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Abstract: Authoring ITS domain models is a difficult task requiring many skills. We explored 
whether modeling ontology reduces the problem by giving the students of an e-learning 
summer school the task of developing the model for a simple domain in under sixty minutes 
using ontology. Some students also used our tool to develop a complete tutor in around eight 
hours, which is much faster than they could be expected to author the system without the tool. 
The results suggest this style of authoring can lead to very rapid ITS development. We further 
extend the ontological approach with domain schema: high-level abstractions that describe the 
semantics of the domain model for a class of domains. Using domain schema reduces the 
authoring effort to one of describing only those aspects that are unique to this particular domain, 
and enables the ontology-based approach to model domains with different semantic requirements.  

Keywords:  intelligent tutoring systems, authoring systems, constraint-based modeling, domain 
models, Ontology 
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1 Introduction 

Intelligent Tutoring Systems (ITS) increasingly show promise as a technology that 
will expand the horizons of education from those able to attend a bricks-and-mortar 
institution to anyone with an Internet connection. Acting as an enhancement to 
traditional distance learning offerings, they promise to augment laboratories and 
tutorials by allowing students to practice the skills they are learning from home. In 
recent years tutors such as the Geometry and Algebra tutors, and the Addison-Wesley 
database place suite (SQL-Tutor, ER-Tutor and NORMIT) have made it out of the lab 
and into the classroom [Koedinger, 97], [Mitrovic, 06a].  

Despite this success, intelligent tutors have still not been adopted widely. One 
reason for this is the difficulty in building them. Recent research efforts have tried to 
address this shortcoming. The Cognitive Tutor Authoring Tools (CTAT) [Koedinger, 
04] attempt to reduce the authoring effort for ITSs based on model tracing. The tools 
support the creation of two types of tutor: ‘Pseudo tutors’ and ‘Cognitive tutors’. 
Authors can quickly build Pseudo tutors by developing the user interface for the tutor 
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and then demonstrating the solution to one or more problems. However, these are not 
“real” ITS: the resulting model is essentially a trace of the correct behavior for that 
problem only. Whilst it is possible to add multiple solution pathways (including 
incorrect behavior) and comprehensive feedback, the resulting tutor is nevertheless 
suitable only for the problem from which it was authored. To convert a pseudo-tutor 
into a full cognitive tutor the author must manually create the production rules that 
represent a general model of the domain, which is a formidable task. A refinement to 
this approach is to incorporate bootstrapping, in which novice data from several 
students is used to create a behavior graph that summarizes their collective behavior. 
Because it records not only (correct and incorrect) actions taken but also the 
frequency of each action, it provides rich information about likely student actions. For 
example, the Cool Modes system has been extended to record the collective behavior 
graph of collaborating students for this purpose [Harrer, 06]. REDEEM [Ainsworth, 
04] takes a different approach. It allows educators to add pedagogy to e-learning 
delivery by tailoring the delivery of educational material to stereotypical student 
groups. REDEEM has been shown to increase student learning, but it is a very 
different authoring task that does not generate diagnostic models. 

Constraint-Based Modeling (CBM) [Ohlsson, 94] is an effective approach for 
building Intelligent Tutoring Systems that supports the building of domain and 
student models. Constraint-based tutors are effective: students using SQL-Tutor have 
shown significant gains in learning after as little as two hours of exposure to this 
system [Mitrovic, 99]. Also, CBM seeks to minimize the authoring effort by requiring 
the author to model only states, rather than solution paths [Mitrovic, 03]. For domains 
such as design tasks where the number of possible solution states is huge this can 
greatly reduce the authoring effort. Nevertheless, the task of building an ITS is still 
far from trivial, and requires many different areas of expertise including cognitive 
science, software engineering and educational instruction. To reduce the authoring 
effort we developed WETAS (Web-Enabled Tutor Authoring System), a web-based 
tutoring shell that performs all of the common functions of text-based tutors, and thus 
obviates the software engineering requirement. To demonstrate the flexibility of 
WETAS we re-implemented SQL-Tutor and developed a new ITS for teaching 
spelling and vocabulary (LBITS). Although these domains share the property of being 
text-based, they have very different problem/solution structures. We evaluated LBITS 
in a New Zealand school and found it to be effective [Martin, 02a; Martin, 02c]. 

WETAS removes much of the effort required to build an ITS, but it does not 
directly facilitate the building of the domain model, which is arguably one of the most 
difficult tasks [Murray, 97]. In particular, the author must write the domain rules or 
“constraints”, which requires programming skill and an understanding of artificial 
intelligence techniques. For complex domains the constraint set can quickly become 
large (SQL-Tutor has over 600 constraints), making it hard to manage. One way to 
overcome this is by modeling the domain at a higher level using ontology. We 
developed a tool, WETAS-Ontology, which allows authors to graphically model the 
domain as ontology. A constraint generator then creates the required constraints from 
the concepts in the ontology. The resulting constraints form a domain model that can 
be used to provide highly specific feedback tailored to the individual student’s 
misconceptions, and to drive the pedagogical process, for example by selecting 
problems based on the concepts for which the student is currently violating 



constraints. The ontology assists in this latter task by allowing the problem selector to 
infer which similar concepts a student is likely to find difficult when the problems 
applicable to the current concept have been exhausted. 

