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• APACHE II - Acute Physiology and Chronic Health Evaluation II 
• CRP – C Reactive Protein 
• EGP – Endogenous Glucose Production 
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• IL-6 – Interleuken-6 
• IL-8 – Interleuken-8 
• MAP – Mean Arterial Pressure 
• PCT – Procalcitonin 
• ROC – Receiver Operating Characteristic 
• SI – Insulin Sensitivity (model-based metric) 
• SSI – Simple Insulin Sensitivity (hand calculated metric) 
• ss – Sepsis Score 
• SIRS – Systemic Inflammatory Response Syndrome 
• SPRINT – Specialised Relative Insulin + Nutrition Tables 
• TNFα – Tumor Necrosis Factor α 
• PDA – Personal Digital Assistant 



ABSTRACT 

BACKGROUND  
Timely diagnosis and treatment of sepsis in critical care requires significant 
clinical effort, experience and resources.  Insulin sensitivity is known to 
decrease with worsening condition and could thus be used to aid diagnosis.  
Some glycaemic control protocols are able to identify insulin sensitivity in real 
time. 
 
METHODS 
ROC curves and cutoff insulin sensitivity values for diagnosing sepsis were 
calculated for model based insulin sensitivity (SI) and a simpler metric (SSI) 
that was estimated from the glycaemic control data of 30 patients with sepsis 
and can be calculated in real time without use of a computer. Results were 
compared to the insulin sensitivity profiles of a general ICU population of 113 
patients without sepsis and the 30 patients with sepsis, comprising a total of 
26,453 patient hours.  The patients with sepsis are identified as having sepsis 
based on a sepsis score (ss) of 3 or higher (ss = 0-4 for increasing severity).  
Patients with Type I or Type II diabetes were excluded.  Ethics approval for 
this study was granted by the South Island Regional Ethics Committee 
 
RESULTS 
ROC cutoff values of SI = 8x10-5 L mU-1 min-1 and SSI = 2.8x10-4 L mU-1 min-

1 were determined for ss ≥ 3. Model-based SI fell below this value in 15% of 
all patient hours.  The SI test has a negative predictive value of 99.8%  The test 
sensitivity is 78% and specificity is 82%. However, the positive predictor 
value was 2.8%. Slightly lower sensitivity (68.8%) and specificity (81.7%), 
but equally good negative prediction (99.7%), were obtained for the estimated 
SSI. 
 
CONCLUSIONS 
Insulin sensitivity provides a negative predictive diagnostic for sepsis.  High 
insulin sensitivity rules out sepsis for the majority of patient hours and may be 
determined non-invasively in real-time from glycaemic control protocol data.  
Low insulin sensitivity is not an effective diagnostic, as it can equally mark 
the presence of sepsis or other conditions.  
 



INTRODUCTION 

Severe sepsis and septic shock has a high incidence rate and high mortality 

rate in an ICU [1-3].  The cost of treating sepsis and of additional bed hours 

required in sepsis patients is reported to be $16.7 billion dollars in the United 

States [1].  Insulin control protocols have been widely used to tightly control 

blood glucose values [4-10], which has shown to result in a reduction in the 

incidence of sepsis [10]. 

 

Diagnosis of sepsis presents many challenges in a clinical setting.  A positive 

culture should precede the use of antibiotics [3], but blood culture results take 

24-48 hours, or longer, to process [2].  More rapid diagnosis can be achieved 

using a variety of biomarkers, such as TNFα, IL-6, IL-8, CRP and PCT, with 

varying success, but a minimum lag time of typically 2-3 hours is still present 

[2].  Therefore, other signs must be investigated to assist in making the most 

timely diagnosis and potentially starting appropriate treatments, such as fluid 

resuscitation, and vasopressor and inotrope use. The earlier these interventions 

are correctly applied, the better the mortality outcome [11, 12].  Rivers et al 

[12] found that early goal-directed treatment of sepsis reduced mortality from 

46.5% to 30.5%. 

 

The negative effect of sepsis on insulin sensitivity and glucose metabolism is 

well documented [13-15].  However, the mechanisms by which this takes 

place are not fully understood.  It has been suggested that sepsis induces a 

counterregulatory hormone response causing the reduction in insulin 

sensitivity [13, 16].  There is also a delay reported between the introduction of 



endotoxins and the onset of increased insulin resistance [13, 17].  Low insulin 

sensitivity can also be exacerbated by the use of glucocorticoids [18, 19], 

which are sometimes indicated in the treatment of severe sepsis [3].  Finally, 

the inflammatory nature of the acute immune response to sepsis can also have 

a hyperglycaemic effect [17, 20].  Thus insulin sensitivity and sepsis are 

strongly linked, but its effectiveness as a diagnostic is unknown. 

