

APPLIED COMPUTING, MATHEMATICS
AND STATISTICS GROUP

Division of Applied Management and Computing

Discrete Lines
and

Ant Algorithms

Panama Geer, Harry W. McLaughlin and Keith Unsworth

Research Report No: 01/2001
March 2001

R ESEARCH

ER PORT
L I N C O L N
U N I V E R S I T Y
T e W h a r e W ā n a k a O A o r a k i

ISSN 1174-6696

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lincoln University Research Archive

https://core.ac.uk/display/35460327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Applied Computing, Mathematics and Statistics

The Applied Computing, Mathematics and Statistics Group (ACMS) comprises staff of the Applied
Management and Computing Division at Lincoln University whose research and teaching interests are in
computing and quantitative disciplines. Previously this group was the academic section of the Centre for
Computing and Biometrics at Lincoln University.

The group teaches subjects leading to a Bachelor of Applied Computing degree and a computing major in
the Bachelor of Commerce and Management. In addition, it contributes computing, statistics and
mathematics subjects to a wide range of other Lincoln University degrees. In particular students can take a
computing and mathematics major in the BSc.

The ACMS group is strongly involved in postgraduate teaching leading to honours, masters and PhD
degrees. Research interests are in modelling and simulation, applied statistics, end user computing,
computer assisted learning, aspects of computer networking, geometric modelling and visualisation.

Research Reports

Every paper appearing in this series has undergone editorial review within the ACMS group. The editorial
panel is selected by an editor who is appointed by the Chair of the Applied Management and Computing
Division Research Committee.

The views expressed in this paper are not necessarily the same as those held by members of the editorial
panel. The accuracy of the information presented in this paper is the sole responsibility of the authors.

This series is a continuation of the series "Centre for Computing and Biometrics Research Report" ISSN
1173-8405.

Copyright

Copyright remains with the authors. Unless otherwise stated permission to copy for research or teaching
purposes is granted on the condition that the authors and the series are given due acknowledgement.
Reproduction in any form for purposes other than research or teaching is forbidden unless prior written
permission has been obtained from the authors.

Correspondence

This paper represents work to date and may not necessarily form the basis for the authors' final conclusions
relating to this topic. It is likely, however, that the paper will appear in some form in a journal or in
conference proceedings in the near future. The authors would be pleased to receive correspondence in
connection with any of the issues raised in this paper. Please contact the authors either by email or by
writing to the address below.

Any correspondence concerning the series should be sent to:

The Editor
Applied Computing, Mathematics and Statistics Group
Applied Management and Computing Division
PO Box 84
Lincoln University
Canterbury
NEW ZEALAND

Email: computing@lincoln.ac.nz

DISCRETE LINES
AND ANT ALGORITHMS

PANAMA GEER
Department of Mathematical Sciences

Rensselaer Polytechnic Institute
Troy, NY 12180-3590, USA

geerp@rpi.edu

HARRY W. McLAUGHLIN
Department of Mathematical Sciences

Rensselaer Polytechnic Institute
Troy, NY 12180-3590, USA

mclauh@rpi.edu

KEITH UNSWORTH
Applied Computing, Mathematics and Statistics Group

Division of Applied Management and Computing
Lincoln University

Lincoln, Canterbury, New Zealand
unsworth@lincoln.ac.nz

March 26, 2001

This is a report on work in progress. The focus is on the design of an
algorithm used to construct discrete lines. It is intended that this is the
�rst step in applying models of complex adaptive systems to more complex
geometric constructs. We construct discrete lines using agents (virtual ants).
The agents are given very few rules, and otherwise move freely. With this
design we allow a particular line to emerge from the movement of the agents
rather than model the line �rst and then display it.

i

Contents

Figures iii

Part 1: Introduction 1

Part 2: What is an Ant Algorithm? 4

x2.1 A Brief Description 4

x2.2 An Application 5

Part 3: A De�nition of a Discrete Line 8

x3.1 The Line Environment 8

x3.2 Observations of Collections of Cells 10

x3.2.1 Connectedness 11

x3.2.2 Cell Distribution 13

x3.2.3 Essential Cells 16

x3.3 The Core 17

x3.4 The Rules of Arrangement 24

x3.5 De�nition of a Discrete Line 32

Part 4: The Algorithm 33

x4.1 Using Ants to Draw Lines 33

x4.2 Observations of Antline 38

Part 5: Conclusions and Further Study 49

x5.1 The De�nition: Questions and Conclusions 50

x5.2 The Algorithm: Questions and Conclusions 51

x5.3 Where Does That Leave Us? 53

Acknowledgments 54

References 55

ii

Figures

Figure 1: The initial cell, A(0; 0), and terminal cell,... 9

Figure 2: The diagonal discrete line, B(5; 5). 10

Figure 3: The vertical discrete line, B(0; 5). 10

Figure 4: The discrete line, B(3; 7). 11

Figure 5: The discrete line, B(4; 11). 11

Figure 6: An unnecessarily thick discrete line, B(4; 4). 12

Figure 7: Not a discrete line, B(3; 6). 13

Figure 8: Not a discrete line, B(6; 11). 13

Figure 9: Not a discrete line, B(4; 6)... 15

Figure 10: The discrete line, B(4; 6)... 15

Figure 11: The sequence of Ds and Ns for B(6; 9)... 16

Figure 12: The sequence of 1s and 0s for B(6; 9)... 16

Figure 13: The channel lines for B(5; 8). 17

Figure 14: The shaded cells are the hull for B(5; 8)... 18

Figure 15: The hull, core, and channel lines for B(2; 6). 19

Figure 16: The hull, core, and channel lines for B(5; 8). 19

Figure 17: For the discrete line B(4; 7), the core and ... 20

Figure 18: For B(7; 9), the core is a subset of the... 23

Figure 19: For B(4; 9), the core and the discrete line... 23

Figure 20: Example 1a, DDDDDDDNN. 26

iii

Figure 21: Example 2a, NDDDDDDNN. 26

Figure 22: Example 3a, DDDNNDDDD. 26

Figure 23: Example 4a, DNDDDDDND. 26

Figure 24: Example 5a, DDNDDNDDD. 26

Figure 25: Example 6a, DDNDDDNDD. 26

Figure 26: The number of randomly generated... 39

Figure 27: All of the ants reach... after 5 cycles... 40

Figure 28: All of the ants reach... after 7 cycles... 40

Figure 29: All of the ants reach... after 20 cycles... 40

Figure 30: After 50 cycles the number of ants... 40

Figure 31: All of the ants reach... after 7 cycles... 41

Figure 32: All of the ants reach... after11 cycles... 41

Figure 33: All of the ants reach... after 24 cycles... 41

Figure 34: After 100 cycles the number of ants... 41

Figure 35: The probabilities versus the relative... 45

Figure 36: The distribution of �rst order... B(5; 11). 46

Figure 37: The distribution of �rst order... B(4; 10). 46

Figure 38: antline(5; 11; 25; 50; 2; 100; 0:5) 48

Figure 39: antline(5; 11; 25; 50; 2; 100; 0:75) 48

iv

Part 1: Introduction

Recently, there has been considerable success in applying models of com-
plex adaptive systems to a diverse range of problems. Examples include the
re-routing of computer network traÆc, analysis of banking data, and the
traveling salesman problem. [2] Each of these problems has been addressed
using \swarm intelligence," i.e. algorithms that are based on aspects of the
behavior of insects, in this case ants, that live in colonies.

The problems mentioned above are examples of complex problems. Prob-
lems �t into the class of complex problems when they are not based on linear
relationships. Complex problems typically involve a system of components
with nonlinear interactions. In other words, the global results of the sys-
tem, or the global interactions, amount to more than the sum of the local
interactions of elements of the system. Through these nonlinear interactions,
unexpected behavior results, or emerges (the sum of the of the local interac-
tions is what we refer to as expected behavior). If the complex system changes
(globally adjusts or reacts to the local interactions) as these nonlinear inter-
actions occur, the system is often referred to as an adaptive system. [8] The
term complex adaptive system is commonly used to describe these systems.
Ant algorithms, along with the more well known genetic algorithms, are ex-
amples of algorithms used to address the challenges presented by complex
adaptive systems.

An open problem in mathematics is the development of a mathematical
model for an adaptive discrete surface. By this, we mean an algorithmic
model that generates a surface in such a way that the surface can be eas-
ily adjusted. Because swarm-based algorithms are largely directed by local
relationships, it is thought that these local relationships would allow for lo-
cal adjustments. This is really a twofold problem. How does one de�ne a
discrete surface and how does one generate a discrete surface? It is hoped
that a class of algorithms, which are based on models of complex adaptive
systems and are adept at solving problems with nonlinear relationships, will
aid in the solution to this problem.

In this report we address two simpler problems. First, how does one de�ne
a discrete line? Second, can one use an adaptive algorithm to construct
discrete lines? Through looking at the conceptually simpler problem of a
discrete line, we hope to lend insight into a way of thinking about evolving
geometries like that of a discrete surface generated using models of complex
adaptive systems.

1

A description of what constitutes a discrete line is formulated in this re-
port. Although algorithms do exist for generating discrete representations
of continuous lines (e.g. Bresenham's algorithm), there is no consensus on a
de�nition of a discrete line. [5] In de�ning a discrete line, we set up crite-
ria for measuring the success of an algorithm for generating a discrete line.
The de�nition presented here does not rely on continuous lines, as the lines
generated from Bresenham's algorithm do. Our de�nition relies on simple,
local relationships between the cells of the discrete line. In that sense, our
de�nition lends itself to the algorithms described above.1

Marco Dorigo et. al have had considerable success with algorithms based
on the behavior of ant colonies. [3] They report that their ant algorithm
solution to the traveling salesman problem (TSP) is comparable to, if not
better than, alternative approaches using genetic algorithms and simulated
annealing. Encouraged by their success, we investigated the discrete line
problem using an ant algorithm approach.

In addition to the success of the work by Dorigo et. al , there are partic-
ular characteristics of general ant algorithms that support the choice of an
algorithm based on the behavior of insect colonies versus choosing another
type of algorithm. One of the primary di�erences, for example, between ant
algorithms and genetic algorithms, is in the dynamic versus static behavior
of their agents. In genetic algorithms individuals from a population are re-
peatedly selected, mated (crossover), and mutated. The individuals in the
population do not move around investigating the environment in the way
that the agents in ant algorithms do. It is this dynamic quality of the agents
that initially led us to investigate ant algorithms.

This work proceeds in several parts. Part 2 is devoted to describing what
is meant by an ant algorithm. There are several types of ant algorithms
that have been used e�ectively. They are each based on aspects of real ant
behavior. One of the ways that natural ants behave is to �nd the shortest
path between locations, for example, a nest and a food source. It is this
food foraging behavior that Dorigo et. al use to solve the TSP and we will
use to generate discrete lines. The work of Dorigo et. al on the TSP is
briey presented in Part 2. Part 3, the most comprehensive section, addresses
our de�nition of a discrete line. This de�nition establishes what it is that

1One could argue that a de�nition of a discrete line is that which is produced by
Bresenham's algorithm. However, this de�nition requires that discrete lines depend on
continuous lines, which need not be the case.

2

makes a collection of cells on a grid appear to be linear. In addition, if two
distinct collections of cells appear to be linear, how does one determine which
collection of cells constitutes the discrete line, and which does not (or do they
both)? Part 4 describes and outlines an algorithm used to �nd these discrete
lines. This algorithm takes inspiration from the work of Dorigo et. al . Some
conclusions and areas for further study are presented in Part 5.

