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Abstract—Breast cancer is one of the most prevalent forms
of cancer in the world today. The search for effective treatment
and screening methods is a highly active area of research. The
Digital Image-based ElastoTomography (DIET) project is a new
breast cancer screening system under development, where surface
motion from the mechanically actuated breast is measured in
3D, and used as input to an inverse problem solving for breast
elasticity. Cancerous lesions appear as high contrast features,
being an order of magnitude stiffer than healthy tissue.

The 3D motion capture is measured by an array of digital
cameras using computer vision techniques. This paper presents
a computer vision imaging system for the capture of 3D breast
surface motion for the DIET system, including the image acqui-
sition system, camera calibration, and 3D surface and motion
reconstruction.

Results are presented for experiments performed with silicone
gel phantoms, with conditions designed to replicate the clinical
procedure. Full 3D surface motion is successfully captured using
an array of 5 cameras. Some successful results from the DIET
inverse problem are also presented to demonstrate the viability
of the system in practice.

I. INTRODUCTION

Breast cancer is a significant health problem in both devel-

oped and developing countries. It is estimated that each year

the disease is diagnosed in over one million women worldwide

and is the cause of death of over 400,000 women [1]. In New

Zealand, breast cancer accounts for the highest mortality rate

of all cancers among women and New Zealand has the sixth

highest breast cancer death rate of 173 developed countries.

There are many treatment options available, including

surgery, chemotherapy, radiation therapy, and hormonal ther-

apy. These treatments are significantly more effective in reduc-

ing the mortality of the disease if detected early through breast

cancer screening programmes. The most common method for

early detection of breast cancer is mammography. Mammog-

raphy, however, can cause significant discomfort to the patient

and requires radiation exposure, a further health concern.

Digital Image-based Elasto-Tomography (DIET) is an

emerging technology for non-invasive breast cancer screening.

The DIET system uses digital imaging of an actuated breast

surface to determine tissue surface motion from a specified

input. It then reconstructs the 3D internal tissue stiffness

distribution from that motion. Regions of high stiffness suggest

cancer since cancerous tissue is between 3 and 10 times stiffer

than healthy tissue in the breast [2], [3], [4].

The DIET approach eliminates the need for X-Rays and

excessive, potentially painful compression of the breast [5]

required by a mammogram. Hence, screening could start much

younger and might enjoy greater compliance [6].

Presently, there are other Elasto-Tomographic methods

based on magnetic resonance [7] and ultrasound [8] modalities.

Both methods are capable of measuring the tissue elasticity

and are undergoing rapid development. However, they are also

costly in terms of equipment and take significant time to use.

They are therefore of limited utility in a practical wide-scale

screening application.

The DIET system, in contrast, is computer-based and is

thus potentially low cost and portable, so the technology could

be used in any medical centre, particularly in remote areas.

In addition, the use of silicon technology ensures that as it

improves and scales upward in capability so will the DIET

system performance. This scalability of performance is not

true for X-Ray or ultrasound based approaches.

This paper is focussed on the imaging side of the DIET

system and tests the ability to accurately capture actuated

tissue motion on realistically shaped breast silicon phantoms.

II. BACKGROUND

A. DIET project

The DIET (Digital Image-based ElastoTomography) con-

cept is a new methodology for breast cancer screening. The

breast is mechanically actuated sinusoidally at a low frequency

(around 50-100Hz). This motion is visible as a wave pattern on

the breast surface. With a linear elasticity model, knowledge

of the breast surface motion in 3D is theoretically sufficient

information to reconstruct the stiffness distribution of the

interior of the breast, and thus, because cancerous tumours are

around an order of magnitude stiffer than healthy tissue, could

be used to diagnose breast cancer. In practice the elasticity

reconstruction will be performed by a parametrised inverse

problem.

The surface motion is captured by using a combination of

strobed lighting and a number of calibrated digital cameras.

Motion in 3D is computed by matching moving points between

different cameras, and using computer vision techniques to

construct the corresponding points in 3D.
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B. Camera Model

Digital CCD cameras can be accurately modeled as per-

spective projection pinhole cameras. The 3D world space R
3

can be embedded in projective space P
3 with homogeneous

coordinates (X, Y, Z,W ) and the image coordinate space R
2

can be embedded in the projective plane P
2 with homogeneous

coordinates (u, v, w). The corresponding coordinates in R
3

and R
2, respectively, are given by ( X

W
, Y

W
, Z

W
) and ( u

w
, v

w
).

