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Abstract  
Specification of spacecraft subsystem interactions is typically 
carried out using informal diagrams and descriptions that can 
obscure subtle ambiguities and inconsistencies. As a result, prob-
lems in the way subsystems are designed to interact may remain 
undetected until the integration and test phase, when the cost of 
change is high. Our Behavioral Analysis of Spacecraft Systems 
(BASS) modeling tool provides a structured way to define space-
craft subsystem interfaces and interactions, and access to an un-
derlying formal model of interaction that allows the specified 
interactions to be rigorously analyzed. The enforced consistency 
of the diagrams produced by our tool and the analytical power of 
the underlying formal model increases a developer’s ability to 
discover and correct system design errors early in the develop-
ment process. 

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques – computer aided software 
engineering; D.3.2 [Programming Languages]: Language Clas-
sifications – specialized application languages, D.3.1 [Program-
ming Languages]: Formal Definitions and Theory – syntax, 
semantics.   

General Terms Design, Languages, Verification. 

Keywords Domain-Specific Language; Formal Verification; 
Behavior; Spacecraft System Design

1. Introduction 
Spacecraft systems design is the domain of systems engineers, 

who are responsible for the high level design of not only com-
puter software and hardware, but the physical structure, thermal 
properties, electrical wiring and harnessing, data communications, 
orbit management, and spacecraft control. A primary challenge in 
system-level spacecraft design is ensuring that the spacecraft 
subsystems interact correctly to allow the spacecraft to achieve its 
mission. For example, when a ground station commands the 
spacecraft to begin taking science data from an onboard instru-
ment, that command may trigger a sequence of actions in which 
the Command & Data Handling (CDH) subsystem instructs the 
Attitude Determination & Control System (ADCS) to reorient the 
spacecraft to point at an object of scientific interest, commands 
the Power subsystem to supply power to the Payload, commands 
the Payload to begin data sampling, and then collects and stores 
the sampled science data for a later downlink.  

Early in the design process, systems engineers typically de-
velop a simple, high-level system block diagram that shows the 
partitioning of the system into subsystems, and the connectivity 
between those subsystems. Separate documentation defines the 
behavior of each spacecraft subsystem using simple state dia-

grams, tables, and textual descriptions of how the subsystems 
respond to internal and external events. Spacecraft subsystem 
design proceeds under the assumption that the combined behav-
iors specified for the subsystems will lead to the desired system 
behavior, and that the subsystems can each be designed in relative 
isolation as long as each subsystem adheres to the interface and 
behavior specified for it. However, there is a lack of tool support 
for capturing spacecraft system behavior specifications, and the 
mixture of informal notations currently used by systems engineers 
cannot be readily analyzed, making it difficult to check assump-
tions about the emergent system behavior until substantial re-
sources have been expended on subsystem design.  

In this paper, we introduce BASS (Behavior Analysis for 
Spacecraft Systems), a model based design tool that supports the 
modeling and verification of system-level spacecraft behavior, 
through the analysis of a composition of subsystem behavior 
models. We focus on the BASS domain-specific visual modeling 
language (Section 3), which is built upon the Generic Modeling 
Environment (GME) [1],[2]. This language provides spacecraft-
specific modeling constructs that permit both system connectivity 
and subsystem behavior descriptions to be captured in a single 
hierarchical model, and provides a starting point from which to 
gather user feedback on domain-specific modeling needs. A key 
benefit of providing a language and tool support for describing 
spacecraft system behavior is the ability to automatically map 
visual models to an underlying mathematical semantics that per-
mits rigorous analysis. Our semantic model is based on the con-
cept of concurrency and process interaction, and is codified using 
the CSP (Communicating Sequential Processes) process algebra 
[3]. As part of the BASS project, we have developed a model 
interpreter tool, which is responsible for translating the visual 
models of spacecraft behavior into a CSP model that can be veri-
fied against a higher-level specification, or checked against user-
specified assertions or constraints. In Section 4 we briefly de-
scribe the model interpreter, and the overall toolflow within 
which spacecraft system models can be constructed and verified. 

