Metadata, citation and similar papers at core.ac.uk

Provided by UC Research Repository

| TS Domain Modelling with Ontology

Brent Martin
(University of Canterbury, Christchurch, New Zealan
brent.martin@canterbury.ac.nz)

Antonija Mitrovic
(University of Canterbury, Christchurch, New Zealan
tanja.mitrovic@canterbury.ac.nz)

Pramuditha Suraweera
(Carnegie Learning Inc, Pittsburgh, USA
psuraweera@carnegielearning.com)

Abstract: Authoring ITS domain models is a difficult taslquéring many skills. We explored
whether modeling ontology reduces the problem byingi the students of an e-learning
summer school the task of developing the modebfgimple domain in under sixty minutes
using ontology. Some students also used our todetelop a complete tutor in around eight
hours, which is much faster than they could be etgukto author the system without the tool.
The results suggest this style of authoring cad teavery rapid ITS development. We further
extend the ontological approach witlomain schemahigh-level abstractions that describe the
semantics of the domain model for a class of dosndissing domain schema reduces the
authoring effort to one of describing only thospeass that are unique to this particular domain,
and enables the ontology-based approach to mod®ids with different semantic requirements.

Keywords: intelligent tutoring systems, authoring systeamstraint-based modeling, domain
models, Ontology
Categories: L.1.0, L.1.3, L.2.0, L.3.0

1 Introduction

Intelligent Tutoring Systems (ITS) increasingly shpromise as a technology that
will expand the horizons of education from thoséedb attend a bricks-and-mortar
institution to anyone with an Internet connectidkcting as an enhancement to
traditional distance learning offerings, they preenito augment laboratories and
tutorials by allowing students to practice the Iskihey are learning from home. In
recent years tutors such as the Geometry and Adgebors, and the Addison-Wesley
database place suite (SQL-Tutor, ER-Tutor and NORMBave made it out of the lab
and into the classroom [Koedinger, 97], [Mitrovd&a].

Despite this success, intelligent tutors have stilt been adopted widely. One
reason for this is the difficulty in building theiRecent research efforts have tried to
address this shortcoming. The Cognitive Tutor AtitigpTools (CTAT) [Koedinger,
04] attempt to reduce the authoring effort for IT®sed on model tracing. The tools
support the creation of two types of tutor: ‘Pseudtors’ and ‘Cognitive tutors’.
Authors can quickly build Pseudo tutors by deveigpihe user interface for the tutor

https://core.ac.uk/display/35460586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and then demonstrating the solution to one or mooblems. However, these are not
“real” ITS: the resulting model is essentially ade of the correct behavior ftirat
problem only Whilst it is possible to add multiple solutiontipaays (including
incorrect behavior) and comprehensive feedback,réiselting tutor is nevertheless
suitable only for the problem from which it waslauted. To convert a pseudo-tutor
into a full cognitive tutor the author must manyaidteate the production rules that
represent a general model of the domain, whichf@raidable task. A refinement to
this approach is to incorporateootstrapping in which novice data from several
students is used to create a behavior graph tihanarzes their collective behavior.
Because it records not only (correct and incorret)ions taken but also the
frequency of each action, it provides rich inforimatabout likely student actions. For
example, the Cool Modes system has been extendedaod the collective behavior
graph of collaborating students for this purposarfer, 06]. REDEEM [Ainsworth,
04] takes a different approach. It allows educatorsadd pedagogy to e-learning
delivery by tailoring the delivery of educationalatarial to stereotypical student
groups. REDEEM has been shown to increase stu@éamhihg, but it is a very
different authoring task that does not generatgraiatic models.

Constraint-Based Modeling (CBM) [Ohlsson, 94] is effective approach for
building Intelligent Tutoring Systems that suppotte building of domain and
student models. Constraint-based tutors are effecstudents using SQL-Tutor have
shown significant gains in learning after as litde two hours of exposure to this
system [Mitrovic, 99]. Also, CBM seeks to minimitee authoring effort by requiring
the author to model only states, rather than smiypiaths [Mitrovic, 03]. For domains
such as design tasks where the number of possitldiom states is huge this can
greatly reduce the authoring effort. Nevertheléiss, task of building an ITS is still
far from trivial, and requires many different arezfsexpertise including cognitive
science, software engineering and educationalucstn. To reduce the authoring
effort we developed WETAS (@b-Ehabled_Titor Authoring_§stem), a web-based
tutoring shell that performs all of the common fiioies of text-based tutors, and thus
obviates the software engineering requirement. €mahstrate the flexibility of
WETAS we re-implemented SQL-Tutor and developedeav TS for teaching
spelling and vocabulary (LBITS). Although these @ams share the property of being
text-based, they have very different problem/soflustructures. We evaluated LBITS
in a New Zealand school and found it to be effecfMartin, 02a; Martin, 02c].

WETAS removes much of the effort required to buald ITS, but it does not
directly facilitate the building of the domain mddenhich is arguably one of the most
difficult tasks [Murray, 97]. In particular, the #aor must write the domain rules or
“constraints”, which requires programming skill aad understanding of artificial
intelligence techniques. For complex domains thestraint set can quickly become
large (SQL-Tutor has over 600 constraints), makingard to manage. One way to
overcome this is by modeling the domain at a higleeel using ontology. We
developed a tool, WETAS-Ontology, which allows authto graphically model the
domain as ontology. A constraint generator theaterethe required constraints from
the concepts in the ontology. The resulting congsdorm a domain model that can
be used to provide highly specific feedback taiiote the individual student’s
misconceptions, and to drive the pedagogical pscéw example by selecting
problems based on the concepts for which the studencurrently violating

constraints. The ontology assists in this lattek fay allowing the problem selector to
infer which similar concepts a student is likelyfiod difficult when the problems
applicable to the current concept have been exbdust

WETAS-Ontology was used as a learning aid at tf@28learning school at the
National College of Ireland, which enabled us tst teur hypothesis that modeling
using ontology is easier and faster than writingst@ints by hand. This paper reports
on our experiences. The next section briefly intices CBM and the WETAS
authoring shell, and WETAS-Ontology is describedSection 3. Sections 4 and 5
describe how WETAS-Ontology was used at the e-iegrsummer school. Section 6
discusses limitations of this approach and intredugne potential solution, Domain
Schema, which are described in detail in SectioRirfally, we conclude in Section 8
and discuss future directions.