3

Part 2: What is an Ant Algorithm?

Optimization algorithms based on ant colony behavior are a recent phe-
nomenon. Marco Dorigo and his collaborators have had success in solving
complex optimization problems using agent based algorithms referred to as
ant algorithms. Their work using ant algorithms to solve the TSP, provides
the basis for our discrete line algorithm. Thus, a brief description of ant
algorithms that are based on real ant foraging behavior is presented here.
This is followed by a brief description of the work of Dorigo et. al [4] using
a particular ant algorithm to solve the TSP.2

x2.1 A Brief Description

The term \ant algorithm" tends to bring to one's mind many small in-
sects scurrying around busily involved in some process. The name comes
from the fact that the general algorithmic procedure was originally based on
a very simpli�ed interpretation of the behavior of real ants. Although some
ant algorithms are used to model real ant behavior, many are not. In reading
the following work, it is helpful to think of ants as a metaphor for under-
standing the process of ant algorithms. This should be viewed as separate
from modeling real ant behavior, which is not the goal in this report. For our
purposes, ant algorithms are optimization algorithms which take inspiration
from real ant and ant colony behavior.

It is the behavior of an ant colony that provides the power behind an
ant algorithm. One can liken this power to that of parallel processing. [9]
In order to understand exactly what it is about ant algorithms that makes
them so powerful, it is helpful to start with a very simpli�ed description
of ant colony behavior. There are many aspects of ant colony behavior that
have spawned ant algorithms. These include foraging for food, sorting brood,
and co-operative transportation methods.

Our work is based on the process of ants foraging for food. A simpli�ed
interpretation of the food foraging process follows. Again, we emphasize
that this is an interpretation of the foraging process and our metaphor for
understanding the algorithm presented later in this report. Thus, we are not
attempting to precisely report on the behavior of real ants.

One can imagine that a colony of ants sends out a portion of its population

2The work done in 1996 [4] builds on earlier work from 1991 [3].

4

from its nest at regular intervals to search for food. The ants disperse from
the nest and move randomly across a landscape, each at the same speed.
As they move they deposit a substance called pheromone. Once pheromones
are deposited they evaporate with time. Eventually one or more of the ants
reaches a food source and then returns to the colony. Subsequent ants tend
to follow paths with high levels of pheromone. Thus, the trail of pheromone
that has evaporated the least will determine the path which is most likely to
be followed. These are precisely those paths that are the shortest (i.e. have
had the least amount of time to evaporate).

At any given point in the algorithm, the path with the highest pheromone
level may not be the true shortest path. This is where the power of colony
behavior is demonstrated. After the �rst group of ants has been sent out,
each ant that leaves the colony has several pheromone trails that it could po-
tentially follow. With a relatively large probability, the subsequent ants will
follow the shortest path.3 Those ants that do not follow the shortest path, or
only follow it some of time, can potentially �nd an even shorter path. This
path, in turn, will have a higher pheromone level, thus a higher probability
of being followed, because the pheromone will have less time to evaporate.
The colony behavior allows the ants to reinforce the shortest path to date,
while at the same time, due to the probabilistic aspects of their behavior,
the colony continues to search for shorter and shorter paths.

x2.2 An Application

Marco Dorigo at the Universit�e Libre de Bruxelles, has done much work
with ant algorithms. In particular he and his colleagues have used ant algo-
rithms to solve the traveling salesman problem (TSP). [4] The TSP is a well
known problem that for large numbers of cities is complex.

The TSP can be stated as the problem of �nding a minimum length closed
tour of n cities. Dorigo et. al position m ants randomly among the n cities.
Over n time steps each ant makes a move to a new city. One can picture the
cities as a collection of points, each point connected to every other point by
an edge. The choice of a particular ant's move from the current city (point) to
another is based on a probability function. This probability function depends
on the length of the particular edge connecting the cities (points) and the
amount of pheromone present on the particular edge. We can think of the

3The actual value of the probability depends on various factors and adjusts frequently.

5

algorithm as modeling a complex adaptive system. Since the probability
function is updated during the running of the algorithm, the probability
function allows the algorithm to adapt, and thus model an adaptive system.
After the n moves are completed, the shortest path is calculated and the
process is repeated. This time in addition to the edge lengths, both the
pheromone deposited during the last cycle as well as the evaporation of the
existing pheromone is taken into account in an updated probability function.
Each repetition of this process is called a cycle. The number of cycles is
allowed as user input. Likewise, there are user controlled parameters for the
number of ants, the evaporation rate of pheromone, the relative importance
within the probability function of the length of the edges, and the relative
importance within the probability function of the pheromone level on the
edges.4

Dorigo et. al found that there are certain ranges of these parameters that
produce successful results.5 The ranges of the parameters in the problem
correspond to certain characteristics of the optimization procedure. For ex-
ample low values of the pheromone level, made the procedure similar to a
greedy algorithm, while higher values of the pheromone level correspond to
stagnation behavior. Stagnation behavior is the situation in which all of the
ants make the same tour and thus cease to explore new, potentially shorter,
tours.

An important characteristic of ant algorithms is the ability to continu-
ously explore for new, potentially better, solutions. Dorigo et. al referred to
this as scouting. One way to way to observe scouting within an ant algorithm
is to look at the standard deviation of the path lengths after multiple cycles.
The path lengths should not all be converging. After each cycle in the TSP,
the shortest path was updated. Thus, if a particular cycle yielded a shorter
tour than the previous cycle, this new tour was taken to be the new shortest
tour. Because it was only necessary to �nd a true minimum length tour once,
scouting was encouraged. Too much scouting however, made the algorithm

4More speci�cally, the parameter representing the relative importance of the length of
edges is the reciprocal of the distances between cities. This reciprocal represent the visibil-
ity between cities. Because real ants are virtually blind, the use of visibility demonstrates
one way that this formulation of an ant algorithm diverges from real ant behavior.

5The success of the algorithm was tested against other known methods of solving the
TSP, which included a genetic algorithm approach, and a simulated annealing approach.
Dorigo and his colleagues report that in each case the e�ectiveness of the ant algorithm
approach was comparable, if not better.

6

essentially a purely random search. The ant algorithm can be thought of as
a directed random search. The probability function and the pheromone level
changes, which are updated with each cycle, guide this search.

7

Part 3: A De�nition of a Discrete Line

Our de�nition of a discrete line proceeds in several parts. In x3.1, we de-
scribe an environment for discrete lines. We are working with a speci�c class
of discrete lines which lie in one octant of a square grid and can be denoted
by their terminal cell. In x3.2, we discuss several observed characteristics of
discrete lines in this environment. These observations are properties that will
follow from our de�nition of a discrete line. These characteristics include con-
nectedness, x3.2.1, cell distribution, x3.2.2, and essential cells, x3.2.3. This is
followed by a more detailed description of the essential cells, in the context
of the core of a discrete line, x3.3. The core cells are de�ned and a descrip-
tion of their quantity and location are given. Finally, x3.4 presents criteria
for determining whether the discrete line will have the properties mentioned
earlier. We simply minimize the lengths of a discrete line. The de�nition of
the length measures used are described in detail. We conclude Part 3 with
our de�nition of a discrete line, x3.5.

It is important to note that the de�nition of a discrete line is left to x3.5.
Thus, our reference to discrete lines in x3.1-x3.4 refers to the eventual goal of
the de�nition in x3.5 and is not meant to imply that the de�nition is already
understood.

x3.1 The Line Environment

A two-dimensional rectangular lattice, with lattice points (vertices) de-
noted by integer valued coordinate pairs, extends in�nitely in every direction.
Each square determined by the lattice, with unit side length, is a cell in the
square grid. The vertices of these squares are the ordered pairs of integers,
mentioned above. Our goal in investigating discrete lines is to characterize
what it is about a collection of these cells that makes the collection look
like a discrete line. In other words, what makes a collection of these cells
appear \straight" to the human eye? When we refer to a discrete line, one
can envision a television screen, or a computer display which is composed of
pixels. The screen is white when none of pixels are turned on. When any
one pixel is turned on, that pixel becomes colored. If the pixels are squares
on the grid mentioned above, which ones should be turned on to create an
image that appears linear?

In many cases one can easily tell which pixels or cells should be turned on
to make the line appear straight. For example a vertical discrete line between

8

1 2 3 4 5 6 7

1

2

3

4

5

6

7

B

A

Figure 1: The initial cell, A(0; 0), and
terminal cell, B(3; 6), for a discrete line.

cell A(0; 0) and cell B(0; 5) is simply a collection of six cells on a square grid
forming a column. [Figure 3] The notation A(0; 0) can be interpreted as the
cell on a square grid, where the ordered pair (0; 0) denotes the coordinates
of the cell's southwest corner. We adopt the convention of the initial cell,
A(0; 0), throughout this paper. The cell where the line terminates is denoted
B(e; n).6 The ordered pair (e; n) denotes the coordinates of the southwest
corner of the terminal cell, B. [Figure 1] Since the initial cell will always be
the same, we will refer to a discrete line by its terminal cell, B(e; n).7 In the
case of B(3; 6) it is not as clear which cells should be turned on, as it was
in the vertical discrete line case, B(0; 5). Should one turn on the cells in the
set f(1; 1), (1; 2), (2; 3), (2; 4), (2; 5)g or maybe the cells in the set f(0; 1),
(1; 2), (1; 3), (2; 4), (2; 5)g? This is where some measure of the straightness,
or linearity, of each collection of cells is necessary.

In order to get a feel for what characterizes straightness we examined
many collections of cells. We imposed some limits on the problem to ini-
tially simplify it. We chose the discrete slope of the collection of cells to be
greater than or equal to one. The discrete slope between two cells, C1(x1; y1)
and C2(x2; y2), is given by y2�y1

x2�x1
. The discrete slope for a collection of cells

6The choice of e and n refer to easterly and northerly directions.
7Note that we use B(e; n) to denote both the discrete line with terminal cell B(e; n) as

well as the terminal cell itself.

9

1 2 3 4 5 6

1

2

3

4

5

6

Figure 2: The diagonal discrete line,
B(5; 5).

1 2 3 4 5 6

1

2

3

4

5

6

Figure 3: The vertical discrete line,
B(0; 5).

with initial and terminal cells A(0; 0) and B(e; n) respectively, is the discrete
slope between cells A(0; 0) and B(e; n). Thus we constrained the discrete
slope between these cells to be m = n

e
� 1. In other words, the terminal

cell will be denoted B(e; n) where n � e. We assume that characterizing
discrete lines in this octant will allow us to extend these ideas to collections
of cells with any discrete slope. This has the e�ect of limiting the environ-
ment for a particular collection of cells to an approximate upper triangular
region. For example in Figure 1, the triangle with vertices given by the cells
A(0; 0), B(6; 6), and C(0; 6) provides a limited region of potential cells for
a discrete line from A(0; 0) to B(e; n). It follows from what we have stated
that any collection of cells which contains a cell in the lower triangular region
would not be a candidate for a discrete line. Figures 2, 3, 4, and 5 provide ex-
amples of collections of cells that satisfy our later de�nition of a discrete line.

x3.2 Observations of Collections of Cells

While investigating collections of cells we made numerous observations
that di�erentiated those collections of cells that appeared linear from those
that did not. The observations of those collections of cells that appeared
linear include

� a connectedness among the cells,

10

� an evenness in the distribution of cells, and

� the inclusion of some essential cells.

A more detailed discussion of these topics follows.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 4: The discrete line, B(3; 7).

