
A Domain Specific Design Tool for Spacecraft System Behavior

Sravanthi Venigalla, Brandon Eames
Electrical & Computer Engineering

Utah State University, USA
{sravanthi.venigalla@aggiemail|beames@engineering}.usu.edu

Allan McInnes
Electrical & Computer Engineering

University of Canterbury, New Zealand
allan.mcinnes@canterbury.ac.nz

Abstract
Specification of spacecraft subsystem interactions is typically
carried out using informal diagrams and descriptions that can
obscure subtle ambiguities and inconsistencies. As a result, prob-
lems in the way subsystems are designed to interact may remain
undetected until the integration and test phase, when the cost of
change is high. Our Behavioral Analysis of Spacecraft Systems
(BASS) modeling tool provides a structured way to define space-
craft subsystem interfaces and interactions, and access to an un-
derlying formal model of interaction that allows the specified
interactions to be rigorously analyzed. The enforced consistency
of the diagrams produced by our tool and the analytical power of
the underlying formal model increases a developer’s ability to
discover and correct system design errors early in the develop-
ment process.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques – computer aided software
engineering; D.3.2 [Programming Languages]: Language Clas-
sifications – specialized application languages, D.3.1 [Program-
ming Languages]: Formal Definitions and Theory – syntax,
semantics.

General Terms Design, Languages, Verification.

Keywords Domain-Specific Language; Formal Verification;
Behavior; Spacecraft System Design

1. Introduction
Spacecraft systems design is the domain of systems engineers,

who are responsible for the high level design of not only com-
puter software and hardware, but the physical structure, thermal
properties, electrical wiring and harnessing, data communications,
orbit management, and spacecraft control. A primary challenge in
system-level spacecraft design is ensuring that the spacecraft
subsystems interact correctly to allow the spacecraft to achieve its
mission. For example, when a ground station commands the
spacecraft to begin taking science data from an onboard instru-
ment, that command may trigger a sequence of actions in which
the Command & Data Handling (CDH) subsystem instructs the
Attitude Determination & Control System (ADCS) to reorient the
spacecraft to point at an object of scientific interest, commands
the Power subsystem to supply power to the Payload, commands
the Payload to begin data sampling, and then collects and stores
the sampled science data for a later downlink.

Early in the design process, systems engineers typically de-
velop a simple, high-level system block diagram that shows the
partitioning of the system into subsystems, and the connectivity
between those subsystems. Separate documentation defines the
behavior of each spacecraft subsystem using simple state dia-

grams, tables, and textual descriptions of how the subsystems
respond to internal and external events. Spacecraft subsystem
design proceeds under the assumption that the combined behav-
iors specified for the subsystems will lead to the desired system
behavior, and that the subsystems can each be designed in relative
isolation as long as each subsystem adheres to the interface and
behavior specified for it. However, there is a lack of tool support
for capturing spacecraft system behavior specifications, and the
mixture of informal notations currently used by systems engineers
cannot be readily analyzed, making it difficult to check assump-
tions about the emergent system behavior until substantial re-
sources have been expended on subsystem design.

In this paper, we introduce BASS (Behavior Analysis for
Spacecraft Systems), a model based design tool that supports the
modeling and verification of system-level spacecraft behavior,
through the analysis of a composition of subsystem behavior
models. We focus on the BASS domain-specific visual modeling
language (Section 3), which is built upon the Generic Modeling
Environment (GME) [1],[2]. This language provides spacecraft-
specific modeling constructs that permit both system connectivity
and subsystem behavior descriptions to be captured in a single
hierarchical model, and provides a starting point from which to
gather user feedback on domain-specific modeling needs. A key
benefit of providing a language and tool support for describing
spacecraft system behavior is the ability to automatically map
visual models to an underlying mathematical semantics that per-
mits rigorous analysis. Our semantic model is based on the con-
cept of concurrency and process interaction, and is codified using
the CSP (Communicating Sequential Processes) process algebra
[3]. As part of the BASS project, we have developed a model
interpreter tool, which is responsible for translating the visual
models of spacecraft behavior into a CSP model that can be veri-
fied against a higher-level specification, or checked against user-
specified assertions or constraints. In Section 4 we briefly de-
scribe the model interpreter, and the overall toolflow within
which spacecraft system models can be constructed and verified.

