to reduce computation 

time. An orthogonal design matrix allows faster computation of the residual sum of 

squares. Any transformation should ideally retain as much of the correlation structure 

with the response as possible.  

3.2.1 Transformation Methods. 

We now detail the methods that we use to generate an orthogonal design matrix W. For 

fair comparisons between X and W, we construct W to have a constant in the first 

column for the intercept term. This is done by centering each of the k predictors in X by 

subtracting the column mean to obtain the centered version X0. An appropriate transform 
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of X0 is used to create the orthogonal version W0. Each column is then divided by its 

inner product so that it has unit length. Finally, a column with the constant 1/√n is 

inserted to represent the intercept. This ensures no correlation with the other columns of 

W0 and so provides the orthonormal predictor matrix W. 

To summarize: 

1. Take the predictor matrix with no intercept X, and for i = {1,..,k} compute (X0)i = 

Xi ∑ =
−

n

j jin
1 ,)/1( X . Xi is the i-th column of X. 

2. Use an appropriate transformation of the form: W0 = X0A. 

3. For i = {1,..,k} compute i
T
iii )()(/)( 000 WWWW =  and add a column of 1/√n for 

the intercept. (W0)i is the i-th column of W0, and similarly for Wi. 

 

We detail four methods for transforming X0 into W0. The first two of these methods are 

based on eigenvalue decompositions. These are generalized principal components (GPC) 

and the Lowdin transformation, an extension of singular value decomposition (SVD). 

The other two methods use the modified Gram-Schmidt (GS) procedure with different 

initial orderings of X0. For the SVD and GPC methods, W is invariant to re-ordering of 

X. However, because the GS procedure is sequential W is not invariant to a re-ordering 

of X.  

 

1. General Principal Components (GPC) 

Clyde et al (1996), and Holmes and Mallick (1998), use GPC to orthogonalize X. We use 

the approach as described by Clyde et al for transforming X0. Let U be a matrix of 

eigenvectors, Λ be a diagonal matrix of eigenvalues and D be the diagonal of 00 XXT . The 

transformation is then: 

 

)(

)(

2/1
00

2/1
00

2/1

UDXW
UUΛR

DXXDR

−

−−

=

=

=
T

T

 (3.2)

 

Thus, A is D-1/2U, R is a k x k matrix and W0 represents the principal components formed 

from X0. There can be directions that correspond to small eigenvalues which have a high 
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degree of correlation with y, so choosing a subset based on the size of the eigenvalues 

can be misleading. However, it is important to note that because of model averaging this 

is not a concern. 

 

2. Lowdin Transformation 

The Lowdin transformation is an extension to the SVD. The Lowdin transformation is 

designed to minimize the distance (Frobenius norm) between the matrix X and the 

orthogonal version. The Frobenius norm is defined as the √(trace(XTX)) which is a 

special case of the 2-norm for matrices. SVD is readily implemented by the orth(X) 

function in Matlab or the svd(X) function in R, and is: 

 TUSVX =0  (3.3)

 

where U is an n x k matrix with orthonormal columns, S is k x k diagonal matrix of 

singular values of X0, and V is k x k orthogonal matrix of right singular values of X0. U 

can serve as an orthogonal version of X0 with 1)( −= TSVA , however because of the 

property of the Lowdin transformation if we are to use the SVD procedure it makes sense 

to use the Lowdin approach. The Lowdin transformation will construct: 

 TUVW =0 . (3.4)

 

Which by the substitution of 1
0 )( −= TSVXU  can be expressed as TT VSVXW 1

00 )( −=  so 

TT VSVA 1)( −= . For further details see (Beaver, 2007). 

 

3. The Modified Gram-Schmidt (GS) Procedure 

For the centered predictor matrix X0 whose columns are in a prearranged order, let xi 

denote the ith column of X0, wi be the ith column of W0, and ||||/ 111 xxw =  where 

111 |||| xxx T= . The modified GS orthogonalization then proceeds as: 
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The modified approach is designed to reduce the numerical instability that can occur with 

the standard GS procedure. GS orthogonalization sequentially replaces each column in X0 

with a rescaled version of the residuals resulting from the regression of that column on 

the preceding columns. Under the GS approach the A matrix is upper triangular. This 

may be useful because we can retain a rescaled version of the best explanatory variable 

from X. The main drawback to the GS method as highlighted by Clyde et al (1996) and 

Holmes and Mallick (1998), is the requirement to order the columns of X prior to 

transformation. Clyde et al (1996) and Holmes and Mallick (1998) do not discuss any 

methods for ordering the predictors, and so there is little analysis on the use of the GS 

method. We now describe the two methods we will use to order the columns of X0 prior 

to orthogonalization. 

 

Method 1: Create X0 with the columns ordered in descending magnitude of correlation 

with y. The method will be abbreviated to GS1. 

 

Method 2: Order the predictors based on the magnitude of the correlation with y but also 

take into account the correlation structure of the resulting X0. In particular, we set the 

first predictor x1 as the one with the strongest correlation with y, and then choose the next 

predictor as the one that is both strongly correlated with y and weakly correlated with x1. 

This is repeated sequentially until all predictors are ordered. Suppose the first j predictors 

have been chosen and we must now choose the next one from the remaining predictors 

whose indices are contained in the set V. For i∈V, let r(xi,y) and r(xi,xj) be the 

correlations between one of these remaining predictors (xi) with y and with the j-th 

ordered predictor xj, respectively. Then the next ordered predictor is chosen as 



76  Chapter 3: Orthogonality
 

 |)),(|1(|),(|minarg
}{

1 iijij rr
Vii

yxxxx
x

−+=
∈

+ . (3.6)

 

Thus, the next column in the ordered X0 is chosen as the predictor with the minimum 

distance (d) to the co-ordinates (0,0) using (3.6). This is repeated sequentially until all 

predictors are ordered.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 A graphical representation of Method 2 for ordering the predictors prior to 

orthogonalization by the Gram-Schmidt method.  

 

This method will be abbreviated to GS2. Both methods of ordering are justified in a 

heuristic sense, and stop short of the partial least squares (PLS) method detailed in Clyde 

et al (1996).  

Two methods we do not review as discussed by Clyde et al (1996) are PLS and sliced 

inverse regression. Partial least squares uses an eigenvalue decomposition of the 

covariance matrix and then using y, sequentially adjusts the columns of X to produce an 

orthogonal predictor matrix. Sliced inverse regression uses an eigenvalue decomposition 

of a weighted covariance matrix, created by dividing y into h slices and calculating a 

matrix of means. The resulting eigenvectors are then multiplied by the standardized 

1-|r(xi,y)| 

|r(xi,xj)|
0 

1 

0 1

d 
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version of X to create W. For studies to follow in this chapter the four methods GPC, 

Lowdin, GS1 and GS2 will be investigated. 

3.2.2 Posteriors and Point Estimates. 

While a number of orthogonal transformation methods may be very similar, they can lead 

to different posteriors for γ. The posteriors of X and W are not directly comparable due to 

the loss of interpretation for the predictors. The original posterior can be preserved by 

orthogonalizing for every γ however, this will not allow monotonicity. If we are 

concerned with inference about y then interpretability in the orthogonal space is not an 

issue. Further, if inference about y is not compromised by using W instead of X, then 

orthogonalization is an approach that will allow efficient perfect sampling. Thus, we may 

compare X and W based on the fitted response. To give an appreciation of these points 

we use the ozone data as an example. Details of the ozone dataset may be found in 

Appendix C. 

 

Example: Ozone Data 

In Figure 3.3 we plot the posterior distributions for γ using X and the four W methods for 

Zellner’s prior with c = n and τ = 0.5. Figure 3.4 shows the BMA fitted y values for X 

and the W methods, and the true values for observations 20 to 40. 

Not only are the posteriors of X and W not directly comparable, but because the A 

matrices in the transformation methods result in different mixing of X into the columns of 

W, the posteriors for W are also incomparable with one another. Thus, the distribution of 

mass can vary noticeably between different methods of orthogonalization. The posterior 

mass for the orthogonalization methods are less dispersed than for X, with noticeably less 

small probability models. In the case of the orthogonalization methods, the posterior mass 

appears the most concentrated for the GS2 method, while the Lowdin method has two 

very similar separated patterns. The GPC and GS1 methods occupy the upper half of the 

state space with different distributions of mass. It is clear that while the posteriors for W 

can vary noticeably in distribution from both X and other W methods, all provide suitable 

weights for obtaining a BMA fitted response, which from Figure 3.4 is comparable 

between all methods. 
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Figure 3.3 Posterior model probabilities using X and W for the ozone data, for Zellner’s 

prior with c = n, a uniform prior for γ. 
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Figure 3.4 Plot of the fitted response using BMA with X and W for the ozone data. As above 

we use Zellner’s prior with c = n, a uniform prior for γ. 

 

As mentioned, previous work has indicated proper BVS is not possible with an 

orthogonal predictor matrix. However, it would be desirable to determine which of the 

predictors in the X space are important while working in the W space, by using a statistic 

to rank them. Since the transformation from X0 to W0 can be expressed as W0 = X0A for 

some k x k matrix A, we should be able to use A-1 to get back to X for inference on the 

relative importance of the predictors. Heuristically, some function of the MIP (Table 3.4) 

and A-1 should provide an estimate of the MIP for X. Table 3.3 shows the mixing 

coefficients (the A matrix) for all four methods for the ozone data. The columns represent 

the column of W and the numbered rows the columns of X. For example the first column 

for GPC indicates that the first column in W was dominated by the second column of X. 

For each of these columns we divided the values obtained by the largest absolute value so 

that all values fall between -1 and 1, the dominant predictor from X is indicated by -1 or 

1.  
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Table 3.3 Mixing Coefficients for transforming X0 for the ozone data into W0 using 

the four methods of orthogonalization. 

 X Column of W 
  1 2 3 4 5 6 7 8 

1 0 0.00054 -3.3E-05 -0.00045 0.006155 1 -0.55186 0.01615
2 -1 0.025578 -0.02021 0.000153 -0.00299 0.003637 0.003279 -0.0005
3 0 -0.02099 -0.01575 -1 0.3957 0.030988 0.061365 -0.00487
4 0 0.00394 1 -0.11524 -0.00765 0.003127 -0.00022 -0.00218
5 0 1 -0.00854 -0.20521 -0.03382 -0.10692 -0.01171 0.009055
6 0 -0.00415 -0.00254 -0.13697 -1 0.055275 0.018478 -0.00445
7 0 0.0008 0.000104 0.007678 0.008755 0.867895 1 -0.06572

G
P

C
 

8 0 0 0 0 0 0.001062 0.00267 1
 

1 1 -0.11047 -0.12068 0.027687 -0.6442 0.020333 -0.21418 0.008471
2 -0.0006 0.532464 -0.00087 -0.01863 0.017826 0.003093 0.003514 -0.00042
3 -0.0272 -0.03571 1 0.200588 0.298821 -0.24051 0.051891 -0.00352
4 0.00190 -0.23114 0.060972 1 0.038669 0.017344 0.000221 -0.00212
5 -0.0454 0.227672 0.093479 0.039796 1 0.041833 -0.03358 0.008304
6 0.00774 0.213617 -0.40681 0.096513 0.226192 1 0.023839 -0.00363
7 -0.3359 1 0.361656 0.005074 -0.74819 0.098226 1 -0.04203

Lo
w

 

8 0.02551 -0.23028 -0.04711 -0.09313 0.3552 -0.02874 -0.08069 1
 

1 0 0 -1 0.37826 -0.01026 -0.45081 0.270197 -0.41157
2 1 0.004954 0.002244 0.002397 0.000455 0.008922 -0.00529 0.002204
3 0 0 0 0 0 0 0 0.441922
4 0 0 0 0 0 -0.31715 -0.02533 0.023198
5 0 0 0 -0.13211 -0.00965 -0.01908 -0.02115 0.009704
6 0 0 0 0 0 0 -0.63435 -0.34283
7 0 1 0.892332 1 0.046404 0.91477 -1 1

G
S 1

 

8 0 0 0 0 -1 1 0.410961 -0.28877
 

1 0 1 0.054713 -0.73377 -0.52747 -0.27642 -0.35235 -0.41157
2 1 0.002177 -0.00038 -0.00307 0.003917 0.004035 -0.00239 0.002204
3 0 0 0 0 0 0 0 0.441922
4 0 0 0 0 0 -0.23032 0.005164 0.023198
5 0 0 0 0 0 0 0.133365 0.009704
6 0 0 0 -0.92351 0.120546 -0.21438 0.046025 -0.34283
7 0 0 0 0 1 0.150314 -0.90558 1

G
S 2

 

8 0 0 1 1 0.034065 1 1 -0.28877
 
Because the GS method result in upper triangular A matrices, the situation is much 

simpler than the GPC or Lowdin method. While it appears that essentially each column in 

W is dominated by a unique column of X, some columns are dominated by a second. As 

an example the sixth column of W under the GPC transformation is dominated by the 

first column of X and the seventh column of X with a coefficient of 0.87. The Lowdin 

transformation also demonstrates a case where due to the high degree of correlation 
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between the second and seventh predictors in X, the coefficient matrix actually has two 

columns dominated by the seventh predictor and none by the second. To ensure this 

behavior was specific to the ozone dataset for the reasons mentioned, the same 

calculation was performed for the physical dataset (Appendix C). The physical dataset 

exhibited the expected behavior of each column in W being dominated by a column from 

X. Note for the GPC method the first column of W is comparable to that of the GS 

methods. This is because of the negligible coefficients for all other columns of X except 

X2.  

 

Table 3.4 The marginal inclusion probabilities for the posteriors in Figure 3.3 

 Column of X/W 

 1 2 3 4 5 6 7 8 

X 0.55 0.67 0.44 0.17 0.23 0.24 0.43 0.45 
GPC 1 0.76 0.21 0.36 0.10 0.32 0.11 0.30 
Low 0.40 1 0.21 0.20 0.87 0.12 0.12 0.31 
GS1 0.67 1 0.17 0.15 0.16 0.21 0.47 0.27 
GS2 0.94 1 0.18 0.13 0.12 0.28 0.10 0.34 
 

Visual inspection of the A matrix and consideration of the MIP will provide an indication 

of important variables however, there appears to be no coherent way to perform BVS. 

When using an orthogonal predictor matrix, the magnitude of correlation determines the 

rank using the MIP. From Table 3.4 it is clear that the MIP in W pick out columns 

dominated by specific predictors. The first column of W under GPC is dominated by the 

second predictor in X and has a MIP of 1. The second column of W for the Lowdin 

transformation is dominated by the seventh predictor from X. The GS methods have been 

returned to the original ordering from X, and as a result both are dominated by a rescaled 

version of the second predictor from X. This is expected as the MIP for the first predictor 

in W represents the second predictor in X only. Thus, it seems when using an orthogonal 

transformation the focus of inference should be for y as BVS appears not to be possible. 

When using an orthogonal predictor matrix the least squares estimate of the regression 

coefficients is simplified. Further, any column of W will give the same estimated 

regression coefficient irrespective of the other columns of W included in the model. The 

least squares estimate for the i-th predictor maybe obtained as 
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T
i

i WW
yW

=β̂ . (3.7)

 

(3.7) simplifies further if W is orthonormal as 1=i
T
i WW . When a predictor matrix is 

orthogonal the magnitude of the regression coefficients is dictated by the strength of 

correlation with y. The posterior for β under W has a fixed location regardless of γ, but 

the variance shrinks as more predictors are included. With a non-orthogonal predictor 

matrix both location and variance change with γ.  

For the posterior of σ 2, the a parameter is typically independent of γ, and b is a function 

of the RSS for γ, resulting in a decreasing expectation (or estimate using the mode) for σ 
2 as qγ increases. This decrease follows the required partial order for monotonicity due to 

b involving the model dependent RSS term so that as more columns are included in the 

predictor matrix for the orthogonal case, the fit improves and as such the estimated 

variance reduces. This point relates to Example 2.3 from the previous chapter where the 

classical estimate of the variance cannot be guaranteed to follow the required partial 

order. We now provide an illustration of these facts using the ozone data and Jeffreys 

prior. For Jeffreys prior we have the following expectations for the regression 

coefficients and model variance: 

 ],,|[ XyγβγE = γβ̂ , (3.8)

 

and  

 ],,|[ 2 XyγσE = )2/()( −− nTT yHyyy γ . (3.9)

 

The classical estimator of the variance is 

 2σ̂ = )1/()( −−− knTT yHyyy γ , (3.10)

 

where k is the number of predictors. Beginning with the first column and an intercept the 

next three columns of X or W are added sequentially as indicated by the sequence of 
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numbers in the column headings of Table 3.5. Table 3.5 records the estimates of (3.8)-

(3.10) and W is obtained by the GPC method. 

As discussed the estimate of β1 varies with X and does not change for W. The classical 

estimator of the variance shows both decreasing and increasing behavior as predictors are 

added. This is a clear indication that it cannot be guaranteed to follow the required partial 

order. Thus, for any posterior for σ 2, any estimate such as the mean or the mode that is in 

the form of the classical estimator for variance, will never produce a monotone Gibbs 

MC. 

 

Table 3.5 Updating parameter estimates by adding one column at a time to X and W 

(GPC method). 

Added predictors 
Predictor Matrix Quantity 

1 1 2 1 2 3 1 2 3 4 

X ][ 1βE  0.0305 0.0192 0.0220 0.0221 

W (GPC) ][ 1βE  2.991 2.991 2.991 2.991 

][ 2σE  0.2364 0.1839 0.1765 0.1746 
X 

Classical 2σ̂  0.2334 0.1863 0.1812 0.1816 

][ 2σE  0.2130 0.1930 0.1880 0.1787 
W (GPC) 

Classical 2σ̂  0.2101 0.1954 0.1829 0.1858 
 

3.3 W and X: A comparison 

Variable selection is not possible so comparisons between a choice of W and X will rely 

on measures associated with the in-sample prediction of y. To this end, we provide plots 

of the residual sum of squares to investigate the concentration of posterior mass for γ 

when using W. This is accompanied by plots comparing model complexity and model 

competition for the posterior of γ. Finally, we use the DIC criterion extended to include 

BMA to provide a comparison of X and W for in-sample prediction. Zellner’s prior and 

Jeffreys prior are investigated for a range of values of c and p respectively. We use the 

constant Bernoulli prior for γ and investigate a range of values of τ. We use four real data 

sets; ozone, physical, bodyfat, and crime, see Appendix C for details. 
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3.3.1 Shrinkage, Model complexity and Model Competition. 

Figures 3.5 and 3.6 show the effect of orthogonalization on the residual sum of squares, 

and in particular, the separation in the model space. We use the following two measures 

 

yHyyy
yHyyy

F

γ
TT

TT

JR
−

−
= , and 

yHyyy
yHyyy
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γ
TT

TT

R
5.0
5.0

1 −

−
= , (3.11)

 

which are proportional to the RSS term in the posterior for Jeffreys prior (RJ), and 

Zellner’s prior with c = 1 (R1). Both are divided by the corresponding RSS for the full 

model so that the minimum value is 1. 

In comparing RJ and R1 it is clear that while the patterns of separation are the same, the 

posterior based on R1 will be flatter than for RJ. The shrinkage value of c/(c+1) shrinks 

the sum of squares for each model towards zero, as the distribution when normalized will 

be flatter. This will also have the effect of increasing model competition, which we will 

elaborate on further in the work to follow. 

The GS methods both seem to be relatively similar as both are dominated by the scaled 

predictor from X with the greatest correlation with y. The GPC method is similar in 

separation to the GS methods for the ozone and physical datasets. For the bodyfat and 

crime datasets, the GPC method produces a number of layers and minimal separation 

respectively. The Lowdin method is similar to the other methods for the ozone data. For 

the physical and crime datasets there is almost no separation at all, and for the bodyfat 

data there is a small amount of separation. This separation is what contributes to the 

shrinkage effect in the posterior for γ when using W. The move to W creates a separation 

of models based on fit, while the spread over qγ is similar between X and W. 
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While the shrinkage effect helps direct the posterior to a smaller group of suitable 

models, we do not wish this to be at the expense of increased model complexity. Ideally 

the number of predictors included in the X space and the number of columns used from 

W will be similar. Figures 3.7 and 3.8 show the expected model size for X and all W 

methods, for both Zellner’s prior and Jeffreys prior over a range of τ and penalty (c or p). 

Recall the expected model size is defined as 

 ),|( Xyqf = ),|(

1

}:{

Xyγ
Γγ

∑
∑

=

=∈
k

i
i q

f
γ

,  
(3.12)

 

and 

 
E[q] = ),|(

0

Xyqqf
k

q
∑

=

. (3.13)

 

We record the E[qγ] = E[q] -1 which indicates the number of predictors included, while 

omitting the contribution of the intercept which is common to all models. Thus, the result 

is between 0 and k. For the ozone data (k = 8) the expected model size for X and all W 

methods is similar over the range of τ with a fixed penalty for Zellner’s prior and Jeffreys 

prior. Over the range of penalty values, the model size is lower for Zellner’s prior for 

lower penalties due to the flattening effect of the c/(c+1) term. Over the range of penalty 

all methods are very similar and the expected model size is decreasing as penalty 

increases. Notice that once the penalty exceeds exp(5), the expected model size for 

Zellner’s prior and Jeffreys prior are very similar. For lower values of penalty and larger 

values of τ, the orthogonal methods move slightly above X for expected model size. The 

GS1 and Lowdin methods obtain the highest expected model size compared to X. For 

lower values of τ and higher values of penalty the GS1 and GPC methods obtain the 

smallest expected model sizes. Notice that the GS2 method shows little departure from X. 

For the physical data for Zellner’s prior the penalties for X and the W methods are 

similar. The GPC method stays the closest to X followed by both GS methods and the 

Lowdin transformation. The Lowdin method attains the smallest model size for lower 
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values of τ and the greatest model size for larger values of τ. Over the range of c the 

Lowdin method moves above X at around exp(3.5), reaches a peak at exp(8), and moves 

below X around exp(9). Again the GS methods stay close to X, and the GPC method until 

exp(9) has the smallest expected model size compared to X. The Jeffreys prior 

demonstrates much different behavior. The Lowdin method for the entire range of τ has a 

much larger expected model size than the other methods. The GS2 method also noticeably 

exceeds the expected model size for X over all values of τ. The GS1 and GPC methods 

display the behavior observed for the ozone data over τ, where for lower values the 

expected model size is below that of X, and above for larger values of τ. Jeffreys prior 

over the range of penalty is again similar to Zellner’s prior for values larger than 

approximately exp(5). The GS1 and GPC methods are above X briefly for low penalty 

values and then move below X for larger values. The GS2 method is similar, but takes 

much longer to move below X, and shows noticeable departure from X being well above 

E[qγ] of X for the intermediate values of penalty. Much as in the case for Zellner’s prior, 

the Lowdin method presents the most extreme expected model size being well above X 

until around exp(9). 

At this point it serves to note that for smaller sample sizes (physical data), compared to 

larger sample sizes (ozone data), the behavior of the orthogonalization method may be 

less predictable or reliable. Clearly in this case the small sample size has been 

problematic for the Lowdin method. The increased model size will in part be due to the 

lack of separation in the residual sum of squares as demonstrated in Figures 3.7 and 3.8. 

The bodyfat dataset shows noticeable separation between all the methods. This dataset 

does have a large sample size, so the expected model size is not erratic, and for all 

methods the shape of change is very similar. For Zellner’s prior and Jeffreys prior over τ, 

all methods increase and all W methods have a larger expected model size than X. The 

GS2 method is the closest to X, followed by the GS1 and GPC methods and finally, the 

Lowdin method. Over the range of penalty the same separation and ordering as noted, 

continues for Zellner’s and Jeffreys prior with the expected model size decreasing with 

increasing penalty.  
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Figure 3.7 Expected Model Size: Top 4 panels: Ozone data with k = 8, and n = 80. Bottom 4 

panels: Physical data with k = 10 and n = 27. For Jeffreys and Zellner’s priors (τ = 0.5) the 

plots use the same scale on the axis where p = 2π(c+1). 
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Figure 3.8 Expected Model Size: Top 4 panels: Bodyfat data with k = 13, and n = 250. 