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

Figure 5: The discrete line, B(4; 11).

x3.2.1 Connectedness

It is critical that the discrete line appear connected. It is precisely this
connectedness that allows our eyes to di�erentiate between a discrete line
or curve and an arbitrary group of cells on a grid. One can interpret the
idea of a connected discrete line as a discrete analogy to continuity for a
continuous line or curve. One way to think about a connected set of cells is
as follows. A connected set of cells from A(0; 0) to B(e; n), denoted fCij i 2
f1; 2; :::; n+ e+ 1gg, where A = C1 and B = Cn+e+1, is a set such that every
cell, Ci, 1 < i < n+e+1, shares exactly one edge with cell Ci+1 and one edge
with cell Ci�1. It follows from this de�nition that in the case where e = n, the
resulting collection of cells is unnecessarily thick. [Figure 6] It is reasonable
that a discrete line, with the slope, m = 1, between initial and terminal cells,
should be the collection of cells Ci(i�1; i�1) for i 2 f1; 2; 3; :::; n+ 1g, where
A = C1(0; 0), and B = Cn+1(n; n). Thus, we are looking for a smallest set of
connected cells that form a connected discrete line. This requires a slightly
di�erent de�nition of a connected set of cells.

11

1 2 3 4 5

1

2

3

4

5

Figure 6: An unnecessarily thick dis-
crete line, B(4; 4).

To eliminate these thick, or overly connected, discrete lines, we imposed
another constraint on our discrete lines. Our notion of a discrete line from
A(0; 0) to B(e; n) requires the collection to be connected in such a way as
to minimize the number of cells in the collection. The minimum number of
cells necessary to allow each cell, other than the initial and terminal cells, to
touch exactly two other cells (by an edge or vertex) and still reach B(e; n) is
n+ 1. This changes our de�nition of a connected set of cells.

A connected set of cells from A(0; 0) to B(e; n) is a set fCij i 2
f1; 2; :::; n+ 1gg, A = C1 and B = Cn+1, such that each cell Ci,
1 < i < n + 1, shares exactly one horizontal edge or exactly one
vertex with cell Ci�1 and shares exactly one horizontal edge or
exactly one vertex with cell Ci+1.

The cells depicted in Figures 2-5 ful�ll this criteria of connectedness. Thus,
our notion of a discrete line requires the collection of cells to be a minimum
size set of connected cells.

For a moment we return to ants. Dorigo et. al solved the TSP using an
ant algorithm. This algorithm sends ants out from various locations and, in
some sense, evaluates their movements throughout the process. It is helpful
to think of discrete lines in a similar way. Consider starting with some num-
ber of ants at cell A and moving them throughout the grid. Since we are only
considering discrete lines (collections of cells) with discrete slope � 1 we can

12

simplify the movement of the ants. At any given cell the ants will only need
to move to either the cell that is directly north of their current location (a
north move), or to the cell that is directly northeast of their current location
(a diagonal move).8 If we think of ants moving from cell to cell, in a north
and diagonal manner (without skipping cells), then the connectedness of the
path of the ants, or the connectedness of the discrete line, is assured. The
only edges that the connected cells share are horizontal edges. Likewise, the
only vertices that the connected cells share are the northeast and southwest
vertices.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure 7: Not a discrete line, B(3; 6).

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

6

7

8

9

10

11

12

Figure 8: Not a discrete line, B(6; 11).

x3.2.2 Cell Distribution

The concept of connectedness alone is not enough to characterize a dis-
crete line. For example, we suggest that the collections of cells in Figures 4
and 5 each appear as a discrete line, while the collections of cells in Figures
7 and 8 do not. In Figures 7 and 8, there are n + 1 = 7 and n + 1 = 12
cells, respectively, in each collection. In addition, in both cases the cells are
connected either by northeast and southwest vertices or horizontal edges.
Thus, Figures 7 and 8 are minimum size, connected, sets of cells. One of

8If we had allowed collections of lines like those in Figure 6, then we would have used
north and east moves.

13

the di�erences between these collections of cells is in their arrangement. One
could say that the collections of cells in Figures 4 and 5 are more evenly
distributed. There is a symmetry present that makes Figures 4 and 5 appear
as discrete lines, a symmetry that is not present in Figures 7 and 8.

What does it mean to evenly distribute these cells? If one thinks of the
cells in Figures 4 and 5 as appearing in columns, then a pattern arises.
The collections of cells that appear to be discrete lines (these are necessarily
connected) are composed of columns of cells. We hypothesize that for a given
collection of cells these columns can have at most two di�erent heights. If
these heights are di�erent, then they di�er in height by only one cell. For
every discrete line there are e+1 columns. Figures 2, 3, and 4 show discrete
lines with columns that do not di�er in height. Figure 5 shows a discrete line
with columns that vary in height between 2 and 3 cells.

The column property of a discrete line states that for a given
collection of e+1 cells, the heights of the columns of cells, h1 and
h2, satisfy jh1 � h2j � 1.

The column property is an important characteristic of discrete lines. It re-
quires the columns to be as close as possible in height. If they were not as
close as possible in height, then the collection of cells would appear curved,
thus not the discrete lines we are looking for. [Figures 7 and 8] However, the
column property and the connectedness of the set of cells are still not enough
to ensure a discrete line. There are connected sets of cells with the column
property that do not appear linear, see Figures 9 versus Figure 10.

Beyond this idea of at most two columns of two sizes, that di�er in height
by at most one cell, we also consider the idea of arranging these columns of
cells. Of course this is only an issue when there are two di�erent column
heights. This amounts to the problem of arranging two collections of distinct
objects (the shorter columns and the longer columns) as evenly as possible.

What do we mean by as evenly as possible? One can represent each
column in Figure 9 by a number. If a column height is the shorter of the
two heights, it is represented by a zero, otherwise it is represented by a one.
Employing this representation we can write the collections of cells of Figures
9 and 10 as the strings 01100 and 01010 respectively. We consider the 1s
and 0s associated with the string of Figure 10 to be more evenly distributed
than those of Figure 9. The precise criteria for why this is so, remains to be
stated.

14

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure 9: Not a discrete line, B(4; 6).
This can be represented by 01100 or
D N D N DD.

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure 10: The discrete line, B(4; 6).
This can be represented by 01010 or
D N DD N D.

One can also dynamically generate a connected set of cells. As mentioned
earlier, this idea of movement is appealing when considering ants foraging
for food.9 In Figures 9 and 10 the �rst move from cell A to the next cell
is a diagonal move (D). The following move in each �gure is a north move
(N). Continuing this process the string representations of Figures 9 and 10
are D N D N DD and D N DD N D, respectively. Again, we consider the
string of Ds and Ns associated with Figure 10 to be more evenly distributed
than that of Figure 9 (at this point one can consider that the string simply
\appears to the eye" to be more evenly distributed).

The implementation of our ant algorithm uses string representations com-
posed of Ds and Ns rather than 1s and 0s. In evenly distributing the Ds and
Ns, our algorithm evenly distributes the moves rather than the cells them-
selves. For a given terminal cell, B(e; n), if one compares the collections of
cells generated by distributing moves and those generated by distributing
cells, there are cases in which di�erent collections of cells result. [Figures
11 and 12] Often when the characters are evenly distributed, the two rep-
resentations (01-strings versus DN-strings) yield the same collection of cells.

9One of the di�erences between genetic algorithms and ant algorithms is that ant
algorithms use a metaphor for ant movement, whereas genetic algorithms are more static
in their use of selection, crossover, and mutation. This concept is also discussed in Part 1.

15

However, there are some terminal cells for which evenly distributing 0s and
1s in a 01-string representation of the collection of cells yields a collection of
cells that we consider more visually appealing than the collection produced
using a DN-string representation. Thus, it is important to note that our
algorithm uses only DN-string representations of collections of cells.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 11: The sequence of Ds and Ns
for B(6; 9), that appears most evenly dis-
tributed is D N DD N D N DD. The se-
quence of 0s and 1s for 0101100, does not
appear to be the most evenly distributed.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 12: The sequence of 0s and 1s
for B(6; 9) that appears the most evenly
distributed is 0101010. The sequence of
Ns and Ds, D N DD N DD N D, does not
appear to be the most evenly distributed.

The question remains. How does one characterize this notion of even dis-
tribution? What is the measure for the evenness of a distribution of moves
or cells? Since the goal of this section is simply to state our observations,
the method developed to measure this concept of even distributions of two
distinct entities will be discussed in depth in x3.4.

x3.2.3 Essential Cells

There is one further observation that is worth noting. In looking for a
characterization of a discrete line one can look for discrete analogies to some
of the properties of continuous lines. We are not convinced that there are
discrete analogies for all (or maybe even many) of the properties of a contin-
uous line. Earlier we discussed a discrete analogy to continuity in the case of
a continuous line. After de�ning a discrete line, we would like to be able to

16

both subdivide a discrete line into discrete line segments and extend a dis-
crete line to a \longer"discrete line. How can this be accomplished? These
are still open questions. In the process of thinking about them, one encoun-
ters the notion of essential cells. Clearly cells A(0; 0) and B(e; n) are always
in the discrete line, and as such are deemed essential cells. Are there other
essential cells? It turns out that there are. We refer to these cells as core
cells.10 We will see that algorithm presented later automatically includes the
essential cells. These cells appear in predictable quantities that depend on
the terminal cell location, B(e; n). Not only do they appear in predictable
quantities, they appear in predictable locations. Both the quantity of core
cells as well as their location, suggest potential for extending and subdividing
the discrete lines.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

A

B

Figure 13: The channel lines for B(5; 8).

x3.3 The Core

The initial cell, A(0; 0), and the terminal cell, B(e; n), are examples of
essential cells in a discrete line. These are also examples of core cells. Given
a discrete line, as de�ned later, the collection of core cells is referred to as the

10There are two cases in which the set of essential cells is actually a subset of the set of
core cells for a given discrete line. In other words, all essential cells are core cells, however,
the converse is not true. All core cells are not essential cells. This has to do with the
concept of connectedness discussed earlier and will be explained in more detail in x3.3.

17

core of the discrete line. In observing many collections of cells that appear
as discrete lines, we found that there are essential cells other than just the
initial and terminal cells. To have an accurate de�nition of a discrete line,
the discrete line should certainly include these other essential cells. This is
where the core cells are incorporated into the de�nition. To de�ne the core
of a discrete line we �rst describe two other features of a discrete line, the
channel lines and the hull. Next, we de�ne the core of the discrete line and
proceed to describe algorithms for determining the number of cells in the
core, and the locations of these cells.

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

Figure 14: The shaded cells are the hull
for B(5; 8). Each individual cell in the
hull is referred to as a hull cell.

For a particular discrete line, the channel lines along with the initial and
terminal cells de�ne a region in the plane that contains all the continuous
lines from a point in the initial cell, A, to another point in the terminal
cell, B. If the terminal cell is B(e; n), then the region is the interior and
boundary of the six sided polygon with vertices at (0; 0), (1; 0), (e + 1; n),
(e + 1; n + 1), (e; n + 1), and (0; 1). Every discrete line has two channel
lines, which are the continuous lines joining certain vertices of the initial and
terminal cells of the discrete line. Speci�cally for B(5; 8), the channel lines
are the continuous line connecting the vertex (0; 1) to the vertex (5; 9) and
the continuous line connecting the vertex (1; 0) to the vertex (6; 8) on the
square grid. [Figures 13 and 14] The region bounded by the channel lines

18

and the initial and terminal cells for B(5; 8) forms the six sided polygon with
vertices (0; 0), (1; 0), (6; 8), (6; 9), (5; 9), and (0; 1).