2. Background 

Spacecraft Systems 

As with most complex systems, spacecraft designs are usually 
partitioned into functionally distinct subsystems. Although the 
exact names and functionality of the subsystems vary from or-
ganization to organization, unmanned spacecraft are typically 
divided into some variation on the following subsystems:    
• ADCS--  Attitude Determination & Control, responsible for 

determining the direction the spacecraft is pointing, and for 
adjusting that direction as needed 

• CDH--  Command & Data Handling, consisting of the main 
spacecraft computer system.  CDH is responsible for manag-
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ing spacecraft interactions with the ground station, as well as 
collecting, logging and transmitting data 

• Communications—Transmission and reception of commands 
and data 

• Power--   Consisting of the power generation (ex. solar pan-
els), storage (batteries) and distribution (wiring) facilities 

• Payload--  Offering a mission-dependent subsystem, typically 
involving some science based instrument or communication 
device 

• Propulsion--  The facilities to physically alter the spacecraft 
velocity and/or position 

• Structures & Mechanisms-- Physical support for the other 
subsystems, and deployment of booms, antennas, and solar ar-
rays 

• Thermal Control-- Regulation of the spacecraft thermal state 
 
Both the behavior of individual subsystems and the interfaces 

between the subsystems are extremely mission-dependent. Some 
spacecraft omit subsystems that are unnecessary to their particular 
mission. 

The Generic Modeling Environment 

GME is a tool developed at Vanderbilt University for supporting 
the development and use of domain specific visual modeling lan-
guages.  Each modeling language dictates a set of rules about the 
types of parts available, containment relationships and inter-
object relations such as connectivity.  These rules are codified in a 
configuration file called a paradigm.  Once a particular paradigm 
has been loaded into GME, GME supports the editing of models 
according to that paradigm.  GME supports the partitioning of a 
system into views called aspects, facilitating the separation of 
concerns.    

GME is packaged with a modeling paradigm, called Me-
taGME, which supports the creation of metamodels, or models of 
modeling languages.  With MetaGME, users can define a new 
language which conforms to a particular engineering domain.  A 
translator tool produces a paradigm from a valid metamodel.  The 
metamodeling language is an extension of UML class diagrams, 
and offers the flexibility to integrate concepts such as hierarchy, 
inter-object relationships, object attributes and referencing into a 
modeling language.   

GME also offers multiple APIs or interfaces for creating trans-
lator tools called interpreters.  GME allows an interpreter to ac-
cess the information captured by the user when drawing models.  
Interpreters apply semantic translations, performing such tasks as 
code generation, model-to-model transformations or model analy-
sis.  Multiple language bindings, including C++ and Java are sup-
ported. 

Communicating Sequential Processes 

Communicating Sequential Processes (CSP) is a mathematical 
theory of concurrency and interaction, in which interacting proc-
esses are modeled as event-transition systems that synchronize on 
shared events. The fundamental objects from which CSP process 
models are built are events, which are abstract symbolic represen-
tations of interactions. For example, a model of a financial trans-
action might consist of events that represent placing an order, 
acknowledgement of the order, payment, providing change, and 
handing over the purchased goods. Simple processes are built by 
defining sequences of events, separated by the prefix operator →, 
e.g.  
SellEspresso =  

espresso_order → order_cost!$3 →  

receive_payment?p → make_change!(p - $3)  

→ give_espresso → SKIP 
 
CSP also provides a variety of operators for defining behaviors 

such as alternative actions (SellEspresso [] Sell-
Latte), nondeterministic outcomes ((espresso_order → 
Transaction) |~| (out_of_coffee → Clos-
eStore)) sequences of processes (LoneBarista = 
SellEspresso; SellEspresso; …), parallel execution of 
processes (TwoBaristas = LoneBarista ||| LoneBa-
rista), and interfaces between processes (Customer 
[|OrderEvents|] TwoBaristas). 

CSP supports a rich theory of process equivalences and re-
finements.  Industrial strength tools such as FDR2 [4] can be used 
to rapidly check process models for properties such as deadlock, 
livelock, or refinement of a more abstract specification process.  
FDR2 has been in use for over a decade, and has been applied to a 
variety of applications across several domains, from industrial 
applications [5] and defense applications [6], to hardware design 
verification [7]. 