Bottom 4 panels: Crime data with k = 15 and n = 47. For Jeffreys and Zellner’s priors (τ = 

0.5) the plots use the same scale on the axis where p = 2π(c+1). 
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The crime data for Zellner’s prior shows all methods to be very similar and increasing 

with τ. For Jeffreys prior over the range of τ, the Lowdin and GPC methods are the 

closest to Ε[qγ] for X for larger values of τ , but are always above X. The GS methods are 

close to X and move below around τ = 0.5. For Zellner’s prior over the range of penalty 

the behavior is more dynamic compared to other datasets. The methods are all initially 

similar and then between exp(4) and exp(6) the orthogonal methods move below X with 

the Lowdin method attaining the smallest Ε[qγ]. Above exp(6) the W methods move 

above X with the Lowdin method attaining the largest expected model size, and GS2 

staying the closest to X. Jeffrey’s prior shows decreasing behavior over the range of 

penalty. The Lowdin and GPC methods stay strictly above X, while the GS methods for 

smaller values are just below X and then move above X. Recall the definition of model 

competition for ),|( Xyγf :  

 
M α  = 

⎭
⎬
⎫

⎩
⎨
⎧

≥∑
=

j

i
ipj

1
)(:min α , (3.14)

 

where 
)2()1( ,..., kpp  are sorted model probabilities in decreasing order and )1,0(∈α . If the 

posterior is a point mass then provided α < 1, Mα  = 0, i.e. no model competition. We 

record the model competition for α = 0.99, where we normalize Mα  by dividing by (2k). 

The ozone data for Zellner’s prior and Jeffreys prior for τ displays a concave shape for 

model competition. In particular, the model competition for all values of τ for both priors 

is noticeably greater for X. The ordering of the W methods is consistent and the GS2 

method has the lowest model competition followed by the Lowdin transformation, the 

GPC method and finally GS1. For the range of penalty for Zellner’s prior, model 

competition is strictly decreasing with X again being the largest. For Jeffreys prior, 

model complexity increases slightly to a maximum around exp(4) and then decreases, 

while X provides the greatest model complexity. Over the range of penalty for both 

priors, the order of the W methods for increasing model complexity is the same as for τ; 

GS2, Lowdin, GPC, and GS1. For the physical data, the behavior between Zellner’s prior 

and Jeffreys prior is very different. For Jeffreys prior over a range of τ and penalty the 

ordering of methods is the same. 
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Figure 3.9 Model Competition: Top 4 panels: Ozone data with k = 8, and n = 80. Bottom 4 

panels: Physical data with k = 10 and n = 27. For Jeffreys and Zellner’s priors (τ = 0.5) the 

plots use the same scale on the axis where p = 2π(c+1). 
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The Lowdin method has the smallest model competition however, this is because from 

Figure 3.7 it is clear that the Lowdin method for most values of τ and penalty is close to 

favoring the full model. The profile of the GPC and GS1 methods for model competition 

are the closest to X over the range of τ and penalty. The GS2 method shows the lowest 

model competition next to the Lowdin method. For Zellner’s prior the Lowdin method is 

very similar in model competition to X both over τ and the penalty. The GPC method for 

most values of τ and penalty attains the lowest model competition. The GS methods are 

intermediary to the Lowdin and GPC methods for model competition. Note that for the 

plot for Zellner’s prior and τ, the GS methods are on top of each other. For the penalty 

the GS1 method departs from the GS2 method around exp(5) and moves below GPC 

around exp(6). 

For the bodyfat data because n is large and used as the fixed penalty for choices of τ the 

model competition for Zellner’s prior and Jeffreys prior are almost identical. Interestingly 

the Lowdin method has the lowest model competition, followed by GPC, GS1 and GS2. 

The Lowdin and GPC methods both stay below X for all values of τ, while for values less 

than 0.3 the GS methods move slightly above X. For the range of values for penalty the 

model competition for values larger than around exp(5) appear similar. For Zellner’s 

prior the model competition is much greater for smaller values of penalty, while for 

Jeffreys prior there is a maximum around exp(2). For both priors, at large values of 

penalty (>exp(7)) the GS methods move above X, and the GPC and Lowdin methods 

remain very close to X. For Jeffreys prior the GS2 method is closest to X, while the 

Lowdin method has the lowest model competition followed by the GS1 and GPC 

methods. This behavior is similar for Zellner’s prior except, the GS1 method remains 

above GPC, and for values of penalty < exp(1.5) moves above GS2. 

The crime data also shows noticeably different behavior between the priors. For choices 

of τ Jeffreys prior has a concave profile peaking around 0.6. The model competition for 

X is much greater than for the W methods, where GPC has the lowest model competition 

followed by the Lowdin method, GS2 and GS1. Over the range of penalty there is a peak 

around exp(3), and while it is not clear due to the comparison with Zellner’s prior, the 

ordering is the same as for over τ. For Zellner’s prior and τ, X has the largest model 

competition and is noticeably larger than for Jeffreys prior.  
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Figure 3.10 Model Competition: Top 4 panels: Bodyfat data with k = 13, and n = 250. 

Bottom 4 panels: Crime data with k = 15 and n = 47. For Jeffreys and Zellner’s priors (τ = 

0.5) the plots use the same scale on the axis where p = 2π(c+1). 
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The Lowdin method attains the lowest model competition and for τ < 0.4 the GS methods 

have lower model competition than GPC, and for τ > 0.4 this behavior is reversed. Over 

the range of penalty the model competition between X and the W methods are not 

dissimilar. As with the other datasets model competition is decreasing with increasing 

penalty. The GS and GPC methods are similar, and for values of penalty less than 

exp(2.5) exhibit the lowest model competition followed by the Lowdin method. For 

values of penalty greater than exp(2.5) the Lowdin method has model competition lower 

than the GS and GPC methods. Finally, around exp(7) all W methods are very similar 

and by exp(8) this includes X also.  

3.2.2 In Sample Prediction. 

We now use the real datasets from above and the DIC criterion (Spiegelhalter et al, 2002) 

to compare the in-sample predictive ability of X and W. We now review DIC and its 

extension to include the model space. Posterior expected deviance generalizes naturally 

for integration over γ: 

 DEV = )(yD  = θyθθy dff )|()|(log2∫ −  where ),,( 2 γβθ σ=  (3.15)

 

Extending this to assess BMA, an estimate of deviance is obtained by Monte Carlo 

simulation by simulating θj = [γj, (σ 2)j, (βγ )j ] sequentially as outlined. 

 

1. Generate: ),|(~,...,1 Xyγγγ fN  

2. Then for j = 1,..,N generate: ),,|(~)( 22 Xyγ jj f σσ , and ),,)(,|(~)( 2 Xyγββ γγ
jjj f σ . 

 

By letting D(y,θ) = -2 log f(y|θ) we have )(yD  = ]|),([ yθyDE . This means we can 

estimate the deviance and its precision as 
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For BMA using Zellner’s prior, DIC can be estimated as 
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 DICΓ = pd + )(yD ,  

where ),|())]ˆ,ˆ(,()([ 2 Xyγβyy γγ
Γγ

γ fDDpd σ∑
∈

−= . 
(3.17)

 

where ∫ −= θγyθγθyyγ dffD ),|(),|(log2)(  with ),( 2σβθ = . γβ̂
 

and 2ˆ γσ
 

are the 

posterior expectations and may be replaced with other point estimates such as the median. 

Monte Carlo simulation is necessary for Zellner’s prior and the required posteriors are 
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If the sample size is large or the prior is very weak as in Jeffreys prior, we can estimate 

DICΓ as 

 DICΓ =  2E[qγ] + 4 + ),|())ˆ,ˆ(,( 2 Xyγβy γγ
Γγ

fD σ∑
∈

, (3.20)

 

without the need for Monte Carlo simulation where again γβ̂
 
and 2ˆ γσ  are the required 

posterior expectations. The required posterior and expectations are 
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and 

 
γγ βXyγβ ˆ),,,|( 2 =σE  and =),,|( 2 XyγσE )2/()( −− nTT yHyyy γ . (3.22) 

 

Notice that (3.20) is equivalent to the model averaged AIC. For the most part, (3.17) and 

(3.20) will be close to minimum when the probability mass of the posterior degenerates 
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to 1. This occurs when the posterior selects the model that is most likely according to 

DIC, and the expectations of the posterior distributions for β and σ 2 coincide with the 

maximum likelihood estimates. We compare all four methods of orthogonalization 

against X for a range of values in τ using the constant Bernoulli prior for γ, considering a 

range of values of c and p for Zellner’s and Jeffreys prior respectively. The results are 

done using the exact posterior for γ. Thus, in the case of Jeffreys prior the results are 

exact. For Zellner’s prior the DIC was estimated via Monte Carlo simulation with the 

standard deviation kept to at most 0.05. The calculation of DIC is implemented using the 

code Zellner.m and Jeffrey.m in Appendix D. 

Figures 3.11 and 3.12 summarize the results of the DIC comparison. The grey band is the 

DIC value using X ±5, and represents a zone of indifference or equivalence. This is 

suggested to be a rough indication that there is no real difference between two different 

methods (Spiegelhalter et al, 2002). For the ozone data and Jeffreys prior, the only W 

method that falls outside the equivalence zone is GS1 when τ < 0.3 and the penalty is 

between exp(7) and exp(9). All other methods are comparable, and using DIC to rank the 

methods, GS2 is consistently the closest to X. For Zellner’s prior over τ all W methods 

are within ±5 of X, while the GS1 method again falls outside the equivalence zone for 

penalties between exp(7) and exp(9). There is also very different behavior between 

Zellner’s prior and Jeffreys prior for different choices of penalty due to the c/(c+1) term 

in ),|( Xyγf for Zellner’s prior. Thus, for the ozone data GS2, GPC and the Lowdin 

methods appear suitable choices of orthogonalization method. 

For the physical data using Jeffreys prior the GS1 method slips above X+5 forτ between 

0.2 and 0.3, while the GS2 method goes above at the very lower limit around τ < 0.05. 

For Jeffreys prior all methods except for the Lowdin method are within the equivalence 

zone. The Lowdin method remains above the equivalence zone until τ > 0.85. In terms of 

penalty, Jeffreys prior for the GS1 method is above X+5 from exp(4.5) to exp(6.5), and 

for values greater than exp(7) and exp(8) the GS2 and Lowdin methods also go above 

X+5 respectively. The GPC method remains within the equivalence zone.  
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Figure 3.11 DIC: Top 4 panels: Ozone data with k = 8, and n = 80. Bottom 4 panels: 

Physical data with k = 10 and n = 27. Grey regions represent DIC of X ±5. For Jeffreys and 

Zellner’s priors (τ = 0.5) the plots use the same scale on the axis where p = 2π(c+1). 
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Figure 3.12 DIC: Top 4 panels: Bodyfat data with k = 13, and n = 250. Bottom 4 panels: 

Crime data with k = 15 and n = 47. Grey regions represent DIC of X ±5. For Jeffreys and 

Zellner’s priors (τ = 0.5) the plots use the same scale on the axis where p = 2π(c+1). 
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For Zellner’s prior over a range of penalty the GS1 and GPC methods remain within the 

equivalence zone, while the GS2 method moves above the equivalence zone after 

exp(5.6). The Lowdin method is above X+5 for penalty > exp(2.5) and shows dramatic 

increasing behaviour > exp(8). For the physical data the most consistent method appears 

to be the GPC method. 

For the bodyfat data the sample size is large (n = 250), and so the DIC of Jeffreys and 

Zellner’s priors for choices of τ is very similar. In both cases the GS2 method is the 

closest to X followed by the GPC and GS1 methods, and then finally the Lowdin method. 

Both the GS2 and GPC method remain within +5 of X for all values of τ for Jeffreys prior 

and Zellner’s prior. The GS1 method is above X+5 for τ < 0.2 and the Lowdin method is 

above X+5 for τ < 0.35. For choices of penalty the GS2 method stays within +5 of X for 

both Jeffreys prior and Zellner’s prior. The next closest GPC, moves above X +5 for c > 

exp(8) for Jeffreys prior and Zellner’s prior. The GS1 and Lowdin methods both move 

above X +5 for both Jeffreys prior and Zellner’s prior when c > exp(6). GS2 and GPC 

appear to be the best suited W methods for the bodyfat data. 

For the crime data and Jeffreys prior, a number of methods fall below X, but not outside 

the equivalence region. For choices of τ, the GS2 method has the lowest values of DIC, 

followed by the GPC, GS1 and Lowdin methods. For choices of penalty less than exp(4), 

the closest methods to X are the Lowdin and GPC followed by the GS methods. For 

choices of penalty greater than exp(7), the methods in order of descending DIC are; GPC, 

Lowdin, GS1 and GS2. In particular, around exp(9) the GPC and Lowdin methods move 

above X +5. For Zellner’s prior the order of methods is similar to Jeffreys prior although, 

the values of DIC are above that of X. The closest method to X is GS2 followed by GPC, 

GS1 and the Lowdin transformation. Again all methods remain within the equivalence 

region. For choices of penalty under Zellner’s prior the GS2 method stays the closest to 

X, followed by the GPC, GS1 and Lowdin methods. Around exp(8) all W methods move 

above the X +5 boundary. It is reasonable to suggest that all W methods are suitable for 

use with this dataset. 

In general when the sample size is large and c = n the value of DIC over values of τ are 

very similar. When n is small, Zellner’s prior tends to larger values of DIC due to 

increased model competition. This behavior is also evident by the larger values of DIC 
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for smaller values of c. Again the c/(c+1) is responsible for the increased model 

competition. Also notice that for Zellner’s prior the values of DIC decrease more rapidly 

for the larger datasets, such as for the ozone and bodyfat datasets. 

Overall it appears that the GS2 method does remarkably well in attaining similar values of 

DIC compared to X. The GPC consistently performs well, which is no surprise, given its 

previous use in the literature. The GS1 method performs moderately well however, the 

Lowdin method has turned out to be much less effective than hoped. Apart from the 

Lowdin case under Zellner’s prior for the physical data, the W methods appear very 

competitive with X, except for some methods with extreme choices of τ (i.e. near 0 or 1), 

or extreme choices of penalty. 

While DIC indicates comparable in-sample predictive ability, it is possible for the models 

to produce quite different predictions. Model checks can be performed using the posterior 

predictive distribution (PPD), which for Zellner’s prior is 

 
),~,,,|~( cf XXyγy ⎟

⎠
⎞

⎜
⎝
⎛

+
−= γγγ ΣyHyyyμT ]

1
[1,, TT

c
c

n
n , (3.23)

 

where: ⎥⎦
⎤

⎢⎣
⎡

+
+= −

γγγγγ XXXXIΣ ~)(~
1

1TT
m c

c , ⎟
⎠
⎞

⎜
⎝
⎛

+
= γγγ βXμ ˆ

1
~

c
c  and TT

γγγγγ XXXXH )(= . 

For Jeffreys prior the PPD is 
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See Appendix B for the derivation of (3.23) and (3.24). For model checking we set X~  = 

X, and use the following quantities. Let Fi and 1−
iF be the corresponding posterior 

predictive CDF, and inverse CDF averaged over γ respectively for the i-th response. The 

probability of being more extreme than yi is 

 { })(1),(min iiii yFyF − . (3.25)

 

If (3.25) is very small for many observations then the model may be inadequate. 

Predictive coverage (PC) for an observation yi is defined as 
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 PCi = [ ] )(
)2/1(),2/( 11 iFF

y
ii αα −−−I , (3.26)

 

where α indicates the probability contained in the tails and IA denotes the indicator 

function for the set A. Thus, PC indicates whether the (1-α) equal-tail PPD interval 

contains yi. Predictive coverage can then be summarized for all n as ∑ =

n

i in
1
PC)/1( . 

Finally, the probability of observing a more extreme value than a statistic of y such as the 

median, minimum, and maximum, can be used to check model adequacy. Let ψ̂  be the 

observed statistic of y, and mψψ ~,...,~
1  represent m samples of this statistic generated by 

simulating m samples of y from the PPD averaged over γ. The probability of observing a 

more extreme value is: 
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Much like (3.25) a small value indicates model inadequacy. While the measures (3.25) – 

(3.27) cannot be used to categorically distinguish between competing methods, these 

checks do provide an indication of comparability. The results from the datasets above are 

extensive and as such are not provided in this thesis but may be obtained from the author 

if required. The code used for model checking is provided in Appendix D under 

ModelCheck.m.  

Cases where the DIC of X and W were comparable were found to be similar using Model 

checking. Predictive coverage was typically the same, we used α = 0.05, varying by only 

one or two observations. The tail probabilities (3.25) were typically acceptable and for 

some observations these values were similarly good or bad for X and W. In other cases X 

had better values of (3.25) for some observations compared to W and vice versa. The 

values of (3.27) were checked for the minimum, maximum and median. Again, the values 

were typically very similar between X and W. For cases where the DIC of the W 

methods moved outside the equivalence region, the model checking statistics indicated 

some difference between X and W. Specifically, the main difference was the proportion 

of low tail probabilities for observing a value more extreme than the observed response. 

Under W this proportion of values increased greatly when W moved well outside the 
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equivalence region. In extreme cases when the posterior supported the null model due to 

extreme choices of penalty, the inference from model checking was poor. This agrees 

with the results of DIC. This extensive analysis while having not indicated W is better 

than X has definitely provided strong evidence that when modeling y using model 

averaging, an appropriate orthogonal transformation will provide equally comparable 

inference. These results are definitive for the datasets we have investigated however, 

there is no reason why we cannot assume these results will generalize to other real 

datasets analyzed using the Bayesian linear regression model. 

3.3.3 Data splitting 

As we have already discussed variable selection is not possible using W. However, 

according to DIC, the use of W instead of X for fitting the response using BMA is 

comparable and competitive. DIC is a measure for in-sample prediction however, there is 

also out-of-sample prediction to consider. The main problem with using W instead of X 

for out-of-sample prediction is the additional variability introduced by A. This extra 

variability results in out of sample prediction less accurate for W than for X, and the 

study in Cripps et al (2006) demonstrated this very point. Most studies use data splitting 

to determine out of sample predictive accuracy. Thus, a training sample is used to 

estimate regression coefficients and model weights, which are then used to fit a response 

with the remaining samples of X. Some distance measure between the fitted response and 

the remaining observations provides an indication of accuracy. While we haven’t found 

any studies to support this point, it is reasonable to suggest that the larger the data 

partition for X then the greater the variation in A and consequently W. This in turn 

indicates that using leave one out cross-validation methods for detecting outliers may be 

less reliable. The conditional predictive ordinate (CPO) is a leave one out measure using 

the PPD for outlier detection. In (3.23) or (3.24) setting iy=y~  and ixX =~ where xi is the 

i-th row of X, and y = y-i and X = X-i the remaining data will give the CPO measure. This 

represents the probability of observing yi conditional on the remaining data. A low value 

indicates a potential outlier. When using X it is possible to use MCMC output to estimate 

the CPO value without explicitly leaving out the i-th observation. From Gelfand and Dey 

(1994) let ),,( 2
γγβγθ σ= then 
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which can be approximated using MCMC output for ),,( 2
γγβγ σ . This derivation relies 

on the conditioning on X as the retained values in X are the same, irrespective of the 

observation omitted. In constructing W we require A thus, this same property does not 

apply when using W. One could assume A does not change by constructing A from the 

full matrix. Either way, it is reasonable to assume for a large sample size and the 

minimum leave one out should provide the smallest variations in A so that hopefully 

outlier detection using CPO is comparable between X and W. This is clearly a direction 

for future research. 

3.4 Summary 

We have reviewed a numerical example of the update probabilities for the Gibbs sampler 

for X and W to demonstrate the difference between non-monotone and monotone 

orderings. This partial ordering follows the nested model structure for model comparison 

in linear regression.  

We reviewed orthogonalization methods beginning with a common method known as 

generalized principal components. Following this, we recommended that if singular value 

decomposition is used to obtain an orthogonal predictor matrix, then the Lowdin 

transformation should be employed instead. This is because the Lowdin transformation is 

based on SVD and minimizes the distance between X and W, with respect to the L2 

matrix norm. Discussions from previous literature suggested the Gram-Schmidt 

transformation method might prove useful, but no methods for ordering X prior to 

transformation were given. We use the modified GS approach, and provided two methods 

for ordering the columns of X prior to transformation. We recommend a naïve method 

based on correlation with y, and another method partly inspired by partial least squares, 

obtaining an order which accounts for the correlation structure in the predictors and with 

y. This allowed us to use the GPC as a benchmark from the literature, and to trial three 

new methods in the context of model averaging with an orthogonal predictor matrix.  
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From this point we moved into numerical work. Using the ozone data set, we provided an 

example of the posterior distributions for γ, along with the MIP, the fitted model 

averaged response, and the matrices required to transform X0 into W0. This example 

demonstrated the posteriors can vary noticeably between the orthogonal methods, and are 

not directly comparable with each other or the posterior for X. The fitted model averaged 

values of y are also very similar between X and the orthogonal methods. While there is a 

relation between the mixing coefficients in A and the MIP probabilities of the columns of 

W, there appears to be no coherent way to use this information to obtain quantities that 

reflect the marginal inclusion probabilities in the X space. We then considered the effect 

of using W has on the posterior distributions of parameters such as β and σ 2. In 

particular, the partial ordering required for the Gibbs MC relies on certain properties of 

point estimates under the posterior distribution for β and σ2.  

The plots of the residual sum of squares for the four datasets; ozone, physical, bodyfat 

and crime, indicated the degree of shrinkage effect that can be obtained by moving to the 

W space. In particular the distinction between “poor” and “good” models becomes much 

clearer. As a result, the posterior model probabilities under W are more focused towards 

a particular subset of models. The difference between Zellner’s prior and Jeffreys prior 

with respect to c and p was demonstrated by the shrinkage term. Due to the c/(c+1) term 

in the posterior for Zellner’s prior in the residual sum of squares in the posterior for γ, 

using Zellner’s prior flattens the distribution of the residual sum of squares for small 

values of c. We noted that while using W can focus the posterior mass, we would prefer 

this not be at the expense of using more predictors than X. Studies of the expected model 

size indicated the X and W are generally comparable for the average number of 

predictors used. The physical dataset did show a large difference between the Lowdin and 

the other orthogonalization methods, and the bodyfat data also showed some separation. 

The comparison of model competition provided confirmation of the shrinkage effect 

obtained by the residual sum of squares. It also again showed the difference, between 

Jeffreys and Zellner’s prior for smaller choices of penalty. Specifically, the model 

competition for small choices of penalty for Zellner’s prior is much greater than for 

Jeffreys prior, even for large sample sizes. 
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DIC using the plus or minus rule of 5 indicated that for the most part, the orthogonal 

methods were equivalent to using X for modeling the response. This provides good 

evidence that if we wish to model the response, and are not concerned with variable 

selection, then we may use a monotone CFTP Gibbs sampler to generate i.i.d. samples 

from ),|( Xyγf . It seems reasonable to suggest that the results and comparison are much 

more stable for larger sample sizes as indicated by the ozone and bodyfat data. The GPC 

method is well justified in its use in the literature, performing consistently well. Of the 

three new methods the GS2 method proved to be very competitive and certainly on par 

with the GPC method.  The GS1 method did not perform particularly well in general, and 

the Lowdin transformation also performed rather poorly in terms of DIC compared to X. 

We also provided a brief discussion of out of sample prediction using W. Further 

research is required to determine if, under any circumstances, such as a large ratio of n to 

k, will allow W to be competitive for out-of-sample prediction for y. It also appears that 

unless simplifying assumptions are made, outlier detection using the CPO measure is not 

straight forward as it is when using X. 



 

CHAPTER 4

GIBBS SAMPLING

 
"A statistical analysis, properly conducted, is a delicate dissection of 

uncertainties, a surgery of suppositions."  

- M.J. Moroney 

 
In this chapter we investigate the effect of sampling. Specifically, we compare the 

computational time for the standard and orthogonal Gibbs samplers and the perfect 

sampler. We monitor convergence of estimators per sample, and the convergence in 

distribution per sample and in real time. A larger simulation study is undertaken to 

compare the sampling methods for larger choices of k and n. We also explore factors 

affecting the BCT, which is heavily related to the efficiency of any monotone Gibbs 

CFTP. The factors affecting the BCT are information, and choices of hyper-parameters. 

Finally, we consider two larger datasets and generate samples using the three different 

approaches, analyzing the data as an analyst would in the real world. As part of this 

analysis we record cpu-time, exploration of Γ, effective sample size, predictive coverage, 

DIC, MIP, and tail probabilities for the minimum and maximum of y. 

4.1 Algorithms and Computation 

We now review the algorithms used in this chapter along with a discussion of 

computational aspects for calculating the Gibbs update probability. The computation of 

the hat matrix and/or the least square estimates requires the most computational effort due 
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to the 1)( −
γγ XXT  term. In the case of an orthonormal matrix there is no requirement to 

find this inverse as it is 1, and the hat matrix simplifies to T
γγWW . In general, for an 

orthogonal matrix TT WWWW 1)( −  is a sum of the individual projection 

matrices T
ii

T
ii WWWW 1)( − . The pseudo code for a monotone CFTP Gibbs sampler for 

),|( Xyγf  is given in Algorithm VII.  