The channel lines can be de�ned as the continuous lines `1 and `2,
such that `1 connects the northwest vertex of cell A, denoted by
the ordered pair (0,1) to the northwest vertex of cell B, denoted
by the ordered pair (e; n+1), and `2 connects the southeast vertex
of cell A, denoted by the ordered pair (1,0) and the southeast
vertex of cell B, denoted by the ordered pair (e+ 1; n).

The hull is closely related to the channel lines. The hull of a discrete line
from A(0; 0) to B(e; n) is a collection of cells, called hull cells, on the square
grid.

A cell is a hull cell if it intersects the interior of the region bounded
by the channel lines and the initial and terminal cells (the six
sided polygon). The collection of hull cells is referred to as the
hull of the discrete line from A to B.

The shaded region in Figure 14 is the hull for B(5; 8). Note that the initial
and terminal cells are hull cells. A discrete line is a subset of its hull. In the
case of a vertical discrete line, the hull from A(0; 0) to B(e; n) is exactly the
discrete line, B(e; n), we de�ne later.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

<−−−−−−−−−−− C (1, 3)

<−−−− B (2,6)

<−−−−−−− A (0,0)

Figure 15: The hull, core and channel
lines for B(2; 6).

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9

<−−Hull Cell

<−−Core Cell

<−−Channel Line

Figure 16: The hull, core and channel
lines for B(5; 8).

19

The hull plays an important role in understanding and de�ning core cells.
This is most easily seen by posing a question. For a given discrete line, is
there a hull cell, C (other than the initial and terminal cells), for which the
hull of the discrete line from A to C and the hull of the discrete line from
C to B are both subsets of the hull of the discrete line from A to B? The
answer is yes. We refer to a cell C that has this property as a core cell.
[Figures 15 and 16] The core of a discrete line is the collection of core cells
for that discrete line.11

The core of a discrete line is a set of cells, Ci, i = 1:::c(e; n), such
that for each Ci, the hull from A to Ci and the hull from Ci to
B are both subsets of the hull from A to B. We de�ne the initial
cell, A, and terminal cell, B, to be core cells. The value c(e; n) is
the number of cells in the core.

In the case of the vertical discrete line denoted by B(0; n), the hull, the core,
and the discrete line itself all coincide. There are many cases in which the
discrete line and the core coincide, however, the vertical discrete line is the
only case in which all three coincide.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Figure 17: For the discrete line B(4; 7),
the core and the discrete line coincide.

Earlier the idea of the essential cells was mentioned. If the core of a
discrete line is not overly connected, as described in x3:2:1, then the discrete

11Note that the core of a discrete line necessarily includes the initial and terminal cells
for that discrete line.

20

line must contain all cells in the core, and thus these cells are essential cells.12

In fact, the discrete line is exactly the core when the number of cells in the
core is n + 1. [Figure 17] This will be discussed further after methods for
�nding the number and location of the core cells have been discussed. The
number of cells in the core can be established as follows.

For a discrete line connecting cell A(0; 0) and cell B(e; n), let
c(e; n) denote the number of cells in the core.

� If e = 0, then c(e; n) = n+ 1.

� If e = 1, then c(e; n) = 2(n+ 1). 13

� If e = n� 1, then c(e; n) = 2n. 14

After establishing the above cases, the number of cells in the core
can be generated for any B(e; n) by recursively calling 1 and 2
below.

1. If 2e > n, then c(e; n) = c(n� e; n).

2. If 2e � n, then c(e; n) = c(e; e+ r), where r = n mod e.

A consequence of this is that if n and e are not relatively prime and are not
one of the �rst four cases above, then the number of cells in the core is k+1,
where k is the greatest common factor of n and e. It follows that, if the
number of cells in the core is odd, then the greatest common factor of the n
and e is a multiple of 2.

To specify the location of the core cells we look at a pattern in the rela-
tionship between the core cells. Figure 16 shows the core of the line B(5; 8) as
the darkest cells. Notice that the core cells form two groups. The �rst group
includes the initial cell, A(0; 0), as well as the cells A1(2; 3) and A2(4; 6). The
second group includes the terminal cell, B(6; 8), as well as the cells B1(3; 5)
and B2(1; 2). Recall that the discrete slope between two cells, C1(x1; y1) and
C2(x2; y2), is given by y2�y1

x2�x1
. Notice that the discrete slope between A and

A1 is
3
2
, and the discrete slope between A1 and A2 is

3
2
. Likewise notice that

the discrete slope between B2 and B1 is 3
2
, and the discrete slope between

B1 and B is 3
2
. Each of these groups of cells are subsets of the core. We

12The core cells are only overly connected in two cases, when e = 1 or e = n� 1.
13The core is overly connected, that is, 2(n+ 1) > n+ 1, 8n � 0.
14The core is overly connected, that is, 2n > n+ 1,8n > 1.

21

will refer to them as the A-set and the B-set respectively. If the A-set also
contains the terminal cell, B, then there is only one subset of the core. In
other words the A-set and B-set are equal.

If we �nd the discrete slope between any two cells in either the A-set or
the B-set, we can specify the location of all of the core cells. How do we �nd
the discrete slopes between two cells in one of these two sets? The following
procedure describes the method for �nding the locations of the core cells.

For a discrete line connecting cell A(0; 0) and cell B(e; n), e > 1,
let c(e; n) = the number of cells in the core, and let i, z, p and q
be positive integers.15 If the number of cells in the core is even,
then c(e; n) = 2z, otherwise c(e; n) = 2z + 1.

� If n and e are not relatively prime, then, for i from 1 to
c(e; n), the location of the core cells is given by

(qi; pi);

where p
q
= n

e
, and p and q are relatively prime.

� If n and e are relatively prime, then, for i from 1 to z, the
locations of the core cells are given by,

(g�x(i� 1);g�y(i� 1)); and

(e�g�x(i� 1); n�g�y(i� 1));

where g�x is an integer such that �x = e+1
z

and jg�x �

�xj < 0:5 or g�x��x = 0:5 and g�y is an integer such that
�y = (n

e
)�x and jg�y ��yj < 0:5 or g�y ��y = 0:5.16

In the �rst case, when n and e share a positive integer divisor other than 1,
the discrete slope between any two cells in one of the two sets (either the
A-set or the B-set) is given by p

q
. In the second case, when n and e are

15The cases when e = 0 and e = 1 are relatively straightforward. If e = 0, then the
core cells form a single column of n + 1 cells from A(0; 0) to B(0; n). If e = 1, then the
core cells form two columns, one from A(0; 0) to cell (0; n) and another from cell (1; 0) to
B(1; n). Notice that when e = 1, the core cells are overly connected.

16It is worth noting that the equation �y = (n
e
)�x is consistent with the continuous

equation for a line through the origin.

22

relatively prime, the discrete slope between two cells in one of these sets is

given by
f�yf�x
.

It was mentioned earlier that all essential cells are also core cells of the
discrete line.17 In initially investigating the core of a discrete line we were
looking for discrete analogies to some of the properties of a continuous line.
Although we have not crystallized these yet, we do feel that the connec-
tion between the core of a discrete line and the idea of essential cells is an
important one. The following statements support this.

If the core of B(e; n) is not overly connected, i. e. e 6= 1 and
e 6= n� 1, then the core is a subset of the discrete line. [Figures
15, 16, and 18]

If c(e; n) = n + 1, then the core of a discrete line, is the discrete
line. [Figures 2, 3, 4, 17, and 19]

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 18: For B(7; 9) the core is a sub-
set of the discrete line. The discrete line
is all colored cells, while the core is the
darkest of these cells.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 19: For B(4; 9), the core and the
discrete line coincide.

17See x3.2.3, Essential Cells.

23

x3.4 The Rules of Arrangement

We have observed several characteristics of a discrete line. These obser-
vations have given us a good idea of what features should follow from our
de�nition of a discrete line. We have already established how to attain some
of these characteristics. Now, the question is how do we ensure that all of
these features are satis�ed? Our observations can be summarized as follows.

1. A discrete line is composed of a collection of connected, but not overly
connected, cells, x3.2.1.

2. A discrete line is composed of columns of cells, such that these columns
di�er in height by no more than one cell (column property).

3. The columns of the discrete line must be arranged so as to appear as
evenly distributed as possible.

4. If the core of a discrete line is not overly connected, i.e. e 6= 1 and
e 6= n� 1, then the discrete line contains its core.

5. If c(e; n) = n + 1, then the discrete line is completely de�ned by its
core.

In x3.2.1 we ensured the connectedness of the discrete line by writing the
line as a string of Ds and Ns and interpreting these Ds and Ns as moves
along the square grid in the diagonal and northerly directions respectively.
It is a bit more challenging to ensure that the other characteristics are sat-
is�ed. We begin with observations 2 and 3, the column property and the
even distribution of the columns. We �nd that through establishing these
observations 2 and 3, observations 4 and 5 follow directly. In other words,
by ensuring the column property and the even distribution of the columns,
for e 6= 1 and e 6= n � 1, it follows that the core is a subset of the discrete
line.

The column property and the even distribution of these columns
guarantee that a discrete line will contain the essential cells.

The column property and the even distribution of columns are achieved
by minimizing lengths. These lengths can be described as one length mea-
sured on di�erent scales. We will refer to the length measured on the �rst

24

scale as the �rst order length, the length measured on the second scale as
the second order length, and so on. This notion of length requires that the
discrete line B(e; n) is represented as a string. Our algorithm measures the
length of the string composed of just the characters D and N.18 As before, the
Ds represent diagonal moves and the Ns represent north moves. A connected
collection of cells from A(0; 0) to B(e; n) can be represented as a string of
e, Ds and n � e, Ns. Thus, for example, connected collections of cells for
B(7; 9) can be written as any combination of 7 Ds and 2 Ns. Examples 1-
6 show some combinations and Figures 20-25 show the collections depicted
on a two dimensional rectangular lattice. The spaces between adjacent Ns
and Ds are included for clarity. Four of these examples, speci�cally those
without adjacent Ns (NNs), satisfy the column property. However, only one
of these strings, Example 6a, represents a collection of cells that has evenly
distributed columns of cells. This in turn corresponds to the string which we
suggest has the most even distribution of Ds and Ns.

Examples 1a-6a show strings that represent connected collections of cells
where the terminal cell is B(7; 9).

Example 1a: DDDDDDD NN Example 2a: N DDDDDDD N

Example 3a: DDD NN DDDD Example 4a: D N DDDDD N D

Example 5a: DD N DD N DDD Example 6a: DD N DDD N DD

Before the details of the lengths are given, it helps to understand their
role. The �rst order length quanti�es the number of adjacent letters that
are the same. We minimize the �rst order length, which has the e�ect of
minimizing the number of adjacent letters that are the same. This in turn
has the e�ect of establishing the column property.19 In Examples 1a-4a the
�rst order length would not be minimized because the number of adjacent

18It is noted that the length measure described here, with slight modi�cations, would
also apply to other string representations of a discrete line. In fact, there are certain cases
in which the representation of the line by 0s and 1s, as mentioned in x3.2.2, produces
evenly distributed collections of cells that are not available when Ds and Ns are used.