WETAS-Ontology was used as a learning aid at the 2006 e-learning school at the 
National College of Ireland, which enabled us to test our hypothesis that modeling 
using ontology is easier and faster than writing constraints by hand. This paper reports 
on our experiences. The next section briefly introduces CBM and the WETAS 
authoring shell, and WETAS-Ontology is described in Section 3. Sections 4 and 5 
describe how WETAS-Ontology was used at the e-learning summer school. Section 6 
discusses limitations of this approach and introduces one potential solution, Domain 
Schema, which are described in detail in Section 7. Finally, we conclude in Section 8 
and discuss future directions.  

2 Constraint-Based Modeling and WETAS 

CBM [Ohlsson, 94] is based on the theory of learning from performance errors 
[Ohlsson, 96]. It models the domain as a set of state constraints, where each constraint 
represents a declarative concept that must be learned and internalized before the 
student can achieve mastery of the domain. Each constraint represents a restriction on 
allowed solution states, and takes the form: 
 

If  <relevance condition> is true for the student’s solution,  
THEN  <satisfaction condition> must also be true 

 
The relevance condition of each constraint checks whether the student’s solution is in 
a pedagogically significant state. If so, the satisfaction condition is checked. If it 
succeeds, no action is taken; if it fails, the student has made a mistake, and 
appropriate feedback is given.  

In a constraint-based tutor the constraints are used to model the fundamental 
concepts of the subject (domain) being taught such that when a constraint is violated, 
regardless of the broader context, the student has made a mistake and the 
corresponding feedback is given. Syntactic constraints check that the solution is 
syntactically correct. For example, in the domain of SQL queries, any attributes listed 
in the “SELECT” clause must be separated by commas. Conversely, semantic 
constraints check whether the student’s solution has solved the problem, usually by 
comparing it to an “ideal” solution supplied by the teacher. Again from SQL, one 
such semantic constraint tests that all of the tables required to retrieve the desired data 
are present in the student’s answer. In the domain of English spelling syntactic 
constraints test that the word a student has given is correctly spelled (regardless of 
whether or not it answers the question), whilst semantic constraints test whether the 
answer requires certain letter combinations that children struggle with (e.g. “ough”). 
The semantic constraints test for all of the different possible encodings of the concept 
they are attempting to test; the student is thus permitted to use a different problem-
solving strategy to the author, or even to mix strategies, provided no fundamental 
domain concepts are violated. For example, in SQL-Tutor the student’s query may 
access the required tables using either a nested select or one of several kinds of table 



join; the system will permit any of these provided they have correctly captured the 
semantics required (i.e. they correctly answer the question). 

WETAS is a web-based tutoring engine that provides all of the domain-
independent functions for text-based ITS. It is implemented as a web server, written 
in Allegro Common Lisp, and using the AllegroServe Web server [FranzInc]. 
WETAS supports students learning multiple subjects at the same time; there is no 
limit to the number of domains it may accommodate. Students interact through a 
standard web browser such as Firefox or Internet Explorer. WETAS implements as 
much of the ITS functionality as possible by providing generic processing capability 
that is expected to be applicable to a wide range of domains. In particular, it provides 
the following functions: problem selection, answer evaluation, student modeling, 
feedback, and the user interface. The author need only provide the domain-dependent 
components, namely the structure of the domain (e.g. any curriculum subsets), the 
domain model (in the form of constraints), the problem/solution set, the scaffolding 
information (if any), and possibly an input parser, if any specific pre-processing of the 
input is required. WETAS provides both the infrastructure (e.g. student interface) and 
the “intelligent” parts of the ITS, namely the pedagogical module and the domain 
model interpreter. The former makes decisions based on the student model regarding 
what problem to present to the student next and what feedback they should be given. 
The latter evaluates the student’s answers by comparing them to the domain model, 
and uses this information to update the student model. Constraints are written in a 
custom pattern-matching language that is intended to be simple to author. The system 
reasons about the constraints in three ways: it may evaluate the student solution 
against constraints to decide what is wrong and give feedback, it may use the 
constraints to correct errors in the student’s input (and thus show them how to 
proceed), and it may use constraints to generate new problems to present to the 
student. For more information see [Martin, 00; Martin, 02b]. 

WETAS has been used to build several tutors, including EER-Tutor for Addison-
Wesley [Mitrovic, 06] and Collect-UML [Baghaei, 06]. It has also been used for the 
past four years by a graduate University class in Intelligent Tutoring Systems at 
Canterbury University. In this class students are assigned the task of building an ITS 
in WETAS. The first time it was used by this class it became apparent that further 
authoring tools are required: the students were able to build a tutor in the time 
allocated (three weeks) but their domain models were generally sub-optimal [Martin, 
03]. We found that students make mistakes at all levels of the domain authoring 
process: they fail to model pedagogically significant states (i.e. model spurious 
concepts), do not always capture the intended states in their constraints, and make 
errors during constraint encoding or encode them inefficiently. Thus when working at 
the constraint level authors find it difficult both to conceptualize the domain and then 
to implement their model. Our proposed solution was to provide a high-level tool that 
automates the encoding of constraints based on an ontology that the author provides. 
We hypothesize that this will help in two ways: by removing the low-level steps from 
the authoring process (and thus preventing encoding errors being made) and by 
allowing the author to visualize the structure of the domain during authoring so that 
they are more likely to capture the intended pedagogical states. 