2. Background

Spacecraft Systems

As with most complex systems, spacecraft designs are usually
partitioned into functionally distinct subsystems. Although the
exact names and functionality of the subsystems vary from or-
ganization to organization, unmanned spacecraft are typically
divided into some variation on the following subsystems:
• ADCS-- Attitude Determination & Control, responsible for

determining the direction the spacecraft is pointing, and for
adjusting that direction as needed

• CDH-- Command & Data Handling, consisting of the main
spacecraft computer system. CDH is responsible for manag-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35460681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ing spacecraft interactions with the ground station, as well as
collecting, logging and transmitting data

• Communications—Transmission and reception of commands
and data

• Power-- Consisting of the power generation (ex. solar pan-
els), storage (batteries) and distribution (wiring) facilities

• Payload-- Offering a mission-dependent subsystem, typically
involving some science based instrument or communication
device

• Propulsion-- The facilities to physically alter the spacecraft
velocity and/or position

• Structures & Mechanisms-- Physical support for the other
subsystems, and deployment of booms, antennas, and solar ar-
rays

• Thermal Control-- Regulation of the spacecraft thermal state

Both the behavior of individual subsystems and the interfaces

between the subsystems are extremely mission-dependent. Some
spacecraft omit subsystems that are unnecessary to their particular
mission.

The Generic Modeling Environment

GME is a tool developed at Vanderbilt University for supporting
the development and use of domain specific visual modeling lan-
guages. Each modeling language dictates a set of rules about the
types of parts available, containment relationships and inter-
object relations such as connectivity. These rules are codified in a
configuration file called a paradigm. Once a particular paradigm
has been loaded into GME, GME supports the editing of models
according to that paradigm. GME supports the partitioning of a
system into views called aspects, facilitating the separation of
concerns.

GME is packaged with a modeling paradigm, called Me-
taGME, which supports the creation of metamodels, or models of
modeling languages. With MetaGME, users can define a new
language which conforms to a particular engineering domain. A
translator tool produces a paradigm from a valid metamodel. The
metamodeling language is an extension of UML class diagrams,
and offers the flexibility to integrate concepts such as hierarchy,
inter-object relationships, object attributes and referencing into a
modeling language.

GME also offers multiple APIs or interfaces for creating trans-
lator tools called interpreters. GME allows an interpreter to ac-
cess the information captured by the user when drawing models.
Interpreters apply semantic translations, performing such tasks as
code generation, model-to-model transformations or model analy-
sis. Multiple language bindings, including C++ and Java are sup-
ported.

Communicating Sequential Processes

Communicating Sequential Processes (CSP) is a mathematical
theory of concurrency and interaction, in which interacting proc-
esses are modeled as event-transition systems that synchronize on
shared events. The fundamental objects from which CSP process
models are built are events, which are abstract symbolic represen-
tations of interactions. For example, a model of a financial trans-
action might consist of events that represent placing an order,
acknowledgement of the order, payment, providing change, and
handing over the purchased goods. Simple processes are built by
defining sequences of events, separated by the prefix operator →,
e.g.
SellEspresso =

espresso_order → order_cost!$3 →

receive_payment?p → make_change!(p - $3)

→ give_espresso → SKIP

CSP also provides a variety of operators for defining behaviors

such as alternative actions (SellEspresso [] Sell-
Latte), nondeterministic outcomes ((espresso_order →
Transaction) |~| (out_of_coffee → Clos-
eStore)) sequences of processes (LoneBarista =
SellEspresso; SellEspresso; …), parallel execution of
processes (TwoBaristas = LoneBarista ||| LoneBa-
rista), and interfaces between processes (Customer
[|OrderEvents|] TwoBaristas).

CSP supports a rich theory of process equivalences and re-
finements. Industrial strength tools such as FDR2 [4] can be used
to rapidly check process models for properties such as deadlock,
livelock, or refinement of a more abstract specification process.
FDR2 has been in use for over a decade, and has been applied to a
variety of applications across several domains, from industrial
applications [5] and defense applications [6], to hardware design
verification [7].