 

Algorithm VII: Monotone CFTP Variable Selection Gibbs Sampler. 

Set: coalescence = false. 

Set: T = -1. 

While coalescence = false 

 Set: T = 2T 

 Set: ( γU )T  = {1}k, and ( γL )T  = {0}k. 

 For t = {T,…,-1} 

  For i = 1,...,k. 

   Generate: )1,0(U~)( 1+tiu . 

   Compute: ),,)(,)(|1)Pr(( 11 Xyγγ t
U

it
U

it
U
iU >+<+ == γα  

   Compute: ),,)(,)(|1)Pr(( 11 Xyγγ t
L

it
L

it
L
iL >+<+ == γα  

   If (ui )t+1 ≤ αL 

    Set: 1),( 1 =+t
L
i

U
i γγ . 

   Else if (ui )t+1 > αU 

    Set: 0),( 1 =+t
L
i

U
i γγ . 

   Else 

   Set: 1)( 1 =+t
U
iγ , and 0)( 1 =+t

L
iγ  

If (γU )0 = (γL )0 

 Set: coalescence = true 

Else 

 Set: coalescence = false 
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To manage the notation we have split γ-i into those components already updated at time t, 

and those yet to be updated, so let i<γ  represent those components with indices in 

}1,...,1{ −i and i>γ  those components with indices in },...,1{ ki + . Note if i = 1 then there is 

no i<γ  and if i = k there is no i>γ . Recall we must reuse the random number ut. To 

simplify the computations in the orthogonal case we can pre-compute: 

 
 

),,|1Pr( Xyγ ii −=γ

12/

01

1
~

~
11)1(1

−
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⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

−
++=

n

TT
i

T

i
c

c
c

yHyyy
yHy

γτ
τ , (4.1)

 
so in this case we can pre-compute ]/)1[()1( ττ−+c , yTy, )1/(~

1 += ccc , n/2 and for 

each column of W, yWWyyHy T
ii

T
i

T = . 

 

Algorithm VIII: Variable Selection Gibbs Sampler. 

Set: Γγ ∈1  

For t = 1,…,N: 

 For i = 1,...,k. 

  Generate: )1,0(~ Uu . 

  Compute: ),,)(,)(|1)Pr(( 11 Xyγγ tititi >+<+ == γα  

  If u ≤ α 

   Set: 1)( 1 =+tiγ . 

  Else 

  Set: 0)( 1 =+tiγ  

 
In the case of X we can perform as follows: 

 
),,|1Pr( Xyγ ii −=γ
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where again we pre-compute ]/)1[()1( ττ−+c , yTy, )1/(~
1 += ccc , n/2, as well as v = 

XTy and A = XTX.  

Beyond this, any further speed in the case of X requires the use of additional methods for 

decomposing XTX. Smith and Kohn (1996) recommend using update procedures for the 

Cholesky decomposition which is not easily implemented. Recent work by Eklund and 

Karlsson (2007), use a simulation study and found that increased speed can be obtained 

using Cholesky factorization and the sweep algorithm. We have employed all the usual 

tricks to improve the speed of updating for the standard Gibbs sampler, including using 

the centered matrix X0 which can help to reduce dependence between components, and 

improve the convergence of the Gibbs sampler. 

4.2 Convergence and efficiency 

Using the four datasets from the previous chapter, we now investigate the rate of 

convergence of the standard Gibbs sampler, the perfect version and the Gibbs sampler 

using W. To avoid the added complication of assessing burn-in for each standard Gibbs 

chain in X and W, we draw starting points according to the true posterior distribution, 

and use multiple chains. We use an orthogonalization method that performed well 

according to the DIC, which we have taken as the GS2 method. We have used Jeffreys 

prior over Zellner’s, mainly for computational simplicity. All work for this chapter was 

conducted on a stand-alone Compaq Presario 2500 laptop, running Mircosoft windows 

XP, with Maltab 7.0, using an Intel Celeron 2.60Ghz processor with 512 MB of RAM. 

This is done to help ensure some consistency in the recorded running times of the 

sampling methods used in this chapter. 

4.2.1 Convergence in Distribution 

The measure we use for convergence in distribution is 

 
∑

=

−
k

i
ii ff

2

1
|ˆ| , (4.3)

 

where fi is the true posterior probability, and if̂  is the estimated posterior probability, for 

state i. (4.3) is proportional to the total variation norm: 
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TVff ||ˆ|| − = ∑

=

−
k

i
ii ff

2

1
|ˆ|5.0 . (4.4)

 

We also monitor the convergence of the expected number of predictors included, DIC, 

and the BMA fitted value for the first observation. The study was then run by selecting 

starting points according to the true posterior distribution for the standard Gibbs samplers 

for X and W. Then for each dataset for the three sampling methods, a chain of 50000 

sample points was generated 100 times. For each chain the (4.3), E[qγ], DIC, and BMA 

1ŷ , is updated every 1000 iterations for every chain. Figures 4.1 – 4.4 show these results. 

We can see that of the three methods, the rate of convergence in distribution and the other 

quantities is essentially equivalent for the exact sampler and the orthogonal Gibbs 

sampler. This is not to suggest that the orthogonal Gibbs sampler is generating i.i.d. 

sample points, but certainly updating every 1000 sample shows little difference in 

convergence. For the ozone, physical, and crime datasets, the orthogonal Gibbs sampler 

appears to be converging approximately twice as fast as the standard Gibbs sampler. The 

convergence rates per sample are much closer between the orthogonal and standard Gibbs 

sampler for the bodyfat data. 

The fact that the orthogonal Gibbs sampler shows very little dependence can be 

confirmed by checking the auto-correlation function. As k increases, some small 

differences do appear between the orthogonal Gibbs sampler and exact sampling for 

convergence. This is due to the increased size of the state space. The most noticeable 

effect is a longer persistence in variability surrounding the estimates of E[qγ], DIC and for 

the BMA 1ŷ . The standard Gibbs sampler clearly converges much more slowly than 

either of the methods in the W space. As a result so do the estimates of expected model 

size, DIC and BMA 1ŷ . The difference in the rate of convergence between X and W, is 

partly controlled by the difference in model competition or equivalently, how much more 

concentrated the posterior mass for W is compared to X. The bodyfat data has the closest 

values of model competition compared to X, while the crime data has the largest.  
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Figure 4.1 Convergence in distribution and various quantities for the ozone data using 

Jeffreys prior with a uniform prior for γ, p = 2π(n+1) and the GS2 method for obtained W. 

Top 4 panels opposite is for the standard Gibbs sampler for X, bottom 4 panels opposite is 

for the monotone exact sampler using W, and the 4 panels above is for the standard Gibbs 

sampler with W. 

 



114  Chapter 4: Gibbs Sampling
 

1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

Sample Size

S
um

 A
bs

ol
ut

e 
D

iff
er

en
ce

Convergence in Distribution

1 2 3 4 5

x 10
4

5.6

5.7

5.8

Sample Size

E
[q

γ]

Convergence in Expected Model Size

1 2 3 4 5

x 104

105.8

106

106.2

Sample Size

D
IC

Convergence in DIC

1 2 3 4 5

x 104

75.8

76

76.2

Sample Size

B
M

A
 y

1

Convergence in Fitted obs. 1

 

1 2 3 4 5

x 10
4

0

0.05

0.1

0.15

0.2

Sample Size

S
um

 A
bs

ol
ut

e 
D

iff
er

en
ce

Convergence in Distribution

1 2 3 4 5

x 10
4

6.7

6.75

6.8

6.85

6.9

Sample Size

E
[q

γ]

Convergence in Expected Model Size

1 2 3 4 5

x 104

105.2

105.4

105.6

105.8

Sample Size

D
IC

Convergence in DIC

1 2 3 4 5

x 104

75.6

75.7

75.8

75.9

76

Sample Size

B
M

A
 y

1

Convergence in Fitted obs. 1

 



Chapter 4: Gibbs Sampling 115
 

1 2 3 4 5

x 10
4

0

0.05

0.1

0.15

0.2

Sample Size

S
um

 A
bs

ol
ut

e 
D

iff
er

en
ce

Convergence in Distribution

1 2 3 4 5

x 10
4

6.7

6.75

6.8

6.85

6.9

Sample Size

E
[q

γ]

Convergence in Expected Model Size

1 2 3 4 5

x 104

105.2

105.4

105.6

105.8

Sample Size

D
IC

Convergence in DIC

1 2 3 4 5

x 104

75.6

75.7

75.8

75.9

76

Sample Size

B
M

A
 y

1

Convergence in Fitted obs. 1

 

Min-Max
2.5-97.5 Percentile
Inter-Quartile Range
Median
True Value

 
Figure 4.2 Convergence in distribution and various quantities for the physical data using 

Jeffreys prior with a uniform prior for γ,  p = 2π(n+1) and the GS2 method for obtained W. 

Top 4 panels opposite is for the standard Gibbs sampler for X, bottom 4 panels opposite is 

for the monotone exact sampler using W, and the 4 panels above is for the standard Gibbs 

sampler with W. 
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Figure 4.3 Convergence in distribution and fvarious quantities for the bodyfat data using 

Jeffreys prior with a uniform prior for γ,  p = 2π(n+1) and the GS2 method for obtained W. 

Top 4 panels opposite is for the standard Gibbs sampler for X, bottom 4 panels opposite is 

for the monotone exact sampler using W, and the 4 panels above is for the standard Gibbs 

sampler with W. 
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Figure 4.4 Convergence in distribution and various quantities for the crime data using 

Jeffreys prior with a uniform prior for γ,  p = 2π(n+1) and the GS2 method for obtained W. 

Top 4 panels opposite is for the standard Gibbs sampler for X, bottom 4 panels opposite is 

for the monotone exact sampler using W, and the 4 panels above is for the standard Gibbs 

sampler with W. 
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The bodyfat data has the smallest difference in the rate of convergence of all datasets and 

the crime data has the largest. In all cases as k becomes larger and the state space 

increases in size, the value of (4.3) increases which is to be expected. 

4.2.2 Convergence in real time 

The results above indicate that on a per sample basis, the standard Gibbs sampler with an 

orthogonal predictor matrix and the exact sampler are by far the best approach, 

converging similarly to the posterior distribution for γ. However, the reader may note that 

each approach requires different amounts of time to complete the required computation. 

Thus, a useful addition to the above investigation is to look at the convergence to 

),|( Xyγf  in cpu-time. To this end, Figure 4.5 shows the median convergence statistic 

for each dataset for each of the three methods plotted against the cpu-time in seconds 

required to generate the number of samples used. 

It is clear that after taking into account the computing time, the orthogonal Gibbs sampler 

is by far the best approach, as it has the superior convergence properties of an orthogonal 

design matrix and minimal computing time. For the ozone data the Gibbs sampler in X 

required 5.26 seconds of cpu-time per 1000 sample points, the orthogonal Gibbs sampler 

1.65, and the exact sampler 5.57. For the physical data the standard Gibbs sampler used 

6.93 seconds of cpu-time per 1000 sample points, while the orthogonal Gibbs sampler 

required 2.04, and the exact sampler 8.39. For the bodydata the Gibbs sampler with X 

used 8.70 seconds of cpu-time per 1000 sample points, the Gibbs sampler with W used 

2.72, and the exact sampler used 9.36. Finally, for the crime data the standard Gibbs 

sampler required 11.31 seconds of cpu-time per 1000 sample points, the orthogonal 

Gibbs sampler 3.16, and the exact sampler 12.33. In general as k increases, more 

computing time is required and overall perfect sampling requires the greatest amount of 

computing time. 

Interestingly the computing times between the perfect sampler and the Gibbs sampler 

using X are very similar. For these examples, the expected backwards coupling time is 

close to 2, although slightly larger for the physical and crime datasets where the greatest 

difference in computing time between the perfect sampler and the standard Gibbs sampler 
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occur. Thus, from the study here, the orthogonal Gibbs sampler is approximately four 

times as fast as the standard Gibbs sampler. 
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Figure 4.5 Convergence in cpu time for the four data sets. 

 

As such, because the initial recursion of the perfect sampler is equivalent to four steps 

with the orthogonal Gibbs sampler, the exact sampler and standard Gibbs sampler are 

essentially equivalent in terms of computing time. The difference that has made the exact 

sampler take slightly longer than the standard Gibbs sampler is of course, those BCT 

which are greater than 2. This suggests if the BCT is extremely close to 2, then 

generating a single sample point for X is comparable to computing a single sample point 

using perfect sampling for W. Again we note it may be possible to improve upon the 

computation time of the Gibbs sampler using Cholesky updates, or the sweep algorithm. 

Clearly if the mean BCT was to increase dramatically, then the computational viability of 

the exact sampler compared to the Gibbs sampler in X may be called into question. This 

suggests knowledge of conditions that impact the BCT may prove useful in determining a 

choice between using the standard Gibbs sampler, and perfect sampling. Ultimately 
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however, the standard Gibbs sampler using W will always be the fastest of the three 

methods. The performance of the orthogonal Gibbs sampler does bear consideration. 

Despite providing well approximated samples, the orthogonal Gibbs sampler nonetheless, 

requires a burn-in assessment. Thus, it seems prudent to recommend a hybrid approach 

between perfect sampling and standard MCMC. In particular, we use the monotone Gibbs 

CFTP to identify a starting point as time zero, and then allow the single Gibbs chain to 

continue forwards. This compromise takes full advantage of the reduced computing time 

of the orthogonal Gibbs sampler, and the use of exact sampling to remove the burn-in 

problem. The hybrid method will supplant the orthogonal Gibbs sampler in the following 

section. 

4.2.3 Computational efficiency 

To add to the analysis of computational time because the previous analysis involves 

relatively small datasets, we investigate the computational time involved in using a larger 

number of predictors and sample sizes. This study required simulation of multiple 

datasets. We use combinations of k = {30, 40, 50}, and n = {50, 100, 250, 500, 1000}.  

Within each choice of k the size of the true model was also varied according to v = 

{0.25k, 0.5k, 0.75k}. The simulated datasets did not have any extreme correlations 

introduced, as such, the correlation between predictors was typically between -0.4 and 

0.4. For each case we generated 100 datasets and generated 50000 sample points. We use 

the standard Gibbs sampler on X (Gibbs), the hybrid method using the orthogonal Gibbs 

sampler (Hybrid) and the monotone CFTP Gibbs sampler (Exact). The median cpu-time 

to generate 1000 samples for each combination, along with the expected BCT for the 

exact sampler is recorded in Tables 4.1a-c. The focus is on computing time, so we do not 

include burn-in assessment for the standard Gibbs sampler. Clearly however, removing 

an initial run of values will increase the cost of the remaining sample points. Thus, the 

values reported are like a lower limit for the cpu-time per sample. The standard Gibbs 

sampler is started from randomly chosen values of γ. Note we use the same priors and 

parameter specifications as in section 4.2.1. 
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Table 4.1a Computation time for the 3 sampling methods using simulated data, k = 

30, n = 50, 100, 250, 500, 1000 and v = 7, 15, 23. The GS2 method was used to 

orthogonalize the simulated data. 

cpu-time (seconds)/1000 sample points k n v Exact (BCT) Gibbs Hybrid 
7 70.50 (5.14) 22.44 5.51 
15 74.38 (5.44) 25.41 5.56 50 
23 65.34 (5.29) 29.91 5.62 
7 35.42 (3.31) 22.24 5.53 
15 36.31 (3.39) 25.37 5.60 100 
23 34.63 (3.36) 29.09 5.57 
7 28.64 (2.87) 22.72 5.67 
15 29.94 (2.93) 25.20 5.59 250 
23 28.03 (2.82) 29.89 5.62 
7 24.42 (2.43) 22.02 5.61 
15 25.13 (2.59) 25.60 5.69 500 
23 23.98 (2.36) 29.61 5.64 
7 23.41 (2.07) 22.73 5.68 
15 24.37 (2.32) 25.41 5.78 

30 

1000 
23 22.26 (2.11) 29.55 5.76 

 

Table 4.1b Computation time for the 3 sampling methods using simulated data, k = 

40, n = 50, 100, 250, 500, 1000 and v = 10, 20, 30. The GS2 method was used to 

orthogonalize the simulated data. 

cpu-time (seconds)/1000 sample points k n v Exact (BCT) Gibbs Hybrid 
10 160.8 (9.43) 31.45 8.03 
20 164.9 (10.74) 34.91 8.05 50 
30 157.1 (9.46) 39.67 8.06 
10 65.02 (6.12) 31.83 8.06 
20 66.31 (5.41) 34.01 8.05 100 
30 62.63 (3.26) 39.86 8.06 
10 38.24 (3.40) 31.72 8.03 
20 38.94 (3.53) 34.03 8.10 250 
30 37.03 (3.44) 39.10 8.05 
10 31.42 (3.13) 31.74 8.09 
20 32.03 (3.32) 34.18 8.04 500 
30 29.98 (2.96) 39.59 8.08 
10 25.41 (2.37) 31.59 8.05 
20 26.37 (2.40) 34.78 8.06 

40 

1000 
30 24.26 (2.29) 39.82 8.09 
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Table 4.1c Computation time for the 3 sampling methods using simulated data, k = 

50, n = 50, 100, 250, 500, 1000 and v = 12, 25, 38. The GS2 method was used to 

orthogonalize the simulated data. 

cpu-time (seconds)/1000 sample points k n v Exact (BCT) Gibbs Hybrid 
12 269.5 (14.8) 43.12 10.11 
25 277.0 (16.3) 47.76 10.15 50 
38 265.8 (14.6) 51.22 10.18 
12 97.62 (7.40) 43.53 10.14 
25 99.01 (8.01) 47.92 10.16 100 
38 97.55 (7.43) 51.31 10.20 
12 46.97 (4.17) 43.08 10.17 
25 47.84 (4.34) 47.93 10.19 250 
38 46.11 (4.03) 51.11 10.21 
12 37.42 (3.21) 43.88 10.14 
25 38.03 (3.45) 47.89 10.15 500 
38 36.98 (3.33) 51.13 10.20 
12 31.41 (2.33) 43.34 10.18 
25 33.37 (2.43) 47.45 10.19 

50 

1000 
38 30.26 (2.34) 51.32 10.21 

 

We can see the following patterns emerging. The hybrid sampler is unaffected by 

increasing sample size, and the number of predictors in the true model, but increases with 

increasing k. In particular, there is an approximate 2.2 second increase in cpu-time from k 

= 30 to 40, and from 40 to 50. The standard Gibbs sampler is also unaffected by 

increasing sample size however, it is affected by k and v. This is due to the calculation of 

the inverse covariance matrix. With increasing k this calculation requires more time and 

while sampling is proceeding, if the size of the true model v approaches the size of k, then 

on average the repeated calculation of the inverse requires more time. Compared to the 

orthogonal Gibbs sampler the standard Gibbs sampler for small v can require 2-3 times 

the required cpu-time, and for large v around 4-5 times the required cpu-time. 

The patterns exhibited by the exact sampler require a bit more thought. The first is that 

with decreasing n and increasing k, the necessary computing increases due to an increase 

in BCT. The use of v complicates the relationship further. When v is close to k or 0, the 

BCT decreases reducing the amount of cpu-time required. However, the algorithm is also 

coded to take advantage of monotonicity so if the updated component is set to 1 for the 
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lower chain, then the upper chain is also set to 1, without the need for computation. This 

means the cpu-time should also be decreasing with increasing v as more components will 

be 1 according to the lower chain. It is the interaction between these two aspects that 

results in the increase, and slightly larger decrease, in cpu-time as v increases towards k. 

The hybrid sampler is the most efficient method. Further, the results above agree with the 

previous results that the perfect sampler is competitive with the Gibbs sampler for X 

provided the BCT is close to 2. However, once burn-in is taken into account, the balance 

of efficiency will likely shift towards the exact sampler. This also provides an indication 

of how k and n affect the BCT namely, as the number of predictors increases or the 

sample size decreases towards k the BCT increases. 

4.3 Backwards Coupling Time 

With the computational and convergence aspects investigated, we now move to 

investigate the BCT, information, and the probability of coalescence, which are unique to 

exact sampling and affect the efficiency of the exact sampler. 

4.3.1 Information and BCT 

We now investigate how information, and choices of hyper-parameter, affect the 

backwards coupling time. Large BCT means the perfect sampler will be less 

computationally competitive with the orthogonal Gibbs sampler. In assessing information 

we use entropy. The measure of entropy for a univariate probability mass function is 

called the Shannon entropy. For the natural logarithm (nat units), the Shannon entropy of  

),|( Xyγf  is 

 
∑
∈

−=
Γγ

XyγXyγγ ),|(log),|()( ffH . (4.5)

 

We clarify now that as the measure of H becomes larger the entropy is increasing, which 

implies the uncertainty associated with the corresponding random variable is also 

increasing, corresponding to less information. We use the real datasets, and calculated 

(4.5) for Zellner’s prior and Jeffreys prior for choices of c and τ, and we use all four 

methods for obtaining W. The results are shown in Figures 4.6-4.9. 
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Figure 4.6 Entropy of ),|( Xyγf for the ozone data as penalty (c or p) increases for choices 

of τ. The top four panels are for Zellners' prior and the bottom four are for Jeffreys prior.  
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Figure 4.7 Entropy of ),|( Xyγf for the physical data as penalty (c or p) increases for choices 

of τ. The top four panels are for Zellners' prior and the bottom four are for Jeffreys prior. 
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Figure 4.8 Entropy of ),|( Xyγf  for the bodyfat data as penalty (c or p) increases for choices 

of τ. The top four panels are for Zellners' prior and the bottom four are for Jeffreys prior.  
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Figure 4.9 Entropy of ),|( Xyγf  for the crime data as penalty (c or p) increases for choices 

of τ. The top four panels are for Zellner’s prior and the bottom four are for Jeffreys prior. 
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Figure 4.6 shows the entropy using (4.5) for the ozone data. The entropy decreases as c 

gets larger, and as τ increase the curve moves further to the right showing a peak in the 

extreme case of τ = 0.9. Notice that the entropy curves are all extremely similar for all 

orthogonalization methods. The entropy curves for the physical data show similar 

behavior to that of the ozone data for choices of τ and penalty. However, the entropy 

shows increased variability, and some differences have appeared between the W 

methods. The most notable difference between the methods is the Lowdin, which shows 

much lower entropy for small values of penalty for both Zellner’s prior and Jeffreys prior. 

The behavior of the entropy at lower values of penalty is most noticeable for Jeffreys 

prior.  

For the bodyfat data again the Lowdin method stands out as having much less entropy 

over moderate choices of penalty than the other W methods. This applies to both 

Zellner’s prior and Jeffreys prior and again, lower values of penalty for Zellner’s prior 

produces more variability in the values of entropy. Similar changes in entropy to the 

previous datasets over τ and penalty are also exhibited. Finally, for the crime dataset 

while the entropy profiles appear slightly more erratic than for previous datasets, we 

observe similar profiles within each prior for all W methods. Again we see the flattening 

aspect for lower values of penalty for Jeffreys prior compared to Zellner’s prior. It is 

clear the entropy is decreasing for extreme choices of τ and penalty, and that entropy is 

similar to the model competition statistic introduced in Chapter 1 and used in Chapter 3. 

Both measures provide some indication of the concentration of mass in the posterior, 

although the model competition measure has a more direct interpretation. With the 

indications of entropy in mind, we now investigate the BCT.  

We do not have a closed form expression to provide the parameter of a geometric 

distribution to describe the distribution of backwards coupling times. We explore choices 

of τ with the penalty fixed at c = n for Zellner’s prior and p = 2π(n+1) for Jeffreys as 

before, and choices of penalty with τ fixed at 0.5. From Figures 4.10 and 4.11 we can see 

that in general, the BCT varies between the datasets and W methods.  
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Figure 4.10 Estimated backwards coupling time over a range of penalty for four real 

datasets using all W methods for Zellner’s prior (top four panels) and Jeffrey prior (bottom 

for panels). Notre for Jeffreys prior c = p/(2π)-1. 
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Figure 4.11 Estimated backwards coupling time over a range of τ for four real datasets 

using all W methods for Zellner’s prior (top four panels) and Jeffrey prior (bottom for 

panels). 
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The differences can be attributed predominantly to sample size and information as the 

physical data has the smallest sample size (27) and ratio of n:k (2.7) followed by the 

crime data with 47 and 3.13. The larger datasets, ozone with n = 80 and a ratio of n:k of 

10, and bodyfat with 250 and 19.2 both have BCT very close to 2. This indicates that for 

datasets with n much larger than k, the BCT of the perfect sampler will be minimal. In all 

cases for choices of τ and penalty the BCT displays convex behavior. 