3 WETAS-Ontology 

The use of ontology in education systems is not new. Mizoguchi and Bourdeau 
advocate authoring intelligent instructional systems by engaging authors in 
knowledge modeling rather than knowledge engineering [Mizoguchi, 00]. They 
propose building education systems by creating task ontology (which models 
pedagogy) and domain ontology, which represents each individual domain. We are 
interested in the latter: how do we use ontology to develop domain/student models? 
Modeling domains at the ontology level has other potential benefits too, such as the 
ability to re-use parts of a domain model and to obtain interoperability across different 
ITS platforms. For example, Barros et al propose using ontology to model computer 
supported collaborative learning (CSCL); the ontology provides a standardized 
vocabulary for collecting and analyzing students’ collaborative behavior, and thus this 
part of the model could potentially be shared across multiple CSCL systems for 
different domains [Barros, 01]. As well as enabling reuse of such models, it 
potentially allows student data to be analyzed across multiple domains. For example, 
in [Soller, 03] students’ collaborative discussions were analyzed and used to develop 
a model of effective patterns of interaction; by (re)using a shared ontology describing 
the collaborative model as described by Barros et al, this data could be used to build a 
global picture of a student’s collaboration skills across otherwise unrelated education 
systems. Such an approach would provide the opportunity to coach them on this 
particular skill regardless of which system they are currently using. Finally, 
Ontologies also have the desirable property of representing domain information at 
increasing levels of abstraction. This is particularly useful if we wish to expose the 
domain/student model to the student; StyLE-OLM [Dimitrova, 03] uses this approach 
to provide an interactive open learner model.  

WETAS-Ontology is an experimental tool for authoring ITS domains. It consists 
of two parts: a graphical editor for creating the ontology and a constraint generator. 
The latter parses the ontology and creates constraints for testing the student solution 
based on the concepts in the ontology. One goal of this research is to develop 
authoring tools that are easy for ITS “lay people” to use, i.e. teachers in general. 
Many tools already exist that facilitate the development of ontology (e.g. Protégé 
[Puerta, 92], Protégé-Owl [Knublauch, 04]), however these tools are typically aimed 
at experienced knowledge engineers, and we considered they would be too difficult 
for non-experts to use. In particular, our tool attempts to visualize the entire model in 
a clear, graphical manner. 

Figure 1 is a screen shot of the ontology editor showing the developed ontology 
for the domain of search engine queries that was used for the case study. In this 
domain students are given the criteria for a search engine query, which they write 
using a hypothetical language that consists of logical expressions containing the 
words and strings they are looking for. The ontology is a combination of taxonomy 
(“kind-of” relationships) and partonomy (“part-of” relationships). The graphical 
representation adopted was chosen to visualize both of these views simultaneously. 
Diamonds represent alternative constructs/concepts (kind-of relationships). For 
example, a search expression consists of a negative expression or a positive 
expression. Conversely, child nodes of rectangles represent a strict sequence of 
required sub-parts. 



In this ontology, a negative expression consists of NOT, followed by a left 
bracket, followed by a positive expression followed by a right bracket. Rectangles 
with double-lined sides represent concepts that have already been defined elsewhere 
in the ontology; domains may thus be recursive, as in the example given. A concept 
may optionally have three properties: role, which identifies their purpose in the parent 
concept (for example, the role of search expression in a complex expression could be 
“first argument”); reversible, which indicates whether or not this concept has the 
same meaning when parsed backwards; pattern, which describes how this concept is 
identified in the solution. Pattern may be a string, or the name of a macro if complex 
processing is required to determine membership of the concept. The purpose of the 
ontology is to capture the fundamental concepts of the domain so that these can be 
tested in the student solution. There is no standard process for creating ontology, 
however we have found that for many domains (including the one in Figure 1) a 
useful approach is to begin with the grammar of valid solutions and add further 
concepts as required. 

The constraint generator uses the ontology to create a set of constraints that can 
be loaded into WETAS and used to evaluate student solutions. For the purpose of this 
study we generated only semantic constraints. Templates are used to create a set of 
constraints from each concept in the ontology. These constraints test for the 
presence/absence of any examples of each concept (i.e. is this concept used at all), 
that all of the required instances of each concept are present in the solution, and that 
the subcomponents of each instance are correct (e.g. does the student’s logical 

 
 

Figure 1: WETAS-Ontology interface 
 



connective have the correct arguments). Feedback messages are also generated 
automatically based on templates. This fairly simple set of templates yields a 
plausible domain model. Note however that it is not intended to deliver the final set of 
constraints; typically authors will modify the feedback messages, add additional 
constraints for complex concepts and edit the generated constraints, perhaps to make 
them more general. Figure 2 shows two examples of generated constraints. The first 
checks whether or not a string is needed. The test for a string is complex, so a macro 
has been used. Writing the macro is an additional task to producing the ontology; in 
practice few (if any) macros tend to be required. The second constraint checks 
whether or not a complex expression is needed. In this case there is no easy way to 
test for this concept because it consists only of two alternative sub-concepts and no 
literal components. The generator therefore descends the tree until it finds sub-
concepts with literal components (in this case “AND” and “OR”) and creates 
alternative tests for each alternative sub-component. 