3. Modeling Spacecraft Behavior
Spacecraft systems designers have traditionally examined behav-
ior only informally. Often, diagrams are used, but only for docu-
mentation. Consequently, there is no widely adopted standard for
graphically representing spacecraft behavior. The BASS model-
ing paradigm, presented here, represents a starting point for the
development of a design tool. The design of the graphical syntax
was influenced both by currently employed informal notations, as
well as by constructs developed by McInnes [8] for modeling
spacecraft behavior using CSP. We envision an iterative devel-
opment model for BASS, using feedback from spacecraft systems
designers to improve the language.

System-Level Modeling

The subsystems and their connections to one another are

Figure 1. SpacecraftSystem and three types of Subsystems:

Power, ADCS and CDH

captured in a top-level SpacecraftSystem model (Figure 1) that
corresponds to a typical spacecraft system block diagram. We
classify subsystems based on power consumption: some subsys-
tems are powered, other subsystems are not powered (ex. struc-
ture). As the provider of power, the Power subsystem is in a
category by itself.

The SpacecraftSystem offers two aspects, separating the views
of power connectivity from data connectivity in the system. The
parts available in the PowerAspect view are shown in Figure 2.
The Power subsystem may contain several PowerPorts. Each
PowerPort is capable of delivering power to another subsystem.
The topology of the PowerPorts also models the structural con-
nectivity of the power distribution network (star topology, single
power bus, multiple power busses, etc). The PowerConnection
connects the SubSysPowerIf to the PowerPort of the Power sub-
system, representing the connection of the subsystem to the power
network.

Data communication between subsystems occurs in multiple
ways, as depicted in Figure 3. The primary vehicle for data com-
munication is a SystemBus. Spacecraft may have multiple, inde-
pendent busses, redundant busses, or a single bus, depending on
the mission and resource availability. The bus carries multiple
types of information. First, commands can be issued by the CDH
subsystem to other subsystems. The set of commands accepted
by a subsystem is captured as a CommandSet. Commands issued
by the CDH are carried by a SystemBus. Command transmission
is associated with a particular bus instance via the CommandInter-
face connection. The means by which the user models how the
CDH selects which commands to send will be shown below.

The second type of information carried by the bus is spacecraft
state information, which typically includes data indicating the
current health of the spacecraft (ex. current temperature, position
data, power level, etc.). State information can be used by the
CDH to make operational decisions, and is also often stored for
later downlink to the ground station. State information may be
sent over a SystemBus as discrete responses to individual requests,
or may be transmitted as a stream of telemetry data. Streams of
information are represented using the TelDataStream construct
(not shown), to which the TelDataStreamRef refers. The

Figure 2. PowerAspect view of SpacecraftSystem

Figure 3. SpacecraftSystem DataCommAspect, showing data

connectivity between the subsystems and CDH

StreamToBusConn allows the user to associate a stream with a
particular SystemBus.

PointToPointMsgs are discrete messages sent from one sub-
system to another. Physically, these messages are routed on dedi-
cated wire connections between subsystems, modeled with the
PointToPointConn. These messages are used to convey discrete
packets of information which are not streamed, ex. an image cap-
tured by a science instrument to be recorded by CDH.

Modeling Subsystems

The system-level diagram specifies what subsystems are present
in the spacecraft, and specifies paths for their interaction. The

Figure 4. Power interface used by all powered subsystems

Figure 5. SharedState object, representing a shared variable

actual behavior of those subsystems is individually captured
within each subsystem model.

Prior to discussing individual subsystems, we discuss some
common constructs reused across multiple subsystems. We then
discuss three types of subsystems: the Power, CDH and ADCS.
Our discussion only summarizes the modeling facilities BASS
offers to model subsystem behavior, with many low-level model-
ing details omitted.

