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tBid Truncated form of Bid 

TCA Trichloroacetic acid  

TFA Trifluoroacetic acid 

TIMP-1 Tissue inhibitor of metalloproteinase-1 

TMP 1,1,3,3-Tetramethoxypropane 

TMS Trimethylsilyl 

TNF- α Tumor necrosis factor-α 

TNFR Tumor necrosis factor receptor  

TRADD TNF receptor-associated death domain 

TRAIL TNF-related apoptosis-inducing ligand  

TRAP Tartrate-resistant acid phosphatase 

VLA-4 Very late antigen 4 

VSMCs Vascular smooth muscle cells  



Abstract 

_____________________________________________________________________________________________________________ 

 

xix 

 

 

Abstract 

Plasma neopterin is an excellent marker of inflammation and is found in elevated levels in 

plasma of patients with cardiovascular disease. Neopterin originates as the oxidation 

product of 7,8-dihydroneopterin (7,8-NP), which is secreted by human macrophages when 

stimulated with interferon-γ during inflammation. 7,8-NP has been shown to be a very 

efficient free radical scavenger and a potent antioxidant which can protect macrophages 

from a range of oxidative stresses. The uptake of oxidised low density lipoprotein (oxLDL) 

by macrophages which lead to the formation of foam cells is a hallmark of early 

atherosclerotic lesions.  OxLDL-induced cell death is also considered to be an important 

process in the formation of necrotic lipid rich plaques and in atherosclerotic plaque 

destabilisation.  This thesis examined the extent of oxLDL-induced damaged to HMDMs 

and whether 7,8-NP can inhibit oxLDL-mediated cell death in HMDMs.  

Foam cells had previously been defined as cholesteryl ester (CE) macrophages that 

stained positive with oil red-O. This thesis shows that the foamy appearance and presence 

of lipid droplets stained with oil red-O was not dependent on accumulation of CE which 

raises the suitability of using oil-red-O staining to identify the foam cells.  In addition, 

HPLC but not GC analysis showed an increased in CE levels of the macrophages when the 

macrophages were incubated with oxLDL.  The HPLC approach spared the samples of 

lengthy manipulations that might cause ex vivo oxidation.  It also avoided subjecting the 

samples to high temperature treatment that could alter the lipid composition and therefore 

quantification of the lipid contents.   

Previous studies showed that 7,8-NP is a potent antioxidant and cytoprotective 

agent.  Exposure of HMDMs to 1 mg/ml oxLDL caused 50% loss of cell viability as 

measured by the MTT reduction and trypan blue exclusion assays.  The development of 

apoptotic features including caspase-3 activity, cytochrome c release from mitochondria 

and phophatidyserine (PS) exposure was examined.  OxLDL did not cause caspase-3 

activation as shown by Western Blot analysis and did not cause DEVD-AMC cleavage in 

HMDMs. However, cytochrome c release and phosphatidylserine exposure were observed 

when HMDMs were incubated with oxLDL as shown by Western Blot analysis and 

Annexin V-FITC staining respectively.  

Dihydroethidium (DHE) staining showed that oxLDL treatment caused 

mitochondrial superoxide generation in HMDMs.  OxLDL-induced oxidative stress 

appeared to cause a rapid loss of HMDMs’ intracellular glutathione (GSH) as analysed by 

HPLC technique.  Incubation of HMDMs’ with buthionine sulfoximine (BSO) and diethyl 
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maleate (DEM) caused similar loss in GSH as incubation with oxLDL but did not result in 

HMDMs’ death.  This showed that oxLDL-induced decrease in GSH alone was not 

sufficient to cause cell death.  

The loss of cell viability by oxLDL was inhibited by 7,8-NP in the concentration 

range of 50 to 200 µM.  HMDMs’ GSH loss caused by oxLDL was similarly inhibited by 

7,8-NP supporting the idea that preventing the cellular GSH loss will protect the HMDMs 

from death.  Incubation of HMDMs with 7,8-NP showed reduction in DHE fluorescence 

intensity staining suggesting that 7,8-NP inhibited or scavenged oxLDL-dependent 

generation of superoxide. 7,8-NP also effectively inhibited oxLDL-induced PS 

externalisation to the outer membrane but failed to inhibit the oxLDL-induced release of 

cytochrome c from mitochondria to the cytosol.  The labelling of oxLDL with DiI showed 

that 7,8-NP significantly inhibited the uptake of oxLDL.  However, the inhibitory effect 

was only measured at non-toxic concentration of oxLDL.  The ability of 7,8-NP to inhibit 

oxLDL uptake raised the possibility that 7,8-NP protective effect against oxLDL involved 

modulation of the scavenger receptors’ expression in particular SRA and CD36.  The 

Western Blot analysis showed that incubation of HMDMs with 7,8-NP did not affect 

HMDMs’ SRA protein expression.  In 50% of the experiments, it was demonstrated that 

certain isoforms of CD36 protein were significantly down regulated by 7,8-NP suggesting 

that various factors might interact with 7,8-NP or CD36.  

The ability of 7,8-NP to protect HMDMs from oxLDL-induced death provides 

further evidence that this antioxidant is secreted by HMDMs to protect them against the 

oxidative damage in the highly oxidative environment of atherosclerotic plaque.  
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1 Introduction 
 

1.1 Overview 
 

Atherosclerosis is a chronic inflammatory disease affecting the arterial blood vessels.  It 

has been well demonstrated that low density lipoproteins (LDL) are involved in the 

pathogenesis of atherosclerosis.  LDL is thought to become atherogenic after undergoing 

oxidative (and possibly other) modifications.  The oxidized LDL (oxLDL) is taken up by 

macrophages in unregulated manners which cause their transformation into foam cells 

(Libby et al., 2002).   

Macrophages appear to survive in the inflammatory environment suggesting they 

are able to neutralise the reactive oxygen species and other damaging biomolecules that 

they are exposed to.  Synthesis of antioxidant, 7,8-dihydroneopterin (7,8-NP) by 

macrophages themselves, may be part of this protective mechanism.  This laboratory and 

others had shown that 7,8-NP is a potent antioxidant that can protect cells from a range of 

oxidative stresses (Baier-Bitterlich et al., 1995; Baird, 2003; Bratslavska et al., 2007; 

Duggan et al., 2002; Gieseg et al., 2001; Kojima et al., 1993).  7,8-NP had also been 

detected in the atherosclerotic plaque (Frostegard et al., 1999; Geng et al., 1995; Shen, 

1994) which further supports its involvement in protecting the macrophages and LDL from 

oxidative damage during the inflammatory response. 

 The lack of in vitro studies using appropriate cell models, have hindered the 

understanding of the role of the macrophage foam cell in atherosclerosis.  This thesis will 

therefore, examine the possibility of developing macrophage foam cells by exposure of 

human monocyte-derived macrophages (HMDMs) to sub-toxic level of oxLDL.  Since the 

mechanisms of oxLDL-induced death in macrophages are still controversial, this thesis 

will also explore the mechanisms of oxLDL-mediated cell death in HMDMs.  Finally, this 

thesis will determine the role of 7,8-NP on oxLDL-induced death in HMDMs.  

 

1.2 Atherosclerosis 
 

Atherosclerosis and its complication such as cardiovascular disease, heart infarction, and 

stroke are the leading causes of death in the developed countries (Halliwell & Gutteridge, 

2007).  The predispose risk factors include hyperlipidemia, hypertension, diabetes, 

smoking and obesity. Other factors such as the individual genetic makeup and infection 

also play an additional role in atherosclerosis (Scott, 2004; Wu & Wu, 2006). 

Atherosclerosis is a chronic inflammatory condition (Berliner et al., 1995) characterised by 
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the accumulation of lipids and fibrous elements in the large arteries (Lusis, 2000).  Fully 

developed atherosclerotic plaques contain numerous lipid-laden macrophages, smooth 

muscle cells, and T cells (Carpenter et al., 1995a).  Plaques can cause complication by 

limiting blood flow to a region of an organ such as the heart or brain.   

 

1.2.1 Development of Atherosclerosis 
 

1.2.1.1 Lesion Initiation 

 

The hypothesis that an injury to the endothelium might precipitate the atherosclerosis 

process is supported by many observations (Ross, 1993).  The arterial lesion normally 

begins at the dysfunction endothelium, typically in the vicinity of branch points and areas 

of major curvature.  In the tubular regions of arteries, where blood flow is uniform and 

laminar, the endothelial cells (ECs) are ellipsoid in shape and aligned in the direction of 

flow, whereas in regions of disturbed flow, this orderly pattern is disrupted.  The turbulent 

blood flow in this areas can cause mechanical damage to the endothelium (Gimbrone, 

1999).  Besides that, damaged endothelium can also be caused by infection of the vessel 

wall (e.g. by herpes viruses, cytomegalovirus and Chlamydia) and exposure to blood-borne 

toxins, including both xenobiotics (e.g. from cigarette smoking) and elevated levels of 

normal metabolites such as glucose, LDL or homocysteine (Halliwell & Gutteridge, 2007).   

Manifestation of the endothelial injury increases permeability and trapping of LDL 

in the artery (Lusis, 2000).  The accumulation of LDL would lead to chronic inflammation, 

a feature commonly associated with atherosclerosis (Pentikainen et al., 2000) since LDL 

entering the vessel wall undergoes modification (will be discussed in section 1.2.2.2) and 

produces a number of pro-inflammatory molecules.  Once LDL is trapped in the artery, 

monocyte recruitment from the circulation will follow.  This is aided by endothelial 

expression of various adhesion molecules (Figure 1.1).  Entry into the arterial intima 

initially requires a weak and rolling interactions between L-selectin on the monocytes and 

endothelial-associated P- and E-selectin (Dong et al., 1998).  The firm adhesion of 

monocytes to endothelial cells is mediated by the monocytic integrin very late antigen 

(VLA-4), which interacts with endothelial vascular cell adhesion molecule-1 (VCAM-1) 

on the endothelium and the connecting segment-1 (CS-1) domain of fibronectin (Shih et 

al., 1999).  Firm attachment to endothelial cells is followed by migration of the monocytes 

into the intima through endothelial tight junctions.  Platelet endothelial cell adhesion 

molecule-1 (PECAM) is responsible in assisting the monocyte-endothelial interactions 

required for this movement (Scott, 2004).  OxLDL is directly chemotactic to monocytes 

probably because it contains lysophosphatidylcholine (lysoPtdCho), which directly attracts 
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the monocytes. It indirectly causes migration of monocytes because it induces the 

production of monocyte chemotactic protein-1 (MCP-1) and such like by endothelial cells 

(Steinberg et al., 1989). Mice deficient in MCP-1 or MCP receptor (CCR2) had 

significantly reduced atherosclerotic lesions, suggesting a MCP-1/CCR2 interaction is 

absolutely required for monocyte recruitment in atherosclerosis (Boring et al., 1998; Gu et 

al., 1998).   

 

 

Figure 1.1 Initiating events in the development of a fatty streak lesion. 
LDL is trapped in the sub-endothelial space, where it undergoes oxidation.  Monocytes attach to 

endothelial cells and migrate into the intima through tight junctions.  This process involves an intimate 

interaction with the junctional adhesion molecule PECAM and the release of spare membrane from 

cellular invaginations.  Monocytes become activated, and express the scavenger receptors CD36 and 

SR-A, which promote the uptake of oxLDL.  Homeostatic responses facilitate reverse cholesterol 

transport through HDL.  Adapted from Glass and Witzum, (2001). 

 

T-lymphocytes recruitment is also vital to atherosclerosis particularly during early 

stage of the atherosclerotic development.  It has been shown that the RAG
-/-

 mice deficient 

in this cell type exhibiting retarded lesion development compared to controls (Song et al., 

2001).  T-lymphocytes enter the vessel wall by binding to adhesion molecules such as 

VCAM-1, being attracted by cytokines.  Once there, lymphocytes can respond to antigens 

(e.g. from bacteria and viruses) to produce antibodies.  In the intima, the cytokine 

macrophage colony stimulating factor (M-CSF) and interferon-γ (IFN-γ) stimulate the 

proliferation and differentiation of monocytes into macrophages (Glass & Witztum, 2001).  

Mice deficient in M-CSF has been shown to be relatively resistant to the development of 
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atherosclerotic lesions (Smith et al., 1995) pointing to macrophage critical role in 

atherosclerosis. 

 

1.2.1.2 Foam Cell Formation 

 

As LDL circulates in blood or after it infiltrates the arterial wall, it is modified via 

enzymatic or nonenzymatic mechanisms and the nature of modification is generally 

described as being oxidative in nature.  Even though oxidised LDL was not observed in 

plasma, autoantibodies to oxLDL have been detected in the plasma of patients with 

coronary artery disease (Salonen et al., 1992; Shaw et al., 2001).  LDL oxidation will be 

discussed in more detailed in section 1.2.2.2.  The rapid unregulated uptake of the oxLDL 

particles by macrophages is mediated by a group of receptors known as scavenger 

receptors (will be discussed in section 1.3) that recognize a wide array of ligands.  OxLDL 

can also enter the cell using non-receptor mechanisms.  For example aldehydes and 

oxysterols can partition from the lipid phase of oxLDL into the cell’s plasma membrane 

(Brown et al., 1997; Gotoh et al., 1993).  OxLDL can also be taken up by non-specific 

receptor-mediated endocytosis, especially in aggregated form (Brown et al., 1997).   

 OxLDL brought into macrophages consists of free cholesterol and cholesterol 

esters that are hydrolysed in lysosomes.  The free cholesterol undergoes esterification 

catalysed by acyl coenzyme A:cholesterol acyltransferase. (ACAT).  The free cholesterol 

is also stored in the lipid droplets that characterise foam cells.  Cholesterol esters within 

these lipid droplets can in turn be hydrolysed by cholesteryl ester hydrolase (acid lipase) 

generating free cholesterol and fatty acids, for incorporation into membranes and transport 

out of the cells.    

Mechanism mediating excess cholesterol efflux is critical for maintenance of 

cholesterol homeostasis in the macrophage since the build up of excess cholesterol is 

cytotoxic to the cells (Warner et al., 1995).  Therefore, in the presence of an appropriate 

extracellular acceptor mainly high density lipoprotein (HDL), excess cholesterol can be 

exported from the cell via the plasma membrane through a process called reverse 

cholesterol transport (Jessup & Kritharides, 2000) which is found to be impaired in foam 

cells (Yancey & St Clair, 1992).  However, in the absence of extracellular acceptors, 

excess free cholesterol in the cytosol undergoes re-esterification to detoxify the excess 

cholesterol and store it as cholesterol ester in the cytosol.  This leads to intracytoplasmic 

accumulation of cholesterol ester as membrane-free lipid droplets and transforming 

macrophages into foam cells (van Reyk & Jessup, 1999).  The formation of foam cells has 

been cited as a key process in plaque development (Steinberg et al., 1989).  The cluster of 
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foam cells lead to the development of fatty streak.  Thereafter, continued cell influx and 

proliferation leads to more advanced lesions, distinguished by their fibrous character and 

ultimately to the fibrous plaque.   

 

1.2.1.3 Lesion Progression and Immunologic Response  

 

The immigration of smooth muscle cells (SMCs) from the medial layer of the artery wall 

into the intima characterised the transition of fatty streaks to the more complex lesion 

(Figure 1.2).  Cytokines and growth factors secreted by macrophages and T cells are 

important for SMC migration and proliferation.  Intimal SMCs may take up oxLDL and 

develop into foam like appearance as well.  SMCs also synthesise extracellular matrix 

proteins composing primarily of type I collagen and other components for example 

proteoglycans, elastin, glycoproteins fibrin and other forms of collagen. These components 

lead to the development of the fibrous cap (Jang et al., 1993; Stary et al., 1995).  Fibrous 

cap separates the thrombogenic lipid core contents from the blood in the lumen.   

The interactions between monocytes/macrophages and T cells greatly influenced 

this phase of lesion.  This result in a broad range of cellular and humoral responses and the 

acquisition of many features of a chronic inflammatory state.  Macrophages, ECs and 

SMCs are activated based on their expression of MHC class II molecules and numerous 

inflammatory products, such as TNFα, IL-6 and MCP-1 (Figure 1.2) (Hansson, 2001).  

Bacterial and viral antigens, heat shock protein and neoepitopes (antigenic epitopes 

resulting from the formation of adducts between oxidised lipids in oxLDL and apoB or 

arterial wall components) have been cited as important antigens responsible for immune 

activation in atherosclerotic lesions (Glass & Witztum, 2001).   

The activated lesional T cells express Th1 (inflammatory) and Th2 (helper) T cell.  

The Th1 cells secrete pro-inflammatory cytokines, interferon-γ (IFNγ), tumour necrosis 

factor-α (TNF- α) as well as IL-2.  The Th2 cell secretes the B cells stimulating factor, 

interleukin-4 (IL-4), as well as the haematopoiesis-regulating IL-3 and IL-5 and the 

cytokine-secretion-regulating IL-10 and IL-13 (Frostegard et al., 1999).  Many 

proinflammatory genes, including those encoding TNF-α, IL-2, and IL-6, are regulated by 

the c-Jun NH2-terminal kinases (JNKs, stress-activated protein kinases) pathway (Tedgui 

& Mallat, 2006).  For instance, TNF-α is strongly proinflammatory, increasing oxidative 

stress via promotion of phagocyte reactive oxygen species (ROS) production.  Increase in 

mitochondrial ROS production due to TNF-α can lead to activation of nuclear genes, in 

part via JNK.  JNK phosphorylates the transcription factor c-Jun and increases activator 
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protein-1 (AP-1) transcriptional activity which ultimately can trigger cell death (Halliwell 

& Gutteridge, 2007; Izadi et al., 2007). 

 

 

Figure 1.2 Lesion Progression  
Macrophages signal the recruitment and activation of T-lymphocytes.  Interactions between macrophage 

foam cells, Th1 and Th2 and also SMCs cells establish a chronic inflammatory process.  Adapted from 

Glass and Witzum, (2001). 

 

Immune responses appear to have complex effects on lesion development by 

exerting both atherogenic and antiatherogenic.  For example, IFN-γ secreted by Th1 has 

potentially antiatherogenic effects; reduces scavenger receptor expression on macrophages 

(Geng & Hansson, 1992), inhibits the production of matrix by SMCs (Amento et al., 

1991), and inhibits SMCs proliferation (Hansson et al., 1989b).  These effects may inhibit 

the progression of fatty streaks into fibrofatty plaques (Hansson et al., 1989b).  On the 

other hand, the same effects could cause destabilisation of the fibrous cap causing plaque 

to be prone to rupture.  IFN-γ also stimulates macrophages production of proinflammatory 

cytokines (such as TNF- α and interleukin-1 β (IL-1β)) (Libby & Hansson, 1991) and 

increases expression of MHC class II molecules (Whitman et al., 2000).  Thus, the net 

effect of IFN-γ on atherosclerosis may depend on the balance between its anti- and pro-

atherogenic actions in the different stages of lesion development (Hansson et al., 1989b).  

However, Gupta et al., (1997) demonstrated that the net effect of IFN-γ is atherogenic 
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since the lesions in apoE-deficient mice lacking the IFN-γ were less cellular and had 

decrease collagen content.   

IL-4 secreted by Th2 cells appear to be antagonist of IFN-γ but at the same time a 

potent inducer of 15-LO, which promotes LDL oxidation whereby, IL-10 has potent 

deactivating properties in macrophages, interfering with the development and stability of 

atherosclerotic plaque (Mallat et al., 1999; Oslund et al., 1999) Interaction of CD40 

expressed by T cells, macrophages, ECs and SMCs with its receptor results in the 

production of inflammatory cytokines, matrix-degrading proteases and adhesion molecules 

(Mach et al., 1998).  The balance between pro-inflammatory and anti-inflammatory 

cytokines may be decisive for the progression of the lesion 

 

1.2.1.4 Plaque Rupture and Thrombosis 

 

A stable plaque normally has a thick fibrous cap (protecting lipid core from contact with 

the blood), large amount of SMCs and low levels of inflammatory cells (Libby, 1995).  

Vulnerable plaques generally have abundant foam cells, T lymphocytes, debris cells and 

increased number of inflammatory cells (Scott, 2004).  They also have a large soft lipid 

core (necrotic core) with thin fibrous caps (Libby, et al., 2002).  The fibrous caps of 

ruptured atherosclerotic plaques have more macrophages than those of non-ruptured 

atherosclerotic plaques which certainly implicated macrophages in plaque rupture (Libby, 

2002).  Plaque ruptures generally occur at the shoulder region of plaque (Bjorkerud & 

Bjorkerud, 1996a).  It is noteworthy that apoptotic macrophages and SMCs have been 

identified in the shoulder region and fibrous cap of the plaque (Bjorkerud & Bjorkerud, 

1996a; Kolodgie et al., 2000).  Macrophage foam cells that die and are not phagocytosed 

can spill lipid into the extracellular environment and so contribute to the lipid core of the 

plaque, whilst death of SMC erodes the fibrous cap.  The release of oxidised and insoluble 

lipid from necrotic core cells contributes to the formation of ‘gruel’ characteristics of 

advanced lesion (Figure 1.3) (Glass & Witztum, 2001).  This oxidised lipid will be pro-

inflammatory and cytotoxic so promoting further destabilisation of the plaque.  Apoptosis 

of SMCs and macrophages therefore, influence plaque stability and increase the potential 

for thrombosis (Bjorkerud & Bjorkerud, 1996a; Kolodgie et al., 2000). 

Activated T cells secrete IFN-γ which in combination with other stimuli induces 

macrophages to secrete matrix metalloproteinase-1 (MMP-1) (Anderson et al., 2002) 

(Figure 1.3).  MMP-1 degrades extracellular matrix proteins, thereby thinning the fibrous 

cap and making it more susceptible to rupture (Galis et al., 1994).  The stability of 

atherosclerotic lesions may also be influenced by calcification and neovascularisation (i.e. 
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formation of microvessel) (Dickson & Gotlieb, 2003; Stary et al., 1995).  Intimal 

calcification is an active process in which pericyte-like cells secrete a matrix scaffold, 

which subsequently becomes calcified, akin to bone formation.  The process is regulated 

by oxysterols and cytokines.  Neovascularisation may provide a conduit for entry of 

inflammatory cells and it is prevalent in human atherosclerotic lesions (Falk, 2006).  These 

vessels are also prone to rupture.  These intra-plaque haemorrhages are often absorbed into 

the existing plaque.  

 

 

Figure 1.3 Plaque rupture and thrombosis 
Necrosis of macrophage and SMCs–derived foam cells leads to the formation of a necrotic core and 

accumulation of extracellular cholesterol. Macrophage secretion of matrix metalloproteinases and 

neovascularization contribute to plaque weakness and susceptibility to rupture. Plaque rupture exposes 

blood components to tissue factor, initiating coagulation, the recruitment of platelets, and the formation 

of a thrombus.  Adapted from Glass and Witzum, (2001). 

 

The presence of tissue factor is vital for the initiation of the coagulation cascade 

(Wilcox et al., 1989).  The production of tissue factor by ECs and macrophages is 

enhanced partly by oxLDL.  If the plaque rupture, blood will be in contact with the highly 

thrombogenic material (especially lipid and collagen) of the core and a blood thrombus 

will form (Dickson & Gotlieb, 2003).  A small thrombus will contribute to rapid 

progression of the plaque.  Like intra-plaque haemorrhage, this thrombus is often absorbed 

into the existing plaque and once a certain size is exceeded, the thrombus can block 

arteries, resulting in events such as coronary infarcts (heart attacks) cerebral infarcts 

(stroke) and death (Jang et al., 1993). 
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1.2.2 Low Density Lipoproteins 

 
Electron microscopy studies show that the earliest atherosclerotic lesion, the fatty streak, 

consists mainly lipid-laden macrophages, which imply lipoprotein uptake by these cells in 

the initiation of atherosclerosis.  Studies done by Henriksen and colleagues, (Henriksen et 

al., 1983; Henriksen et al., 1981) first showed that native LDL is incapable of promoting 

foam cell formation unless it is oxidatively modified (oxLDL) to a form recognised by 

scavenger receptors on the macrophages.  Initially uptake of oxLDL is part of defence 

mechanisms to protect the vascular wall.  However, oxLDL imposes an oxidative stress on 

the macrophages that eventually causes death to the macrophages and also leads to loss of 

endothelial integrity.  The later property leads to fatty streak formation due to lipid 

infiltration and subsequently the fatty streak progresses to more advanced lesions.  

Therefore, in 1989, Steinberg and his colleagues had put forward the ‘oxidative 

modification hypothesis’ that states oxidation of LDL is a key process in plaque 

development (Figure 1.4).  As such, a key feature of the oxidative modification hypothesis 

is that it no longer presupposed the loss of endothelial cells as an initiating event in 

atherogenesis (Jessup et al., 2004) as stated by response-to-injury hypothesis of 

atherogenesis (Ross, 1986).  

 

 

Figure 1.4 Oxidative modification hypothesis of atherosclerosis. 
LDL becomes entrapped in the subendothelial space where it is subject to oxidative modification by 

resident vascular cells such as SMCs, endothelial cells, and macrophages. Oxidized LDL stimulates 

monocyte chemotaxis (A), prevents monocyte egress (B), and supports foam cell formation (C). Once 

formed, oxidized LDL also results in endothelial dysfunction and injury (D), and foam cells become 

necrotic due to the accumulation of oxidized LDL (E). Adapted from Diaz et al., (1997).  
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1.2.2.1 LDL Compositions 

 

LDL is part of a lipoprotein system for the controlled transport and metabolism of lipids in 

the bloodstream.  It is the main carrier of cholesterol delivering it to the peripheral cells.  

The serum LDL concentration of normolipidemic persons ranges from 130 to 260 

mg/100ml of human plasma and typically, this LDL carries about 60% of the total plasma 

cholesterol.  The endogenous and exogenous pathways of cholesterol are highly regulated 

so that the serum cholesterol level in normolipidemic persons is maintained constant and in 

a narrow range of 160 and 200 mg/100 ml (Mathews & van Holde, 1996).   

LDL has a spherical shape, diameter of 19-25 nm, relative molecular mass between 

1.8 and 2.8 million. The density range of LDL is 1.090-1.063 g/ml.  The major LDL’s 

protein is apolipoprotein B100 (apoB100), which has a β structure with small fractions of 

α-helices.  ApoB100 has 4536 amino acids and a Mr of 512,000. Each LDL molecule has 

an average of 170 molecule of triglycerides, 600 molecules of cholesterol and 1600 

molecules of cholesterol ester (mostly cholesterol linoleate) forming an inner core.  The 

core is surrounded by a phospholipid monolayer containing about 700 phospholipid 

molecules (mainly phosphatidylcholine) with their polar head groups oriented towards the 

aqueous phase.  ApoB100 protein is embedded in the outer layer.  Lipids are therefore, 

abundant in LDL and almost half are fatty acids.  Of the fatty acids, half are 

polyunsaturated fatty acids (PUFA) making LDL highly susceptible to free radical mediate 

oxidation.  The fatty acid content contents vary considerably among individuals.  For 

instance, linoleic acid content varied from 1200 to 2400 nmol/mg LDL protein. Variation 

in the PUFA content will most likely affect the oxidation behaviour of different LDL 

samples (Esterbauer et al., 1992).  The range of lipophilic antioxidants also varies with 

donor.  On average, each molecule of LDL has 6 α-tocopherol molecules and the rest for 

example γ-tocopherol, ubiquinol-10, carotenoids (more than 20 different carotenoids have 

been reported) and retinoids present at less than one mole per molecule of LDL.  

Antioxidants are present in both core and phospholipid coat (Esterbauer et al., 1992).  

Since the structure of LDL is quite fluid the lipid soluble antioxidants can freely move 

between the core and the phospholipids coat (Schuster et al., 1995).  

The uptake of LDL by cells occurs via receptor-mediated pathway and by 

nonspecific endocytosis.  LDL interacts with the LDL receptor based on ionic interactions 

between clusters of amino acids and the acidic amino acids of the receptor.  Most of these 

sites are on apoB, although some weak binding sites are found on phospholipids (Pifat et 

al., 1992).  The oxidation of LDL results in the chemical modification of certain moieties 
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of apoB by lipid peroxidation products; with the ε-amino groups of lysine residues being 

particularly susceptible (Steinbrecher, 1987).  Particles modified in this way no longer bind 

to the LDL receptor but to the scavenger receptor (Esterbauer et al., 1993). 

 

1.2.2.2 LDL Oxidation 
 

In vitro, LDL oxidation can be initiated by incubating LDL with macrophages, endothelial 

cells, SMCs, and lymphocytes or in cell free systems utilising a variety of pro-oxidants.  

Even though there is convincing evidence that oxLDL exists in atherosclerotic lesions, the 

precise location of LDL oxidation, how and to what extent LDL becomes oxidised during 

atherogenesis is still a matter of speculation (Esterbauer et al., 1993). 

 Oxidation of LDL possesses the general lipid peroxidation chain reaction and three 

consecutive time phases, the lag phase, propagation phase and decomposition phase 

(Figure 1.5).  It begins when an initiating radical abstracts a hydrogen atom from one of the 

PUFAs contained in the LDL lipids.  The exact identity of the initiating radical both in vivo 

and in vitro situation is still unknown, even though intensive research into this key step had 

been carried out.  

Once formed, the carbon-centred PUFA radical reacts extremely quickly with 

molecular oxygen yielding a lipid peroxyl radical which in turn abstracts a hydrogen atom 

from an adjacent PUFA, yielding a lipid hydroperoxide and a new PUFA radical.  It is the 

later reaction, termed propagation that generates lipid peroxidation chain.  The antioxidants 

in LDL slow down the propagation by scavenging and neutralising the peroxyl radical and 

thereby inhibit lipid peroxidation.  If no chain termination took place, a single initiating 

event could convert all LDL PUFAs into lipid hydroperoxides.  The precise length of the 

chain, i.e. the number of PUFAs oxidised per one initiating radical depends on many 

factors especially on the antioxidants.  The antioxidants of LDL slow down the chain 

propagation by very efficiently scavenging lipid peroxyl radicals and thereby inhibit lipid 

peroxidation. If no recycling (e.g., by ascorbate) takes place the antioxidants are consumed 

in the sequence α-tocopherol, ubiquinol-10, vitamin E, oxycarotenoids and β–carotene.  It 

is not until the LDL has lost its antioxidants compounds that the propagation phase 

commences.   
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Figure 1.5 Scheme showing the major events occurring during LDL oxidation.  
LH is a lipid containing a PUFA.  X

•
 is any reactive radical able to abstract a hydrogen atom form LH; 

L
•
 is a carbon-centred lipid radical; LOO

•
 and LO

•
 are lipid peroxyl radicals and lipid alkoxyl 

radicals;LOOH are lipid hydroperoxides; in their decomposition to LO
•
 and LOO

•
 metal ions in both 

valency states (e.g. Cu
2+

/ Cu
+
 or Fe

3+
/Fe

2+
) can take part, but the reaction with Cu

+
 or Fe

2+
 is 

thermodynamically favoured.  Adapted from Esterbauer et al., (1992).  

 

Besides PUFAs, the lysine residues of apoB100 of LDL are also subject to 

oxidative modification during the propagation phase (Akeson et al., 1991; Gieseg & Cato, 

2003; Giessauf et al., 1995; Knott et al., 2002).  The modified apoB100 has a greater net 

negative charge and is no longer recognised by the LDL receptor, but becomes recognised 

by scavenger receptor and is taken up rapidly be macrophages (Haberland et al., 1984).  In 

addition, the cholesterol associated with LDL is oxidised predominantly to oxysterols at 

the seventh position.  7-Hydroperoxycholesterol (7-OOH) is present in fairly large amounts 

in LDL during its early stages of oxidation, but there are only traces of it present in 

atherosclerotic lesions (Brown et al., 1997; Jessup & Kritharides, 2000; Upston et al., 

2002).  It has also been reported that protein hydroperoxides, produced secondarily to lipid 

peroxidation, are a major product in LDL oxidised by copper, peroxyl radicals and cells 

(Gieseg, et al., 2003; Firth, et al., 2006 Firth, et al., 2007).  Aggregation also starts to 
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appear when all antioxidants are depleted and increase as lipid peroxidation proceeds 

(Meyer et al., 1995).   

When most of the PUFAs (about 70-80%) are oxidised, decomposition becomes 

dominant and the lipid hydroperoxide concentration starts to fall.  The lipid 

hydroperoxides break down to a wide range of products, including stable end-products 

such as aldehydes (including malonaldehyde (MDA) and 4-hydroxynonenal (HNE)), 

hydrocarbon gases, epoxides, and alcohols (Esterbauer et al., 1995). This decomposition 

can occur spontaneously but is accelerated in the presence of transition metals, resulting in 

the initial formation of lipid peroxyl and lipid alkoxyl radicals (Cheeseman & Slater, 

1993).  Jessup et al. (1990) and Garner et al., (1997b) clearly showed that as with the 

copper ions, macrophages also first deplete LDL from α-tocopherol, before lipid 

peroxidation.  Moreover, only when the lipid hydroperoxides decompose that LDL is 

highly taken up by macrophages (leading to foam cell development).  This stage also 

suggests that decomposition of the lipid hydroperoxides is a necessary prerequisite to 

generate the characteristic epitopes on apoB100 recognised by scavenger receptor. 