For choices of penalty with τ fixed at 0.5, we see the BCT increases as τ increase from 0 

and then decrease again while approaching 1. This represents increasing and then 

decreasing model competition, which is increasing and then decreasing entropy. For 

choices of penalty, again as the penalty increases the BCT increases. As the penalty 

becomes more extreme, the BCT decreases. This is due to increasing and then decreasing 

model uncertainty or equivalently increasing and then decreasing entropy. Thus, it is 

possible to reduce the BCT of the exact sampler with extreme values of τ or penalty.  

Comparing the orthogonalization methods we can see again these results are in line with 

the entropy and model uncertainty. For the ozone data, it appears that the GS2 method 

predominantly has smallest BCT, followed by the GPC, Lowdin and GS1 methods over 

both τ and c, for Zellner’s prior and Jeffreys prior. For the physical data using Zellner’s 

and Jeffreys prior and a choice of penalty, the largest BCT is attained by the Lowdin 

method, then GS2, GS1 and GPC. For Zellner’s prior and Jeffreys prior over choices of τ 

the order is Lowdin method, then GS1, GS2 and GPC. For bodyfat data the Lowdin and 

GS1 methods again are associated with the larger BCT, and the GS2 and GPC methods 

smaller backwards coupling times. Finally, for the crime data the Lowdin method has the 

largest BCT, with the GS1, GS2 and GPC methods all relatively similar. 

4.3.2 Coalescence 

The BCT is related to the probability of coalescence in a single sweep of the Gibbs 

sampler. This in turn, is related to the sequence of probabilities for the coalescence of 

each component. The maximum probability of remaining undecided for the update of a 

single component is 

 })0,...,0{|1Pr(})1,...,1{|1Pr( ==−== −− iiii γγ γγ  (4.6)
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The greater (4.6) the less likely a predictor will couple to a single value, increasing the 

BCT. In a sense these distances also indicate the level of dependence between 

components. If the distance in (4.6) is zero for each component, then the components are 

independent and the posterior is a collection of independent Bernoulli random variables. 

Under orthogonal transformation these distances can become very small. However, the 

value of (4.6) can never be zero as this would require the residual sum of squares to be 

non-decreasing with the number of predictors, which is not true for Gaussian least 

squares. We also provide the posterior for γ, to show the relation to the probability of 

remaining undecided. 

As τ increases the posterior moves towards the full model, as this happens, the 

probability of remaining undecided becomes more evenly spread over the predictors. Of 

particular interest is when τ = 0.1, or when c is large, both producing a posterior that is 

distinctly bimodal. The bimodality is a result of the penalty. The two competing models 

in decimal notation are 128 and 192, and correspond to the γ vectors {1 0 0 0 0 0 0 0}, 

and {1 1 0 0 0 0 0 0}, see Figures 4.12a-b. Thus, we observe a great detail of uncertainty 

surrounding the inclusion of the second predictor in W. This results in an increased 

expected BCT. This is curious as the previous results with entropy mean for this scenario 

the entropy would be minimal, i.e. assuming 2 competing models with equal probability 

(4.5) is approximately 0.7. However for this scenario the less overlap in terms of included 

predictors the greater the BCT thus, the BCT can be influenced by model competition 

even in the minimal case of two competing models. For lower values of τ and for 

intermediate values of penalty the BCT increases as the posteriors exhibit more model 

competition (greater entropy) and so as a result, the probabilities given by (4.6) increase.  

Clearly the BCT is influenced by the amount of information and in particular, when k is 

large and n is small the BCT increases. Choices of hyper-parameters such as τ and 

penalty that maximize model competition will also drive up the BCT. Finally, bi-

modality in the posterior for γ can also produce an increased BCT due to a large 

uncertainty about whether a predictor should be included or not. 
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4.4 Examples 

We now attempt to emulate the conditions an analyst might face in the real world. We use 

two real datasets. The first is the body measurement data which records 21 body 

dimension measurements as well as age, weight, height, and gender on 507 individuals. 

Weight is the response variable. The second is the baseball dataset, which records 27 

performance statistics for major league baseball players (excluding pitchers) in the 1991 

season. The players salary in 1992 is the response variable. Further details can be found 

in Appendix C. We perform the analysis using X and the GS2 orthogonalization method. 

We use the Jeffreys prior as n for both datasets is large, 507 and 337 respectively, and set 

p = 2π(n+1) with a uniform prior on γ.  

For both datasets we run the standard Gibbs sampler on X, the hybrid method for W, and 

the perfect sampler for W, for 100000 iterations. The Gibbs sampler for X unlike the 

samplers using W, requires burn-in assessment. We used three sub chains of length 

50000 to help assess convergence. We inspected the auto-correlation and partial auto 

correlation functions, while applying default methods such as Gelman and Rubin's, 

Geweke's, and Heidelberger and Welch's convergence diagnostics. These diagnostics can 

all be implemented routinely in the software R, using the CODA package. The burn-in 

was then discarded prior to inference. We record the expected model size, DIC, state 

space explored, predictive coverage for y (see 3.26), and tail probabilities for the 

minimum and maximum of y, using 1000 samples of y for each model sampled. These 

estimates are recorded in Table 4.2.  

Plots of the 95% predictive regions for y along with the fitted values (first 50 

observations) using model averaging for the baseball measurement data are given in 

Figure 4.14, and for the body data Figure 4.16. Plots of the estimated ),|( Xyγf are given 

in Figures 4.13 and 4.15. It is clear that using the orthogonal transformation is 

comparable for inference about y, both from the recorded predictive coverage and from 

Figures 4.14 and 4.16. The predictive coverage is the same for the baseball data, and for 

the body measurement data. 
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Table 4.2 Results for the Body measurement and Baseball datasets 

DataSet Method E[qγ] DIC |Γ| (%) Min Max Coverage 

Gibbs X 9.07 270.76 9128 (0.054) 0.16 0.12 99.6% 
Hybrid W 12.2 273.25 8064 (0.048) 0.17 0.12 99.4% Body 

n/k ≈ 25 Exact W 12.2 273.43 8174 (0.049) 0.17 0.12 99.4% 
Gibbs X 7.45 685.02 17645 (0.013) 0.10 0.13 98.8% 
Hybrid W 6.30 686.46 21058 (0.016) 0.09 0.14 98.8% Baseball 

n/k ≈ 12 Exact W 6.30 686.38 21147 (0.016) 0.09 0.14 98.8% 
 

For both datasets the difference in predictive coverage between X and W is 1 

observation, this is not overly concerning given the sample sizes involved. From Figures 

4.13 and 4.15 the posteriors are the same for the perfect sampler and orthogonal Gibbs 

sampler. In the case of the body measurement data the posterior using X appears more 

concentrated than for W, however it is possible that 100000 samples was simply not 

enough to allow sufficient exploration of the state space. For the baseball data, a similar 

case is presented where the posterior for X has a larger concentration of mass at the mode 

for the standard Gibbs sampler. Again dependence and insufficient exploration may be 

responsible. 

The expected model size under the posterior varies, for the body data the expected model 

size for W involves 3 more predictors than that for X. For the Baseball data, the expected 

model size equates to 1 more predictor for X than W. The number of models explored, 

shows that for the body data the Gibbs sampler explored more models than the 

orthogonal based methods, while for the Baseball example it explored much less. The 

values in brackets indicate the percentage of the entire state space explored, in all cases 

less than 0.1 of a percent of the space was explored. There was slightly more variation in 

the tail probabilities for the minimum and maximum however, all methods are close and 

indicate adequate performance using W.  

In the plots of the 95% predictive region around the fitted values shows that the response 

is fitted well after averaging over the number of models explored by each sampler. In 

particular in the case of each data set the differences in these plots are minor. The 

posteriors for γ under W for both data sets are almost identical for the orthogonal Gibbs 

and perfect samplers.  
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4.13 The estimated posterior for γ using the hybrid Gibbs sampler (top), exact sampler 

(middle) and the standard Gibbs sampler (bottom) for the Baseball data. 
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4.14 The fitted response (dot and circle), observed response (blue line) and 95% predictive 

interval using the hybrid Gibbs sampler (top), exact sampler (middle) and the standard 

Gibbs sampler (bottom) for the Baseball data.  
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4.15 The estimated posterior for γ using the hybrid Gibbs sampler (top), exact sampler 

(middle) and the standard Gibbs sampler (bottom) for the Body data. 
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4.16 The fitted response (dot and circle), observed response (blue line) and 95% predictive 

interval using the hybrid Gibbs sampler (top), exact sampler (middle) and the standard 

Gibbs sampler (bottom) for the Body data. 
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For the body data the posterior for X appears much less spread than for the posterior for 

W, and has a much more dominant peak at probability 0.09, while the mode for W is 

around 0.035. For the baseball data again the posterior using X is much more peaked and 

less spread than for W, with the maximum probability at around 0.07, compared to 0.025. 

In terms of efficiency for the body measurement data the Gibbs sampler generated 41.4 

samples per second of cpu-time compared to 162 for the hybrid Gibbs sampler, and 40.1 

for monotone Gibbs CFTP with a mean BCT of 2.025. For the baseball data the Gibbs 

sampler generated 37.9 samples per second of cpu-time compared to 153 for the hybrid 

Gibbs sampler and 38.2 for monotone Gibbs CFTP with a mean BCT of 2.030.  

This comparison can be extended to include the sample size after burn-in for the Gibbs 

sampler using X, and the effective sample size for both the Gibbs sampler using X and 

the hybrid method. The burn-in for the Gibbs sampler in X was approximately 15000 for 

the body measurement data and 21000 for the baseball data. Thus for burn-in, the 

computational efficiency reduces to 35.2 and 32.21 samples per second of cpu-time 

respectively. Effective sample size equates the dependent sample to the equivalent 

amount of i.i.d. sample points. We use the function from the CODA package in R for 

calculating the effective sample size. For the samples generated by the hybrid method the 

effective sample was essentially the number of sample points generated. The effective 

sample size for the Gibbs sampler for X was approximately 79000 (out of 100000 or 

79%) for the body measurement data and 71000 (out of 100000 or 71%) for the baseball 

data. Thus the efficiency of the standard Gibbs sampler reduces further to 32.7 and 26.9 

samples per second of cpu-time for the body measurement and baseball datasets 

respectively. Thus, the hybrid method is clearly the most efficient followed by monotone 

Gibbs CFTP.   

4.5 Summary 

The orthogonal Gibbs sampler manages to attain similar levels of convergence compared 

to the monotone Gibbs CFTP sampler, due to a minimal amount of dependence in the 

Gibbs MC. This coupled with the improved computational efficiency of using an 

orthonormal predictor matrix, results in the orthogonal Gibbs sampler being the most 

efficient method per sample point, and for convergence in real time. For the minimal 
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BCT of 2, the Gibbs sampler using X, and monotone Gibbs CFTP, are comparable in 

terms of cpu-time per sample point. However, monotone Gibbs CFTP wins out due to the 

superior convergence in real time. While we did not go into details in order to keep the 

comparisons straight forward, other methods for obtaining the inverse covariance matrix, 

such as the Cholesky updating method, may provide a further decrease in the cpu-time for 

the Gibbs sampler. However, any advantage from this will likely be negated by the 

requirement to discard samples as burn-in. Thus, unless the BCT is extremely large, exact 

sampling will provide the greatest efficiency for convergence in real time, to the posterior 

distribution of model probabilities.  

The BCT is a crucial factor in the comparison between the efficiency of monotone Gibbs 

CFTP, the Gibbs sampler in X and the hybrid method. Choices of τ and penalty for 

Zellner’s prior and Jeffreys prior, were investigated for the BCT and compared against 

information in the posterior for γ. Identifying the conditions under which BCT is close to 

2 indicated that with n much larger than k, the exact sampler is most efficient. 

Orthogonalization methods such as the GS2 and GPC methods, tended to have the 

smallest BCT. Choices of hyper-parameters than maximize model competition, large 

probabilities of remaining un-coalesced, and sample size close to k can all produce a large 

BCT. Finally, the real world examples re-iterated that the GS2 method and 

orthogonalization in general, are well suited to modeling the response, especially with 

large n. Further, the best sampling method to use is either the hybrid or monotone Gibbs 

CFTP sampler. 



 

CHAPTER 5

EXACT IMH AND REJECTION SAMPLING 

 
"Far better an approximate answer to the right question, which is often 

vague, than an exact answer to the wrong question, which can always 

be made precise." 

- Tukey, 1962  

 

Compared to the Gibbs sampler, the independence Metropolis-Hastings (IMH) algorithm 

is assured monotonicity. This is because the update probabilities of the IMH MC have an 

inherent minimum. Knowing the point in the state space for which this minimum occurs, 

allows detection of complete coupling for the IMH chain. This means monotone CFTP is 

readily available and because no transformation of X is required, variable selection is 

possible.  

Some unpublished work (Murray, 2004) has mentioned the relationship between IMH 

and rejection sampling. We review the argument that for any target (f) and proposal (q) 

distribution, the coalescence of the exact IMH sampler is also a rejection sampler f. This 

point may make the notion of an exact IMH sampler obsolete. The relationship between 

the IMH algorithm, rejection sampling and importance sampling was explored by Liu 

(1996) using a detailed eigenvalue analysis. Liu (1996) concluded that the IMH sampler 

is asymptotically as efficient as rejection sampling for estimating expectations. Of 

particular interest is that in discussing sample weights fi/qi, Liu (1996) noted that the 

largest value of this ratio is equivalent to the optimal choice of bound for an equivalent 

rejection sampler, thus indicating that perfect IMH is indeed rejection sampling. Liu 
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(1996) does not discuss perfect sampling which is unsurprising as this paper was 

published the same year as the CFTP approach of Propp and Wilson (1996). 

In this chapter we begin by reviewing the exact IMH sampler, detecting coalescence and 

the relation to rejection sampling. This is followed by a discussion of how this relation 

removes the need for the backwards framework of CFTP and the relation to regeneration. 

The efficiency of IMH and rejection sampling is also discussed. We briefly review the 

variable selection method of Schneider and Corcoran (2004) and show it is rejection 

sampling. We then explore perfect sampling for ),|( Xyγf  for Zellner’s prior and 

Jeffreys prior using exact IMH/rejection sampling. The common problem is the inability 

to establish effective bounds. The general idea will be to construct the proposal 

distribution to reduce f/q to a function of the residual sum of squares. We investigate the 

efficiency of such an approach for choices of penalty and τ for the constant Bernoulli 

prior for γ. The second part of this chapter deals with Zellner’s prior and generating exact 

samples from the posterior of the hyper-parameter c conditional on γ. We investigate the 

efficiency of a standard approach, before moving to the interesting case of thinking about 

rejection sampling as exact IMH to improve efficiency. 

5.1 Perfect Sampling with the IMH Sampler 

5.1.1 Exact IMH 

Let x be a vector of data and a be an unknown parameter. Assigning a prior to a ( f (a)) 

by Bayes theorem the posterior )()|()|( afafaf xx ∝ . Let q(a) be a proposal 

distribution for generating i.i.d. candidate values, with q(a) chosen to be heavier in the 

tails than the target density f (a | x). The acceptance probability for moving from state a to 

a′ for the independence Metropolis-Hastings sampler is 
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and 1 if 0)()|( =′aqaf x . The update function of a MC constructed using the IMH 

sampler is monotone according to the acceptance probabilities. The minimum state based 
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on the ordering of α occurs at the maximum of the ratio between the posterior and 

proposal distributions: 
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where a-m denotes all states in A excluding am. The starting state (am) for the exact IMH 

algorithm is subsequently defined as 
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This means if we can identify the maximum for the ratio of the posterior to the proposal 

for all a, we have identified the point at which the smallest acceptance probability occurs. 

This point can be identified by finding the derivative: 
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setting equal to zero and solving for a. If no closed form solution exists optimization 

methods may be used to identify am numerically, provided (5.4) exists. We now discuss 

some special cases of (5.3). Let )()( afaq =  which requires that f (a) be proper, then 

(5.3) becomes: 
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Thus, if we use the prior as the proposal distribution we can simplify the search for the 

starting point. This approach is particularly useful when closed form expressions for 

maximum likelihood estimates are available. Let 1)( ∝aq then 
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Thus, the starting point for the exact IMH algorithm using (5.6) is the mode of the 

posterior distribution. The IMH algorithm can also be bounded by finding 
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such that 
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If the bound is good enough and we can determine it, we do not require knowledge of am. 

However, all choices of bound will result in a perfect sampler less efficient than using am 

which is the optimal choice of C. 

Under the partial ordering of acceptance probabilities, we need only monitor a path from 

am to assess the backwards coupling time. This is because the ordering is based on the 

acceptance probabilities and as such, the lower path will be the hardest state in the state 

space to move from. Hence, when the lower path accepts a move so will the upper path, 

or any other chain started from any other state of A resulting in coalescence. This means 

the lower path need only be run, reducing the computational effort to a single chain only. 

The IMH CFTP algorithm is given in Algorithm IX. 

The exact IMH CFTP sampler moves backwards in time, until a move from am to another 

state is finally accepted indicating complete coupling. The algorithm then proceeds 

forwards until time zero to obtain an exact sample, reusing the random numbers and 

generated proposal values. For the bounded case, find C at (1) omit (2), and the 

probability for detecting coalescence (3) is 
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After detecting coalescence the forward propagation of the IMH chain to time zero 

proceeds as normal. Work by Corcoran and Tweedie (2000) showed the distribution of 

backwards coupling times (T) for the exact IMH sampler is geometric: 
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Algorithm IX: Exact IMH CFTP sampler 

Find initial minimum state am. (1) 

Set: coalescence = false. 

Set: t = 0. 

While coalescence = false 

 Set: t = t -1. 

Set: at = am. (2) 

 Generate: )(~1 aqat+  and )1,0(U~1+tu . 

 Compute: 
⎭
⎬
⎫

⎩
⎨
⎧

=
+

+

)()(
)()(

,1min
1

1

tm

mt
c aqaf

aqaf
α (3) 

 If ut ≤ αc 

 Set: coalescence = true. 

 For i = { t+2, t+3, ...., 0 } 

   Compute: 
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   If ut < α 

   Set 1−= ii aa . 

 

The mean of the geometric distribution is the expected backwards coupling time: 
1][ −= ρTE . Using (5.10) requires q and f are known exactly and not just up to 

normalizing constant. 

5.1.2 Coalescence and Rejection Sampling 

It turns out the exact IMH CFTP sampler is in fact redundant, as the approach for 

detecting coalescence is rejection sampling. Let P(a) be the probability of accepting the 

proposed point a in standard rejection sampling: 
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(5.11) may be used to generate exact samples using Algorithm X provided 

)|()( xafaCq ≥ for all a∈A.  

 

Algorithm X: Rejection Sampler 

Find C and set: v = 0. 

While v < n: 

 Generate: )(~ aqa′  and )1,0(U~u . 

 Compute: 
)(
)|(

aCq
af

′
′

=
xα  

 If u ≤ α  

  Set: v = v + 1. 

  Set: aav ′= . 

 

For detecting coalescence with the exact IMH sampler: 
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where am is defined as in (5.3). We can re-write (5.12) as 
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where )(/)|( mm aqafC x= . Thus (5.11) and (5.13) are of the same form so it suffices to 

show that )|()( xafaCq ≥  holds for all a. Taking )|()( xafaCq ≥  and substituting C 

we have: 
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which can be re-expressed as 
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Notice that this is now equivalent to the partial order required for the IMH CFTP sampler 

which is clearly true given the definition of am. It is also clear that with respect to the 

rejection sampler this is the optimal choice of C, and is the minimum value such that 

)|()( xafaCq ≥ . In the case of bounded IMH the same relationship applies, except the 

value of C is no longer the optimal choice. Figure 5.1 makes this relationship clear. 

 
Figure 5.1 The maximum ratio of the target to proposal and the relationship to the optimum 

choice of C for a rejection sampler. 

 

This can also be demonstrated with the following toy example. 

 

Toy Example 

Let X = {1,2,3,4} with the corresponding posterior probabilities f(x) = [0.13 0.19 0.42 

0.26], and let the proposal distribution be q(x) = [0.15 0.35 0.25 0.25]. Clearly xm is at x = 

3 and the corresponding probabilities of accepting a move from xm to any other x is [0.52 

0.32 1 0.62]. Taking these probabilities and multiplying by the probability of proposing 
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each x will indicate the relative proportions of sample points generated at coalescence. 

These values are [0.077 0.116 0.25 0.155]. Due to rounding it is not immediately obvious 

that these values are proportional to f however, dividing by the sum we obtain [0.13 0.19 

0.42 0.26].  

■ 

 

This along with the previous mathematical argument makes it very clear that the points 

generated at the detection of coalescence are indeed exact draws from f. 

5.1.3 Forwards Simulation and Regeneration 

The way we detect coalescence is actually a rejection sampler so that unlike traditional 

CFTP the point of coalescence is an exact draw from f. This means we may abandon the 

backwards coupling framework and use forward coupling as the point of coalescence is 

an exact draw. This provides along with the rejection sampler for generating i.i.d. sample 

points, the option to generate exact dependent samples by recording all sample points 

from an IMH chain after the first sample point generated by rejection. This is in essence a 

forwards coupling algorithm and eliminates the need to assess burn-in. 

Using a simulated data set with k = 10 and n = 100 for Zellner’s prior with c = n and a 

uniform prior for γ we show the relation between coupling times, coalescence and 

regeneration. Figures 5.2a-c show a sequence of plots from an actual realization using the 

rejection sampling and coupled IMH chains run from all states. 

From Figure 5.2a we can see the IMH chain started from every state has coalesced by the 

time the chain has turned blue. From the previous discussion this implies the point at 

which the chain turns blue is the point of coalescence and an exact draw from f. This 

point should coincide with a rejection sampler, using the same sequence of random 

numbers and proposed values, for the same choice of C. The blue chain also represents a 

sequence of exact dependent draws from f. In Figure 5.2b the red line shows how we can 

monitor a single chain, started from the state where the maximum of the f/q occurs, to 

detect coalescence. 
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Figure 5.2a Forward IMH for generating exact dependent sample points. 

 
Figure 5.2b The rejection sampler for the same sequence of candidate values and uniform 

random numbers. 
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Figure 5.2c The relation between coupling, rejection sampling and independent tours for 

regeneration times. 

 

More importantly, the sequence of red squares represents the three sample points 

generated by rejection sampling. The first red square clearly coincides with the 

coalescence of the IMH chain. Finally in Figure 5.2c, we can see that the process of 

complete coupling repeats itself so we can visualize the regeneration times of the MC. 

Each colored region represents a restart of the coupled IMH chain from all states. As 

expected, these coincide with the points produced by the rejection sampler. Each 

sequence between the rejection points represents a tour, and so indicates the rejection 

points as regenerations in the IMH chain. The beauty of this demonstration is that it ties 

together the ideas of IMH, rejection sampling and regeneration. We have often mentioned 

the coupling times and regeneration times are of the same distribution however, in this 

example, they have the exactly the same geometric distribution which is also the 

distribution of waiting times for the rejection sampler. 

As mentioned, we can use rejection sampling to find a single point of coalescence and 

then run an IMH chain forward from that point on. This chain will be a dependent 
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sequence of exact draws, as the starting point of the IMH chain is an exact draw under 

rejection sampling. The drawback to this, is the poor exploration of the state space and 

large dependence in the IMH chain when the proposal is dissimilar to the target. Thus, a 

large number of samples will be required to approximate the posterior distribution well 

despite an exact guarantee. This of course, is akin to an automatic procedure for assessing 

burn-in, but we obtain dependent sample points instead of i.i.d. 

This brings us back to an interesting point from the previous chapter. Perfect sampling is 

efficient when the underlying MC is rapidly convergent to the distribution of interest. In 

terms of efficiency there is little difference between the exact IMH sampler and rejection 

sampling. The recursion to detect coalescence will come at the same computational cost 

as the rejection sampler. The IMH CFTP sampler however, requires storage of all random 

numbers for re-use in the forwards propagation after complete coupling. Thus, it seems 

reasonable to argue that because monotone IMH CFTP requires more memory than 

rejection sampling, then rejection sampling should be preferred.  

5.1.4 The Joint Approach of Schneider and Corcoran (2004) 

We now review the exact implementation of the bounded IHM algorithm by Schneider 

and Corcoran (2004) for BVS in Bayesian linear regression. They use a joint estimation 

approach for both β and γ, so: 

 iii θγβ = , (5.16)

 

where θ is the corresponding regression coefficient. This is to produce a mixture 

distribution prior for β, so that for a given vector of β, γ can be recovered as the positions 

where elements of β are non-zero. 