Common Subsystem Constructs

Powered subsystems must interact with the Power subsystem.
Each powered subsystem must specify a SubSysPowerIf, as
shown in Figure 2. Figure 4 shows the internals of the Sub-
SysPowerIf. The minimal power interface consists of two Symbol
objects, one representing power to the subsystem being switched
on, and the other representing power being switched off. These
symbols are translated into CSP events by the model interpreter,
and can be referred to in other parts of the system model. In addi-
tion to simple on and off states, some subsystems consume vary-
ing amounts of power depending on the mode they are in. The
MapFunction allows the user to model this behavior, capturing a
mapping between each mode of the subsystem and a correspond-
ing change in power consumption.

Interactions between subsystems that are caused by dependen-
cies on physical states are modeled in BASS using a SharedState
object (Figure 5). SharedState objects have a well-defined type
alphabet, as well as a well defined interface (Set, Get and Trans
ports) for accessing the state.

As mentioned above, telemetry streams represent continuous
flows of state information transmitted from one subsystem to
another. During early phases of spacecraft design, specific values
associated with streamed data are usually less important than the
qualitative ranges of values that will trigger specific actions.

Furthermore, explicit enumeration of every possible value the
streaming data can take on would inevitably produce a state ex-
plosion during model checking. Therefore, we restrict our stream
model to qualitative transitions in the value of the state informa-
tion the stream carries (see [8] for further details).

Power Subsystem

The Power subsystem is responsible for producing, storing and
delivering power for the spacecraft. The most common kind of
spacecraft uses solar arrays to generate power, and batteries to
store power. Our current Power subsystem model focuses on so-
lar-battery systems, and in particular attempts to address the fact

that the amount of power that can sustainably be delivered by the
Power subsystem can be a function of the attitude of the space-
craft (the attitude determines the angle at which on-board solar
panels face the sun; angles approaching 90° result in higher power
generation). The Power model (Figure 6) has two attributes, de-
fining the minimum and maximum power generation capability of
the spacecraft. The PowerPorts model the power interface to the
outside world. The MapFunction, contained in the role of Atti-
tudeSpecificAvailablePower is responsible for defining a mapping
between spacecraft attitude and the power level available when
the spacecraft is operating in that attitude. The definition of the
MapFunction is omitted, but allows the user to associate a Symbol
object, representing an attitude, with another Symbol object, rep-
resenting a power level. Note that the Power subsystem also in-
herits containment of a CommandSet and TelDataStreamRef from
the Subsystem class as shown in Figure 3. Hence the power sub-
system can receive commands from CDH, and can stream
health/status information back to CDH.

CDH Subsystem

The Command and Data Handling subsystem is responsible for
coordinating the various subsystems onboard, logging state in-
formation, and interacting with the ground station. We consider
separately two portions of the CDH subsystem: command and
control, and data handling. Command and control consists of
receiving commands from a ground station and dispatching them
appropriately. A command received from the ground station may
involve sending a single command to one subsystem, but fre-
quently involves issuing a sequence of commands, where one
command must complete before the next is issued. Figure 7 illus-
trates how commands are modeled. A SimpleCommand may be
parameterized with a set of Symbols. A CommandSequence con-
sists of multiple Commands, whether they be SimpleCommands or
other CommandSequences. The CommandSequencing connection
imposes a linear order on the Commands contained in the com-
mand sequence. CmdRef is a Reference to another command, for
example a command belonging to a different subsystem. Sym-
bolMappingConn connections can be used to bind the parameters
of one command to the parameters of the following command in a
command sequence.

From a modeling perspective, the specification of how a com-
mand is handled when it is received by the CDH involves defin-
ing a mapping from a command in the CDH command set onto
either a CommandSequence or a SimpleCommand. The target
command or sequence may be drawn from either the CDH com-
mand set, or from the command set of a different subsystem.
Figure 8 depicts how command dispatching is modeled in BASS.
CDHCmdDispatch consists of sets of <Trigger, Target> pairs.

Figure 6. Power subsystem

Figure 7. Spacecraft Commands

The Trigger is a reference to a command from the CDH com-

mand set which represents a command received from a ground
station. The Target represents the result of the command dispatch,
and can either be a reference to a command, or a Symbol. The
Symbol is used to model the raising of an event, or the communi-
cation of a scalar flag to some subsystem. For example, in a
command to the Power subsystem to turn on the power to ADCS
the Symbol would be the On Symbol contained in the ADCS Sub-
SysPowerIf. The SymbolMappingConn is used to indicate a map-
ping between the parameters of the Trigger to the parameters of
the Target.