This sequence of events of LDL oxidation has been demonstrated for oxidation of 

LDL initiated by macrophages and copper ions and is probably common to all process of 

LDL oxidation regardless of the method of initiation.  An LDL that has reached the end 

point of decomposition always has more or less similar chemical and biological properties 

(Esterbauer et al., 1992).  The time and change in the composition and functional 

properties of LDL exposed to copper ions as pro-oxidant was intensively studied by 

Esterbauer and colleagues (Esterbauer et al., 1989; Esterbauer et al., 1991; Esterbauer et 

al., 1992) (Figure 1.6) and by others (Heinecke et al., 1984; Jessup et al., 1990; 

Steinbrecher et al., 1990).  Most investigators followed LDL oxidation by measuring the 

consumption of α-tocopherol and lipid oxide/hydroperoxide formation (Esterbauer et al., 

1992; Jessup et al., 1990).  The time course of oxidation can be followed by measuring the 

formation of conjugated dienes at 234 nm (Esterbauer et al., 1989), formation of lipid 

hydroperoxides (Esterbauer et al., 1989), or production of thiobarbituric acid reactive 

material (TBARS) (Esterbauer et al., 1989; Steinbrecher et al., 1984) and fluorescence at 

430 nm with excitation at 360 nm (Esterbauer et al., 1989),.  LDL that has undergone 

extensive oxidation also has an increased relative electrophoretic mobility (REM) on 

native gel electrophoresis (Esterbauer et al., 1992; Gieseg & Cato, 2003).  A combination 

of these procedures is necessary since none of these methods by itself alone gives a full 

picture of the stage of oxidation.   
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Figure 1.6 Kinetics of Cu
2+

 stimulated oxidation of LDL. 
LDL is measured by consumption of vitamin E, change of 430 nm fluorescence, lipid hydroperoxides, 

conjugated dienes and TBARS.  The numbers 1, 2, 3 on top give the length of the lag, propagation, and 

decomposition phases.  Adapted from Esterbauer et al., (1992).  

 

1.2.2.3 Mechanisms of LDL Oxidation 

 

Surprisingly, there are still uncertainties (and considerable disagreement) about the 

mechanism of LDL oxidation in vivo.  The cellular sources of free radical and how exactly 

LDL is oxidised in vivo is still controversial.  Speculation on the mechanisms of LDL 

oxidation by cells in the presence of metal ions is doubtful since there are multiple 

mechanisms exist in vivo for binding free transition metal ions, rendering them redox-

inactive.  However several convincing evidence has been presented for a role of metal ion-

mediated oxygen-radical formation.  For example gruel samples from advanced human 

atherosclerotic lesions had been shown to contain redox active iron and copper detectable 

in the bleomycin and phenanthroline assays respectively.  Consistent with the presence of 

these ions, gruel samples were shown to be capable of stimulating lipid peroxidation and 

generating OH
•
 (Smith et al., 1992).  Recently this data was backed up by the detection of 

redox active iron and copper by electron paramagnetic resonance (EPR) spectroscopy and 

their measurement by inductively coupled plasma mass spectroscopy (ICPMS) showed 

their elevated levels in lesion versus healthy controls (Stadler et al., 2004). 

The finding that the copper-containing acute plasma protein ceruloplasmin (Cp) 

which has been studied for years as antioxidant could act as potent oxidant of LDL had 

also created an interesting concept in redox metal-dependent oxidation of LDL (Ehrenwald 
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et al., 1994; Ehrenwald & Fox, 1996).  The study found that LDL exposed to Cp exhibited 

many characteristics of LDL oxidised in the presence of free cupric ion.  Copper was 

shown to be a potent mediator of LDL oxidation due to its ability to bind histidine residues 

on the apoB100 (Roland et al., 2001; Wagner & Heinecke, 1997).  The binding permits 

both LDL-mediated reduction of copper to its redox active form and site-specific damage 

to LDL.  Cp can become more catalytically active under acidic conditions (Lamb and 

Leake, 1994a) and the acidic condition of atherosclerotic plaque provides such a conducive 

environment for this kind of reaction to occur (Lamb & Leake, 1994b). 

The studies of Cp in cell-mediated LDL oxidation also suggest that other protein-

bound redox-active transition metals might participate in the extracellular oxidation events.  

Under physiological conditions globin degradation such as hemin (Camejo et al., 1998) 

and iron binding proteins such as transferrin (Lamb & Leake, 1994b) and ferritin (Abdalla 

et al., 1992) may catalyse the oxidation reactions.  Superoxide radicals and an acidic pH 

were suggested to provide conditions that promote iron release from ferritin and transferrin 

(Abdalla et al., 1992; Lamb & Leake, 1994b) whereas hemin exhibits pro-oxidant activity 

even at neutral pH and in the presence of human serum (Camejo et al., 1998; Tribble et al., 

1996). 

Although these studies support the potential for metal-mediated LDL oxidation, 

they fail to confirm the significance of such reactions in humans.  For example, copper 

levels are significantly elevated in people afflicted with Wilson’s disease but this increase 

fails to correlate with atherosclerosis (Heinecke, 1999).  Further an autopsy on patients 

with hemochromatosis, a genetic disorder with iron overload in plasma and tissue levels, 

showed no association with an increased prevalence of coronary artery disease (Miller & 

Hutchins, 1994).   

One of the cell-derived factors that may participate in LDL oxidation of LDL is 

lipoxygenase (LOs).  They are non-heme iron-containing enzymes found in various cells 

that catalyse the insertion of molecular oxygen into PUFAs, giving rise to a family of 

biologically active lipids (Jessup et al., 2004).  In monocyte-macrophage systems, 

substantial evidence links 15-LO to LDL oxidation.  LO could oxidise cellular fatty acid, 

cholesteryl ester or phospholipid substrates, and the hydroperoxide products could be 

transferred to LDL making LDL more susceptible to oxidation.  LO products could also 

participate in signal transduction pathways regulating other monocyte-macrophage 

functions involved in oxidation (Chisolm et al., 1999). 

Another cell-derived factor that may participate in LDL oxidation of LDL is 

myeloperoxidase (MPO).  MPO is a heme-containing protein released by activated 
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neutrophils and monocytes during inflammation and present in some tissue macrophages 

such as those in vascular lesions (Heinecke, 2002).  MPO can amplify the oxidising 

potential of hydrogen peroxide (H2O2), the dismutation product of superoxide anion (O2
•-

), 

by using it as a co-substrate to generate a variety of oxidants including diffusible radical 

species (Heinecke et al., 1993; Savenkova et al., 1994), reactive halogens (Hazen & 

Heinecke, 1997), aldehydes (Febbraio et al., 2000) and nitrating agents (Carr et al., 2000; 

Podrez et al., 1999). 

MPO-mediated oxidation reactions occur in the absence of free transition metal 

ions and are resistant to inhibition by chelators.  MPO can catalyse the two-electron 

oxidation of chloride forming the powerful oxidant, hypochlorous acid (HOCl).  Exposure 

of LDL to HOCl results in chlorination and oxidation of protein and lipid constituents of 

LDL, induces LDL aggregation, and converts the lipoprotein into a high uptake form for 

macrophages (Hazell & Stocker, 1993; Hazen & Heinecke, 1997).  MPO-generated 

aldehydes can then modify nucleophilic targets on LDL protein and lipids (Hazen & 

Heinecke, 1997).  MPO also catalyses the one-electron oxidation of L-tyrosine, generating 

the tyrosyl radical (Savenkova et al., 1994) which can  initiate LDL lipid peroxidation and 

dityrosine cross-linking of proteins (Heinecke et al., 1993). 

Nitric oxide itself is unable to oxidise LDL, however, MPO can use H2O2 and 

nitrite (NO2
-
), a major end product of nitric oxide (nitrogen monoxide, 

•
NO) metabolism, 

to generate a peroxynitrite.  The later has been shown to be capable of nitrating aromatic 

compounds and tyrosine residues of the apoB100 of LDL, besides promoting lipid 

peroxidation in vitro (Hazen et al., 1999).  In addition, HOCl can react with NO2
-
 to form a 

nitrating and chlorinating intermediate.  Recent studies demonstrate that exposure of LDL 

to NO2
- 
and either elutriated human monocytes or isolated MPO and H2O2 sources, results 

in LDL lipid peroxidation and protein nitration.  Moreover, LDL modified by MPO-

generated nitrating intermediates is rendered a ligand for high affinity binding and foam 

cell formation.  Another intriguing characteristic of MPO is its ability to induce LDL 

modification even in the presence of blood serum that normally blocked copper-catalysed 

LDL oxidation (Podrez et al., 1999). Thus it is possible that MPO secreted from 

inflammatory cells in atherosclerotic lesions could oxidise LDL and thereby modify 

various proteins in the lesions. 

Due to the complexity of lesions, it is therefore difficult to ascertain which pro-

oxidants is the most important initiator of LDL oxidation.  Probably they are all important 

in different regions and/or at different stages of the lesion.  Regardless of which 
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mechanism(s) are involved in LDL modification in vivo, the end product is still a 

heterogeneous population of LDL that is oxidised to varying degrees.  

 

1.2.2.4 Proatherogenic (Proinflammatory) Effect of OxLDL  
 

LDL oxidation is a progressive process leading to formation of a continuum of 

oxLDL (from mildly to extensively oxLDL) (Salvayre et al., 2002).  OxLDL contains a 

complex, variable, and incompletely characterised mixture of toxic oxidation products.  

Thus oxLDL are heterogeneous in their composition, metabolism and biological properties.  

Table 1.1 summarises briefly the differences between native LDL and oxLDL. A 

substantial body of evidence suggest that most if not all of the atherogenic effects of 

oxLDL are derived from the oxidised lipid components (Parthasarathy et al., 1999).  The 

active lipid include both esterified and unesterified peroxidised lipids, lysoPtdCho, 

cholesterol oxidation products (also termed oxysterols), aldehydes derived from 

breakdown of both esterified and unesterified oxidised fatty acids, and proteolipids that 

may have peroxidised lipids bound to fragmented apoB100.  Every single aspect of 

atherogenesis is likely to be affected by one or more of these components (Salvayre et al., 

2002).   

Different types of modified LDL can be developed depending on the condition of 

oxidation which includes type and concentration of radical or oxidant, the level of 

endogenous (e.g. α-tocopherol, carotenoid) or added antioxidants (e.g. ascorbic acid and 

uric acid) and modification of apoB 100.  For example, a novel method for production of 

lipid hydroperoxide- or oxysterol-rich LDL was developed by Gerry et al., (2008).  LDL 

was dialysed against MOPS buffer containing Cu
2+

 ions for 24 hours at either 4 °C to form 

hydroperoxide-rich LDL or 37 °C to form oxysterol-rich LDL.  Carpenter et al., (2003) 

demonstrated that three species of oxLDL (moderately, mildly and very mildly oxLDL) 

can be differentiated according to the conditions of incubation.  Incubation of LDL with 

Cu
2+

 ions in PBS (pH 7.4); Fe
2+

 in saline and Fe
2+

 in PBS (pH 5.5)  at 37 °C for 15 hours 

produced; moderately, mildly and very mildly oxLDL respectively.  After 15 hours 

oxidation, mildly oxLDL consistently contained higher levels of hydroperoxides, lower 

levels of oxysterols, lower levels of MDA and lower REM than did moderately oxLDL.  

Hydroperoxide levels in very mildly oxLDL were only slightly above native LDL whilst 

REM, TBARS and 7β-hydroxycholesterol (7β−ΟΗ) in mildly oxLDL were similar to 

native LDL.  While very mildly oxLDL was non-toxic to HMDMs, mildly oxLDL induced 

more death and apoptosis in HMDMs than moderately oxLDL as measured by LDH 

release and nucleosome ELISA respectively (Carpenter et al., 2003).  This was in 
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agreement with Siow et al., (1999) where their moderately oxLDL (which contains the 

peak level of lipid hydroperoxides) but not highly oxLDL caused SMCs apoptosis within 6 

hours.  However, later finding shows that J774, mouse and human macrophages are more 

susceptible to  apoptosis by a highly oxLDL species rich in oxysterols than do moderately 

oxLDL (Harris et al., 2006).  

 

Table 1.1 Lipids and proteins of native LDL and oxLDL adapted from 

Parthasarathy et al., (1999)  

 
 

Native LDL 

 

 

OxLDL 

 

Presence of intact, single apoB100.  

Non-antigenic in the same species. 

 

Proteolysed, fragmented, oxidised, cross-linked 

apolipoprotein with a different amino acid 

composition.  The protein is also covalently modified 

by lipid peroxidation products that include intact core 

aldehydes derived from esterified lipid.  New 

functional groups (protein carbonyls, sulfonic acids, 

carboxylic acids, etc) might be present on the protein.  

Chlorination and nitration might occur.  Highly 

antigenic. 

 

Contains abundant amounts of PUFA 

and antioxidants. 

 

PUFA and antioxidants are depleted. 

Free of lipid peroxides and their 

degradation products such as aldehydes 

and ketones. 

 

Contain massive amounts of lipid peroxides and their 

degradation products. 

Very low levels of oxidised cholesterol. Increased amounts of oxidised cholesterol product.  

May also contain large amounts of cholesterol ester 

core aldehydes. 

 

No unusual lipids. Chlorinated and nitrated lipid species might be 

present. 

 

May contain very low levels of 

lysoPtdCho. 

Contained increased levels of lysoPtdCho.  Might 

also contain oxidatively tailored phospholipids, which 

are intact phospholipids with fragmented fatty acid 

chain. 

 

 

Boullier and colleagues (2006) shows that very mildly oxidised or minimally 

modified LDL (mmLDL) binds to native LDL receptors but not to scavenger receptors.  It 

contains early lipid peroxidation products but in contrast to oxLDL or mildly oxLDL, it 

does not contain any measurable TBARS or EO6-reactive phospholipid oxidation products 

above those noted in native LDL.  Table 1.1 summarises the biological properties of 

extensively oxidised LDL. 



Chapter 1 

_____________________________________________________________________________________________________________ 

 

19 

 

OxLDL is known to induce chemoattractant cytokines like P-selectin, GRO, 

VCAM-1 and MCP-1 that recruit monocytes and T cells to the intima (Berliner & 

Heinecke, 1996) which is an early event in atherogenesis.  LysoPtdCho, 13-hydroperoxy 

linoleate (13-HPODE) and a number of products derived from oxidised PtdCho are 

suggested to induce the adhesion and chemotactic recruitment of monocytes by activating 

the EC adhesion molecules and specific chemotactic factors.  these lysoPtdCho are also 

direct chemotaxins for monocytes and T-lymphocytes (Parthasarathy et al., 1999).  The 

monocytes in the intima will be subjected to various actions mediated by oxidised 

components of LDL.  For example, monocyte differentiation is promoted by the oxLDL-

induced release of endothelial-derived M-CSF (Rajavashisth et al., 1990).   

OxLDL also adversely affects plaque stability. It promotes a net increase in 

macrophage-mediated matrix degradation by down-regulating the tissue inhibitor of 

metalloproteinase-1 (TIMP-1) but upregulating matrix metalloproteinase-9 (MMP-9) (Xu 

et al., 1998).  Thrombus formation can be aggravated by oxLDL since oxLDL stimulates 

the production of tissue factor (Berliner et al., 1995) and promotes platelet aggregation 

(Volf et al., 2000).  Components of oxLDL have also been suggested to affect vascular 

endothelium- dependent relaxation and promote pro-coagulatory responses from both the 

endothelium and the platelets.  Hydroperoxides are more potent toxins in oxLDL than are 

the more advanced oxidation products such as aldehydes and oxysterols (Carpenter et al., 

2003).  However, Leake and colleagues (Harris et al., 2006) claimed that even though 

moderately oxLDL containing the maximum level of lipid hydroperoxides that induce 

apoptosis, LDL species most toxic towards macrophages is highly oxidised LDL rich in 7-

ketocholesterol (7-KC).  Quantitation by gas chromatography indicated that 7-KC was the 

major oxysterol present (Zhang et al., 1990).  7-KC has been shown to modify lipid raft 

domains in THP-1 cells causing an increase in cytosolic calcium and activation of calcium 

dependent proteases (Berthier et al., 2004).  It also initiates oxidative stress in mouse 

macrophage J774A.1 through the activation of NADPH oxidase; a possible source of 

oxLDL induced oxidative stress (Leonarduzzi, et al., 2006). 7-KC is a major contributor to 

the inhibition of cholesterol export from oxidised LDL-loaded macrophages (Gelissen et 

al., 1996). Besides 7-KC, 7β-hydroperoxycholesterol and 7β-OH are also cytotoxic.  These 

oxysterols are reported to destabilise macrophage lysosomes, leading to leakage of 

lysosomal contents and subsequent induction of apoptosis or necrosis (Yuan et al., 2000).  

OxLDL uptake leads to expansion of an acidic endolysosomal compartment that leads to 

inactivation of lysosomal cysteine proteases and dysfunction of other lysosomal proteins 

required for processing and recycling of the hybrid lysosomes (Lougheed et al., 1999). 
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Although most of the atherogenic effects of oxLDL are attributed to its oxidised 

lipid components, other components of oxLDL also play a role.  The oxLDL’s protein 

moiety appears to stimulate IL-1 production (Lipton et al., 1995) and respiratory burst 

activity in macrophages (Nguyen-Khoa et al., 1999).  OxLDL have been demonstrated to 

ultimately increase secondary messengers, cyclic adenine monophosphate (cAMP) 

(Parhami et al., 1993) and activate various cytokines and signal transduction pathways 

(Berliner & Heinecke, 1996).  Signal transduction occurs through the oxLDL-mediated 

activation of protein kinase C (PKC) (Li et al., 1998), nuclear factor-κβ (NF-κβ) (Parhami 

et al., 1993), AP-1 (Whatling et al., 2004) and PPARγ (Nagy et al., 1998). 

 

1.3 Lipoproteins and Macrophage Scavenger Receptors 
 

In vitro studies have shown that LDL can only induce cellular cholesterol accumulation 

when presented to macrophages in a modified form and required different routes of 

modified LDL uptake.  This is because intracellular free cholesterol level regulates the 

level of LDL receptors forms on the plasma membranes.  Brown and Goldstein first 

described this ‘scavenging’ activity of macrophages in 1979 when investigating the 

formation of lipid laden macrophages in atherosclerotic plaques (Brown et al., 1979).  

Subsequent cloning has revealed the receptors responsible are a broad family of 

transmembrane multidomain structures classified into six (or more) subgroups based on 

their proposed tertiary structures (Krieger & Herz, 1994).  On the basis of functional 

studies and evidence for expression in the arterial intima, only some of the scavenger 

receptors (SRs) are good candidates for contributing to atherosclerotic foam cell formation.  

Class A receptors (SRA) were the first identified and originally found through their 

binding to acLDL.  A second class of SR, SR class B (SR-B) has been identified as the 

oxLDL receptor.  CD36 and SR-B1 belong to class B SR.  In addition to SR-A and SR-B 

are CD68 (SR-D class), lectin-like oxidised LDL receptor (LOX-1, SR-E class) and SR 

that binds PS and oxLDL (SR-PSOX, SR-G class).  In addition to these, endothelial cells 

express SREC and SR-F class (Greaves & Gordon, 2005).   

 SR-A recognises the oxidised apoprotein portion of the lipoprotein particle.  The 

SR-A was shown to be a trimeric Type II membrane protein with a broad range of 

polyanionic ligands.  It has grown to include 4 members that share common collagen-like 

domains and a homotrimeric structure: SR-AI, SR-AII, SR-AIII and macrophage receptor 

with collagenous structure (MARCO).  SRA-I, SR-AII and SR-AIII have 6 similar 

structural domains: cytoplasmic, transmembrane, spacer, α-helical coiled, collagenous, and 

a type specific carboxyl terminus.  SR-AI has cysteine linked C terminal extension of 110 
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amino acids, a highly conserved protein motif found in many other immunological 

proteins.  SR-AII has a short carboxyl-terminal domain that is relatively nonconserved 

between species.  SR-AIII is located within the endoplasmic reticulum and is not 

accessible to extracellular ligands, thus, making its function difficult to define (Gough et 

al, 1998) MARCO is a structurally related molecule expressed by murine macrophages and 

has similar structures as the SR-AI but differs in having a longer extracellular domain and 

completely lacking an alpha-helical coiled domain.  MARCO has been demonstrated to 

bind bacteria but not acLDL or oxLDL.   

Studies from (Kunjathoor et al, 2002; Suzuki, et al, 1997) suggested that SR-AI 

and   SR-AII account for the majority (~80%) of macrophages uptake of acLDL but have a 

lower affinity for oxLDL.  SR-AI and SR-II recognise the modified apoB protein 

component of oxLDL (Lougheed & Steinbrecher, 1996; Zhang et al., 1993)  In addition, 

both SR-AI and SR-AII also bind apoptotic cells, bacterial surface lipids (endotoxin and 

lipoteichoic acid), anionic phospholipids, proteins modified by advanced glycation and    

β-amyloid fibrils (Moore & Freeman, 2006). 

SR-A deficient macrophages are less prone to foam cell formation when treated 

with modified LDL and results from genetically modified mice suggest that macrophage 

SR-A is probably pro-atherognenic (Babaev et al., 2000; Sakaguchi et al., 1998; Suzuki et 

al., 1997).  However, another report on a different atherosclerosis-prone genetic 

background suggested that they had no decrease in atherosclerosis (de Winther et al., 

1999) and macrophage over expression of SR-A had no effect on atherosclerosis (Herijgers 

et al., 2000; Van Eck et al., 2000).  Recently it was reported that JNK2-dependent 

phosphorylation of SR-A is critical for uptake of oxidised LDL and formation of foam 

cells in vitro, potentially contributing to decreased atherosclerosis in JNK2-deficient mice 

(Ricci et al., 2004).  Ligand binding to SR-A induces focal adhesion complexes and 

adhesion (Post et al., 2002) that see the potential for modified lipoproteins to induce 

signalling through binding to SR-A. 

Immunofluorescent staining of murine macrophages demonstrated that SR-As were 

distributed at the membrane closest to the adherence surface to tissue culture plate 

suggesting that SR-As play a role in the adhesion of macrophages to tissue culture plate 

(Lougheed & Steinbrecher, 1996).  This led to a suggestion that SR-A may play a role in 

retention of macrophages at sites of inflammation, as it appears that the contribution of SR-

A to cell adhesion is more in activated than resident macrophages. 

SR-B was established with the identification of CD36 as a receptor for oxLDL.  

Unlike the SR-A family, CD36 is a type III (multiple transmembrane domains) receptor 
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that traverses the membrane twice to form a heavily glycosylated extracellular loop with   

2 short intracellular tails.  SR-B has 2 additional members with similar structure: SR-BI 

and lysosomal integral membrane protein-II.  CD36 and SR-BI appear to play quite distinct 

roles in lipid metabolism and atherosclerosis.  While CD36 has been shown to specifically 

bind oxLDL (Endemann et al, 1993), SR-B1 has a high affinity for native LDL (Acton et 

al., 1994).  

The very first observations showing the capacity of CD36 to bind and endocytose 

oxLDL came from the work of Endemann et al., (1993).  They showed that CD36 bind 

specifically oxLDL by using a human epithelial kidney cell line (HEK293) transfected 

with CD36.  CD36 binds to the oxidised phospholipids and protein moieties of oxLDL 

(Boullier et al., 2000).  It is highly regulated during monocyte differentiation.  Devaraj, 

2001 reported that human macrophage CD36 expression is upregulated by day 4 and is 

elevated about 5-fold in 8-10 days of culture.  Another study reported that in human 

macrophages, CD36 expression was maximal after 10 days of culture (Nakagawa et al., 

1998).  This in contrast with Huh et al., (1996), who showed that CD36 expression is up 

regulated and is maximal on day 4 (8- to 10-fold) and is reduced by day 8 of culture.  The 

different types of serum and tissue culture plates used in culturing the cells might explain 

the discrepancy in their findings.  It is also to be remembered that these studies were on 

mRNA levels rather than the actual receptor levels on the membrane. 

A few studies then followed supporting the paradigm that CD36-mediated oxLDL 

uptake is required for the macrophage foam cell formation and atherosclerosis.  CD36 

contributes to 60% to 70% of cholesterol ester accumulation in macrophages exposed to 

LDL oxidized by Cu
2+

 and myeloperoxidase/peroxynitrite mechanism (Kunjathoor, et al., 

2002; Febbraio, et al., 2000).  An absence of CD36 on monocytes as observed in small 

population in the Japanese population, results in 40% less oxLDL binding to monocyte-

derived macrophages and 40% less in accumulation of cholesterol ester when compared to 

cells derived from normal controls (Nakagawa et al., 1998). Moreover, studies performed 

in apoE
-/-

 mice lacking CD36 showing marked reduction in atherosclerotic lesion area 

(Febbraio et al., 2000).  In contrast, another study (Moore et al., 2005) reported that 

deletion of SR-A or CD36 does not ameliorate atherosclerosis in apoE
-/-

 and the reason for 

this absence is presently unclear although they attributed this disparity to the difference in 

the genetic background of the mice.  However, there are more continued supports on a role 

for CD36 in atherosclerosis specifically in the descending aorta.  Transplantation of 

Cd36
_/_ bone marrow into Apoe

_/_ mice resulted in a large reduction in aortic en face 

lesion area in hypercholesterolemic mice, indicating that macrophage CD36 contributes to 



Chapter 1 

_____________________________________________________________________________________________________________ 

 

23 

 

lesion progression in the aortic tree (Febbraio et al., 2000).  Moreover, treatment of Apoe
_/_ 

mice with a CD36 ligand derived from growth hormone–releasing peptide, EP80317 

reduced aortic atherosclerotic lesion area by up to 50% (Marleau, et al., 2005).  This ligand 

reduces oxLDL internalisation and up-regulate genes involving in regulating peripheral 

cholesterol trafficking.  Altogether, these studies suggest that CD36 may differentially 

contribute to lesion development in the aortic sinus and the descending aorta. Whether this 

effect is attributable entirely to its lipid uptake function is not known. 

SR-B1 can bind native and modified forms of LDL but does not lead to foam cell 

formation (Krieger & Kozarsky, 1999).  It binds native HDL and mediates selective 

cholesterol uptake from HDL to cells (Krieger & Kozarsky, 1999).  SR-B1 plays important 

role in reverse cholesterol transport due to its ability to facilitate cholesterol transfer from 

macrophages to HDL and mediate selective cholesterol delivery to liver and steroidogenic 

tissues without HDL degradation (Greaves & Gordon, 2005).  SR-B1-deficient mice have 

dramatically increased atherosclerosis (Van Eck et al., 2004).  Thus, macrophage SR-B1 

expression is antiatherogenic; although promotion of cholesterol efflux to HDL may be one 

mechanism, the precise mechanism(s) remain unknown.  

 The class D SRs includes CD68 and macrosialin.  Human macrophages CD68 and 

its murine homolog macrosialin are heavily glycosylated type I transmembrane proteins 

that are predominantly expressed in late endosomes and lysosomes of macrophages 

(Ramprasad et al., 1995).  Based on their expression pattern, they are unlikely to play a 

major role in oxLDL internalisation (de Beer et al., 2003), but may contribute to oxLDL 

endolysosomal processing.  Levels of microsialin are up regulated by oxLDL, and this 

receptor is expressed in macrophage foam cells in atherosclerotic plaques in Apoe
-/- 

mice 

but further studies of its actual role remains to be determined.  

The class E SRs, LOX-I is a lectin-like, type II transmembrane protein and is 

expressed on macrophages, endothelial and vascular SMCs.  It binds to SR ligands, 

including oxLDL, advanced glycation end-products, apoptotic cells and bacteria (Moore & 

Freeman, 2006).  Recently, LOX-1 scavenger receptor has been shown to directly bind 

phosphatidylserine (PS)-containing apoptotic bodies, in a Ca
2+

-dependent manner (Murphy 

et al., 2006). 

SRs expressed by endothelial cells, SREC-I, and SREC-II, are type I 

transmembrane receptors and classified as Class F SRs.  These 2 receptors share 35% 

homology, and although both bind modified LDL, only SREC-I internalises these ligands 

for degradation.  Studies in SrecI
-/-

 macrophages demonstrated that this receptor accounts 
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for only 6% of total acetylated LDL degradation, suggesting that it plays a minor role in 

foam cell formation (Greaves & Gordon, 2005).  

Finally the class G SRs, SR-PSOX, was identified by its ability to bind oxLDL 

(Shimaoka et al., 2000) and was subsequently shown to be identical to the membrane-

bound CXC chemokine CXCL16 (Wuttge et al., 2004).  This receptor is expressed in 

human and mouse atherosclerotic lesions, where it is present on endothelium, SMCs and 

macrophages.  To date the contribution of SR-PSOX to macrophage oxLDL uptake, foam 

cell formation and atherosclerosis is unclear, however, one study suggests an association of 

a CXCL16 gene polymorphism with severity of coronary artery stenosis (Lundberg et al., 

2005). 

 

1.4 APOPTOSIS 
 

Cells die in response to a variety of stimuli.  Cell death commonly can occur by two 

mechanisms, necrosis and apoptosis, although, sometimes death by mechanisms with 

features of both pathways can also be seen (Halliwell & Gutteridge, 2007).   

Necrotic death occurs when a cell is severely injured, for example by a physical 

blow or by oxygen deprivation.  Necrosis is characterised by swelling of the internal 

organelles and cell, loss of integrity of mitochondrial, peroxisomal and lysosomal 

membranes and eventual rupture of the plasma membrane, releasing cell contents into the 

surrounding which may affect adjacent cells (Lelli et al., 1998).  These effects occur 

because injury prevents the cell from maintaining its ion homeostasis.  Another hallmark of 

necrosis is inflammation where cells of the immune system converge on the necrotic cells 

and ingest them.  Inflammation helps to limit infection and clear away debris, but the 

activities and secretions of the white cells can also damage normal tissue in the vicinity, 

sometimes extensively (Duke et al., 1996).   

In apoptosis, the earliest visible morphological changes are cell shrinkage and blebs 

forming on the surface membrane without the membrane losing its integrity (Haunstetter & 

Izumo, 1998).  Internal organelles retain their structure, but the nucleus changes 

dramatically during apoptosis (Alcouffe et al., 1999).  Most prominently, its usually 

dispersed chromatin condenses and becomes fragmented (Yuan et al., 2000).  This is 

usually associated with DNA double-strand break in internucleosomal regions and when 

these fragments are separated by gel electrophoresis a ‘ladder’ pattern is seen.  Other 

features of apoptosis are the collapse of cytoskeletal structure, nuclear fragmentation, and 

eventual break-up of the cell into apoptotic bodies, without rupture of organelle 

membranes (Haunstetter & Izumo, 1998).  Certain modification in the plasma membrane 
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for instance, the redistribution of phosphatidylserine (PS) to the outer leaflet of plasma 

membrane enable the recognition of apoptotic bodies by phagocytic cells (van Engeland et 

al., 1998).  Since the apoptotic bodies are surrounded by an intact plasma membrane, 

apoptosis usually occurs without leakage of cell content and usually without inflammation.  

If the apoptotic bodies are not phagocytosed, a process known as secondary necrosis will 

occur in which the membranes of apoptotic bodies lyse and the contents of the bodies are 

released (Skepper et al., 1999; Tabas, 2005).  

 

1.4.1 Molecular Mechanism of Apoptosis 
 

Apoptosis is a tightly regulated cell death program which involves the interplay of a 

multitude of factors.  Apoptosis can be triggered by various stimuli from outside or inside 

the cell, e.g. by ligation of cell surface receptors, by DNA damage as a cause of defects in 

DNA repair mechanisms, treatment with cytotoxic drugs or irradiation, by a lack of 

survival signals, contradictory cell cycle signalling or by developmental death signals. 

In most instances the initiation and regulation of apoptosis is highly controlled by a 

family of proteolytic enzymes called caspases.  The caspases are a novel class of at least 14 

cysteine proteases that could be described as ‘the central executioners’ of the apoptotic 

programme.  Their name reflects the active cysteine group and the characteristic cleavage 

of their target at aspartate residues, hence the name ‘cysteine-aspartyl-specific proteases’, 

abbreviated to caspases (Chandra & Orennius, 2002; Hampton & Orennius, 1997).   

In the cell, caspases are synthesised as inactive zymogens, the so called 

procaspases.  Upon activation, the caspases cleave a variety of cellular proteins C-terminal 

to aspartate residues.  Activation involves proteolytic conversion of a procaspase zymogen 

to the active form.  This occurs rapidly after triggering of apoptosis, and is seen with a 

wide variety of apoptotic stimuli (Chandra & Orennius, 2002; Hampton & Orennius, 1997; 

Haunstetter & Izumo, 1998).   