Similarly, measured 3D coordinates and 2D image coordinates

can be embedded in P
3 and P

2 respectively by the maps

(X, Y, Z) 7→ (X, Y, Z, 1) and (u, v) 7→ (u, v, 1).
The camera represents a projection between P

3 and P
2,

which can be represented by a homogeneous matrix P ∈ R
3×4,

whose kernel is the projection centre of the camera. The

projection from world coordinates X = (X, Y, Z,W ) to image

coordinates u = (u, v, w) is then described by the linear

equation

λu = PX (1)

where λ is a nonzero scalar. The calibration matrix P, if

computed by real world and image point correspondences, can

be factored into P = K[R t] where K is an upper triangular

matrix representing the intrinsic camera parameters, R ∈ R
3×3

is a rotation matrix describing the relative orientations of the

camera and world frames, and t ∈ R
3 is the origin of the

world coordinate system in the camera frame. A camera is

said to be fully calibrated if K, R, t and hence P are known.

III. METHOD

A. Fiducial system

Human skin lacks high-contrast features which are easily

extractable from digital images. In order to reconstruct indi-

vidual points in 3D, points on the surface must be able to

be extracted from images taken from different cameras, i.e.

they must be viewpoint invariant. The easiest way to define

such features is to introduce artificial fiducials to the surface.

For reasons that will be described in the following sections,

the fiducials used in this paper are randomly applied identical

points in three colours, red, green, and blue.

B. Feature tracking

The features are tracked using the novel Euclidean-invariant

algorithm described in [9] which is based on a system of

coloured fiducial points as mentioned in the previous section.

This method of feature tracking uses geometrically invariant

properties of local configurations of the coloured point loca-

tions to match points between frames, rather than using image-

based correlation techniques. The advantage of this approach

is that points can be matched over a wider range of transforma-

tions, notably those involving a large translational component.

Additionally, a significant advantage in computational speed is

observed. If the motion is small, then an even simpler approach

can be used, nearest neighbour matching.

The output of this process is the path of each fully tracked

point over one phase of motion in each set of images. Note that

because the breast can be well-modelled by a linear stiffness

model, motion of each point on the breast surface resulting

from sinuosoidal actuation will be an ellipse, and hence the

paths in images from each camera will also be elliptical. This

property can potentially be used to decrease the number of

frames necessary to identify the motion path of each point, as

in principle an ellipse can be computed from only five points.

C. 3D Reconstruction

The algorithm outlined in this section is a method of recon-

structing the coordinates of a dense set of points on the surface

in 3D based on their image locations. Conventional approaches

to this problem involve finding means of identifying corre-

sponding points between images, and then triangulating these

to find the resulting 3D position of the point. In this research

an alternative approach is utilised. The epipolar constraint is

used to find a set of candidate matches for each point. All

potential matching pairs are then reconstructed in 3D, giving

a large point cloud, contained within which is the desired

surface. With suitable point density and surface smoothness,

the desired 3D surface can be extracted from this set of 3D

points.

1) Epipolar constraint: Consider two images I1 and I2

from two fully calibrated cameras. A point p in I1 can be

represented in homogeneous coordinates as p = (p1, p2, p3).
The geometry of the two-camera configuration constrains any

potential match for p in I2 to fall upon an epipolar line l

[10]. This constraint can be represented algebraically by the

following matrix equation

pT
Fq = 0 (2)

where p,q are the homogeneous coordinates of p and q, F

is a rank 2 matrix known as the Fundamental Matrix which

encapsulates the epipolar geometry and can be computed

from the two camera projection matrices. The homogeneous

coordinates of the epipolar line l are given by l = pT
F, i.e.

Eq. 2 becomes lq = 0. In practice, points p and q are said to

satisfy the epipolar constraint if

pT
Fq < ǫep (3)

for some threshold ǫep and appropriate scaling of l such that

Eq. 3 represents the perpendicular distance between q and l.

The threshold ǫep is determined by the error in calibration and

image point measurement.