 Attitude Determination and Control

ADCS is responsible for determining and maintaining spacecraft
attitude, subject to commands issued by the CDH subsystem.
Since we are concerned with system level behavior as a function
of subsystem behavior, we abstract from the continuous dynamics
control laws (which may be undefined during early design
phases), and instead model the ADCS as a supervisory mode tran-
sition system. We assume that the ADCS includes one or more
controllers that are capable of adjusting the spacecraft to attain the
nominal attitude associated with a given ADCS mode when that
mode is entered. Later design and analysis work by a control sys-
tems expert would be required to ensure that the ADCS does in-
deed meet this assumption. However, for the sake of high level
behavioral analysis, the assumption allows us to determine
whether the attitude changes resulting from a transition in ADCS
mode cause, for example, undesirable changes in the available
spacecraft power.
The ADCSModeSystem (Figure 9) is composed of ADCSMode

objects, which model the ADCS modes, and Symbol objects,
which model the rules for transitions between modes. The mode

Figure 8. CDH Command Dispatch

transition Symbols may include Symbols present in the ADCS
CommandSet, allowing receipt of a SimpleCommand to trigger an
ADCSModeSystem transition. The ADCSModeSystem also con-
tains an AttitudeSet object, which is a set of Symbols representing
the nominal attitudes attainable by the spacecraft. These attitudes
are associated with modes through the AttToModeMap connec-
tion. Each Mode must be associated with an attitude, but Modes
may share attitudes. Also associated with each mode is a
ModeSpecificFn, which represents the actions to be taken while in
a particular mode. Such actions could include interacting with
SharedStates, sending signals, or modifying telemetry streams.

Figure 10 depicts an example ADCSModeSystem containing
three modes, Safehold, Sci_Active and Sci_Standby. Solid lines
connecting modes to symbols (“sym” objects) model transitions.
The symbols involved in transitions correspond to commands

Figure 9. ADCS Mode System

Figure 10. Portion of an ADCSModeSystem

received from the CDH, or to some other event (ex. HW_Fault)
that can cause mode transitions. A dashed line connecting a sym-
bol to a mode shows the mapping between attitude and mode.

4. BASS Toolflow
BASS offers the ability to model a spacecraft at the system level
using the modeling language described in detail above. The mod-
eling language is only one part of the BASS tool, as depicted in
Figure 11. Development begins with the capture of system be-
havior models using GME and BASSML. An example system
level diagram is shown in Figure 12. This example has only three
subsystems – Power, ADCS, and CDH, communicating over a
single system bus. The CDH port within the CDH model is actu-
ally a CDHCmdDispatch model, and contains the rules for how
commands received from the ground station are dispatched to
other subsystems via the System Bus. The Com ports of Power
and ADCS are of type CommandSet, and contain command defi-
nitions for their respective subsystems. The connections between
ports named Att and the SystemBus model the communication of
the current attitude via a telemetry data stream from the ADCS to
CDH. The models shown in Figure 12 are further refined into
other diagrams which are omitted for brevity.

Once the system is captured in the BASS Modeling Language
(BASSML), the Interpreter is applied to translate the model into

Figure 11. BASS Tool-flow

Com Att

ADCS

SystemBus

Com

Power

CDH Att

CDH
Figure 12. CDH Aspect of an example spacecraft model

machine-readable CSP. For each data communication path in the
model, the interpreter produces a channel. Each Symbol defined
in the model corresponds to an event which can be sent over a
channel. Subsystem behavior is encoded as a set of processes,
which interact using the generated channels. Our underlying
process-based semantic model for BASS is described in detail in
[8], which also describes a library of CSP processes for modeling
spacecraft behavior (the “Spacecraft Behavior Framework Li-
brary”, or SBFL) that is heavily used by BASS. The CSP model
generated by the interpreter can be sent to the FDR2 model-
checker for verification of specific behavioral properties (e.g. the
spacecraft never reaches a deadlock state), as well as confirmation
that nominal mission scenarios are feasible or that the system
design implements a higher-level specification of system behavior
(e.g. a functional flow block diagram). Analyses with FDR2 can
be used to detect unanticipated interactions between subsystems
that lead to errors such as activating a payload while the space-
craft is in an attitude that could damage the instrument, or im-
properly transitioning into a mode that require more power than is
currently available. Such errors are often subtle, and can easily be
overlooked during a cursory visual review of a model.