2 Constraint-Based Modelingand WETAS

CBM [Ohlsson, 94] is based on the theory of leagnfrom performance errors
[Ohlsson, 96]. It models the domain as a set ¢éstanstraints, where each constraint
represents a declarative concept that must be ddaamd internalized before the
student can achieve mastery of the domain. Eacbtreont represents a restriction on
allowed solution stateand takes the form:

If <relevance condition> is true for the studensslution,
THEN <satisfaction condition> must also be true

The relevance condition of each constraint chedksther the student’s solution is in
a pedagogically significant state. If so, the $atifon condition is checked. If it
succeeds, no action is taken; if it fails, the shidhas made a mistake, and
appropriate feedback is given.

In a constraint-based tutor the constraints arel usemodel the fundamental
concepts of the subject (domain) being taught shahwhen a constraint is violated,
regardless of the broader contexthe student has made a mistake and the
corresponding feedback is giveByntactic constraints check that the solution is
syntactically correct. For example, in the domdilsQL queries, any attributes listed
in the “SELECT” clause must be separated by comn@mversely,semantic
constraints check whether the student’s solutiom s@ved the problem, usually by
comparing it to an “ideal” solution supplied by tteacher. Again from SQL, one
such semantic constraint tests that all of theemlgquired to retrieve the desired data
are present in the student’s answer. In the domodifEnglish spelling syntactic
constraints test that the word a student has gwerorrectly spelled (regardless of
whether or not it answers the question), whilst @atio constraints test whether the
answer requires certain letter combinations thdtlien struggle with (e.g. “ough”).
The semantic constraints test for all of the déferpossible encodings of the concept
they are attempting to test; the student is thumiped to use a different problem-
solving strategy to the author, or even to mixtsgees, provided no fundamental
domain concepts are violated. For example, in SQtoiTthe student’'s query may
access the required tables using either a neskect & one of several kinds of table

join; the system will permit any of these providéndy have correctly captured the
semantics required (i.e. they correctly answeigtinestion).

WETAS is a web-based tutoring engine that providdls of the domain-
independent functions for text-based ITS. It is lenpented as a web server, written
in Allegro Common Lisp, and using the AllegroSerWeb server [Franzinc].
WETAS supports students learning multiple subjedtéhe same time; there is no
limit to the number of domains it may accommoda&&udents interact through a
standard web browser such as Firefox or Interngiidegr. WETAS implements as
much of the ITS functionality as possible by pranglgeneric processing capability
that is expected to be applicable to a wide rarigébmains. In particular, it provides
the following functions: problem selection, answaraluation, student modeling,
feedback, and the user interface. The author negdpoovide the domain-dependent
components, hamely the structure of the domain @ng curriculum subsets), the
domain model (in the form of constraints), the peofysolution set, the scaffolding
information (if any), and possibly an input parseany specific pre-processing of the
input is required. WETAS provides both the infrasture (e.g. student interface) and
the “intelligent” parts of the ITS, namely the pgdgical module and the domain
model interpreter. The former makes decisions basethe student model regarding
what problem to present to the student next and wealback they should be given.
The latter evaluates the student’s answers by congpghem to the domain model,
and uses this information to update the studenteilnddonstraints are written in a
custom pattern-matching language that is intenddaktsimple to author. The system
reasons about the constraints in three ways: it majuate the student solution
against constraints to decide what is wrong anct dieedback, it may use the
constraints to correct errors in the student’'s infand thus show them how to
proceed), and it may use constraints to generate preblems to present to the
student. For more information see [Martin, 00; NMgr®2b].

WETAS has been used to build several tutors, inctu&EER-Tutor for Addison-
Wesley [Mitrovic, 06] and Collect-UML [Baghaei, Q@} has also been used for the
past four years by a graduate University classnielligent Tutoring Systems at
Canterbury University. In this class students asigmed the task of building an ITS
in WETAS. The first time it was used by this clas®ecame apparent that further
authoring tools are required: the students were &bl build a tutor in the time
allocated (three weeks) but their domain modelsevgamerally sub-optimal [Martin,
03]. We found that students make mistakes at akl$eof the domain authoring
process: they fail to model pedagogically significatates (i.e. model spurious
concepts), do not always capture the intendedssiateéheir constraints, and make
errors during constraint encoding or encode thesffigiently. Thus when working at
the constraint level authors find it difficult both conceptualize the domain and then
to implement their model. Our proposed solution veaprovide a high-level tool that
automates the encoding of constraints based omtaiogy that the author provides.
We hypothesize that this will help in two ways: feynoving the low-level steps from
the authoring process (and thus preventing encodimgrs being made) and by
allowing the author to visualize the structure led domain during authoring so that
they are more likely to capture the intended pedigd states.

3 WETAS-Ontology

The use of ontology in education systems is not.nehzoguchi and Bourdeau
advocate authoring intelligent instructional sysierby engaging authors in
knowledge modeling rather than knowledgengineering [Mizoguchi, 00]. They
propose building education systems by creatingk ontology (which models
pedagogy) andlomainontology, which represents each individual dom&ife are
interested in the latter: how do we use ontologgie@eelop domain/student models?
Modeling domains at the ontology level has otheteptial benefits too, such as the
ability to re-use parts of a domain model and ttaiwbinteroperability across different
ITS platforms. For example, Barros et al proposagusntology to model computer
supported collaborative learning (CSCL); the orggloprovides a standardized
vocabulary for collecting and analyzing studentdlaborative behavior, and thus this
part of the model could potentially be shared aromiltiple CSCL systems for
different domains [Barros, 01]. As well as enablinguse of such models, it
potentially allows student data to be analyzed scraultiple domains. For example,
in [Soller, 03] students’ collaborative discussiavere analyzed and used to develop
a model of effective patterns of interaction; bg)@sing a shared ontology describing
the collaborative model as described by Barros, ¢hia data could be used to build a
global picture of a student’s collaboration skélsross otherwise unrelated education
systems. Such an approach would provide the oppitrttio coach them on this
particular skill regardless of which system theye aurrently using. Finally,
Ontologies also have the desirable property ofasgmting domain information at
increasing levels of abstraction. This is partidylaiseful if we wish to expose the
domain/student model to the student; StyLE-OLM [iDiova, 03] uses this approach
to provide an interactive open learner model.