19If a collection of cells has minimum �rst order length, then the collection satis�es the
column property. However, the converse is not true. There exist strings that represent
collections of cells that satisfy the column property, that do not have the minimum �rst
order length. [Figures 21 and 23]

25

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 20: Example 1a,
DDDDDDDNN.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 21: Example 2a,
NDDDDDDDN.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 22: Example 3a,
DDDNNDDDD.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 23: Example 4a,
DNDDDDDND.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 24: Example 5a,
DDNDDNDDD.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Figure 25: Example 6a,
DDNDDDNDD.

letters that are the same is not minimized. Whereas, in examples 5a and 6a,
the number of adjacent letters that are the same is minimized. The second
order length quanti�es the number of adjacent substrings of letters that are
the same.20 As with the �rst order length, we minimize the second order
length. This has the e�ect of minimizing the number of adjacent substrings
of letters that are the same. Example 5a does not have the minimum number
of adjacent substrings of letters that are the same, whereas 6a does minimize
the number of adjacent substrings of letters that are the same. This in turn
has the e�ect of establishing the �rst level of even distribution. Minimizing

20The term substrings here refers to clusters of letters that are the same. For example,
single letters (N or D), double letters (NN or DD), triple letters (NNN or DDD), etc.
are all examples of substrings. Two substrings are adjacent if they are separated only by
one di�erent letter substring. For example in NNDDDNN, the double N substrings are
adjacent because they are separated by only one triple D substring.

26

the third order length minimizes the number of adjacent groups of substrings
of letters, and so on. These ideas will be discussed further with examples.

We begin by de�ning the �rst order length. The number of characters
in a string for B(e; n) is n. Each character in the string, denoted chari for
i = 1; 2; :::; n, has an associated number. These numbers, denoted numi for
i = 1; 2; :::; n, are determined as follows.

Let num1 = 1.
For each i 6= 1,

� if the letter in the string for chari is the same as the letter
in the string for chari�1, then numi = numi�1 + 1,

� otherwise numi = 1.

The �rst order length, L1, can be de�ned as follows:

L1 =
nX
i=1

numi:

Examples 1b-6b show the value of numi for each chari and the �rst order
length L1.

Example 1b: DDDDDDDNN Example 2b: NDDDDDDDN
1 2 3 4 5 6 7 1 2 1 1 2 3 4 5 6 7 1
L1 = 31 L1 = 30

Example 3b: DDDNNDDDD Example 4b: DNDDDDDND
1 2 3 1 2 1 2 3 4 1 1 1 2 3 4 5 1 1
L1 = 19 L1 = 20

Example 5b: DDNDDNDDD Example 6b: DDNDDDNDD
1 2 1 1 2 1 1 2 3 1 2 1 1 2 3 1 1 2
L1 = 14 L1 = 14

Notice that Examples 5b and 6b have the same �rst order length. In
addition this is the minimum �rst order length possible for the string of 5
Ds and 2 Ns. One may ask how we know that this is the minimum �rst

27

order length possible since we have only examined six strings of Ds and Ns.
The minimum �rst order length string representing a collection of cells with
terminal cell B(e; n) can be found as follows.

Let minL1 = the minimum �rst order length.

Case 1: If n = 2e, then minL1 = 2e = n:

Case 2: If n 6= 2e, let M = max(e; n � e); m = min(e; n � e); q =
j

M
m+1

k
,

and r =M mod (m + 1); then 21

minL1 = m+ (m + 1)
qX

i=1

(i) + (q + 1)r:

Thus for the string with B(7; 9), the minimized �rst order length, minL1, is
given by

minL1 = 2 + (2 + 1)
2X

i=1

(i) + (2 + 1)(1) = 14:

From Examples 5b and 6b, we see that minimizing �rst order length does
not produce a unique string (or collection of cells). As mentioned before,
when the �rst order length is minimized, the column property is satis�ed.
However, the �rst order length does not ensure an even distribution of the
columns. One can say that the second order length is used to determine which
strings represent a �rst level of evenly distributed columns. In this particular
case, the second order length can be used to �nd the unique discrete line,
thus there is no need to look to a higher order measure of length. In the
event that the second order length does not produce a unique discrete line,
we would move to the third order length, and, if necessary, continue to higher
order lengths from there.

As mentioned earlier, the second order length quanti�es the number of
adjacent substrings of letters that are the same. Substrings of letters that
are the same refer to, in the case of Ds, single Ds, double Ds (DDs), triple Ds
(DDDs), etc., likewise with Ns. Two substrings are adjacent if they are sepa-
rated only by a di�erent letter substring. Because the second order length is
measured after the �rst order length has been minimized, it is only necessary
to consider substrings of letters that appear most frequently in the string.

21Note that q =
�

M
m+1

�
is the greatest integer less than or equal to M

m+1
.

28

Thus, if n � e > e, the second order length will measure the substrings of
Ns and if e > n � e, the second order length will measure the substrings of
Ds. If e = n � e then the Ds and Ns alternate and the second order length
is not used because the strings found by minimizing �rst order length are
considered equivalent.22

Examples 5c and 6c show substrings grouped with braces.

Example 5c: DD|{z} N DD|{z} N DDD| {z }
Example 6c: DD|{z} N DDD| {z } N DD|{z}
Notice that in Example 5c, there are two adjacent DDs, however in example
6c, there are no adjacent substrings of the same number of Ds. Again, we do
not consider the adjacent substrings of Ns because the total number of Ds
is greater than the total number of Ns, thus the distribution of the Ns was
established in the �rst order length.

The second order length is de�ned in much the same way as the �rst
order length. For a collection of cells with terminal cell B(e; n), that has
more than one string with minimum �rst order length, there will be two
distinct substrings of the same letters that need to be distributed evenly.
These substrings will di�er by only one additional letter, in the same way
that the column of cells di�er by only one cell in height. In Examples 5c and
6c, these substrings are the DDs and DDDs. The number of each of these
substrings is m + 1 � r and r respectively, where m and r are as de�ned
earlier. The number of characters in each of these substrings are q (there are
m+1�r of these) and q+1 (there are r of these), again where q is as de�ned
earlier. These distinct substrings play the role for the second order length
that the distinct letters played in the �rst order length. There is a total of
m + 1 substrings and each will be denoted si for i = 1; 2; :::; m + 1. Each
substring has an associated number, denoted numi for i = 1; 2; :::; m+1 and
these numbers are determined as follows.

Let num1 = 1.
For each i 6= 1,

� if si is the same substring as si�1, then numi = numi�1+1,

22For example, DNDN is considered the same as NDND.

29

� otherwise numi = 1.

The second order length, L2, can be de�ned as follows:

L2 =
m+1X
i=1

numi:

Examples 5d and 6d show calculations of the second order length.

Example 5d: DD|{z} N DD|{z} N DDD| {z }
1 + 2 + 1 = 4 = L2

Example 6d: DD|{z} N DDD| {z } N DD|{z}
1 + 1 + 1 = 3 = L2

In the case of B(7; 9), the second order length isolates the unique string
with the most evenly distributed columns of cells.23 There are cases in which
the second order length will not �nd a unique string with the most evenly
distributed columns of cells [Examples 7a and 8a]. In this case it is necessary
to extend this procedure to third order length. In the case of third order
length, distinct groups of substrings play the same role as the distinct sub-
strings played in the second order length and the distinct letters played in
the �rst order length. Higher order lengths can be minimized until a unique
evenly distributed string is found or the strings with minimized lengths are
deemed equivalent.

In the case where e = n� e or n = 2e, two equivalent strings result from
minimizing �rst order length. The strings have the same number of Ds as Ns.
The characters in the string with minimum �rst order length alternate be-
tween Ds and Ns, for example, B(2; 4), DNDN and NDND. These two strings
are considered equivalent because one is simply the reverse of the other. The
same equivalence occurs with higher order lengths. For second order length,
the string D N DD N D N DD is equivalent to DD N D N DD N D. This
equivalence occurs precisely when the items being arranged occur in the same
quantity. In the �rst case the items being arranged were the characters D
and N, and they occur in the same quantity when n = 2e. In the second case
the items being arranged were the substrings DD and D. Substrings, of any

23The procedure for determining the value of the minimum possible second order length
is similar to that shown for the minimum possible �rst order length.

30

length, occur in the same quantity when m+1� r = r or m = 2r� 1, where
m and r are de�ned as before.

Examples 7a and 8a show calculation of the second order length for which
the minimum second order length is not unique.

Example 7a:

NN D N|{z} D NN D NN D N|{z} D NN D NN D N|{z} D NN D N|{z} D NN
#

... # #
... # #

... #
... #

NN|{z} ... NN|{z} NN|{z} ... NN|{z} NN|{z} ... NN|{z} ... NN|{z}
1 + 1 + 1 + 2 + 1 + 1 + 2 + 1 + 1 + 1 + 1

L2 = 13

Example 8a:

NN D N|{z} D NN D NN D N|{z} D NN D N|{z} D NN D NN D N|{z} D NN
#

... # #
... #

... # #
... #

NN|{z} ... NN|{z} NN|{z} ... NN|{z} ... NN|{z} NN|{z} ... NN|{z}
1 + 1 + 1 + 2 + 1 + 1 + 1 + 1 + 2 + 1 + 1

L2 = 13

As mentioned above, the third order length can be calculated for Exam-
ples 7a and 8a by considering the distinct groups of substrings. In this case
we consider the groupings of double Ns taken from the second row of Exam-
ples 7a and 8a. The groups of substrings as well as the third order length
are displayed in Examples 7b and 8b.

Example 7b:

NN|{z} : : : NN : : :NN| {z } : : : NN : : :NN| {z } : : : NN|{z} : : : NN|{z}
1 + 1 + 2 + 1 + 2

L3 = 7

Example 8b:

NN|{z} : : : NN : : :NN| {z } : : : NN|{z} : : : NN : : :NN| {z } : : : NN|{z}
1 + 1 + 1 + 1 + 1

L3 = 5

31

x3.5 De�nition of a Discrete Line

A discrete line is the connected, minimum size, collection of cells on
a square grid represented by a string of Ds and Ns, such that the kth-order
length of the string is minimized, where k is the smallest order that yields a
unique string.

32

Part 4: The Algorithm

We refer to the algorithm we use to �nd the discrete line from A(0; 0) to
B(e; n) as an ant algorithm. In Part 2 we described ant algorithms, both in
general and in the context of the TSP. In Part 3 we de�ned precisely what
we mean by a discrete line. Here we proceed by connecting these ideas, using
an ant algorithm to �nd discrete lines. First, the details of how we applied
the ideas of ant algorithms to the discrete line problem are explained, x4.1.
This includes a de�nition of the parameters used and a brief outline of the
algorithm itself. Then we report on some of our observations, x4.2.

x4.1 Using Ants to Draw Lines

The ant algorithm we use to generate discrete lines is called antline. The
environment for antline is the same as the environment described in x3.1 for a
discrete line. As with our de�nition of discrete lines, we limit the discussion
to collections of cells with discrete slope, m � 1, between the initial cell,
A(0; 0), and terminal cell, B(e; n). This has the advantage of allowing us to
think of the line as existing in an upper triangular region of the grid, and
thus the only moves we consider are diagonal moves (D) and north moves
(N). It was this concept of movement that led us to ant algorithms. If we
think of dynamically generating the discrete line through a series of moves
(Ns or Ds) from the initial cell, A(0; 0), one can imagine that there are ants
on the square grid making each of the necessary moves.