WETAS-Ontology was evaluated at the e-learning summer school in June 2006 at 
the National College of Ireland, Dublin. This forum was considered an ideal testing 
ground because the participating students were of mixed backgrounds, with less than 
half being Computer Scientists. The first author gave instruction at this school, which 
consisted of two hours of lectures about ITS (and domain/student modeling in 
particular), followed by a 90 minute practical session. Instructors were also asked to 
contribute a potential project idea, from which the students would choose one for a 
one-day practical project. WETAS-Ontology was used for both of these purposes. 

4 Case Study 1: A Domain Model in Sixty Minutes 

To determine the feasibility of using WETAS-Ontology we asked the students to use 
it during their 90-minute practical session to develop the ontology for the domain of 
search engine queries. The students were first lectured about the ontology tool, 
WETAS and the domain; this took approximately 30 minutes. They then had a further 
60 minutes to develop their model. The WETAS tutor authoring shell was installed on 
each of their computers along with WETAS-Ontology. The other necessary 
components of the search engine query tutor (e.g. the problem/solution set) were also 
set up for them. The students could therefore test their ontology at any time. First, 

(5 "Check whether you need one or more string(s) in your answer." 
  (MATCH IS ANSWER (?* (^string ?IS_1) ?*)) ;; relevance 
 
  (MATCH SS ANSWER (?* (^string ?SS_1) ?*)) ;; satisfaction 
"ANSWER") 
 
(16 "Are you sure you need complex expression(s) in your answer?" 
 (OR (MATCH SS ANSWER (?* "AND" ?*)) ;; relevance 
     (MATCH SS ANSWER (?* "OR" ?*))) 
 
 (OR (MATCH IS ANSWER (?* "AND" ?*)) ;; satisfaction 
     (MATCH IS ANSWER (?* "OR" ?*))) 
"ANSWER") 
 

Figure 2: Generated constraint examples 



they would use the ontology editor to begin creating the ontology. They then 
instructed the tool to generate the constraint set. Finally, they loaded the constraints 
into WETAS and tried out the tutor. They were able to repeat this procedure as often 
as desired until they had completed the model or ran out of time. When they first used 
WETAS-Ontology it contained just the definition of “simple expression” from Figure 
1. This is a working model, but it only recognizes search expressions that consist of a 
single word or string. Their task was to extend the model to cover the entire search 
engine language. Twelve students attempted to complete the task.  

We categorized each model by comparing it to that in Figure 1. The categories 
were: complete – the model leads to as good a constraint set as ours; useable – the 
model generated a significant subset of the constraints, such that the resulting tutor 
gave useful feedback, but would not recognize all legal expressions; good attempt – 
the model had a significant number of the relevant concepts but contained substantial 
errors or omissions; poor – some attempt had been made but there had been little 
progress (these latter models might also be unusable because they were not 
syntactically correct).  

Half of the students produced useable domain models, of which one was almost 
identical to that produced by this paper’s authors, and was both of high quality and 
complete. Figure 3 shows a useable (but not complete) model. The main problem is 
that the student has not made the model recursive; the resulting constraints are 
therefore unable to deal with complex solutions. For example, because the arguments 
to “conjunct” are simple expressions only, the model generated from this ontology 
will be able to recognize “fish and chips” but not “fish and chips and salt,” which 
contains a nested conjunct. There were also other differences, such as whether or not 
the author had grouped conjuncts and disjuncts into a high level concept (e.g. 
“complex expression” in Figure 1). Some of the “useable” solutions also missed 
whole parts of the ontology (such as bracketed expressions) or duplicated parts of the 
ontology instead of abstracting out common concepts. Of the other six participants, 
three were classified as “good attempt”. These students had produced reasonable 
ontologies but they were still some way from being complete, and would hence 
generate constraint sets that failed to test significant features of the solution. The 
remaining three were “poor”; these participants appeared to have struggled with the 

Figure 3: Example of a “useable” ontology 



whole task of creating ontology. 
When asked informally for their comments the students were generally very 

positive about the experience. In particular, they were impressed that they had 
produced an ITS that generated useful feedback in such a short space of time (less 
than 60 minutes). They also commented that they found the tool easy to use and that 
the ontology representation, once explained, was easy to understand. Some 
participants also commented that they were impressed with the level of generality of 
the tool, and that they could see how it could be used to develop ITS across a wide 
range of domains. 