Functionally, caspases can be classified into two classes; (i) the initiator caspases 

that are characterised by long prodomains containing either death-effector domain (DED) 

domains (caspase-8 and caspase-10) or a caspase recruitment domain (CARD) (caspase-2, 

and caspase –9) and (ii) the executioner or effector caspases containing short prodomains 

(caspase-3, caspase-6 and caspase-7) (Grutter, 2000).  They all exist as inactive zymogens 

in normal cells.  Procaspase forms of the initiator caspases have some catalytic activity and 

their enforced localisation leads to autocatalytic processing and activation.  Upon 

activation by a wide variety of apoptotic stimuli, the initiator caspases cleave and activate 

the effector caspases, which proteolytically degrade an array of structural and regulatory 
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proteins at Asp-Glu-Val-Asp (DEVD) or closely related sequences which put in motion the 

cellular events characteristic of apoptosis (Hampton et al., 2002).    

 

Figure 1.7 Some major apoptotic signalling pathways.   
Refer to the text in section 1.4.1 for the description of the pathway.  Figure was adapted from 

www.chemicon .com. 

 

Until now two pathways leading to caspase activation have been described; the 

receptor mediated or extrinsic pathway and the intrinsic pathway (Figure 1.7) (Lawen, 

2003; Lesauskaite et al., 2003).  In the first pathway, the first step is the engagement of a 

receptor at cell surface.  These receptors are called ‘death receptors’.  Death receptors 

belong to the tumour necrosis factor receptor (TNFR) gene superfamily, including    

TNFR-1, Fas/CD95 (fibroblast associated cell surface), and the TNF-related apoptosis-

inducing ligand (TRAIL) receptors DR-4 and DR-5 (Ashkenazi, 2002).  All members of 

the TNFR family consist of cysteine rich extracellular subdomains which allow them to 

recognise their ligands with specificity, resulting in the trimerisation and activation of the 

respective death receptor.  The cytoplasmic ‘tails’ of these receptors recruit other proteins 

such as FADD (Fas-associated death domain) and TRADD (TNF receptor-associated death 

domain).  These carry a DED that binds procaspase-8.  The complex of Fas, FasL, FADD 

and procaspase-8 is called the DISC.  The procaspase-8 molecules are brought into close 

proximity in the DISC, so they can transactivate one another.  Active caspase-8 then can 
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directly cleave caspase-3 or other executioner caspases eventually leading to the apoptotic 

outcome (Ashkenazi, 2002; Halliwell & Gutteridge, 2007).   

The intrinsic or mitochondrial pathway is activated by a variety of extracellular and 

intracellular stresses, including oxidative stress and treatment with cytotoxic drugs.  In 

intrinsic pathway, the signal coming from the activated receptor does not generate a 

caspase signalling cascade strong enough for execution of cell death on its own.  In this 

case the signal needs to be amplified via mitochondria-dependent apoptotic pathways.  The 

link between the caspase signalling cascade and the mitochondria is provided by the Bcl-2 

family member Bid.  Bid is cleaved by caspase-8 and in its truncated form (tBid) 

translocates to the mitochondria where it acts in concert with the proapoptotic Bcl-2 family 

members Bax and Bak to induce the release of cytochrome c and other mitochondrial 

proapoptotic factors into the cytosol (Luo et al., 1998).  Cytochrome c is a 14 kDa soluble 

protein attached to the inner membrane of the mitochondria.  In its traditional role in the 

respiratory chain, cytochrome c shuttles electrons between complexes III and IV on the 

inner mitochondrial membrane.  The resulting breakdown in electron flow generates 

reactive oxygen species, specifically superoxide and reduces the supply of adenosine 

triphosphate (ATP) (Cai & Jones, 1998; Stridth et al., 1998).  Earlier data suggested that 

loss of mitochondrial membrane potential (∆ψm) and opening of the mitochondrial 

membrane permeability pore are necessary for cytochrome c release (Kluck et al., 1999; 

Liu et al., 1996), however, recent data suggest that both events are not needed (Ly et al., 

2003; Stridth et al., 1998; Waterhouse et al., 2002).  

Once in the cytosol, cytochrome c binds to the apoptotic activating factor-1    

(Apaf-1). Binding of cytochrome c to Apaf-1 triggers the formation of the apoptosome 

(Aoshima et al., 1997), a complex containing Apaf-1, cytochrome c, dATP and 

procaspase–9 molecules.  Binding leads to cleavage of procaspase-9, converting it to an 

active form which in turn cleaves and activates caspase-3 thereby setting in motion the 

events that lead to DNA fragmentation and cell death (Aoshima et al., 1997).   

Besides cytochrome c, other molecules are also released from mitochondria, for 

example apoptosis inducing factor (AIF) and SMAC (alternative name DIABLO).  SMAC 

is a protein that binds and inhibits endogenous caspase blockers (inhibitors of apoptosis, 

(IAP)) (Adam et al., 2000; Verhagen et al., 2000).  AIF appears to induce an apoptosis-like 

cell death that is independent of caspases (Joza et al., 2001).  It enters the nucleus and 

induces peripheral and ‘dot’ chromatin condensation and DNA fragmentation (Marzo et 

al., 2001). 



Chapter 1 

_____________________________________________________________________________________________________________ 

 

28 

 

 Another way of triggering apoptosis is to introduce an agent that directly activates 

caspases and/or mitochondrial proapoptotic proteins. For example, tributylin targets 

mitochondria, causing swelling, and cytochrome c release. Finally, the cytotoxic T 

lymphocytes can deliver a pore-forming protein (perforin) and a set of proteolytic enzymes 

(granzymes) into their target cells.  Granzymes B can directly activate the target cell’s 

caspase and by doing so induce apoptosis.  Granzyme B can also bypass caspases by 

directly cleaving ICAD, Bid and caspase-3.  The ER stress response can also lead to 

apoptosis (Halliwell & Gutteridge, 2007).  

 

1.4.2 Bcl-2, ROS and Redox Regulation of Apoptosis 

 

The Bcl-2 family of proteins has a role in the regulation of apoptosis where it regulates the 

mitochondrial membrane potential, outer membrane permeability and hence the release of 

the proapoptotic factors.  Bcl-2 family of proteins can be defined by the presence of 

conserved sequence motifs known as Bcl-2 homology domains (BH1 to BH4).  It contains 

over 30 members.  Some members including Bcl-2, Bcl-XL, Bcl-w, and Bcl-B suppress 

apoptosis and they posses the domains BH1, BH2, BH3 ad BH4.  The proapoptotic group 

of Bcl-2 members can be divided into two subgroups: the Bax-subfamily consists of Bax, 

Bak, and Bok that all possess the domains BH1, BH2 and BH3, whereas the BH3 only 

proteins (Bid, Bim, Bik, Bad, Bmf, Hrk, Noxa, Puma, Blk, BNIP3 and Spike) have only 

the short BH3 motif an interaction that is both necessary and sufficient for their killing 

action (Cory & Adams, 2005).  The relative ratios of these pro- and anti-apoptotic 

members are more important to the survival of a cell than the expression of any member in 

particular (Carmody & Cotter, 2001). 

Bax, Bcl-Xs, Bid, Bim and Bak occur as dimers or oligomers in the cytoplasm and 

form ion-conducting channels in the mitochondrial outer membrane (Kroemer & Reed, 

2000).  They also form pores in the membranes of the endoplasmic reticulum and nucleus.  

These pores probably induce mitochondrial membrane permeability and cytochrome c 

release from the mitochondria, intervene in Ca
2+

 signalling by inducing Ca
2+

 release from 

the endoplasmic reticulum and modulate nuclear membrane.  Since, several other pro-

apoptotic family members do not possess BH1 and BH2 domains that are essential for ion 

channel formation, thus it is unlikely that formation of ion channel is the only mechanism 

by which Bcl-2 family protein regulate apoptosis.  The family’s pro-apoptotic effect to 

some extent also depends on caspases.  For example caspases 1 and 3 degrade Bcl-XL and 
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Bcl-2, respectively, converting anti-apoptotic proteins into pro apoptotic mediators (Kirsch 

et al., 1999). 

Bcl-2 also appears to functions as antioxidant.  It was reported to prevent lipid 

peroxidation associated with apoptosis, suggesting that Bcl-2 may indirectly regulate 

antioxidant defences to prevent cell death (Hockenbery et al., 1993).  There is also a strong 

link between Bcl-2 and the endogenous antioxidant GSH.  Analysis of multiple lymphoid 

systems shows increased in Bcl-2 protein levels were related to increase in intracellular 

GSH levels.  The resistance of cells to apoptosis-inducing stimuli conferred by elevated 

Bxl-2 expression is significantly decreased following depletion of intracellular GSH 

(Mirkovic et al., 1997).  In addition, Domenicotti et al., (2000) showed that glutathione 

depletion induces apoptosis through activation of PKC and dependent increase in AP-1 

nuclear binding. 

The role of ROS and redox in apoptosis is not clearly defined since it is difficult to 

distinguish whether oxidative events are a consequence of damage or cause of cell death.  

Even though many oxidants had been demonstrated to be potent inducers of apoptosis in a 

range of cell types, the studies failed to demonstrate whether ROS also serve as mediators 

of apoptosis.  Besides that, many apoptotic agents, which are not oxidants, generate 

significant levels of intracellular ROS during the induction of apoptosis.  Nevertheless, the 

ability of antioxidants to prevent apoptosis provides evidence for a role of ROS in 

apoptotic signal transduction (Carmody & Cotter, 2001). 

The oxidation of the anionic phospholipid cardiolipin facilitates cytochrome c 

release from mitochondria (Kagan et al., 2004) and as a consequence disrupts the 

mitochondrial electron transport chain causing more superoxide formation.  In contrast, 

caspases have exposed  –SH groups in their active sites which are essential for activity and 

can readily be inactivated by H2O2, HOCl, OH
•
, ONOO

-
 and other RS (Hampton et al., 

2002; Hampton & Orennius, 1997).  Thus, high levels of ROS can delay or halt apoptosis 

but often cell death continues by necrotic or intermediate pathway (Halliwell & Gutteridge, 

2007). Reduction in GSH can also activate the sphingomyelinase enzyme to catalyse the 

formation of ceramide (Singh et al., 1998).  Ceramide can trigger apoptosis in part by 

acting upon mitochondria and ceramide also contribute to apoptosis induced by cytokines 

and some other mediators in several cell types.   
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1.4.3 Apoptosis, Atherosclerosis and OxLDL  

 

Several studies have identified apoptotic cells including endothelial cells, vascular SMCs, 

T-lymphocytes and macrophages in animal and human atherosclerotic lesions (Littlewood 

& Bennet, 2003).  The distribution of apoptosis within the plaque as determined by in situ 

end-labelling techniques and in situ nick translation is heterogeneous, being more frequent 

in regions with a high density of macrophages (Liu et al., 2005; Tabas, 2005).  

Macrophage apoptosis has been proposed to be a mechanism by
 
which lipids accumulate 

within the coronary vasculature and
 

thereby contribute to plaque formation and 

progression.
 
Apoptosis of macrophages could be beneficial for plaque stability if apoptotic 

bodies were removed since macrophage apoptosis probably limits the number of necrotic 

macrophages and thrombogenicity associated with necrotic
 
cell death within lesions (Liu et 

al., 2005).  Several studies showed that apoptotic bodies in the advanced atherosclerotic 

plaque are often not scavenged, therefore activating the coagulation cascade, potentially 

leading to plaque rupture and luminal thrombosis.  Moreover, pathological studies of 

advanced lesions have revealed a strong correlation between macrophage apoptosis and 

large necrotic cores on the one hand and the incidence of plaque rupture and acute vascular 

events on the other (Tabas, 2005). 

 Two separate caspase-dependent apoptotic pathways have been implicated in 

oxLDL-induced apoptosis.  The extrinsic pathway, mediated by Fas and/TNFR and 

downstream by caspase-8/caspase-3 was demonstrated in endothelial cells (Li et al., 2006; 

Sata & Walsh, 1998a; Sata & Walsh, 1998b) and macrophages (Li et al., 2006).  In human 

coronary endothelial and SMCs, apoptotic signals mediated by both Fas and TNFR were 

observed (Napoli et al., 2000).  Activation of apoptotic receptors was accompanied by an 

increase of proapoptotic and a decrease in antiapoptotic proteins of the Bcl-2 family and 

resulted in marked activation of caspases.  Moreover, oxLDL also activated MAP and Jun 

kinases (oxidative stress proteins) and increased p53 and other transcription factors    

(ATF-2, ELK-1, CREB, AP-1) (Napoli et al., 2000). It was initially postulated that Bcl-2 

inhibits apoptosis by preventing lipid oxidation (Harada et al., 1997).  Recently Ermak et 

al., (2008) showed that Bcl-2 plays a role in preventing the release of cytochrome c from 

the mitochondria to the cytosol.   

The generation of ROS plays important role in oxLDL-mediated apoptosis, and 

antioxidants of various types including ebselen, rotenone and vitamin C have been shown 

to inhibit apoptosis (Coffey et al., 1995; Hsieh  et al., 2001; Siow et al., 1999).  In 

endothelial cells, oxLDL induces apoptosis via activation of CPP32-like protease and 
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appears to involve the elaboration of ROS (Dimmeler et al., 1997; Harada et al., 1997).  

Moreover, overexpression of Bcl-2 significantly suppressed the apoptotic cell death 

(Harada et al., 1997). In U937 cells, it was shown that oxLDL-induced apoptosis involved 

ROS generation.  In association with generation of ROS generation there was  

mitochondrial Bax translocation with a disruption of mitochondrial membrane potential, 

cytosolic liberation of cytochrome c and subsequently activation of caspases-9 and -3 

(Ermak et al., 2008).  Bcl-2 overexpression prevented Bax translocation but failed to 

prevent ROS generation indicating that ROS is an upstream signal for inducing 

mitochondrial apoptotic damage (Ermak et al., 2008).  OxLDL also promotes the over 

expression of Bax (Kataoka et al., 2001; Okura et al., 2000) and reduce Bcl-XL (Siow et 

al., 1999), thereby promoting susceptibility to apoptosis (Kataoka et al., 2001).   

Some studies observed caspase-3-dependent apoptosis caused by oxLDL (Chen et 

al., 2004; Dimmeler et al., 1997; Vindis et al., 2005), while others,  Porn-Ares et al., 

(2003) and Gieseg et al., ( 2008b) reported that oxLDL induced apoptosis by caspase-3 

independent pathway.  Interestingly, oxLDL trigger caspase-3-dependent apoptosis in 

THP-1 cells but caspase-3-independent necrosis in U937 cells (Baird et al., 2004).  OxLDL 

may activate a caspase-independent apoptotic pathway by the release of AIF from 

mitochondria (Zhang et al., 2004).  While, Chen et al., (2004) showed that oxLDL did not 

cause Bid truncation but activated caspase-3, Porn-Ares et al., (2003) observed that oxLDL 

induced Bid truncation -without any caspase-3 activation.  These discrepancies could be 

due to the variations in oxLDL preparation from laboratory to laboratory.   

A sustained rise of cytosolic calcium also plays an important role in oxLDL- 

mediated apoptosis by activating Bid cleavage and cytochrome c release (Escargueil-Blanc 

et al., 1994; Vindis et al., 2005).  OxLDL also triggers the over expression of the pro-

apoptotic protein p53 (Napoli et al., 2000) through a mechanism involving the over 

expression of manganese superoxide dismutase (MnSOD), and the sphingomyelin–

ceramide pathway activation (Kinscherf et al., 1998).  Exposure of macrophages to oxLDL 

can increase TNF-α generation which is itself a pro-apoptotic mediator and further 

contribute to the oxidative burden on the cells by inducing mitochondrial generation of 

ROS (Jovinge et al., 1996). Furthermore, oxLDL decreases expression of the endogenous 

cellular caspases inhibitor, FLICE-inhibitory protein (FLIP) in human ECs and thereby 

increases the level of apoptosis (Sata & Walsh, 1998a). 

 Changes in gene expression induced by oxLDL are mediated through the 

activation/inhibition of transcription factors, such as ATF-2, ELK-1, CREB, AP-1 and 

NFκB.  For instance, oxLDL and lysoPtCho elicit a dose- and time-dependent biphasic 
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effect on NFκB (activation by low concentrations of oxLDL and inhibition by higher 

concentrations) (Alcouffe et al., 1999; Sugiyama et al., 2004). NFκB regulates the 

expression of various genes involved in the balance between survival and apoptosis, such 

as A20, cMyb, cFLIP, Bfl-1/A1, c-IAP2, xIAP, TRAF1, and Bcl-xL (Auge et al., 2002).  

In endothelial cells, oxLDL-induced inhibition of NFκB reduces the expression of anti-

apoptotic genes, thereby increasing the susceptibility of cells to apoptosis (Heermeier et 

al., 2001).  

 Oxysterols components oxLDL, have been demonstrated to
 
largely account for the 

apoptotic activity of oxLDL in macrophages
 
(Aupiex et al., 1995; Chisolm et al., 1994).  

Among the  oxysterols,  7-KC which account for up to 30% of the total sterols in oxLDL 

(Brown et al., 1996) is the predominant one.  7-KC in the
 
10–25 µM range has been shown 

to induce apoptosis in macrophages,
 
vascular endothelial cells, and SMCs (Lizard et al., 

1999).  Another oxysterol, 25-hydroxycholesterol (25-OHC), induces apoptosis
 
in cultured 

monocyte-macrophages (Harada et al., 1997) and lymphoid cell
 
lines in the range of        

1–10 µM.  Oxysterols induce the release
 
of cytochrome c from mitochondria (Lizard et al., 

1998), which is the hallmark of
 
the mitochondrial apoptosis pathway. 7β-OH and 25-OHC 

caused apoptosis in U937 cells and HL60 cells (Aupiex et al., 1995), as did 7-KC (Lizard 

et al., 1998), which also induce apoptosis in bovine ECs and human ECs (Lizard et al., 

2000).  2-Oxoaldehydes caused apoptosis in U937 cells and rabbit aortic SMCs were found 

not to undergo apoptosis with lysoPtCho .   

 A large and rapid decrease in glutathione level was observed during 7-KC- and 

oxLDL-induced apoptosis in U937 cells (Lizard et al., 1998; Baird et al., 2004; 

respectively).  However, in oxLDL-induced apoptosis in THP-1, there was only a small 

decrease in glutathione level (Baird et al., 2004).  While caspse-3 activation was seen in in 

THP1 cells, it was absent in U937 cells.  It was postulated that the inhibition of caspase-3 

activation seen here is probably  due the glutathione loss where the rapid macrophage  

GSH loss caused by oxLDL have greatly increased the intracellular antioxidant stress, 

where caspase thiols can oxidized resulting in the loss of caspase activity (Baird et al., 

2004). 

Recently, Panini et al, (2001) and Rusinol et al., (2004) demonstrated that the 

mechanism by which 25-OHC and 7-KC induce apoptosis involves an increase in cytosolic
 

calcium and the subsequent activation of cytosolic phospholipase
 
A2 (cPLA2).  Their 

studies also show that macrophages treated
 
with 5,8,11,14-eicosatetraynoic acid (ETYA), 

an inhibitor of
 
arachidonic acid (AA) metabolism, are resistant to the induction

 
of apoptosis 

by 25-OHC or 7-KC indicating that metabolism
 
of cPLA2-released AA may be required for 
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the induction of apoptosis
 
by these oxysterols.

 
 Interestingly using P388D1 macrophage 

cell line and mouse peritoneal macrophages (MPMs), it was revealed
 
that the loss of 

ACAT activity in macrophages, results in reduced
 
induction of apoptosis in response to    

7-KC or oxLDL implying a role for ACAT in 25-OHC- and 7-KC- induced apoptosis 

(Freeman et al., 2005). 
 

MmLDL, generated by
 
exposure of LDL to 15-LO expressing cells, is able

 
to 

activate PI3K/Akt in macrophages (Rusiñol et al., 2004) a pathway known to
 
promote cell 

survival.  This mechanism is shown to be employed by macrophages for their survival at 

atherosclerotic lesions (Boullier et al., 2006).  In addition, a moderate reduction in 

extracellular pH can also protect macrophages against oxLDL-induced apoptosis (Gerry 

and Leake, 2008).   

Interestingly, receptors for oxLDL have recently been shown to affect cellular 

apoptotic responses to oxLDL differentially.  LOX-1 expression was linked to apoptosis in 

ECs (Adam et al., 2000; Gu et al., 1998), SR-AII over expression in SMCs increased 

apoptosis (Lehtolainen et al., 2000) and CD36 was linked to apoptosis in a 

monocyte/macrophages and other cells (Asmis & Jelk, 2000; Rusinol et al., 2000) 

however, SR-AI expression was linked to anti-apoptotic influence in THP-1 cells (Liao et 

al., 2000).  There is evidence that the surface of oxLDL particles and the surface of 

apoptotic cells have common epitopes and compete for receptor-mediated clearance by 

macrophages (Alcouffe et al., 1999; Bird et al., 1999). 

 

1.5 Inflammation and Atherosclerosis 

Macrophages and to a lesser extent T lymphocytes appear to be the dominant cells at the 

immediate site of plaque rupture or superficial erosion (Libby & Hansson, 1991; van der 

Wal et al., 1994). These sites moreover, were always characterised by abundant expression 

of HLA-DR antigens on both inflammatory cells and adjacent SMCs suggesting an active 

inflammatory reaction (van der Wal et al., 1994).  The HLA-DR antigens are class II major 

histocompatibility complex (MHC) membrane bound glycoprotein that play important role 

in the regulation of immune response.  The detection of inflammatory markers and 

antibodies in patients provides additional support for the inflammatory nature of the 

atherosclerotic lesion.  Xu et al., (1993) reported that there is a strong correlation between 

anti-heat shock protein 65 (anti-hsp65) antibodies and carotid atherosclerosis, suggesting 

that hsp65 might be involved in the pathogenesis of atherosclerosis.  In addition, 

measurement of serum levels of C-reactive protein (CRP) (an important marker of 

inflammation) demonstrates subclinical inflammatory states, which may reflect vascular 
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inflammation (Wilson et al., 2006).  CRP was also found abundant in early and late stages 

of atherosclerotic lesions (Patrick & Uzick, 2001).  Liuzzo et al., (1994) reported that, CRP 

and serum amyloid A protein levels were elevated in most of the patients with a diagnosis 

of unstable angina.  Elevation of soluble CD40 ligand is associated with platelet activation 

and therefore, increased risk of cardiovascular events (Scott, 2004).  The level of neopterin 

which is synthesised and released from IFN-γ activated macrophages is also significantly 

elevated in patients with vascular disease (Schumacher et al., 1992; Tatzber et al., 1991).  

Various infectious agents have also been shown to initiate or promote inflammatory 

atherogenesis.  Chlamydia pneumonia, Helicobacter pylori and cytomegalovirus have been 

identified in cardiovascular atheroma (Osterud & Bjorklid, 2003; Torgano et al., 1999).  It 

is noteworthy that lipopolysaccharide (LPS) is capable of enhancing both cell- and copper-

mediated LDL oxidation (Maziere et al., 1999). 

 

1.5.1 Interferon-γγγγ and Macrophages 
 

Macrophages are extremely versatile cells involve in a number of complex functions in 

disease and health.  The interaction between macrophages and lymphocytes within the 

atherosclerotic lesion microenvironment exemplifies a site where both innate and adaptive 

immunity contribute towards disease progression.  T lymphocytes constitute a significant 

proportion of the cell population in the atherosclerotic plaque.  Many of these T 

lymphocytes are in an activated state (Hansson et al., 1989a). There is evidence for local 

IFN-γ secretion both directly by immunohistochemistry (Hansson et al., 1989b) and 

indirectly by the induction of histocompatibility gene expression in surrounding cells 

(Carpenter et al., 1995b; Libby, 1995).  In addition, both protein and mRNA for IFN-γ 

have been detected in atherosclerotic lesions from humans and mice (Hansson et al., 

1989b; Zhou et al., 1998). 

IFN-γ has a dimer structure, and is much more plurifunctional than the other 

interferons, carrying out antiviral, anticellular, antiparasitic and immunoregulatory 

activities.  IFN-γ production is controlled by cytokines secreted by antigen presenting cells 

(APCs) most notably IL-12 and IL-18.  These cytokines serve as a bridge to link infection 

with IFN-γ production in the innate immune response.  Macrophage recognition of many 

pathogens induces secretion of IL-12 and chemokines.  These chemokines attract NK cells 

to the site of inflammation, and IL-12 promotes IFN-γ synthesis in these cells.  In 

macrophages, NK and T cells, the combination of IL-12 and IL-18 stimulation further 

increases IFN-γ production (Schroder et al., 2004).  
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IFN-γ is associated with both pro- and anti-atherogenic activities.  IFN-γ 

proatherogenic activities include up regulation of antigen presenting components like 

MHCs, activation of macrophages, stimulation of respiratory burst (Hansson et al., 2006), 

and induction of ceruloplasmin synthesis (Mazumder et al., 1997).  In addition, IFN-γ 

promotes T lymphocyte and monocyte recruitment by enhancing release of endothelial-

derived T cell α-chemoattractant (Cole et al., 1998) and increasing expression of the 

VCAM, ICAM-1 and MCP-1 chemokines (Leon & Zuckerman, 2005).  Conversely, IFN-γ 

inhibits induction of E-selectin, P-selectin, PECAM-1, MCP-1 receptor and CCR2 (Leon 

& Zuckerman, 2005).  Its antiatherogenic effect extend to the ability of IFN-γ to inhibit  

15-LO synthesis (Folcik et al., 1997).  

The effect of IFN-γ on cholesterol and lipid trafficking is rather conflicting.  For 

example SR-A and CD36 mRNA and protein expressions in human monocyte-derived 

macrophages and THP-1 cells macrophages are decreased by in vitro treatment with IFN-γ 

(Geng & Hansson, 1992; Grewal et al., 2001; Nakagawa et al., 1998).  The same studies 

observed a decrease in intracellular cholesteryl ester accumulation and subsequently foam 

cell formation.  In contrast to the down-regulation of SR-A and CD36, IFN-γ increased the 

expression of SR-PSOX in human monocytes and THP-1 cells, both at the protein and 

mRNA levels (Wuttge et al., 2004).  A similar effect was observed in IFN-γ treated apoE 

knockout mice where increased macrophage expression of SR-PSOX was detected in 

macrophages localised at the atherosclerotic lesions (Wuttge et al., 2004).  Up-regulation 

of this scavenger receptor would provide a mechanism for the continued uptake of oxLDL 

by macrophages while other scavenger receptors were down regulated by IFN-γ.   

IFN-γ inhibits LDL receptor expression in murine and human macrophages (Garner 

et al., 1997a; LaMarre et al., 1993) and VLDL receptor expression in phorbol ester 

stimulated   THP-1 and HL60 human macrophage cell (Kosaka et al., 2001).  IFN-γ also 

reduces lipoprotein (a)/apoprotein (a) receptor expression by disrupting ligand-induced 

receptor recycling (Skiba et al., 1994).  In addition, IFN-γ also decreases cholesterol efflux 

and ATP binding cassette transporter-1 (ABC1) expression in murine macrophages and 

macrophages derived foam cells and cholesterol efflux in THP-1 cells (Panousis & 

Zuckerman, 2000; Reiss et al., 2004). 

Moreover, IFN-γ decreases synthesis of lipoprotein lipase (LPL) (Garner et al., 

1997a; Jonasson et al., 1990), apoE (Garner et al., 1997a; Kalkan et al., 2005) and 

cholesterol 27-hydroxylase (Carpenter et al., 2001; Reiss et al., 2004).  Decrease in LPL 

and apo E synthesis could result in reduced LDL and VLDL clearance from the circulation 
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or lesion while decrease synthesis of 27-hydroxylase could reduce clearance of cholesterol 

from foam cells as 27-hydroxylation represents the first step in extrahepatic cholesterol 

metabolism.  Finally, IFN-γ stimulated increases in ACAT activity and expression in 

macrophages would be expected to promote cholesterol storage by increasing cholesterol 

ester content thereby promoting foam cell formation (Panousis & Zuckerman, 2000).   

 

1.5.2 Neopterin and 7,8-Dihydroneopterin 
 

In addition to the functions above, IFN-γ also upregulates the synthesis of 7,8-

dihydroneopterin.  All pteridines, including 7,8-NP and neopterin are synthesised in vivo 

from guanosine triphosphate (GTP) precursor, via GTP cyclohydrolase 1 (GTP-CH) 

(Figure 1.8).  The main trigger of GTP-CH is IFN-γ.   

The compound 7,8-dihydroneopterin triphosphate (NH2TP) is on the biosynthetic 

pathway of 5,6,7,8-tetrahydrobiopterin (BH4).  The conversion of NH2TP to BH4 requires 

the sequential action of 6-pyruvol tetrahydropterin synthase (6-PTPS) and sepiapterin 

reductase (Wachter et al., 1992).  BH4 represents the electron donor in the hydroxylation of 

phenylalanine to tyrosine in the liver and of tyrosine to L-dopa and tryptophan in 

neuroendocrine tissue synthesising catecholamines or serotonin (Walter et al., 2001).  BH4  

also serves as a cofactor for nitric oxide synthase (Walter et al., 2001).  

In human and primate tissues or cell lines, activity of PTPS was found to be lower 

as compared to that of other mammals with lowest activities found in monocytes and 

macrophages (Werner et al., 1990).  As a consequence, instead of synthesising BH4, 

monocytes and macrophages accumulate NH2TP, which, is then released as 7,8-NP due to 

the action of intracellular phosphatases.  7,8-NP diffuses out of the activated macrophages 

into the intracellular space and finally to the plasma.  7,8-NP can be oxidised to two 

different products depending on the oxidant.  Firstly, some of the 7,8-NP is oxidised to the 

highly fluorescent neopterin (Hamerlinck, 1999).  To date, the only mechanism known to 

generate neopterin from 7,8-NP is oxidation by hypohalous acids in particular HOCl, by 

the loss of hydrogen at carbon-7 and nitrogen-8 (Gieseg et al., 2001; Widner et al., 2000).  

The other product is 7,8-dihydroxanthopterin that comes about through the loss of the 

trihydroxylpropyl side chain at position 6 of 7,8-NP.  The reaction may occur by a retro-

aldol reaction initiated by the abstraction of a hydrogen atom from the middle carbon 

hyroxyl group on the 7,8-NP side chain.  This may occur through the scavenging action of 

7,8-NP of superoxide, peroxyl radicals and hydrogen peroxide (Gieseg et al., 2001; Murr 
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et al., 1994; Widner et al., 2000).  The compound 7,8-dihydroxanthopterin is not 

fluorescent and is difficult to detect in plasma.  
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7,8-dihydronepterin triphosphate (NH2TP) 

 

 

 

6-pyruvoyltetrahydropterin 
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Figure 1.8  The biosynthesis and metabolism of 7,8-dihydroneopterin and 

neopterin.   
Human monocytes/macrophages lack the enzyme 6-PTPTS that converts NH2TP to 6-pyruvol 

tetrahydropterin.  Monocytes and macrophages instead of synthesising BH4 accumulate NH2TP, which, 

after hydrolysis by phosphatases, is excreted as 7,8-dihydroneopterin or neopterin.  Adapted from 

Hoffmann et al., (2003) with modification. 
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1.5.3 Neopterin as a Marker of Inflammation 
 

Due to its fluorescent nature, neopterin is easily measured in plasma and urine by HPLC 

(Rippin, 1992; Werner et al., 1987).  Neopterin can also be measured using immuno-based 

methods such as radioimmunoassay or enzyme-linked immunosorbant assay (ELISA) 

(Wachter et al., 1989; Westermann et al., 2000).  For healthy individuals, mean neopterin 

serum concentrations lie within 5.2 + 2.7 nM and in urine range between 100 and 200 

µmol/mol creatinine (Wachter et al., 1989).  Only minimal data of other body fluids such 

as synovial fluid, saliva and cerebrospinal fluid from healthy controls are available due to 

the invasive techniques required to obtain these samples.  Nevertheless, neopterin 

concentrations in these samples range between 1.0 and 9.0 nM (Hoffmann et al., 2003).  In 

pus and plaque, neopterin concentrations were found to be up to 1.2 µM and 2.5 µM 

respectively (Firth et al., 2008; Gieseg, et al., 2008a, respectively).  

 Neopterin is constantly excreted via the kidneys, and the half-life of neopterin 

within the circulatory system was calculated to be approximately 90 min (Fuchs et al., 

1994).  The neopterin:7,8-NP ratio of 1:2 is nearly constant in urine, serum, or 

cerobrospinal fluid suggesting that neopterin is not further metabolised after production.  

Higher 7,8-NP to neopterin ratios exists in arterial as compared with venous blood.  Since 

neopterin is stable in biological fluids, it has become a useful marker for infectious and 

inflammatory diseases.  In certain countries, neopterin measurements are routinely used for 

blood and organ donor screenings.  Using a cut-off limit of the 98
th

 percentile of neopterin 

concentrations (=10nM), it is feasible to detect acute infections in blood donors with great 

sensitivity (Hoffmann et al., 2003). 

The production of 7,8-NP and neopterin correlates closely with activation of 

immune response by IFN-γ involving cell-mediated (Th1) immunity (Schroecksnadel et 

al., 2004).  An increased neopterin concentration in urine and serum is found in infections 

by viruses including human immunodeficiency virus (HIV), living bacteria, fungi and 

parasites.  Increased in neopterin concentrations also reflect the severity of the diseases for 

example autoimmune diseases, malignant tumor diseases, allograft rejection and some 

neurodegenerative diseases (Fuchs et al., 1994; Hamerlinck, 1999; Hoffmann et al., 2003; 

Wirleitner et al., 2005).   