As stated earlier, we refer to a discrete line by its terminal cell B(e; n).
In designing this algorithm, our goal is to send out a group of a ants from
the initial cell, A(0; 0). These ants then move along the lattice, in this case
n moves, and deposit pheromone on the cells that they encounter. Following
this, a percentage of the pheromone evaporates and the procedure repeats
with the same number of ants, a, leaving the initial cell and each making the
same number of moves, n. However, this time, an ant is more likely to follow
a path (sequence of moves of Ds and Ns) that has a high level of pheromone.
The idea is that through repetition of this process (each repetition is called a
cycle), the ants eventually �nd the ideal path. The ideal path is the collection
of cells that satis�es our de�nition of a discrete line, x3.5.

This is similar to the work by Dorigo and his collaborators on the TSP.
In the TSP, the ants move between cities rather than between cells. The
length measure in the TSP is Euclidean distance, while in our case the length

33

measure is the kth-order length described in the de�nition of a discrete line.
In both cases the goal is to minimize the length measures used.

There are seven parameters in the algorithm that are left for the user to
choose. These adjust various aspects of the algorithm. The parameters for
the algorithm, antline(e; n; a;NC; �; ; �), are:

B(e; n) = the location of the terminal cell,
a = the number of ants,

NC = the number of cycles,
� = persistence of pheromone,

�, = length parameters.

Briey stated, the algorithm moves a ants, from A(0; 0), n moves, NC
times. The intricacies of the algorithm occur within each cycle. Now that
we have roughly established the parameters we can describe the algorithm
in more detail.

The Algorithm

antline(e; n; a;NC; �; ; �)

For each cycle, c = 1; 2; :::NC, repeat the following.

� Each ant makes nmoves according to the probability functions probN(i; j)
and probD(i; j). The probability function, probN (i; j), is the probabil-
ity of making a north move at location (i; j). Likewise, the probD(i; j)
denotes the probability of making a diagonal move at location (i; j).

probN(i; j) = �ij
�ij+Æij

probD(i; j) = Æij
�ij+Æij

�ij = the pheromone associated with a north move at location(i; j).
Æij = the pheromone associated with a diagonal move at location (i; j).24

� A quantity of the pheromone evaporates. The evaporation is denoted
by 1 � �. Thus, the parameter 0 � � � 1 controls the persistence

24In the �rst cycle, c = 1, �ij = Æij = 0:5.

34

of pheromone.25 For each cycle, c, where c is an integer such that
1 � c � NC, the matrices,

�c = ��(c�1) and Æc = �Æ(c�1)

have entries, �ij and Æij which represent the pheromone associated with
a north and a diagonal move respectively at location (i; j) after a per-
centage of that pheromone has evaporated.

� For all ants that reach the terminal cell, B(e; n), add pheromone to
the cells in the collections traversed by each ant (the ants' paths). The
quantity of pheromone added is

addpher =

1

L1

!�
+

1

L2

!�
; where � = �

lnL1

lnL2

and L1 and L2 are the �rst and second order lengths respectively, as
de�ned in Part 3. The parameter � is designed to insure that the
second order length is minimized only after the �rst order length has
been minimized. The details of the choice of � will be discussed more
later.

It may be helpful, in reading the description of the antline above, to
discuss the expressions listed in the algorithm. We begin with the probability
function. The probability functions determine the movement of the ants in
antline. There are two matrices that represent amounts of pheromone, �
and Æ, at a given location on the grid. The total amount of pheromone at a
given location (i; j) is the sum of the ij-entries from these matrices, �ij + Æij.
Initially, Æij = �ij = 0:5, 8 i; j. If the terminal cell of the line that we are
looking for is B(e; n), then both matrices have dimensions n � n.26 In the
�rst cycle of the algorithm,

probN = probD =
0:5

0:5 + 0:5
= 0:5;

so the probability of making a north move at location (i; j) is equal to the
probability of making a diagonal move at location (i; j). Assume for sim-
plicity that there is only one ant (thus there will be only one sequence of Ds

25In other words if the � = :35, then 35% of the pheromone present remains between
cycles and 65% evaporates.

26Note that for indexing purposes and because the location of A is (0,0), we assume
that the �rst entries in each of the pheromone matrices are �00 and Æ00.

35

and Ns formed for each cycle). Because probN = probD the north moves and
diagonal moves are equally likely. Thus, in the �rst cycle one can think of
the initial sequence of n letters, Ds and Ns, as being formed by a ip of a
coin. There is no guarantee that the sequence of Ds and Ns will even reach
the terminal cell B.

Regardless of whether or not the sequence of Ds and Ns represents a path
that reaches B or not, a quantity of the pheromone evaporates. This is taken
into account by multiplying each of the matrices, � and Æ, by �. The same
percentage of pheromone evaporates on every cell in the grid. However, since
this is a percentage the quantity of pheromone that evaporates is relative to
the amount present at a given cell. The e�ect of evaporation varies. One
could say that it serves to emphasize or de-emphasize the e�ect of addpher
on the probability functions. This will be discussed further in x4.2.

If the path formed by the sequence of Ns and Ds does reach B, then
pheromone is added to the cells on the path. The quantity added is given by
addpher. The parameter � = � lnL1

lnL2

is de�ned in terms of , so as to make
sure that the �rst order length dominates in the expression for addpher.

1

L1

!�
>

1

L2

!�

� lnL1 < � lnL2

� > �
lnL1

lnL2

� = �
lnL1

lnL2

; > 1

In other words, only in the event that after we minimize the �rst order
length, and we �nd that this does not produce a unique string, do we take
into account the second order length. Likewise, if our algorithm took into
account the third order length, then addpher (and thus antline) would have
to have a parameter that forced the third order length to only be considered
after it was found that there were multiple strings with minimum second
order length. Our algorithm accounts for only the �rst and second order
lengths, L1 and L2. To generalize the algorithm one would have to add

36

pheromone according to the following quantity:

addpher =
kX
i=1

� 1
Li

��i

;

where each successive �i accounts for the decreasing order of importance of
the subsequent lengths. In our algorithm � and (and hence �) are user
de�ned parameters, thus to follow that example each �i would depend on
user de�ned parameters as well. However, if this amount of exibility is not
required, it is possible to simplify the length parameters to just one, on which
each �i is dependent. The strings tested in our algorithm were suÆciently
short, so that limiting the lengths to just the �rst and second order was
reasonable.

Considering the single ant example, if during the �rst cycle a single ant
creates a path that does not reach B, then pheromone will evaporate uni-
formly on all cells in the lattice. However, no pheromone will be added,
thus keeping an equal amount of pheromone on every cell. It follows that
in the second cycle, the probability of all moves remain equal. Now instead
assume that in the �rst cycle the single ant creates a path that does reach B.
The pheromone evaporates uniformly as before. Next, for every cell in the
path that reached B, addpher units of pheromone are added to the existing
pheromone at the cells' locations. This means that in the second cycle, the
probabilities are not all equal. The amount by which the probabilities di�er
will vary according to the user de�ned parameters and the length measures
for the collection of cells. To be more speci�c, assume that the �rst move of
the path that reaches B, found in the �rst cycle, was a north move. It follows
that in the second cycle the probability of making a north move at location
(0,0) is larger than the probability of making a diagonal move at (0,0). One
can see that if there are multiple ants, and thus multiple paths found in the
algorithm, there are more adjustments to the probability functions.

If there are two ants that reach B in the �rst cycle and their �rst moves are
di�erent (one N and one D), this may or may not change the probabilities as-
sociated with moves at (0; 0). The probabilities will not change if the �rst or-
der lengths are the same for these two paths, then probN(0; 0) = probD(0; 0).
However, the probabilities will change if the �rst order lengths di�er. Con-
sider that the path with a north as a �rst move has a shorter �rst order
length, then it follows that probN (0; 0) > probD(0; 0).

37

x4.2 Observations of Antline

In experimenting with the algorithm we observed several phenomena.
The �rst question that we asked was how many ants, if any, would reach
the terminal cell B(e; n) throughout the runs of the algorithm. For a partic-
ular B(e; n), we compare the number of ants that reach B throughout the
algorithm to the number of ants that reach B when the paths are generated
randomly. Not surprisingly, we �nd that the number of ants that reach B
in each cycle depends on the user de�ned parameters. In investigating the
ability of the algorithm to generate the unique discrete line, we �nd that
there is signi�cant dependence on the distribution of lengths (in the example
provided, simply �rst order lengths). The parameter selections that we ex-
perimented with are set up so as to make the e�ect of the second order length
negligible. Thus one can assume that the output in the �gures presented is
solely based on the �rst order length.

We begin with the terminal cell B(5; 11) because there is only one col-
lection of cells with the minimum �rst order length, L1 = 11. Thus, �rst
order length determines the unique discrete line. This is the collection of
cells that can be represented by the string NDNDNDNDNDN. In Figure 26
we show what happens when paths are randomly generated. If 100 ants make
11 moves, randomly choosing Ns and Ds, Figure 26 shows the quantity of
paths that would reach B(5; 11) over the course of 100 cycles.

Figures 27{34 show experiments in which parameters � and � are varied
and the number of cycles versus the quantity of cells that reached the terminal
cell B(5; 11) are plotted. In some of the �gures, the parameters a and NC
also di�er. This was done to provide a better viewing window of phenomena
observed.

Notice that in Figures 27-30, as the parameter � increases, the algorithm
tends to generate �rst order lengths for B(5; 11) that vary more and more.
In other words, as the persistence of pheromone increases, or the evaporation
decreases, there appears to be more scouting.27 This scouting, or the ten-
dency of the algorithm to continuously explore for new, potentially better,
solutions, was observed in the work by Dorigo and his collaborators on the
TSP, x2.2. An extreme example of scouting behavior would be to randomly
generate collections of cells. [Figure 26] Thus, there is potential for too much

27One could argue that instead of \more scouting," there is a larger variety in the
scouting. At any rate, there is a clear change in the algorithms performance as � changes.

38

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Cycle Number

N
um

be
r

R
ea

ch
in

g
B

(e
,n

)

Figure 26: The number of randomly
generated collections of cells, out of 100
per cycle, that reach the terminal cell
B(5; 11).

scouting. The danger of there being too little scouting is that the algorithm
could generate a collection of cells that, although the collection has a low �rst
order length, it does not have the minimum �rst order length.28 This sug-
gests that there are some values of the parameter � that are more desirable
than others.

The same scouting phenomenon can be observed in Figures 31{34. How-
ever, in addition to changing the values of the parameter � we have increased
the value of the parameter � by one. This appears to have the e�ect of shift-
ing the general shape of the graph horizontally to the right. Increasing the
value of the parameter � amounts to lessening the relative importance of the
�rst order length. Said another way, as � increases, addpher = (1=L1)

�+ : : :,
decreases. Thus, it takes the pheromone more cycles to accumulate, which
results in the ants needing more cycles to reach B(5; 11).

28It is important to note that in Figure 27, although all of the 25 ants consistently
reach B(5; 11) after about 5 cycles, this does not necessarily mean that the algorithm is
displaying stagnation behavior. It is certainly possible that there is signi�cant variation
among the paths reaching B(5; 11). That information is simply not available from this
graph. Instead, graphs like those shown in Figures 38 and 39 display the absence of
stagnation behavior.