However, it appears that this approach to authoring does not suit everyone. In 
particular, the concept of recursion appeared not to be obvious to most participants. 
For those participants who scored “poor” it is likely that they have not had to perform 
similar abstraction tasks before; at least one such student commented that the 
modeling task was so foreign to them that they had simply not known where to begin, 
despite the tuition they had received. This may be a feature of the students’ 
background. For example, the student who developed a complete ontology was a 
Computer Scientist studying in a similar area (collaborative e-learning), and who 
would therefore be familiar with the concepts behind the task. For authors of other 
background some tuition in developing ontology is likely to be needed.  

Despite these limitations the results were sufficiently positive that we proposed 
WETAS-Ontology as a potential subject for a group project. 

5 Case Study 2: A Tutor in a Day 

The participants at the summer school were all required to contribute to a group 
project, which would be assessed. The students were given a list of seven potential 
projects spanning a variety of subjects in the general area of e-learning. Eight of the 
students (more than half the class) chose to use WETAS-Ontology to build an ITS. 
They separated into two groups, both of which worked on tutors in the domain of 
English spelling, a similar domain to an example they had been given. The goal was 
to build a complete tutor from scratch. They were allocated around six hours of class 
time to complete the project, although they could work outside class hours if they 
wished. The first group critiqued WETAS-Ontology and determined (incorrectly) that 
the ontology representation was too weak to support their chosen domain. As a result 
they suggested an alternative approach whose representation was conceptually similar 
to Object Oriented software design, for which they built a simple prototype. The 
second group developed a complete tutor using WETAS-Ontology. We turn our 
attention to this second group. 

To develop a complete tutor the students were required to author a set of 
problems and ideal solutions (the latter being used by the constraints to check 
semantics), as well as building a complete domain model. To author the domain 
model, in addition to creating the ontology they would need to edit the generated 
constraints to provide better feedback and add any additional semantics that were too 
difficult (if not impossible) to model in the ontology. The group chose the domain of 
pluralization of nouns. 



Figure 4 shows their completed ontology. This ontology is generally similar to 
what we would have produced, the main difference being that the final leaf nodes are 
not actually required (i.e. the nodes above could serve as the leaf nodes). There were 
also some other minor errors (e.g. bacillus and cactus are two examples of the same 
rule). The leaf nodes on the left represent regular nouns that can be grouped into 
“rules” of pluralization, while those on the right are irregular nouns that can only be 
learned individually. The semantics for the regular noun groups can either be modeled 
in the ontology (e.g. by enumerating all of the words belonging to each group) or via 
macros. The group chose to use this latter solution, and two of the group members 
paired up to perform this job. Further, there are two ways that macros can be used to 
represent the required concepts: by testing the letters on the end of the word for the 
required regular form, or by enumerating the words that belong to each group. The 
former is more robust and efficient but requires a greater knowledge of WETAS’ 
pattern-matching language, while the latter is brittle; the macro will require 
modification every time new vocabulary is introduced into the problem set. The 
students chose to enumerate the members of each group, which is understandable 
given the limited time available and given that they were not taught how to write 
complex macros. It does however illustrate that greater familiarity with the tool would 
be essential for developing high quality domain models. 

The group produced a fully working tutor in around eight hours. Whilst the 
domain chosen was not particularly complex, this is nevertheless an impressive 
achievement. The final tutor consisted of 108 constraints. If all of the group’s time 
was spent purely on this task, this result equates to less than five minutes per 
constraint. Given that there were four group members, this equates to around twenty 
person-minutes. This is significantly less than the 10 hours per rule reported for 
model tracing tutors [Anderson, 95] or even the 1.1 hours that it may typically take to 
hand-write a constraint for CBM [Mitrovic, 03]. In practice the participants also had 
to perform other tasks such as authoring the problem/solution set, so these results are 
conservative. For simple domains such as this, authoring by ontology delivers a major 
improvement in efficiency. The quality of the domain model they produced is 
comparable to what this paper’s authors would have created.  

 
 

Figure 4: The pluralization ontology 



6 Discussion 

WETAS-Ontology reduces the effort required to build an ITS by abstracting the 
authoring process to one of graphically modeling domain ontology rather than 
encoding individual constraints, but nonetheless it is still a formidable task. In 
particular, it appears that developing domain ontology is a process that does not come 
naturally to all authors. Whilst some of the students in the study produced usable 
domain models, only one was completely correct. The rest appear to have had 
difficulty grasping the complexity of the modeling task, and nearly all participants 
were unable to model the recursive nature of the domain. Naturally we would expect 
this situation to improve with experience, however the fact that some participants 
found the whole idea of modeling ontology too difficult to grasp is of some concern. 
It is thus desirable to somehow lower the bar further for those new to conceptual 
modeling. 

One of WETAS-Ontology’s strengths is that it automatically generates a plausible 
set of constraints from the ontology. However, to do this it must make many 
assumptions regarding the semantics of the domain model being created, and hence 
the domain being built must be modeled in such a way that the tool’s reasoning will 
be correct. For example, ASPIRE is a mature authoring system (based on WETAS) 
that also generates constraints for CBM domains using ontology [Mitrovic, 06b]. The 
generation process for this tool was based on the semantics of the domain model for 
entity-relationship modeling; in this domain each concept in the model represents an 
object the student may create in the solution (e.g. an entity or attribute), with 
relationships in the ontology representing relationships between objects in the final 
diagram (e.g. a one-to-many “has” relationship between “customer” and “order” 
entities). In contrast, WETAS-Ontology is used for language-based learning tasks 
such as programming languages. This requires a completely different semantic view 
of the ontology because program code has “part-of” relationships (e.g. the word 
“WHILE” is part of a “while-loop” concept). Both systems thus exhibit the same 
limitation: they will only be effective for domains that conform to their semantic view 
of the ontology. 