Currently, plasma neopterin is not generally used in the management of 

cardiovascular diseases, however there is considerable amount of knowledge on its value.  

For example, higher serum concentrations of CRP and neopterin together with lower 

phospholipid concentrations are observed in patients with coronary heart disease (Rudzite 
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et al., 2003).  The decrease of serum total phospholipids concentrations in coronary heart 

disease may depend on an impaired phosphatidylcholine biosynthesis and an increased 

phosphatidylcholine phagocytosis mediated by CRP (Rudzite et al., 2003).  Serum 

neopterin concentration is increased in patients with unstable angina and acute myocardial 

infarction (Schumacher et al., 1992; Schumacher et al., 1997; Tatzber et al., 1991).  There 

is a strong correlation between serum neopterin and the thrombolysis in myocardial 

infarction risk score in patients with unstable angina or acute myocardial infarction 

(Johnston, et al., 2006). 

Some studies also demonstrate that neopterin production increased with increased 

production of reactive oxygen species and low serum concentrations of antioxidants like  

α-tocopherol (Schroecksnadel et al., 2004) and folic acid (Nathan, 1986).  These evidence 

point to the ability of neopterin as a marker of oxidative stress caused by an activated 

immune system.  Therefore, by measuring neopterin, not only the extent of cellular 

immune activation, but also the extent of tissue damage caused by reactive oxygen species 

can be estimated.  

 

1.5.4 Physiological Role of Neopterin and 7,8-Dihydroneopterin 

 
The physiological role of neopterin or 7,8-NP synthesis during inflammation is 

controversial.  It has been suggested that they are synthesised as pro-oxidants, enhancing 

oxidant production and cell death in combination with TNF-γ.  In contrast 7,8-NP has also 

been reported to act as antioxidant protecting biomolecules and macrophages from 

oxidants during inflammation (Gieseg, et al., 1995; Gieseg, et al, 2007; Gieseg, et al., 

2008a,b).  Numerous in vitro studies have provided evidence supporting these two 

functions as well as roles in apoptosis, signal transduction and gene expression.  

 

1.5.4.1 Effects of Neopterin and 7,8-Dihydroneopterin on Cell Death  
 

7,8-NP and neopterin are found to be very potent antioxidants at low concentration.  The 

addition of 1.5 mg/ml of oxLDL caused 50% loss in cell viability in THP-1 and U937 cells 

as measured using MTT assay (Baird et al., 2004).  In similar experiment, 90% loss of 

glutathione was observed in U937 cells but only 25% glutathione loss was observed in 

THP-1 cells (Baird et al., 2004).  Two hundred micromolar of 7,8-NP restored the U937 

cell  viability to 90% of the untreated control cells (Baird et al., 2005).  The addition of 

7,8-NP also resulted in concentration dependent protection of the cellular thiol pool with 

200 µM 7,8-NP reducing the oxLDL mediated loss to only 50% of the control U937 cells’ 
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level.  In contrast the THP-1 cells’ viability and thiol loss could not be prevented by the 

addition of 7,8-NP (Baird et al., 2005).  Interestingly,  200 µM 7,8-NP provides protection 

to both cell lines exposed to AAPH peroxyl radicals suggesting that the protection from 

oxLDL was not due to the scavenging of extracellular radicals or oxidants on the oxLDL 

(Baird et al., 2005).  The preincubation of oxLDL with 7,8-NP did not reduce the 

cytotoxicity (Baird et al., 2005).  This suggests that 7,8-NP may be acting in U937 cells by 

scavenging intracellular oxidants generated in the presence of oxLDL and consequently 

protecting the intracellular glutathione pool thus maintaining the redox state of the cell 

(Baird et al., 2005).   

 In erythrocytes, 7,8-NP at 50 µM reduced the H2O2- and AAPH-induced 

haemolysis by 39% and 100% of the control value after 12 hours incubation. (Gieseg et al., 

2000b; Gieseg et al., 2001).  One hundred µM 7,8-NP prevented hypochlorite (HOCl) 

haemolysis using a high HOCl concentration of 5 µmole/HOCl/10
7
 RBC (Gieseg et al., 

2001).  HPLC-TBAR analysis and measurement of dienes failed to show any connection 

between 7,8-NP inhibition of H2O2- and AAPH-induced haemolysis and lipid peroxidation.  

However, protein bound DOPA (protein oxidation marker) formation was reduced when 

erythrocytes were pretreated with 7,8-NP before addition of AAPH. This lead to 

speculation that 7,8-NP inhibit erythrocyte haemolysis by preventing protein oxidation 

(Gieseg et al., 2000b; Gieseg et al., 2001).    

The antioxidant effect of 7,8-NP and neopterin was also demonstrated by Baier-

Bitterlich et al., (1995).  Lower concentrations of 7,8-NP and neopterin, which is up to 

concentrations of 300 µM and 1 mM respectively, inhibit TNF-α mediated apoptosis of 

U937. Interestingly another study (Kojima et al., 1993) reported a suppression of 

superoxide-generating NADPH-oxidase by neopterin in macrophages stimulated with 

PMA.  Parallel with this, at lower concentrations, neopterin and 7,8-NP appeared to 

scavenge reactive oxygen intermediates and quench hydrogen peroxide induced 

chemiluminiscence.   

In contrast, 7,8-NP exhibits a strong pro-oxidant activity at high concentrations.  A 

concentration of 5 mM 7,8-NP superinduced TNF-α mediated apoptosis in U937 cells 

(Baier-Bitterlich et al., 1995).  At 5 mM concentration, 7,8-NP also induced a maximum 

apoptotic effect on rat pheochromocytoma cell line PC12 (Enzinger et al., 2002), neuronal 

NT2/HNT cells (Spottl et al., 2000) and Jurkat cells (Enzinger et al., 2002; Spottl et al., 

2000; Wirleitner et al., 1998; Wirleitner et al., 2001).  In Jurkat cells, 7,8-NP was 

demonstrated to induce apoptosis by a Bcl-2 sensitive pathway (Enzinger et al., 2002).  In 

rat alveolar epithelial cell line L2 cells, a strong proapoptotic effect of the pteridines were 
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discovered (Schobersberger et al., 1996).  Neopterin or 7,8-NP with concentration as low 

as 10 µM induced apoptosis and also augments TNF-α/ IFN-γ-mediated apoptosis in L2 

cells.  The same study also revealed no involvement of NO production on neopterin-

mediating apoptosis in L2 cells (Schobersberger et al., 1996).  This was not the case in 

neopterin- and 7,8-NP-induced apoptosis in vascular smooth muscle cells (VSMC) where 

inhibition of iNOS results in a strong suppression of the proapoptotic effects of neopterin 

in VSMC and it was suggested that neopterin-induced iNOS gene expression in VSMC via 

activation of NF-κB (Hoffmann et al., 1998; Hoffmann et al., 1996). 

High doses of 7,8-NP (5 mM) in the presence of TNF-α also enhanced the 

formation of ROS in U937 cells (Baier-Bitterlich et al., 1995).  Later it was illustrated that 

neopterin enhances hydrogen peroxide effects only in the presence of iron chelator 

complexes.  Antioxidants ranging form N-acetylcysteine (NAC) to pyrrolidine 

dithiocarbamate (PDTC), catalase and superoxide dismutase (SOD) have been 

demonstrated to significantly inhibit 7,8-NP-mediated apoptosis (Baier-Bitterlich et al., 

1995; Baier-Bitterlich et al., 1996a; Enzinger et al., 2002; Hoffmann et al., 2003; Spottl et 

al., 2000).  It therefore appears that the presence of excess 7,8-NP results in ROS 

generation, disrupting the oxidant/antioxidant balance and ultimately leading to cell death. 

 

1.5.4.2 Effect of Neopterin and 7,8-Dihydroneopterin on Radical Formation  
 

7,8-Dihydroneopterin rapidly reacts with free radical and oxidising species. The action can 

be either pro- or antioxidant depending on their concentrations.  At micromolar 

concentrations, 7,8-NP scavenges luminol chemiluminescence of zymosan-activated 

human macrophages (Heales et al., 1988) and inhibits hydrogen-peroxide-induced luminol 

chemiluminescence (Shen, 1994).  In splenic macrophages/PMA and xanthine/xanthine 

oxidase superoxide generation system, neopterin as low as 1 µM significantly suppresses 

the superoxide generation via the inhibition of NADPH-oxidase (Kojima et al., 1993).  7,8-

NP (Gieseg et al., 1995; Oettl et al., 1997) and to a lesser extent neopterin (Oettl et al., 

1997) acts a potent inhibitor of peroxyl radicals by effectively scavenging the radicals.  

Neopterin in contrast to 7,8-NP shows no reduction of the ESR signal except with 

superoxide radicals produced by xanthine oxidase.  This effect is shown to be due to an 

inhibition of enzyme rather than to radical scavenging (Oettl et al., 1997; Oettl & 

Reibnegger, 1999).  A spin trap study revealed a rate constant for the reaction between  

7,8-NP and peroxyl radicals that is quite close to the rate constant for the reaction between 
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peroxyl radicals and α-tocopherol (Oettl et al., 1997) indicating that 7,8-NP is as efficient 

antioxidant as α-tocopherol.  

 7,8-NP’s antioxidant capacities had been clearly demonstrated by it ability to 

inhibit LDL oxidation (Gieseg et al., 1995). Concentrations of 7,8-NP between 1 and 10 

µM dramatically increases, in a dose dependent manner, the lag time of low density 

lipoprotein oxidation and diminishing the consumption of vitamin E, mediated by copper 

ions or the peroxyl radical generator 2,2'-azobis (2-amidino propane) dihydrochloride 

(AAPH).  7,8-NP also inhibits AAPH mediated oxidation of linoleate.  7,8-NP appeared to 

be acting as a potent chain breaking antioxidant which functions by scavenging lipid 

peroxyl radicals (Gieseg et al., 1995).  Protein hydroperoxides and their decay product 

carbonyls make a large and significant contribution to the oxidative damage occurring on 

the LDL particle (Gieseg et al., 2003; Yan et al., 1997).  7,8-NP also appears to prevent 

copper- and AAPH-induced protein hydroperoxide formation on LDL by scavenging the 

lipid-derived radicals that are suggested to promote protein peroxidation (Gieseg et al., 

2003).  7,8-NP has also been shown to decompose protein hydroperoxides on BSA, but it 

is 7,8-NP’s scavenging activity that give more significant form of protection against the 

AAPH-mediated peroxidation of BSA (Duggan et al., 2001).  Using THP-1 cells and 

HMDMs, oxLDL formation is totally inhibited by micromolar concentrations of 7,8-NP 

(Gieseg & Cato, 2003).  As THP-1 cell mediated oxidation is independent of superoxide 

formation, it is likely that inhibition is due to scavenging the lipid peroxyl radicals in the 

LDL (Gieseg & Cato, 2003). 

 Nitric oxide and peroxynitrite have been implicated in modification of LDL within 

plaques.  7,8-NP appears to efficiently inhibit peroxynitrite-induced nitration of tyrosine by 

scavenging reactive nitrogen species (RNS) (Greilberger et al., 2004; Herpfer et al., 2002; 

Widner et al., 1998).  The protective effect of 7,8-NP on both peroxynitrite and copper-

mediated LDL oxidation was enhanced by preincubation before addition of oxidants which 

suggests that 7,8-NP might diffuse into the phospholipids layer of the LDL particle 

(Herpfer et al., 2002). 

 Conversely, the pteridines also exhibit pro-oxidant activities.  Neopterin is capable 

of enhancing peroxynitrite as well as copper-mediated LDL oxidation (Herpfer et al., 

2002) though the effect cannot be reproduced in our laboratory.  Although 7,8-NP is 

clearly a potent radical scavenger, under certain circumstances it can also exhibit pro-

oxidant activity.  In copper-induced LDL oxidation, a prooxidative effect of 7,8-NP could 

be observed if the 7,8-NP was added late during the lag phase of oxidation (Herpfer et al., 

2002).  This is probably due to the ability of 7,8-NP to reduce copper to its redox active 
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form, with antioxidant activity then dominating reactions once the reduction was complete 

(Herpfer et al., 2002).  The reaction also requires very high 7,8-NP concentrations.  The 

same effect was reported in phosphate-buffered solution containing low levels of iron 

where 7,8-NP enhanced the rate of hydroxyl radical generation (Oettl et al., 1999).  7,8-NP 

also has been shown to reduce another transition metal, iron, to the redox active ferrous ion 

state (Wirleitner et al., 2005). 7,8-NP’s strong reducing activity is also suggested to 

promote the oxidation of both minimally and moderately oxidized LDL in the presence or 

absence of copper ions (Greilberger et al., 2004).  

Neopterin and high concentration of 7,8-NP intensify hydrogen peroxide- and 

chloramine T-mediated luminol-dependent chemiluminescence assay suggesting an 

enhancement of free radical formation (Murr et al., 1996; Weiss et al., 1993).  Unlike 7,8-

NP, the effects of neopterin were generally dependent on pH.  For example, 3-

Nitrotyrosine formation was promoted by neopterin only between pH 4 to pH 5.5 (Widner 

et al., 1998), while its enhancement of chloramine T- and hydrogen peroxide-induced 

chemiluminiscence and cytotoxicity required a neutral or slightly alkaline pH (Weiss et al., 

1993).  In addition hydrogen peroxide-induced chemiluminescence was shown to be 

dependent on the presence of iron chelator complexes (Murr et al., 1994).   

 A few enzymes that play an important role as a source of radicals are also affected 

by the pteridines.  For example, in human neutrophils, it is suggested that by inhibiting 

myeloperoxidase, neopterin increases generation of singlet oxygen and hydroxyl radical 

and nitric oxide (Razumovitch et al., 2003).  In a melanoma cell line, neopterin enhances 

UV-A irradiation-induced DNA synthesis, which is inhibited by addition of the antioxidant 

catalase (Kojima et al., 1995). 

Moreover, neopterin can potentiate the toxicity of oxygen and chloride species 

originating from hydrogen peroxide and chloramines T against Escherichia coli, (Wede et 

al., 1999; Weiss et al., 1993).  At high concentration, 7,8-NP behaved like a pro-oxidant 

and the most likely explanation is that in the presence of molecular oxygen, 7,8-NP is 

prone to auto-oxidation and capable to form hydroxyl radicals via generation of superoxide 

anion (Oettl et al., 1999).   

 

1.5.4.3 Effect of Neopterin and 7,8-Dihydroneopterin on Gene Expression and 

      Signal Transduction 

 

Reactive oxygen intermediates play an important role in cellular metabolic events such as 

signal transduction and regulation of gene expression.  Disruption of the cellular redox 
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balance can also be accounted for neopterin- and 7,8-NP mediated activation of various 

redox transcription factors.  The transcription factor AP-1 (activator protein 1) is known to 

be able to sense the intracellular redox state and regulates the expression of multiple genes 

involved in stress response.  It is a dimer of proteins of the Fos and Jun families, usually a 

c-fos /c-jun heterodimer.  The activity of AP-1 is controlled both by regulating how much 

c-fos and c-jun the cell makes, and by phosphorylation of already-synthesised proteins (e.g. 

by mitogen-activated protein kinases (MAPKS)).  Various ROS can alter both 

processes.(Halliwell & Gutteridge, 2007).   

Along this line it was observed that incubation of cells with neopterin and to a 

greater extent 7,8-NP together with cGMP induces c-fos gene expression in a c-fos-CAT 

reporter transactivation system of NIH3T3 mouse fibroblasts (Uberall et al., 1994).  In 

Jurkat cells, 7,8-NP clearly activates the redox-sensitive transcription factor activation 

protein-1 chloramphenicol acetyltransferase (AP-1-CAT) and amplifies TNF-α induced 

NF-κB activation (Baier-Bitterlich et al., 1997b).  7,8-NP was found to enhance apoptosis 

in rat PC12 cells by up regulating signalling cascades associated with MAPKS (Enzinger 

et al., 2001).  Activation of p44/42 ERK was mediated by 7,8-NP alone, while strong 

activation of stress-activated protein kinase (SAPK) required co-incubation with TNF-α 

(Enzinger et al., 2002).  Altogether these data suggests that neopterin and 7,8-NP may alter 

the gene expression  by modulating the intracellular redox state.  It should be noted that, to 

date, no specific pteridine receptor has been reported.    

Neopterin enhances inducible nitric oxide synthase (iNOS) gene expression and 

subsequent nitric oxide release in rat vascular SMCs (Schobersberger et al., 1995).  

Neopterin also amplifies the secretion of TNF-α in peripheral blood mononuclear cells 

induced by LPS, IFN-γ, and IL-2 (Barak & Gruener, 1991).  In VSMC, neopterin is a 

potent stimulus of TNF-α gene expression and TNF-α protein release.  Coincubation of 

cells with both compounds resulted in at least additive effects on nitric oxide synthesis 

(Hoffmann et al., 1998).  These data suggest that neopterin and tumor necrosis factor-alpha 

are closely associated with regard to synthesis and effects, respectively. In conjunction 

with this, pretreatment of cells with the antioxidant pyrrolidine dithiocarbamate completely 

suppressed the effects of neopterin on NF-κB translocation to the nucleus, iNOS gene 

expression and nitric oxide (Hoffmann et al., 1996).  The interactions of both inflammatory 

mediators (neopterin and TNF-α) in vascular SMCs  might contribute to the excessive 

release of nitric oxide during inflammation. 
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In  transfected Jurkat cells, 7,8-NP induces trans-activation of the IFN-γ as well as 

the type I human T-cell leukaemia virus long terminal repeat sequence and HIV-1 

promoter, which is further substantiated when 7,8-NP is given in combination with 

hydrogen peroxide (Baier-Bitterlich et al., 1996a; Baier-Bitterlich et al., 1997a). A time- 

and concentration-dependent effect of neopterin on ICAM-1 gene expression and protein 

synthesis in type II-like alveolar epithelial cells has been detected (Hoffmann et al., 1999) 

and as mentioned earlier increased production of ICAM-1 promote the recruitment of 

immune cells into the intima.  Infectious diseases of the lungs (e.g. sarcoidosis, fibrosis, 

adult respiratory distress syndrome) are also associated with enhanced serum 

concentrations of neopterin and an increased production of ICAM-1 (Wirleitner et al., 

2005). 

The pteridines also affect second messengers.  For example, both neopterin and 

7,8-NP at micromolar concentrations induce an intracellular calcium influx in THP-1 cells 

(Woll et al., 1993) and effectively inhibits ATP-induced calcium release from alveolar 

epithelial cells (Hsieh  et al., 2001).  Neopterin was also demonstrated to cause cardiac 

contractile dysfunction in isolated perfused rat hearts (Balogh et al., 2005).  These results 

imply the adverse clinical effect of neopterin since deposition of calcium represents a 

serious deterioration in patient prognosis due to the increasing complexity of the plaque 

tissue. 
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1.6 Research Programme 
 

There are two major aims of this PhD project: 

� to develop foam cell model by treating human monocyte-derived macrophages 

(HMDMs) with copper oxidised low density lipoprotein (oxLDL).   

� to investigate the potential protective effect of 7,8-NP on oxLDL-induced damage 

to HMDMs and foam cells. 

The formation of foam cells from monocyte-derived macrophages is believed to be the 

hallmark of the pathogenesis of atherosclerosis whereby; cytotoxic effect of oxLDL is 

detrimental to the atherosclerotic lesions.  The role of 7,8-NP in vivo remains controversial 

but, given the oxidative stress that the cells encounter at and the inflammatory nature of the 

atherosclerosis plaque, the cells are likely to evolve some mechanisms to survive in these 

environments.  Increasing number of studies have demonstrated an antioxidant ability of 

7,8-NP in vitro, raising the possibility that macrophages may synthesize this 7,8-NP to 

protect themselves and/or other substrates from oxidative damage. 

Chapter 3 will discuss the preliminary work done on optimising the factors needed for 

maximum growth of HMDMs.  This chapter will clarify the effect of different media, 

percentage of heat inactivated human serum and tissue culture plates on the growth of 

HMDMs.  The formation of foam cells is investigated in Chapter 4.  The accumulation of 

cholesteryl ester in cells treated with oxLDL as compared to control cells (cells not treated 

with oxLDL) will be used to determine the formation of foam cells.  The lipid contents 

(free and total cholesterol contents) are analysed by high performance liquid 

chromatography (HPLC) and gas chromatography (GC) methods.  Oil rapid-O staining 

will also be used to show the accumulation of lipid in the cells.  Attention will then turn to 

the effects of toxic concentration of oxLDL on cholesteryl ester loaded macrophages by 

looking at the cell viability and the secretion of 7,8-NP. 

The mechanisms of oxLDL-induced damage on HMDMs will be discussed in detail in 

Chapter 5.  Loss in cell viability and changes in morphology will be used to determine the 

cytotoxic effects of oxLDL.  Effects of oxLDL on glutathione loss, caspase-3 activation, 

cytochrome c release, ROS generation and phosphatidylserine exposure will be examined.  

The efficacy of 7,8-NP to protect HMDMs from oxLDL-induced damaged will be 

conducted by adding 7,8-NP. 
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2 Materials and Methods 
 

2.1 Materials 
 

2.1.1 Reagents 
 

All reagents used were of analytical grade or better. All solutions were prepared using ion-

exchanged ultra filtered water, produced using a NANOpure ultrapure water system from 

Barnstead/Thermolyne (IA/USA).  

 

β-mercaptoethanol  Sigma Chemical Co., St. Louis, USA 

1,1'-dioctadecyl-3,3,3',3'-         Aldrich Chemical Co., Wisconsin, USA  

tetramethylindocarbocyanine perchlorate (DiI) 

1,1,3,3-Tetramethoxypropane (TMP) Sigma Chemical Co., Missouri, USA  

1,4-Dithiothreitol (DTT) Boehringer, Mannheim, Germany 

3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl- Sigma-Aldrich Chemical Co., Missouri, USA 

tetrazolium bromide (MTT) 

4’6-diamidino-2-phenylindole (DAPI) Aldrich Chemical Co., Wisconsin, USA 
4-morpholine-propanesulfonic acid (MOPS) Sigma Chemical Co., Missouri, USA 

7,8-Dihydroneopterin (7,8-NP) Schircks Laboratory, Switzerland 

Acetic acid Merck Ltd, Poole, England 

Acetone Merck Ltd, Poole, England  

Anchor non fat milk powder Fonterra Brand New Zealand, Ltd, NZ 

Annexin V Apoptosis Kit Santa Cruz Biotechnology Inc., (USA) 

Argon gas BOC Gasses; Auckland, NZ 

Ascorbic acid Sigma Chemical Co., St. Louis, USA 

Bicinchoninic acid (BCA) protein determination  Pierce, Illinois, USA 

kit  

Bovine serum albumin (BSA) Sigma Chemical Co., Missouri, USA 

Bromophenol blue Sigma Chemical Co., Missouri, USA 

Butylated hydroxytoluene (BHT) Sigma Chemical Co., Missouri, USA 

Calcium chloride BDH lab supplies Ltd., Poole, England 

Chelex 100 resin Bio-Rad Laboratories, California, USA 

Chloroform Merck Ltd and Asia Pacific Speciality  

  Chemicals Ltd, Auckland, NZ 

Cholestane Sigma Chemical Co., Missouri, USA 

Cholesterol Sigma Chemical Co., Missouri, USA 
Cholesteryl arachidonate Sigma Chemical Co., Missouri, USA 
Cholesteryl linoleate Sigma Chemical Co., Missouri, USA 
Cholesteryl palmitate Sigma Chemical Co., Missouri, USA 
Cholesteryl oleate Sigma Chemical Co., Missouri, USA 

Cholesterol reagent Roche Diagnostics GmbH,  

  Mannheim,Germany 

Copper chloride  BDH lab supplies Ltd., Poole, England  
Coumassie blue Bio-Rad Laboratories, California, USA 

Cytochrome C Sigma Chemical Co., Missouri, USA 

Deoxyribonucleic acid (DNA) Sigma Chemical Co., Missouri, USA 

Dialysis tubing Biolab Scientific, Auckland, NZ 

Di-ammonium hydrogen orthophosphate BDH lab supplies Ltd., Poole, England  
Diethyl ether Merck Darmstadt, Germany 

DL-Buthionine-[S,R]-Sulfoximine (BSO) Sigma-Aldrich Chemical Co., Missouri, USA 

Dimethyl sulphoxide (DMSO) BDH lab supplies Ltd., Poole, England 

Ethanol BDH lab supplies Ltd., Poole, England 
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Ethyl acetate Merck Darmstadt, Germany   

Ethylenediaminetetraacetic acid (EDTA) BDH lab supplies Ltd., Poole, England 

Ethlylene glycol-bis(2-aminoethylether)- Sigma Chemical Co., Missouri, USA 

N,N,N’,N’-tetracetic acid (EGTA) 

Glycerol Sigma Chemical Co., Missouri, USA 

Glutathione (reduced form) Sigma Chemical Co., Missouri, USA  

HEPES Sigma Chemical Co., Missouri, USA 

Hexane Merck Darmstadt, Germany 

Hydrochloric acid (HCl) BDH lab supplies Ltd., Poole, England  
Iodine BDH lab supplies Ltd., Poole, England  
Interferon-γ (IFN-γ) Imukin®; Boehringer Ingelheim Pty Ltd,  

   New South Wales, Australia 

Isopropanol (2-propanol) J.T. Baker, New Jersey, USA 

Lymphoprep Axis-Shield PoC AS, Oslo, Norway 

Magnesium chloride BDH lab supplies Ltd., Poole, England  
Methanol  Merck Darmstadt, Germany 

Molecular Weight Marker Fermentas International Inc, Ontario, Canada 
Monobromobimane Sigma-Aldrich, Steinheim, Switzerland 

Neopterin Schircks Laboratory, Switzerland 

Nitrogen gas BOC Gasses, Auckland, NZ 

N,O-bis(Trimethylsilyl)trifluoroacetamide (BSTFA) Sigma Chemical Co., Missouri, USA 

NuPAGE 4-12% Bis-Tris Gel, 1.0 mm x 10 well Invitrogen, California, USA 

Oil Red-O Sigma Chemical Co., Missouri, USA 

Paraformaldehyde Merck Darmstadt, Germany  

Phenol Sigma Chemical Co., Missouri, USA 

Ponceau S Sigma Chemical Co., Missouri, USA 

Potassium bromide  Merck Darmstadt, Germany 

Potassium hydroxide Merck Darmstadt, Germany 

Potassium iodide May & Barker Ltd, Dagenham, England 

Pyridine Sigma Chemical Co., Missouri, USA 

Sodium azide BDH lab supplies Ltd., Poole, England 

Sodium chloride BDH lab supplies Ltd., Poole, England  
Sodium dihydrogen orthophosphate Merck Darmstadt, Germany 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich Chemical Co., Missouri, USA 

Sodium hydrogen carbonate (NaHCO3) Merck, Darmstadt, Germany 

Sodium hydroxide  Merck, Darmstadt, Germany  

Sucrose Chelsea Sugar Refinery, Auckland, NZ 

Supersignal West Dura chemiluminescence Pierce Biotechnology Inc., Illinois, USA 

Thimerosal Sigma Chemical Co., Missouri, USA 

Trichloroacetic acid (TCA) Sigma Chemical Co., Missouri, USA 

Trifluoroacetic acid (TFA) Sigma Chemical Co., Missouri, USA 

Tris  Roche Diagnostics GmbH, Mannheim, 

  Germany 

Trypan blue solution (0.4%) Sigma-Aldrich Chemical Co., Missouri, USA  

Tween-20 Sigma-Aldrich Chemical Co., Missouri, USA. 

Vetashield Vector Laboratories Inc. California, USA 

 

2.1.2 Antibodies 
 
Donkey anti-goat IgG HRP-conjugated Santa Cruz Biotechnology Inc., California,  

  USA 

Goat anti-mouse IgM HRP-conjugated Santa Cruz Biotechnology Inc., California,  

  USA 

Goat anti-mouse IgG HRP-conjugated Pierce Biotechnology Inc., Illinois, USA 

Goat anti-rabbit IgG HRP-conjugated Pierce Biotechnology Inc., Illinois, USA 

Goat Polyclonal IgG to SR-A Santa Cruz Biotechnology Inc., California,  

  USA 
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Mouse IgG2a E-8 to Caspase-3 Santa Cruz Biotechnology Inc., California,  

  USA 

Mouse Monoclonal IgM to CD36 (SMφ) Santa Cruz Biotechnology Inc., California, 

USA 

Mouse Monoclonal to β-Actin Sigma-Aldrich Chemical Co., Missouri, USA 

Rabbit Polyclonal IgG to Cytochrome c Santa Cruz Biotechnology Inc., California,  

  USA 

Sheep Anti-mouse IgG HRP-conjugated Amersham Biosciences, Buckinghamshire, 

  England 

 

2.1.3 Media 
 
Hanks’ balanced salt solution (HBSS) Sigma-Aldrich Chemical Co., Missouri, USA. 

Macrophage-SFM Medium Gibco, New York, USA  

Penicillin/streptomycin (100 units/ml penicillin G  Gibco, New York, USA 

and 100µg/ml streptomycin, final concentration)  

Roswell Park Memorial Institute 1640 (RPMI) Sigma-Aldrich Chemical Co., Missouri, USA 

RPMI 1640, without phenol red Sigma-Aldrich Chemical Co., Missouri, USA 

 

2.1.4 General Solutions, Buffers and Media 
 

2.1.4.1 Phosphate Buffered Saline (PBS) 

 

Phosphate buffered saline (150 mM sodium chloride and 10 mM sodium dihydrogen 

orthophosphate, pH 7.4) was stirred with 1 g of washed Chelex 100 resin for at least four 

hours to remove contaminating metal ions before being vacuum filtered through a 0.45 µm 

membrane.  PBS required for cell culture work, was autoclaved for 15 minutes, at 121 °C 

and 15 psi.   

 

2.1.4.2 Roswell Park Memorial Institute (RPMI) Media (with or without phenol 

red) 
 

The media was prepared as per the manufacturer’s instructions.  Powdered RPMI was 

dissolved in water, before adding sodium bicarbonate and adjusting the solution to pH 7.4 

with 1 M HCl or 1 M NaOH.  The media was sterilized using a peristaltic pump (CP-600, 

Life Technologies, Maryland, USA) and a 0.22 µm Millex
®

-GP50 filter (Sartorius AG, 

Goettingen, Germany) into sterile bottles and stored at 4 °C.  RPMI 1640 containing 

phenol red was used to maintain the cells and supplemented with 100 units/ml penicillin G 

and 100 µg/ml streptomycin. 

 

2.1.4.3 7,8-Dihydroneopterin Solution 

 

A 2 mM stock of 7,8-dihydroneopterin (7,8-NP) was prepared fresh prior to each 

experiment.  It was dissolved in degassed ice cold RPMI during a two to five minute 
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sonication.  7,8-NP was subsequently sterilized by filtration through a 0.22 µm membrane 

filter (Sartorius AG, Goettingen, Germany). 

 

2.1.4.4 BSO Solution 
 

A 5 mM stock of DL-buthionine-S-sulfoximine (BSO) solution was prepared prior to each 

experiment.  BSO was dissolved in RPMI and sterilized by filtration through a 0.22 µm 

membrane filter. 

 

2.1.4.5 4% Paraformaldehyde in PBS 

 

Two grams of paraformaldehyde was added to 40 ml of PBS and heated on a heating block 

to dissolve. The temperature was not allowed to exceed 60 °C.  A few drops of 10 M 

NaOH were gradually added to help paraformaldehyde to dissolve.  Once the solution had 

cooled to room temperature, it was made up to 50 ml with nanopure water and the pH was 

adjusted to 7.4 with 11.44 M HCl.  It was kept at 4 °C for 2-3 weeks. 

 

2.2 Methods 
 

2.2.1 LDL Preparation 
 

2.2.1.1 Density Gradient Solutions for Ultracentrifugation 
 

Density gradient solutions were prepared by dissolving required amount of NaCl in 

nanopure water.  Firstly, a 10 mg/ml EDTA solution was prepared by dissolving EDTA in 

nanopure water and adjusting the pH to 7.4 with 10 M NaOH.  Solutions A and B of 

density 1.0688 g/ml and 1.043g/ml  were made up by adding 8 g and 5g NaCl respectively 

to 10 ml of 10 mg/ml EDTA solution and made up to 100 ml with nanopure water.  

Calculation to prepare solution A. 

The partial specific volume of NaCl is 0.14 ml/g.  Therefore 8 g of NaCl will 

occupy 8 x 0.14 ml in solution or 1.12 ml.  The 100 ml of solution will therefore 

contain 8 g of NaCl and 98.88 ml of water, giving a mass of 106.88 g.  The density 

will therefore be 106.88/100 or 1.0688 g/ml.   

Finally, solution C of density 1.0 g/ml was made up by adding 10 ml of 10 mg/ml EDTA 

solution to 90 ml of nanopure water. 