The likelihood function is 
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where z = (1/σ 2). The priors used are 
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where ξ, V, v and λ are hyper-parameters to be chosen and G is the gamma distribution. 

Choosing the proposal distributions to be: 
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then we require the maximum of the ratio: 
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The minimum bound is not available in closed form however, we know that exp(-x) 

where x ≥ 0 will always be ≤ 1. Thus the bounded IMH algorithm is used with C = 1. To 

simulate samples of β, qγ elements are randomly selected and set equal to one, and then β 

is simulated from the required normal distribution. Their results show that while this 

approach works, it is computationally intensive requiring large BCT even for small 

values of k. Finally as we have shown in 5.1.2, this exact IMH sampler is a rejection 

sampler at the point of coalescence. This requires noting that because with (5.20) we have 

shown C ≥ f/q it then follows that Cq ≥ f, as detailed above for the bound. 

5.2 Variable Selection using exact IMH 

The requirement to find the maximum of the posterior divided by the proposal (5.3), the 

likelihood (5.5), or the posterior (5.6) is a great hindrance to the use of exact IMH for 

generating exact samples from ),|( Xyγf . This is because it is a large discrete state 

space, and the starting point cannot be found without some examination of ),|( Xyγf , as 

the derivative for γ is unavailable. We introduce an approach for rejection sampling from 

),|( Xyγf  for Zellner’s prior and Jeffreys prior, and a special case using Jeffreys prior. 
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5.2.1 Zellner and Jeffreys 

These approach we are about to outline will rely upon the fact that residual sum of 

squares is minimized when γ is the full model. While there is no straight forward manner 

in which to show this (such as with a derivative), the argument follows from the least 

squares optimization view point. In least squares, the optimization minimizes the sum of 

squares error (SSE) with respect to the regression coefficients β. Thus, 
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where Xi is the i-th row of X. Because this optimization is essentially unconstrained it is 

weakly smaller with an increasing number of predictors. This can be put down to the fact 

that the addition of any predictor, even with only minimal correlation, will provide some 

reduction in the SSE even if almost negligible. This property is perhaps better known as 

the reason for the R-square value being unsuitable for model selection. As the number of 

predictors included in the model increases the R-square does also. This suggests that if 

we can use q to reduce the posterior for γ to a function of the RSS, then the bound is the 

max{RSS} allowing the use of rejection sampling. 

The target distribution using Zellner’s prior is 
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where )1/(~
1 += ccc  and TT

γγγγγ XXXXH 1)( −= . With the proposal density q(γ) we require: 
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to perform perfect sampling with the IMH algorithm, or equivalently optimal rejection 

sampling. By setting )()1()( 2/)1( γγ fcq q +−+= γ  (5.23) becomes: 
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Given the assertion in relation to (5.21) choosing γ to be the full model satisfies (5.24), 

and so provides the starting point for IMH and the bound necessary for rejection 

sampling. If we choose f(γ) to be the constant Bernoulli prior, then we can summarize the 

proposal distribution as 
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which can be normalized by dividing by the sum. This proposal is also simple to obtain 

even when k is large. To propose candidate values of γ using (5.25) randomly choose qγ 

according to (5.25) then choose qγ positions in γ to be set equal to one. Of course (5.25) 

may be simplified further by taking 1)( ∝γf .  

Taking a similar approach for Jeffreys prior the target distribution is 
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We require the starting point γm to detect complete coupling or use rejection sampling. 

Letting q(γ) be the proposal density, we require: 
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Letting q(γ) = )()2/( 2/ γfp qγπ − , 
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(5.28) is again maximized when we use the full model.  

With these two methods in mind we compute the efficiency of the rejection sampler 

exactly when k is small using: 

 E[T] )(/)( mm qf γγ= . (5.29)
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We investigate different values of τ and penalty for Zellner’s prior and Jeffreys prior. The 

results are presented in Tables 5.1 and 5.2. 

 

Table 5.1 Efficiency of rejection sampling for choices of τ 

τ Data 
(n,k) 

Prior 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Z       157 45.5 9.4 Ozone 
(80,8) J        72.0 12.6 

Z 21.7 11.2 7.12 4.97 3.65 2.76 2.12 1.65 1.29 Physical 
(27,10) J       988 150 16.4 

Z         1032 Bodyfat 
(250,13) J         1108 

Z 20.6 17.0 13.8 10.9 8.39 6.21 4.41 2.95 1.84 Crime 
(47,15) J         330 

 

Table 5.2 Efficiency of rejection sampling for choices of penalty 

c/p Data 
(n,k) 

Prior 
1 5 10 50 100 

Z 1.43 5.46 17.0   Ozone 
(80,8) J 24.9 88.7 192   

Z 1.03 1.22 1.58 9.12 40.2 Physical 
(27,10) J 186     

Z 12.9 429 2891   Bodyfat 
(250,13) J 1632 6414    

Z 1.02 1.19 1.50 9.53 61.3 Crime 
(47,15) J 6427     

 

Z is Zellner’s prior, J is Jeffreys prior, and the grey boxes represent cases where the 

expected waiting time per sample point is greater than the size of the state space (2k). For 

choices of τ, c is set equal to n, and for values of penalty, τ = 0.5. As with other 

comparisons we set p = 2π(c+1). 

The first major difficulty is the number of instances where the rejection sampler is 

impractical. This is not unsurprising as the rejection sampler or the IMH sampler will be 

less efficient when the prior which is the proposal conflicts strongly with the function of 

the RSS. This will generally be the case as the full model provides the bound and the 

prior/proposal is essentially a mechanism for penalizing the RSS.  In the case of τ when it 

favors complex models, thus agreeing with the RSS, the efficiency is manageable. For 
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Jeffreys prior the smallest manageable value of τ is 0.7 for the physical dataset, 0.8 for 

the ozone data and 0.9 for the bodyfat and crime data. For Zellner’s prior the bodyfat and 

ozone datasets need values of τ greater than 0.9 and 0.8 respectively. The physical and 

crime data sets have very manageable waiting times for all values of τ. This is because 

the sample size is small and with c = n, the shrinkage term c/(c+1) results in a very flat 

function of the RSS. 

For varying values of penalty the Jeffreys prior becomes inefficient for values between 10 

and 50 for the ozone data, 1 and 5 for the physical and crime data, and between 5 and 10 

for the bodyfat data. For Zellner’s prior rejection sampling becomes inefficient between 

10 and 50 for the ozone and bodyfat data, and between 100 and 500 for the physical and 

crime datasets. This definitely provides the indication that for Zellner’s prior with 

reasonable choices of τ and small values of c is a more than adequate method to generate 

exact samples from ),|( Xyγf . Thus, when k is large and the sample size is small the 

rejection sampler with Zellner’s prior and c = n is a competitive choice for sampling 

from ),|( Xyγf . 

For Jeffreys prior we may choose p to be 2π so that there is no penalty for model 

complexity letting the role fall explicitly to the choice of f(γ). This allows the proposal 

distribution to simply be the prior for γ which we take to be the constant Bernoulli prior. 

As above we investigate the efficiency of choices of τ for the four real datasets. The 

results are presented in Table 5.3. 

 

Table 5.3 Efficiency of rejection sampling for choices of τ for Jeffreys prior with p = 

2π 

τ Data(n,k) 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Ozone (80,8)   78.7 28.3 12.5 6.44 3.65 2.24 1.46 
Physical (27,10)    227 63.5 21.9 8.73 3.90 1.91 
Bodyfat (250,13)   3316 593 141 41.1 13.9 5.29 2.21 

Crime (47,15)    8888 1082 182 39.1 10.0 3.00 
 

The grey squares again represent cases where the expected waiting time is greater than 

the size of the state space. Compared to the results from Tables 5.1 and 5.2, a larger range 
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of values for τ are viable but still require larger values. The ozone and bodyfat data is 

reasonable for values of τ greater than 0.3, and 0.4 for the physical and crime datasets. 

We now use examples to illustrate the use of this rejection sampler. 

5.2.2 Examples 

We use the special case of Jeffreys prior above to illustrate the variable selection for the 

ozone data and Zellner’s prior for the crime data and compare the MIP to the true values. 

We then proceed with an example using two larger datasets where we do not have the 

true values to compare against.  

 

Example 1: Ozone Data and the Special Case of Jeffreys Prior. 

For the ozone data set we use the special case of Jeffreys prior where we set p = 2π. Then 

using the constant Bernoulli prior we set τ = 0.3. Using the rejection sampler, 1000 

sample points were generated and the true MIP compared with those estimated from the 

sample. The results are shown in Table 5.4. 

 

Table 5.4 True and Estimated MIP from the Rejection Sampler for the Ozone Data 

Predictor 1 2 3 4 5 6 7 8 
True 0.781 0.783 0.709 0.382 0.451 0.463 0.511 0.802 
Estimated 0.779 0.782 0.711 0.382 0.449 0.462 0.511 0.801 

 

The MIP are very well estimated using the 1000 exact sample points. The maximum 

waiting time was 558 with a mean of 83. While this provides a great illustration of the 

use of the rejection sampler in this context, the number of evaluations required far 

exceeds the size of the state space. This indicates, much in line with the results above, 

that variable selection with the rejection sampler is possible. However, there is the 

additional requirement that the number of function evaluations required to generate 

samples should be much less than the size of the state space. If this is not the case, then 

direct calculation of the exact posterior would be preferable.  
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Example 2: Crime Data and Zellner’s Prior. 

Using the crime data we set c = n = 47 and τ = 0.4 for the constant Bernoulli prior. Using 

the rejection sampler 5000 sample points were generated. Table 5.5 shows the MIP 

estimated using the generated sample and the true MIP. 

 

Table 5.5 True and Estimated MIP from the Rejection Sampler for the Crime Data 

Predictor 1 2 3 4 5 6 7 8 9 
True 0.106 0.102 0.113 0.249 0.235 0.096 0.097 0.098 0.153 
Estimated 0.091 0.102 0.112 0.250 0.248 0.094 0.098 0.098 0.149 
Predictor 10 11 12 13 14 15    
True 0.090 0.096 0.131 0.127 0.126 0.093    
Estimated 0.090 0.096 0.138 0.130 0.122 0.096    
 

Even with only 5000 samples from a state space of size 215 most estimates apart from that 

for the fifth predictor are within less than 0.01 of the true value. The mean BCT was 

11.20 with a maximum of 79, and generated 55 samples per second of cputime.  

 

Example 3: Larger k and Zellner’s Prior. 

In this example we do not have the true values to compare against. We use the larger 

datasets, body measurements and the baseball datasets from the examples at the end of 

previous chapter. This is to explore the observation that using Zellner’s prior with 

moderate values of c and τ should allow perfect sampling to be feasible. Using the body 

measurement data first, there are 24 predictors and a sample of 350. We choose c = 200 

which is almost half of c = n and as above use τ = 0.4.  The rejection sampler was used to 

generate 1000 sample points and the estimated MIP are given in Table 5.6. 

 

Table 5.6 Estimated MIP from the Rejection Sampler for the Body Measurement 

Data 

Predictor 1 2 3 4 5 6 7 8 9 
Estimated 0.082 0.109 0.102 0.113 0.115 0.124 0.091 0.130 0.093 
Predictor 10 11 12 13 14 15 16 17 18 
Estimated 0.195 0.289 0.348 0.146 0.378 0.203 0.140 0.225 0.203 
Predictor 19 20 21 22 23 24 
Estimated 0.175 0.094 0.128 0.084 0.276 0.127 
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The rejection sampler required 7.879 seconds of cpu-time per sample point or 

equivalently 0.127 sample points per second of cpu-time. The mean waiting time was 

5288.7 with a maximum of 44590. In total the number of candidate points required to 

generate 1000 samples was 10569646, which is 31.5% of the size of the state space (224). 

The fact that the rejection sampler was actually feasible is related to how flat the posterior 

is. The flatness of the posterior is clearly reflected in the consistently low values of MIP, 

with the largest values at 0.348 and 0.378. Despite this, the MIP still provide an 

indication of relative importance. This is indicated by the predominant selection of 

predictors 11, 12, 14 and 23 which correspond to the predictors chest girth, waist girth, 

hip girth and height respectively. The selection of these predictors is no surprise as they 

represent measurements of large body structures and height. For the baseball data, we 

truncate the dataset to the first 50 sample points to provide a small n with large k in 

comparison to the large n and k of the body data, and again generate 1000 sample points 

with the rejection sampler. We use c = 50 and τ = 0.4. The estimated MIP are shown in 

Table 5.7. 

 

Table 5.7 Estimated MIP from the Rejection Sampler for the Baseball Data 

Predictor 1 2 3 4 5 6 7 8 9 
Estimated 0.075 0.091 0.221 0.192 0.125 0.100 0.144 0.192 0.117 
Predictor 10 11 12 13 14 15 16 17 18 
Estimated 0.108 0.099 0.091 0.958 0.877 0.103 0.080 0.090 0.085 
Predictor 19 20 21 22 23 24 25 26 27 
Estimated 0.095 0.100 0.137 0.156 0.097 0.112 0.100 0.119 0.094 
 

The rejection sampler required 6.292 seconds of cpu-time per sample point or 

equivalently 0.159 sample points per second of cpu-time. The mean waiting time was 

3945 with a maximum of 29714. In total the number of candidate points required to 

generate 1000 samples was 3945158, which is 2.94% of the size of the state space, 227. 

Much like for the body measurement dataset, the MIP are mainly low values. However, 

there is a clear indication for predictors 13 (free agent) and 14 (arbitration) with MIP of 

0.958 and 0.877 respectively. These predictors are significant as both represent cases 

where the player is in a position to negotiate either directly, or indirectly their salary. 
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These predictors also represent the cases where the player is in the best positions to 

market themselves to potential teams. 

5.3 The Conditional Distribution of c 

The parameter c in Zellner’s prior has received a great deal of attention under the focus of 

variable selection (Liang et al, 2008; Celeux et al, 2007). However, another aspect of this 

process is for model averaging. If the weights for averaging are independent of c then so 

too must be the posterior distributions we average over, such as the posterior for βγ or the 

posterior predictive distribution for y. Given we can in some cases integrate out c in the 

posterior for γ, we could then generate samples values of c conditional upon γ as follows: 

Generate: ),|( Xyγf . 

Generate: ),,|( Xyγcf . 

 Generate: ),,,|( Xyγβγ cf  or )~,,,,|~( XXyγy cf . 

(5.30)

 

Liang et al (2008) have already demonstrated that the integration over c results in a 

hyper-geometric function, however if no closed form is available then presumably some 

sort of Monte Carlo approximation can be employed if k is small enough. The simplest 

case is to consider when we do not need to sample from γ and can obtain the posterior 

explicitly. Clearly even with this possible integrating over c it still requires producing 

sample points from the posterior for c. We now detail an efficient rejection sampler for 

doing so. Using Zellner’s prior the posterior for c conditional on γ is 
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Again taking the initial approach of setting q(c) = f(c), and because for the penalty term 

the smallest c is preferred while the second term prefers c to infinity, we choose the 

hyper-G-n prior as it is a good match for the sparseness of (5.31) ignoring the 

contribution from the prior. The hyper-G-n prior with parameter a > 2 is 
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In order to have q(c) = f(c) we must be able to simulate from f(c). The CDF of (5.32) is 
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and the inverse CDF is 

]1)1[()( )2/(21 −−= −−− aunuF . (5.34)

 

Thus, we can use the inverse CDF method to generate samples from (5.31) for use in the 

rejection/exact IMH algorithm. The optimal bound via the maximum of the ratio of the 

target to the proposal can be obtained by differentiating: 
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with respect to c. The resulting derivative is 
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Setting (5.36) equal to zero and solving: 
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This means the starting point for detecting coalescence for the exact IMH sampler is 

(5.37) and the value of C the ensures ),,|()( XyγcfcCq ≥  is (5.35) evaluated at (5.37). 

Note because we do not have the normalizing constant for (5.35) we cannot simply 

calculate the efficiency of the rejection sampler. The code for this rejection sampler is 

provided in Appendix D under cRejection1.m. We use this rejection sampler for the 

posterior for c conditional on the full model and the null model for the ozone, physical, 

bodyfat and crime datasets with a = 3 for f(c). Ten thousand sample points were 
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generated in each case and the density histogram plotted with the overlay of an inverse 

gamma density fitted by MLE (Figures 5.3 and 5.4). Table 5.8 records the minimum, 

mean and maximum waiting times for the rejection sampler. 

The ozone data is much flatter for the null model than the full model. This is because the 

posterior of c according to (5.35) will become flatter as the RSS become larger. This is 

not always the case however as it is difficult to assess where the mode of the posterior 

will be. For the ozone data in both cases the fitted inverse gamma distribution does a 

good job, although it does appear to undercut the true density to the right of the mode 

where the density is rapidly decreasing into the right hand tail. The crime data show 

similar behavior to the ozone data as the distribution of c conditional on the null model is 

flatter than for the full. The inverse gamma approximations also perform well with 

similar undercutting of the estimated true density to the right of the mode. 

The physical data shows different behavior and in fact the conditional density for c is 

flatter for the full model than the null model. This is because the mode for the full model 

is much further to the right than for the null model. For both the full and null model the 

inverse gamma approximation over-estimates the mode and undercuts at the right of the 

mode similarly to the ozone and crime datasets. For the bodyfat data the posterior of c 

conditional on the null model is flatter than that for the full model. The inverse gamma 

distribution for the null model over estimates the mode and undercuts the right hand tail 

more extensively than any of the other examples.  

The inverse gamma distribution for the full model undercuts the mode and only slightly 

the right hand tail. Overall it does appear the inverse gamma distribution can provide a 

decent approximation to conditional posterior of c. The reason for this line of 

investigation will become clearer later in this section. It is also worth noting that the 

mode of the distributions above can be used to estimate c for a local empirical Bayes 

approach. 

Table 5.8 shows the efficiency of the rejection sampler for each set of samples generated 

for Figure 5.3 and 5.4, where N = null model, F = full model. The efficiency is an artifact 

of how well the posterior and the proposal distribution agree. This means any 

distributions that are not flat or have a mode far from zero will be the least efficient. 
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Table 5.8 Efficiency of the Rejection Sampler for the Conditional Posterior of c 

 Ozone Physical Bodyfat U.S. Crime 
 N F N F N F N F 
Minimum 1 1 1 1 1 1 1 1 
Mean 2.4 4.3 4.1 12.3 2.3 11.1 2.0 4.9 
Maximum 17 34 36 107 16 87 16 45 

 

Due to the increased flattening for the posterior conditional on the null model, the mean 

waiting time is smaller than for the full model unless the mode of the full model is much 

further from zero than for the null model. Overall the most efficient case for the null 

model is the crime data with a mean of 2 and a maximum of 16. The most costly under 

the null model is the physical data at 4.1 and 36. For the full model the most efficient is 

the ozone data with a mean waiting time of 4.3 and a maximum of 34. The least efficient 

is the physical data with 12.3 and 107. The comparison between efficiency for all cases is 

determined by how flat the distribution is, and where the mode is located. If the 

distribution is flat and has a mode close to zero the posterior agrees with the proposal and 

so the rejection sampler is efficient. 

This approach was recommended for inference when integrating over c so we use the 

ozone data as an example. 

 

Ozone Example 

We now look at the difference in model averaging for integration over c by comparing 

),,|( cf Xyγ  and ),|( Xyγf . We use the ozone data and present the posterior distribution 

of observation 5 and β9. We chose a = 3 and τ = 0.45 to weakly penalize model 

complexity. The posterior for ),|( Xyγf  was obtained by Monte Carlo integration using 

simulation from f(c) for every γ.  

Figure 5.5 shows ),,|( cf Xyγ , ),|( Xyγf  and ),|( Xycf . Comparing the two posteriors 

for γ, integrating over c appears very similar but in this case produces less model 

uncertainty. This is because as c gets larger the posterior mass concentrates and then 

eventually moves towards the null model. Form the marginal posterior of c most of the 

density falls between 50 and 1500 so that most values of c are larger than c = n = 80 

resulting in the more concentrated posterior.  
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This means integrating over c is certainly a desirable approach for variable selection. 

Table 5.9 shows the MIP for the posteriors in Figure 5.5. Again we can see predictors 1, 

2, 3, and 8 have increased MIP for ),|( Xyγf  compared to ),,|( cf Xyγ , while 

predictors 4, 5, 6, and 7 have decreased MIP. Figure 5.6 shows the comparison of the 

posterior distributions of y5 and β9 for ),|( Xyγf  and ),,|( cf Xyγ . Similarly to the 

results above we find the posteriors of y5 and β9 for ),|( Xyγf  exhibit less spread than 

the equivalent distributions with c = 80. In both cases the posterior of β9 is conditional 

upon an estimate of σ 2 which we take as the posterior expectation of the model averaged 

posterior for σ 2. The estimate of σ 2 is a function of the residual sum of squares term 

including the c/(c+1) shrinkage term. 

 

Table 5.9 Comparison of the Marginal Inclusion Probabilities for ),,|( cf Xyγ  

and ),|( Xyγf . 

Predictor 1 2 3 4 5 6 7 8 
),,|( ncf =Xyγ  0.44 0.64 0.28 0.09 0.15 0.13 0.40 0.25 

),|( Xyγf  0.52 0.67 0.31 0.07 0.13 0.12 0.37 0.27 
 

Thus, because the values of c are predominantly larger when integrating over c the 

shrinkage term c/(c+1) in the variance estimate will be closer to 1. This implies if most of 

the posterior density of c is supported by values larger than c = n, then the variance will 

on average be smaller according to the posterior distribution for σ 2. This also applies to 

the PPD where the variance is a function involving the RSS term with the shrinkage 

factor of c/(c+1). 

As noted earlier it appears from Figures 5.3 and 5.4 that the posterior for c can be 

reasonably approximated by an inverse gamma density. This suggests an inverse gamma 

proposal that matches the target well could make a very good proposal distribution. The 

idea is that in thinking about exact IMH we could increase the efficiency with suitable 

estimates, by finding the starting point as a function of the parameters of the proposal 

distribution. Such an approach provides a rejection sampler with the benefit of a direct 

way to think about adaptation to improve efficiency. Assuming an inverse gamma 

proposal with parameters v and w, and using hyper-G-n prior we can find cm with: 
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(5.39) can be arranged into a polynomial expression, hence there is more than one 

possible solution. Thus we must solve: 
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Restricting the solutions of (5.40) to the positive real line and then from the remaining 

candidate values taking the correct choice as the value that maximizes (5.38) we obtain 

cm and the required bound C. The efficiency of this approach relies on the choice of v and 

w. This requires that estimation of v and w from a posterior sample converges to some 

value. Using the first approach with q(c) = f(c) we generated 100 batches of 10000 

sample points and for each we estimated v and w using MLE after 100, 200, 300,… and 

so on sample points. The results are shown in Figure 5.7 where we have chosen γ to be 

the full model. Using these estimated values of v and w we also recorded the 

corresponding value of cm to be used in the new rejection sampler shown in Figure 5.8. 

Figure 5.8 also plots various quantiles of the posterior to show where the estimates of cm 

fall in relation to the tails.  

From Figure 5.7 the plot for each parameter v and w shows clear convergence towards 

values of approximately 4.3 and 700 respectively. The variability, ignoring the extreme 

values, in the estimates of v and w requires around 3000 sample points before stabilizing. 

From Figure 5.8 we can see that the value of cm is converging to a point (approximately 

290) just outside the 75th percentile of the posterior distribution. This agrees with the 

observation in figure 5.4 where the posterior appeared to dominate the proposal in the 

right hand tail close to the mode. Provided we have enough samples we can obtain a 

suitable approximation to the posterior using the estimated parameters. Using the 

estimated parameters from the ten thousand sample points generated as shown in Figures 

5.3 and 5.4 we run the modified rejection sampler with the inverse gamma proposal.  
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Figure 5.7 The convergence of parameter estimation for the inverse gamma approximation. 

γ is chosen to be the full model. 
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Figure 5.8 Convergence of the estimated value of cm and the relation to the posterior 

distribution for c. γ is chosen to be the full model. 

 

Table 5.10 Efficiency of the Rejection sampler with adapted values. 

 Ozone Physical Bodyfat Crime 
 N F N F N F N F 
Minimum 1 1 1 1 1 1 1 1 
Mean 1.02 1.06 1.12 1.25 1.26 1.04 1.08 1.11 
Maximum 3 4 5 8 6 4 4 5 

 

Ten thousand sample points are generated and the efficiency of the rejection sampler is 

estimated for comparison with Table 5.10. The code for this rejection sampler is given in 

Appendix D under cRejection2.m. 