 

Insulin sensitivity can be found using lumped parameter compartment models 

that have had extensive clinical validation in critical care [5, 8, 21-24].  In 

such models, varying insulin sensitivity is the driving dynamic.  Alternatively, 

glycaemic control protocols usually provide some measure of insulin 

sensitivity in real time.  An example of one such protocol is SPRINT, which 

regulates enteral nutrition rates and insulin boluses [4, 5, 23].  Enteral nutrition 

and insulin are modulated according to the patient’s current blood glucose 

level and the change in blood glucose level as well as prior hour interventions, 

and an insulin sensitivity metric may also be derived from these input data. 

This insulin sensitivity information, whether model based or estimated from 

intervention data, is available without additional invasive procedures, outside 

of those required for glucose control. 

 

METHOD 

Identifying insulin sensitivity requires capturing the fundamental dynamics of 

the glucose regulatory system. The model given in Equations 1-5 is 

algebraically equivalent to the model employed and validated by Chase et al. 

[21, 22, 25] and Lonergan et al. [5, 23]. 
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Where Gt(t) [mmol/L] is the plasma glucose and I(t) [mmol/L] is the plasma 

insulin resulting from exogenous insulin input, uex(t) [mU/min]. The effect of 

previously infused insulin being utilised over time is represented by Q(t) 

[mU/L], with k [1/min] accounting for the effective life of insulin in the 

system. Patient endogenous glucose clearance and insulin sensitivity are pG 

[1/min] and SI [L/(mU.min)], respectively. Pend is endogenous glucose 

production (EGP), which is held at a constant 3 mg min-1 kg-1 from a 

measured population constant obtained from the results of Chambrier et al 

[14] for a glucose distribution volume of  VG = 13.65 L..  The parameter V [L] 

is the insulin distribution volume and n [1/min] is the constant first order 

decay rate for insulin from plasma. Total plasma glucose input is denoted P(t) 

[mmol/(L.min)] which is obtained from enteral nutritional input rates which 

are adjusted hourly to 1 of 8 discretised enteral nutrition rates.  From recorded 

hourly volume rates and known caloric densities, plasma glucose inputs can be 

calculated from Equations 4 and 5. Michaelis-Menten functions are used to 

model saturation, with αI [L/mU] used for the saturation of plasma insulin 

disappearance, and αG [L/mU] for the saturation of insulin-dependent glucose 



clearance [26, 27]. 

 

Patient specific profiles for time-varying SI can be generated from 

retrospective data using this model to create virtual patients to test trial 

protocols [22, 25, 28].  For identified SI profiles in this study, pG, k, n, Pend, I, 

V and VG are set to generic population values [21, 25, 26, 28].  Upper and 

lower physiological limits of 1e-3 and 1e-5 L mU-1 min-1 are imposed on 

identified SI values [28].   A 3 hourly moving average smoothing is applied to 

the resulting SI  profiles to mitigate the effects of glucose measurement noise. 

 

SI profiles are calculated for a cohort of 143 patients in the Christchurch 

Hospital ICU who had been on the SPRINT protocol.  All patients with 

previously diagnosed diabetes were excluded from the study to remove any 

bias from their lower insulin sensitivity due to diabetes.  The mean APACHE 

II score was 20.4 and the range was 4-43.  The average length of stay was 10.9 

days with a range of 0.3-59 days.  Ethics approval was granted by the South 

Island Regional Ethics Committee for this retrospective data analysis. 

 

In this cohort, a subset of 30 patients who potentially had sepsis during their 

hospital stay was identified using positive blood culture results and/or in the 

absence of these, the judgment of experienced senior intensive care clinicians.  

Comprehensive clinical data for these patients was examined to isolate the 

time and duration of sepsis. 

 

From this clinical data, a sepsis classification score (ss) was generated for each 



hour of the patients stay that strictly follows the American College of Chest 

Physicians/Society of Critical Care Medicine guideline definitions of 1992 and 

2003 [29, 30].  The criteria for the sepsis score (ss) are defined in Tables 1-3.  

The organ failure criteria scoring in Table 2 uses the most relevant elements of 

the definitions for the Sepsis-related Organ Failure Assessment (SOFA) score 

[31]. The sepsis score thus includes Systemic Inflammatory Response Score 

(SIRS) and SOFA organ failure criteria, as well as including factors for 

treatments indicated in sepsis. Thus, it provides better correlation than any 

single criterion [30].   