WETAS-Ontology is an experimental tool for authgrifS domains. It consists
of two parts: a graphical editor for creating thr@abogy and a constraint generator.
The latter parses the ontology and creates contdréir testing the student solution
based on the concepts in the ontology. One goathisf research is to develop
authoring tools that are easy for ITS “lay people”use, i.e. teachers in general.
Many tools already exist that facilitate the depetent of ontology (e.g. Protégé
[Puerta, 92], Protégé-Owl [Knublauch, 04]), howethese tools are typically aimed
at experienced knowledge engineers, and we comrsidbey would be too difficult
for non-experts to use. In particular, our tookatpts to visualize the entire model in
a clear, graphical manner.

Figure 1 is a screen shot of the ontology editawshg the developed ontology
for the domain of search engine queries that wasl disr the case study. In this
domain students are given the criteria for a searayine query, which they write
using a hypothetical language that consists ofchldgexpressions containing the
words and strings they are looking for. The ontgligya combination of taxonomy
(“kind-of” relationships) and partonomy (“part-oftelationships). The graphical
representation adopted was chosen to visualize dbthese views simultaneously.
Diamonds represent alternative constructs/concdgiisd-of relationships). For
example, asearch expressiorconsists of anegative expressioror a positive
expression Conversely, child nodes of rectangles represestriat sequence of
required sub-parts.

B a T

i Ontologyview | Domain model |

DO <>~ (B F

simple expression

[T ettbracket [] [Jeomplex expression] | [Trart bracket []

[

L] D
| Details | Relationships |

Ahstract O Mare complex exprassion

Description ‘Elpressiun

Properties

Narme Type walug
Role String
_|reversible Euoolean true
| |Paftant String

i

Figure 1: WETAS-Ontology interface

In this ontology, anegative expressiomonsists of NOT, followed by &eft
bracket followed by apositive expressiofollowed by aright bracket Rectangles
with double-lined sides represent concepts thae leready been defined elsewhere
in the ontology; domains may thus be recursiveinate example given. A concept
may optionally have three propertieste, which identifies their purpose in the parent
concept (for example, the role of search expressiancomplex expression could be
“first argument”); reversible which indicates whether or not this concept Hees t
same meaning when parsed backwapddtern which describes how this concept is
identified in the solution. Pattern may be a striogthe name of a macro if complex
processing is required to determine membershihn®fconcept. The purpose of the
ontology is to capture the fundamental conceptthefdomain so that these can be
tested in the student solution. There is no stahgmocess for creating ontology,
however we have found that for many domains (inolydhe one in Figure 1) a
useful approach is to begin with the grammar oidvablutions and add further
concepts as required.

The constraint generator uses the ontology to eraatet of constraints that can
be loaded into WETAS and used to evaluate studguatiens. For the purpose of this
study we generated only semantic constraints. Tateplare used to create a set of
constraints from each concept in the ontology. €hesnstraints test for the
presence/absence of any examples of each concepts(ithis concept used at all),
that all of the required instances of each coneeptpresent in the solution, and that
the subcomponents of each instance are correct ¢egs the student’'s logical

connective have the correct arguments). Feedbacssages are also generated
automatically based on templates. This fairly senglet of templates yields a
plausible domain model. Note however that it isinteénded to deliver the final set of
constraints; typically authors will modify the fdmtk messages, add additional
constraints for complex concepts and edit the gagedrconstraints, perhaps to make
them more general. Figure 2 shows two examplespémgted constraints. The first
checks whether or not a string is needed. Thefaest string is complex, so a macro
has been used. Writing the macro is an additicaslt to producing the ontology; in
practice few (if any) macros tend to be requirethe Tsecond constraint checks
whether or not a complex expression is needechitndase there is no easy way to
test for this concept because it consists onlywaf alternative sub-concepts and no
literal components. The generator therefore descehd tree until it finds sub-
concepts with literal components (in this case “ANBnd “OR”) and creates
alternative tests for each alternative sub-compbnen

WETAS-Ontology was evaluated at the e-learning samsuhool in June 2006 at
the National College of Ireland, Dublin. This forumas considered an ideal testing
ground because the participating students wereix#drbackgrounds, with less than
half being Computer Scientists. The first authoregmstruction at this school, which
consisted of two hours of lectures about ITS (amsnain/student modeling in
particular), followed by a 90 minute practical $ess Instructors were also asked to
contribute a potential project idea, from which 8tadents would choose one for a
one-day practical project. WETAS-Ontology was ufedoth of these purposes.

4 Case Study 1: A Domain Model in Sixty Minutes

To determine the feasibility of using WETAS-Ontojoge asked the students to use
it during their 90-minute practical session to depethe ontology for the domain of
search engine queries. The students were firsturiedtabout the ontology tool,
WETAS and the domain; this took approximately 3autes. They then had a further
60 minutes to develop their model. The WETAS taothoring shell was installed on
each of their computers along with WETAS-Ontologiyhe other necessary
components of the search engine query tutor (Begptoblem/solution set) were also
set up for them. The students could therefore ttesit ontology at any time. First,

(5 "Check whether you need one or nore string(s) in your answer."
(MATCH | S ANSVEER (?* (~string ?1S_ 1) ?*)) ;; relevance

(MATCH SS ANSWER (?* (~string ?SS 1) ?*)) ;; satisfaction
" ANSVER')

(16 "Are you sure you need conpl ex expression(s) in your answer?"
(OR (MATCH SS ANSWER (?* "AND' ?*)) ,;; relevance
(MATCH SS ANSVER (?* "OR' ?*)))

(OR (MATCH | S ANSVER (?* "AND' ?*)) ;; satisfaction

(MATCH |'S ANSVER (?2* "OR' ?*)))
" ANSVER")

Figure 2: Generated constraint examples

they would use the ontology editor to begin craptthe ontology. They then
instructed the tool to generate the constraint Sieglly, they loaded the constraints
into WETAS and tried out the tutor. They were alolegepeat this procedure as often
as desired until they had completed the model miotd of time. When they first used
WETAS-Ontology it contained just the definition ‘simple expression” from Figure
1. This is a working model, but it only recognizesarch expressions that consist of a
single word or string. Their task was to extend miedel to cover the entire search
engine language. Twelve students attempted to @imfie task.