BASS can be used by spacecraft systems engineers throughout
the entire system lifecycle, but is primarily intended to support
specification and analysis in the preliminary design phase - what
NASA calls "Phase B" [9]. Engineers at the Space Dynamics
Laboratory and Air Force Research Laboratory have both ex-
pressed some interest in using a tool like BASS. However as yet,
BASS has not been used outside of the laboratory, and we intend
to refine the tool further via experiments with specification and
analysis of student satellites such as USUsat1, USUsat2, and Tor-
oid before releasing it to a wider audience.

Although BASS itself has not yet seen extensive use, our ini-
tial experiments with analyses of example specifications devel-
oped using the underlying CSP semantic model have shown that
these analyses can be useful for uncovering several different kinds
of errors, including
• Interaction design errors: for example, a mission-ending

power-up sequencing error that escaped manual review (and
indeed that the design had been specifically created to avoid);

• System specification errors: for example, an incompatibility
between the subsystem interaction model and a higher-level
system behavior specification (an FFBD) which exposed
omissions in the higher-level specification;

• Operations planning errors: for example, a faulty command-
ing scenario that failed to place the spacecraft into the correct
attitude for data gathering.

5. Related Work
Applying formal methods to spacecraft analysis is certainly not a
new topic, although the focus of previous efforts has largely been
on individual elements of software or hardware rather than on
system-level interactions, and none have involved development of
domain-specific languages.

NASA has carried out several experiments with formal meth-
ods. An analysis of flight software based on model extraction
directly from source code into the SPIN model checker has been
examined [10], and exposed design-level problems in the legacy
software of the Deep Space One mission. Easterbrook et al. [11]
successfully applied the PVS theorem-prover to check software
requirements for consistency, and for safety and liveness proper-
ties. CSP has been evaluated and proposed for use as a specifica-
tion language for use in the NASA ANTS mission architecture
[12], and in the Formal Approaches to Swarm Technology pro-
ject for specifying and verifying SWARM based missions [13].

Some tools offer a graphical interface to support formal verifi-
cation. Hilderink developed a graphical modeling tool that has
constructs for representing system behavior, and generates ma-
chine-readable CSP [14]. The generated CSP can be model-
checked in FDR. However, the language constructs are generic
and CSP-specific, rather than being designed for an application
domain such as spacecraft design.

Specification Description Language (SDL) is another graphi-
cal specification language which uses formal methods [15]. SDL
is based on Finite State Machines (FSM) and can be used to de-
scribe system behavior. However, it is more widely used for tele-
communication systems and to our knowledge, has not been
applied widely to spacecraft. However, it has been applied to the
validation of fault tolerance in the design of autonomous space-
craft, examining in particular the Data Management System[16].

6. Conclusions and Future Work
Spacecraft system design is difficult, and can lead to expensive,
even catastrophic consequences when subtle design flaws are not
caught early in the design process. In this paper, we present
BASS, a prototype modeling tool for spacecraft systems. BASS
utilizes a domain specific language targeting spacecraft designers.
BASS integrates a model interpreter, capable of translating the
captured spacecraft design models into machine readable CSP,
which can be formally verified using the FDR2 model checker.

As part of our efforts to further refine BASS, we intend to ex-
amine and incorporate lessons learned from similar initiatives in
other domains, such as the AUTOSAR-based modeling in the
automotive domain [17] and MIMAD in the avionics domain [18]
We will also explore closer integration of BASS with tools for
spacecraft requirements capture. A prototype behavioral require-
ments capture tool called SDW [19], which we developed previ-
ously, is a particularly good candidate for integration efforts,
since like BASS it relies on CSP for its semantic model.