 

In Table 1, a tick indicates a necessary criterion and all necessary criteria must 

be present to attain the indicated score.  For example, a patient only on fluid 

resuscitation would attain a sepsis score of 0.  For this study, the diagnosis of 

sepsis is a sepsis score of 3 or more.  This ss=3 value corresponds to a SIRS 

score of 2 or more, an organ failure score of 1 or greater, fluid resuscitation 

and inotrope use of any amount all at the time of investigation, and an 

infection during the patient’s ICU stay.  Tables 2 and 3 define the organ 

failure and SIRS scores utilized in this overall score. 

 

For this 30 patient sepsis cohort, the mean APACHE II score was 22 with a 

range of 7-40.  The mean length of stay was 11.7 days with a range of 0.7-59 

days.  The mean sepsis score for this subset was 0.5 throughout their stay.  

However, 45 patient hours had a sepsis score of 3 or higher at some point in 

their stay. From this information, a Receiver Operating Characteristic (ROC) 

curve was drawn for the 30 patients using the model-based insulin sensitivity, 



(SI) as the marker, and a sepsis score of ss ≥ 3 as the diagnostic.  A ROC curve 

plots the sensitivity of a diagnostic test against 1-specificity, which is 

equivalent to the true positive rate plotted against the false positive rate, for all 

possible cutoff values.  A completely random test is represented as a line at 45 

degrees to each axis, representing an additional false positive result for each 

false negative result eliminated.  A perfect test (100% specificity and 100% 

sensitivity) is a vertical line up the sensitivity axis at 1-specificity=0 and then 

a horizontal line along the 1-specificity axis, allowing selection of a cutoff 

with a zero false positive rate and a zero false negative rate. 

 

This ROC curve was compared to a similar one obtained for the estimated 

insulin sensitivity identified by the SPRINT protocol (SSI) given by Equation 

7.  This approximated insulin sensitivity is evaluated only at times that the 

change in glucose is less than the measurement error of 7% (ie. )  [32].  

Equation 7 then results from algebraic rearrangement of Equation 1 using the 

assumption that endogenous clearance and production is negligible and 

ignoring saturation effects in steady state.  When blood glucose is not 

available at any hour, the last reading taken is used.  The number of patient 

hours which satisfy the  criteria are shown in Table 4. 
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Hence, Equation 7 represents an approximated SI value in steady state. 

 

 

 



RESULTS 

Figure 1 and Table 5 shows the insulin sensitivity distributions for 130 

patients compared with APACHE II score, discretising the patient set into 9 

groups of APACHE II scores.  Note that the remaining 13 patients are not 

included in the APACHE II score groups due to unavailable APACHE II score 

data.  None of these 13 were in the 30 patient sepsis cohort.  Figure 1 shows 

the high density of low SI readings found in all groups with APACHE II 

greater than 6. 

 

The ROC curve for model-based SI data from 6744 patient hours is shown in 

Figure 2.  The sensitivity of the insulin sensitivity test was found to be 77.8% 

and the specificity, 82.2%.  The positive predictive value was 2.8% and the 

negative predictive value was 99.8%.  The cutoff value for this test was an SI 

of 8e-5 L mU-1 min-1.  Over 85% of the 26,453 identified insulin sensitivity 

values for the general ICU cohort (143 patients, with and without sepsis) were 

above the 8e-5 L mU-1 min-1 cutoff.  

 

 

The SSI ROC curve for the applicable 2036 patient hours that 
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GG is shown in Figure 3.   The sensitivity of the insulin sensitivity 

test was found to be 68.8% and the specificity, 81.7%.  The positive predictive 

value was 2.9% and the negative predictive value was 99.7%.  The cutoff 

value for this test was an SSI of 2.8e-4 L mU-1 min-1, which is approximately 3 

times higher than that for SI in Figure 2.   For 82.7% of the time, a critically ill 

patient’s simple insulin sensitivity (SSI) will be above this cutoff point of 2.8e-



4 L mU-1 min-1 as found from the 7529 hours of the 143 general ICU patient 

cohort (28% of 26,453 available hours).  This 82.7% result is similar to the 

result for SI over the full time period. 