We categorized each model by comparing it to thatigure 1. The categories
were: complete— the model leads to as good a constraint seties wseable— the
model generated a significant subset of the cansttasuch that the resulting tutor
gave useful feedback, but would not recognizeeglhl expressiongiood attempt-
the model had a significant number of the relexamtcepts but contained substantial
errors or omissiongpoor — some attempt had been made but there had kden li
progress (these latter models might also be uneshlgicause they were not
syntactically correct).

Half of the students produced useable domain mpdélwhich one was almost
identical to that produced by this paper’'s autharg] was both of high quality and
complete. Figure 3 shows a useable (but not cosjphabdel. The main problem is
that the student has not made the model recurshe;resulting constraints are
therefore unable to deal with complex solutions. &mample, because the arguments
to “conjunct” are simple expressions only, the miogknerated from this ontology
will be able to recognize “fish and chips” but rifish and chips and salt,” which
contains a nested conjunct. There were also ofifferehces, such as whether or not
the author had grouped conjuncts and disjuncts atbigh level concept (e.g.
“complex expression” in Figure 1). Some of the ‘alde” solutions also missed
whole parts of the ontology (such as bracketedesgions) or duplicated parts of the
ontology instead of abstracting out common concepfsthe other six participants,
three were classified as “good attempt”. These esttsd had produced reasonable
ontologies but they were still some way from becmmplete, and would hence
generate constraint sets that failed to test sagmf features of the solution. The
remaining three were “poor”; these participantsesppd to have struggled with the

search expression

simple expression

negation

conjunct | A

simple expression

simple expression

f = | simple expression |
simple expression

and : I !
simple expression or

Figure 3: Example of a “useable” ontology

whole task of creating ontology.

When asked informally for their comments the stislemere generally very
positive about the experience. In particular, tivegre impressed that they had
produced an ITS that generated useful feedbackich a short space of time (less
than 60 minutes). They also commented that thegddbe tool easy to use and that
the ontology representation, once explained, wasy e understand. Some
participants also commented that they were impressth the level of generality of
the tool, and that they could see how it could beduto develop ITS across a wide
range of domains.

However, it appears that this approach to authodiogs not suit everyone. In
particular, the concept of recursion appeared odiet obvious to most participants.
For those participants who scored “poor” it is likehat they have not had to perform
similar abstraction tasks before; at least one ssitldent commented that the
modeling task was so foreign to them that they siagly not known where to begin,
despite the tuition they had received. This may ebdeature of the students’
background. For example, the student who develapedmplete ontology was a
Computer Scientist studying in a similar area @udrative e-learning), and who
would therefore be familiar with the concepts bdhihe task. For authors of other
background some tuition in developing ontologyikelly to be needed.

Despite these limitations the results were suffitjepositive that we proposed
WETAS-Ontology as a potential subject for a groupigrt.

5 CaseStudy 2: A Tutor in aDay

The participants at the summer school were all iredquto contribute to a group
project, which would be assessed. The students gigen a list of seven potential
projects spanning a variety of subjects in the garerea of e-learning. Eight of the
students (more than half the class) chose to us& ABEOntology to build an ITS.
They separated into two groups, both of which wdrka tutors in the domain of
English spelling, a similar domain to an exampleythad been given. The goal was
to build a complete tutor from scratch. They wetecated around six hours of class
time to complete the project, although they coularkwoutside class hours if they
wished. The first group critiqued WETAS-Ontologydastetermined (incorrectly) that
the ontology representation was too weak to suppeit chosen domain. As a result
they suggested an alternative approach whose myeati®n was conceptually similar
to Object Oriented software design, for which thmyilt a simple prototype. The
second group developed a complete tutor using WEDA®Iogy. We turn our
attention to this second group.

To develop a complete tutor the students were reduto author a set of
problems and ideal solutions (the latter being ubgdthe constraints to check
semantics), as well as building a complete domagdeh To author the domain
model, in addition to creating the ontology theyudoneed to edit the generated
constraints to provide better feedback and addaalational semantics that were too
difficult (if not impossible) to model in the ontay. The group chose the domain of
pluralization of nouns.

i =
I 1T 1 I] [1 ves word
| singuer | | sword | Lesword | |es word | ’i‘
\L 4 ,!, end of word: ves
[

|_end of word: s I I end of word: es H end of wordiies I

exceptions

criterion

tooth man bacilus cactus chiid ox mouse
1 1

teeth [men | [Toac | [comn | Uenigren | [wen | | mee | G0 |

Figure 4: The pluralization ontology

Figure 4 shows their completed ontology. This argglis generally similar to
what we would have produced, the main differendadbthat the final leaf nodes are
not actually required (i.e. the nodes above coaldesas the leaf nodes). There were
also some other minor errors (e.g. bacillus andusaare two examples of the same
rule). The leaf nodes on the left represent regatauns that can be grouped into
“rules” of pluralization, while those on the rigate irregular nouns that can only be
learned individually. The semantics for the reguaun groups can either be modeled
in the ontology (e.g. by enumerating all of the dgbelonging to each group) or via
macros. The group chose to use this latter solutod two of the group members
paired up to perform this job. Further, there ave ways that macros can be used to
represent the required concepts: by testing thergebn the end of the word for the
required regular form, or by enumerating the wdtds belong to each group. The
former is more robust and efficient but requiregraater knowledge of WETAS'
pattern-matching language, while the latter is tleritthe macro will require
modification every time new vocabulary is introddceto the problem set. The
students chose to enumerate the members of eacip,gndich is understandable
given the limited time available and given thatytiweere not taught how to write
complex macros. It does however illustrate thaamefamiliarity with the tool would
be essential for developing high quality domain eied