3. Modeling Spacecraft Behavior 
Spacecraft systems designers have traditionally examined behav-
ior only informally.  Often, diagrams are used, but only for docu-
mentation.  Consequently, there is no widely adopted standard for 
graphically representing spacecraft behavior.   The BASS model-
ing paradigm, presented here, represents a starting point for the 
development of a design tool.  The design of the graphical syntax 
was influenced both by currently employed informal notations, as 
well as by constructs developed by McInnes [8] for modeling 
spacecraft behavior using CSP.  We envision an iterative devel-
opment model for BASS, using feedback from spacecraft systems 
designers to improve the language.   

System-Level Modeling 

The subsystems and their connections to one another are  

 
Figure 1.  SpacecraftSystem and three types of Subsystems: 

Power, ADCS and CDH 



captured in a top-level SpacecraftSystem model (Figure 1) that 
corresponds to a typical spacecraft system block diagram. We 
classify subsystems based on power consumption: some subsys-
tems are powered, other subsystems are not powered (ex. struc-
ture). As the provider of power, the Power subsystem is in a 
category by itself.   

The SpacecraftSystem offers two aspects, separating the views 
of power connectivity from data connectivity in the system.  The 
parts available in the PowerAspect view are shown in Figure 2.  
The Power subsystem may contain several PowerPorts.  Each 
PowerPort is capable of delivering power to another subsystem.  
The topology of the PowerPorts also models the structural con-
nectivity of the power distribution network (star topology, single 
power bus, multiple power busses, etc).   The PowerConnection 
connects the SubSysPowerIf to the PowerPort of the Power sub-
system, representing the connection of the subsystem to the power 
network. 

Data communication between subsystems occurs in multiple 
ways, as depicted in Figure 3.  The primary vehicle for data com-
munication is a SystemBus.  Spacecraft may have multiple, inde-
pendent busses, redundant busses, or a single bus, depending on 
the mission and resource availability.  The bus carries multiple 
types of information.  First, commands can be issued by the CDH 
subsystem to other subsystems.  The set of commands accepted 
by a subsystem is captured as a CommandSet.  Commands issued 
by the CDH are carried by a SystemBus.  Command transmission 
is associated with a particular bus instance via the CommandInter-
face connection.  The means by which the user models how the 
CDH selects which commands to send will be shown below.   

The second type of information carried by the bus is spacecraft 
state information, which typically includes data indicating the 
current health of the spacecraft (ex. current temperature, position 
data, power level, etc.).  State information can be used by the 
CDH to make operational decisions, and is also often stored for 
later downlink to the ground station. State information may be 
sent over a SystemBus as discrete responses to individual requests, 
or may be transmitted as a stream of telemetry data.  Streams of 
information are represented using the TelDataStream construct 
(not shown), to which the TelDataStreamRef refers.  The 

 
Figure 2.  PowerAspect view of SpacecraftSystem 

 
Figure 3.  SpacecraftSystem DataCommAspect, showing data 

connectivity between the subsystems and CDH 
 
StreamToBusConn allows the user to associate a stream with a 
particular SystemBus. 

PointToPointMsgs are discrete messages sent from one sub-
system to another.  Physically, these messages are routed on dedi-
cated wire connections between subsystems, modeled with the 
PointToPointConn.  These messages are used to convey discrete 
packets of information which are not streamed, ex. an image cap-
tured by a science instrument to be recorded by CDH.   

Modeling Subsystems 

The system-level diagram specifies what subsystems are present 
in the spacecraft, and specifies paths for their interaction.  The  

 
Figure 4.  Power interface used by all powered subsystems 



 
Figure 5.  SharedState object, representing a shared variable 

 
actual behavior of those subsystems is individually captured 
within each subsystem model.   

Prior to discussing individual subsystems, we discuss some 
common constructs reused across multiple subsystems.  We then 
discuss three types of subsystems: the Power, CDH and ADCS.  
Our discussion only summarizes the modeling facilities BASS 
offers to model subsystem behavior, with many low-level model-
ing details omitted. 

Common Subsystem Constructs 

Powered subsystems must interact with the Power subsystem.  
Each powered subsystem must specify a SubSysPowerIf, as 
shown in Figure 2.  Figure 4 shows the internals of the Sub-
SysPowerIf.  The minimal power interface consists of two Symbol 
objects, one representing power to the subsystem being switched 
on, and the other representing power being switched off.  These 
symbols are translated into CSP events by the model interpreter, 
and can be referred to in other parts of the system model.  In addi-
tion to simple on and off states, some subsystems consume vary-
ing amounts of power depending on the mode they are in. The 
MapFunction allows the user to model this behavior, capturing a 
mapping between each mode of the subsystem and a correspond-
ing change in power consumption.     