Comparing Table 5.8 to Table 5.10 there is a dramatic increase in efficiency. For all 

datasets the mean waiting time is close to one. This indicates that the inverse gamma 

distribution is a suitable approximation so that the rejection sampler is close to i.i.d. 
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sampling but not quite. The largest waiting time is 8 and the smallest is 3. These results 

clearly indicate the benefit of thinking about rejection sampling and exact IMH as one 

and the same. The approach is straight forward and greatly improves the efficiency. The 

reader may be wondering why we have no results starting from a default proposal 

distribution such as the IG(1,1). The reason for this is in this application the efficiency 

and numerical stability of the solution is unfortunately very sensitive to the choice of 

parameters in the proposal. Specifically in order to have good efficiency and a suitable 

starting value the mode of the proposal and target must be similar otherwise the target 

will dominate the proposal far out in the right hand tail. This is undesirable as the 

proposal should have heavier tails than the target. 

5.4 Summary 

The use of the exact IMH sampler appears to be redundant as the detection of coalescence 

is a rejection sampler for the target distribution. This relationship was not unknown, and 

provides an elegant demonstration of the relation between rejection sampling and IMH as 

well as the relationship between BCT, coupling times and regeneration times. Ultimately, 

the rejection sampler should be the preferred option for exact sampling with exact IMH. 

The method of Schneider and Corcoran (2004) is also detecting coalescence using 

rejection sampling and so a rejection sampler could have been used without the need for 

the added forward propagation.  

With these facts in mind, we then investigated the use of rejection sampling for the 

marginal posterior for γ. Noting that the RSS is weakly decreasing in the number of 

predictors by virtue of Gaussian least squares optimization, then reducing f(γ |y, X) to a 

function of the RSS only will allow us to find a bound for rejection sampling.   

We provide the methodology to perform the reduction for both Zellner’s and Jeffreys 

prior by choosing the proposal distribution to be a function of the penalty term in the 

posterior and f(γ). The distribution of mass under the prior for γ and the strength of the 

penalty will have a marked impact on the efficiency of the rejection sampler. This is 

because IMH sampling and equivalently rejection sampling, will be inefficient when the 

proposal is at odds with the posterior. Thus, the more extreme the penalty, or the more 

mass under the prior supporting small models, the longer the expected waiting time for 
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generating sample points. The results using the real datasets using the constant Bernoulli 

prior for γ supports this conclusion. Generally values of τ  > 0.7 and small values of 

penalty are required for the rejection sampler to be feasible. Further examples 

demonstrated that sampling under Jeffreys prior will typically be inefficient even with p 

= 2π.  

Zellner’s prior however is feasible when c is relatively small. The results using the crime 

data and larger datasets indicated that rejection sampling can indeed be efficient. For the 

moment efficiency refers the mean waiting time and number of proposals required. This 

is because the Gibbs sampler may have a faster rate of convergence in real time. This is 

clearly a comparison for future work. 

In the example from Schneider and Corcoran (2004), a fictitious data set with k = 3, n = 

20 and conjugate priors were used. The recorded minimum, maximum and mean 

backwards coupling time for that example was 2, 4257 and 543 respectively. This 

suggests that rejection sampling in this case is remarkably inefficient, so while appealing 

in theory clearly has limited appeal based on practicality. There is crucial distinction 

between their method and the rejection sampler used here. In our case if the required 

number of proposals is larger than 2k, then direct calculation of the posterior should be 

preferred, however, this is not possible for the approach of Schneider and Corcoran 

(2004).  

Having provided a way to generate exact samples for BVS from the marginal posterior of 

γ, it is reasonable to conclude from the results for the real datasets that Zellner’s prior is 

preferred to Jeffreys prior when k is large and n is small. Using c = n and no available 

prior information for β should allow a moderately efficient rejection sampler to be used 

for BVS as described. 

The method of the exact IMH/rejection sampling is closely related to the use of perfect 

simulated tempering in both the backwards or forwards context. The use of these methods 

is a possibility for future research, although it is unlikely to prove much more efficient 

than the standard rejection sampler. This is because the waiting times will be the same as 

for the rejection sampler and will provide an estimate of the mean waiting time for the 

perfect forwards simulated tempering. 
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With the promising results of the rejection sampler for f(γ |y, X) we then moved to the 

case of generating exact samples from the marginal posterior for c conditional on γ. This 

bears relevance for model averaging when γ is integrated over c. The second motivation 

was to demonstrate how thinking of exact IMH and rejection sampler as one and the same 

provides a useful perspective for improving the efficiency of a rejection sampler. 

The marginal posterior for c conditional for γ is typically quite flat as is the hyper-G-n 

prior. This means using the prior for c as the proposal distribution produces a small 

amount of conflict between the target and proposal and hence, an efficient rejection 

sampler. This provides a method of generating sample points and showed the posterior 

can be well approximated by an inverse gamma density. With this in mind, the next step 

was to find a starting point for the exact IMH, and hence optimal bound for rejection 

sampling as a function of the parameters of the proposal density. 

The solution of the derivative was not available in a simple form and has multiple 

solutions. However, with the appropriate restrictions one of the root solutions to a 

polynomial function provided the optimal bound. Using samples generated by the first 

rejection sampler simulation results showed good convergence of the estimated 

parameters for the proposal distribution and consequently, the value of cm for reasonable 

sample sizes. Consistent tail behavior may be an issue for future research as if the 

positive solutions are too far from mode of the posterior, then we are no longer 

dominating the target in the tails with the chosen proposal density. Further, future 

research will involve reviewing literature to find densities where the ideas discussed 

above can, and have yet to be applied, to various posterior densities in Bayesian analysis. 





 

 

CHAPTER 6

DISCUSSION AND CONCLUSIONS

 
"Some problems are so complex, that you have to be highly intelligent 

and well-informed, just to be undecided about them." 

- Laurence J. Peter 

 
We now discuss and summarize the finding of this research. We break this discussion up 

into sections, following the aims outlined in the first chapter, and discuss each in turn. 

This is followed by a more general discussion, recommendations and an outline of future 

research. 

 

Assuming an orthogonal predictor matrix, check the robustness in the construction 

of monotone Gibbs Markov chains to choices of priors and hyper-parameters. 

The construction of a Gibbs monotone MC is not as straight forward as simply having an 

orthogonal predictor matrix. Previous work (Kuo and Mallick, 1998; Holmes and 

Denison, 2002) has mainly focused on the fully conjugate case, including Zellner’s prior. 

Assuming X is orthogonal, the error distribution should be Gaussian, and the priors for β 

and σ 2 are restricted to the conjugate class, or non-informative type priors such as 

Jeffreys prior.  

For the conjugate class of priors (including Zellner’s) and a fully Bayesian approach, we 

cannot obtain a monotone Gibbs MC if we choose prior subjective values of β. This 

constraint also includes the special case of Zellner’s projection prior. Otherwise, with β~  
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= 0, and any choice of a and b for the inverse gamma prior for σ 2, monotonicity is 

available with an orthogonal predictor matrix. Introducing weighted least squares for the 

purpose of detecting or guarding against outliers, produces a covariance matrix that is no 

longer orthogonal. Thus, methods such as those in Smith et al (1996) cannot be improved 

by perfect sampling with a monotone Gibbs MC. 

For priors on γ, the literature assumes either flat, or constant Bernoulli priors, which will 

indeed allow a monotone Gibbs Markov chain, provided the choices of prior for β and σ 2 

do so. We extend this to the case of assuming a beta hyper-prior, for the choice of τ in the 

constant Bernoulli prior. For any choice of hyper hyper-parameters in the beta hyper-

prior, a monotone Gibbs MC is possible provided other conditions are met as above. It is 

possible to specify a generic prior on the qγ space, and obtain a monotone Gibbs MC 

provided f(qγ) does not involve the binomial coefficient, and is non-increasing for 

increasing qγ. An example of this is to use a truncated Poisson distribution for qγ. 

Recent work by Cripps et al (2006), allowed the hyper-parameters of the prior for σ 2 to 

depend on γ thus, taking an EB approach to variable selection and model averaging. 

Specifically, Cripps et al (2006) choose hyper-parameters for f(σ 2) to obtain the classical 

estimator for variance as the mode of the posterior distribution of σ 2. For the associated 

posterior for γ the Gibbs MC is not monotone. We then used an analogue of the approach 

of Cripps et al (2006) by using the MLE of the variance. The Gibbs MC is monotone for 

this choice. This highlights an interesting issue for EB methods in this context. Hyper-

parameters can be chosen to produce an estimator of a certain form for a posterior 

distribution dependent on γ. The estimator, such as the mean, can typically be expressed 

as a function of parameters for that posterior distribution. The dependence on γ requires 

these parameters must also observe the required partial order, otherwise monotonicity is 

unavailable. The shape parameter of the inverse gamma distribution typically cannot 

depend on γ, as this prevents monotonicity.  

Recent work on Zellner’s prior involves assigning a prior to c (Celeux et al, 2007). If we 

assume the hyper-G prior of Liang et al (2008) and use the MLE of β in Zellner’s prior, 

then a closed form expression for the posterior for γ integrated over c is available. This 

posterior with an orthogonal predictor matrix will permit a monotone Gibbs MC.  
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Determine the effect of using an orthogonal predictor matrix on inference using 

model averaging and the linear regression model. 

 

Clyde et al, (1996) provide four methods of orthogonalization for use in transforming a 

non-orthogonal predictor matrix. The GS procedure was noted by Clyde et al (1996) and 

Holmes and Mallick (1998), however the requirement to order the columns of X before 

use deterred any attempt to use it in practice. Holmes and Mallick (1998) are the first to 

use an orthogonal transformation and then use the monotone Gibbs CFTP, for the 

Bayesian linear model for a standard regression problem. Holmes and Mallick (1998) 

provide little detail on suitable methods for orthogonalizing in the regression context. 

Thus, the kind of extensive analysis of Clyde et al (1996) and the application of perfect 

sampling with the monotone Gibbs sampler, have yet to be done together. In this context 

we applied three new methods of orthogonalization. The first, the Lowdin method, is 

invariant to the order of columns in the X space and is an extension of SVD. SVD is a 

way to obtain an orthogonal design matrix in its own right, and recent work by Beaver 

(2007) shows the Lowdin transformation minimizes the L2 matrix norm between X and 

W. The other two methods use the modified GS transformation, and so depend on the 

order of the columns of X. We suggest an initial naïve method of ordering based on the 

correlation between y and X, and a slightly more complicated method, by taking account 

of the correlation between predictors. This approach was inspired by the partial least 

squares approach, which uses y in the orthogonalization of X. 

Using W instead of X has a number of effects. The most obvious is the ability to access a 

monotone CFTP Gibbs sampler, per the sufficiency requirements established in Chapter 2 

and discussed above. W also induces a larger disparity between a collection of good and 

bad models, as such, the posterior mass becomes more concentrated compared to the 

posterior using X. This shrinkage effect was evident in plots of the residual sum of 

squares, model competition, and entropy. The expected model size for γ does not appear 

to be vastly different for W compared to X. The DIC study and model checking provided 

strong evidence, that for most choices of the hyper-parameters τ, c and p, the use of W 

instead of X provides comparable performance for in-sample prediction. However, in 
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using W we sacrifice variable selection, and possibly out-of-sample predictive ability. 

There was some suggestion that the use of orthogonal transformations may also be more 

reliable in large sample situations, or certainly when n is much larger than k. The use of 

W also provides faster computation of the posterior, and the Gibbs update probabilities. 

The use of W also aids convergence by reducing the dependence between the 

components in γ. These points coupled with the additional concentration of mass in the 

posterior under W, suggests that a Gibbs MC in the W space, should display superior real 

time rates of convergence compared to the equivalent sampler using X. This is indeed 

what we observed. 

The DIC and model checking studies indicated that the GPC, as found in previous work, 

was a consistent and reliable method for transformation. The GS2 method also proved to 

be extremely consistent and reliable, offering a new method of orthogonalization for use 

in practice. The GS1 and Lowdin transformation methods, were less reliable and as such, 

we would have to recommend some caution if using these methods. Clyde et al (1996) 

felt they could not recommend any particular orthogonal method they investigated, as an 

optimal choice. While we cannot suggest an optimal choice either, because of the more 

extensive empirical investigation, it seems based on these results that the GPC method is 

a reliable option, as is the GS2 method.  

 

From three versions of the Gibbs sampler; standard with the original predictor 

matrix, standard with an orthogonal predictor matrix and perfect with an 

orthogonal predictor matrix, determine which is the best choice according to 

computational efficiency and rate of convergence to the stationary distribution. 

 

We compared monotone Gibbs CFTP using W, and the Gibbs sampler in the X space. 

We also considered the competitiveness of the standard Gibbs sampler using an 

orthogonal predictor matrix, which then gave rise to a hybrid method. There was no 

indication of a substantial difference based on inference between the orthogonal Gibbs 

sampler and the perfect version. The standard Gibbs sampler requires a similar amount of 

computing time to monotone Gibbs CFTP when the BCT is minimal. However, the 

monotone Gibbs CFTP will converge faster in real time. The comparison is complicated 
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by burn-in for the Gibbs sampler and the incomparability of the posteriors for X and W. 

The requirement for burn-in will reduce the efficiency of generating usable sample points 

with the Gibbs sampler for X. The shrinkage effect allows the Gibbs sampler for W to 

converge faster than the equivalent sampler for X.  

For the monotone Gibbs CFTP, we also spent time investigating factors affecting the 

BCT. This is because if the BCT increases, then monotone Gibbs CFTP becomes less 

computationally competitive with other sampling methods. Results suggest that 

decreasing information or increasing k, increases the BCT. Information is related to the 

ratio of the sample size to the number of predictors. If n is close to k a lot of uncertainty 

surrounds the inclusion of predictors, as a result, there is a lot of model competition in the 

posterior for γ which is indicated by entropy. This result can be affected by the choice of 

hyper-parameters. Hyper-parameter choices that reduce model competition and hence 

entropy, will reduce the BCT. These choices are typically extreme values such as 0 and 1 

for τ, and small (<10) and extremely large (>106) for c or p. These extreme choices 

generally drive the posterior towards the null or full model. The exception to this rule is 

demonstrated by considering the maximum probability of remaining un-coalesced for the 

perfect sampler. The example we use demonstrates how even though extreme values of 

penalty reduce the entropy, the BCT can still be noticeable because of a large probability 

or remaining un-coalesced for a single component. This can occur when the posterior is 

transitioning towards the null model as the penalty increases. Bi-modality occurs as the 

mass shifts from the model with the two most important predictors, to a model containing 

only one. This can introduce a large probability of remaining un-coalesced for the 

predictor included in one model and not the other. This in turn can increase the BCT. 

The orthogonal Gibbs sampler, proved to be more computationally efficient than the 

perfect sampler. What is interesting is the comparable convergence to the perfect 

sampler. In particular, the convergence was similar per sample point, and the minimal 

dependence in the orthogonal Gibbs chain can be shown with auto-correlation plots. This 

leads to an effective sample size for the examples we investigated, essentially equivalent 

to the number of samples generated. This means from a practical point of view, the 

dependent chain is essentially as good the i.i.d. sequence from monotone Gibbs CFTP. 

The convergence in real time provided even more support for the efficiency of the 
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orthogonal Gibbs sampler. This evidence leads to the suggestion of using a combination 

of perfect sampling, and the standard orthogonal Gibbs sampler. This hybrid approach 

uses monotone Gibbs CFTP to detect a starting point at time zero, and then the single 

coalesced Gibbs chain is allowed to continue onwards from time zero. This removes the 

burn-in issue, but retains the maximum computational efficiency from using an 

orthogonal Gibbs sampler. Monotone Gibbs CFTP has the advantage of i.i.d. points and 

the hybrid method is almost as good with less computing time. Thus, we recommend 

either approach, as both are more efficient than the Gibbs sampler for X, when modeling 

the response under model averaging. Ultimately the choice lies with the user however, we 

suggest monotone Gibbs CFTP should be used when the BCT is minimal and the hybrid 

method otherwise.  

 

Provide further exploration of the application of the perfect sampling version of the 

independence Metropolis-Hastings algorithm for BVS. 

 

Rejection sampling is the method by which we detect coalescence in monotone CFTP 

using the IMH sampler. This suggests that perfect sampling with IMH is a redundant 

concept, as there is no reason to use the recursive framework for exact IMH, when we 

can use rejection sampling whenever exact IMH is possible. The perfect sampler of 

Schneider and Corcoran (2004) for BVS is also a rejection sampler.  

We manipulate the proposal distribution for IMH, so the required bound for rejection 

sampling may be found as a function of the residual sum of squares. For Zellner’s prior 

with β~  = 0 and Jeffreys prior, rejection sampling is only feasible for choices of hyper-

parameters that minimize the difference between the posterior and proposal. Using 

Zellner’s prior when n is close to k, and choosing c = n, the rejection sampler was 

efficient enough for practical use. The difference between the method of Schneider and 

Corcoran (2004) and our work, is their method was inefficient, requiring thousands of 

samples to generate one exact value for very small values of k, in their case 3. However, 

their approach is able to incorporate a prior choice for β~ . The rejection sampler we 

propose cannot.  
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The rejection sampler for the marginal posterior distribution for c, allowed a 

demonstration of how useful it can be to think of a rejection sampler as an IMH sampler. 

The approach provided a framework that allowed the efficiency of the rejection sampler, 

to be improved though adaptation of the proposal. Specifically, empirical estimates of the 

parameters for the proposal distribution can be adapted, as we generate samples from the 

posterior. Even though the rejection sampling using f(c) as the proposal was quite 

efficient the adaptation improved the efficiency noticeably. 

 

General comments 

 

Holmes and Mallick (1998) were the first to apply perfect sampling to the Bayes linear 

model for a regression problem, and subsequent work by Holmes and Denison (2002) 

focuses on the wavelets case explicitly. The wavelets case decomposes the response into 

a series of orthogonal basis functions, which are then used as predictors to reconstruct the 

response. For regression we already have existing non-orthogonal predictors. This is the 

crucial difference between the linear regression problem and the wavelets regression 

problem. Further, for the wavelets case typically the series length (n) must be a power of 

2, and the decomposition generates n separate basis functions as predictors. Thus, with k 

= n we can expect the BCT to be larger for the wavelets case, compared to standard 

regression where n >> k. This may seem trivial and while BCT are often reported in 

previous work, no discussion is given on why the two may differ. In the work by Lee et 

al (2005) even though BCT were around 16 to 31 which seems long by comparison to the 

regression case, clearly this is not as extreme as it can get. This suggests that the analysis 

done on both sufficient conditions for monotonicity, BCT and the comparison of a hybrid 

orthogonal sampler compared to the perfect sampler, are all relevant to the wavelets case. 

In particular, the work we have done suggests we may improve the BCT with choices of 

hyper-parameters, and that the hybrid approach may also be useful. 

A point of interest in this work is the additional investigation of Jeffreys true prior. We 

note ad hoc adjustments of this fashion have been done before by Wasserman (2000). The 

motivation behind use of the adjusted Jeffreys prior is to allow the sensible introduction 

of a suitable penalty term. Thus, if n is large, k is small and no subjective information is 
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available, there should be little objection to the use of the adjusted Jeffreys prior. Note 

that such a prior may not be a reasonable suggestion for the wavelets work as n = k. In 

particular, the monotone Gibbs CFTP is well suited to cases with larger n and small k, 

and so we suspect would typically be employed with perfect sampling. We also note that 

the alternate Jeffreys prior performed well for inference when modeling y, but did not 

provide an efficient rejection sampler for BVS for some reasonable choices of hyper-

parameters. 

 

Recommendations 

 

The recommendations we make following the work of chapters 2, 3 and 4 are as follows. 

When modeling the response y orthogonalize using either the GPC or GS2 method, then: 

1. If k is large and n >> k use perfect sampling and Jeffreys alternate prior as we 

have   strong information from the data and a minimal BCT  

2. If k is large and n is close to k use the hybrid approach to avoid the large BCT due 

to little information from the data. Use Zellner’s prior with a standard choice for c 

such as c = n. 

When choosing hyper-parameters, avoid choices that disrupt monotonicity, or choices 

that greatly increase the BCT for case 2 above. 

1. For Zellner’s prior set β~  = 0. 

2. For the conjugate prior for σ 2 avoid choices of a and b that result in the posterior 

mean or median corresponding to the classical estimator of variance. 

3. Avoid extreme choices of τ, c or p.  

 

From chapter 5: 

1. Exact IMH is redundant as it is built on rejection sampling, thus the rejection 

sampler should always be used when ever exact IMH can. 

2. When performing variable selection use the rejection sampler when n is close to k, 

k is large and use Zellner’s prior with c = n, β~  = 0. Choose the value of τ in the 

constant Bernoulli prior as required. 
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3. If a maximizable expression for the ratio of a posterior to a proposal distribution 

can be obtained, then we may use empirical estimates of those parameters as 

sampling progresses to improve the efficiency of rejection sampling. 

 

Future Work 

 

We now highlight some avenues for future research that have arisen as a consequence of 

the work presented in this thesis.  

 

1. Determine if a monotone Gibbs sampler for error distributions other than the 

Gaussian, can be constructed for BMA in linear regression. 

2. Alternative perfect sampling methods to those discussed in this thesis for joint 

posteriors. Joint posterior of interest in Bayesian linear regression may include for 

example, the joint posterior for variable selection and outlier detection. 

3. Determine if out-of-sample prediction under suitable conditions, such as large n 

and an orthogonal design matrix, is competitive with out-of-sample prediction 

using X. 

4. Determine if simulated tempering can be more efficient than the rejection sampler 

in chapter 5. 

5. Extend a rejection sampler (or other perfect sampling method) to the marginal 

posterior for γ forβ~ ≠ 0. 

6. Conduct a literature review for suitable posteriors where solutions of the starting 

point for exact IMH, is available as a function of the parameters of the proposal 

distribution. This will allow the rejection sampler to be adapted for increased 

efficiency. 

7. Investigate in detail, the relationship between rejection sampling and Fill’s 

algorithm.  

8. Examine if perfect sampling within a larger Gibbs chain (Metropolis within Gibbs 

for example) provides any improvement to convergence and/or inference. 
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In summary, from a theoretical standpoint perfect sampling is an elegant and appealing 

method to generate exact i.i.d. sample points from posterior distributions in Bayesian 

analysis. However, practical considerations complicate the desire to use perfect sampling 

as a standard tool. First of all, constructing a perfect sampling algorithm for a specific 

problem can be difficult at best, and impossible at worst. The rate of convergence of the 

underlying MC, dictates the distribution of geometric waiting times for generating perfect 

samples, and so may only be as efficient as the underlying MC. Perfect sampling 

algorithms typically require greater computing effort, both in terms of calculation and 

memory. The main disadvantage with MCMC is the requirement to assess the burn-in 

period, which perfect sampling removes the need for. Thus, perfect sampling with all its 

theoretical appeal is likely to be a sought after sampling method for some time to come. 

In recent times perfect sampling has received less attention with a shift towards adaptive 

MCMC methods; however, perfect sampling is a topic well worth the research, despite 

the potential difficulties.  



 

APPENDIX 

APPENDIX A: Probability Distributions 

We omit the continuous uniform and discrete densities, and provide those probability 

distributions that are of particular relevance to the work in this thesis. 

Bernoulli 

Notation: X ~ Br( p ) 

Form: )()1()( }1,0{
1 xppxp xx I−−=  

Conditions: 0 ≤ p ≤ 1. 

 

Beta 

Notation: X ~ Be( α, β ) 

Form: )()1(
)()(
)()( ]1,0[

11 xxxxp I−− −
ΓΓ
+Γ

= βα

βα
βα  

Conditions:  α, β  > 0. 

 

Binomial 

Notation: X ~ Bi( n, p ) 

Form: )()1()( },...,0{ xpp
x
n

xp n
xnx I−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

Conditions: 0 ≤ p ≤ 1, ,...}2,1{∈n .  

 

Geometric 

Notation: X ~ Ge( p ) 

Form: )()1()( ,...}2,1{
1 xppxp x I−−=  

Conditions: 0 ≤ p ≤ 1. 

 

Inverse-Gamma 

Notation: X ~ IG( α, β ) 
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Form: )()/exp(
)(

)( ),0[
)1( xxxxp +∞

+− −
Γ

= Iβ
α

β α
α

 

Conditions:  α, β  > 0. 

 

Normal 

Notation: X ~ Np( θ, Σ  ) 

Form: [ ])()(5.0exp||)2()( 15.02/ θxΣθxΣx −−−= −−− Tpp π  

Conditions: Σ is a p by p positive-definite symmetric matrix;  x, θ  ∈  Rp. 

 

Poisson 

Notation: X ~ Po( λ ) 

Form: )(
!

)( ,...}1,0{ x
x

exp
x

I
λλ−

=  

Conditions:  λ  > 0. 