References
[1] A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J.

Sprinkle, and G. Karsai, "Composing domain-specific design envi-
ronments," Computer, vol. 34(11), pp. 44-+, NOV, 2001.

[2] "GME User's Manual," Vanderbilt University March 2004

[3] A. W. Roscoe, The Theory and Practice of Concurrency. Englewood
Cliffs, New Jersey: Prentice Hall, 1998.

[4] P. Gardiner, M. Goldsmith, J. Hulance, D. Jackson, B. Roscoe, B.
Scattergoood, and P. Armstrong, "Failures-Divergence Refinement:
FDR2 User Manual," Formal Systems (Europe) Ltd. May 2003

[5] B. Buth, J. Peleska, and H. Shi, "Combining methods for livelock
analysis of a fault-tolerant system," Proc. 7th International Confer-
ence on Algebraic Methodology and Software Technology
(AMAST'98), Jan., 1999, pp 124-139.

[6] M. Goldsmith and I. Zakiuddin, "Critical systems validation and
verification with CSP and FDR," Proc. International Workshop on
Current Trends in Applied Formal Methods (FM-Trends 98), Bop-
pard, Germany, Oct 7-9, 1998, pp 243-250.

[7] G. Barrett, "Model checking in practice: The T9000 Virtual Channel
Processor," IEEE Transactions on Software Engineering, vol. 21(2),
pp. 69-78, 1995.

[8] A. I. McInnes, "A Formal Approach to Specifying and Verifying
Spacecraft Behavior," Ph.D. Dissertation, Utah State University,
2007

[9] R. Shishko and R. G. Chamberain, NASA Systems Engineering
Handbook: NASA SP-6105, 1995.

[10] P. R. Gluck and G. J. Holzmann, "Using SPIN model checking for
flight software verification," Proc. 2002 IEEE Aerospace Confer-
ence, 2002.

[11] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D.
Hamilton, "Experiences using lightweight formal methods for re-
quirements modeling," IEEE Transactions on Software Engineering,
vol. 24(1), pp. 4-14, 1998.

[12] C. Rouff, A. Vanderbilt, W. Truskowski, J. Rash, and M. Hinchey,
"Properties of a Formal Method for Prediction of Emergent Behav-
iors in Swarm-based Systems," Proc. Second International Confer-
ence on Software Engineering and Formal Methods (SEFM'04),
2004.

[13] M. Hinchey, J. Rash, and C. Rouff, "Some Verification Issues at
NASA Goddard Space Flight Center," Proc. Verified Software:
Theories, Tools, Experiments, 2005.

[14] G. H. Hilderink, "Graphical modelling language for specifying con-
currency based on CSP," IEE Proceedings: Software, vol. 150(2), pp.
108-120, Apr., 2003.

[15] A. RockStrom and R. Saracco, "SDL-CCITT Specification and De-
scription Language," IEEE Transactions on Communications, vol.
COM-30(6), June, 1982.

[16] S. Ayache, E. Conquet, P. Humbert, C. Rodriguez, J. Sifakis, and R.
Gerlich, "Formal Methods for the Validiation of Fault Tolerance in
Autonomous Spacecraft," Proc. The Twenty-Sixth Annual Interna-
tional Symposium on Fault-Tolerant Computing (FTCS '96), 1996.

[17] "Specification of Interaction with Behavioral Models," Doc. No.
205, V1.0.5, Feb 14 2008. http://www.autosar.org/download/
AUTOSAR_InteractionBehavioralModels.pdf

[18] A. Gamati, C. Brunette, R. Delamare, T. Gautier, and J.-P. Talpin, "A
modeling paradigm for integrated modular avionics design," Proc.
32nd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA06), Cavtat/Dubrovnik, Croatia, Aug, 2006.

[19] B. Eames, A. I. McInnes, J. E. Crace, and J. M. Graham, "A Model-
Based Design Tool for Systems-level Spacecraft Design," Proc. 20th
Annual AIAA/USU Conference on Small Satellites, Logan, UT, Au-
gust, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