Interactions between subsystems that are caused by dependen-
cies on physical states are modeled in BASS using a SharedState 
object (Figure 5).  SharedState objects have a well-defined type 
alphabet, as well as a well defined interface (Set, Get and Trans 
ports) for accessing the state.     

As mentioned above, telemetry streams represent continuous 
flows of state information transmitted from one subsystem to 
another.  During early phases of spacecraft design, specific values 
associated with streamed data are usually less important than the 
qualitative ranges of values that will trigger specific actions. 

Furthermore, explicit enumeration of every possible value the 
streaming data can take on would inevitably produce a state ex-
plosion during model checking. Therefore, we restrict our stream 
model to qualitative transitions in the value of the state informa-
tion the stream carries (see [8] for further details).  

Power Subsystem 

The Power subsystem is responsible for producing, storing and 
delivering power for the spacecraft.  The most common kind of 
spacecraft uses solar arrays to generate power, and batteries to 
store power. Our current Power subsystem model focuses on so-
lar-battery systems, and in particular attempts to address the fact 

that the amount of power that can sustainably be delivered by the 
Power subsystem can be a function of the attitude of the space-
craft (the attitude determines the angle at which on-board solar 
panels face the sun; angles approaching 90° result in higher power 
generation). The Power model (Figure 6) has two attributes, de-
fining the minimum and maximum power generation capability of 
the spacecraft.  The PowerPorts model the power interface to the 
outside world.  The MapFunction, contained in the role of Atti-
tudeSpecificAvailablePower is responsible for defining a mapping 
between spacecraft attitude and the power level available when 
the spacecraft is operating in that attitude.  The definition of the 
MapFunction is omitted, but allows the user to associate a Symbol 
object, representing an attitude, with another Symbol object, rep-
resenting a power level.  Note that the Power subsystem also in-
herits containment of a CommandSet and TelDataStreamRef from 
the Subsystem class as shown in Figure 3.  Hence the power sub-
system can receive commands from CDH, and can stream 
health/status information back to CDH.   

CDH Subsystem 

The Command and Data Handling subsystem is responsible for 
coordinating the various subsystems onboard, logging state in-
formation, and interacting with the ground station.  We consider 
separately two portions of the CDH subsystem: command and 
control, and data handling. Command and control consists of 
receiving commands from a ground station and dispatching them 
appropriately. A command received from the ground station may 
involve sending a single command to one subsystem, but fre-
quently involves issuing a sequence of commands, where one 
command must complete before the next is issued.  Figure 7 illus-
trates how commands are modeled. A SimpleCommand may be 
parameterized with a set of Symbols.  A CommandSequence con-
sists of multiple Commands, whether they be SimpleCommands or 
other CommandSequences.  The CommandSequencing connection 
imposes a linear order on the Commands contained in the com-
mand sequence.  CmdRef is a Reference to another command, for 
example a command belonging to a different subsystem.  Sym-
bolMappingConn connections can be used to bind the parameters 
of one command to the parameters of the following command in a 
command sequence. 

From a modeling perspective, the specification of how a com-
mand is handled when it is received by the CDH involves defin-
ing a mapping from a command in the CDH command set onto 
either a CommandSequence or a SimpleCommand. The target 
command or sequence may be drawn from either the CDH com-
mand set, or from the command set of a different subsystem.  
Figure 8 depicts how command dispatching is modeled in BASS.  
CDHCmdDispatch consists of sets of <Trigger, Target> pairs.   

 
Figure 6.  Power subsystem 



 
Figure 7.  Spacecraft Commands 

 
The Trigger is a reference to a command from the CDH com-

mand set which represents a command received from a ground 
station. The Target represents the result of the command dispatch, 
and can either be a reference to a command, or a Symbol.  The 
Symbol is used to model the raising of an event, or the communi-
cation of a scalar flag to some subsystem.  For example, in a 
command to the Power subsystem to turn on the power to ADCS 
the Symbol would be the On Symbol contained in the ADCS Sub-
SysPowerIf.  The SymbolMappingConn is used to indicate a map-
ping between the parameters of the Trigger to the parameters of 
the Target. 