 

Student-t 

Notation: X ~ Stp( v, θ, Σ ) 

Form: 
⎟
⎠
⎞

⎜
⎝
⎛ +

−−

⎥
⎦

⎤
⎢
⎣

⎡ −−
+

Γ+Γ
=

21

2/

)()(1
)(||

)2/(/)2/)(()(

pv
T

p vv
vpvp θxΣθx

Σ
x

π
 

Conditions: v > 0, Σ is a p by p positive-definite symmetric matrix;  x, θ  ∈  Rp. 
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APPENDIX B: Derivation of Posteriors 
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B.2 Zellner’s Prior: 
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Posterior Predictive distribution: 

222 ),,,|(),,,,~,|~(),,,,~|~( σσσ dcfcfcf ∫= γXyγyXXyγyXXy where 
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B.3 Jeffreys Prior: 
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Derivation: 

Jeffreys prior is obtained from the following relation: 
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Where I is the expected Fisher Information matrix and H is the Hessian matrix. The log 
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Now taking the negative expectation: 

22

32

22

22

22

)(2

)(2
2

)(
),(

σ

σ
σσ

σ
σ

n

nn

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
− γβlE

 

2

4

22

2

2

2

3
)(

),(

σ

σ
σσ

σ
σ

n

nn

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
− γβlE

 

 

Cross Products for βj and σ 2: 

0

)(
)(

1

)(
)(

1
)(
),(

22

222

22

=

−=

⎥
⎦

⎤
⎢
⎣

⎡
−−−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂

∂
−

γγγγγ

γγγγ
γ

βXβXX

βXXyX
β

T

TT

j

σ

σσβ
σ

EE
l

 

0

)(2

)(2),(

3

3

2

=

−=

⎥⎦
⎤

⎢⎣
⎡ −
−

−=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂∂

∂
−

γγγγγ

γγγγ
γ

βXβXX

βXXyX
β

T

TT

j

σ

σσβ
σ

EE
l

 

Therefore: 



Appendix 199
 

),( 2σγβI = 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

2
2

2
0

01

σ
σ

n

T
γγ XX

 

 

),( σγβI = ⎥
⎦

⎤
⎢
⎣

⎡

n

T

20
01

2
γγ XX

σ
 

and so: 

)3(2

22)1(22

)(||
2

)(
2

||)(|),(|

+−

−+−

=

=

γ

γ

σ

σσσ

qT

Tq

n

n

γγ

γγγ

XX

XXβI
, 

and 

)2(2

12)1(2

)(||2

)(2||)(|),(|
+−

−+−

=

=
γ

γ

σ

σσσ
qT

Tq

n

n

γγ

γγγ

XX

XXβI
. 

Hence, 

2/)3(22/1

22

)(||

|),(|),(
+−∝

∝

γσ

σσ
qT

Jf

γγ

γγ

XX

βIβ
 

and 

)2(2/1 )(||

|),(|),(
+−∝

∝

γσ

σσ
qT

Jf

γγ

γγ

XX

βIβ
 

Priors: 

∝),|,( 2 Xγβγ σf 2)(
γq

p
− ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+
− 1

2
1

22
1

)(||
γ

σ
q

T
γγ XX , with 1)( ∝γf  

Posterior for γ: 

),|( Xyγf  ∫ ∫= 22 ),|,,( σσ ddf γγ βXyβγ  

 ∫ ∫∝ 222 )(),|,(),,,|( σσσ ddggf γγγ βγXγβXβγy  

 2)(
γq

p
−

∝ 2
1

|| γγ XXT { } 2
1

2
1

22 )(),( σσσ
γ

dd
q

nn

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−

∫ ∫ γγγ βIβXN  



200  Appendix
 

 
2)(
γq

p
−

∝ 2
1

|| γγ XXT ∫ ∫
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−− γγγγγ ββXyβXy dT )()(

2
1exp 2σ

... 

... 2
1

2
1

2 )( σσ
γ

d
qn

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
−

 
2)(
γq

p
−

= 2
1

|| γγ XXT ∫ ∫
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −+− γγγγγγγ βyXββXXβyy dTTTTT )2(

2
1exp 2σ

... 

... 2
1

2
1

2 )( σσ
γ

d
qn

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
−

 

2)(
γq

p
−

= 2
1

|| γγ XXT ... 

... ∫ ∫
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−+−− γγγγγγγγ βββXXββyHyyy dTTTT ))ˆ()ˆ((

2
1exp 2σ

... 

... 2
1

2
1

2 )( σσ
γ

d
qn

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
−

 

2)(
γq

p
−

∝ 2
1

|| γγ XXT ∫ ∫
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−− γγγγγγγ βββXXββ dTT )ˆ()ˆ(

2
1exp 2σ

... 

... 2
2

1
2

1

2 )(
2

1exp)( σ
σ

σ
γ

dTT

qn

⎥⎦
⎤

⎢⎣
⎡ −−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ++
−

yHyyy γ

 
2)(
γq

p
−

∝ 2
1

|| γγ XXT 2
1

12 |)(|)2( −
γγ XXT

qγ

π ... 

... 2
2

1
22 )(

2
1exp)( σ
σ

σ dTT
n

⎥⎦
⎤

⎢⎣
⎡ −−

−−

∫ yHyyy γ

 2
2

)(
2

n
TT

q

p −
−

−⎟
⎠
⎞

⎜
⎝
⎛∝ yHyyy γ

γ

π
 

 

Joint posterior for β and σ 2: 

),,|,( 2 Xyγβγ σf  ),,|(),,,|( 22 XyγXyγβγ σσ ff=  

 ))(,ˆ( 12
1

−
+= γγγ XXβN T

q σ
γ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

2
,

2
yHyyy

IG γ
TTn  

Posterior Predictive distribution: 

222 ),,|(),,,~,|~(),,,~|~( σσσ dfff ∫= γXyγyXXyγyXXy  where 

γγγ βγXyβγXβyγyXXy dfff ∫= ),,,|(),~,,|~(),,,~,|~( 222 σσσ  for the newly observed data: 



Appendix 201
 

),~(~,~,|~ 22
mm IN σσ γγγγ βXXβy , hence εσ~~~ += γγβXy  where ),0(~~

mmN Iε , and for the posterior for β we 

have ))(,ˆ(~,,,| 12
1

2 −
+ γγγγ XXβγXyβ T

qN σσ
γ

 hence σε+= γγ ββ ˆ  where ))(,0(~ 1
1

−
+ γγ XXT

qN
γ

ε . 

It follows: y~ )~~(ˆ~~)ˆ(~ εεσεσσε ++=++= γγγγγ XβXβX , therefore: 

])~)(~[,ˆ~(~),,,~,|~( 122
γγγγγγ XXXXIβXγyXXy −+ TT

mmNf σσ  

),,,~|~( γyXXyf  222 ),,|(),,,~,|~( σσσ dff∫= γXyγyXXy  

 ])~)(~[,ˆ~( 12
γγγγγγ XXXXIβX −+= ∫ TT

mmN σ 2

2
,

2
. σdnGI

TT

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ − yHyyy γ  

 ⎥⎦
⎤

⎢⎣
⎡ −+−−∝ −−−∫ )ˆ~~(]~)(~[)ˆ~~(

2
1exp)( 11

2
2/2

γγγγγγγγ βXyXXXXIβXy TT
m

Tm

σ
σ ... 

           ... 2
2

12/2

2
1exp)( σ
σ

σ dTTn
⎥⎦
⎤

⎢⎣
⎡ −−−− yHyyy γ  

 [ ] 2/)(1 )ˆ~~](~)(~[)ˆ~~(
mnTTTT

m
T +−− −+−+−∝ yHyyyβXyXXXXIβXy γγγγγγ γγγ  

 
2/)(11

1
)(

)ˆ~~(]~)(~[)ˆ~~(
mn

TT

TT
m

T

n
In

+−
−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−

−+−
∝

yHyyy
βXyXXXXβXy

γ

γγγγγγγγ  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
= − ]~)(~[

)(
,ˆ~, 1

γγγγ
γ

γγ XXXXI
yHyyy

βX TT
m

TT

n
nT  

 
 



202  Appendix
 

APPENDIX C: Datasets 

Ozone Data 

Response: Ozone concentration (ppm) 

[ k, n ]: [ 8, 80 ] 

Size of Γ: 256 

Description : Ozone concentration at Upland, CA, USA. 

Source: R Software, Package {forward} 

Predictors:  

x1: Temperature F (max for the day) x5: Vandenburg 500 millibar height (m) 

x2: Inversion base height, feet x6: Humidity, percent 

x3: Daggett pressure gradient (mm Hg) x7: Inversion base temperature, degrees F 

x4: Visibility (miles) x8: Wind speed, mph 

 

Description/Comments:  

This data set consist of the first 80 observations from a data set containing up to 360 

observations from Breiman, L and Friedman, J. (1985), “Estimating Optimal 

Transformations for Multiple Regression and Correlation”, Journal of the American 

Statistical Association, 80, 580-598. We use log(ozone) as y. 

References:  

Atkinson, A.C. and Riani, M. (2000), Robust Diagnostic Regression Analysis, First 

Edition. New York: Springer, Table A.7. 

 

Physical Data 

Response: Mass (kg) 

[ k, n ]: [ 10, 22 ] 

Size of  Γ: 1024 

Source: http://www.statsci.org/data/oz/physical.txt 

Predictors:  

x1: Forearm (Maximum circumference) x6: Calf (Maximum circumference of calf) 

x2: Bicep (Maximum circumference) x7: Height (Height from top to toe) 
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x3: Neck (Distance around neck, 

approximately halfway up) 

x8: Waist (Distance around waist, 

approximately trouser line) 

x4: Chest (Distance around chest directly 

under the armpits) 

x9: Head (Circumference of head at eye 

level) 

x5: Shoulder (Distance around shoulders, 

measured around the peak of the shoulder 

blades) 

x10: Thigh (Circumference of thigh, 

measured halfway between the knee and 

the top of the leg) 

 

Description/Comments:  

The weight and various physical measurements for 22 male subjects aged 16 - 30 were 

recorded. Subjects were randomly chosen volunteers, all in reasonable good health. 

Subjects were requested to slightly tense each muscle being measured to ensure 

measurement consistency. All predictors are measurements in cm. There was no need to 

log transform the response variable the residuals are very well behaved. 

References:  

Larner, M. (1996). Mass and its Relationship to Physical Measurements. MS305 Data 

Project, Department of Mathematics, University of Queensland. 

 

Bodyfat Data 

Response: Percentage bodyfat 

[ k, n ]: [ 13, 250 ] 

Size of  Γ: 8192 

Source: http://www.amstat.org/publications/jse/v4n1/datasets/fat.dat 

Predictors: 

x1: Age (years) x8: Thigh Circumference (cm) 

x2: Weight (pounds) x9: Knee Circumference (cm) 

x3: Height (inches) x10: Ankle Circumference (cm) 

x4: Neck Circumference (cm) x11: Extended Biceps Circumference (cm) 

x5: Chest Circumference (cm) x12: Forearm Circumference (cm) 

x6: Abdomen Circumference (cm) x13: Wrist Circumference (cm) 

x7: Hip Circumference (cm)  
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Description:  

Percentage of body fat estimated for 251 men using an underwater weighing technique. 

The logit transformation was used for y and the negative result truncated to zero was 

removed.  

References:  

Johnson, W. R. (1996) Fitting Percentage of Body Fat to Simple Body Measurements. 

Journal of Statistics Education Vol. 4 (1).  

 

U.S. Crime Data 

Response: Rate of crime per head of population in US states 

[ k, n ]: [ 15, 47 ] 

Size of  Γ: 32768 

Source: R Software, Package {MASS} 

Predictors: 

x1: percentage of males aged 14-24 x9: number of nonwhites per 1000 people 

x2: indicator variable for a southern state x10: unemployment rate: urban males 14-24 

x3: mean years of schooling x11: unemployment rate: urban males 35-39 

x4: police expenditure in 1960 x12: gross domestic product per head 

x5: police expenditure in 1959 x13: income inequality 

x6: labor force participation rate x14: probability of imprisonment 

x7: number of males per 1000 females  x15: average time served in state prisons 

x8: state population  

 

Description:  

Data set records the crime rate in 47 U.S. states for various demographic predictors. All 

explanatory variables except x2 were log transformed. 

References:  

The U.S. crime data has been analyzed often in the literature for variable selection such 

as Cripps et al (2006) and Liang et al (2008). It was first presented and analyzed in: 

Vandaele, W. (1978) “Participation in illegitimate activities; Ehrlich revisited,” In: 
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Blumstein, A., Cohen, J., Nagin, D. (Eds), Deterrence and Incapacitation. National 

Academy of Science Press, Washington, DC, 270 – 335. 

 

Body Measurement Data 

Response: Weight (in kg) 

[ k, n ]: [ 24,  507] 

Size of  Γ: 16777216 

Source: http://www.sci.usq.edu.au/staff/dunn/Datasets/applications/biology/body.dat

Predictors: 

x1: Biacromial diameter (cm) x13: Navel girth (cm) 

x2: Biiliac diameter (pelvic breadth) (in cm) x14: Hip girth (cm) 

x3: Bitrochanteric diameter (cm) x15: Thigh girth (cm) 

x4: Chest depth (cm) x16: Bicep girth (cm) 

x5: Chest diameter (cm) x17: Forearm girth (cm) 

x6: Elbow diameter (cm) x18: Knee girth (cm) 

x7: Wrist diameter (cm) x19: Calf girth (cm) 

x8: Knee diameter (cm) x20: Ankle girth (cm) 

x9: Ankle diameter (cm) x21: Wrist girth (cm) 

x10: Shoulder girth (cm) x22: Age (years) 

x11: Chest girth (cm) x23: Height (cm) 

x12: Waist girth (cm) x24: Gender; 1 for males and 0 for females 

 

Description:  

The data give 21 body dimension measurements as well as age, weight, height, and 

gender on 507 individuals. The 247 men and 260 women were primarily individuals in 

their twenties and thirties, with a scattering of older men and women, all exercising 

several hours a week.  

References:  

Grete Heinz, Louis J. Peterson, Roger W. Johnson, and Carter J. Kerk. Exploring 

relationships in body dimensions. Journal of Statistics Education, Volume 11, Number 2.  
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Baseball Data 

Response: Salaries ($1000) of 337 Baseball players in 1992 

[ k, n ]: [ 27, 333] 

Size of  Γ: 134,217,728 

Description: The 27 variables collected are performance statistics from 1991, no 

baseball pitchers are included. 

Source: http://www.amstat.org/publications/jse/v6n2/datasets.watnik.html 

Predictors:  

x1: batting average x15: runs/sos 

x2: on base percentage (obp) x16: hits/sos 

x3: runs scored (runs) x17: homeruns/sos 

x4: hits x18: rbi/sos 

x5: doubles x19: walks/sos 

x6: triples x20: obp/errors 

x7: homeruns  x21: runs/errors 

x8: runs batted in (rbi) x22: hits/errors 

x9: walks x23: homeruns/errors 

x10: strike outs (so) x24: sos*errors 

x11: stolen bases (sb) x25: sbs*obp 

x12: errors x26: sbs*runs 

x13: free-agent x27: sbs*hits 

x14: arbitration  

 
Description:  

Performance statistics were collected for Major league players excluding pitchers along 

with the following years salary. Per analysis done in the reference below we remove the 

influential outliers observations: 205 268 284 322, and log transform the response 

variable.  

References:  

M.R. Watnik (1998), "Pay for Play: Are Baseball Salaries Based on Performance", 

Journal of Statistics Education, Volume 6, number 2 
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APPENDIX D: Matlab Code 

We now list the main functions used in this research, we do not include code used in the 

summary and production of figures from the output results of these functions. For full 

details on input and output arguments see the relevant code. All main functions (listed 

below in alphabetical order) have been made stand alone, thus no call structure for the 

required sub-routines is required. This means all required sub functions that are not 

standard Matlab functions are contained therein. 

The functions in alphabetical order are: 

1. cRejection1.m 

2. cRejection2.m 

3. GibbsOSampler.m 

4. GibbsPerfect.m 

5. GibbsSampler.m 

6. gRejection.m 

7. Jeffrey.m 

8. ModelCheck.m 

9. Zellner.m 

 
function [sampc m par] = cRejection1(y,X,g,a,N) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Rejection sampler for the conditional distribution of c using Zellner’s  % 
%prior. The prior for c is the Hyper-G-n.                                 % 
%INPUT: y is the response vector                                          % 
%       X is the predictor matrix                                         % 
%       g is the chosen model                                             % 
%       a is the hyper-hyper-parameter for the hyper-G-n prior            % 
%       N is the number of samples to be generated                        % 
%OUTPUT:samp is N i.i.d samples from the required conditional posterior   % 
%       for c.                                                            % 
%       m is the N waiting times to generate each sample point            % 
%       par is the a and b parameters of an I.G. distribution that        % 
%         approximates the conditional posterior of c                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
n =length(y); v = 2/(a-2); count = 1; C1 = -(sum(g)/2); %constants 
C2 = y'*y; Xg = X(:,g==1); C3 = y'*Xg*inv(Xg'*Xg)*Xg'*y; C4 = -n/2; %constants 
cm = -(sum(g)*C2-n*C3)/(sum(g)*(C2-C3)); %maximum 
bound = ((cm+1)^C1)*((C2-(cm/(cm+1))*C3)^C4); %optimal bound 
while count <= N 
    steps = 1; %relative to the previous accepted point 
    check = 0; 
    while check == 0; 
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        vv = rand; 
        prp = -n*(((vv-1)^v)-1)/((vv-1)^v); %propose a new value 
        prmove = (C1*log(prp+1)+C4*log(C2-(prp/(prp+1))*C3))-log(bound); 
%acceptance probability 
        if rand <= exp(prmove) 
            sampc(count) = prp; %store accepted value 
            m(count) = steps; %store length of run for accepted value 
            check = 1; %sample point obtained 
        end 
        steps = steps + 1; 
    end 
    count = count + 1; %update sample count 
end 
par = gamfit(1./sampc); %calculate Inverse Gamma Approximation 
par = [par(1) 1/par(2)]; 
 
function [sampc m] = cRejection2(y,X,g,a,r,s,N) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Rejection sampler for the conditional distribution of c using Zellner’s  % 
%prior. The prior for c is the Hyper-G-n.                                 % 
%INPUT: y is the response vector                                          % 
%       X is the predictor matrix                                         % 
%       g is the chosen model                                             % 
%       a is the hyper-hyper-parameter for the hyper-G-n prior            % 
%       r and s are the required parameters for an I.G. approximation to  % 
%       the conditional posterior of c                                    % 
%       N is the number of samples to be generated                        % 
%OUTPUT:samp is N i.i.d samples from the required conditional posterior   % 
%       for c.                                                            % 
%       m is the N waiting times to generate each sample point            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
n =length(y); C1 = -(sum(g)/2); C2 = y'*y; Xg = X(:,g==1); count = 1; 
C3 = y'*Xg*inv(Xg'*Xg)*Xg'*y; C4 = -n/2; v = 2/(a-2); 
[cmv bb] = solvepolycm(C2,Xg,C3,n,g,a,r,s); 
cm = cmv(bb==max(bb)) 
bound = max(bb) %optimal bound 
while count <= N 
    steps = 1; %relative to the previous accepted point     
    check = 0;     
    while check == 0;         
        vv = rand;     
        prn = 1/gamrnd(r,1/s); %propose a new value         
        prp = (((prn+1)^(C1))*((C2-(prn/(prn+1))*C3)^(C4))*... 
              ((1+(prn/n))^(-a/2)))/((prn^-(r+1))*exp(-s/prn));     
        if rand <= (prp/bound)         
            sampc(count) = prn; %store accepted value             
            m(count) = steps; %store length of run for accepted value             
            check = 1; %sample point obtained         
        end         
        steps = steps + 1; 
    end     
    count = count + 1; %update sample count 
end 
 
function [cmv bb] = solvepolycm(A,Xg,B,n,g,a,v,w) 
%the w must be as the parameter for the IG 
q = sum(g)-1; 
%these are the polynomial coefficients 
r1=-A+B+q*A-q*B+a*A-a*B-2*v*A+2*v*B; 
r2=q*A*n+q*A-A*n+2*a*A-a*B-4*v*A+2*v*B+2*w*A-2*w*B+2*B-3*A-q*B*n-... 
    2*v*A*n+2*v*B*n; 
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r3=q*A*n-n*n*B-3*A*n+a*A-2*v*A+4*w*A-2*w*B+2*n*B-2*A-4*v*A*n+2*v*B*... 
    n+2*w*A*n-2*w*n*B; 
r4=-2*A*n-2*v*A*n+2*w*A-2*w*n*B+4*w*A*n; 
r5=2*w*A*n; 
cof = [r1 r2 r3 r4 r5]; cm = roots(cof); 
for j = 1:length(cm) 
    cmr(j) = isreal(cm(j));     
end 
cmv1 = cm(cmr==1); cmv = cmv1(cmv1>0); 
for i = 1:length(cmv);      
    bb(i) = (((cmv(i)+1)^(-(q+1)/2))*((A-(cmv(i)/(cmv(i)+1))*B)^(-... 
n/2))*((1+(cmv(i)/n))^(-a/2)))/((cmv(i)^-(v+1))*exp(-w/cmv(i))); 
end 
 
function [dec runtime] = GibbsOSampler(y,X,gstart,tau,penalty,shrink,N) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Perfect Gibbs sampler for Bayesian variable selection with an orthogonal % 
%design matrix W in linear regression using Zellner's prior or Jeffreys   % 
%prior with the binomial prior for gamma                                  % 
%INPUT: y is the n.1 response vector                                      % 
%       X is n.(k+1) design matrix                                        % 
%       gstart is the specified starting value for the Gibbs sampler, it  % 
%           must contain a 1 in the first position and be of length k+1,  %  
%           it may be obtained using the perfect sampler                  % 
%       tau is the choice of hyper-parameter in the constant Bernoulli    % 
%           prior (using tau = 0.5 corresponds to a uniform prior)        % 
%       penalty and shrink specify whether Jeffreys prior or Zellner's    % 
%           prior is used. For Jeffreys penalty corresponds to p = 2*pi*  % 
%           penalty with shrink = 1. For Zellner's prior penalty = (c+1)  % 
%           and shrink should be set to c/(c+1).                          % 
%       N is the number of samples to be generated                        % 
%OUTPUT:dec is an N.1 vector of samples represented in decimal form       % 
%       runtime is the required cputime to generate the N samples, memory % 
%           for output storage                                            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
t = cputime; 
[n k] = size(X); i = 1; samp = zeros(N,k);  
for l = 1:k; hats(l) = y'*X(:,l)*inv(X(:,l)'*X(:,l))*X(:,l)'*y; end 
A = [y'*y sqrt(penalty)*((1-tau)/tau) n/2 shrink]; 
samp(1,:) = ExactStart(hats,A,k); 
while i < N     
    i = i + 1;     
    g = samp(i-1,:); %take previous value 
    for j = 2:k %Gibbs sampler         
        [P1] = UpdateOrth(g,j,hats,A); %calculate the P(gi=1) 
        g(j) = rand <= P1; 
    end % for j = 2:k+1     
    samp(i,:) = g; %record updated vector as the next g vector 
end 
runtime = (cputime - t); 
dec = bin2dec(num2str(samp(:,2:k),'%1.f')); %turn vectors into dec values, can 
do a max of 52 values! 
 