 

2.2.1.2 Preparation of Dialysis Tubing  
 

The dry dialysis membrane tubing (Medical International Ltd, London, England) with 14.4 

mm flat width and molecular weight cut off, 14,000 Daltons, was pre-treated before use.  
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The dialysis tubing was first cut into 220 mm lengths.  The tubes were boiled in a glass 

beaker containing solution of 5 % w/v NaHCO3 and 1 mM EDTA.  After 20 minutes of 

boiling, the tubes were washed with reverse osmosis- water (RO-H2O) and boiled again in 

a glass beaker containing RO-H2O.  After 20 minutes the tubes were washed thoroughly 

with RO-H2O and stored in solution of RO-H2O:ethanol (50:50 v/v) at 4 °C.  The tubes 

were washed thoroughly with RO-H2O again before being used for dialysis. 

 

2.2.1.3 Blood Collection for Isolation of Plasma 

 

A written consent was first obtained from the healthy blood donors who were required to 

fast overnight.  Blood was collected from donors by venipuncture using a 21 G x ¾ inch or 

19 G needle attached to a 30 ml syringe.  The blood was transferred into 50 ml centrifuge 

tubes containing 0.5 ml of 10% (w/v) EDTA (pH 7.4).  Fifty ml of whole blood was placed 

into each tube.  The tubes were centrifuged for 20 minutes at 4 °C in a swing-out rotor at 

4,700 rpm with soft start using Multifuge 1 S-R centrifuge (Sorvall Heraeus, Kendor 

Laboratory Products GmBH, Germany).  The maximum radius of the swing-out rotor was 

18.7 cm.  The resulting top yellow plasma was transferred to 50 ml round bottom 

centrifuge tubes and spun for 30 minutes at 11,000x g in a fixed angle rotor to remove any 

remaining trace of cells.  Plasma from all donors was pooled and total volume was 

recorded.  The pooling of plasma minimized inter-individual variation.  The plasma was 

stored in 20 ml or 32 ml aliquots at –80 °C for a maximum of six months (Gieseg, et al., 

1994). 

 

2.2.1.4 Low Density Lipoprotein (LDL) Preparation Using Swing Out Bucket Rotor 

Method (SWT 4i) 

 

A tube of plasma (20 ml) was thawed under running cold water (approximately 6 °C) and 

centrifuged at 4,700 rpm for ten minutes at 4 °C to remove any precipitated fibrinogen.  

The supernatant was decanted into a beaker placed on ice.  Potassium bromide (410 

mg/ml) was gradually added to the plasma while continuous stirring with a magnetic stirrer 

to produce a plasma density of 1.41 g/ml.  The plasma was pipetted evenly between six 

Beckman ultracentrifuge tubes.  3 ml of solution A was gently layered onto the plasma by 

using syringe attached to 180° bend needle followed by 3 ml of solution B and finally 

solution C (see section 2.2.1.1).  

 The centrifuge tubes were then transferred to a Beckman SW41-Ti rotor and 

centrifuged at 40,000 rpm for 22 hours at 10°C using an Optima
TM

 L-90K Preparative 

Ultracentrifuge (Beckman Coulter, Inc., Fullerton, California).  The top VLDL layer was 
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first discarded.  An orange band of LDL in the density range of 1.019 g/ml to 1.063 g/ml 

was collected using 20 ml syringe attached to 90° bend needle.  The HDL band which was 

the second yellow band from the bottom of the tube was collected using the same way.  

The LDL or HDL was transferred into treated dialysis tube, layered with argon gas and 

dialysed for 24 hours at 4 °C against four changes of degassed PBS containing Chelex 100 

resin in order to remove all traces of EDTA.  Freshly dialysed LDL or HDL was stored 

under argon and filter sterilized through a 0.22 µm membrane filter immediately prior to 

the start of an experiment. 

 

Figure 2.1 Location of lipoprotein fractions after centrifugation. 

 

2.2.1.5 LDL Preparation Using Vertical Beckman NVT65 Rotor Method 
 

This method is performed using a Beckman Near Vertical Rotor using the method of 

Chung et al. (1980) with modification described in Gieseg and Esterbaur (1994).  The 

method was directly adapted from Dr. Wendy Jessup at The Heart Research Institute Ltd, 

Sydney for LDL preparation in a vertical rotor.  The method involves setting up a one step 

gradient that, during centrifugation, redistributes to form a gradient that separates the 

lipoproteins. 

 Thirty two ml EDTA-plasma was thawed under running cold water, and 

centrifuged at 4,700 rpm for ten minutes at 4 °C to remove any precipitated fibrinogen.  

The supernatant was decanted into a beaker placed on ice and the plasma density was 

adjusted to a density of 1.24 by gradual addition of 382 mg/ml of solid KBr.  The solution 

was gently stirred to prevent the formation of foam, which is the sign of LDL denaturation.  

Eight ml of degassed 1 mg/ml EDTA pH 7.4 solution was added to 8 centrifugation tubes 



Chapter 2 

_____________________________________________________________________________________________________________ 

 

53 

 

before under layering with 4 ml of KBr-plasma using a long luer-fitting needle attached to 

a 5 ml syringe.  The tubes were transferred to NVT-65 rotor and centrifuged at 60,000 rpm 

for 2 h at 10 °C using slow acceleration/deceleration.  An orange band of LDL was 

collected using the same method as above and dialysed. 

 

2.2.1.6 Determination of Cholesterol Content of LDL  

 

LDL concentration was determined as a function of cholesterol level using a cholesterol kit 

supplied by Roche Diagnostic.  The cholesterol content of LDL was determined by 

incubating 10 µl of LDL with 1 ml of cholesterol reagent at room temperature.  After 

incubation for ten minutes, the absorbance was measured at 500 nm against a blank 

containing only cholesterol reagent.  An LDL concentration was calculated from this 

absorbance, based on an estimate of cholesterol accounting for 31.69% of the LDL particle 

by weight and LDL having a molecular weight of 2.5 MDa (Gieseg, et al., 1994).  

Calculation of LDL concentration: 

Molar cholesterol: Absorbance x 14.9 = mM cholesterol 

Mass cholesterol:  Concentration (M) x 386.64  g/mol (g/l) 

Total mass LDL: 31.69% of LDL is cholesterol: g/l x 100/31.69 = g/l LDL (or mg/ml 

LDL concentration) 

Concentration of LDL (M) = g/l LDL / 2.5 x 10 
6 

 

All the concentrations of oxLDL used in the experiments are based on the concentrations 

of the total mass of LDL,  unless stated otherwise.  
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2.2.1.7 Preparation of Oxidised LDL 
 

Copper chloride (CuCl2) from a sterile 50 mM stock was added to filter sterilised 3 mg/ml 

of total mass LDL in a 25 ml cell culture flask at a final concentration of 300 to 400 µM.  

mixture was incubated for 15 hours at 37 °C.  The LDL oxidation was carried out in the 

absence of any buffer. The presence of heavily oxidesed LDL was indicated by the 

changing of LDL colour to colourless.  The copper ions were removed by mixing the 

oxidised LDL with 1 g Chelex 100 resin by placing the tube on a rotating turntable which 

inverts the tube 8 times in a minute.  This was done at 4 °C for 2 hours.  The Chelex 100 

resin was allowed to settle down by centrifugation at 500x g for 2 minutes or left standing 

for 1 h before collecting the oxLDL from above it.  OxLDL was concentrated using a 

Vivapore membrane concentrator (Millipore, MA, USA) to the concentration (usually 

between 10 to 12 mg/ml) necessary to allow a small volume of oxLDL to be added to the 

medium during experimentation.  OxLDL was filter sterilised through a 0.22 µm 

membrane filter and stored at 4 °C. 

 

2.2.2 Cell Culture 
 

All cell manipulations were performed under aseptic conditions in a Class II biological 

safety cabinet (Clyde-Apex BH 200).  All instruments and equipment were either sterile 

plastic ware (Falcon products, Bector Dickinson & Co.; Nunc products, Nalge Nunc 

International; Sarstedt products, NC, US; and Greiner products, Greiner Bio-one, 

Frickenhausen, Germany) or had been sterilized by autoclaving (15 minutes, 121°C and 15 

psi).   All media and solutions to be added to the cells were sterilised by autoclaving or by 

filtration through a 0.22 µm membrane filter.  Cells were kept at 37 °C in a humidified 

incubator, with an atmosphere calibrated to 5% carbon dioxide: 95% air (Nuaire™ IR 

Autoflow).  All equipments and the outside of bags and tissue culture dishes and flasks 

were sprayed with 70% (v/v) ethanol. 

 

2.2.2.1 Human Monocyte-Derived Macrophages 
 

Ethics approval for the use of human blood was granted by the Upper South B Committee 

(protocol number 98/07/069).  The isolation procedure for HMDMs was adapted from 

Firth (2006).  All the solutions for the preparation of human monocyte-derived 

macrophages were warmed to room temperature.  All the operations were performed at 

room temperature.  Once isolated, the cells were maintained in RPMI 1640 containing 
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phenol red supplemented with 10% (v/v) heat-inactivated human serum, 100 units/ml 

penicillin G and 100 µg/ml streptomycin. 

 

2.2.2.2 Preparation of Human Monocyte-Derived Macrophages 
 

Unlinked blood in a 600 ml autologous bag was obtained from haemochromatosis patients 

by the NZ Blood Bank (Riccarton Road, Christchurch).  Written permission was given by 

the NZ Blood.  Consent was verbally obtained from the donors by the nurse.  There was no 

contact made between researcher and donor, nor was any identifying label on the blood 

bags so designating this blood as “unlinked”. The blood bag was gently inverted several 

times to ensure even distribution of blood cells and then aseptically transferred to 50 ml 

centrifuge tubes.  The tubes were centrifuged at 3000x g, with the brake off, for 30 minutes 

at room temperature.   

 The resulting buffy coat of white cells was removed using a mixing cannula 

attached to 10 ml syringe and mixed with Hanks’ Balanced Salt Solution (HBSS) or PBS 

in a ratio of 15 ml buffy coat:20 ml buffer.  Then this mixture was underlayed with 15 ml 

of Lymphoprep using a mixing cannula attached to 25 ml syringe.  After centrifuging at 

room temperature at 1000x g for 30 minutes with the brake off, a white layer of 

monocytes/lymphocytes was visible approximately halfway down the centrifuge tube.  

This layer was transferred to new centrifuge tubes with a syringe and mixing cannula and 

washed four times in 45 ml HBSS or PBS by centrifugation at 500x g; the first wash was 

15 minute centrifugation followed by 10 minutes centrifugation for the subsequent 

washing.  Either HBSS or PBS could be used to suspend the cells from Lymphoprep or to 

wash the cells in the procedures above since preliminary works showed that both solutions 

did not affect the yield of the cells or interfere with their growth (data not shown). 

 After washing, the cells were resuspended in serum-free RPMI 1640 (warmed to 

room temperature), at a concentration of 5x10
6
 cells/ml, and then 7 ml per well was 

aliquoted into six well suspension plates (Falcon products, Bector Dickinson & Co.).  The 

plates were incubated for approximately 40 hours to allow T cells death and platelets to 

adhere to the surface of the plates while the monocytes remain viable in suspension.  The 

monocytes were subsequently resuspended in fresh RPMI 1640, supplemented with 10% 

heat-inactivated human serum, at a concentration of 5x10
6  

cells/ml and plated at 1 ml/well 

in 12 well adherent plates.  Fresh medium (RPMI 1640 containing 10% heat-inactivated 

human serum) was renewed every three to four days and experiments were conducted once 

the majority of monocytes had matured to macrophages, usually 14 days after the initial 

isolation of the cells.   
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2.2.3 Preparation of Serum 

 

2.2.3.1 Heat-Inactivated Human Serum (HIHS) 
 

Unlinked blood from consenting haemochromatosis patients was collected into 600 ml dry 

bags by the NZ Blood Bank (Riccarton Road, Christchurch).  The blood was left in upright 

position at 4 °C overnight to provide sufficient time for the serum to separate from the 

blood clot which developed.  The bag was opened under sterile conditions and the serum 

was collected into 50 ml centrifuge tubes using a 20 ml syringe attached to a mixing 

cannula.  The tubes were centrifuged at 1500 rpm for 15 minutes and the resulting serum 

was decanted into new centrifuge tubes.  The serum was heat inactivated in a water bath at 

56 °C for 30 minutes before being cooled to 4 ºC, and then transferred to –20 ºC and later 

to –80 ºC refrigerator for long term storage.  Serum was stored for up to one year. 

 

2.2.3.2 Lipoprotein Deficient Serum (LPDS) 

 

Lipoprotein deficient serum (LPDS) was prepared from HIHS by adjusting the density of 

HIHS to 1.24 g/ml with KBr.  The partial specific volume of KBR is 0.31 ml/g (refer to 

section 2.2.1.1 for the calculation of density).  Twenty ml of HIHS was poured into a 

beaker placed on ice and 7.63 g KBr was added to it with gentle stirring.  The resulting 

mixture was pipetted evenly between six Beckman ultracentrifuge tubes.  Solution A was 

overlayed onto the serum till to the top of the tubes by using 180° bend needle attached to 

10 ml syringe.  The tubes were then transferred to a Beckman SW41-Ti rotor and 

centrifuged at 10 °C and 40,000 rpm for 20 hours.  The upper layer solutions were 

removed leaving a light orange band of LPDS at the bottom of the tubes.  This was 

collected using 20 ml syringe attached to 90° bend needle.  This was transferred into 

treated dialysis tube and dialysed for 24 hours at 4 °C against four changes of degassed 

PBS containing Chelex 100 resin in   order to remove all traces of EDTA.  The LPDS was 

filter sterilized through a 0.22 µm membrane filter before addition to the media. 

 

2.2.4 Determination of Protein Concentration  
 

Protein concentration was determined using the bicinchoninic acid (BCA) protein 

determination kit from Sigma.  The working reagent was freshly prepared by mixing 

Reagent A (sodium carbonate, sodium bicarbonate, BCA and sodium tartrate in 0.1 M 

sodium hydroxide) and Reagent B (4% CuSO4.5H2O) in a 50:1 ratio.  The assay was 

carried out by mixing 50 µl with 1 ml of working reagent and incubated at 60 °C for 30 

minutes with gentle shaking.  The reaction was subsequently stopped by placing samples 
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on ice before reading the absorbance at 562 nm against a water blank.  Protein 

concentration was determined from a standard curve prepared by the incubation of known 

concentrations of BSA (0-250 µg/ml) in 1 ml of working reagent. 

 

2.2.5 Determination of Cellular DNA Content 
 

2.2.5.1 Solutions for Determination of Cellular DNA Content 

 

The buffer contained 100 mM NaCl, 10 mM EDTA and 10 mM Tris, pH 7.  4’6-

diamidino-2-phenylindole (DAPI) stock was prepared by dissolving DAPI in water at 1 

mg/ml before diluting further to 10 µg/ml in water.  The assay used a final concentration of 

100 ng /ml of DAPI, therefore 10 µl of 10 µg/ml stock was added to 1 ml of buffer.  The 

stock solution was stored in dark at 4 °C and stable for 2 to 3 weeks.  DNA from calf 

thymus (Sigma Chemical Co., product number D1501) was used as DNA standard and the 

concentration was adjusted to 20 µg/ml by measuring the absorbance at 260 nm. The DNA 

concentration was determined using the equation below:  

[DNA] = A260 x 50 µg/ml x dilution factor. 

 

2.2.5.2 Determination of Cellular DNA Content 
 

This assay was based on the method described by Brunk et al. (1979).  The fluorescent dye 

4’6-diamidino-2-phenylindole (DAPI) complexes with DNA to give a product with 

fluorescence intensity about 20 times greater than that of the dye alone.  In this assay, the 

fluorescence increase produced by the DNA was compared directly with the fluorescence 

increase produced by a calf thymus DNA standard.  All measurements were performed in 

series using a single dye solution, thus providing an internal control.  

After removal of the incubation medium the cells were washed twice in PBS and 

submerged in nanopure water.  The cells were scraped and transferred into Eppendorf 

tubes.  The cell lysate was sonicated for fifteen seconds to homogenise the cell lysates in 

order to alleviate the high noise levels in the fluorometer.  

 Firstly, the fluorescence of 3 ml buffer containing 100 ng/ml DAPI was measured 

using a fluorescence spectrophotometer (Cary Eclipse) at an excitation wavelength of    

360 nm and emission wavelength of 450 nm and slit set to 10 nm.  Then, one aliquot of   

15 µl of the cellular homogenate was added to the same cuvette and the fluorescence was 

remeasured.  Second, third, and fourth addition of homogenate followed this.  Then four 

aliquots of 15 µl of a purified DNA standard (known concentration) were added to the 
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same cuvette sequentially.  The slopes for the homogenate and DNA standards were 

determined using the software program, Prism (version 4.0; GraphPad Software, USA).  A 

comparison of the slope for the homogenate with the slope for the DNA standard 

multiplied with the concentration of DNA standard yielded the DNA content of the 

homogenate.  Example of calculation is shown in the Figure 2.2 adapted from Brunk et al. 

(1979). 

 

 

Figure 2.2 An example of graph showing the slope of homogenate and the 

standard DNA.  
Comparing the slope of fluorescence enhancement for the homogenate with the slope for the DNA 

standard, the ratio is 1.76.  This value times the DNA standard concentration (20 µg/ml) yields 35.2 

µg/ml, the DNA concentration of the homogenate. 
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2.2.6 Cell Viability Analysis by Trypan Blue Exclusion Staining 
 

Trypan blue exclusion staining monitors cell viability via analysis of membrane integrity 

(Moldeus, et al., 1978).  Viable cells have intact membranes that are impermeable to the 

dye and, as a consequence, appear colourless when viewed under a microscope. In 

contrast, the membrane integrity of the dead cells has been breached and is no longer able 

to pump the dye out.  Therefore, the dead cells will appear blue. 

 The incubation medium was removed and 200 µl of trypan blue was added directly 

to the adherent cells in the well.  The dye was removed after 30 seconds and replaced with 

1ml of warm PBS.  An inverted microscope (40x magnification with a 10x eyepiece) was 

used to randomly examine five fields of view across each well. The proportion of viable 

cells was calculated by dividing the number of viable cells from all five fields of view by 

the total number of cells (both alive and dead) from all five fields of view.  

 

2.2.7 Cell Viability Analysis by MTT Assay 

 

2.2.7.1 Solutions for MTT Assay 

 

MTT powder was dissolved in RPMI 1640 without phenol red to 5 mg/ml.  The media was 

sterilised through a 0.2 µm filter and stored at  –20 °C in the dark.  

A 0.01 M HCl solution was made up from 11.44 M HCl and nanopure water.  SDS was 

added to this solution and stirred slowly to a give a final concentration of 10% SDS.  

 

2.2.7.2 MTT Assay 

 

The reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) is 

widely accepted as a reliable method to measure cell viability and the method is best 

described by Mosman (1983).  This laboratory has previously shown this method agrees 

well with results obtained with trypan blue.  The yellow tetrazolium MTT (3-(4, 5-

dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) is reduced by metabolically active 

cells, in part by the action of dehydrogenase enzymes, to generate reducing equivalents 

such as NADH and NADPH.  The resulting intracellular purple formazan can be 

solubilised and quantified by spectrophotometric means (Mosmann, 1983).  As a result, the 

intensity of the colour provides an indication of both the concentration of cells and their 

metabolic activity.   

 After removal of the incubation medium, the adherent cells were washed three 

times in PBS.  900 µl of non-phenol red RPMI 1640 plus 100 µl of 5 mg/ml MTT was 
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added.  Samples were then incubated at 37 °C in a humidified incubator for one to three 

hours allowing sufficient time for significant quantities of purple compound to form in the 

control wells.  This range of time is due to the metabolic activity of HMDMs differing 

from one preparation to the next.  The resulting purple insoluble MTT-formazan crystals 

were dissolved by mixing 1 ml of 10% (w/v) SDS (in 0.01 M HCl) in each well and 

incubating for a further 10 minutes in a humidified incubator.  The absorbance was read at 

570 nm, against a blank lacking cells but containing all other reagents. 

 

2.2.8 Extraction of Lipids for Gas Chromatography Analysis 

 

2.2.8.1 Extraction of Total Lipids 

 

Total lipids were extracted according to the method of Brown et al. (1996) and Brown et 

al. (2000).  Cells were seeded at 10 x 10
6 

cells/3 ml/well in six well plate. After removal of 

the incubation medium the cells were washed three times in PBS and 1.2 ml of 0.2 M 

NaOH was added to each well.  The plate was placed on ice and agitated for 30 min on an 

orbital shaker before the cells were scrapped off from the bottom of the wells.  100 µL of 

the cell lysate was removed for protein assay and 2 aliquots of 500 µl were put into two   

15 ml black top centrifuge tubes.  One aliquot was hydrolysed for determination of total 

cholesterol and the second one was analysed for free cholesterol.  To each tube, 0.5 ml of 

ice cold PBS supplemented with 20 µM BHT and 2 mM EDTA were added.  20 µg 

cholestane standard (from stock 1 mg/ml) was added as an internal standard followed by 

1.0 ml ice cold methanol.   The tubes were vortexed gently and briefly before adding      

5.0 ml ice-cold hexane.  The tubes were vortexed vigorously for 60 seconds followed by 

centrifugation at 1000 rpm for 2 min.  Four ml of upper phase hexane layer containing total 

lipids was removed and dried under nitrogen gas.   

 

2.2.8.2 Alkaline Hydrolysis of Lipids for Total Cholesterol Derivitisation 
 

The total lipids were hydrolysed under alkaline conditions to release sterols from the steryl 

esters by adding 0.5 ml of 15% KOH (v/v) in 100% methanol (water free).  The tube was 

flushed with argon gas, capped tightly and heated at 65 °C for 30 minutes.  After 

saponification, 1.0 ml of water was added and vortexed briefly before adding 5 ml of 

hexane.  After vortex mixing for 1.0 minute the tube was centrifuged at 1000 rpm for         

2 minutes to obtain complete phase separation.  Four ml of the upper hexane layer 

containing total sterols was removed and dried under nitrogen gas.  
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2.2.9 Gas Chromatography Analysis 
 

Sterols were derivitised to enhance volatilisation and hence their detection by Gas Phase 

Chromatography.  Total lipids and total cholesterol were converted to their trimethylsilyl 

(TMS) derivatives by adding 100 µl of BSTFA and pyridine (50:50 v/v).  After heating at 

65 °C for 30 minutes under argon gas, the mixture was dried down under nitrogen.  The 

residue was redissolved in 10 µl heptane and 2 µl was analysed by gas chromatography 

using a Hewlet-Packard 5890 Series II, equipped with a 25 m by 0.32 mm-inner-diameter 

capillary column coated with 0.25 µm of BPX70 (SGE International Pty. Ltd.), flame 

ionisation detector and HP 3366 series II integrator.  The injector and detector 

temperatures were set at 250 °C.   Thermal gradient analyses were performed using the 

following oven temperature profile: initial temperature of 200 °C; held for 1 minute then 

increased to the final temperature of 250 °C at 4 °C/minutes.  Sample was analysed by split 

injection (30:1 ratio) using nitrogen gas as the carrier gas at a flow rate of 2.5 ml/min. 

Free and total cholesterol were identified based on the cholesterol standard 

retention time and quantified by FID response relative to an internal standard (20 µg 

cholestane) added prior to lipid derivatisation.  Their concentrations were calculated 

according to the formula shown below: 

Cholesterol concentration in sample (µg) = (peak area of cholesterol/peak area of 

cholestane) x 20 µg cholestane 

      = A 

Cholesterol concentration in each well (µg/well) = A x (total volume of hexane 

added/volume of hexane dried) x (total volume of cell lysate/volume of cell lysate 

extracted) 

 

Protein concentration was determined as in section 2.2.4, calculated as total protein 

per well, and expressed as mg/ml.  Therefore, the final concentration of cholesterol was in 

µg cholesterol per mg of protein.  In some data the amount of cholesterol was based on the 

total DNA content of the samples. 

 

2.2.10 Labelling of Lipoproteins (LDL and OxLDL) with DiI 
 

1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) is a highly 

lipophilic molecule and it is extensively use in studies of receptor –mediated metabolism 

of LDL.  The lipoproteins were labelled with the fluorescent probe DiI as described by 

Stephen and Yurachek (1993) and Devaraj et al. (2001).  Purified LDL or oxLDL of 
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known concentration (mg protein/ml) was filter sterilised through a 0.22 µm membrane 

filter into a sterile flask and incubated with 50 µl of 3 mg/ml DiI in DMSO for each 

milligram of lipoprotein protein.  The flask was covered with aluminium foil to prevent 

exposure to light.  After incubating the mixture overnight at 37 °C, the labelled lipoprotein 

was reisolated by ultracentrifugation using the same procedure as LDL preparation, 

dialysed against 4 changes of PBS containing Chelex 100 resin and filter sterilised.  DiI 

labelled LDL or oxLDL was kept at 4 °C in the dark and used immediately since DiI was 

not stable. 

Measurement of DiI-oxLDL or Di-LDL uptake was according to the method of 

Stephan and Yurachek (1993).  Cells were incubated at 4 °C and 37 °C to measure 

membrane bound and cell-associated DiI-oxLDL or DiI-LDL respectively.  At the end of 

the incubation period, the medium was removed and cells were washed 3 times with warm 

PBS.  Then 1.0 ml isopropanol was added to each well and plates were gently shaken on an 

orbital shaker (Bioline, Edwards Instrument Company, Australia) for 15 min.  The cells 

were harvested and the cell lysates were transferred into Eppendorf tubes, centrifuged at 

3000 rpm for 15 min.  The supernatant was taken out for determination of fluorescence 

intensity using a fluorescence spectrophotometer (Cary Eclipse).  The excitation and 

emission wavelengths were set at 520 and 580 nm, respectively.  The cell pellets were 

dissolved in 2 M NaOH for protein determination. 

Results were expressed as mean fluorescence intensity (MFI) per mg of cell 

protein.  The difference in MFI between cell associated (37 °C) and membrane-bound      

(4 °C) DiI-oxLDL or DiI-LDL is directly proportional to the internalised DiI-oxLDL or 

DiI-LDL. 

 

2.2.11 Rapid Oil red-O staining 
 

The method was adapted from Davies et al. (2005).  After incubation, the cells were 

washed 3 times with warm PBS and fixed in 4% paraformaldehyde for 20 minutes at room 

temperature.  After removal of paraformaldehyde, the cells were stained for 15 minutes by 

adding 0.5 ml of 0.05% oil red-O (ORO) in isopropanol:water (3:2 v/v).  Cells were
 

washed twice in water and viewed in situ using an inverted microscope.  The images were 

taken with Kodak Digital Camera and processed with Adobe Photoshop 8.0. 
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2.2.12 Staining of Cells for Phosphatidylserine Exposure for Apoptosis 

Analysis by Fluorescence Microscopy 

 

Loss of plasma membrane asymmetry is one of the earliest features of apoptosis where the 

membrane phosphatidylserine (PS) is translocated from the inner to the outer leaflet of the 

plasma membrane thereby exposing the PS to the external cellular environment (van 

Engeland, et al., 1998).  Annexin V has a high affinity binding to PS and when conjugated 

to flurochrome fluorescein isothiocyanate (FITC) serve as a sensitive marker for apoptosis 

that can be detected by flow cytometry or fluorescence microscopy.  Cells with bound 

Annexin V-FITC will show green staining in the plasma membrane under the fluorescence 

microscope.  

All the operations were carried out with minimum exposure to light since FITC was 

light sensitive and the procedures carried out as per the manufacturer’s instructions.  Cells 

were cultured at 5 x 10
6
 cells/ml on sterile glass cover slips in 6 well plate.  At the end of 

an incubation period, the cells were washed twice in warm RPMI and left in 0.5 ml of 

binding buffer (10 mM Hepes (pH 7.4/NaOH), 140 mM NaCl and 2.5 mM CaCl2) for one 

minute.  After removal of the binding buffer, 150 µl of binding buffer containing 1.5 µg/ml 

annexin V was added on the top of the cover slips and the cells were incubated in a 

humidified incubator for 15 minutes in the dark.  After incubation, the coverslips were 

washed twice in binding buffer.  Fifteen microlitres of binding buffer was placed on top of 

a glass slide and the coverslip was placed with the cells facing down on the glass slide.   

Cells were examined using a Zeiss AxioImager.M1 epifluorescent microscope 

(Carl Zeiss (NZ) Ltd, Wellington, New Zealand), equipped for Differential Interference 

Contrast (DIC) condenser and fitted with an HBO 100 W mercury vapour lamp.  Cells 

were viewed using 20x and 40x Plan-NEOFLUAR objectives.  The fluorescent filter used 

for FITC was a Zeiss filter set 38 HE.  The images were captured using a Zeiss AxioCam 

HRc CCD camera with AxioVision Rel. 4.5 software (1300 x 1030 pixel resolution) and 

processed with Adobe Photoshop 8.0. 

 

2.2.13 Dihydroethidium (DHE) Staining for Detection of Superoxide 

Production - Analysis by Fluorescence Microscopy 

 

DHE is a highly specific dye for super oxide anion (O2
•-
) with low affinity for hydrogen 

peroxide.  It is freely permeable to cells and oxidised to DNA-binding fluorophore, 

ethidium by O2
•- 

(Burnaugh et al., 2006). 
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Cells were cultured at 5 x 10
6
 cells/ml on sterile glass cover slips in 6 well plate.  

At the end of an incubation period, the cells were washed twice in warm PBS.  

Subsequently, 150 µl of 10 µM of DHE in PBS was added onto the top of the coverslips 

and the cells were incubated in a humidified incubator for 20 minutes in the dark.  Cells 

were washed twice in warm PBS to wash off excess DHE.  Fifteen microlitres of PBS was 

added on top of the glass slide and the coverslip was placed on a glass slide with the cells 

facing down.   

Cells were examined using a Zeiss AxioImager.M1 epifluorescent microscope 

(Carl Zeiss (NZ) Ltd, Wellington, New Zealand), equipped for Differential Interference 

Contrast (DIC) condenser and fitted with an HBO 100 W mercury vapour lamp.  Cells 

were viewed using 20x and 40x Plan-NEOFLUAR objectives.  The fluorescent filter used 

for DHE was Zeiss filter set 00 for propidium iodide (PI).  The images were captured using 

a Zeiss AxioCam HRc CCD camera with AxioVision Rel. 4.5 software (1300 x 1030 pixel 

resolution) and processed with Adobe Photoshop 8.0. 

 

2.2.14 Detection of Cytochrome c Release by Histochemical Staining - 

Analysis by Fluorescence Microscopy 

 

Cytochrome c is a water-soluble protein that either promotes cell survival or death 

depending upon its intracellular location.  In healthy cells, it is a peripheral membrane 

protein of the mitochondria that transports electrons from the coenzyme QH2 cytochrome c 

reductase complex to the cytochrome c oxidase complex.  When proapoptotic stimuli 

induce permeabilisation of the mitochondria, allowing cytochrome c to be released to the 

cytosol where it causes the activation of caspase-9 so triggering apoptosis (Hajek, et al., 

2001; Hampton, et al., 1998).  The release of cytochrome c into the cytoplasm can be 

detected using fluorescence microscope or immnunoblotting. 

 Cells were cultured at 5x10
6
 cells/ml on sterile glass coverslips in 6 well plate.  At 

the end of an incubation period, the cells were washed twice in warm RPMI without 

phenol red.  This was followed by fixation in 4% paraformaldehyde in PBS, pH 7.4 for    

10 minutes with gentle rocking in an orbital shaker.  After removal of the 

paraformaldehyde solution the cells were permeabilised with –20 °C methanol for            

10 minutes placed in –20 °C freezer.  Cells were then washed three times in PBS 

containing 1% BSA and 0.01% sodium azide (PBS-BSA) and then incubated with 5 µg/ml 

of anticytochrome c rabbit polyclonal raised against horse cytochrome c (diluted in PBS) 

for 1 hour at room temperature.  This was followed by washing in PBS-BSA solution for   
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6 times and probing with secondary antibody, 1:200 dilution (diluted in PBS) goat-anti 

rabbit IgG-FITC for 1 hour at room temperature.  This step was carried out in the dark 

since FITC is light sensitive.  After incubation, the coverslips were washed 6 times in PBS-

BSA solution before removal from the wells using fine forcep.  Fifteen microlitres of 

Vetashield was placed on a glass slide and the coverslip was placed on the slide with the 

cells on it on facing down on to the pool of Vetashield.  The edges of the coverslips were 

sealed with nail polish.   

Cells were examined using a Zeiss AxioImager.M1 epifluorescent microscope 

(Carl Zeiss (NZ) Ltd, Wellington, New Zealand), equipped for Differential Interference 

Contrast (DIC) condenser and fitted with an HBO 100 W mercury vapour lamp.  Cells 

were viewed using 20x and 40x Plan-NEOFLUAR objectives.  The fluorescent filter used 

for FITC was Zeiss filter set 38 HE.  The images were captured using a Zeiss AxioCam 

HRc CCD camera with AxioVision Rel. 4.5 software (1300 x 1030 pixel resolution) and 

processed with Adobe Photoshop 8.0. 

 

2.2.15 Extraction of Cytosol and Organelle Fraction 
 

The solutions were stored and the procedures were performed at 4 °C.  At the end of an 

experimental incubation period, the media were collected so that any cells dislodged 

during the incubation period were recovered.  The media were centrifuged for 5 minutes at 

500 g and the resulting pellet was washed twice in PBS by centrifugation at 500x g for      

5 minutes.   

