
A Sensor-based Interaction for Ubiquitous Virtual Reality Systems ∗

Dongpyo Hong1 Julian Looser2 Hartmut Seichter2 Mark Billinghurst2

Woontack Woo1

GIST U-VR Lab.1 HIT Lab NZ, University of Canterbury2

Gwangju 500-712, Korea1 New Zealand2

{dhong, wwoo}@gist.ac.kr1 {julian.looser, hartmut.seichter, mark.billinghurst}@canterbury.ac.nz2

Abstract

In this paper, we propose a sensor-based interaction for
ubiquitous virtual reality (U-VR) systems that users are able
to interact implicitly or explicitly with through a sensor.
Due to the advances in sensor technology, we can utilize
sensory data as a means of user interactions. To show the
feasibility of the proposed method, we use ComposAR as a
test-bed that is a script-based interaction authoring tool for
augmented reality (AR) systems. By adding sensor-based
interaction features to ComposAR, a user can interact with
virtual 3D contents through a sensor. We believe that the
proposed method provides natural user interactions for U-
VR systems.

1. Introduction

Since Weiser introduced the concept of ubiquitous com-
puting, computing paradigm has been changed significantly
from system-oriented to user-oriented. To develop user-
oriented systems, there have been many research efforts on
understanding the situations of users [1, 2]. In particular, the
advances in sensor technology enables system developers to
utilize various kinds of sensors in user interactions [3, 4].
From the perspective of contents provision, most previous
works on context-aware computing applications could not
overcome 2D contents. However, Augmented Reality (AR)
technology convinced researchers of a complementary tech-
nology for the 2D contents provisions. As a result, many
tools and frameworks for the development of AR system
have been emerged such as ARToolkit, osgART, and AR-
ToolkitPlus [5, 6, 7]. But, those toolkits demanded devel-
opers to have high quality of programming skills in order
to build AR systems. To help non-technical users to build

∗This research is supported in part by the Foundation of UCN Projects,
the MKE, and the 21C Frontier R&D Program in Korea as a result of sub-
project UCN 08B3-O1-20S and by the FRST New Zealand founded re-
search project CALMARS at the HITLab New Zealand

AR systems with simple configurations, many AR author-
ing tools have been also proposed [8, 9, 10]. Most AR au-
thoring tools have focused on how to manipulate 3D models
such as selection, position, and rotation of them with fidu-
cial markers [11, 12, 13]. However, they are not enough
to support dynamic user interactions in real environment.
Therefore, there has been an activity to realize Ubiquitous
Virtual Reality (U-VR) systems where users are able to in-
teract with virtual 3D contents on real environment as well
as share them with others through their explicit or implicit
intensions [14].

In this paper, we propose a sensor-based user interaction
for U-VR systems by utilizing scripting-based AR author-
ing tool, ComposAR 1, that allows the user to write interac-
tion scripts and provides immediate runtime feedback from
the interaction scripts. Due to its scripting feature, we can
easily setup U-VR systems and test them on the fly. How-
ever, current version of ComposAR only allows users to in-
teract with virtual 3D contents through the fiducial markers
(See Figure 1). Thus, we need to modify ComposAR to al-
low sensory data as a means of user interaction. In the pro-
posed method, the user can manipulate the loaded virtual
3D contents by moving a sensor (acceleration of x−, y−,
and z−axis), making noise, changing the intensity of light,
and even the variation of temperature. In addition, all the
authored contents and states are stored in a XML file format,
and restored as the same contents and states. Thus, the user
can resume their interactions anytime and anywhere. More-
over, this feature makes it possible to deliver and share user
interactions as well as contents with other U-VR systems.

This paper is organized as follows. In section 2, we
briefly introduce the main features of ComposAR and its
development environment. In section 3, we show the con-
figuration of a sensor-based interaction and explain its im-
plementation in detail. Finally, we discuss future works in
section 4.

1http://www.hitlabnz.org/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UC Research Repository

https://core.ac.uk/display/35460477?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. ComposAR: AR Authoring Tool

The main features of ComposAR are: association of
fiducials and 3D content, dynamic modification of the prop-
erties of 3D contents, live interaction scripting, persistant
storage of content and configuration. Figure 1 illustrates a
typical development environment of ComposAR.

Figure 1. The environment of ComposAR

As shown in Figure 1, the development environment of
ComposAR has 3 panes and each pane can be floatable ex-
cept the actual rendering canvas. (a) SceneTree indicates
how the current scene graph is organized with contents like
markers, models and interaction scripts. (b) Canvas is an
OpenGL rendering context showing live video and to render
3D contents. (c) Editor shows interaction scripts. Similar
to conventional authoring tools, ComposAR also provides a
menu and a toolbar.

