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Abstract: This paper outlines a method for accurately tracking surface motion on an actuated
breast as part of a Digital Image-based Elasto-Tomography (DIET) breast cancer screening
project. The tracking method is validated in both simulation and experiment on a silicon
breast phantom which has similar elasticity characteristics to human breast tissue. Given mean
reprojection error ranges between 0.3 and 0.5 pixels for 2M pixel cameras the end result is
sub-millimetre surface tracking of a silicon phantom actuated at 100 Hz. This highly accurate,
fast and low cost method of tracking is thus well suited to a DIET system.

1. INTRODUCTION

Breast cancer is a significant health problem in both
developed and developing countries. It is estimated that
each year the disease is diagnosed in over one million
women worldwide and is the cause of death in over 400,000
women Fentiman [2002]. In New Zealand, breast cancer
accounts for the highest mortality rate of all cancers among
women and it has the sixth highest death rate out of 173
developed countries.

There are many treatment options available, including
surgery, chemotherapy, radiation therapy, and hormonal
therapy. These treatments are significantly more effective
in reducing the mortality of the disease with early de-
tection through breast cancer screening programmes. The
most common method for early detection of breast cancer
is mammography. However, mammography can cause sig-
nificant discomfort to the patient and requires radiation
exposure, a further health concern.

Digital Image-based Elasto-Tomography (DIET) is an
emerging technology for non-invasive breast cancer screen-
ing. The DIET system uses digital imaging of an actuated
breast surface to determine tissue surface motion from a
specified input. It then reconstructs the 3D internal tissue
stiffness distribution from that motion. Regions of high
stiffness suggest cancer since cancerous tissue is between
3 and 10 times stiffer than healthy tissue in the breast
Samani et al. [2003], Krouskop et al. [1998], Wellman and
Howe [2000].

This approach eliminates the need for X-Rays and exces-
sive, potentially painful compression of the breast Peters
et al. [2005] as required in a mammogram. Hence, screen-
ing could start much younger and might enjoy greater
compliance Robertson [2005].

Presently, there are other Elasto-Tomographic methods
based on magnetic resonance Oida et al. [2004] and ultra-
sound Maurice et al. [2004] modalities. Both methods are

capable of measuring the tissue elasticity and are under-
going rapid development. However, they are also costly in
terms of equipment and take significant time to use. They
are therefore limited for practical screening applications.

The DIET system, in contrast, is computer-based and is
thus potentially low cost and portable, so the technology
could be used in any medical centre, particularly in remote
areas. In addition, the use of silicon technology ensures
that as it improves and scales upward in capability so
will the DIET system performance. This scalability of
performance is not true for X-Ray or ultrasound based
approaches.

This paper is focussed on the imaging side of the DIET
system and tests the ability to accurately capture actu-
ated tissue motion on realistically shaped breast silicon
phantoms.

2. BACKGROUND

2.1 DIET project

The DIET (Digital Image-based ElastoTomography) con-
cept is a new methodology for breast cancer screening.
The breast is mechanically actuated sinusoidally at a low
frequency (around 50-100Hz). This motion is visible as a
wave pattern on the breast surface. With a linear elasticity
model, knowledge of the breast surface motion in 3D
is theoretically sufficient information to reconstruct the
stiffness distribution of the interior of the breast, and thus,
because cancerous tumours are around an order of magni-
tude stiffer than healthy tissue, could be used to diagnose
breast cancer. In practice the elasticity reconstruction will
be performed by a parametrised inverse problem.

The surface motion is captured by using a combination
of strobed lighting and a number of calibrated digital
cameras. Motion in 3D is computed by matching moving
points between different cameras, and using computer
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vision techniques to construct the corresponding points in
3D.

2.2 Camera Model

Digital CCD cameras can be accurately modeled as per-
spective projection pinhole cameras. The 3D world space
R3 can be embedded in projective space P3 with homoge-
neous coordinates (X, Y, Z,W ) and the image coordinate
space R2 can be embedded in the projective plane P2

with homogeneous coordinates (u, v, w). The correspond-
ing coordinates in R3 and R2, respectively, are given by
( X

W , Y
W , Z

W ) and ( u
w , v

w ). Similarly, measured 3D coordi-
nates and 2D image coordinates can be embedded in P3

and P2 respectively by the maps (X, Y, Z) 7→ (X, Y, Z, 1)
and (u, v) 7→ (u, v, 1).