  Attitude Determination and Control 

ADCS is responsible for determining and maintaining spacecraft 
attitude, subject to commands issued by the CDH subsystem.  
Since we are concerned with system level behavior as a function 
of subsystem behavior, we abstract from the continuous dynamics 
control laws (which may be undefined during early design 
phases), and instead model the ADCS as a supervisory mode tran-
sition system.  We assume that the ADCS includes one or more 
controllers that are capable of adjusting the spacecraft to attain the 
nominal attitude associated with a given ADCS mode when that 
mode is entered. Later design and analysis work by a control sys-
tems expert would be required to ensure that the ADCS does in-
deed meet this assumption. However, for the sake of high level 
behavioral analysis, the assumption allows us to determine 
whether the attitude changes resulting from a transition in ADCS 
mode cause, for example, undesirable changes in the available 
spacecraft power.   
The ADCSModeSystem (Figure 9) is composed of ADCSMode 

objects, which model the ADCS modes, and Symbol objects, 
which model the rules for transitions between modes. The mode  

 
Figure 8.  CDH Command Dispatch 

     
transition Symbols may include Symbols present in the ADCS 
CommandSet, allowing receipt of a SimpleCommand to trigger an 
ADCSModeSystem transition.  The ADCSModeSystem also con-
tains an AttitudeSet object, which is a set of Symbols representing 
the nominal attitudes attainable by the spacecraft.  These attitudes 
are associated with modes through the AttToModeMap connec-
tion.  Each Mode must be associated with an attitude, but Modes 
may share attitudes. Also associated with each mode is a 
ModeSpecificFn, which represents the actions to be taken while in 
a particular mode. Such actions could include interacting with 
SharedStates, sending signals, or modifying telemetry streams.   

Figure 10 depicts an example ADCSModeSystem containing 
three modes, Safehold, Sci_Active and Sci_Standby.  Solid lines 
connecting modes to symbols (“sym” objects) model transitions. 
The symbols involved in transitions correspond to commands  

 
Figure 9.  ADCS Mode System 



   
Figure 10.  Portion of an ADCSModeSystem 

 
received from the CDH, or to some other event (ex. HW_Fault) 
that can cause mode transitions.  A dashed line connecting a sym-
bol to a mode shows the mapping between attitude and mode.     

 

4. BASS Toolflow 
BASS offers the ability to model a spacecraft at the system level 
using the modeling language described in detail above.  The mod-
eling language is only one part of the BASS tool, as depicted in 
Figure 11.  Development begins with the capture of system be-
havior models using GME and BASSML.  An example system 
level diagram is shown in Figure 12. This example has only three 
subsystems – Power, ADCS, and CDH, communicating over a 
single system bus. The CDH port within the CDH model is actu-
ally a CDHCmdDispatch model, and contains the rules for how 
commands received from the ground station are dispatched to 
other subsystems via the System Bus.  The Com ports of Power 
and ADCS are of type CommandSet, and contain command defi-
nitions for their respective subsystems.  The connections between 
ports named Att and the SystemBus model the communication of 
the current attitude via a telemetry data stream from the ADCS to 
CDH.  The models shown in Figure 12 are further refined into 
other diagrams which are omitted for brevity. 

Once the system is captured in the BASS Modeling Language 
(BASSML), the Interpreter is applied to translate the model into 

 
Figure 11.  BASS Tool-flow 
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Figure 12.  CDH Aspect of an example spacecraft model 

 
machine-readable CSP.  For each data communication path in the 
model, the interpreter produces a channel.  Each Symbol defined 
in the model corresponds to an event which can be sent over a 
channel.  Subsystem behavior is encoded as a set of processes, 
which interact using the generated channels. Our underlying 
process-based semantic model for BASS is described in detail in 
[8], which also describes a library of CSP processes for modeling 
spacecraft behavior (the “Spacecraft Behavior Framework Li-
brary”, or SBFL) that is heavily used by BASS.  The CSP model 
generated by the interpreter can be sent to the FDR2 model-
checker for verification of specific behavioral properties (e.g. the 
spacecraft never reaches a deadlock state), as well as confirmation 
that nominal mission scenarios are feasible or that the system 
design implements a higher-level specification of system behavior 
(e.g. a functional flow block diagram).  Analyses with FDR2 can 
be used to detect unanticipated interactions between subsystems 
that lead to errors such as activating a payload while the space-
craft is in an attitude that could damage the instrument, or im-
properly transitioning into a mode that require more power than is 
currently available. Such errors are often subtle, and can easily be 
overlooked during a cursory visual review of a model. 