Figure 2. The SceneTree of ComposAR

In dynamic association of markers and 3D contents,
users can click SceneTree or choose menu which marker
they want to associate with which 3D contents. Figure 2
shows an example of currently associated markers and 3D
contents (See Figure 1). Through the ScenTree, users are
also able to dynamically change the properties of the loaded
3D contents. For instances, users can locate 3D contents a
certain position from the marker, rotate and scale the 3D
contents.

3. Sensor-based Interaction Script Implemen-
tation

In this section, we show a sensor-based interaction con-
figuration and reveal the implementation in details. Figure 3
shows sensor-based interaction configuration.

Figure 3. Sensor-based Interaction Configu-
ration

As shown in Figure 3, we utilize a particle sensor 2

which can acquire the values of acceleration of x−, y−,
and z−axis, sound, light and temperature. In order to ex-
tract the acquired signals from the particle sensor, we need
its receiver where we use a USB interface receiver. From
the receiver, we can selectively extract any of data from the
particle sensor. The extracted data finally are delivered to a
sensor module in ComposAR, which are mainly used in the
interaction scripts. Figure 4 shows the sensor-based inter-
action configuration within ComposAR environment.

Before we explain sensor-based interaction script, we re-
view the fiducial marker-based interaction script in Com-
posAR. Typically users can change certain behavior of the
loaded virtual 3D contents by checking whether a marker is
visible or invisible as follows.

2http://particle.teco.edu



Figure 4. Sensor-based Interaction

import wx

def init():
wx.MessageBox("Welcome", "Welcome to ComposAR scripting")

def update(marker):
if marker.fiducial.isValid():

wx.LogStatus("marker %d visible" % marker.id)
marker.rotation[2] = marker.rotation[2] + 0.5
marker.updateRotation()

else:
wx.LogStatus("marker %d invisible" % marker.id)

if __callback__ == ’__init__’:
init()

if __callback__ == ’__update__’:
update(marker)

As shown in the above code, the loaded 3D contents is
rotating 0.5 degree along z-axis when the marker is visible.
In particular, ComposAR provides two callback functions
such as init and update . In init , users can
initialize their interactions. In update , users can make
more interesting interactions with 3D contents. Because
current ComposAR only allows the users to write interac-
tion scripts according to the properties of a marker, we need
to modify update(marker) function. In addition to the mod-
ification of update() function, we also need to add a sensor
module to acquire sensory data in ComposAR. As a result,
we added Python-enabled ParticleSensor module on top of
Python-binding particle library which can utilize a particle
sensor as follows.

Figure 5. Sensor-based Interaction Module

As shown in Figure 5, ComposAR mainly utilizes wx-
Python 3 for wxWidget (it supports convenient GUI li-
braries) and osgPython 4 for OpenSceneGraph 5 (it support
high quality of graphic rendering and scene graph manage-
ment). Meanwhile, OSGART [6] supports ComposAR to
load video, tracker, and scene rendering.

With the modified ComposAR, we are able to support
sensor-based script interactions in addition to marker-based
script interactions. That is, the user can write interaction
scripts based on the variation of sensory data as the follow-
ing code.

def update(marker, sensor):
if marker.fiducial.isValid():

if (sensor.light > 3):
marker.rotation[2] = marker.rotation[2] + 0.5

else:
marker.rotation[2] = marker.rotation[2] - 0.5

marker.updateRotation()

if __callback__ == ’__update__’:
update(marker, sensor)

For the sensor-based interaction script, we also modified
update function in ComposAR to have a sensor as a

parameter as well as a marker. Thus, update (marker, sen-
sor) function now allows to have properties of a marker as
well as values of a sensor. Therefore, users can interact
with the loaded 3D contents by moving the sensor, chang-
ing lighting condition, or making noise. Figure 6 shows an
example of sensor-based interaction with ComposAR.

Figure 6. Interaction with the light level

As shown in Figure 6, a user can control the rotation
of the loaded 3D contents by controlling the level of light.
In this method, we can write many interesting interactions
with the loaded 3D contents.

In conventional authoring environments, it is important
to store and restore currently authored data or scene. Thus,
ComposAR also provides such features to users. When
users are done with their own authoring, they can save
the current scene data as well as they can save interaction
scripts in a XML file format. When they need the saved
authoring data, they can retrieve them from the XML file.

3http://www.wxpython.org
4http://code.google.com/p/osgswig
5http://www.openscenegraph.org



However, current version of ComposAR does not support to
embed interaction scripts into the XML file format. Thus,
we modified ComposAR to include interaction scripts in the
XML file. The following XML code shows how the modi-
fied version of ComposAR stores current scene and interac-
tion scripts.
<?xml version="1.0" ?>
<composar os="nt" utc="Fri, 11 Apr 2008 13:14:16" version="0.1">

<scene>
<videos/>
<trackers/>
<markers>
<marker model="cow.osg" name="patt.hiro"

position="0.0 0.0 20.0"
rotation="0.0 0.0 21.0"
scale="4.0 4.0 4.0"
script="hello.py"/>

<marker model="glider.osg" name="patt.kanji"
position="0.0 0.0 20.0"
rotation="0.0 0.0 13.0"
scale="100.0 100.0 100.0"
script="hello.py"/>

</markers>
</scene>

</composar>

In the XML file, we simply ignored video and tracker
elements because we assumed that users use the provided
video and tracker libraries. This feature will be revised in
future release.