The camera represents a projection between P3 and P2,
which can be represented by a homogeneous matrix P ∈
R3×4, whose kernel is the projection centre of the camera.
The projection from world coordinates X = (X, Y, Z,W )
to image coordinates u = (u, v, w) is then described by the
linear equation

λu = PX (1)

where λ is a nonzero scalar. The calibration matrix P
can be factored into P = K[R T ] where K is an upper
triangular matrix representing the intrinsic camera param-
eters, R ∈ R3×3 is a rotation matrix describing the relative
orientations of the camera and world frames, and T ∈ R3

is the origin of the world coordinate system in the camera
frame. A camera is said to be fully calibrated if K, R, T
and hence P are known.

3. METHOD

3.1 Fiducial system

Human skin lacks high-contrast features which are easily
extractable from digital images. In order to reconstruct
individual points in 3D, points on the surface must be able
to be extracted from images taken from different cameras,
i.e. they must be viewpoint invariant. The easiest way to
define such features is to introduce artificial fiducials to the
surface. For reasons that will be described in the following
sections, the fiducials used in this paper are randomly
applied identical points in three colours, red, green, and
blue.

3.2 Feature tracking

The features are tracked using the novel Euclidean-
invariant algorithm described in Brown et al. [2007] which
is based on a system of coloured fiducial points as men-
tioned in the previous section. This method of feature
tracking uses the geometrically invariant properties of local
configurations of the coloured point locations to match
points between frames, rather than using image-based
correlation techniques, the advantage being that points
can be matched over a wider range of transformations,
notably those involving a large translational component.
As well, a significant increase in computational speed is

observed. The output of this process is the path of each
fully tracked point over one phase of motion in each set
of images. Note that because the breast is well-modelled
with a linear stiffness model, motion of each point on the
breast surface resulting from sinuosoidal actuation will be
an ellipse, and hence the paths in images from each camera
will also be elliptical. This property can be used to decrease
the number of frames necessary to identify the motion
path of each point. Elliptical features can also be used
as primitives for the correspondence problem, see Quan
[1996], however the ellipses are too small for this to be of
practical use in this problem.

3.3 3D Reconstruction

The main contribution of this paper is a method of
reconstructing the coordinates of a dense set of points
on the surface in 3D based on their image locations.
Conventional approaches to this problem involve finding
means of identifying corresponding points between images,
and then triangulating these to find the resulting 3D
position of the point. In this paper a somewhat alternative
approach is utilised. The epipolar constraint is used to find
a set of candidate matches for each point. All potential
matching pairs are then reconstructed in 3D, giving a large
point cloud, contained within which is the desired surface.
With suitable point density and surface smoothness, the
desired 3D surface can be extracted from this set of 3D
points.

Epipolar constraint Consider two images I1 and I2 from
two fully calibrated cameras. A point p in I1 can be repre-
sented in homogeneous coordinates as p = (p1, p2, p3). The
geometry of the two-camera configuration constrains any
potential match for p in I2 to fall upon an epipolar line
l Hartley and Zisserman [2004]. This constraint can be
represented algebraically by the following matrix equation

pT Fq = 0 (2)
where p,q are the homogeneous coordinates of p and q,
F is a rank 2 matrix known as the Fundamental Matrix
which encapsulates the epipolar geometry and can be
computed from the two camera projection matrices. The
homogeneous coordinates of the epipolar line l are given
by l = pT F , i.e. Eq. 2 becomes lq = 0. In practice, points
p and q are said to satisfy the epipolar constraint if

pT Fq < εep (3)
for some threshold εep and appropriate scaling of l such
that Eq. 3 represents the perpendicular distance between
q and l. εep is determined by the error in calibration and
image point measurement.