At the same time, the adherence cells were washed twice in ice cold PBS and 

harvested on ice with a cell scraper in ice cold lysis buffer (250 mM sucrose, 20mM 

HEPES-KOH pH 7.5, 10mM KCl, 1.5 mM EGTA, 1.5 mM EDTA, 1 mM MgCl2, 1 mM 

dithiothreitol and protease inhibitor).  The cell lysate was combined with the resulting 

pellet and allowed to swell on ice for 10 minutes.  Cell lysate were then passed through a 

23 G needle for 10 times to break open and homogenise the cells further.  The cell 

homogenate were centrifuged at 23,000x g  (~15,000 rpm) for 30 min at 4°C.  The pellet 

was used as a mitochondrial fraction whereas the supernatant was used as a cytosolic 

fraction.  The mitochondrial fraction (pellet) was resolved in lysis buffer.  
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2.2.16 SDS PAGE and Western Blot Analysis 
 

2.2.16.1 Solutions for SDS-PAGE and Western Blot  
 

Cracker buffer was prepared by first making up a stock of 0.5 M Tris-HCl in water 

and the pH was adjusted to 6.8 by adding 11.4 M HCl drop wise.  Caution was taken, not 

to overshoot the pH as adding base will change the conductivity.  Then, 0.125 M Tris-HCl, 

pH 6.8 (from 0.5 M stock), 1% SDS, 20% glycerol and 0.1% bromophenol blue was made 

up in 50 ml of water.  Prior to the use, 1 ml of the above solution was transferred into a   

1.5 ml Eppendorf tube and 20 µL of β-mercaptoethanol and 2 ul of 100 mg/ml EDTA were 

added.  The final cracker buffer was therefore consisted of  0.125 M Tris-HCl, pH 6.8, 

10% SDS, 20% glycerol, 0.1% bromophenol blue, 2% β-mercaptoethanol and 0.54 mM 

EDTA.  

A 10 x stock MOPS consisted of 500 mM MOPS, 500 mM Tris base, 1% SDS, and 

10 mM EDTA was prepared in water and pH adjusted to 7.7.  This was made up to 1 x 

concentration by diluting it with water. 

Transfer buffer consisted of 25 mM Tris, 200 mM glycine and 20% methanol in 

water and stored at 4 °C.  Ponceau S stain consisted of 0.01% Ponceau S in 5% acetic acid 

Washing Solution, TBS, consisted of 40 mM Tris-HCl, pH 7.5, 150 mM NaCl, 

0.05%  Tween-20, Thimerosal (contains Hg) was made in water. The blocking solution 

(TBSM) was 5% (w/v) of Anchor non-fat milk powder made in TBS. 

 

2.2.16.2 SDS-Polyacrylamide Gel Electrophoresis  
 

Cracker buffer was added to the sample and heated in a heating block at 95 ºC for              

3 minutes.  This was followed by centrifugation for 5 minutes at 15000 rpm to remove cell 

debris.  Five µl/well of Fermentas prestained molecular weight marker mix (Fermentas 

International Inc, Ontario, Canada) and 5-25 µl/well (depending on protein content) of 

samples were loaded into the wells.  The samples were run on a gradient polyacrylamide 

gel, 4-12%, (Bis-Tris Gel, Invitrogen, Carslband, CA, USA) in MOPS running buffer.  The 

gel was electrophoresed at 200 V for approximately 60 minutes. 

 

2.2.16.3 Sample Preparation 

 

Samples for cytochrome c detection was prepared as above (see section 2.2.15).  For 

caspase 3, CD36 and SR-A detection, the cells were harvested in lysis buffer (40 mM 

HEPES, 50 mM NaCl, 1 mM EDTA, 1 mM EGTA and protease inhibitor, pH 7.4).  The 

protein content of the samples were determined by BCA protein determination assay in 
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order to have equal loading of protein onto the gels.  Further confirmation of equal loading 

was obtained by reprobing the membrane with β-actin antibody (see section 2.2.16.5).  

Samples were resolved by SDS-PAGE electrophoresis as described in the previous section 

2.2.16.2. 

 

2.2.16.4 Western Blot Analysis 
 

The protein on the SDS-PAGE gels after electrophoresis were electrophoretically 

transferred onto nitrocellulose membrane (Invitrogen, USA, 0.45 µm pore size).  This was 

done overnight (approximately 15 hours) at 70 V, using a tank transfer electrophoresis unit 

(Hoeffer TE22) containing transfer buffer.  The next day, to ensure that the transfer had 

been effective, the membrane was stained with Ponceau S stains for 1 minute and rinsed 

with dH2O. Pink bands of proteins were visible with Ponceau S stain.   

The following procedures were performed on a rocking platform mixer (Ratex 

Instruments, Australia).  After rinsing with water, the membrane was blocked using 5% 

TBSM for 2 hours followed by three consecutive 5-minute washes in TBS.  Then, the 

membranes were probed with mouse monoclonal IgM antibodies against CD36 (SMφ) 

(SC-7309, Santa Cruz Biotechnology Inc, USA), mouse monoclonal IgM antibodies 

against caspase-3 (E-8) (SC-7272-Santa Cruz Biotechnology Inc, USA), rabbit polyclonal 

IgG antibodies against cytochrome c (H-104) (SC-7159, Santa Cruz Biotechnology Inc, 

USA), goat polyclonal antibodies against SR-A (I-20) (SC-20441, Santa Cruz 

Biotechnology Inc, USA) and mouse monoclonal antibodies against β-actin (A5316, 

Sigma-Aldrich Chemical Co., USA) for 1.5 hours.  The primary antibodies of CD36 and 

cytochrome c were diluted to 1:500; SR-A and caspase-3, 1:1000; and β-actin, 1:10000 in 

1% TBSM.   

Subsequently, the membranes were washed for 5 lots of 5-minute washes in TBS 

followed by 1 hour incubation with secondary antibody.  With the exception to β-actin, all 

the secondary antibodies were of 1:1000 dilution and β-actin antibody was 1:10000 

dilution in 1% TBSM.   

Binding to CD36, caspase-3, cytochrome c, SR-A and β-actin was detected by 

incubation with peroxidase-conjugated goat anti-mouse IgM (SC-2064, Santa Cruz 

Biotechnology Inc, USA), peroxidase-conjugated goat anti-mouse IgG (Fc) (31434, Pierce 

Biotechnology Inc, USA), peroxidase-conjugated goat anti-rabbit IgG (Fc) (31463, Pierce 

Biotechnology Inc, USA), peroxidase-conjugated donkey anti-goat IgG (SC-2020, Santa 

Cruz Biotechnology Inc, USA) and peroxidase-conjugated sheep anti-mouse IgG 

(RPN4401, Amersham Biosciences, England) respectively.  
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The membrane was again given five 5-minute washes in TBS and finally rinsed 

briefly with water before being visualised.  The reprobing of the membrane with β-actin 

antibody was done after visualisation of the first desired protein.  The membranes that need 

to be reprobed were kept in TBS at 4 ºC until reprobing.  The membrane was directly 

incubated with the primary β-actin antibody without blocking and the rest of the 

procedures for WesternBlot analysis were then followed. 

 

Table 2.1 Full description of the primary and secondary antibodies used for 

detection of CD36, Caspase-3, SR-A, ββββ-actin and Cytochrome c by 

Western Blot analysis. 
 
 

Ligand 

 

 

Primary Ab 

 

Dilution 

 

Secondary Ab 

 

Dilution 

CD36 mouse monoclonal IgM 

antibodies against CD36 

(SMφ) (SC-7309, Santa Cruz 

Biotechnology Inc, USA) 

 

1:500 peroxidase-conjugated goat 

anti-mouse IgM (SC-2064, 

Santa Cruz Biotechnology 

Inc, USA) 

1:1000 

Caspase-3 mouse monoclonal IgM 

antibodies against caspase-3  

(E-8) (SC-7272-Santa Cruz 

Biotechnology Inc, USA) 

 

1:1000 peroxidase-conjugated goat 

anti-mouse IgG (Fc) (31434, 

Pierce Biotechnology Inc, 

USA) 

1:1000 

SR-A goat polyclonal antibodies 

against SR-A (I-20) (SC-

20441, Santa Cruz 

Biotechnology Inc, USA) 

 

1:1000 peroxidase-conjugated 

donkey anti-goat IgG (SC-

2020, Santa Cruz 

Biotechnology Inc, USA) 

1:1000 

β-actin mouse monoclonal antibodies 

against β-actin (A5316, 

Sigma-Aldrich Chemical Co., 

USA) 

1:10000 peroxidase-conjugated sheep 

anti-mouse IgG (RPN4401, 

Amersham Biosciences, 

England) 

1:10000 

Cytochrome c rabbit polyclonal IgG 

antibodies against 

cytochrome c (H-104) (SC-

7159, Santa Cruz 

Biotechnology Inc, USA) 

 

1:500 peroxidase-conjugated goat 

anti-rabbit IgG (Fc) (31463, 

Pierce Biotechnology Inc, 

USA) 

1:1000 

 

2.2.16.5 Visualization  

 

Detection of signals was by “Supersignal West Dura chemiluminescence” substrates, 

which was mixed at 1:1 ratio and pipetted evenly on to the membrane.  With the exception 

to detection of β-actin, the image was recorded over 15 minutes on a Syngene 

Chemigenius-2 bioimaging system using Genesnap software (Global, NZ).  For β-actin 

detection, the exposure was only 2 minutes. 
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2.2.17 HPLC Analysis of Cholesteryl Esters 
 

Cholesteryl esters detection was carried out by modifying the original method described by 

(Kritharides, et al., 1993).  Lipids were initially extracted from 3 wells containing 5x10
6 

cells/ml and injected onto HPLC.  However, only a very small peak of cholesterol peak 

was detected.  Therefore, larger sample volumes were required where samples from         

12 wells of 5 x 10
6  

cells/ml in 12 well plate were pooled. 

After removal of the incubation medium, the cells were washed twice in PBS.     

0.5 ml of cold nanopure water was added to each well and the cells were harvested by 

scraping.  Cell lysate from 12 wells were pooled, sonicated for 15 seconds and aliquoted 

into 1.5 ml into 3 separate 15 ml black top centrifuge tubes (the tube was too small for 

lipid extraction of a total of 4.5 ml cell lysate).  The remaining cell lysate was used for 

DNA quantification.  20 µl of 20 mg/ml EDTA, 20 µl of 100 mg/ml BHT and 1 ml of ice 

cold methanol was added to the tubes and vortexed briefly.  Then, 5 ml of hexane was 

added, vortexed vigorously for 1 min and centrifuged at 1000 rpm at 4 °C for 2 min to 

obtain complete phase separation.  4 ml of the hexane layers from each of the 3 black top 

centrifuge tubes was removed, pooled into one tapered glass test tube and dried under 

nitrogen gas. 

The dried residue was redissolved in 100 µl of mobile phase, 

acetonitrile:isopropanol (30:70, v/v).  Twenty µl of each sample was injected twice onto a 

Phenosphere reverse-phase C-18 column, 250 x 0.46 mm, and 5 µm particle size 

(Phenomenex; Auckland, NZ) and eluted isocratically at l ml/min with the column 

temperature maintained at 35 °C.  Analysis of cholesterol and cholesteryl esters was 

performed by detecting 234 nm absorbance.  Detection and quantification of sterols were 

carried out by comparison with the known concentration of standards (cholesterol, 

cholesteryl arachidonate, cholesteryl linoleate, cholesteryl palmitate and cholesteryl oleate 

made up in mobile phase).  All samples were injected twice. 

 

2.2.18 TBARS-HPLC Lipid Analysis Assay 
 

2.2.18.1 Solutions for the TBARS-HPLC Lipid Analysis Assay 
 

Malondialdehyde (MDA) standard was prepared on the day of analysis by diluting 

6.07 M of 1,1,3,3-tetramethoxypropane (TMP) in 2:3 (v/v) ethanol:water, with subsequent 

dilution in water to the appropriate concentration. 
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The mobile phase consisted of 50 mM sodium dihydrogen phosphate with pH 

adjusted to 6.8 with 10 M sodium hydroxide and filtered through 0.45 µm filter.  This was 

mixed with HPLC grade methanol in a ratio of 65:35 (v/v) before degassing by sonication. 

 A 42 mM of 2-thiobarbituric acid (TBA) was made up fresh on the day of analysis 

and dissolved in nanopure water by stirring on a hot plate ensuring the temperature did not 

exceed 55 °C. 

 

2.2.18.2 TBARS-HPLC Lipid Analysis Assay 
 

The TBARS assay provides means of quantifying general lipid peroxidation.  The method 

used here is a modification of the method described by Draper et al. (1993).  It relies on the 

ability of 2-thiobarbituric acid (TBA) and the malondialdehyde (MDA) lipid 

hydroperoxide break-down product to readily react, forming the pink TBA-MDA adduct 

being fluorometrically detectable via HPLC.  

 100 µl of samples were mixed with 50 µl of 150 mM phosphoric acid and any 

further oxidation was inhibited by the addition of 10 µl of 20 mg/ml BHT.  After addition 

of 50 µl of 42 mM TBA reagent the tubes were mixed by inversion and placed in a heating 

block at 95 °C for 30 minutes with very gentle shaking.  Samples were then cooled on ice 

and centrifuged at 4 °C for ten minutes at 15000 rpm.  100 µl of the resulting supernatant 

was transferred to autosampling vial and 20 µl was injected onto the HPLC (Shimadzu RF-

10AXL, Shimadzu Corporation, Japan).  The HPLC was equipped with a Phenosphere 

reverse phase C-18, 4.6 x 150 mm, 5 µm column (Phenomenex; Auckland, NZ), heated to 

30 °C.  TBARS were fluorometrically detected using excitation and emission wavelengths 

of 525 nm and 550 nm, respectively. The mobile phase was pumped through the system at 

a flow rate of 1 ml/minute.   

 TBARS concentrations in all samples were quantified by comparison with the peak 

areas of 0 µM and 1 µM MDA standards.  Fresh MDA was prepared before each assay by 

hydrolysis of 1,1,3,3-tetramethoxypropane (TMP) in 2:3 (v/v) ethanol:water, with 

subsequent dilution in water to the appropriate concentration.  Phosphoric acid and BHT 

were then added, as per the experimental samples. 



Chapter 2 

_____________________________________________________________________________________________________________ 

 

71 

 

2.2.19 Pterin HPLC Analysis Assay 
 

2.2.19.1 Solutions for the Pterin HPLC Analysis Assay 
 

  Both neopterin and 7,8-NP are light sensitive.  A stock of neopterin standard was 

prepared by sonicating neopterin in 10 mM phosphoric acid in the dark.  By contrast, the 

7,8-NP standard was prepared by sonication in degassed water in the dark.   

 The mobile phase was prepared on the day of analysis.  It consisted of 20 mM 

ammonium phosphate and the pH was adjusted to pH 6 by addition of 10 M phosphoric 

acid.  Five percent methanol (v/v) was added to the buffer and the mixture was filtered 

through 0.45 µm filters.   

 The acidic iodide solution was prepared by dissolving 2.7 g solid iodine and 5.4 g 

potassium iodide in 35 ml of nanopure water.  3.7 ml of 50% TCA was added and the final 

volume was made up to 50 ml. 

 

2.2.19.2 Pterin HPLC Analysis Assay 
 

This assay monitored pterin levels in the cell-conditioned medium, and in the cells 

themselves.  When the latter was measured the cells were washed in PBS before hypotonic 

lysis in 0.5 ml of ice cold water.  135 µl sample (the cell conditioned medium and or cell 

lysate) was collected into microcentrifuge tubes and mixed with 13.5 µl of 50% TCA.  The 

mixture was vortexed and centrifuged at 15000 rpm for 15 minutes.  100 µl of the resulting 

supernatant was transferred to autosampling vial and mixed with 5 µl of 2 M ammonium 

phosphate (pH 6).   

 When total neopterin which was the oxidation of all 7,8-NP to neopterin was to be 

measured,  10 µl of an acidic iodide solution, followed by 13.5 µl of 50% TCA were added 

to the samples.  The mixture was vortexed and incubated in the dark for 20 minutes.  Then,     

10 µl of 0.6 M ascorbate was added to reduce the remaining iodine to iodide.  The samples 

were centrifuged at 4 °C and 15000 rpm for ten minutes.  100 µl of the resulting 

supernatant was transferred to autosampling vial and mixed with 5 µl of 2 M ammonium 

phosphate (pH 6).   

 20 µl of this mixture was analysed by the HPLC (Shimadzu RF-10AXL, Shimadzu 

corporation, Japan) equipped with a reverse phase Develosil C18, 250 x 4.6 mm, 5 µm 

column (Nomura Chemicals; Japan) maintained at 35 °C.  The mobile phase was pumped 

through the system at a flow rate of 1 ml/minute (Gieseg, et al., 2001).  Neopterin was 

detected using a fluorescence detector set at an excitation and emission wavelengths of 353 
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nm and 438 nm, respectively.  Neopterin concentrations in all samples were quantified by 

comparison with the peak areas of 5 µM and 10 µM neopterin standards.  

 

2.2.20 Monobromobimane Glutathione (GSH) Measurement by HPLC 

Analysis 
 

2.2.20.1 Solutions for GSH Assay 
 

 A 40 mM stock of monobromobimane (MBB) was prepared by dissolving 10.8 mg 

of MBB in 1.0 ml acetonitrile.  The solution was stored in darkness at 4 °C and freshly 

made every 1-2 weeks. 

 Reduced glutathione of 10 mM stock was dissolved in PBS solution and freshly 

made prior to experiment.  The stock solution was diluted with PBS to concentrations of 5 

and 10 µM.  

 100% (w/v) TCA was made up in nanopure water by adding 10 g of TCA to 10 ml 

of nanopure water.  

 The mobile phase A consisted of 0.25% acetic acid and mobile phase B consisted 

of 100% acetonitrile. 

 

2.2.20.2 GSH Measurement by HPLC Analysis 
 

Monobromobimane (MBB) is a cell-permeable fluorescent dye that binds thiol groups, 

specifically glutathione (GSH).  The assay utilises this property to measure GSH by HPLC 

after precipitating protein (Cotgreave, et al., 1986).  All the experiments were carried out 

under minimum exposure of light, as MBB is light sensitive. 

 After removal of the incubation medium, the cells were washed twice in PBS and 

submerged in 0.4 ml of PBS.  Nine microlitres of 0.1 M NaOH were added to the wells to 

bring up the pH to 8 before the addition of 10 µl of 40 mM MBB.  Following twenty 

minute incubation in the dark at room temperature, 20 µl of 100% (w/v) TCA was added to 

lyse the cells.  The adherent cells were scraped, transferred into Eppendorf tubes and 

subsequently centrifuged at 10 000 rpm for 5 min.    

 100 µl of the resulting supernatant was transferred to autosampling vial and 20 µl 

was injected onto the HPLC (Shimadzu RF-10AXL, Shimadzu Corporation, Japan).  The 

HPLC was equipped with a Phenosphere reverse phase C-18, 4.6 x 150 mm, 5 µm column 

(Phenomenex; Auckland, NZ), heated to 35 °C.  GSH-MBB adducts were fluorometrically 

detected using excitation and emission wavelengths of 394 nm and 480 nm, respectively.  

The mobile phase was pumped through the column at a flow rate of 1.5 ml/minute and 
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with the following gradient; at 0 minute: A: B (90:10), at 10 minute: A:B (90:10), at        

11 minute: A: B (0:100), at 15 minute: A: B (0:100), at 16 minute: A:B (90:10), and at     

20 minute: A:B (90:10).  GSH concentrations in all samples were quantified by 

comparison with the peak areas of 5 µM and 10 µM GSH standards. 

 

2.2.21 Statistical Analysis  
 

Results shown were obtained from single experiments, which was representative of at least 

three separate experiments.  The means and standard deviation of the mean (SD) shown 

within each experiment were calculated from triplicate samples.  Data were graphed and 

statistically analysed using the software program, GraphPad Prism version 4.0 for 

windows, GraphPad Software, San Diego California USA.  Significance was confirmed by 

a one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test, * 

indicating a significant difference from the control value (* p < 0.05; ** p < 0.01; *** 

p<0.001). 
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3 Experimenting the Culture of Human Monocyte-

derived Macrophages in Different Conditions 

3.1 Introduction 
 

This laboratory routinely uses RPMI to culture isolated blood human monocytes.  RPMI-

1640 was developed in 1966 by Moore and his co-workers at Roswell Park Memorial 

Institute (hence the acronym RPMI) (Sigma product information sheet).  It is a media that 

utilizes a bicarbonate buffering system and contains amino acids, vitamins, cofactors, 

carbohydrates and salts necessary to support cell growth.  While it was originally 

formulated to support lymphoblastoid in suspension culture, it has been proven to support a 

wide variety of anchorage-dependant cells (Sigma product information sheet).  When 

culturing isolated human blood monocytes, the media are mostly supplemented with         

5-30% heat inactivated human serum (HIHS) although mixtures of foetal calf serum (FCS) 

and HS or media containing FCS alone is also used (Garner et al., 1997a).  However, 

serum contains extracellular cholesterol acceptors, high density lipoprotein (HDL), which 

could promote cholesterol efflux from the cells and consequently reduces cholesterol 

esterification (Innerarity, et al., 1986). One of the objectives of this research is to develop 

foam cell from HMDMs whose main characteristic is an accumulation of cellular 

cholesteryl ester.  There is a concern that adding serum to the media may interfere with the 

study of characterising the foam cell formation.  Therefore, the ability of blood monocytes  

to grow in RPMI supplemented with serum which is devoid of lipoprotein (called 

lipoprotein deficient serum, LPDS) will be explored in this section.  LPDS lacks HDL.  It 

is envisaged that if the cells could grow well in RPMI supplemented with LPDS, this 

culture condition will be used to culture the monocytes for developing foam cells. 

Media that are free of serum are widely recognized to provide a more defined and 

controlled cell culture environment.  Since serum is of animal-origin the use of serum-free 

media (SFM) will limit the potential of introducing adventitious agents into a cell culture 

system.  In this study, Gibco BRL’s macrophage SFM was used.  This media was 

optimized to support the growth of monocytes and macrophages and does not require 

supplementation with serum (Gibco product information sheet).  This feature should make 

SFM an ideal media to develop foam cell from isolated human blood monocytes.  

Therefore, the next objective of this section is to explore an alternative media to RPMI and 

serum to culture the human monocytes by using SFM.   
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The ability of the cell to grow in different conditions will be assessed by examining 

their morphology observed by inverted light microscope and measuring the cells’ viability 

by MTT or trypan blue assay.  This section will also investigate the effects of replacing 

HIHS with LPDS on the viability of HMDMs.  In addition, observation was also made on 

the growth of macrophages in suspension well plate and the possibility of growing the cells 

back on to the adherence plate.   

 

3.2 Results 
 

3.2.1 Growth of HMDMs in the Macrophage-Serum Free Media  
 

Isolated blood human monocyte were routinely cultured in RPMI supplemented 

with 10% HIHS.  After 14 days in culture, the monocytes differentiated into macrophages 

with a morphology that resembles a ‘fried-egg’.  Some monocytes still remain small and 

round (Figure 3.1).   

The ability of monocytes to grow in SFM was investigated by observing their growth 

under the inverted light microscope.  The isolated monocytes (5 x 10
6
 cells /ml) were 

seeded on to the adherent plate in SFM from day 1 of culture.  Their morphology was 

compared to the cells isolated from the same donor but cultured in RPMI with 10% HIHS.   

After 5 days of culture (day 5), some macrophages were seen in RPMI with 10% 

HIHS while cells cultured in SFM were all still monocyte like in appearance (Figure 3.1).  

After 3 further days (day 8), monocytes in SFM still had not differentiated into 

macrophages.  In addition, the number of cells also seemed to be reduced.  Only by day 14 

were some macrophages like cells were observed in SFM while in RPMI containing 10% 

HIHS the cells were mainly macrophage appearance.  However, the cells in SFM did not 

look ‘healthy’ and less homogenous macrophage culture was observed.  This is because 

growing the cells in the SFM also induced morphological alteration in the HMDMs.  A 

proportion of the cells displayed elongated cellular processes (dendritic look) that were not 

seen in cells grown in RPMI with 10% HIHS.   

Lipid accumulation in cells cultured in SFM and RPMI containing 10% HIHS was 

examined microscopically following staining of cells with oil red-O (Figure 3.2).  Oil red-

O positive staining materials indicating the presence of lipid droplets were observed in 

cells cultured in both types of media.  The results suggest that the cells can survive in both 

media but they differentiated faster in RPMI containing 10% HIHS than in SFM.  Cellular 

accumulations of lipids was observed in cells grown in both media. 
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The rate of monocytes differentiation into macrophages was also determined for 

cells grown in RPMI with 10% HIHS by observing the change in their morphology.  

Monocytes were the small round cells while macrophage cells appear large and foamy.  

After 14 days in culture, 70% of the cells were macrophages (Figure 3.3) and this 

percentage varied from blood donor to blood donor. 

 

3.2.2 Effect of oxLDL on Viability of HMDMs Cultured in SFM and 

RPMI Containing 10% HIHS 

 

The effect of oxLDL on the viability of HMDMs cultured in RPMI containing 10% HIHS 

compared to HMDM cultured in SFM was examined.  At the same time the cells were 

seeded at two different cell concentrations, 5 x 10
6
 cells/ml and 3 x 10

6
 cells/ml.  This is to 

determine which concentration of cells at the time of seeding will give a better cell growth. 

After 14 days in culture, the cells were incubated with increasing concentrations of oxLDL 

for 10 days.  The viability of the HMDMs was assessed using the trypan blue exclusion 

assay.  

Figure 3.4a shows that cells plated at 5 x 10
6
 cells/ml and grown in the RPMI 

containing 10% HIHS had a viability of more than 90% whereas, cells grown in SFM had 

lower viability around 80%.  In addition, there was a large standard deviation (SD) in cell 

viability for the cells cultured in SFM both in controls and with oxLDL.  The presence of 

sub cytotoxic concentrations of oxLDL did not significantly affect the cell viability of the 

cells either in SFM or RPMI containing 10% HIHS.  Though a 10% loss in viability was 

observed in the SFM media at 200 µg/ml oxLDL but this was not significant.  This 

experiment was repeated but using another HMDMs preparation from different donor and 

the cells were plated at lower cell concentration of 3 x 10
6
 cells/ml.  The cell viability of 

the cells was a mean of 90% and 45% for the cells grown in RPMI and SFM respectively 

(Figure 3.4b).  Even though the presence of oxLDL did not significantly affect the cell 

viability, there was a very large variation (as measured by the Standard Deviation (SD)) for 

each concentration of oxLDL in both media at this lower cell concentration (Figure 3.4b) 

when compared to Figure 3.4a.  The large variation probably reflects the irregularity in the 

number of cells in the well because even though the same concentration of cells was 

seeded onto each well, not all of them survived.  The most likely explanation for this is 

probably because the cells need to be in close contact with each other in order to grow well 

and this was achieved when they were seeded at higher density number.  This is supported 

by the trypan blue assay result showing that cells plated at higher cell concentration, 5 x 
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10
6
 cells/ml had higher viability than cells plated at 3 x 10

6
 cells/ml indicating that having 

more cells present will increase the number of viable cells.  In addition, higher percentage 

of cell viability when cells cultured in RPMI with 10% HIHS reflects the preference of the 

cells towards this media for growth than SFM.  

 The following three consecutive attempts to culture HMDMs in SFM were met 

with failure indicating the lack of reliability of SFM media for culturing.  Cells isolated 

from the same donor did not grow in SFM but survived in RPMI containing 10% HIHS 

(data not shown).  This result led to the investigation of the effect of changing the media 

from RPMI with 10% HIHS to SFM on healthy cells that were already cultured in RPMI 

with 10% HIHS.  Figure 3.5 shows that after 2 days in SFM the cells viability dropped to 

60% and stayed constant until 6 days in SFM.  This suggests that there were some factors 

in RPMI with 10% HIHS that was missing in SFM and caused a drop in the cell viability. 

 The manufacturer, Gibco BRL, will not disclose the compositions of the SFM 

making it difficult to identify what is missing within the media for macrophages.  A 

suggestion was proposed by Dr. Keri Carpenter of Cambridge University (personal 

communication) to include granulocyte-macrophage colony stimulating factor (GM-CSF) 

to the SFM when culturing the cells.  There was a striking effect of the presence of GM-

CSF in SFM on the growth of the cells (Figures 3.6 and 3.7).  At day 5 of culture, most of 

the cells grown in SFM supplemented with GM-CSF (Figure 3.6b) had differentiated into 

macrophages and some had elongated cellular processes or taken on the appearance of 

dendritic cells.  By day 14, all the cells appeared as normal looking macrophages (fried 

egg-like morphology) (Figure 3.7b).  It is not known whether the disappearance of the 

elongated processes was due to these cells changing their shaped to fried egg-like 

macrophage morphology or that elongated cells simply die.  Moreover, cells cultured in 

SFM only displayed elongated processes at day 14 (Figure 3.1), but cells grown in SFM 

with GM-CSF had significant proportion of cells with elongated processes as early as day 

5 (Figure 3.6b).  In addition, it appears that the differentiation of monocytes into 

macrophages when they were cultured in SFM with GM-CSF occurred faster than what 

had been observed in cells grown in RPMI with 10% HIHS (Figure 3.1).  In these 

experiments, few cells grown in SFM without GM-CSF survived until day 14 of culture.  

Therefore, the presence of GM-CSF is important in stimulating the growth of monocytes 

and their differentiation into macrophages in SFM media. 
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Figure 3.1 Comparison between the growth of HMDMs in RPMI containing 10% 

HIHS and SFM.  
HMDMs (5 x 10

6
 cell/ml) were cultured in RPMI containing 10% HIHS or SFM in 12 well plates. Cells 

were viewed in situ in tissue culture wells using an inverted microscope.  Macrophage cells appear large 

and foamy while monocytes were the small round cells.  The arrows point to cells having elongated 

cellular processes or taken on the appearance of dendritic cells. Original magnification of the 

microscope was 40x and the pictures were taken using a digital camera. 
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Figure 3.2 Culture of HMDMs in RPMI and SFM produces oil red-O positive, 

lipid loaded cells.   
HMDMs (5 x 10

6
 cell/ml) were cultured in RPMI containing 10% HIHS (a) or SFM (b) in 12 well 

plates for 14 days. Cells were stained with oil red-O stain as described in chapter 2 and viewed in situ in 

tissue culture wells using an inverted microscope.  Original magnification was 40x and the pictures 

were taken using a digital camera.    
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Figure 3.3 Number of monocytes and macrophages over 14 days culture in RPMI 

with 10% HIHS 
HMDMs (5 x 10

6
 cell/ml) were cultured in RPMI containing 10 % HIHS.  The number of monocytes 

and macrophages were counted on the day of seeding (day 0), days 4, 7, 10 and 14 after seeding.  The 

cell number was counted in 3 wells and at least from 5 views. Results are displayed as mean ± SD of 

triplicates from a single experiment representative of three separate experiments. 
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Figure 3.4 Effect of oxLDL on viability of HMDMs grown in SFM and RPMI 

containing 10% HIHS. 
HMDMs were plated at 5x10

6
 cells/ml (a) and 3x10

6
 cells/ml (b) in SFM and RPMI containing 10% 

HIHS.  After 14 days the cells were incubated with increasing concentrations of oxLDL for 10 days.  

The cell viability was assessed via  trypan blue exclusion staining. Results are displayed as mean ± 

SEM of triplicates from a single experiment representative of three separate experiments.   
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Figure 3.5 Effect of changing the media from RPMI containing 10% HIHS to 

SFM on the viability of HMDMs  
Cells were cultured at 5 x 10

6 
cells/ml in 12 well plate in RPMI containing 10% HIHS. After 14 days, 

the medium was changed to SFM. The cells were further cultured in SFM for the indicated days. Data 

shown are the mean + SD of triplicate from a single experiment. 
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Figure 3.6 The effect of GM-CSF in the SFM on HMDMs growth on day 5 of 

culture. 
HMDMs (5 x 10

6
 cell/ml) were cultured in SFM without (a) and with GM-CSF (0.15 µg/ml) (b) in 12 

well plates.  Pictures were taken on day 5 of culture.  Cells were viewed in situ in tissue culture wells 

using an inverted microscope.  Arrows indicate elongated cellular processes.  Original magnification of 

the microscope was 40x and the pictures were taken using a digital camera. 
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Figure 3.7 The effect of GM-CSF in the SFM on HMDMs growth on day 14 of 

culture. 
HMDMs (5 x 10

6
 cell/ml) were cultured in SFM without (a) and with GM-CSF (0.15 µg/ml) (b) in 12 

well plates.  Pictures were taken on day 14 of culture.  Cells were viewed in situ in tissue culture wells 

using an inverted microscope.  Arrows indicate elongated cellular processes.  Original magnification of 

the microscope was 40x and the pictures were taken using a digital camera. 
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3.2.3 Culturing HMDMs in RPMI Containing 10% LPDS 
 

HDL in the lipoprotein is an extracellular acceptor of cholesterol from cells, which could 

affect cholesterol accumulation within the macrophages.  Thus serum containing 

lipoprotein would not be appropriate for cellular cholesterol loading experiments.  Due to 

this the growth of cells in RPMI containing LPDS was explored.  LPDS was prepared form 

HIHS according to the methods described in Chapter 2.  HMDMs (5 x 10
6
 cell/ml) were 

cultured in RPMI supplemented with 10% LPDS from day 1 of culture.  The growth of 

cells in RPMI with 10% LPDS was compared to the growth of cells in RPMI with 10% 

HIHS isolated from the same blood donor and monitored daily by inverted light 

microscope. 