Our goal is to create a tool for authoring ITS for any domain. To do this its 
semantics must be easily extensible. Since different authors will have differing 
semantic requirements it must be possible for support for new domain types to be 
added without changes to the core system. To facilitate this we have developed an 
additional abstraction layer, domain schema. Domain schema define the system’s 
behavior for a subset of domains that share a common structure and task type. New 
schema can be added to ASPIRE at any time by creating the appropriate XML 
documents and uploading them. 

The schema automates the authoring process still further by reducing the 
vocabulary of the ontology to only those constructs required to author this domain 
type, making ontology authoring a much more well-defined task. We hypothesize that 
this will make domain modeling more feasible for novice modelers.  

 



7 Domain Schema 

 
A domain schema is a collection of XML documents that describe parts of the domain 
model that will be common to all domains of the same general type, such as critiquing 
a set of images. These documents tell ASPIRE how to perform many parts of the 
authoring process that would be otherwise performed manually. The documents are: 

• Ontology schema (XML) and ontology generation rules (XSLT) 
• Constraint generation rules (XSLT) 
• Solution structure generation rules (XSLT) 
• Student interface (HTML, with optional Java applets) 

 
In the following sections we will use an example domain type to illustrate how 
domain schema work: for this domain type the student is shown a set of two or more 
images and is asked to choose the one with a particular characteristic and to identify 
features in the image that support their choice. This domain type could apply to many 
different subject areas (domains), such as: which of two buildings is Ionian; which x-
ray image is better quality; which forest is the most damaged by acid rain; which 
painting is by Van Gogh; which x-ray shows an intestinal stricture. The interface 
consists of an applet for displaying, panning and zooming images, a control for 
selecting one of the images and a list of features that may or may not contribute to the 
decision; for each feature the student will select an appropriate feature value. Figure 5 
shows this interface in action for an example of this domain type: x-ray power. 
For each domain type the ontology will have the same basic form. The ontology 
schema defines this form by specifying concepts common to all domains of this type 
(typically the top of the ontology hierarchy), and describing the types of other 
concepts that the author can create and the relationship between these and the 
common concepts. Figure 6 shows the ontology for an ITS of the domain type 
“critique images”, in this case the x-ray power domain, viewed using ASPIRE’s 

 
 

Figure 5: Example tutor for critiquing x-ray images 



ontology editor. All ontologies for this domain type contain the “feature”, “image” 
and “selection” concepts. The “feature” concept is then specialized for the actual 
features that the student will look for in this domain. The author can also specify 
abstract features if they wish; these are used for adding information that is common 
to more than one of the actual features. In Figure 6 the actual features are “anatomical 
detail”, “background” and “soft tissue”; abstract features are “contrast technique” and 
“brightness technique”. Each feature is then further specialized into feature values, 
which are the values the student can choose between, such as “more anatomical 
detail” and “lighter soft tissue”. The “image” concept is used to describe the images 
being shown to the student, in terms of the features present in this image (whether or 
not they contribute to the correct answer). Finally, the “selection” concept represents 
the choice the student must make between images.  

The ontology schema describes the concept types the author can create (in this 
case feature and feature value). For each it also describes the attributes of that concept 
the author will be required to provide; for this domain a feature can have two 
feedback messages; hint, used when the student has overlooked this feature, and 
wrong for when the feature has been erroneously used. Similarly a feature value has a 
summary and detailed feedback message, and another (positive) to be displayed as 
reinforcement when the student has correctly answered the question. Finally, the 
author can specify that one concept is an example of another; in Figure 6 “les 
anatomical detail” is an example of “high contrast technique”. Once the author has 

 
 

Figure 6: Ontology for x-ray power 



filled in the details for the features and their possible values, the information is saved 
as an XML document and converted to a standard ASPIRE ontology using XSLT. 

The ontology is then converted to constraints using an XSL transform. This 
XSLT encodes the semantic interpretation of the ontology by specifying how each 
concept should be turned into one or more constraints. For the domain type under 
discussion the constraint generation rules are as follows: 

1. Correct selection: for each “selection” concept check the student has supplied 
the correct selection value 

2. All features specified: For each feature, if a value is specified in the ideal 
solution, the student must also have specified a value 

3. No extraneous features: for each feature, if the student has specified a value, the 
ideal solution must also specify a value 

4. Correct feature value: If the student has specified a feature value, and one was 
required, is it the same as that in the ideal solution 

5. Feature value supports selection: if the student has selected a feature value that 
is present in their chosen selection, check that the selection is correct. 