39

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

2

4

6

8

10

12

14

16

18

20

22

24

26

Cycle Number

N
um

be
r

R
ea

ch
in

g
B

(e
,n

)

Figure 27: All of the ants reach
the terminal cell, B(5; 11), after 5 cy-
cles with � = 1 and � = 0:25,
antline(5; 11; 25; 50; 1; 100; 0:25).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Cycle Number

N
um

be
r

R
ea

ch
in

g
B

(e
,n

)

Figure 28: All of the ants reach
the terminal cell, B(5; 11), after 7 cy-
cles with � = 1 and � = 0:5,
antline(5; 11; 100; 50; 1; 100; 0:5).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

2

4

6

8

10

12

14

16

18

20

22

24

26

Cycle Number

N
um

be
r

R
ea

ch
in

g
B

(e
,n

)

Figure 29: All of the ants reach
the terminal cell, B(5; 11), after 20 cy-
cles with � = 1 and � = 0:75,
antline(5; 11; 25; 50; 1; 100; 0:75).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Cycle Number

N
um

be
r

R
ea

ch
in

g
B

(e
,n

)

Figure 30: After 50 cycles the number of
ants that reach the terminal cell, B(5; 11),
continues to vary, for � = 1 and � = 1,
antline(5; 11; 25; 50; 1; 100; 1).

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

14

16

18

20

22

24

26

Cycle Number

N
um

be
r

R
ea

ch
in

g
B

(e
,n

)

Figure 31: All of the ants reach
the terminal cell, B(5; 11), after 7 cy-
cles with � = 2 and � = 0:25,
antline(5; 11; 25; 25; 2; 100; 0:25).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

2

4

6

8

10

12

14

16

18

20

22

24

26

Cycle Number

N
um

be
r

R
ea

ch
in

g
B

(e
,n

)

Figure 32: All of the ants reach
the terminal cell, B(5; 11), after 11 cy-
cles with � = 2 and � = 0:5,
antline(5; 11; 25; 50; 2; 100; 0:5).

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
0

2

4

6

8

10

12

14

16

18

20

22

24

26

Cycle Number

N
um

be
r

R
ea

ch
in

g
B

(e
,n

)

Figure 33: All of the ants reach
the terminal cell, B(5; 11), after 24 cy-
cles with � = 2 and � = 0:75,
antline(5; 11; 25; 50; 2; 100; 0:75).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
0

5

10

15

20

25

30

35

40

45

Cycle Number

N
um

be
r

R
ea

ch
in

g
B

(e
,n

)

Figure 34: After 100 cycles the num-
ber of ants that reach the terminal cell,
B(5; 11), continues to vary, for � = 2 and
� = 1, antline(5; 11; 50; 100; 2; 100; 1).

41

The overall change within both sets of �gures, 27{30 and 31{34, is worthy
of discussion. One might expect that because ants are attracted to cells that
have higher levels of pheromone, as the persistence of pheromone increases
(as it does in each set of �gures) so would the number of ants reaching B. In
other words, there would not be the variation in the number of ants reaching
the terminal cell, B, that there is when � = 1. [Figures 30 and 34] In fact,
both sets of �gures display just the opposite behavior. Why is it that when
there is no evaporation there is so much variation in the number of ants
that reach B? Likewise, why is that when there is 75% evaporation, there
is such a sudden and dramatic increase in the number of ants that reach B?
The answer to these questions lies in the fact that the important measure
for the ants behavior is not simply in the amount of pheromone added or in
the percentage of evaporation of the pheromone. Instead, the key is in the
relative size of these two quantities.

To explain the subtle balance between � and addpher we begin with a
simpli�ed example. We run the algorithm with the following set of parame-
ters:

antline(e; n; a;NC; �; ; �) = antline
�
3; 5; 2; 25; 1; 100;

1

3

�
:

For this particular choice ofB(e; n) = B(3; 5), the minimum �rst order length
yields the unique discrete line we are searching for. Thus, in this case, we
can reduce the expression for addpher to

addpher =
1

L1
:

We then make the following observations.

� The minimum �rst order length for B(3; 5) is given by the string,
D N D N D, with L1 = 5.

� The maximum �rst order length for B(3; 5) is given by the string,
D D D N N, or equivalently N N D D D, with L1 = 9.

� The range of addpher is therefore given by

1

9
�

1

L1

�
1

5
:

42

� For each cycle, c, where c is an integer such that 1 � c � NC,

Æc = �Æc�1 =
Æc�1
3

and �c = ��c�1 =
�c�1
3

;

and initially all entries of Æ and � are 1
2
:

Clearly, in order to generate the unique discrete line, the �rst move should
be a diagonal move, (D). Suppose that for the �rst four cycles neither of the
two ants reach B(3; 5). The result is

Æ4 = �4 =
�1
2

�� 1
34

�
=

1

162
:

This has not changed the probabilities of any moves, probN(i; j) = probD(i; j) =
0:5. Now suppose that in the �fth cycle, one of the ants reaches B(3; 5) with
the string N D D N D. The �rst order length for that string is given by
L1 = 6. This changes the entries in the matrices associated with the �rst
move to

Æ00 =
�1
2

�� 1
35

�
=

1

486
and �00 =

�1
2

�� 1
35

�
+
1

6
=

41

243
:

This changes the probability that the �rst move is a north (N) to

probN (0; 0) =
�00

�00 + Æ00
=

�
1
2

��
1
35

�
+ 1

6�
1
2

��
1
35

�
+ 1

6
+
�
1
2

��
1
35

� =
82

83
� 0:988:

This example demonstrates that for suÆciently long strings, although ini-
tially addpher << �ij; Æij; after a certain number of cycles, it is possible (in
fact likely, depending on the value of �) that addpher >> �ij; Æij: Of course
this example depends on the fact that neither of the ants reached B(3; 5)
in the �rst few cycles. In this case over 30% of possible combinations of n
moves (Ns and Ds) reach B(3; 5). However, this percentage is much less for
di�erent values of e and n. For a given B(e; n), the number of strings that

reach B(e; n) is given by,
�
n
e

�
and the total number of strings possible is given

by 2n. Thus, the probability that a string will reach B(e; n) is

probB(e; n) =
n!

e! (n� e)! 2n
:

43

Now we look at the e�ect of changing �. Since 0 � � � 1, for values of
� near zero, the distinction in the size of addpher and the entries of � and Æ
will become more and pronounced. This in turn creates a dramatic di�erence
in probN and probD. In fact, as � ! 0, it takes fewer cycles for addpher to
become much larger than the entries of � and Æ. This describes the sudden
and dramatic increase in the number of ants that reach B in Figure 27. This
also explains the phenomena we observe in Figures 30 and 34. As � ! 1,
the distinction between the entries of � and Æ is not as pronounced, thus the
probabilities are closer to 0.5.

To generalize this idea we can look at the probability of a north move at
location (i; j) in the following way,

probN =
�� + addpher

�(� + Æ) + addpher
:

Let � � Æ, then 29

probN � ��+addpher
2��+addpher

= 1+addpher=(��)
2+addpher=(��)

;

and
probD = 1� probN :

Figure 35 shows how the relationship between addpher and � e�ects the
probability functions. Notice that for �� >> addpher, or as �! 1, probN �
probD ! 0:5. Likewise, notice that for �� << addpher, or �! 0, probN >>
probD.

In both of our examples, we chose the terminal cells, B(5; 11) and B(3; 5),
partly because we found that there was only one collection of cells that had
the minimum �rst order length. This is certainly not the case for all B(e; n).
However, the bene�t (for explanation purposes) is that in �nding the discrete
lines B(5; 11) or B(3; 5), we can set the parameter to be large, making the
second order length negligible. In addition, if one could predict the order
of the length necessary to provide the unique discrete line by our de�nition,
then the algorithm could be simpli�ed. This raises the question of what the
distribution of the �rst order lengths looks like for a particular collection of
cells terminating at B(e; n).

29Remember that initially � = Æ, so this approximate equality is reasonable.

44

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

addpher / (rho * eta)

pr
ob

ab
ili

ty
 o

f a
 m

ov
e

probN

probD

Figure 35: The probabilities versus the
relative size of addpher and ��.

We found that the shapes of the distributions of �rst order length for the
values e and n were all quite similar. Figures 36 and 37 provide examples
of the distributions for two choices of B(e; n). The distribution tends to be
skewed so that the median of the distribution is less than the mean. It is
also typical that there are two peaks, the larger having a smaller �rst order
length and occurring closer to the mean of the distribution. This can be seen
in Figure 37 for �rst order lengths 15 and 17. In this sense the distribution
shown in Figure 36 is slightly atypical because it is relatively smooth and
does not display two peaks.

While investigating this we notice the following properties of the string
quantities, some of which were mentioned earlier.

� The number of possible strings is given by 2n.

� The number of strings that reach B(e; n) is given by
�
n
e

�
.

� Let the number of strings with the minimum �rst order length be de-
noted num(minL1).

{ If n = 2e, then num(minL1) = 2, where the strings are simply
the reverse of one another.30

30In this case, as mentioned earlier, the strings represent the same discrete line. For

45

10 15 20 25 30 35 40
0

10

20

30

40

50

60

First Order Lengths

N
um

be
r

of
 O

cc
ur

re
nc

es

Figure 36: The distribution of �rst or-
der lengths for collections of cells termi-
nating at B(5; 11).

10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

First Order lengths

N
um

be
r

of
 O

cc
ur

re
nc

es
Figure 37: The distribution of �rst or-
der lengths for collections of cells termi-
nating at B(4; 10).

{ If n 6= 2e, then

num(minL1) =

m+ 1

R

!
;

whereM = max(e; n�e), m = min(e; n�e) andR = M mod (m+ 1).

� Let the number of strings with the minimum second order length be
denoted num(minL2), where M = max(e; n � e), m = min(e; n � e)
and R = M mod (m + 1).31

{ If m + 1� R = R, or m = 2R � 1, then num(minL2) = 2, where
the strings are again the reverse of one another.

{ If m 6= 2R� 1, then

num(minL2) =

`+ 1

r

!
;

example, given B(3; 6), N D N D N D represents the same discrete line as D N D N D N.
31The similarity in the expression of num(minL1) and num(minL2) is a direct result

of the similarity in the de�nitions of L1 and L2. Just as one can generalize the notion
of higher order lengths, one can extend these ideas to de�ne num(minLk), for integers
k > 2.

46

where u = max(R;m + 1 � R), ` = min(R;m + 1 � R), and
r = u mod (`+ 1). 32

One can also view the scouting phenomenon as well as other character-
istics of the distributions of �rst order lengths by investigating the mean,
median, standard deviation and interquartile range over the cycles of the al-
gorithms for varying sets of parameters. Notice the di�erence in the behavior
of the algorithm in Figures 38 and 39. In Figure 39 the scouting phenomenon
is more evident. You can observe that in each case there is no stagnation
behavior since the standard deviation and interquartile range are never zero.
In addition, the algorithm is displaying the shape of the distribution of �rst
order lengths in that the median tends to be smaller than mean.

32We have given expressions for calculating the number of strings that have the minimum
�rst and second order lengths. It is also possible to write expressions for the number of
strings that have the minimum kth-order length, for k > 2. Thus, using this information we
can determine the value k, the smallest order that yields a unique string, in our de�nition
of a discrete line.

47

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
0

2

4

6

8

10

12

14

16

18

20

22

Cycle Number

F
irs

t O
rd

er
 L

en
gt

h
Mean
Median
Standard Deviation
Interquartile Range
True Minimum

Figure 38: antline(5; 11; 25; 50; 2; 100; 0:5)

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

22

Cycle Number

F
irs

t O
rd

er
 L

en
gt

h

Mean
Median
Standard Deviation
Interquartile Range
True Minimum

Figure 39: antline(5; 11; 25; 50; 2; 100; 0:75)

48

Part 5: Conclusions and Further Study

In order to present some of the questions and conclusions that have arisen
from this work, we �nd it helpful to summarize our goals and what has been
accomplished towards achieving them. The primary goal of this study is to
take the �rst steps in applying models of complex systems to de�ning and
generating geometric constructs. In this case, the geometric construct that
we have de�ned and generated is the discrete line. Our work falls into two
categories, the de�nition of a discrete line and the algorithm used to generate
a discrete line.