4. Discussion and Future work

In this paper, we proposed a sensor-based interaction for
U-VR systems with the scripting-babsed authoring tool for
AR systems. Unlike the existing approaches, ComposAR
helps users to easily build and test a simple AR system due
to scripting environment. In ComposAR, users are able to
load virtual 3D contents and manipulate them dynamically.
While we have kept such features, we modified and added
some features to the current ComposAR. For example, users
can write their own interaction scripts not only with visibil-
ity of markers but also values of sensory data. In addition,
the users can save their interaction scripts with other pa-
rameters of 3D contents and markers for AR systems, and
reload the same states as they saved. With the proposed fea-
tures, the users are able to selectively share their contents as
well as interactions with others.

As future work, we can extend this technique to natu-
ral environment so that we can author interactions not only
markers but also natural objects. In addition, we need to in-
vestigate on provisions of useful interaction template scripts
for ordinary users, and other interaction metaphors rather
than fiducial markers. We also need to evaluate the usability
of sensor-based interaction comparing to fiducial marker-
based interaction.

References

[1] B. Schilit, N. Adams, and R. Want, “Context-aware com-
puting applications,” IEEE Workshop on Mobile Computing
Systems and Applications, pp. 85–90, 1994.

[2] A. K. Dey and G. D. Abowd, “Towards a better understand-
ing of context and context-awareness,” in In the Workshop
on The What, Who, Where, When, and How of Context-
Awareness, as part of the 2000 Conference on Human Fac-
tors in Computing Systems (CHI 2000), 2000.

[3] A. Schmidt, M. Beigl, and H.-W. Gellersen, “There is more
to context than location,” Computers and Graphics, vol. 23,
no. 6, pp. 893–901, 1999.

[4] H. Lieberman and T. Selker, “Out of context: Computer sys-
tems that adapt to, and learn from, context,” IBM SYSTEMS
JOURNAL, vol. 39, no. 3 - 4, pp. 617 – 631, 2000.

[5] H. Kato and M. Billinghurst, “Marker tracking and hmd cal-
ibration for a video-based augmented reality conferencing
system,” in the 2nd International Workshop on Augmented
Reality (IWAR 99), pp. 85–94, 1999.

[6] J. Looser, R. Grasset, H. Seichter, and M. Billinghurst, “OS-
GART - A pragmatic approach to MR,” in Proceedings of
International Symposium of Mixed and Augmented Reality,
2006.

[7] D. Wagner and D. Schmalstieg, “Artoolkitplus for pose
tracking on mobile devices,” in Computer Vision Winter
Workshop, 2007.

[8] R. Dörner, C. Geiger, M. Haller, and V. Paelke, “Authoring
Mixed Reality – A Component and Framework-Based Ap-
proach,” in Proceedings of International Workshop on En-
tertainment Computing - Special Session on Mixed Reality
Entertainment Computing, 2002.

[9] B. MacIntyre, M. Gandy, S. Dow, and J. D. Bolter, “DART:
A Toolkit for Rapid Design Exploration of Augmented Real-
ity Experiences,” in Proceedings of the 17th annual ACM
symposium on User Interface Software and Technology,
pp. 197–206, 2004.

[10] C. Knöpfle, J. Weidenhausen, L. Chauvigné, and I. Stock,
“Template Based Authoring for AR based Service Sce-
narios,” in Proceedings of the IEEE Virtual Reality 2005
(VR’05), pp. 237–240, 2005.

[11] J.-D. Yim and T.-J. Name, “Developing Tangible Interaction
and Augmented Reality in Director,” in Proceedings of Con-
ference on Human Factors in Computing Systems, pp. 1541–
1541, 2004.

[12] G. A. Lee, C. Nelles, M. Billinghurst, and G. J. Kim, “Im-
mersive Authoring of Tangible Augmented Reality Applica-
tions,” in Proceedings of Third IEEE and ACM International
Symposium on Mixed and Augmented Reality (ISMAR’04),
pp. 172–181, 2004.

[13] T. Ha and W. Woo, “Graphical tangible user interface for
a ar authoring tool in product design environment,” in Pro-
ceedings of International Symposium on Ubiquitous Virtual
Reality 2007, vol. 260 of CEUR-WS, 2007.

[14] Y. Suh, K. Kim, J. Han, and W. Woo, “Virtual reality in ubiq-
uitous computing environment,” in International Symposium
on Ubiquitous Virtual Reality, pp. 1–2, 2007.