BASS can be used by spacecraft systems engineers throughout 
the entire system lifecycle, but is primarily intended to support 
specification and analysis in the preliminary design phase - what 
NASA calls "Phase B" [9].  Engineers at the Space Dynamics 
Laboratory and Air Force Research Laboratory have both ex-
pressed some interest in using a tool like BASS. However as yet, 
BASS has not been used outside of the laboratory, and we intend 
to refine the tool further via experiments with specification and 
analysis of student satellites such as USUsat1, USUsat2, and Tor-
oid before releasing it to a wider audience. 

Although BASS itself has not yet seen extensive use, our ini-
tial experiments with analyses of example specifications devel-
oped using the underlying CSP semantic model have shown that 
these analyses can be useful for uncovering several different kinds 
of errors, including 
• Interaction design errors: for example, a mission-ending 

power-up sequencing error that escaped manual review (and 
indeed that the design had been specifically created to avoid);  

• System specification errors: for example, an incompatibility 
between the subsystem interaction model and a higher-level 
system behavior specification (an FFBD) which exposed 
omissions in the higher-level specification; 

• Operations planning errors: for example, a faulty command-
ing scenario that failed to place the spacecraft into the correct 
attitude for data gathering. 



5. Related Work 
Applying formal methods to spacecraft analysis is certainly not a 
new topic, although the focus of previous efforts has largely been 
on individual elements of software or hardware rather than on 
system-level interactions, and none have involved development of 
domain-specific languages.  

NASA has carried out several experiments with formal meth-
ods. An analysis of flight software based on model extraction 
directly from source code into the  SPIN model checker  has been 
examined [10], and exposed design-level problems in the legacy 
software of the Deep Space One mission. Easterbrook et al. [11] 
successfully applied the PVS theorem-prover to check software 
requirements for consistency, and for safety and liveness proper-
ties. CSP has been evaluated and proposed for use as a specifica-
tion language for use in the NASA ANTS mission architecture 
[12],  and in the Formal Approaches to Swarm Technology pro-
ject for specifying and verifying SWARM based missions [13]. 

Some tools offer a graphical interface to support formal verifi-
cation. Hilderink developed a graphical modeling tool that has 
constructs for representing system behavior, and generates ma-
chine-readable CSP [14]. The generated CSP can be model-
checked in FDR.  However, the language constructs are generic 
and CSP-specific, rather than being designed for an application 
domain such as spacecraft design. 

Specification Description Language (SDL) is another graphi-
cal specification language which uses formal methods [15]. SDL 
is based on Finite State Machines (FSM) and can be used to de-
scribe system behavior. However, it is more widely used for tele-
communication systems and to our knowledge, has not been 
applied widely to spacecraft.  However, it has been applied to the 
validation of fault tolerance in the design of autonomous space-
craft, examining in particular the Data Management System[16]. 

 

6. Conclusions and Future Work 
Spacecraft system design is difficult, and can lead to expensive, 
even catastrophic consequences when subtle design flaws are not 
caught early in the design process.  In this paper, we present 
BASS, a prototype modeling tool for spacecraft systems.  BASS 
utilizes a domain specific language targeting spacecraft designers.  
BASS integrates a model interpreter, capable of translating the 
captured spacecraft design models into machine readable CSP, 
which can be formally verified using the FDR2 model checker.   

As part of our efforts to further refine BASS, we intend to ex-
amine and incorporate lessons learned from similar initiatives in 
other domains, such as the AUTOSAR-based modeling in the 
automotive domain [17] and MIMAD in the avionics domain [18] 
We will also explore closer integration of BASS with tools for 
spacecraft requirements capture. A prototype behavioral require-
ments capture tool called SDW [19], which we developed previ-
ously, is a particularly good candidate for integration efforts, 
since like BASS it relies on CSP for its semantic model. 
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