 
For each constraint the hint and feedback messages (for the concept from which it 

is generated) are incorporated into boilerplate text to give the actual messages the user 
will see when the constraint is violated. By carefully wording the feedback messages 
for each concept the author can ensure that the messages in the generated constraints 
are as required; this obviates the need to edit the constraints directly at any time. For 
this domain type the semantics are very straightforward. We are using domain schema 
to develop VIPER (Virtual Instructional and Practice Educational Resource) in 
conjunction with the Canterbury Polytechnic and Institute of Technology (CPIT). For 
this project there are five domain types, all of which are visual: critique images; label 
an image; identify a feature in the image (i.e. point to it); perform measurements on 
an image; experiment with the parameters of an image. In all cases the domain model 
is feature-based, and the semantics are straightforward as a result. The semantics for 
other domain types may be more complex.   

Another domain type we are developing is programming languages. In this type of 
tutor the student is given a task to perform where they must write a snippet of code in 
free text form. The ontology for this type of ITS describes the grammar of the language 
being used. For example, consider the “logical expressions” domain described 
previously. In this domain each concept represents some part of the language (e.g. 
“conjunct”); concept properties represent the “part-of” relationship between a concept 
and the language constructs that make up that concept; for example a conjunct consists of 
an expression, followed by “and” followed by a second expression). The constraint 
generation rules for checking semantics of this domain type are as follows: 

1. Concept necessary: for each concept, if it appears at least once in the ideal 
solution, it must also appear in the student solution; 

2. Concept superfluous: for each concept, if it appears at least once in the student 
solution, it must also appear in the ideal solution; 



3. All concept instances present: for each instance of each concept in the ideal 
solution where the student solution contains at least one instance of this concept, 
there must exist an equivalent instance in the student solution; 

4. No concept instances superfluous: for each instance of each concept in the 
student solution where the ideal solution contains at least one instance of this 
concept, there must exist an equivalent instance in the ideal solution; 

5. Correct components: for each concept instance in the student solution, if all 
but one component is equivalent to an instance in the ideal solution, the 
remaining component must also be equivalent. 

 
For this domain the author describes each of the concepts in the same way as they 

would describe a grammar (e.g. in BNF). However, this is not sufficient because they 
also need to define equivalence. For example, “dog and cat” is equivalent to “cat and 
dog”. They do this by defining additional concepts. In the previous example, 
conjunction is defined twice, with one definition being the exact reverse of the other. 
Each concept can then specify an “is equivalent to” relationship with another. In more 
complex cases the concept may be one that does not already appear in the grammar. 
For example, for logical expressions we can define de Morgan’s law: 

 

BABA ∨≡∧ )(     (1) 

 
We specify this law by defining both de Morgan forms and indicating they are 
equivalent. The constraint generation rules then use this information as follows. First, 
whenever a concept detected in one solution (e.g. the ideal solution) is being looked 
for in the other solution (i.e. the student solution), the default logic is to look for the 
exact same concept instance in both solutions. However, if the concept is one for 
which an equivalent form exists, the constraint will instead check that either the same 
concept instance exists in the other solution or an equivalent concept instance exists. 
Second, when checking for a particular concept instance, the constraint will also 
check whether it forms part of another concept that takes part in an equivalence 
relationship, and the alternate form exists in the other solution. If so, the check is 
dropped. For example, when checking for all “and”s, if the “and” in question is part 
of a De Morgan form and the student used the alternate form, the check for “and” will 
be dropped. We are currently evaluating this domain type in the areas of logical 
expressions, Java and SQL. This approach is also potentially useful for natural 
languages, provided the domain is sufficiently constrained. We are also exploring this 
possibility. 

Another example of a completely different domain type is arithmetic procedural 
domains, such as multi-column addition. These can be catered for by extending the 
framework described as follows. First, for such domains the properties of a concept 
must be able to be collections. For example, an addition problem is made up of a 
collection of columns; each column contains a carry, a collection of addends and a 
sum. Second, the author must be able to specify arithmetic value restrictions for 
properties. For example (again from multi-column addition): 
 



[ ] 10))(()()( MODnaddendsSUMncarrynsum +=   (2) 

[ ] 10))1(()1()( DIVnaddendsSUMncarryncarry +++=  (3) 

Note that n is the column number (more generally, n is the instance number of the 
object being considered). SUM and DIV are built-in primitives. As well as giving the 
formula for the restriction, the author also specifies two associated feedback 
messages: one that describes what the restriction means in words (used to correct the 
student when they violate the restriction) and one that describes the dependencies 
implied by the RHS of the restriction (used to indicate why the student should not be 
specifying this value yet, because the restriction cannot be tested). The constraints are 
now generated from both the concepts in the ontology plus the restrictions, as follows: 

1. All values specified: For each concept instance, check whether this instance 
has been completed, e.g. “You have not filled in the sum for column 3.” Note 
that the restrictions imply dependencies between concept instances, which 
also need to be checked. If the dependent concept instances are not complete 
yet this constraint will not be relevant.  

2. Ordering: For each concept that is on the LHS of a restriction, if the student 
has supplied an instance of this concept, check that the necessary parts in the 
RHS have been specified and give the “dependency” error if not, e.g. “You 
cannot compute the carry for a column until you have completed the column 
to the right”, and “You cannot compute the sum for a column until you have 
completed the column to the right.”  