3D Reconstruction procedure We assume that the points
on the surface are sufficiently dense that the points within
a certain radius r of each surface point can be well
approximated by a plane. More concretely, let X1 =
[X1, Y 1, Z1, 1]T , . . . ,Xn = [Xn, Y n, Zn, 1]T be the points
within Euclidean distance r of a point X0, and denote
this collection of points the r-neighbourhood of X0. Let
π = [π1, π2, π3, π4], with ||[π1, π2, π3]||2 = 1, represent
the least squares plane fit with respect to perpendicular
distance of that set of points, i.e. representing the plane
equation πX = 0. A measure of how well π approximates
X0, . . . ,Xn is



eπ(X0, r) = ||π[X0, . . . ,Xn]||∞ (4)
i.e. the maximum perpendicular distance from the plane
to one of the data points. For a given smooth surface, r
can be chosen such that

max
X0

eπ(X0, r) < emax (5)

and so that for most points on the surface the number of
points in the r-neighbourhood n > n0, where n0 is some
positive integer (around 10-20 is good).

For a given threshold, εep, all pairs of points satisfying
the epipolar constraint (Eq.3) are computed, and the
3D location of the point corresponding to each pair is
calculated using the DLT triangulation method described
in Hartley and Zisserman [2004].

The resulting cluster of 3D points contains the surface that
is being sought. If the density of points on the surface
is sufficiently high and εep is sufficiently low, then for
each point on the surface, for a suitable choice of r the
r-neighbourhood of that point will contain mostly other
points on the surface; on average a certain proportion
ρ will be surface points. In this event, a plane can be
robustly fitted to the r-neighbourhood using, for instance,
RANSAC, and all of the inliers to this plane marked as
surface points, where some multiple of emax can be used
as the threshold for being an inlier. If RANSAC detects a
large number of inliers in this way, the point along with
the inliers can be categorised as surface points.

For the points not on the surface, there will be a much
smaller proportion than ρ of surface points in the r-
neighbourhood. Moreover the points in its r-neighbourhood
will not sit nicely on a plane. The failure of RANSAC to
fit a plane with a large number of inliers can be recognised
and allows the point to be categorised as an outlier.

The procedure is repeated until all points have been
categorised.

4. RECONSTRUCTION - COMPUTER SIMULATION

A finite element of an elastic cylinder with similar elas-
tic properties to a human breast with a high stiffness
inclusion was used to generate realistic data. The model
was developed by Ashton Peters, from the University of
Canterbury. The 17000 node finite element mesh was pro-
duced in GAMBIT, and the model simulated in Fortran
90, with the matrix inversion being done with the direct
sparse matrix inversion package, MUMPS. The model was
simulated with a 50Hz actuation frequency, with a 0.5mm
peak to peak amplitude. See Figure 1 for a rendering of
the cylinder.

400 Points, 80 red, 160 green, and 160 blue were projected
onto one quarter of the surface of the cylinder. The motion
of the finite element nodes was interpolated onto these
points. Two camera models were set up 90◦ apart at a
distance of 30cm from the cylinder. The resulting image
point locations were computed over one phase of the
actuation, with 20 frames. Gaussian noise was added to the
measured image point locations, with standard deviation
in each orthogonal direction of 0.2 pixels. This value is
reasonable, as the image point locations in practice will

Fig. 1. Finite element cylinder model used for simulation

be determined by taking the centroid of a blob of O(100)
pixels. The expected measurement error should therefore
be well under one pixel.

The points were then tracked using the algorithm de-
scribed in Section 3 over 20 frames, including the last
frame to the first frame, giving elliptical contours. Those
points that were not successfully tracked through all 20
frames (i.e. the 20th point in the sequence doesn’t track
back to 1) were discarded. The reconstructed points are
shown in Figure 2.

5. RECONSTRUCTION - LABORATORY
EXPERIMENT

5.1 Experimental setup

Gel phantom A gel phantom was created from molding
silicon gel with similar elasticity characteristics to human
breast tissue. The silicon was pigmented to yield a more
natural flesh colour. Small red, green, and blue points were
randomly applied to the surface. See Fig. 3 for a picture.

Actuator The actuator is a voice-coil style electrome-
chanical actuator, and provides sinusoidal actuation at
frequencies between 20 and 200 Hz at amplitudes of up
to 1mm. Amplitude is controlled via feedback from an
LVDT position sensor from a dSpace real time control
environment.

Cameras and lighting The cameras are standard con-
sumer Canon Powershot G5 cameras operating at 2
megapixels. Each camera is fitted with an LED ring flash
which can be synchronised with an external trigger signal
(see Fig. 4). These LED flashes are strobed at the same
frequency as the actuation frequency via a control signal
from the dSpace control system. The phase of the strobe
signal can be varied with respect to the actuator signal,



Fig. 2. Reconstructed surface

Fig. 3. Silicon phantom under actuation with random
coloured dots applied

allowing images to be taken at arbitrary points in the
actuation cycle.