2) 3D Reconstruction procedure: It is assumed that the

points on the surface are sufficiently dense that surface points

within a radius r of each individual surface point lie on a

plane, to good approximation. Given an approximate density

of surface points, ρ, the radius r can be chosen so that on

average n surface points fall within a ball of radius r of each

point x, denoted Br(x).
For each point x in the point cloud, the RANSAC[11] algo-

rithm is used to robustly fit a plane to the r-neighbourhoods

Br(x), using some inlier distance threshold ǫ. The fitted planes

are constrained to pass through x. If image point measure-

ments are sufficiently small, then the density of points in the
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(a) Reconstruction from one pair of cameras
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(b) Reconstructed hemisphere, all cameras combined

Fig. 1. 3D Reconstruction from computer simulation

vicinity of the surface will be much higher than elsewhere in

the point cloud. Therefore, if the point x is a surface point,

then the inliers to the best robust plane fit are also likely to

be surface points, and the fitted plane can be viewed as an

estimate of the tangent plane to the surface at x. If x is not a

surface point, then the fitted plane is essentially meaningless,

as it is the best fit to a random cloud of points.

A means of reducing the density of random points in the

point cloud, while preserving all of the surface points, is to

use points of different colours. The use of colours adds a

further constraint to the correspondence problem, and therefore

reduces the number of matches generated by the epipolar

constraint.

To find the surface, an adjacency graph of the points is

constructed. Two points x and y are said to be adjacent if

each is an inlier to the RANSAC tangent plane fit of the

other, and if the normals of the fitted planes only differ by a

small angle, dependent on the distance between x and y. The

surface points are then extracted from the cloud by choosing

the largest connected component from the resulting adjacency

graph.

The surface density parameter ρ is required to be estimated

for any experiment using this procedure. Experiments have

shown that accuracy in ρ is not critical, for an experiment

with points of density of around 10 pts/cm2, the reconstruction

procedure works equally well for ρ anywhere between around

5 and 20. The parameter ǫ is dependent on the camera geom-

etry and on the accuracy of image point measurements. The

parameter n (which determines r) is chosen so that for each

point, there is a high probability that sufficient neighouring

surface points are contained in the neighbourhood Br(x) to

construct the plane, while being small enough so that the

region of the surface contained in Br(x) is still approximately

planar. Experiments have also shown that the parameters n and

ǫ are also relatively insensitive to variations, a good value of

n for approximately uniformly randomly distributed points is

15.

IV. RECONSTRUCTION - COMPUTER SIMULATION

The test case for the reconstruction algorithm was a hemi-

sphere with randomly distributed points generated by a ho-

mogeneous Poisson process on the surface. The hemisphere

had radius 5cm, and synthetic images were taken from five

cameras evenly spaced around the hemisphere. The cameras

were evenly positioned on a circle of radius 20cm, elevated

20cm above the base of the hemisphere. Five cameras were

used, as this was the minimum required to have each region

of the hemisphere viewed by two overlapping cameras. The

camera matrices were defined with parameters such that the

image of the hemisphere approximately filled a 1600 × 1200
pixel region. The surface was reconstructed by performing the

reconstruction pairwise for pairs of adjacent cameras, and then

combining the resulting surfaces for the final result.

Gaussian noise of standard deviation σ = 0.5 pixels was

added to each coordinate of the image measurements. Param-

eters used were ρ = 10 pts/cm2, n = 15, and ǫ = 0.5mm. The

results are shown in Figs 1a, 1b

V. RECONSTRUCTION - LABORATORY EXPERIMENT

A. Experimental setup

1) Gel phantom: A gel phantom was created from molding

silicon gel with similar elasticity characteristics to human

breast tissue. The silicon was pigmented to yield a more

natural flesh colour. Small red, green, and blue points were

randomly applied to the surface. See Fig. 2a for a picture.

2) Actuator: The actuator is a voice-coil style electrome-

chanical actuator, and provides sinusoidal actuation at frequen-

cies between 20 and 200 Hz at amplitudes of up to 1mm.

Amplitude is controlled via feedback from an LVDT position

sensor from a dSpace real time control environment.