 

 

DISCUSSION 

Absence of sepsis shows a strong correlation with a higher SI.  The ROC 

shown in Figure 2 indicates that insulin sensitivity can exclude a sepsis 

diagnosis far more accurately than it can make one.  Specifically, 87% of the 

time in this ICU cohort it is 99.8% certain that a patient does not have sepsis 

(ss ≤ 2) due to a modeled insulin sensitivity of greater than 8e-5 L mU-1 min-1. 

 

However, as a positive predictor, insulin sensitivity is not useful.  Figure 1 

shows that with increasing APACHE II scores, the lognormal distribution of SI 

tends to lower SI values (Kruskal-Wallis Test p<0.05).  This result indicates 

that not only sepsis, but other severe illness and effects could be responsible 

for a low SI value in a critically ill patient, causing a high number of false 

positives as seen by the high density of low SI values in Figure 1.  This result 

explains the low positive predictive value of either insulin sensitivity metric 

(SI or SSI). However, the high negative predictive value offers the clinical 

opportunity to avoid pre-emptive prescription of antibiotics or other treatment 

for sepsis, and as such is still a reasonably strong diagnostic discriminator. 

 

The SSI was a slightly inferior predictor to the model based SI profiles, but the 

negative predictive value was still very high offering the possibility of ruling 



out sepsis in 82.7% of patient hours.  However, with additional data the cut-off 

point identified by the ROC may move significantly, but these predictive 

values should only change slightly.  A limiting factor in this analysis is that 

only 16 patient hours with sepsis, out of 2036 patient hours, were available for 

this part of the study.  This limited quantity of data is due to the requirements 

of non-zero enteral nutrition and insulin input and negligible changes in blood 

glucose for Equation 7.  Overall, only approximately 30% of patient hours 

(30.2% of patient hours in the sepsis cohort and 32% in the complete cohort) 

were available to compute SSI, creating a potential further limitation for the 

simpler metric. 

 

While the sensitivity of the test remained relatively unchanged for SSI versus 

SI, the specificity dropped greatly due to a large increase in the number of 

false positives.  This result can be partly explained by the protocol’s reduced 

resolution.  However, it is possible that another effect is due to the pool of data 

being reduced by the requirement that change in measured glucose is less than 

7% of previous measurement (measurement error).  Constant blood glucose is 

more likely to be found in more stable patients who are generally less likely to 

have sepsis.  This unintended filtering in using the simplified SSI metric 

increases the proportion of patients with low baseline insulin sensitivity, to 

patients with sepsis induced low insulin sensitivity.  In particular, 40% of 

hours with sepsis in the sepsis cohort were eliminated by the  criterion.  

This filtering also causes the discretised appearance of the ROC curve, by 

reducing the number of available data points, particularly periods of sepsis. 
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However, the insulin requirement of I(t) ≥ 0 U/hr in Equation 7 for the 

estimated metric (SSI) is not as restrictive in an ICU, as in a less acute ward 

setting.  A 1 U/hr or greater insulin dosage is frequently called for in 

glycaemic control protocols and is often sustained for prolonged periods of a 

patients’ hyperglycaemic stay.  Similarly, patients will typically not spend 

significant periods of time fasting in an ICU.  For this study, only enteral 

nutrition was considered; oral and parenteral nutrition were not used. 

 

The advantage of SSI as a predictor is that it can be very easily evaluated in 

real time with only a pocket calculator.  Hence, a clinician can obtain useful 

information about a patient’s condition without invasive, computationally 

intensive or time consuming tests.  While the simple method introduces 

additional uncertainty by reduced resolution, as well as offering limited 

availability, the reduction in computational effort could justify its use over a 

model based approach if the computational resources were not available (eg. a 

PDA with program).  However, a growing trend toward computation driven 

protocols could lead towards the regular use of the higher resolution, model-

based SI value [8, 33-35]. 

 

More specifically, the cutoff value for this test was an SSI of 2.8e-4 L mU-1 

min-1. To use this value clinically, a simple example of two patients could be 

considered. The first on 80% (65 ml/hour) of goal nutrition rate and 3 U/hour 

of insulin under SPRINT, the second, much more insulin resistant, receives 

40% (30 ml/hour) of goal feed and 5 U/hour of insulin. In the data used, the 

enteral nutrition was Diabetic Resource (Novartis Inc), which has 36% 



(20.6g/250ml) carbohydrate content. Utilizing these values and appropriate 

unit conversions, Equation 7 yields SSI = 7e-4 and SSI = 1.6e-4, respectively. 