Microscopic examination of the macrophages after 14 days in culture revealed that 

macrophages grown in RPMI with LPDS had less spread cytoplasm and were more 

rounded looking (Figure 3.8) compared to the fried-egg morphology of macrophages 

grown in RPMI containing HIHS.  After 14 days in culture, oil red-O positive staining was 

more prevalent in cells grown in RPMI with HIHS than cells grown in RPMI with LPDS 

suggesting less lipid accumulation in the later culture system (Figure 3.9).  In two other 

attempts to grow monocytes in RPMI with LPDS, there were less number of cells in RPMI 

with 10% LPDS compared to cells grown in RPMI with 10% HIHS throughout the culture 

period.  This could suggest that the LPDS is less favourable for the growth of HMDMs 

possibly due to the lack of cholesterol, triacylgycerol or α-tocopherol in the LPDS.   

 

3.2.4 Effect of OxLDL on HMDMs’ Viability Incubated in RPMI 

Containing 10% LPDS or Without Serum 

 

Effect of oxLDL on HMDMs viability when the serum in the RPMI was changed from 

HIHS to LPDS or without any serum was examined.  In this experiment the cells were 

already in RPMI containing 10% HIHS for 14 days before the media was changed to 

RPMI containing 10% LPDS or no serum for 24 hours. Incubation of HMDMs with 

oxLDL media containing LPDS made them more sensitive to oxLDL (Figure 3.10). The 

cell viability was significantly lost at 0.1 mg/ml oxLDL while no viability loss was 

observed at this concentration when they were in media containing HIHS (Figure 5.3, 

Chapter 5).  The 50% loss in cell viability at 1.0 mg/ml when the cells were in media 

containing LPDS was similar to cells in media containing HIHS (Figure 5.3, Chapter 5).  

Interestingly, oxLDL concentrations of above 1.0 mg/ml did not cause any further loss in 

the viability (Figure 3.10).  This is rather surprising because when cells were in RPMI 
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containing HIHS the cell viability was less than 10% with oxLDL concentration greater 

than 1 mg/ml (Figure 5.3, Chapter 5).   

The effects of removing HIHS from the media and replacing it with LPDS and no 

serum were examined.  Cells that were initially cultured in media containing HIHS for 14 

days were preincubated in media containing LPDS or no serum for 24 hours before further 

incubating them for another 24 hours in the presence of 1 mg/ml oxLDL.  Changing the 

serum from HIHS to LPDS (Figure 3.11) did not significantly affect the cell viability 

which suggests that the lipoprotein portion of serum does not significantly contribute to the 

maintenance of the viability of the cells.  The absence of serum in the media caused a 

massive 50% loss in the cell viability.  The cell viability loss of the cells incubated in the 

HIHS or LPDS with 1 mg/ml oxLDL was not significantly different (approximately 50%).  

However, in the absence of serum, oxLDL caused 80% drop in the cell viability 

  The influence of serum deprivation on the viability of HMDMs was then further 

explored.  The MTT assay shows that there was a drop in the cell viability when the media 

was deprived of serum (B as compared to A, Figure 3.12).  The cell viability was greatly 

reduced even when subtoxic level of oxLDL (0.1 mg/ml) was added (C, Figure 3.12).  

Addition of oxLDL to the cells (E) slightly increased the cell viability compared to when 

the cells were just in the media containing serum (D) (Figure 3.12. The data suggests that 

there were some factors in the serum that can protect the cells from cell viability loss.  This 

result was further supported by results shown in Figure 3.13.  Removing the serum from 

the media decreased the cell viability in a time dependent manner.  Similarly the addition 

of oxLDL to the media containing no serum greatly reduced the viability of the cells.  
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Figure 3.8 The effect of LPDS in RPMI on HMDMs growth. 
HMDMs (5 x 10

6
 cell/ml) were cultured in RPMI supplemented with 10% HIHS (a) or 10% LPDS (b) 

in 12 well plates.  Pictures were taken on days 14 of culture.  Cells were viewed in situ in tissue culture 

wells using an inverted microscope.  Original magnification of the microscope was 40x and the pictures 

were taken using a digital camera.  Data shown from one HMDMs preparation representative of three 

experiments.  
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Figure 3.9 Culture of HMDMs in RPMI with 10% HIHS had more cells with oil 

red-O staining than cells in RPMI with 10% LPDS.  
HMDMs (5 x 10

6
 cell/ml) were cultured in RPMI containing 10% HIHS (a) or 10% LPDS (b) in 12 

well plates for 14 days. Cells were stained with oil red-O staining as described in chapter 2 and viewed 

in situ in tissue culture wells using an inverted microscope.  Original magnification was 40x and the 

pictures were taken using a digital camera.    
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Figure 3.10 Effects of oxLDL on HMDMs viability after 24 h incubation in RPMI 

containing 10% LPDS. 
HMDMs (5x10

6
 cells/ml) were initially cultured in RPMI containing 10 % HIHS.  The serum was 

changed to 10% LPDS for 24 h before incubation with increasing concentrations of oxLDL for another 

24 h.  The cell viability was analysed via MTT assay.  Significance is indicated from 0 mg/ml oxLDL 

(control).  Results are displayed as mean ± SD of triplicates from a single experiment, representative of 

three separate experiments. 
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Figure 3.11 Effects of oxLDL and different serum on HMDMs viability.  
HMDMs (5x10

6
 cells/ml) were initially cultured at 37 °C in RPMI containing 10% HIHS.  At the start 

of experiment the HIHS was changed to LPDS or no serum for 24 h.  Then the cells were incubated 

with 1 mg/ml oxLDL in their respective media for another 24 hours.  HMDMs were analysed for cell 

viability via MTT assay.  Significance is indicated from cells in RPMI containing 10 % HIHS. Each 

value shown is the mean + SD of triplicates from  a single experiment representative of three separate 

experiments.   
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A: cells with serum whole time        

B: cells with no serum for 48 hours        

C: cells with no serum for 24 hours then add 0.1 mg/ml oxLDL in the absence of 

serum for another 24 hours. 

D: cells with no serum for 24 hours then add 10 % HIHS for another 24 hours.  

E: cells with no serum for 24 hours then add 10 % HIHS and 0.1 mg/ml oxLDL for 

another 24 hours.  
    

Figure 3.12 Effect of serum in the presence of 0.1 mg/ml oxLDL on the viability of 

HMDMs. 
HMDMs were initially cultured in RPMI containing 10 % HIHS.  The conditions of experiments are as 

explained under the graph.  After the incubation period, the cell viability was assessed via MTT assay.  

Significance is indicated from cells in RPMI containing 10 % HIHS. Results are displayed as mean ± 

SD of triplicates from a single experiment, representative of three separate experiments.  
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Figure 3.13 Effect of oxLDL on cell viability of HMDMs in the absence of serum. 
HMDMs (5 x 10

6
 cell/ml) were in RPMI containing 10 % HIHS until before experiment the serum was 

taken out for duration indicated in the graph.  Control was HMDMs in RPMI containing 10 % HIHS all 

the time. After the indicated incubation time with and without oxLDL the HMDMs were assessed for 

cell viability via MTT assay.  Significance is indicated from control. Results are displayed as mean ± 

SD of triplicates from a single experiment. 

 

3.2.5 Culturing HMDMs in Suspension Plates and then Seeded on to 

the Adherence Plates 

This section investigates whether isolated blood human monocytes can survive and 

differentiate into macrophages when cultured in a non-adherent suspension plate.  In 

addition, the possibility of growing these cells (cells that have been in a suspension culture 

for a period of time) can then adhere to an adherence plate and take on a macrophage-like 

appearance was also explored.  Observation of the HMDMs plated in the suspension plate 

by the inverted light microscope was done on days 4, 8 and 14 of culture.  In this 

experiment the isolated monocytes were initially cultured at 5 x 10
6
 cell/ml in 12 well 

suspension plate (Greiner products, Greiner Bio-one, Frickenhausen, Germany).  Since the 

cells were regarded as suspension cells, their number was counted every time the media 

was changed and the cells were put back into the same well after centrifugation at 500 g. 

 Isolated human blood monocytes were able to survive as suspension cells in the 

suspension plate over 14 days of experimenting period.  These suspended cells did not 

differentiate into macrophages (Figure 3.14).  Even though the manufacturer (Greiner Bio-

one, Frickenhausen, Germany) claimed that no cell can attach to the bottom of the wells of 
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their suspension plates, interestingly this study had found the opposite.  There was a 

subgroup of the suspended monocytes which adhere to the bottom of the wells and 

differentiated.  The ability of the monocytes to adhere to the bottom of the suspension 

wells reflects the fact that these cells are adherent type of cells so; they will try to attach to 

the wells.  The cells attached to the bottom of the wells as early as day 4.  On day 8 of 

culture, the attached cells differentiated into elongated and spindle-like morphology and by 

day 14, a mixture of elongated and round cells were observed (Figure 3.15).  These cells 

however, did not look like the normal macrophages as seen in Figure 3.1. 

 Then after 2 weeks in the suspension plate the cells were transferred to the 

adherence plate.  Figure 3.16 shows that on day 2 in the adherence plate a mixture of large 

round, elongated and small round cells were observed.  By day 5, the cells had already 

become much enlarged but their morphology did not look like the normal fried egg-like 

macrophages. 
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Figure 3.14 HMDMs in the suspension plate. 
HMDMs (5 x 10

6
 cell/ml) were cultured in RPMI supplemented with 10% HIHS in 12 well suspension 

plate.  Pictures were taken on days 4, 8 and 14 of culture.  Cells were viewed in situ in tissue culture 

wells using an inverted microscope.  Original magnification of the microscope was 40x and the pictures 

were taken using a digital camera.   
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Figure 3.15 The appearance of HMDMs at the bottom of the suspension plate. 
HMDMs (5 x 10

6
 cell/ml) were cultured in RPMI supplemented with 10% HIHS in 12 well suspension 

plate.  Pictures were taken on days 8 and 14 of culture.  Cells were viewed in situ in tissue culture wells 

using an inverted microscope.  Original magnification of the microscope was 40x and the pictures were 

taken using a digital camera.   
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Figure 3.16 Growth of HMDMs on the adherent plate after being cultured in the 

suspension plate. 
HMDMs (5 x 10

6
 cell/ml) were initially cultured in RPMI supplemented with 10% HIHS in 12 well 

suspension plate.  After 2 weeks in the suspension plate the cells were transferred to adherent plate and 

allowed to grow.  Pictures were taken on days 2 and 5 in the adherent plate.  Cells were viewed in situ 

in tissue culture wells using an inverted microscope.  Original magnification of the microscope was 40x 

and the pictures were taken using a digital camera. 
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3.3 Discussion 
 

It is known that the early event in lesion development is the recruitment of monocytes from 

the circulation to the intima by inflammatory processes (in part promoted by 

proinflammatory effects of oxLDL).  Various adhesion and chemoattractant factors 

participate in this directed migration (see section 1.2.1 Chapter 1).  Once resident in the 

intima, monocytes differentiate into macrophages and take up the modified lipoproteins via 

specific receptors.  These processes give rise to the foam cell, a hallmark of the arterial 

lesion (Libby, 2002).  While these events are clearly laid out, a specific condition of in 

vitro system for differentiating the monocytes into macrophages and hence developing 

foam cells are still not established and standardized from laboratory to laboratory.  It had 

been shown that monocytes can differentiate into macrophage phenotype with different 

morphologies and functions depending on the culture conditions and differentiation factors 

included in the culture medium (Akagawa, 2002).  This results in the difficulty in 

comparing the results from one laboratory to another laboratory. 

Even though this laboratory routinely culture isolated blood monocytes in RPMI 

with 10% HIHS, this study is the first to document the characteristics of the monocytes 

differentiation into macrophages in this culture system.  Almost 70% of the monocytes had 

differentiated into macrophages after 14 days in culture.  They differentiated into 

macrophages with morphology that resembled a ‘fried egg” (Figure 3.1).  The 

macrophages looked foamy with wide spread cytoplasm and lipid accumulation probably 

induced by the presence of serum in the media could account for the foamy appearance of 

these cells.  This was evidence by the presence of oil red-O droplets within the cells 

(Figure 3.2).   

The present study shows that growing the cells in the SFM was not favorable for 

the cell growth (Figure 3.1).  This is supported by lower cell viability and ‘sick’ looking 

appearance of the cells in the SFM (Figure 3.4).  The large variation in the percentage of 

cell viability is probablydue to the unfavorable growth condition of SFM causing cell death 

and also probably because in SFM the monocytes or immature macrophages do not adhere 

firmly; therefore some cells could be dislodged during the renewal of media.  Inclusion of 

granulocyte-macrophage colony-stimulating factor (GM-CSF) into the SFM was vital for 

healthy cell growth in the SFM (Figures 3.6 and 3.7).  GM-CSF has been shown to be an 

important factor for the development, chemotaxis, proliferation, differentiation, and 

activation of monocytes and macrophages (Glass & Witztum, 2001).  However, inclusion 

of GM-CSF in SFM induced morphological alterations to the cells.  Observation using the 
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light microscope showed that macrophages had elongated processes although later on they 

converted to the fried egg-like macrophage morphology again.   

Growing the cells in the RPMI with HIHS and also in SFM induces lipid 

accumulation as shown by the oil red-O staining (Figure 3.2).  Cellular lipid accumulation 

observed in cells cultured in SFM was rather surprising.  However, according to Dr. Keri 

Carpenter of Cambridge University (through personal communication) SFM contains 

cholesterol that probably explains how the cells accumulated lipids.  Thus, the observation 

that HMDMs accumulate lipid in RPMI containing HIHS and SFM should be taken into 

account when using these culture system to study the characteristics of foam cells.  

Previously, it had been shown that HMDMs cultured in RPMI with human serum 

were rapidly converted to lipid-loaded cells enriched in triglyceride, α-tocopherol and to a 

lesser degree, cholesterol (Asmis & Jelk, 2000b; Garner et al., 1997a).  Human serum 

contains substantial amount of free cholesterol, triglyceride, cholesterol esters and 

phospholipid (Garner et al., 1997a).  The ability of human serum to induce HMDM lipid 

accumulation was reduced after removal of lipid fraction from human serum.  In addition, 

the lipid profile of HMDMs had been shown to be highly dependent on the types of serum 

used to culture the cells (Garner et al., 1997a).  HMDMs cultured in media supplemented 

with human serum amass large quantities of lipid but HMDMs cultured in the presence of 

foetal calf serum do not (Garner et al., 1997a).  By extension, it can be postulated that 

HMDMs cultured in human serum will accumulate lipid to a certain extent.  The general in 

vivo significance of this serum-induced lipid accumulation in macrophages remains 

uncertain.  It may however serve as a reasonable model for more specific situation 

particularly those involving macrophage foam cells in the atherosclerotic plaque.   

 Even though the cells can grow in RPMI supplemented with LPDS, the 

morphology of the cells were slightly different compared to cells in RPMI with HIHS.  The 

cells looked rounder and less spreading.  This may have been due to lower accumulation of 

lipids which is evidenced by less oil red-O staining in cells cultured in RPMI with LPDS 

compared to cells cultured in RPMI with HIHS (Figure 3.9).  The lack of lipoprotein in 

LPDS could also explain for the reduction in the number of cells during the culture period 

which indicates cells death was occurring. 

Although the monocytes can survive and differentiate in SFM supplemented with 

GM-CSF or in RPMI with LPDS, other issues have to be considered too.  The media 

condition greatly influence not just the morphology but also cell surface antigen expression 

and functions of the macrophages.  For example, when macrophages were differentiated 

from human monocytes in RPMI with human serum, the macrophages uptake of LDL can 
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occur by non-receptor mediated fluid-phase macropinocytosis (Kruth, et al., 2005).  

Meanwhile differentiation of macrophages from human monocytes in RPMI with foetal 

bovine serum and macrophage colony-stimulating factor (M-CSF) produced a macrophage 

phenotype demonstrating fluid-phase endocytosis of native LDL (Zhao et al., 2006).   

Previous study (Akagawa, 2002) showed that GM-CSF and M-CSF stimulate the 

differentiation of human monocytes into two phenotypically distinct types of macrophages, 

fried egg-like morphology and elongated spindle-like morphology respectively.  Moreover, 

CD14
+
 adherent human monocytes can differentiate into CD1

+
relB

+
 dendritic cells (DC) 

by the combination of GM-CSF with interleukin-4 (IL-4).  The CD14
+
 adherent human 

monocytes can also differentiate into tartrate-resistant acid phosphatase (TRAP)-positive 

osteoclast-like multinucleated giant cells (MGC) by the cooperation of  M-CSF with IL-4 

(Akagawa et al., 1996).  However, the monocyte-derived DC are not terminally 

differentiated cells; they could still convert to macrophages in response to M-CSF 

(Akagawa et al., 1996).  Wintergerst et al., 1998 showed that even monocytes grown in 

same culture conditions can differentiate into three subpopulations with two of the three 

subsets decreased in size during further differentiation.  Taken together, their studies 

provide evidence that human monocytes are flexible in their differentiation potential which 

partially depend on the culture conditions and how long they are kept in the culture system.   

This study showed that serum starvation caused a drastic drop in the cell viability 

similar to the addition of toxic level of oxLDL (Figure 3.11).  This was expected since 

serum contains cytokines (e.g. insulin-like growth factors and platelet-derived growth 

factor (PDGF)), chemokines and growth factors which are vital to maintain the growth and 

viability of the cells.  Serum had been shown to have a protective effect on apoptosis 

(Bjorkerud & Bjorkerud, 1996b).  It had been demonstrated that serum (Kulkarni & 

McCulloch, 1994) or growth factors in serum such as insulin-like factor-I (Sell et al., 

1995) and PDGF (Harrington et al., 1994) inhibited the appearance of apoptosis.  This 

study also shows that the removal of serum from the media made the cells more sensitive 

to oxLDL (Figure 3.11).  This could be due to the fact that serum deprivation of cells 

increases ROS formation that places the cells under increased redox stress (Halliwell & 

Gutteridge, 2007).  Serum contains an array of antioxidants which protect the cells.  The 

main antioxidants include ascorbate, urate, α-tocopherol, coenzyme Q, carotenoids 

albumin-bound bilirubin and albumin (Asmis & Wintergerst, 1998; Frei et al., 1988; 

Stocker et al., 1987).  Protein sulfhydryl groups have also been suggested to contribute 

significantly to the antioxidant capacity of serum (Wayner et al., 1987).  Extracellular 

superoxide dismutase (Karlsson & Marklund, 1987) and a selenium-dependent glutathione 
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peroxidase (Maddipati & Marnett, 1987) have been proposed to be involved in antioxidant 

defenses in human serum.  Therefore, removal of serum from the media will definitely 

caused the cells to be more susceptible to the toxic effect of oxLDL.   

A study by Bjorkerud and Bjorkerud, (1996b) demonstrated that exposure of SMCs 

to oxLDL under serum-free conditions had a stronger apoptosis-inducing effects than in 

the presence of serum.  It was observed that serum starvation leads to the loss of substrate 

attachment and cells could be seen floating to top of the liquid medium (Bjorkerud & 

Bjorkerud, 1996b).  The addition of serum was shown to decrease the proportion of non-

adherent cells and rescued the non-adherent cells from death (Bjorkerud & Bjorkerud, 

1996b).  In this study, the replacement of serum from HIHS to LPDS when the cells were 

initially cultured in RPMI supplemented with HIHS had no significant effect on the 

viability of HMDMs.  Studies by Asmis and Wintergerst (1998) showed that addition of 

human serum as well as LPDS not only prevented apoptosis induced by serum deprivation 

but also protected HMDMs from the cytotoxicity of 100 µg/ml oxLDL.  The ability of 

LPDS to inhibit apoptosis suggests that serum lipoproteins and their lipid-soluble 

antioxidants such as vitamin E, coenzyme Q, or carotenoids are at least not directly 

involved in protecting the cells from apoptosis (Asmis & Wintergerst, 1998).   

It is interesting that the monocytes survived and did not differentiate when cultured 

in the suspension wells.  The fact that some monocytes attached to the bottom of the 

suspension wells did not mean that they differentiate into macrophages as their 

morphology was different from that of the normal macrophages (macrophages cultured in 

RPMI with 10% HIHS).  Although they can survive as monocytes in the suspension wells, 

the cells could not be stored for later use as they did not differentiate into normal 

macrophages when plated on to the adherence plate.  This is probably due to these cells 

had undergone some sort of differentiation taking past the point of macrophage formation.  

Atherosclerotic plaque is considered to be a site of chronic inflammation and high 

oxidative stress (Scott, 2004; Van Lente, 2000). Monocytes and macrophages must have 

special mechanisms to avoid cell death in order to survive this harsh environment.  The 

presence of various factors provided by serum at the site where monocytes differentiate 

into macrophages or where macrophages developed into foam cells must have made it 

possible for the formation of the arterial lesions.  Therefore, serum requirement for 

optimum growth of monocytes into macrophages parallel processes that take place in vivo.  

In the plaque, the ability of macrophages to synthesise CSF is important for the 

proliferation and differentiation of monocytes into macrophages (Glass & Witztum, 2001).  

In the tissue culture conditions, if enough macrophages were present, this CSF need not be 
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added exogenously as the cells can synthesise sufficient amounts to support their own 

growth.  The ability of monocytes to differentiate into other morphological cell types 

raising the likelihood of their survival when the growth condition changes in response to 

the oxidative stress.  However, a question arises whether all these different morphological 

type of cells will develop into foam cells and form the arterial lesions.  

 

3.4 Summary 
 

Monocytes cultured in RPMI with 10% HIHS differentiated into macrophages with fried 

egg-like, foamy morphology. The presence of GM-CSF was essential for growing the 

human monocytes in SFM.  However, this caused the monocytes to differentiate into cells 

with elongated processes which then further differentiated into fried egg-like morphology 

by day 14 of culture period.  When cultured in RPMI with 10% LPDS, the monocytes 

differentiated into macrophages with less spread cytoplasm.  Monocytes were able to 

survive and did not differentiate into macrophages when cultured in the suspension plate; 

however, they failed to differentiate into macrophages when transferred to the adherence 

plate.  
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4 The Formation of Foam Cells from Human 

Monocyte-derived Macrophages 

 

4.1 Introduction 
 

The presence of lipid-laden cells, the so-called foam cells, is a hallmark of early 

atherosclerotic lesions.  Initially, macrophages were not considered to be significant in 

foam cell formation, until later studies on cells isolated from rabbits and monkeys found 

80-90 % of foam cells had characteristics of macrophages (Newman et al., 1971; Schaffner 

et al., 1980).  It is now generally accepted that foam cells in atherosclerotic lesions are 

largely derived from macrophages (Ross, 1993).   

Even though, there is no doubt about their important role in atherogenesis, their 

functional state and phenotype in the plaque are still not well characterized.  This is partly 

due to difficulties in isolating macrophages from atherosclerotic plaques for detailed 

studies.  Different methods are available to purify cells from tissue homogenates, such as 

density gradient centrifugation, cotton wool filtration, and antibody purification by panning 

or magnetic beads (Liu-Wu, et al., 1997).  Macrophage-derived foam cells from 

atherosclerotic lesions are, however, fragile, and a large fraction of these cells break during 

isolation procedures, often resulting in low yields.  The immunomagnetic beads for 

example did not result in a contamination-free cell preparation, as it is not possible to 

detach the beads from the macrophages after the separation procedure.  The 

contaminations could affect analysis of other cell surface markers (Mattsson et al., 1993).  

The exact mechanism for foam cell formation also has not been settled.  This has 

been discussed in great detail in Chapter 1.  It is widely accepted that intracytoplasmic 

accumulation of CE as membrane-free lipid droplet is the major characteristic and 

mechanism of foam cell formation.  However, in rabbit atheromatous cells, lysosomes are 

the site of accumulation of intracellular cholesterol rather than the membrane-free 

cytoplasmic droplets (Shio et al., 1978).  Macrophages do not become foam cells when 

incubated with native LDL but incubation with hypertriglyceridemic VLDL (Kosaka et al., 

2001; Whitman et al., 1998) or modified LDL (oxidized, acetylated or aggregated ) 

(Henriksen et al., 1981; Khoo et al., 1988; Steinbrecher et al., 1990) results in formation of 

lipid loaded cells.  Contradictory to this, Tabas et al. (1985) claimed that incubation of 

J774 macrophages with unmodified LDL also causes CE accumulation in this cell line.  
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Macrophages are heterogeneous cells with a wide spectrum of morphologies as 

well as functional capacities (Akagawa, 2002; Dougherty & McBride, 1984).  In humans, 

two major subsets of peripheral blood monocytes based on their distinctive migratory 

properties are defined as CD14
+
CD16

-
 and CD14

low
CD16

+
 (Draude et al., 1999).  CD14-

positive monocytes are of more inflammatory type of cells since they migrate easily to the 

inflammation sites.  CD14 antigen is upregulated after incubation of HMDMs with oxLDL 

(Shashkin et al., 2005).  In response to the monocyte chemotactic factors released from 

atherosclerotic lesions circulating monocytes move from the central axis of the 

bloodstream and are activated accompanied by expression of CD14 on the cell surface 

(Takahashi et al., 2002).  Upregulation of CD14 by oxLDL was shown to be related to 

monocyte differentiation into macrophages.   

The analysis of concentration of lipids from CD14-positive cells isolated from 

human atherosclerotic aorta (Table 4.1) (Mattsson et al., 1993) revealed that cholesterol 

ester accumulated the most followed by free cholesterol, and triglycerides in these cells.  

Foam cell from atherosclerotic plaques (Mattsson et al., 1993) contained on average four 

times more CE mass than triglyceride.  Macrophage-derived foam cells isolated from 

rabbit atherosclerotic intima also contained large amounts of cholesterol that consisted 

mainly (more than 80%) of CE (Naito et al., 1997). 

 

Table 4.1 Lipid distribution in isolated cells from human atherosclerotic intima 
media.   

 
Lipid class CD14-positive  cells 

 µg/mg cell protein 

Cholesterol ester 408 + 349 

Triglycerides 133 + 103 

Free cholesterol 333 + 200 

Values are given as mean + SD (n=11).  Lipids were extracted from CD14-positive cells 

isolated from atherosclerotic tissue and analysed by a combination of TLC and FID.  

Adapted from Mattsson et al., (1993). 

 

Mouse foam cells developed from mouse macrophages incubated with three types 

of LDL; acLDL, oxLDL and 7-KC acetylated LDL (7-KCacLDL) had variable lipid 

contents (Gellisen et al., 1999).  Loading with acetylated LDL (acLDL) produced a 4- to 5-

fold increase in cellular cholesterol over non-loaded cells, of which approximately half was 

esterified.  7-KCacLDL loading produced free and esterified cholesterol levels similar to 

acLDL but also to free and esterified 7-KC.  In that study the total 7-KC content was 

approximately 25% of the total sterol and 85% was esterified.  OxLDL-loaded cells 
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contained free and esterified cholesterol plus 7-KC and other oxysterol; (Brown et al., 

1996).  About 70% of the 7-KC in oxLDL-loaded cells was esterified.   

Mouse peritoneal macrophages and human macrophages treated with aggLDL were 

rapidly converted to CE-rich foam cells.  There was 15-fold and 37-fold increase in 

cellular CE compared to cells incubated with unmodified LDL in human foam cells (Asmis 

& Jelk, 2000b) and mouse foam cells respectively (Khoo et al., 1988).  Therefore, different 

types of cells displayed different levels of CE contents.   

This section of work initially concentrates on developing foam cells using HMDMs 

incubated with subtoxic level of copper oxidised LDL (oxLDL).  GC will be used in 

conjunction with HPLC to investigate the quantitation of free and total cholesterol (total 

cholesterol = free cholesterol + CE) contents of the lipid loaded cells.  Since ‘foam cell’ 

macrophages at atherosclerotic lesions contain massive cytoplasmic accumulation of CE 

droplets (Jessup et al., 2002), the accumulation of CEs in the HMDMs will be the indicator 

for foam cell formation.  Oil red-O staining will also be used to characterise the 

accumulation of CE.   

This section also aims to determine whether the level of de novo synthesis of 7,8-

dihydroneoperin in foam cells when stimulated with γ-interferon is different from the 

HMDMs.  The effect of oxLDL-induced damaged in foam cells will also be examined.  If 

there was any different in the susceptibility between HMDMs and foam cells towards 

cytotoxic oxLDL, then the effects of 7,8-dihydroneoperin on oxLDL-induced damaged in 

foam cells will be explored.   Collectively this section is designed to determine factors that 

affect the foam cell survival.   

This study is important because even though oxLDL has been proposed to be 

responsible for foam cell formation, the exact mechanism by which foam cells are formed 

in vivo is still unknown and convincing evidence from in vitro studies is still lacking.  In 

addition, the lack of in vitro studies using appropriate foam cell models has limited our 

information regarding foam cells’ composition and hindered our understanding of the role 

of the macrophage foam cells in atherosclerosis. 

Besides that, most previous studies generate foam cells in vitro by feeding oxLDL 

to either cultures of animal MDMs or immortal macrophage-like cell lines.  Only a few 

studies used HMDMs.  The exact nature of the foam cell formed in HMDMs will reflect in 

vivo processes more closely than cell lines and this would give a clue of the situation that 

might really occur at the atherosclerotic plaque.  Moreover, while it is clear that oxLDL is 

readily endocytosed by macrophages, relatively little attention has been given to the nature 

and extent of lipid deposition that such uptake produces.  Characterisation of lipid levels of 
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foam cells may provide a basis for exploring how sterols are metabolised by macrophages 

and how in turn the sterols influence cellular metabolism. 

 

4.2 Results 
 

4.2.1 GC Chromatograms of a Mixture of Standards (cholestane, 

cholesterol and 7-ketocholesterol) 

 

Table 4.2 and Figure 4.1 show the retention time and GC peak areas of the standards; 

cholesterol, cholestane and 7-KC.  The retention times of the standards were used as a 

reference to identify the cholesterol and 7-KC in the samples tested.  Cholestane was added 

at the very beginning of the lipid extraction and therefore used as an internal standard to 

calculate the lipid contents in the sample.  The GC analysis of each standard was done four 

times and there was a great consistency in the ratio of peak areas between cholesterol and 

cholestane, and 7-KC and cholestane.  Figure 4.2 shows chromatograms of derivatised 

copper-oxLDL co-chromatographed with cholestane standard.  7-KC was detected in the 

oxLDL sample and it was 1.92 + 0.07 % of the free cholesterol levels.   

 

4.2.2 Analysis of Free and Total Cholesterol Contents of Macrophages 

Growth by Gas Chromatography  

 

Data from several studies show different levels of lipids over the period of differentiation 

of monocytes into macrophages (Asmis & Jelk, 2000b; Garner et al., 1997a; Khoo et al., 

1988).  It was interesting to know whether in our culture conditions, were the cells’ neutral 

lipid contents are different.  To address this question, the lipid contents of HMDMs were 

extracted after 1, 4 and 10 days of seeding onto the adherence plates.  The free cholesterol 

and total cholesterol were measured using GC analysis.  In addition, the differentiation of 

monocytes to macrophages was monitored under the light microscope where the number of 

monocytes and macrophages were counted after 1, 4 and 10 days of seeding. 

Within 24 hour of being plated, blood monocytes, adhered firmly to the culture 

plates and the cells started to accumulate free cholesterol and CE (Figure 4.3).  After 4 

days, the percentage number of macrophages (Figure 4.4) and lipid contents of 

monocytes/macrophages have already substantially increased (Figure 4.3).  By day 10, 

40% of the cells were macrophages though this varied depending on the blood donors 

(Figure 4.4).  During the differentiation of monocytes to 10-day old HMDMs, these cells 

increase their free and total cholesterol contents by 11-folds and 5-folds respectively.  The 
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free cholesterol and total cholesterol level have increased 2-folds by day 4 in comparison 

to day 1 monocytes (Figure 4.3).  Since total cholesterol is the sum of free cholesterol and 

CE, it seems that the CE level increased 2-fold on day 4 in comparison to day 1.  There 

was no further increment of CE level by day 10.  Contrary to CE, the free cholesterol 

levels increased 4-fold by day 10 in comparison to day 4. 

 

4.2.3 Analysis of Free Cholesterol and Total Cholesterol Contents of 

Monocytes and Macrophages Incubated with OxLDL by Gas 

Chromatography 

 

It is unknown whether subtoxic level of oxLDL affects the growth of monocytes.  