3. Correct value: For each concept that is on the LHS of a restriction, test its 
value, and give an error if wrong, e.g. “Check your sum in column 3. The 
sum should add up to the sum of addends in this column, plus the carry, if 
any”, or “Check the value of the carry in column 2. The carry should be 1 if 
the addends and carry in the next column to the right add up to 10 or more.” 

 
This logic is sufficiently general to apply to other arithmetic domains, such as fraction 
addition. 

These examples illustrate how a variety of different domains can be grouped into 
higher level “meta-domains” that share a similar task and can have the same form of 
constraints generated for them. We intend to investigate other domains to see how 
general this approach is. In particular we are interested in whether a domain type can 
be produced that can be generally applied to programming languages; the difficulty 
here is being able to capture alternative ways to solve the same problem and, in 
particular, how to cater for concepts such as variables, which can be arbitrarily named 
and may be used in very different ways to solve the same problem. These are known 
issues with developing domain models for programming languages, and it remains to 
be seen how much of a challenge they pose to the domain schema approach. In 
particular, unlike with WETAS-Ontology, it is the intent with domain schema that the 
generated constraints are final; the author should never need to view or change them. 
This may prove infeasible for some domains, particularly if they are more open-ended 
and hence the scope of potential domain models cannot be so readily constrained 
compared to more formal domains. 



We are also interested in whether mathematics-based domains such as geometry, 
projectile physics and structural engineering can potentially be authored via a single 
domain schema. The limits of the approach are currently unknown (in particular, for 
what classes of domain is it not possible to generate all of the required constraints 
from ontology). We will gather evidence to answer this question as we explore more 
domains. 

So far we have attempted to craft domain schema (and the constraint generation 
process in particular) by hand. Another interesting research question is whether the 
mapping from ontology to constraints might be able to be bootstrapped by inferring it 
from user data in a manner similar to [Harrer, 06] or [Soller, 03]. This might lower the 
skills bar for creating new domain schema. 

Conclusions 

ITS authoring is a difficult task. The WETAS tutoring shell dramatically reduces the 
effort required to build a tutor in that it reuses the “nuts and bolts” of the ITS 
implementation, but this still leaves the most difficult task, domain authoring. We 
introduced WETAS-Ontology, a tool that enables ITS authors to model the domain 
graphically using ontology. A pilot study at an e-learning summer school showed 
whilst this approach did not suit everyone, some students were able to develop 
domain models extremely quickly using this system; one group of students developed 
a fully working tutoring system in around eight hours. This represents a significant 
leap in authoring efficiency compared to more traditional methods of tutor 
development. In both the practical exercise and the project students developed simple 
tutors in a very short space of time. The reasons for this are threefold. First, WETAS 
removes all of the domain-independent authoring tasks. Second, the ontology helps 
the students visualize the model as they build it. Finally, the constraint generator 
removes the need to encode the constraints, which requires programming knowledge 
and can cause the author to waste time debugging errors. However, the generator has 
another important benefit; it removes the need for the author to decide what aspects of 
each concept need to be tested. This has the effect of reducing the task by a factor of 
five, this being the average number of constraints generated per node. Unfortunately 
this advantage comes at a cost: the semantics that can be represented in the ontology 
are somewhat limited. More importantly, they assume a particular semantic 
interpretation of the ontology. To overcome this limitation we extended our approach 
by adding “domain schema”, a framework that allows the generic ITS authoring tool 
to be tailored to specific domain types. This approach allows the system to apply the 
specific semantic interpretation required for a particular domain, but the tool is still 
general in the sense that it can be readily extended to support new domain types. 
Domain schema also ease the task of ontology authoring by restricting the ontology 
vocabulary to just those concept types required for the type of domain being modeled. 

Developing new domain schema is itself a difficult task; there is no “right” way 
to develop ontology, and correspondingly it is not always immediately obvious what 
the ontology schema for a class of domains should be. It is therefore envisaged that 
the creation of new domain schema will always be the job of an expert in Intelligent 
Tutoring Systems, while the task of creating actual domains will be that of domain 
experts. In the medical examples given the first author developed the ontology 



schema required in consultation with domain experts at CPIT, and the Intelligent 
Computer Tutoring Group at the University of Canterbury provided the software 
required to implement the rest of the domain schema (Java applets etc); the domain 
models themselves were developed by CPIT medical training staff. By adopting this 
approach of creating new domain schema every time one is needed to implement a 
new ITS, we will develop a growing library of schema that will be used many times 
over and more than pay back the effort required to build them. In doing so we hope to 
empower an increasing number of educators to create ITS for their classrooms. 

Intelligent tutoring systems are a promising tool for delivering education 
remotely. To date a key problem has been the effort required to build such systems. 
This can only be overcome by building tools that decrease both the effort and 
complexity of the task. Authoring systems like WETAS-Ontology have the potential 
to bring ITS authoring within the reach of teachers and thus to make widespread 
deployment of ITS feasible in the near future. 
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