Our de�nition of a discrete line produces a connected, minimum size,
collections of cells on a grid. By minimizing speci�ed length measures of
the string representations of these collections of cells, our de�nition yields
a unique discrete line. This unique discrete line satis�es the three criteria
of our de�nition. First, the collection of cells satis�es the column property.
Second, the collection is as evenly distributed as possible. And third, it
contains the core cells in all cases except when the core is overly connected.

After de�ning a discrete line we designed an algorithm to generate such
a line. The algorithm is based on an interpretation of the process of ants
foraging for food. A �xed number of ants, a, make n moves, for each cycle
(up to NC cycles). During a cycle, some ants deposit pheromones along
their paths. A quantity of the pheromone evaporates, and then the process
is repeated in the next cycle with the ants tending to follow paths with more
pheromone. The algorithm is non-deterministic because the ants follow paths
according to a probability function that incorporates the length measures in
our de�nition of a discrete line. By choosing the shortest length path after
all of the cycles, we generate a discrete line.33

What is it that makes our approach di�erent from others, e.g. Bresen-
ham's algorithm [5]? There are several characteristics that stand out.

� Our de�nition of a discrete line is not based on a continuous line. We
do not generate a continuous line and then try to approximate it in a
discrete environment.

� The discrete line is generated through an iterative process. For each
cycle in the algorithm, the lengths are minimized. Then, through the

33As discussed in Part 4, the outcome of the algorithm is dependent on the user de�ned
parameters.

49

probability functions, the ants use the information from the previous
cycle to generate paths in the next cycle.

� We use independent agents, the ants, acting simultaneously to generate
the discrete line. In this way, the agents create a parallel computation
process.

� The rules governing the agent behavior (in this case the ants' north or
diagonal moves) are simple and local. There is no global control over
the output of the algorithm, for example, supervision that \corrects"
collections of cells that do not appear straight.

� The algorithm is non-deterministic.

As with many initial studies, the results often produce more questions
than de�nitive conclusions. Many of these open questions fall under the cat-
egory of avenues for further study. With this in mind, we can divide some of
the questions and conclusions that arise from this work into those associated
with our de�nition of a discrete line, x5.1, and those associated with the im-
plementation of our algorithm, x5.2. Our �nal conclusions are left to x5.3.

x5.1 The De�nition: Questions and Conclusions

In de�ning a discrete line we characterized what it is that makes a col-
lection of cells appear straight to the human eye. We did this by focusing
on those collections of cells that appeared connected, had an evenness in the
distribution of cells, and included some essential cells. There are other intu-
itively appealing characteristics that we would like to include in our de�nition
of a discrete line. For example, we found that the string representations of
the discrete line (composed of Ds and Ns) often form a palindrome. Likewise,
the pattern of columns of cells in the discrete line (represented by a string
of 0s and 1s) often form a palindrome. On the other hand, not all palin-
dromes �t our criteria for a discrete line. In fact, there are certain discrete
lines for which the string representations can never form palindromes. For
example, if the number of Ns (given by n� e) and Ds (given by e) in a string
representation of a line are both odd, then the string cannot be written as
a palindrome.34 This brings up the question of how to characterize those

34The simplest examples of strings that cannot be written as palindromes are N D, and
N D N D N D.

50

discrete lines, given by our de�nition, which have string representations that
are palindromes.

We have also considered variations in the level of connectivity of the cells
of our discrete line. Our de�nition requires that the discrete line be a min-
imum size connected collection of cells. This is done to avoid what we refer
to as overly connected collections of cells. If we allow overly connected col-
lections of cells, we could instead de�ne the discrete line to be the hull of the
discrete line. Likewise, if we allow disconnected collections of cells we could
de�ne the discrete line to be the core of the discrete line. If one considers
these variations in the level of connectivity of the cells of our discrete line,
the criteria for collections of cells that appear to the eye to be a discrete line
are closely dependent on the resolution of the lattice on which the collections
are displayed. For example, when one observes a dotted line from a close
distance it is clearly dotted, but as that distance increases, the dotted line
appears more and more continuous. Similarly, a thick line appears thin from
a distance. Future study may include experimentation with other notions of
connectivity and di�erent resolutions.

The choice of a square lattice seemed natural at the onset of this study.
However, knowing that the only regular polygons that tile the plane are
squares, triangles and hexagons, this choice comes into question. We have
begun investigations into whether our de�nition of a discrete line on a square
lattice translates to a notion of a discrete line on a hexagonal lattice. This
is particularly appealing because of the di�erence in connected collections of
cells on a hexagonal lattice versus those on a square lattice. Two cells on
a square lattice can be connected if they share only a vertex and no edges,
however, every connected pair of cells on a hexagonal lattice must share an
edge.

x5.2 The Algorithm: Questions and Conclusions

Within the design of the algorithm we made choices which are worthy of
more investigation. Many choices in the design of our algorithm were guided
by ant foraging behavior. We have attempted to follow this guide in our
design to the extent that it bene�ts the output of our algorithm. We could
instead concentrate on improving the performance of our algorithm. We sus-
pect that some of the comments that follow could lead to ways to improve
the performance of the algorithm at the expense of lessening the algorithms
similarity to ant foraging behavior.

51

Observations

� There is a subtle interplay between the pheromone added, the evapora-
tion, and the probability functions. The amount of pheromone added
is dependent on the lengths measured (�rst order, second order, etc.).
The quantity of pheromone that evaporates at a cell is dependent on
the amount present at that cell. The probability functions are con-
trolled by the quantity of pheromone present at a cell, that is, the sizes
of the entries �ij and Æij relative to one another.35 These sizes are
in turn dependent on the balance between the amount of pheromone
added and the quantity of evaporation.

� The number of ants that cross a particular cell is implicitly accounted
for in the algorithm. As many ants make a particular move at cell (i; j),
the pheromone at that cell accumulates. As mentioned earlier, this may
or may not have a direct e�ect on the probability functions. However,
the larger this accumulation becomes, the less inuence addpher will
have.36

� By varying the user controlled parameters, which in turn control the
balance between addpher and the entries �ij and Æij, there is some con-
trol over the amount of scouting versus stagnation behavior displayed
by the algorithm.

� One can interpret the role of the number of ants, a, in the algorithm
as analogous to the number of students in a classroom working on a
problem. Following that analogy, the number of cycles, NC, can be
interpreted as the number of opportunities that the students have to
solve the problem. If one substitutes agents for students, increasing a
amounts to increasing the number of agents who can learn to �nd the
ideal path, while increasing the number of cycles amounts to increasing
the number of opportunities for those agents to learn.

35The quantities �ij and Æij represent the pheromone associated with north and diagonal
moves respectively. For a more detailed description see x4.1, The Algorithm.

36The quantity addpher represents the quantity of pheromone added to cells. For a
more detailed description see x4.1, The Algorithm.

52

Questions and Further Study

� Could the importance of the terms of addpher be governed by some-
thing other than powers of � and �?

� The persistence of pheromone is represented by multiplying the matri-
ces � and Æ by the scalar �, 0 � � � 1. This makes the quantity of
pheromone that evaporates dependent on the amount that is present at
the current cell. What would be the e�ect in the algorithm of changing
the role of evaporation so that a �xed quantity of pheromone evaporates
regardless of the amount present at the current cell?

� If the quantity of pheromone added depended directly on the quan-
tity of pheromone present, how would that e�ect the behavior of the
algorithm?

� How would the algorithm be a�ected if the evaporation of pheromone
at a given cell depended on the lengths (�rst order, second order, etc.)
of the paths containing that cell in previous cycles?

� If we think of the algorithm as a directed random search, can we control
how directed the search is? In other words, are there optimum values,
or ranges of values, for the parameters a, NC, �, and �?

� Does increasing the number of ants, a, and cycles, NC, always lead to
a higher probability of getting the unique discrete line? Is there a point
at which increasing these parameters has no e�ect on the algorithm's
performance?

� The cost of increasing the parameters a and NC can be measured by
the time it takes for the algorithm to run. At what point does this time
become prohibitive?

x5.3 Where Does That Leave Us?

In our work we have developed a de�nition of a discrete line. Our de�-
nition characterizes mathematically what it means for a collection of cells in
a discrete environment to \look straight" without being based on some ap-
proximation to a continuous line. The collections of cells on a square lattice
are represented by a two letter alphabet. We have de�ned a series of length

53

measures that, when applied to these strings and minimized, yield a unique
collection of cells that we call the discrete line, B(e; n).

We then developed a non-deterministic algorithm that can be used to
generate discrete lines. This algorithm is inspired by the behavior of ants
foraging for food. The algorithm sends a agents (ants) out from the initial
cell, to make n moves, NC times. As the agents move across the landscape,
pheromone is deposited on some of the cells they encounter. Throughout
the process of depositing pheromone, the evaporation of pheromone, and
the probabilistic movement of the agents, a minimum length path is found.
When reasonable parameters are chosen by the user, the algorithm is very
likely to generate the discrete line as we have de�ned it.

The process of de�ning a discrete line and developing an algorithm to
generate discrete lines has provided insight into extending these ideas to
other geometric constructs. We are looking into using the same process of
minimizing successive length measures, applied to larger alphabets, to de�ne
a discrete line composed of cubes in three dimensions. In addition, we are
considering ways to extend these ideas to curves in two and three dimensions,
to a de�nition of discrete curvature, and to a notion of discrete orthogonality
and discrete angle.

Acknowledgments

This study was undertaken while Ms. Geer was visiting the Applied Man-
agement and Computing Division, Lincoln University. The authors wish to
acknowledge the �nancial support that was provided by the division in or-
der to make the visit possible. In particular, Ms. Geer would like to thank
the members of the sta� of the Applied Management and Computing Divi-
sion at Lincoln University for helping to make the visit both productive and
pleasurable.

54

References

[1] E. Bonabeau, M. Dorigo, G.Th�eraulaz, Swarm Intelligence, From Nat-

ural to Arti�cial Systems, Oxford University Press, 1999.

[2] E. Bonabeau, G. Th�eraulaz,\Swarm Smarts," Scienti�c American,
March, 2000, pp. 54-61.

[3] M. Dorigo, web site, http://iridia.ulb.ac.be/�mdorigo/ACO/ACO.html.

[4] M. Dorigo, V. Maniezzo, A. Colorni, The Ant System: Optimization by

a colony of cooperating agents, IEEE Transactions on System, Man and
Cybernetics-Part B, Vol. 26, No. 1, 1996, pp. 1-13.

[5] D. Hearn, M. Pauline Barker, Computer Graphics, 2nd ed., Prentice Hall,
Englewood Cli�s, 1994.

[6] J. Holland, Emergence, From Chaos to Order, Perseus Books, Cam-
bridge, Massachusetts, 1998.

[7] J. Holland, Hidden Order, How Adaptation Builds Complexity, Perseus
Books, Reading, Massachusetts, 1995.

[8] P. Hraber, T. Jones, S. Forrest, \The Ecology of Echo," Arti�cial Life

3, Massachusetts Institute of Technology, 1997, pp. 165-190.

[9] K. Kelley, Out of Control, The New Biology of Machines, Social Systems

and the Economic World, Perseus Books, Reading, Massachusetts, 1994.

[10] I. Stewart, Life's Other Secret, The New Mathematics of the Living

World, John Wiley & Sons, Inc., New York, 1998.

55