These values are well above the cutoff, as might be expected for such a 

glucose tolerant individual and the second, highly resistant patient is well 

below it. Thus, sepsis (ss ≥ 3) would be ruled out in the first case by the 

negative predictive value of the test, despite other symptoms and would not be 

ruled out (nor ruled in) in the second case. Finally, note that without the unit 

conversions, the simple insertion into Equation 7 of these values provides 

equivalently different values, which are equally useful as SSI if the ROC cutoff 

value is converted. Thus, simple data on the patient nutritional details and 

rates, as well as insulin given can provide a real-time clinical output. 

 

Figure 4 shows the correlation between model SI and SSI.  The R2 value for the 

relationship is 0.68.  This stronger correlation supports the similarity between 

the findings of the SI and SSI diagnostics, despite the small amount of sepsis 

hours available for the latter.  This comparison between insulin sensitivities is 

for 7529 hours of the general ICU cohort of 143 patients.  The comparison 

includes times when blood glucose values are changing by less than 7% and 

when insulin received is greater than 1 U/hr.  The latter constraint is applied to 

include only times when EGP is sufficiently suppressed.  If the requirement is 

extended to those times at which a patient receives 1.5 U/hr of insulin, the R2 

value increases to 0.78 by eliminating the outliers as shown.  Additionally, the 

model SI fit limits the values to 1e-5 L mU-1 min-1 ≤ SI ≤ 1e-3 L mU-1 min-1, 

whereas SSI is unrestricted in value.  These different limits have also reduced 

the correlation between SI and SSI.   



 

With the discretised nature of the sepsis definition used (ss ≥ 3), it is clear that 

some error must be present in the derivation of the ROC curves.  This error 

may limit the reliability of the results.  However, with limited blood culture 

and biomarker data available due to the retrospective nature of the study, this 

error was unavoidable. 

 

More specifically, for the sepsis score (ss) used in the study, a positive 

pathology culture is necessary to obtain a sepsis score of ss = 3.  If this 

requirement is removed from the score and a diagnosis is defined as ss = 3 the 

diagnostic value of the test becomes: 

 

• Sensitivity = 64% 

• Specificity = 70% 

• Positive predictive value = 30% 

• Negative predictive value = 91% 

 

This definition also gives 16% of all patient time as having septic shock, 

which is relatively high.  The change in the test statistics above is likely due to 

the inclusion of other severe illnesses (known to also cause low SI values) in 

the group of patient hours defined as having sepsis for the purpose of this 

study.  In short, it is impossible to be specific about the presence of very 

severe sepsis on an hour to hour basis to develop this metric without including 

the positive blood culture. This criterion thus minimises the diagnosis of septic 

shock and sepsis being incorrectly applied in this study when a patient is 



presenting with general sepsis symptoms caused by other severe illness. 

Finally, note that this potential limitation on the score utilised does not limit 

the clinical utility of the SI or SSI metrics presented, as this criterion is only 

used to validate these metrics as presented. 

 

Figure 1 and Table 5 also present another potentially interesting result, where 

no significant correlation appears between insulin sensitivity, SI, and 

APACHE II score. Initially, this result might appear contradictory. However, 

APACHE II score is typically measured at admission or in the first 24 hours, 

and is thus a measure of the level of illness only at that point in time. Given 

that a patient’s level of acute illness can evolve significantly over time, such as 

when developing sepsis later in a patient stay, the originally measured 

APACHE II score may not reflect those changes. Hence, as SI evolves 

dynamically over time with patient condition, any correlation to APACHE II 

will be lost. Additionally, low SI can occur for a variety of reasons, not only 

sepsis, not all of which will have the same level of APACHE II score, also 

making that correlation less significant or likely.  

 

Finally, any model-based methods will have limitations. In this case, the 

parameter identification method and limited available data mean that only SI is 

patient-specifically identified. All other constant parameters (PEND, VG, VI, pG, 

n, k, αG, and aI) held at population averages. The PEND term representing EGP 

is held constant for lack of other available data, but is set to the middle of the 

range found by Chambrier et al [14] for sepsis patients. While this value may 

not be accurate for all patients, in Equation 1 it has the primary affect of 



shifting the results, thus raising or lowering the resulting SI profiles identified 

without changing their dynamics. Dynamic endogenous effects due to 

changing blood glucose levels are absorbed by the pG term in Equation 1, 

which ensures that these fundamental dynamics are accounted for, minimising 

the uptake of other effects into the studied parameter, SI. Similar sensitivity 

and clinical prediction and glycemic control validation studies [21-25, 28] 

have been done for the other population constant values in the model, to 

justify the values used, as well as keeping them constant, in this study. 