(a) Silicon phantom under actuation with random
coloured dots applied

(b) Actuator, gel phantom, and four of the five
cameras fitted with LED ring flashes

(c) Calibration: Image of the calibration die

Fig. 2. Experimental Setup

3) Cameras and lighting: The cameras are standard con-

sumer Canon Powershot G5 cameras operating at 2 megapix-

els. Each camera is fitted with an LED ring flash which can

be synchronised with an external trigger signal (see Fig. 2b).

These LED flashes are strobed at the same frequency as

the actuation frequency via a control signal from the dSpace

control system. The phase of the strobe signal can be varied

with respect to the actuator signal, allowing images to be taken

at arbitrary points in the actuation cycle.

4) Software: The dSpace control system is designed in

Simulink, and has a real-time interface in Control Desk.

Custom software was written to automatically coordinate the

taking of the images and the adjusting of the strobe phase.

5) Experiment parameters: For the experiment presented

in this paper, the phantom was actuated at 80Hz, with an

amplitude of 0.75mm. 20 images were taken at even phase

increments over the cycle from each camera.

6) Calibration: In order to reconstruct the surface, it is

required that the camera is fully calibrated. The projection

matrix P can be computed from correspondences between

known world locations of a number of points on a calibration

object and their corresponding image locations. P is estimated

using nonlinear least squares minimising the reprojection error.

See [10] for details.

The calibration object used for this experiment is an pre-

cisely machined 100×100×100mm anodised aluminium die.

The point locations used to compute the projection matrix are

the centroids of the die ”dots”. Note that because the dots

are circular, images of these will be ellipses, and the centroid

can be computed in a viewpoint-invariant manner by mapping

each face to a square by a homography. These dots can also be

used to uniquely identify which faces are visible, and hence

calibration is fully automatic from a single image of the cube.

See Fig. 2c for an image of the calibration cube used.

Error in calibration was computed by reconstructing in 3D

the measured image point locations of feature points on the

calibration object in 3D, and comparing with their known

coordinates. For these experiments, the mean reconstruction

error thus obtained was of the order 0.1mm.

7) Feature tracking: The coloured points are extracted

by applying simple colour thresholds to the individual RGB

channels of the images. The point locations are taken to be

the centroids of the detected coloured blobs. As the motion

was relatively small with respect to the point spacing, feature

tracking was performed using nearest neighbour matching. The

motion of the feature points from one camera is depicted in

Fig. 3a.

B. 3D Reconstruction

3D reconstruction was performed on the data points from

the first frame. Parameters used were ǫep = 2 pixels, r =
10mm, and emax = 0.5mm. Points were reconstructed in 3D

by performing 3D reconstructions for each of the 5 adjacent

camera pairs individually and collating the results.

An example of the point cloud created by reconstructing

all potential matches from the epipolar constraint stage is

depicted in Fig. 3b. Because we have points of three different

colours, we can eliminate a number of these mismatches, by

only allowing potential matches to have the same colour. The

same resulting point cloud is shown in Fig. 3c. The effect of

this is to significantly decrease the density of points which are

not on the surface.

The outlier rejection algorithm was then applied to the point

cloud. For the cases considered, the surface was successfully

reconstructed both with and without the colour information.

The case with the colour taken into account performed signif-

icantly faster, however. The resulting reconstructed surface is

shown in Figs. 3d and 3e.

VI. CONCLUSION

This paper implemented an algorithm for reconstructing

surface motion from digital images of an actuated gel phan-

tom. All the key issues of digital image acquisition, camera

calibration, surface reconstruction and point tracking were

addressed. The end result is highly accurate tissue surface

motion tracking which would then go into a finite element

based inverse problem that identifies the tissue distribution of

the phantom. In the case of a breast, regions of high stiffness

would suggest a tumour.



(a) Close up of the tracked motion from one
camera

(b) Point cloud from epipolar constraint matches for one
camera pair, disregarding colour

(c) Point cloud from epipo-
lar constraint matches for
one camera pair, including
colour information

(d) Reconstructed 3D surface points, triangulated using a
modified Delaunay Triangulation method

(e) Close-up of reconstructed 3D surface motion

Fig. 3. Experimental Results

High frequencies of 100 Hz were captured using a combina-

tion of standard digital cameras and a stroboscope providing a

simple cost-effective approach. Overall the results show good

potential for practical implementation in a DIET system with

the potential for low cost and portable breast cancer screening.
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