The group produced a fully working tutor in arouadjht hours. Whilst the
domain chosen was not particularly complex, thisnévertheless an impressive
achievement. The final tutor consisted of 108 aamsts. If all of the group’s time
was spent purely on this task, this result equétesess than five minutes per
constraint. Given that there were four group membtnis equates to around twenty
person-minutes. This is significantly less than fi@e hours per rule reported for
model tracing tutors [Anderson, 95] or even theHolirs that it may typically take to
hand-write a constraint for CBM [Mitrovic, 03]. lpractice the participants also had
to perform other tasks such as authoring the prafsiglution set, so these results are
conservative. For simple domains such as this oaiaity by ontology delivers a major
improvement in efficiency. The quality of the domamodel they produced is
comparable to what this paper’s authors would ltagated.

6 Discussion

WETAS-Ontology reduces the effort required to bufid ITS by abstracting the
authoring process to one of graphically modelingndim ontology rather than
encoding individual constraints, but nonethelesssitstill a formidable task. In
particular, it appears that developing domain @uyplis a process that does not come
naturally to all authors. Whilst some of the studeim the study produced usable
domain models, only one was completely correct. Tést appear to have had
difficulty grasping the complexity of the modelinigsk, and nearly all participants
were unable to model the recursive nature of theade. Naturally we would expect
this situation to improve with experience, howetee fact that some participants
found the whole idea of modeling ontology too d@iffit to grasp is of some concern.
It is thus desirable to somehow lower the bar frtfor those new to conceptual
modeling.

One of WETAS-Ontology’s strengths is that it autticaly generates a plausible
set of constraints from the ontology. However, to this it must make many
assumptions regarding the semantics of the domaitteheing created, and hence
the domain being built must be modeled in such w that the tool's reasoning will
be correct. For example, ASPIRE is a mature autbosystem (based on WETAS)
that also generates constraints for CBM domainsgusitology [Mitrovic, 06b]. The
generation process for this tool was based onédhwstics of the domain model for
entity-relationship modeling; in this domain ea@dncept in the model represents an
object the student may create in the solution (euwy.entity or attribute), with
relationships in the ontology representing relagfops between objects in the final
diagram (e.g. a one-to-many “has” relationship leetw “customer” and “order”
entities). In contrast, WETAS-Ontology is used fanguage-based learning tasks
such as programming languages. This requires a letehpdifferent semantic view
of the ontology because program code has “partrefationships (e.g. the word
“WHILE” is part of a “while-loop” concept). Both syems thus exhibit the same
limitation: they will only be effective for domairteat conform to their semantic view
of the ontology.

Our goal is to create a tool for authoring ITS &y domain. To do this its
semantics must be easily extensible. Since diffemrthors will have differing
semantic requirements it must be possible for supjpo new domain types to be
added without changes to the core system. To tfaelithis we have developed an
additional abstraction layedomain schema Domain schema define the system’s
behavior for a subset of domains that share a canstroicture and task type. New
schema can be added to ASPIRE at any time by ngedtie appropriate XML
documents and uploading them.

The schema automates the authoring process stilhefu by reducing the
vocabulary of the ontology to only those construetguired to author this domain
type, making ontology authoring a much more wefirdml task. We hypothesize that
this will make domain modeling more feasible fovice modelers.

7 Domain Schema

A domain schema is a collection of XML documentst tthescribe parts of the domain
model that will be common to all domains of the sageneral type, such as critiquing
a set of images. These documents tell ASPIRE hoperform many parts of the
authoring process that would be otherwise performadually. The documents are:

« Ontology schema (XML) and ontology generation r@¢SLT)

» Constraint generation rules (XSLT)

* Solution structure generation rules (XSLT)

 Student interface (HTML, with optional Java applets

In the following sections we will use an examplend@in type to illustrate how
domain schema work: for this domain type the stuikeshown a set of two or more
images and is asked to choose the one with a phaticharacteristic and to identify
features in the image that support their choicés @bmain type could apply to many
different subject areas (domains), such as: whidiwo buildings is lonian; which x-
ray image is better quality; which forest is thesindamaged by acid rain; which
painting is by Van Gogh; which x-ray shows an ititeg stricture. The interface
consists of an applet for displaying, panning aogdnzing images, a control for
selecting one of the images and a lisfeafturesthat may or may not contribute to the
decision; for each feature the student will setecappropriatéeature valueFigure 5
shows this interface in action for an example & ttomain type: x-ray power.

For each domain type the ontology will have the esamasic form. The ontology
schema defines this form by specifying conceptsmmomto all domains of this type
(typically the top of the ontology hierarchy), am@éscribing the types of other
concepts that the author can create and the nethilp between these and the
common concepts. Figure 6 shows the ontology forlTe® of the domain type
“critique images”, in this case the x-ray power @m viewed using ASPIRE’s

Which of the images shown was taken at a higher tube voltage (kVp)? What clues ara in the image you have chosen that lead youto

this conclusion?
Analyse this X ray and check the appropriate boxes
1. Decision
" Gimagel Climape:
2 Reasons
'

Softtissue

'JIUi.ic s Mol ralevast CrLighter saft tissue S Darkar sofl issue
Hisd Anatamical detall
CiNat ralevant Erhkos analomical datail O Less anglomical detal
Background
= Mol refevant - Crbighler background. (i Darker background

Figure 5: Example tutor for critiquing x-ray images

=1 B[@[[9 ¢ Ek

[selection + { image *

| ¥

[]

contrast technigue r :
= 'rigl‘rlness techn

Lowccmraé{techn\que } | high contrast technigue +

low mAs

4 background
anatomical detail r

lighter background

| darkerbﬁ:ékground } } lighter soft tissue + } darker soft tissug *

* more anatomical detail 1} less anatomical detail {

4]