Software The dSpace control system is designed in
Simulink, and has a real-time interface in Control Desk.
Custom software was written to automatically coordinate
the taking of the images and the adjusting of the strobe
phase.

Experiment parameters For the experiment presented in
this paper, the phantom was actuated at 80Hz, with an
amplitude of 0.75mm. 20 images were taken at even phase
increments over the cycle from each camera.

Fig. 4. Experimental setup: Actuator, gel phantom, and
four cameras fitted with LED ring flashes

Calibration In order to reconstruct the surface, it is
required that the camera is fully calibrated. The projection
matrix P can be computed from correspondences between
known world locations of a number of points on a cali-
bration object and their corresponding image locations. P
is estimated using nonlinear least squares minimising the
reprojection error. See Hartley and Zisserman [2004] for
details.

The calibration object used for this experiment is an
precisely machined 54mm3 anodised aluminium die. The
point locations used to compute the projection matrix
are the 6 vertices on the silhouette of the cube, and the
centroids of the die ”dots”. Note that because the dots are
circular, images of these will be ellipses, and the centroid
is viewpoint (projectively) invariant. These dots can also
be used to uniquely identify which faces are visible, and
hence calibration is fully automatic from a single image
of the cube. See Fig. 5 for images of the calibration cube
used.

Fig. 5. Calibration: Images of the calibration die from the
four cameras

Error in calibration is measured by the mean reprojection
error, i.e. the world locations of the visible points are
projected onto the images, and the mean Euclidean dis-



tance between these projected points and their measured
location is taken to be the measure of error. For these
experiments, the mean reprojection error ranges between
0.3 and 0.5 pixels, where the images used are 2 megapixel
images.

Feature tracking The coloured points are extracted by
applying simple colour thresholds to the individual RGB
channels of the images. The point locations are taken to be
the centroids of the detected coloured blobs. The feature
locations are then tracked using the Euclidean Invariant
algorithm described in Brown et al. [2007]. The motion of
the feature points from one camera is depicted in Fig. 6.

Fig. 6. Close up of the tracked motion from one camera

Another subsection

5.2 3D Reconstruction

3D reconstruction was performed on the data points from
the first frame. Parameters used were εep = 2 pixels,
r = 10mm, and emax = 0.5mm. Plane fitting for r-
neighbourhoods was only considered if the number of
neighbours n ≥ 10. Points were reconstructed in 3D by
performing 3D reconstructions for each of the 3 adjacent
camera pairs individually and collating the results.

An example of the point cloud created by reconstructing
all potential matches from the epipolar constraint stage
is depicted in Fig. 7. Because we have points of three
different colours, we can eliminate a number of these
mismatches, by only allowing potential matches to have
the same colour. The same resulting point cloud is shown
in Fig. 8. The effect of this is to significantly decrease the
density of points which are not on the surface.

The outlier rejection algorithm was then applied to the
point cloud. For the cases considered, the surface was suc-
cessfully reconstructed both with and without the colour
information. The case with the colour taken into account
performed significantly faster, however. The resulting re-
constructed surface is shown in Fig. 9.

Fig. 7. Point cloud from epipolar constraint matches for
one camera pair, disregarding colour

Fig. 8. Point cloud from epipolar constraint matches for
one camera pair, including colour information

Fig. 9. Reconstructed 3D surface points, with a least
squares sphere in the background to give some 3D
context

6. CONCLUSION

This paper implemented an algorithm for reconstructing
surface motion from digital images of an actuated gel
phantom. All the key issues of Digital image acquisition,
camera calibration, surface reconstruction and point track-
ing were addressed. The end result is highly accurate tissue
surface motion tracking which would then go into a finite
element based inverse problem that identifies the tissue
distribution of the phantom. In the case of a breast, regions
of high stiffness would suggest a tumour.



High frequencies of 100 Hz were captured using a com-
bination of standard digital cameras and a stroboscope
providing a simple cost-effective approach. Overall the
results show good potential for practical implementation in
a DIET system with the potential for low cost and portable
breast cancer screening.
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