However, greater levels of clinical data that allowed further, real-time patient 

specific identification of other values could add resolution to the metrics and 

methods presented here. 

 

Finally, patients who have Type I or Type II diabetes were excluded from this 

study.  If these patients were to be included it is likely that the sensitivity and 

positive predictive value would be even lower than at present since these 

patients will present with insulin resistance (at least, in Type II diabetics).  The 

prevalence of Type II diabetes is high and disproportionately so in some ICU 

settings [36, 37], and it is expected that patients with Type II diabetes will 

have longer hospital stays due to increased insulin resistance, further limiting 

some of the clinical applications of this study.  However this issue would not 

be expected to alter the negative predictive value of the metric proposed, 

although additional studies on these specific cohorts must be done to extend 

the methods here for application in those cases.  

 

 



CONCLUSIONS 

High insulin sensitivity can rule out the presence of sepsis in a critically-ill 

non-diabetic patient for the majority of their stay.  Sepsis is ruled out when 

modelled insulin sensitivity is above SI = 8e-5 L mU-1 min-1.  This condition is 

met for 85% of all patient hours in this general ICU setting.  Insulin sensitivity 

below 8e-5 L mU-1 min-1 can be due to either sepsis or other underlying 

conditions.  The accuracy and flexibility of model based insulin sensitivity 

gives better reliability as a diagnostic for sepsis.  However, insulin sensitivity 

can be reasonably accurately evaluated using estimated methods in real time 

by using glycaemic control protocol data.  These estimated values provide 

similar negative predictive values.  This preliminary study shows the potential 

of insulin sensitivity as a diagnostic metric for sepsis when used as a negative 

predictor, however it will also require a larger validation study including more 

complete blood culture data to fully validate it for clinical use. 
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Table 1.  Sepsis score (ss) criteria 

Definition 

Sepsis Score (ss) SIRS ≥2 
Infection 
during 
stay 

Organ 
Failure 
≥1 

Fluid 
Resuscit

ation 

Inotrope 
Present 

High 
Inotrope 

Dosea 

0 Normal       

1 Sepsis       
2 Severe Sepsis       
3 Septic Shock       
4 Refractory Septic Shock       
a Adrenaline or Noradrenaline ≥ 0.2 mg min-1 kg-1 

Table 2.  Organ failure criteria utilized  

Score System Criteria 
+1 Cardiovascular MAP 

OR need for inotropes 
     ≤ 60 mm Hg 

+1 Respiratory PaO2 /FiO2 
 

     ≤ 250 mmHg/mmHg 
     ≤ 200 mmHg/mmHg 
        with pneumonia 

+1 Renal Urine Output      < 0.5 mL/kg/hr 
+1 Blood Platelets      < 80 x 109 / L 

OR   50% drop in 3 days 
 

Table 3.  SIRS Criteria 

Score Criteria 
+1 Temperature        ≤ 36 °C 

       ≥ 38 °C 
+1 Heart Rate        ≥ 90 /min 
+1 Respiratory Rate 

OR PaCO2 
       ≥ 20 /min 
       ≤ 32 mm Hg 

+1 White Blood Cell Count        ≤ 4 x 109 / L 
OR  ≥ 12 x 109 / L 
OR  presence of >10% immature granulocytes 

 
Table 4.  Summary of Patient hours in each subset of the ICU cohort 

 Sepsis Patients Non-Sepsis Patients Total 
Number of Patients 30 113 143 

Total Hours 6,744 19,709 26,453 

Total Hours in which  0
.
=tG 2,036 5,493 7,529 

 



Table 5.  Time spent below SI = 8e-5 L mU-1 min-1, the cutoff value for the 
sepsis score, ss ≥ 3 

 
APACHE II 
score Range 

% of time 
below cutoff 

1 – 5 2.3 
6 – 10 15.3 
11 – 15 8.7 
16 – 20 12.7 
21 – 25 14.8 
26 – 30 15.3 
31 – 35 20 
36 – 40 15.3 
41 – 45 19.8 
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Figure 1.  Insulin Sensitivity (SI) distributions of ICU patients grouped by 
APACHE II scores 

 



 

Figure 2.  ROC of the modeled Insulin Sensitivity (SI) metric as a predictor of 
sepsis (ss ≥ 3) 

 

 



 

Figure 3. ROC of Insulin Sensitivity (SSI) metric evaluated in real time as a 
predictor of sepsis 

 
 

 

Figure 4.  Correlation between SSI and SI the simple and model based metrics 
for insulin sensitivity 


	 ABSTRACT