1] 1l [Tl
Description | Apstract [| Slots o

Name | Type Min Max
Any

Any
Any

[[lT»

Figure 6: Ontology for x-ray power

ontology editor. All ontologies for this domain gjontain the “feature”, “image”
and “selection” concepts. The “feature” concepthen specialized for the actual
features that the student will look for in this dom The author can also specify
abstractfeatures if they wish; these are used for addnfigrination that is common
to more than one of the actual features. In Figutlee actual features are “anatomical
detail”, “background” and “soft tissue”; abstraeafures are “contrast technique” and
“brightness technique”. Each feature is then furthigecialized intdeature values
which are the values the student can choose befvgmh as “more anatomical
detail” and “lighter soft tissue”. The “image” camt is used to describe the images
being shown to the student, in terms of the featpresent in this image (whether or
not they contribute to the correct answer). Finale “selection” concept represents
the choice the student must make between images.

The ontology schema describes the concept typeauti®r can create (in this
casefeatureandfeature valug For each it also describes the attributes dfebhacept
the author will be required to provide; for thisndmin afeature can have two
feedback messagehjnt, used when the student has overlooked this featmd
wrong for when the feature has been erroneously usedla8ly a feature value has a
summary and detailed feedback message, and angibsitive) to be displayed as
reinforcement when the student has correctly aresivéhe question. Finally, the
author can specify that one concept is an examplanother; in Figure 6 “les
anatomical detail” is an example of “high contrgsmthnique”. Once the author has

filled in the details for the features and theisgible values, the information is saved
as an XML document and converted to a standard RERIntology using XSLT.

The ontology is then converted to constraints usangXSL transform. This
XSLT encodes the semantic interpretation of thelogly by specifying how each
concept should be turned into one or more constralfor the domain type under
discussion the constraint generation rules arelbsnfs:

1. Correct selection: for each “selection” concept check the studentswgplied
the correct selection value

2. All features specified: For each feature, if a value is specified in tteal
solution, the student must also have specifiedweva

3. No extraneous features: for each feature, if the student has specifiedlaey the
ideal solution must also specify a value

4. Correct feature value: If the student has specified a feature value,ar@was
required, is it the same as that in the ideal Ewlut

5. Feature value supports selection: if the student has selected a feature value that
is present in their chosen selection, check tleasétection is correct.

For each constraint the hint and feedback mesgéwgethe concept from which it
is generated) are incorporated into boilerplaté tiexgive the actual messages the user
will see when the constraint is violated. By callgfwording the feedback messages
for each concept the author can ensure that theages in the generated constraints
are as required; this obviates the need to editdmstraints directly at any time. For
this domain type the semantics are very straigivdiod. We are using domain schema
to develop VIPER (Virtual Instructional and Praeti€ducational Resource) in
conjunction with the Canterbury Polytechnic anditate of Technology (CPIT). For
this project there are five domain types, all oickhare visual: critique images; label
an image; identify a feature in the image (i.enp®o it); perform measurements on
an image; experiment with the parameters of an @nhygall cases the domain model
is feature-based, and the semantics are straiglatfdras a result. The semantics for
other domain types may be more complex.

Another domain type we are developing is progrargnémguages. In this type of
tutor the student is given a task to perform whbeey must write a snippet of code in
free text form. The ontology for this type of IT8sdribes the grammar of the language
being used. For example, consider the *“logical esgipns” domain described
previously. In this domain each concept repressatee part of the language (e.g.
“conjunct”); concept properties represent the “mdittrelationship between a concept
and the language constructs that make up that pgrioeexample a conjunct consists of
an expression, followed by “and” followed by a sstaexpression). The constraint
generation rules for checking semantics of thisalartype are as follows:

1. Concept necessary: for each concept, if it appears at least oncéénideal
solution, it must also appear in the student st

2. Concept superfluous: for each concept, if it appears at least onckdrstudent
solution, it must also appear in the ideal solytion

3. All concept instances present: for each instance of each concept in the ideal
solution where the student solution contains a&tleae instance of this concept,
there must exist an equivalent instance in theesiiugblution;

4. No concept ingtances superfluous. for each instance of each concept in the
student solution where the ideal solution containkast one instance of this
concept, there must exist an equivalent instanteideal solution;

5. Correct components: for each concept instance in the student solutfca]
but one component is equivalent to an instancehén ideal solution, the
remaining component must also be equivalent.

For this domain the author describes each of theeqts in the same way as they
would describe a grammar (e.g. in BNF). Howeves i not sufficient because they
also need to define equivalence. For example, ‘aludjcat” is equivalent to “cat and
dog”. They do this by defining additional concepta. the previous example,
conjunction is defined twice, with one definitioribg the exact reverse of the other.
Each concept can then specify an “is equivalentétdtionship with another. In more
complex cases the concept may be one that doealreatly appear in the grammar.
For example, for logical expressions we can dededlorgan’s law:

(AOB)= AOB (1)

We specify this law by defining both de Morgan ferrand indicating they are
equivalent. The constraint generation rules thenthis information as follows. First,
whenever a concept detected in one solution (keyideal solution) is being looked
for in the other solution (i.e. the student soln}iathe default logic is to look for the
exact same concept instance in both solutions. Meryéf the concept is one for
which an equivalent form exists, the constraint imtead check that either the same
concept instance exists in the other solutoran equivalentconcept instance exists.
Second, when checking for a particular conceptaimest, the constraint will also
check whether iforms part ofanother concept that takes part in an equivalence
relationship, and the alternate form exists in ¢tiger solution. If so, the check is
dropped. For example, when checking for all “andf'she “and” in question is part
of a De Morgan form and the student used the aterform, the check for “and” will
be dropped. We are currently evaluating this dontgpe in the areas of logical
expressions, Java and SQL. This approach is alsenfpaly useful for natural
languages, provided the domain is sufficiently ¢@ised. We are also exploring this
possibility.