function P1 = UpdateOrth(g,j,hats,A) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Update function for the conditional distribution of the posterior for    % 
%model probabilities                                                      % 
%INPUT: g is current binary vector                                        % 
%       j is the current component being updated                          % 
%       hats is the of individual Sums of Squares for each predictor      %  
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%       A is various constants as above n the binomial                    % 
%OUTPUT:P1 is the probability the component is = 1.                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
g0 = g; g0(j) = 0; g0hat = sum(hats(g0==1)); 
P1 = 1/(1+exp(log(A(2)) + A(3)*(log(1-((A(4)*hats(j))/(A(1)-(A(4)*g0hat))))))); 
 
 
function [dec bct runtime] = GibbsPerfect(y,X,tau,penalty,shrink,N) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Perfect Gibbs sampler for Bayesian variable selection with an orthogonal % 
%design matrix W in linear regression using Zellner's prior or Jeffreys   % 
%prior with the binomial prior for gamma                                  % 
%INPUT: y is the n.1 response vector                                      % 
%       X is n.(k+1) design matrix                                        % 
%       tau is the choice of hyper-parameter in the constant Bernoulli    % 
%           prior (using tau = 0.5 corresponds to a uniform prior)        % 
%       penalty and shrink specify whether Jeffreys prior or Zellner's    % 
%           prior is used. For Jeffreys penalty corresponds to p = 2*pi*  % 
%           penalty with shrink = 1. For Zellner's prior penalty = (c+1)  % 
%           and shrink should be set to c/(c+1).                          % 
%       N is the number of samples to be generated                        % 
%OUTPUT:dec is an N.1 vector of samples represented in decimal form       % 
%       runtime is the required cputime to generate the N samples, memory % 
%           for output storage                                            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
t = cputime; [n k] = size(X); v = 0; samp = zeros(N,k); bct = zeros(N,1); 
for l = 1:k; hats(l) = y'*X(:,l)*inv(X(:,l)'*X(:,l))*X(:,l)'*y; end 
A = [y'*y sqrt(penalty)*((1-tau)/tau) n/2 shrink]; 
while v <= N      
v = v + 1;  
m = 1;  
k1 = k - 1;  
g1 = ones(1,k);  
g0 = [1 zeros(1,k1)];  
u = rand(k1,m);  
while ~isequal(g0,g1)     
    u = [rand(k1,m) u]; m = 2*m; g1 = ones(1,k); g0 = [1 zeros(1,k1)];     
    for i = 1:m % iterate from the past 
       for j = 2:k % Gibbs sampler 
            P10 = UpdateOrth(g0,j,hats,A);              
            g0(j) = u(j-1,i) < P10;             
            if g0(j) == 1;                  
                g1(j) = 1; % by monotonicity: if g0(j) is 1, so must g1(j)                 
            else P11 = UpdateOrth(g1,j,hats,A);                  
                g1(j) = u(j-1,i) < P11;             
            end 
       end % for j = 2:k 
    end % for i = 1:m 
end % while ~isequal(g0,g1) 
samp(v,:) = g0; bct(v) = m; 
end %runtime loop 
runtime = (cputime - t);  
dec = bin2dec(num2str(samp(:,2:k),'%1.f')); %turn vectors into dec values, can 
do a max of 52 values! 
 
function P1 = UpdateOrth(g,j,hats,A) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Update function for the conditional distribution of the posterior for    % 
%model probabilities                                                      % 
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%INPUT: g is current binary vector                                        % 
%       j is the current component being updated                          % 
%       hats is the of individual Sums of Squares for each predictor      %  
%       A is various constants as above n the binomial                    % 
%OUTPUT:P1 is the probability the component is = 1.                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
g0 = g; g0(j) = 0; g0hat = sum(hats(g0==1)); 
P1 = 1/(1+exp(log(A(2)) + A(3)*(log(1-((A(4)*hats(j))/(A(1)-(A(4)*g0hat))))))); 
 
function [dec runtime] = GibbsSampler(y,X,gstart,tau,penalty,shrink,N) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Gibbs sampler for Bayesian variable selection in linear regression using % 
%Zellner's prior or Jeffreys prior with the binomial prior for gamma.     % 
%INPUT: y is the n.1 response vector                                      % 
%       X is n.(k+1) design matrix                                        % 
%       gstart is the specified starting value for the Gibbs sampler, it  % 
%           must contain a 1 in the first position and be of length k+1   % 
%       tau is the choice of hyper-parameter in the constant Bernoulli    % 
%           prior (using tau = 0.5 corresponds to a uniform prior)        % 
%       penalty and shrink specify whether Jeffreys prior or Zellner's    % 
%           prior is used. For Jeffreys penalty corresponds to p = 2*pi*  % 
%           penalty with shrink = 1. For Zellner's prior penalty = (c+1)  % 
%           and shrink should be set to c/(c+1).                          % 
%       N is the number of samples to be generated                        % 
%OUTPUT:dec is an N.1 vector of samples represented in decimal form       % 
%       runtime is the required cputime to generate the N samples, memory % 
%           for output storage                                            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
t = cputime; %start recording the time for the Gibbs sampler  
[n k] = size(X); %k includes the intercept 
samp = zeros(N,k); %storage 
samp(1,:) = gstart; %first row of sample is starting gamma vector 
vv = X'*y; V = X'*X; A = [y'*y n/2 sqrt(penalty)*((1-tau)/tau) shrink]; 
%constants 
i = 1; %track sample size  
while i < N %running time 
    i = i + 1; 
    g = samp(i-1,:); %take previous value 
    for j = 2:k %Gibbs sampler 
        [P1] = Update(V,g,j,A,vv); %calculate the P(gi=1) 
        g(j) = rand <= P1; 
    end % for j = 2:k+1 
    samp(i,:) = g; %record updated vector as the next g vector 
end 
runtime = (cputime - t); %record cputime not including conversion of g to dec 
dec = bin2dec(num2str(samp(:,2:k),'%1.f'));  
%turn vectors into dec values can do a max of 52 values! 
 
function [P1] = Update(V,g,j,A,vv) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Update function for the conditional distribution of the posterior for    % 
%model probabilities                                                      % 
%INPUT: g is current binary vector                                        % 
%       j is the current component being updated                          % 
%       hats is the of individual Sums of Squares for each predictor      %  
%       A is various constants as above n the binomial                    % 
%       vv is the covariance matrix for the full model                    % 
%OUTPUT:P1 is the probability the component is = 1.                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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g1 = g; g1(j) = 1; g0 = g; g0(j) = 0;  
Vg1 =inv(V(g1==1,g1==1)); Vg0 = inv(V(g0==1,g0==1)); 
P1 = 1/(1+exp(log(A(3)) + A(2)*(log(A(1)-A(4)*vv(g1==1)'*Vg1*vv(g1==1))-... 
    log(A(1)-A(4)*vv(g0==1)'*Vg0*vv(g0==1))))); 

 
function [GPC Low GS GS1] = OrthDesign(Xo,y) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Gibbs sampler for Bayesian variable selection in linear regression using % 
%Zellner's prior or Jeffreys prior with the binomial prior for gamma.     % 
%INPUT: y is the n.1 response vector                                      % 
%       X is n.(k+1) design matrix                                        % 
%       gstart is the specified starting value for the Gibbs sampler, it  % 
%           must contain a 1 in the first position and be of length k+1   % 
%       tau is the choice of hyper-parameter in the constant Bernoulli    % 
%           prior (using tau = 0.5 corresponds to a uniform prior)        % 
%       penalty and shrink specify whether Jeffreys prior or Zellner's    % 
%           prior is used. For Jeffreys penalty corresponds to p = 2*pi*  % 
%           penalty with shrink = 1. For Zellner's prior penalty = (c+1)  % 
%           and shrink should be set to c/(c+1).                          % 
%       N is the number of samples to be generated                        % 
%OUTPUT:dec is an N.1 vector of samples represented in decimal form       % 
%       runtime is the required cputime to generate the N samples, memory % 
%           for output storage                                            % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
[n k] = size(Xo); X = Xo(:,2:k); Int = ones(n,1)./sqrt(n); 
for i = 1:k-1; X(:,i) = X(:,i)-mean(X(:,i)); end %centre every predictor 
 
%%%%%Principal Components%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
D = diag(diag(X'*X).^0.5); A = D*(X'*X)*D; [U V] = eig(A); PC1 = X*(D*U);  
%U is eigen vectors, V is eigen values. 
for i = 1:(k-1); PC2(:,i)=PC1(:,i)./norm(PC1(:,i)); end; GPC = [Int PC2]; 
 
%%%%%SVD to Lowdin%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
[M N K] = svd(X,0); SV = [Int M]; %economy size decomposition 
ASV = (N*K'); Low = M*K'; Low = [Int Low]; 
 
%%%%%Gram-Schmidt%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
[GS1] = cgrscho1(y,X); GS1 = [Int GS1]; %method 1 
[GS2] = cgrscho2(y,X); GS2 = [Int GS2]; %method 2 
 
function [A] = cgrscho1(y,X) 
 
% Created by A. Trujillo-Ortiz, R. Hernandez-Walls, A. Castro-Perez 
%            and K. Barba-Rojo 
%            Facultad de Ciencias Marinas 
%            Universidad Autonoma de Baja California 
%            Apdo. Postal 453 
%            Ensenada, Baja California 
%            Mexico. 
%            atrujo@uabc.mx 
% Copyright. September 28, 2006. 
 
[mag pos] = sort(abs(corr(y,X)),'descend');  
X = X(:,pos); %re-ordering of X based on correlations 
A = X; [m n]=size(A); 
for j= 1:n 
    R(1:j-1,j)=A(:,1:j-1)'*A(:,j); 
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    A(:,j)=A(:,j)-A(:,1:j-1)*R(1:j-1,j); 
    R(j,j)=norm(A(:,j)); 
    A(:,j)=A(:,j)/R(j,j); 
end 
return, 
 
function [A] = cgrscho2(y,X) 
 
% Created by A. Trujillo-Ortiz, R. Hernandez-Walls, A. Castro-Perez 
%            and K. Barba-Rojo 
%            Facultad de Ciencias Marinas 
%            Universidad Autonoma de Baja California 
%            Apdo. Postal 453 
%            Ensenada, Baja California 
%            Mexico. 
%            atrujo@uabc.mx 
% Copyright. September 28, 2006. 
% This copyright does not include the sub-routine orderyX 
[X order] = orderyX(y,X); X = X(:,order); %re-order X based on correlation 
%with y and X 
A = X; [m n]=size(A); 
for j= 1:n 
    R(1:j-1,j)=A(:,1:j-1)'*A(:,j); 
    A(:,j)=A(:,j)-A(:,1:j-1)*R(1:j-1,j); 
    R(j,j)=norm(A(:,j)); 
    A(:,j)=A(:,j)/R(j,j); 
end 
return, 
 
function [Xnew order] = orderyX(y,X) 
 
[n k] = size(X); [mag pos] = sort(abs(corr(y,X)),'descend'); 
Xnew(:,1) = X(:,pos(1)); %the most correlated variable with y 
order(1) = pos(1); mag = mag(2:k); pos = pos(2:k); %remove the first predictor 
chosen 
for i = 2:(k-1) 
    stage2 = abs(corr(Xnew(:,i-1),X(:,pos))); %the correlation between the most 
correlated variable with y and repeat this in a loop for k. 
    d = sqrt((stage2.^2)+((1-mag).^2)); %vector operations for distances  
    ind = find(d==min(d)); 
    Xnew(:,i) = X(:,pos(ind)); %make the next predictor that which minimizes 
the distance to 0,1 or min corr with previous Xnew and max corr with y    
    order(i) = pos(ind); 
    pos = setdiff(pos,pos(ind)); %need to update pos vector by removing the 
most recent added variable    
    mag = setdiff(mag,mag(ind));  
end 
Xnew(:,k) = X(:,pos); %whats left not working!!!!!! 
order(:,k) = pos; 
 
function [samp count] = gRejection(y,X,penalty,shrink,tau,M) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Rejection sampler for the conditional distribution of c using Zellner’s  % 
%prior. The prior for c is the Hyper-G-n.                                 % 
%INPUT: y is the response vector                                          % 
%       X is the predictor matrix                                         % 
%       tau is the choice of hyper-parameter in the constant Bernoulli    % 
%           prior (using tau = 0.5 corresponds to a uniform prior)        % 
%       penalty and shrink specify whether Jeffreys prior or Zellner's    % 
%           prior is used. For Jeffreys penalty corresponds to p = 2*pi*  % 
%           penalty with shrink = 1. For Zellner's prior penalty = (c+1)  % 
%           and shrink should be set to c/(c+1).                          % 
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%       M is the number of samples to be generated                        % 
%OUTPUT:samp is N i.i.d samples from the required conditional posterior   % 
%       for c.                                                            % 
%       count is the N waiting times to generate each sample point        % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
format long g;  
[n k1] = size(X); k = k1-1; d = 2^k; A = y'*y; XX = X'*X; BX = (X'*y); N = n/2; 
%constants 
for i = 1:k1     
Q(i)=(nchoosek(k,(i-1))*((penalty)^-(i/2)))*(tau^(i-1))*((1-tau)^(k-(i-1)));     
end; Q = Q./sum(Q); %calculate proposal density 
B = ((y'*y-shrink*y'*X*inv(X'*X)*X'*y)^-N); %compute bound 
cn = 0; v = 0; 
while cn < M     
    g = zeros(1,k); q = randsample(0:k,1,'true',Q);     
    if q > 0; g(randsample(1:k,q))=1; g = [1 g]; else; g = [1 zeros(1,k)]; end 
    %generate a proposal gamma 
    RSS = (BX(g==1)'*inv(XX(g==1,g==1))*BX(g==1)); %hat matrix     
    P = ((y'*y-shrink*RSS)^-N)/B;     
    if rand <= P         
        cn = cn + 1        
        samp(cn) = bin2dec(num2str(g(2:k1))); %store decimal         
        %samp(cn,:) = g; %can choose to store g requires more memory         
        count(cn) = v;         
        v = 0;         
    end     
    v = v + 1;     
end 
 
function [P Pqg Eqg Map Med Marg yBMA DIC] = Jeffrey(y,X,penalty,tau) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Posterior for gamma for Jeffreys prior with the binomial prior for qg.   % 
%INPUT: y is the n.1 response vector                                      % 
%       X is n.(k+1) design matrix                                        % 
%       tau is the choice of hyper-parameter in the constant Bernoulli    % 
%           prior (using tau = 0.5 corresponds to a uniform prior)        % 
%       penalty should be set p = 2*pi*(c+1) to mimic the penalty of      % 
%           Zellner's prior.                                              % 
%           and shrink should be set to c/(c+1).                          % 
%OUTPUT:P is the normalized posterior probability for eacg gamma          % 
%       Pqg is the posterior probability of the model sizes 0:k           % 
%       Eqg is the expected model size                                    % 
%       Map is maximum aposteriori estimate model                         % 
%       Med is the median probability model which incldues all predictors % 
%           with MIP > 0.5                                                % 
%       Marg are the MIP                                                  % 
%       yBMA is the model averaged fitted response                        % 
%       DIC is the model averaged DIC                                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
format long g; [n k1] = size(X); %constants 
k = k1-1; d = 2^k; C2 = log(penalty/(2*pi)); AA = y'*y; %constants 
P = zeros(1,d); S = P; Q = P; D = P; AIC = P; VV = P; %storage 
for i = 1:d %loop through models     
    g = [1 str2num(dec2bin(i-1,k)')']; %generate a single gamma vector to be 
evaluated     
    Xg = X(:,g==1);     
    S(i) = sum(g)-1; %the sum of gamma     
    bhat = inv(Xg'*Xg)*Xg'*y; 
    Q(i) = log(AA-y'*Xg*bhat); %the log of the quadratic term     
    sighat = exp(Q(i))/(n-2); %the posterior expectation     
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    DIC(i) = -2*(sum(log(normpdf(y,Xg*bhat,sqrt(sighat))))) + 2*S(i) + 4; %This 
is also DIC 
end %end loop which has generated two vectors of values one for each quadratic 
term in 
%the posterior and the second for the sum of the gamma vector. 
for i = 1:d; B = ((((S(i)-S(j~=i))/2)*C2)+N*(Q(i)-Q(j~=i)));  
    P(i) = ((1 + sum(exp(B)))^-1)*((tau^S(i))*((1-tau)^(k-S(i))));  
end; clear Q; 
P = P./sum(P); %renormalize after adding the proportional prior 
for i = 1:d; yhat(:,i) = P(i).*yhat(:,i); end %multiply each models predicted 
values  
%by the posterior probability 
dec = find(P==max(P)); Map = [1 str2num(dec2bin(dec-1,k)')']; %find the MAP 
Marg = Margprob(P,k); %Marginal inclusion probabilities this includes 1 for the 
intercept 
Med = [1 Marg>=0.5]; %calculate the median model 
for i = 1:k+1; Pqg(i) = sum(P(S==(i-1))); end %Posterior for model size 
yBMA = sum(yhat,2); rBMA = y - yBMA; %the sum across rows and model averaged 
residuals 
Eqg = sum(P.*S); clear S 
for i = 1:k+1; Pqg(i) = sum(P(S==(i-1))); end 
DIC = sum(P.*DIC); 
 
function M = Margprob(P,k) 
 
Mat = zeros(2^k,k); for i = 1:2^k;  
Mat(i,:) = P(i)*[str2num(dec2bin(i-1,k)')']; end; M = sum(Mat); 
 
function [tails PC tailstats] = ModelCheck(y,X,P,shrink,N,a) 

 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Function for checking model adequacy in linear regression using tail     % 
%probabilities for the observations and statistics of y (min, max, median,% 
%std. dev.) and the predictive coverage.                                  % 
%INPUT: y is the n.1 response vector                                      % 
%       X is n.(k+1) design matrix                                        % 
%       P is the (2^k).1 vector of posterior probabilities.               % 
%       shrink specify whether Jeffreys prior or Zellner's prior is used. % 
%           For Jeffreys shrink = 1. For Zellner's prior shrink = c/(c+1).%                      
%       N is the number of samples to be generated for each model from the%                      
%           PPD to estimate tail prob for statistics of y.                % 
%       a is the tail probability for the (a/2), 1-(a/2) interval for     % 
%           assessing predictive coverage. 
%OUTPUT:tails is an N.1 vector of tail probabilities model averaged for   % 
%           each observation.                                             % 
%       PC is the modelaaveraged predictive coverage under the PPD.       % 
%       tailtstats are the tail probabilities for the min, max, median and% 
%           std. dev. of y.                                               % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
[n k1] = size(X); k = k1 -1; 
for i = 1:length(P)     
    g = [1 str2num(dec2bin(i-1,k)')'];     
    [tprob PCi(i) pval] = PPD(y,X,g,N,shrink,a);     
    tprob1(:,i) = P(i).*tprob;     
    pval1(i,:) = P(i).*pval;     
end 
tails = sum(tprob1,2); 
tailstats = sum(pval1,1); 
PC = sum(PCi.*P)*100; 
 
function [tprob PCi pval] = PPD(y,X,g,N,shrink,a) 
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format long g; n = length(y); Ig = eye(n); Xg = X(:,g==1); 
Hg = shrink*Xg*inv(Xg'*Xg)*Xg'; sig = ((y'*(Ig-Hg)*y)/n)*(Ig + Hg); mu = Hg*y;     
ytrans = (y - mu)./(sqrt(diag(sig))); %transform to a standard t r.v. 
PCi = sum(abs(ytrans) <= tinv(1-(a/2),n))/n; 
tprob = tcdf(ytrans,n); %from -inf to x so the left hand tail 
tprob(find(tprob>=0.5)) = 1-tprob(find(tprob>=0.5));  
Y = MVTpRnd(n,mu,sig,N); %simulate from the PPD 
sumin = min(Y); A = min(y); pval(1) = min(sum(sumin<=A)/N,sum(sumin>=A)/N);  
sumax = max(Y); B = max(y); pval(2) = min(sum(sumax<=B)/N,sum(sumax>=B)/N);  
sumed = median(Y); C = median(y); pval(3) = 
min(sum(sumed<=C)/N,sum(sumed>=C)/N);    
sumstd = std(Y); D = std(y); pval(4) = min(sum(sumstd<=D)/N,sum(sumstd>=D)/N);  
 
function Y = MVTpRnd(v,mu,sig,N) 
 
p = length(mu); Y = zeros(p,N); sig1 = zeros(p,p); sig1 = diag(diag(sig)); 
X = csmvrnd(zeros(p,1),sig1,N); s = sqrt(chi2rnd(v,N)./v); 
for i = 1:N; Y(:,i) = (X(i,:)./s(i))'+mu; end 
 
function [P Pqg Eqg Map Med Marg yBMA DIC] = Zellner(y,X,c,tau,dic,tol,v) 
 
%%%%%%%%%%%%%%%Jason Bentley (2008) University of Canterbury%%%%%%%%%%%%%%% 
%Posterior for gamma for Zellner's prior with the binomial prior for qg.  % 
%INPUT: y is the n.1 response vector                                      % 
%       X is n.(k+1) design matrix                                        % 
%       tau is the choice of hyper-parameter in the constant Bernoulli    % 
%           prior (using tau = 0.5 corresponds to a uniform prior)        % 
%       c choice of c in Zellner's prior                                  % 
%       dic is a ~=1, 1 option 1 = compute dic, ~=1 = do not compute DIC  % 
%       tol minimum error (standard deviation) for the simulation estimate% 
%           of deviance and DIC                                           % 
%       v is the numer of samples to generate in simulation of deviance   % 
%           between each check of the simulation error                    % 
%OUTPUT:P is the normalized posterior probability for eacg gamma          % 
%       Pqg is the posterior probability of the model sizes 0:k           % 
%       Eqg is the expected model size                                    % 
%       Map is maximum aposteriori estimate model                         % 
%       Med is the median probability model which incldues all predictors % 
%           with MIP > 0.5                                                % 
%       Marg are the MIP                                                  % 
%       yBMA is the model averaged fitted response                        % 
%       DIC is the model averaged DIC                                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
format long g; [n k1] = size(X); k = k1-1; d = 2^k; C1 = c/(c+1); %constants 
C2 = log(c+1); N = n/2; I = eye(n); j = 1:d; %constants 
P = zeros(1,d); S = P; Q = P; DIC = P; BIC = P; yhat = zeros(n,d); %storage 
for i = 1:d %loop through models     
    g = [1 str2num(dec2bin(i-1,k)')']; %generate a single gamma vector 
    Xg = X(:,g==1); %predictor matrix adjusted by gamma 
    Hg = Xg*inv(Xg'*Xg)*Xg'; %hat matrix  
    bhat = C1*inv(Xg'*Xg)*Xg'*y; 
    yhat(:,i) = Xg*bhat; 
    S(i) = sum(g)-1; %the sum of gamma 
    Q(i) = log(y'*(I-(C1*Hg))*y); %the log of the quadratic term   
    sighat = exp(Q(i))/(n-2); %the posterior expectation     
    VV(i) = -2*(sum(log(normpdf(y,Xg*bhat,sqrt(sighat)))));  
end %end loop which has generated two vectors of values one for each quadratic 
term in 
%the posterior and the second for the sum of the gamma vector. 
for i = 1:d; B = ((((S(i)-S(j~=i))/2)*C2)+N*(Q(i)-Q(j~=i)));  
    P(i) = ((1 + sum(exp(B)))^-1)*((tau^S(i))*((1-tau)^(k-S(i))));  
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end; clear Q; 
P = P./sum(P); %renormalize after adding the proportional prior 
for i = 1:d; yhat(:,i) = P(i).*yhat(:,i); end %multiply each models predicted 
values by the posterior probability 
dec = find(P==max(P)); Map = [1 str2num(dec2bin(dec-1,k)')']; %find the MAP 
Marg = Margprob(P,k); %Marginal inclusion probabilities this includes 1 for the 
intercept 
Med = [1 Marg>=0.5]; %calculate the median model 
for i = 1:k+1; Pqg(i) = sum(P(S==(i-1))); end %Posterior for model size 
yBMA = sum(yhat,2); %the sum across rows and model averaged residuals 
Eqg = sum(S.*P); clear S 
if dic == 1;[Dev] = PostExpDevZell(y,X,P,v,c,tol); else; dic = 'NA'; end 
%calculate Deviance 
pd = dev-sum(VV.*P); DIC = dev + pd; 
 
function M = Margprob(P,k)  
 
Mat = zeros(2^k,k); for i = 1:2^k;  
Mat(i,:) = P(i)*[str2num(dec2bin(i-1,k)')']; end; M = sum(Mat); 
 
function [Dev] = PostExpDevZell(y,X,P,n,c,tol) 
 
sd = 10; 
[D] = DevSimZell(y,X,P,c); 
while sd > tol  
for i = 1:n 
[Dev(i)] = DevSimZell(y,X,P,c); 
end 
D = [D Dev]; m = length(D);  
sd = sqrt((1/m)*((1/m)*sum(D.^2-mean(D)^2))); 
end 
Deviance = mean(D); 
 
function [Dev] = DevSimZell(y,X,P,c) 
 
[n k1] = size(X); k = k1 - 1; CDF = cumsum(P); 
g = PostGamSimX(CDF,k); 
Xg = X(:,g==1); bhat = inv(Xg'*Xg)*Xg'*y;   
B = ((y'*y)/2)-((c/(2*(c+1)))*y'*Xg*inv(Xg'*Xg)*Xg'*y); %beta parameter  
sig2sim = 1/gamrnd(n/2,B^-1,1,1); %simulate sigma2  
bhatsim = csmvrnd((c/(c+1))*bhat,((sig2sim*c)/(c+1))*inv(Xg'*Xg),1);  
Dev = -2*(sum(log(normpdf(y,Xg*bhatsim',sqrt(sig2sim))))); 
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APPENDIX E: Zellner’s Prior Additional DIC Figures 
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