Another example of a completely different domaipetyis arithmetic procedural
domains, such as multi-column addition. These carcdtered for by extending the
framework described as follows. First, for such dora the properties of a concept
must be able to be collections. For example, arntiaddproblem is made up of a
collection of columns; each column contains a caargollection of addends and a
sum. Second, the author must be able to specifiinagiic value restrictions for
properties. For example (again from multi-columuditidn):

sun{(n) = [carry(n) + SUM(addendgn))] MOD 10 @)
carry(n) = [carry(n +1) + SUM(addendén +1))| DIV 10 (3)

Note thatn is the column number (more generaltyjs the instance number of the
object being considered). SUM and DIV are builpnmitives. As well as giving the
formula for the restriction, the author also spgesiftwo associated feedback
messages: one that describes what the restricteamsnin words (used to correct the
student when they violate the restriction) and tmet describes the dependencies
implied by the RHS of the restriction (used to aate why the student should not be
specifying this value yet, because the restrictiannot be tested). The constraints are
now generated from both the concepts in the onyobdgs the restrictions, as follows:

1. All values specified: For each concept instance, check whether thiarinst
has been completed, e..du have not filled in the sum for columh ISote
that the restrictions imply dependencies betweeamcegt instances, which
also need to be checked. If the dependent congsfatnices are not complete
yet this constraint will not be relevant.

2. Ordering: For each concept that is on the LHS of a resbrictif the student
has supplied an instance of this concept, chedklileanecessary parts in the
RHS have been specified and give the “dependentyt & not, e.g. 'You
cannot compute the carry for a column until youdaempleted the column
to the right, and “You cannot compute the sum for a column until yaueh
completed the column to the right.

3. Correct value: For each concept that is on the LHS of a resbrigttest its
value, and give an error if wrong, e.@Heck your sum in column 3. The
sum should add up to the sum of addends in thismool plus the carry, if
any’, or “Check the value of the carry in column 2. The cahguld be 1 if
the addends and carry in the next column to thietragld up to 10 or more.

This logic is sufficiently general to apply to otheithmetic domains, such as fraction
addition.

These examples illustrate how a variety of difféeomains can be grouped into
higher level “meta-domains” that share a similaktand can have the same form of
constraints generated for them. We intend to ingatt other domains to see how
general this approach is. In particular we arer@gted in whether a domain type can
be produced that can be generally applied to prgiag languages; the difficulty
here is being able to capture alternative waysalwesthe same problem and, in
particular, how to cater for concepts such as & which can be arbitrarily named
and may be used in very different ways to solvestéme problem. These are known
issues with developing domain models for prograngniémguages, and it remains to
be seen how much of a challenge they pose to tieaitloschema approach. In
particular, unlike with WETAS-Ontology, it is thatent with domain schema that the
generated constraints are final; the author shoeigr need to view or change them.
This may prove infeasible for some domains, paldity if they are more open-ended
and hence the scope of potential domain modelsotame so readily constrained
compared to more formal domains.

We are also interested in whether mathematics-bdsadins such as geometry,
projectile physics and structural engineering cateptially be authored via a single
domain schema. The limits of the approach are ntigreinknown (in particular, for
what classes of domain is ribt possible to generate all of the required condsain
from ontology). We will gather evidence to answas tquestion as we explore more
domains.

So far we have attempted to craft domain schema @@ constraint generation
process in particular) by hand. Another interestiagearch question is whether the
mapping from ontology to constraints might be &blée bootstrapped by inferring it
from user data in a manner similar to [Harrer, @6]Soller, 03]. This might lower the
skills bar for creating new domain schema.

Conclusions

ITS authoring is a difficult task. The WETAS tutagi shell dramatically reduces the
effort required to build a tutor in that it reustee “nuts and bolts” of the ITS
implementation, but this still leaves the most idifft task, domain authoring. We
introduced WETAS-Ontology, a tool that enables @&hors to model the domain
graphically using ontology. A pilot study at aneaining summer school showed
whilst this approach did not suit everyone, somedesits were able to develop
domain models extremely quickly using this systeme group of students developed
a fully working tutoring system in around eight h&uThis represents a significant
leap in authoring efficiency compared to more tiadal methods of tutor
development. In both the practical exercise andtiogect students developed simple
tutors in a very short space of time. The reasonshis are threefold. First, WETAS
removes all of the domain-independent authoringstaSecond, the ontology helps
the students visualize the model as they buildFimally, the constraint generator
removes the need to encode the constraints, weighines programming knowledge
and can cause the author to waste time debuggingseHowever, the generator has
another important benefit; it removes the needHerauthor to decide what aspects of
each concept need to be tested. This has the effeetiucing the task by a factor of
five, this being the average number of constrajatserated per node. Unfortunately
this advantage comes at a cost: the semanticedalbe represented in the ontology
are somewhat limited. More importantly, they assumeparticular semantic
interpretation of the ontology. To overcome thisitation we extended our approach
by adding “domain schema”, a framework that alldles generic ITS authoring tool
to be tailored to specific domain types. This apploallows the system to apply the
specific semantic interpretation required for atipatar domain, but the tool is still
general in the sense that it can be readily extkriddesupport new domain types.
Domain schema also ease the task of ontology dnthby restricting the ontology
vocabulary to just those concept types requirediertype of domain being modeled.
Developing new domain schema is itself a diffidalsk; there is no “right” way

to develop ontology, and correspondingly it is abtays immediately obvious what
the ontology schema for a class of domains shoeldthis therefore envisaged that
the creation of new domain schema will always keejtih of an expert in Intelligent
Tutoring Systems, while the task of creating actimnains will be that of domain
experts. In the medical examples given the firsth@u developed the ontology

schema required in consultation with domain expatt<CPIT, and the Intelligent
Computer Tutoring Group at the University of Cabtey provided the software
required to implement the rest of the domain schélasa applets etc); the domain
models themselves were developed by CPIT mediaading staff. By adopting this
approach of creating new domain schema every tinei® needed to implement a
new ITS, we will develop a growing library of scherhat will be used many times
over and more than pay back the effort requireluitd them. In doing so we hope to
empower an increasing number of educators to ci&&téor their classrooms.

Intelligent tutoring systems are a promising todlr fdelivering education
remotely. To date a key problem has been the eféoptiired to build such systems.
This can only be overcome by building tools thatrdase both the effort and
complexity of the task. Authoring systems like WES-®ntology have the potential
to bring ITS authoring within the reach of teacharsl thus to make widespread
deployment of ITS feasible in the near future.

Acknowledgements

Research into domain schema was supported by & f@n the New Zealand
Tertiary Education Commission Innovation Developtrieind.

References

[Ainsworth, 04] Ainsworth, S. E., Grimshaw, S.: Hyating the REDEEM Authoring Tool:
Can Teachers Create Effective Learning Environnfemtdernational Journal of Artificial
Intelligence in Education 14(3): 279-312.

[Anderson, 95] Anderson, J. R., Corbett, A. T., Hioger, K.R., Pelletier, R.: Cognitive
Tutors: Lessons Learned. Journal of the Learningrges 4(2): 167-207.

[Baghaei, 06] Baghaei, N., Mitrovic, A.: A Consmabased Collaborative Environment for
Learning UML Class Diagrams, In Proc. 1TS2006 vilai, 2006, 176-186.

[Barros, 01] Barros, B., Mizoguchi, R., Verdejo, Fl: A platform for collaboration analysis in
CSCL. An ontological approach, In Proc. Tenth rin&ional conference on Artificial
Intelligence in Education, San Antonio, USA, 20830-532.

[Dimitrova, 03] Dimitrova, V.. STyLE-OLM: Interacte Open Learner Modelling.
International Journal of Artificial Intelligence Education 13: 35-78.

[Franzinc] http://allegroserve.sourceforge.net/

[Harrer, 06] Harrer, A., McLaren, B. M., Walker,,Bollen, L., Sewall, J.: Creating Cognitive
Tutors for Collaborative Learning: Steps Toward IRe@#don. User Modeling and User-
Adapted Interaction 16: 175-209.

[Knublauch, 04] Knublauch, H., Fergerson, R. W.yN§.F., Musen, M.A.: The Protégé OWL
Plugin: An Open Development Environment for Senalieb Applications, In Proc. Third
International Semantic Web Conference, Hiroshirapad, 2004.

[Koedinger, 97] Koedinger, K. R., Anderson, J. Radley, W.H., Mark, M.A.: Intelligent
Tutoring Goes To School in the Big City. Internatib Journal of Artificial Intelligence in
Education 8: 30-43.

[Koedinger, 04] Koedinger, K. R., Aleven, V., Heffan, N., McLaren, B., Hockenberry, M.:
Opening the Door to Non-programmers: Authoring lligent Tutor Behavior by
Demonstration, In Proc. 7th Int. Conf. Intelligefatoring Systems, Maceio, Brazil, 2004,
162-174.

[Martin, 00] Martin, B., Mitrovic, A.: Tailoring Fedback by Correcting Student Answers, In
Proc. Fifth International Conference on Intellig@rutoring Systems, Montreal, 2000, 383-
392.

[Martin, 02a] Martin, B., Mitrovic, A.: Authoring eb-based tutoring systems with WETAS, In
Proc. International conference on computers ircation, Auckland, 2002, 183-187.

[Martin, 02b] Martin, B. Mitrovic, A.: Automatic Riblem Generation in Constraint-Based
Tutors, In Proc. Sixth International Conferencdmtelligent Tutoring Systems, Biarritz, 2002,
388-398.

[Martin, 02c] Martin, B. Mitrovic, A.: WETAS: A WeiBased Authoring System for
Constraint-Based ITS, In Proc. Second Internati@ueference on Adaptive Hypermedia and
Adaptive Web-Based Systems, Malaga, 2002, 543-546.

[Martin, 03] Martin, B., Mitrovic, A.: ITS Domain Mdelling: Art or Science?, In Proc.
International Conference on Atrtificial IntelligenteEducation, AIED2003, Sydney, Australia,
2003, 183-190.

[Mitrovic, 99] Mitrovic, A., Ohlsson, S.: Evaluatioof a Constraint-Based Tutor for a Database
Language. International Journal of Artificial Iftgénce in Education 10: 238-256.

[Mitrovic, 03] Mitrovic, A., Koedinger, K. R., Maim, B.: A Comparative Analysis of
Cognitive Tutoring and Constraint-Based ModellibgProc. Ninth International Conference
on User Modeling UM 2003, 2003, 313-322.

[Mitrovic, 06a] Mitrovic, A.: Large-Scale Deploymenf three intelligent web-based database
tutors, In Proc. Proceedings of ITI, Cavtat, Ciaa2006, 135-140.

[Mitrovic, 06b] Mitrovic, A., Suraweera, P., MartiBB., Zakharov, K., Milik, N., Holland, J.:
Authoring constraint-based tutors in ASPIRE, In@®réTS 2006, Taiwan, 2006, 41-50.

[Mizoguchi, 00] Mizoguchi, R., Bourdeau, J.: Usi@ntological Engineering to Overcome
Common AI-ED Problems. International Journal ofifigial Intelligence in Education 11:
107-121.

[Murray, 97] Murray, T.: Expanding the Knowledge cpgsition Bottleneck for Intelligent
Tutoring Systems. International Journal of Artidicintelligence in Education 8: 222-232.

[Ohlsson, 94] Ohlsson, S.: Constraint-Based Stulferdeling. Student Modeling: The Key to
Individualized Knowledge-Based Instruction. J. Graad G. McCalla. New York, Springer-
Verlag: 167-189.

[Ohlsson, 96] Ohlsson, S.: Learning from PerfornealBorors. Psychological Review 3(2): 241-
262.

[Puerta, 92] Puerta, A. R., Musen, M.: A multipletmod knowledge acquisition shell for the
automatic generation of knowledge-acquisition toklsowledge Acquisition 4: 171-196.

[Soller, 03] Soller, A., Lesgold, A.: A Computat@n Approach to Analyzing Online
Knowledge Sharing Interaction, In Proc. 11th intgional conference on Artificial
Intelligence in Education, Sydney Australia, 20233-260.