Therefore, the effects of 0, 50, 100 and 200 µg/ml of oxLDL, on the percentage of 

differentiation of monocytes to macrophages per well were determined.  Figure 4.4 shows 

that in comparison to the nontreated cells the differentiation of monocytes into 

macrophages did not seem to be affected by the presence of different concentrations of 

oxLDL.   

Effects of oxLDL on the viability and lipid contents of monocytes were determined 

to address the issue of whether monocytes also accumulate lipid and change into foam 

cells.  This is because it is uncertain whether in vivo, monocytes take up lipids while 

migrating across the endothelium.  This was investigated by incubating 1 day old 

monocytes in RPMI containing 10% HIHS at 37 °C with various concentrations of oxLDL 

for 10 days before analysing the cells’ viability by MTT assay and lipid levels by GC 

analysis.   

Figure 4.5a shows that concentrations of oxLDL from 0-200 µg/ml did not affect 

the cell viability of monocytes which suggests that oxLDL up to 200 µg/ml was not toxic 

to the cells.  It is noteworthy that by day 10 of the incubation period, 40-50% of the 

monocytes had transformed into macrophages.  Figure 4.5b shows that the free and total 

cholesterol contents of the cells treated with oxLDL were not significantly different from 

the control cells and also not affected by increased oxLDL concentrations.  The CE 

contents of the cells treated with increasing concentrations of oxLDL remained fairly 

similar. 

The experiment was repeated using 14 day old culture of HMDMs where almost 

70% of the HMDMs were macrophages.  After 10 days incubation with increasing 

concentration of oxLDL, all the cells look morphologically similar under the microscope 

(Figure 4.6).  The cells have foamy appearance and large cytoplasm.  Concentrations of 
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oxLDL up to 200 µg/ml did not affect the viability of macrophages (Figure 4.7a).  The 

result of lipid analysis using GC showed that there was no significant different in either the 

free cholesterol or total cholesterol contents between the oxLDL-treated and non-treated 

cells (Figure 4.7b).  It was expected that the oxLDL did not affect the free cholesterol 

level.  However, if the foam cells are formed by addition of oxLDL, the CE levels should 

be higher than that of the control cells. 

Since concentrations of oxLDL up to 200 µg/ml did not affect the cell viability or 

lipid contents of HMDM, a concentration of oxLDL ranging from 0 to 500 µg/ml was 

examined.  This exposed the cells to a more toxic concentration of oxLDL.  The HMDMs 

were incubated with oxLDL for 48 hours before doing MTT and lipid analyses.  Shorter 

incubation time i.e. 48 h was chosen to avoid cholesterol efflux and toxicity of oxLDL.  

The result (Figure 4.8a) shows that 0.5 mg/ml oxLDL reduced the cell viability by 10% 

suggesting that 0.5 mg/ml of oxLDL was partially toxic to the cells.  Lipid accumulation 

was also examined microscopically following staining of cells with oil red-O stain.  After 

48 hours incubation of HMDMs with oxLDL, oil red-O positive droplets were clearly 

detected not just within the oxLDL treated cells but also within the control cells (Figure 

4.9).  The results of lipid analysis by GC showed that there was no significant different in 

either the free or total cholesterol contents between the oxLDL-treated and nontreated cells 

(Figure 4.8b).  However, the foamy appearance of the cells and positive oil red-O staining 

suggests that the cells might have developed into foam cells whether in the presence or 

absence of oxLDL (Figure 4.9).   

Since the media contained serum that have lipoproteins in it there was a possibility 

that the macrophages had oxidised the lipoprotein and take up the oxidised lipoprotein in 

the serum before oxLDL was added to the cells.  This probably account for the lack of 

differences between the lipid contents of the controls and the oxLDL-treated cells.  This 

process might also lead to the formation of foam cells before the addition of oxLDL to the 

media as suggested by the lack of difference in the oil red-O staining between the oxLDL-

treated and control cells (Figure 4.9).  To test this possibility, the level of lipid oxidation 

(formation of MDA) in the fresh media of the cells and the media that the cells had sat in 

for 3 days were measured by using TBARS/HPLC analysis (Table 4.3).  The unpaired two 

tailed t-test showed that there was no significant different in the MDA contents of the fresh 

and old media which suggest that there was no oxidation of lipoprotein in the serum.   

At this point there are probably two other explanations for this result.  The first 

likely explanation is that treatment with oxLDL did not cause foam cell formation.  

Secondly, to form foam cells, the macrophages might need to be treated with aggregated 
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lipoproteins and not oxLDL as claimed by Asmis and Jelk, (2000b).  To investigate the 

later, the cells were incubated with 200 µg /ml of nLDL, oxLDL, aggLDL and aggoxLDL 

for 48 hours.  LDL and oxLDL were aggregated by vortexing for 60 seconds.  MTT assay 

(Figure 4.10a) shows that treatment with these modified LDL did not affect the viability of 

HMDMs.  The free cholesterol and CE compositions were then analysed by GC.  One way 

ANOVA analysis revealed that there was no significant different in CE composition 

between the controls and LDL-modified treated cells (Figure 4.10b).  Moreover, the oil 

red-O staining (Figure 4.11) shows that all the cells (regardless of the treatment) have lipid 

droplets characteristics of foam cells. 

Another point that has to be noted here is that in comparison with Figures 4.5 and 

4.7, the total cholesterol contents in Figures 4.8 and 4.10 are not 100% more than the free 

cholesterol contents. Similar results like Figures 4.8 and 4.10 were produced when these 

experiments were repeated twice.  The GC chromatograms (Figure 4.12) where results for 

Figure 4.7 were extracted, clearly shows that the peaks areas of the hydrolysed samples 

(Figure 4.12b) were larger (with reference to cholesterol peak) compared to peak areas of 

the free cholesterol chromatograms (Figure 4.12a).  Hence, higher values for the total 

cholesterol content was obtained compared to the free cholesterol contents.  In contrast, the 

GC chromatograms (Figure 4.13) of HMDMs where results for Figure 4.8 were extracted 

clearly shows that chromatograms of total sterols (Figure 4.13b) had less and smaller peaks 

than the free cholesterol chromatograms (Figure 4.13a).  This obviously accounts for the 

less total sterol contents in Figure 4.8.  Figure 4.10b also demonstrated that the total 

cholesterol contents varied a lot and the values are similar to the free cholesterol levels.  A 

lack of consistency in the trend of the free and total cholesterol contents is probably due to 

the unavoidable loss of samples during sample processing or during GC analysis.  This will 

be discussed further in the discussion section.  
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Figure 4.1 The GC chromatograms of mixture of standards of cholestane, 

cholesterol and 7 ketocholesterol.   
50 µg of each cholesterol, cholestane and 7-KC were dissolved in hexane and mixed together.  The 

mixture was dried down under nitrogen before going through alkaline hydrolysis (described in the 

methods).  The residue was redissolved in 20 µl heptane and 2 µl was injected into GC. 
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Table 4.2a The GC’s retention times and ratio of peak areas of cholestane, 

cholesterol and 7-KC standards.  

 
Material Run Retention Time  Peak area 

Cholestane 

1 5.098 149955 

 2 5.119 340619 

 3 5.1 284523 

 4 5.073 360808 

    

Cholesterol 1 6.79 151091 

 2 6.846 380898 

 3 6.813 303564 

 4 6.791 403146 

    

7-KC 1 17.314 101785 

 2 17.37 257721 

 3 17.32 198582 

 4 17.252 277085 

 

 

Table 4.2b Ratios of peak areas 
 

 
Run Cholesterol/Cholestane 

7-KC/cholestane 

1 1.008 0.679 

2 1.118 0.757 

3 1.067 0.698 

4 1.117 0.768 

Mean + Std dev 1.078 + 0.725 0.725 + 0.044 

 

50 µg of each cholesterol, cholestane and 7-KC (dissolved in hexane) were dried down under nitrogen 

before going through alkaline hydrolysis.  The residue was dissolved in 20 µl heptane and 2 µl was 

injected into GC for four runs. 
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Figure 4.2 The GC chromatograms of oxLDL. 
Analysis of oxLDL prepared by 24 hour Cu

2+
 oxidation extracted into chloroform and dried down under 

nitrogen before going through alkaline hydrolysis.  The residue was redissolved in 20 µl heptane and 2 

µl was injected into GC.  
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Figure 4.3 The free and total cholesterol contents of HMDMs on days 1, 4 and 10 

after seeding.   
Lipids analysis of HMDMs (10 x 10

6 
cell/ml) in RPMI containing 10% HIHS in 6 well plates were 

performed after 1, 4 and 10 days after cell seeding/plating as described in chapter 2.  Lipid analysis was 

performed using GC method.  Results are displayed as mean ± SD of triplicates from a single 

experiment, representative of three separate experiments. 
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Figure 4.4 Effect of increasing oxLDL concentrations on the growth of HMDMs. 
HMDMs (5 x 10

6
 cell/ml) were cultured in RPMI containing 10 % HIHS and increasing concentration 

of oxLDL.  The number of monocytes and macrophages were counted on the day of seeding (day 0) and 

days 4, 7 and 10 after seeding.  The number of cells was counted in three wells from at least 5 views. 

Results are displayed as mean ± SD of triplicates. 
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Figure 4.5 GC analysis of lipid composition and cell viability of monocytes (with 

50% differentiation into macrophages) after treatment with increasing 

concentrations of oxLDL.  
One day old monocytes (10x10

6 
cell/ml) in RPMI containing 10% HIHS in 6 well plates were incubated 

in the absence (control) or in the presence of oxLDL.  After 10 days incubation, the (a) cell viability 

was assessed via MTT assay and (b) cholesterol contents were analysed by GC analysis.  ANOVA 

analysis revealed no statistical significance from control for free and total cholesterol contents.  Results 

are displayed as mean ± SD of triplicates from a single experiment, representative of three separate 

experiments. 
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Figure 4.6 Effect of increasing concentration of oxLDL on HMDMs morphology.  
HMDMs (5 x 10

6
 cell/ml) in RPMI containing 10 % HIHS in 12 well plates were incubated with 

increasing concentrations of oxLDL, (A) control; (B) 50 µg/ml, (C) 100 µg/ml; and (D) 200 µg/ml for 

10 days.  The media and oxLDL were renewed on the fourth and seventh day of incubation period.  

Cells were viewed in situ in tissue culture wells using an inverted microscope with green filter.  Original 

magnification was 40x and the pictures were taken using a digital camera.  
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Figure 4.7 GC analysis of lipid composition and cell viability of HMDMs (with 

70% differentiation into macrophages) after treatment with increasing 

concentrations of oxLDL.  
HMDMs (10x10

6 
cell/ml) in RPMI containing 10% HIHS in 6 well plates were incubated in the absence 

(control) or in the presence of oxLDL.  After 10 days incubation, the (a) cell viability was assessed via 

MTT assay and (b) cholesterol contents were analysed using GC analysis.  ANOVA analysis revealed 

no statistical significance from control for free or total cholesterol contents.  Results are displayed as 

mean ± SD of triplicates from a single experiment, representative of three separate experiments. 
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Figure 4.8 Effect of increasing concentration of oxLDL on HMDMs viability and 

lipid contents after 48 h incubation.  
HMDMs (10 x 10

6
 cell/ml) in RPMI containing 10% HIHS in 6 well plate were incubated with or 

without (control) oxLDL.  After 48 hours incubation, HMDMs were analysed for (a) cell viability by 

MTT assay and (b) lipids were extracted and analysed for cholesterol contents by GC.  ANOVA 

analysis revealed no statistical significance from control.  Results are displayed as mean ± SD of 

triplicates from a single experiment, representative of three separate experiments. 
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Figure 4.9 Culture of HMDMs in 10 % HIHS in the presence or absence of oxLDL 

produces oil red-O positive, lipid loaded cells.   
HMDMs (5 x 10

6
 cell/ml) in RPMI containing 10 % HIHS in 12 well plates were incubated with 

increasing concentrations of oxLDL (A) control, (B) 100 µg/ml, (C) 200 µg/ml, and (D) 500 

µg/ml for 48 hours. Controls were conducted in the absence of oxLDL.  Cells were viewed in situ in 

tissue culture wells using an inverted microscope.  Original magnification was 100x and the pictures 

were taken using a digital camera. 

 

Table 4.3 The TBARS measurement of fresh and old media.   
 

Sample [MDA] uM Average +SD 

fresh 1 0.383  

fresh 2 0.347 0.353+ 0.027 

fresh 3 0.33  

old 1 0.371  

old 2 0.354 0.374 + 0.022 

old 3 0.398  

HMDMs (5x10
6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS.  Media was taken 

immediately (fresh) and 3 days after added to cells.  Significance is indicated between the MDA values 

of the fresh and old media.  Unpaired two tailed t-test revealed no statistical significance between the 

fresh and old media. 
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Figure 4.10 GC analysis of lipid composition and cell viability of HMDMs after 

treatment with various LDL modifications.   
HMDMs (10x10

6 
cell/ml) in RPMI containing 10% HIHS in 6 well plates were incubated in the absence 

of lipoprotein (control) or in the presence of either LDL, agg-LDL, oxLDL or agg-oxLDL at 0.2 mg/ml 

respectively.  After 48 h incubation, the (a) cell viability was assessed via MTT assay and (b) 

cholesterol contents were analysed using GC analysis.  ANOVA analysis revealed no statistical 

significance from control.  Results are displayed as mean ± SD of triplicates from a single experiment, 

representative of three separate experiments. 
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Figure  
 

Figure 4.11 Culture of HMDMs in 10 % HIHS with various LDL modifications 

produces oil red-O positive, lipid loaded cells.   
HMDMs (5 x 10

6
 cell/ml) in RPMI containing 10 % HIHS in 12 well plates were incubated with (B) 

200 µg/ml of LDL, (C) 200 µg/ml of aggLDL, (D) 200 µg/ml of oxLDL and (E) 200 µg/ml of 

aggoxLDL for 48 hours.  (A) was control without lipoprotein.  Cells were viewed in situ in tissue 

culture wells using an inverted microscope.  Original magnification was 40x and the pictures were taken 

using a digital camera.    
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Figure 4.12 GC chromatograms of HMDMs (10 x 10

6
 cell/ml) in RPMI containing 

10% HIHS in 6 well plate incubated with 200 µµµµg/ml oxLDL for 10 days.   
Lipids were extracted and analysed for free cholesterol contents (a) or underwent alkaline hydrolysis to 

give total cholesterol (b). 
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Figure 4.13 GC chromatograms of HMDMs (10 x 10

6
 cell/ml) in RPMI containing 

10% HIHS in 6 well plate incubated with 200 µµµµg/ml oxLDL for 48 hours.   
Lipids were extracted and analysed for free cholesterol contents (a) or underwent alkaline hydrolysis to 

give total cholesterol (b). 
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4.2.4 Analysis of Free Cholesterol and Cholesteryl Ester Contents of 

HMDMs Incubated with modified LDL by High Performance 

Liquid Chromatography (HPLC) 

 

The inconsistency in the total cholesterol content results has raised the suspicion that GC is 

not a reliable method to analyse HMDMs’ lipid content.  Therefore, the lipid contents of 

HMDMs were reanalysed by HPLC according to the method established by Kritharides et 

al. (1993).  There were fewer steps (refer to Chapter 2) in the sample preparation for HPLC 

analysis that can possibly reduce the probability of losing the samples or getting the 

samples oxidised.  The HPLC analysis also identified individual cholesterol esters as well 

as free cholesterol.  The examples of the HPLC chromatograms are shown in Figure 4.14. 

Within 48 h addition of aggLDL, oxLDL and aggoxLDL to HMDMs, there was 

approximately 4-fold increase in the CE levels compared to cells incubated with LDL or 

control cells (Figure 4.15b).  The CE accumulation was the sum of the concentrations of 

cholesteryl arachidonate; cholesteryl linoleate; cholesteryl oleate; and cholesteryl 

palmitate. Incubation of HMDMs with nLDL did not cause accumulation of CE.  Even 

though incubation with aggLDL caused accumulation of CE the most, ANOVA analysis 

revealed that there was no significant difference between the CE levels between aggLDL, 

oxLDL and aggoxLDL.  Incubation of HMDMs with the modified LDL did not change 

their free cholesterol levels as compared to control cells (Figure 4.15a).   

There is a possibility that the presence of lipoprotein in the serum might promote 

CE efflux thus reducing cholesterol esterification.  This was investigated by supplementing 

the RPMI media with 10% LPDS instead of 10% HIHS.  There was (Figure 4.16b) a very 

significant difference in CE composition of the cells treated with oxLDL, aggLDL and 

aggoxLDL as compared to control cells and nLDL treated cells.  As expected incubation 

with nLDL did not accumulation of CE. Incubation with agoxLDL, increased the CE levels 

of HMDMs by approximately 4-fold.  In addition, incubation with aggLDL and oxLDL 

increased the CE levels of HMDMs by approximately 20 and 16 folds respectively. More 

increment in CE level when the cells were in media containing LPDS compared to cells in 

media containing HIHS suggesting that there was a possibility that CE efflux occurred 

when cells were grown in media containing 10% HIHS.  In addition, the results (Figures 

4.15 and 4.16) also suggest that there was transformation of macrophages into foam cells 

as characterised by a sharp increase in CE levels, whereas cholesterol levels essentially 

remain unchanged (Figure 4.16b). 
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4.2.5 Cholesteryl Ester Efflux from HMDMs in the Presence of HDL 
 

Cholesterol removal from lipid-loaded macrophages is an important, potentially 

antiatherogenic process as this prevents the accumulation of CE, hence, preventing the 

formation of foam cells.  Since HMDMs were cultured in RPMI containing HIHS, there is 

a possibility that they were overwhelmed with the high concentration of cholesterol in the 

media.  Therefore, further incubation of HMDMs with oxLDL or aggregated lipoprotein 

did not cause any accumulation of CE.  Besides that, even if there was a formation of 

cellular CE, the presence of HDL in the serum might promote the CE efflux since HDL is 

an extracellular acceptor for cholesterol.  This hypothesis was tested by growing the 

HMDMs in RPMI containing LPDS starting from the time of seeding (refer to legends 

under Figure 4.17 for the set up of experiment).  The growth of the HMDMs in this media 

was monitored daily and photos of the cells were also taken.  Morphologically, the 

HMDMs grown in RPMI containing LPDS looked much rounder and had less spread 

cytoplasm compared to the HMDMs grown in RPMI containing HIHS (see Chapter 3, 

Figure 3.8).  The membrane of the HMDMs grown in RPMI containing LPDS was more 

transparent then the HMDMs grown in RPMI containing HIHS.  The HMDMs cultured in 

RPMI with 10% LPDS also had less cell materials staining with oil red-O (see Chapter 3, 

Figure 3.9).  

Interestingly, the CE contents of HMDMs grown in media containing HIHS were 

similar to the HMDMs grown in media containing LPDS (Figure 4.17, plates 1 and 2).  

This could suggest that lipoprotein in the serum is not accountable for the accumulation of 

CE. Furthermore, incubation of HMDMs with aggoxLDL increased the CE levels of 

HMDMs to approximately 4-folds as compared to control (Figure 4.17 plate 2).  This was 

consistent with the results in Figures 4.15 and 4.16 (section 4.2.2), where the cells 

incubated with aggoxLDL in media containing, HIHS, and LPDS respectively had 4-folds 

more CE than the control cells.  The presence of extracellular acceptor HDL in the media 

promoted CE efflux as the CE level dropped almost 15% after incubation of the HMDMs 

in media containing HDL for 24 hours and another 70% after 72 hours.  
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Figure 4.14 Identification of free cholesterol and cholesteryl esters by HPLC.  
HMDMs (5 x 10

6 
cells/ml) in RPMI containing 10% HIHS in 12 well plate were incubated with 200 

µg/ml aggLDL for 48 hours (b). (a) is control HMDMs in the media only. Peaks were identified using 

standards.  C, cholesterol; CA, cholesteryl arachidonate; CL, cholesteryl linoleate; CO, cholesteryl 

oleate; and CP, cholesteryl palmitate. 
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Figure 4.15 HPLC analysis of cholesteryl ester and cholesterol compositions of 

HMDMs in media containing 10 % HIHS. 
HMDMs (5x10

6 
cell/ml) in RPMI containing 10 % HIHS in 12 well plates were incubated in the 

absence of lipoprotein (control) or in the presence of 0.2 mg/ml LDL, aggLDL, oxLDL or aggoxLDL.  

After 48 h incubation, the CE and cholesterol contents were analysed by HPLC.  ANOVA analysis 

revealed statistical significance from  control for the CE contents and no statistical significance from 

control for the free  cholesterol contents.  Results are displayed as mean ± SD of duplicates from a 

single experiment, representative of three separate experiments. 
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Figure 4.16 HPLC analysis of cholesteryl ester and cholesterol compositions of 

HMDMs in media containing LPDS 
HMDMs (5x10

6 
cell/ml) were initially cultured in RPMI containing 10% HIHS in 12 well plates.  The 

media was changed to RPMI containing 10% LPDS for 24 hours before incubating further in the 

absence of lipoprotein (control) or in the presence of either LDL, aggLDL, oxLDL or aggoxLDL at 0.2 

mg/ml respectively.  After 48 h incubation the CE and cholesterol contents were analysed by HPLC.  

ANOVA analysis revealed statistical significance from control for the CE contents and no statistical 

significance from control for the free cholesterol contents.  Results are displayed as mean ± SD of 

duplicates from a single experiment, representative of three separate experiments. 
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Figure 4.17 Effect of supplementing RPMI media with HDL on cholesteryl ester 
compositions of HMDMs. 
HMDMS (5 x 10

6
 cell/ml) were cultured in RPMI containing 10% HIHS for plate 1 and RPMI 

containing 10% LPDS for plates 2-5.  After 14 days in culture, lipids were extracted and analysed from 

plates 1 and 2. 200 µg/mL of aggoxLDL were then added to plates 3-5 and incubated further in RPMI 

with 10% LPDS.  After 48 h lipids were extracted and analysed from plate 3.  Then the media in plates 

4 and 5 was changed to RPMI containing 10% HDL.  HDL was prepared according to the method 

described in section 2.2.1.4.  Lipids were extracted and analysed from plate 4, 24 hours later and from 

plates 5, 72 hours later.  CE contents were analysed by HPLC.  

 

 

4.2.6 Determination of Susceptibility of Cholesteryl Ester Loaded 

HMDMs (Foam Cells) to Cytotoxic OxLDL  

 

The susceptibility of CE loaded HMDMs or foam cells to a lethal dose of oxLDL has not 

been explored before.  Therefore, it is interesting to find out whether CE loaded HMDMs 

are more resistant to a lethal dose of oxLDL or not.   

 HMDMs were induced to accumulate CE by incubation with a non lethal dose of 

oxLDL 0.1 mg/ml for 48 hours.  At first, the foam cells were exposed to a highly toxic      

2 mg/ml oxLDL for 48 h.  Figure 4.18 (treatment A) shows that 2 mg/ml oxLDL caused 

90% loss in HMDMs viability.  Making the HMDMs to be CE loaded did not increase the 

HMDMs’ viability (Figure 4.18, treatment B) or protect the HMDMs from the lethal dose 

2.0 mg/ml of oxLDL (Figure 4.18 treatment C).  There was a possibility that 2.0 mg/ml of 

oxLDL was too toxic to the HMDMs that all their protective mechanisms were affected 
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and shut down.  Therefore, this experiment was repeated by using 1.0 mg/ml oxLDL.  

However a similar result was obtained (Figure 4.19).   

 Since there was no protection of CE loaded HMDMs against 1 and 2 mg/ml of 

oxLDL, there was a possibility that 2 days exposure to these doses of oxLDL was too long.  

This probably gave the HMDMs no chance to recover.  Therefore, this experiment was 

repeated by exposing HMDMs to 1.0 mg/ml for just 24 h.  Incubation of HMDMs with      

1 mg/ml oxLDL for 24 h caused 50% loss in HMDMs’s viability (Figure 4.20, treatment 

A).  Similar results were also obtained where making HMDMs as CE loaded cells did not 

increase their viability (Figure 4.20, treatment B) or protect them from toxicity of 1 mg/ml 

oxLDL.  These results suggest that CE loaded macrophages or foam cells are still 

susceptible to toxic oxLDL and died as a consequence.   
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Figure 4.18 Loss of CE loaded HMDMs viability after 48 h incubation with 2 mg/ml  

oxLDL. 
HMDMS (5 x 10

6
 cell/ml) were preincubated with 0.1 mg/ml oxLDL in RPMI containing 10% HIHS 

for 48 hours and designated as B and C. Control and A were cells in RPMI containing 10% HIHS. Then 

2 mg/ml oxLDL was added to (A) and (C).  After 48 hours, HMDMs were analysed for cell viability via 

MTT assay.  Significance is indicated from control cells.  Results are displayed as mean ± SD of 

triplicates from a single experiment, representative of three separate experiments. 
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Figure 4.19 Loss of CE loaded HMDMs viability after 48 h incubation with 1 mg/ml  

oxLDL. 
HMDMS (5 x 10

6
 cell/ml) were preincubated with 0.1 mg/ml oxLDL in RPMI containing 10% HIHS 

for 48 hours and designated as B and C. Control and A were cells in RPMI containing 10% HIHS. Then 

2 mg/ml oxLDL was added to (A) and (C).  After 48 hours, HMDMs were analysed for cell viability via 

MTT assay.  Significance is indicated from control cells.  Results are displayed as mean ± SD of 

triplicates from a single experiment, representative of three separate experiments. 
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Figure 4.20 Loss of CE loaded HMDMs viability after 24 h incubation with 1 mg/ml  

oxLDL. 
HMDMs (5x10

6
 cells/ml) were incubated for 24 hours at 37 °C in RPMI containing 10 % HIHS (control 

and (A)) or with 0.1 mg/ml oxLDL ((B) and (C)).  Then 1 mg/ml oxLDL was added to (A) and (C).  

After 24 hours, HMDMs were analysed for cell viability via MTT.  Significance is indicated from 0 

mg/ml oxLDL (control).  Results are displayed as mean ± SD of triplicates from a single experiment, 

representative of three separate experiments. 
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4.2.7 Determination of 7,8-Dihjydroneopterin Production by CE 

Loaded HMDMs when Stimulated with IFN-γγγγ 

While being CE loaded HMDMs did not protect them from cytotoxicity of oxLDL, it is 

interesting to know whether HMDMs ability to synthesise 7,8-NP is different than the CE 

loaded cells.  This was investigated by inducing HMDMs to synthesise de novo 7,8-NP 

with IFN-γ.  In this experiment, 250 U/ml IFN-γ was used since earlier works in this 

laboratory (Firth, 2006) had shown that pterin detected in both the supernatant and in the 

HMDMs cellular extracts did not vary significantly between 250 and 1000 U/ml of IFN-γ.  

Furthermore 48 hours incubation of HMDMs with IFN-γ had been found to be optimal for 

7,8-NP production (Firth, 2006). 

Figure 4.21a shows that incubation of HMDMs with 200 µg/ml aggoxLDL, did not 

affect their cell viability.  Furthermore, incubating the cells with 250 U/ml IFN-γ in the 

presence or absence of 200 µg/ml aggoxLDL also did not affect the viability of the 

HMDMs.  Figure 4.21b shows that control cells and HMDMs incubated with aggoxLDL 

had similar contents of neopterin and total pterin.  As expected incubation of HMDMs with  

250 U/ml IFN-γ increased the neopterin production drastically by 6.6-fold as compared to 

control cells.  The addition of aggoxLDL did not affect the level of neopterin produced.  

Interestingly, the cells produced 14% more total pterin when incubated with IFN-γ alone 

compared to when the cells had both IFN-γ and aggoxLDL.  This small difference is 

statistically significant (p < 0.05). This could suggest that being CE loaded HMDMs made 

them less efficient in synthesising 7,8-NP to protect themselves. 
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Figure 4.21 Neopterin and total pterin production by HMDMs exposed to γγγγ-IFN.  
HMDMs were incubated at 37°C in RPMI containing 10% HIHS with 0.2 mg/ml agg-oxLDL for 24 

hours.  Then 250 U/ml γ-IFN was added and incubated for a further 48 hours.  Controls were conducted 

in the absence of aggoxLDL and γ-IFN.  HMDMs were analysed for cell viability by (a) MTT and (b) 

neopterin and total pterin (neopterin and 7,8-NP) production by HPLC analysis.  Results are displayed 

as mean ± SEM of triplicates from a single experiment, representative of three separate experiments. 
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4.3 Discussion 
 

4.3.1 Differentiation of Monocytes into Macrophage: Analysis of Lipid 

Content  

 

GC analysis shows that during differentiation of monocytes into macrophages in media 

containing 10% HIHS, the cells continuously accumulated free cholesterol (Figure 4.3).  In 

contrast the CE levels increased only up to day 4 in culture.  Despite the constant level of 

CE, from day 4, the macrophages still developed into foamy cells appearance (Chapter 3, 

Figure 3.1) and stained with oil red-O (Chapter 3, Figure 3.2).   

These results are in agreement with previous studies (Asmis & Jelk, 2000b; Garner 

et al., 1997a) that demonstrated large increase in free cholesterol and triglyceride levels but 

very little or no increase in CE contents during differentiation of monocytes into 

macrophages.  Asmis & Jelk, (2000b) revealed a 3.4-fold increase in free cholesterol, 136-

fold increase in triglyceride level and 78% decrease in CE level during differentiation of 

human monocytes into macrophages in media containing 5% human serum.  Garner et al., 

(1997a) showed that the lipid composition of freshly elutriated monocytes comprised 

predominantly unesterified cholesterol (UC) with only traces of TG and no detectable CE.  

After 7 days cultured in RPMI with 10% HIHS, human monocytes accumulated 4 times 

more TG mass than UC and only a trace amount of CE (Table 4.4).  The cells also stained 

positive with oil red-O.  Both studies (Asmis & Jelk, 2000b; Garner et al., 1997a) show 

accumulation of lipid during the culture of HMDMs produces cells with a foam-like 

appearance.  As the HMDMs in this study were also cultured in the presence of 10% 

HIHS, they too were expected to become foam-like.   

 

Table 4.4 Lipid composition of HMDMs cultured for 7 days in RPMI with 10% 

HIHS.  Adapted from Garner et al., (1997a). 
 

Lipid Class nmol/mg cell protein 

Unesterified cholesterol 66 + 7 

Triglycerides 251 + 78 

CEs 0.7 + 0.2 

 
After 7 days of culture in RPMI 1640 containing 10% HIHS, HMDMs were washed 3 times in warm 

PBS and lipids were extracted and analysed by HPLC.  Values are mean + S.E.M. (n = 4).   

 

These results raised a doubt whether foam cells can be formed by culture of 

monocytes in human serum without the presence of modified lipoproteins.  However, foam 
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cells isolated from human atherosclerotic plaque, contain on average 4 times more CE 

mass than triglycerides (Mattsson et al., 1993) and foam cells isolated from rabbit 

atherosclerotic intima also had large amount of CE (Naito et al., 1997).  Therefore, it is not 

appreciated that HMDMs grown in human serum are foam cells since their lipid content is 

almost exclusively triglyceride and not CE (Garner et al., 1997a).  The foamy appearance 

and cellular lipid droplets which stained positive with oil red-O seen in this study can be 

attributed to the triglyceride (Garner et al., 1997a) and not the accumulation of CE which 

rule out the use of oil red-O stain to identify foam cells.  Thus there are differences 

between the lipid composition of macrophage foam cells isolated from human plaque and 

the lipid loaded HMDMs here, despite their similar microscopic appearance and positive 

staining with oil red-O.   

 

4.3.2 Analysis of Lipid Contents of Monocytes and Macrophages 

Incubated with OxLDL 

 

OxLDL has been reported to induce enhanced expression of MHC II molecules on human 

monocytes and U937 and surface antigen LeuM3 in U937 cells (Frostegard et al., 1990).  

The expression of these surface molecules is a pattern compatible with expression of a 

more differentiated macrophage-like phenotype.  In contrast, the GC analyses of 

monocytes incubated with oxLDL showed that the differentiation of monocytes to 

macrophages was not affected by the presence of oxLDL (Figure 4.4).  In addition, the 

rates of monocytes differentiation into macrophages were similar across the oxLDL 

concentrations used.  While this study supplemented the media with human serum, 

Frostegard et al., (1990) used fecal calf serum.  In addition, U937 is a cell line that can 

divide and differentiate while human monocytes only undergo differentiation.  

Likewise after 10 days incubation with oxLDL, there were no difference in the cell 

viability, free and total cholesterol contents (Figure 4.5) as well as the microscopic 

appearance in the oxLDL-treated HMDMS in comparison with the control HMDMs 

(Figure 4.6).  A similar trend was also observed when mature HMDMs were incubated for 

10 days with 0-200 µg/ml oxLDL (Figure 4.7) or 48 h with 0-500 µg/ml oxLDL (Figure 

4.8).  Most surprisingly, microscopic examination of oil red-O stained cells showed 

accumulation of lipid droplets in all of the treatments.  This is in contrast with mouse 

macrophages incubated with oxLDL (Jessup, personal communication) and aggLDL 

(Khoo et al., 1988) where the cells demonstrated distinct changes in oil red-O stain only 

when treated with the modified LDL.  Oil red-O stain is considered a hallmark of foam cell 
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identification yet all our treatments with and without oxLDL generated “foam cells” 

according to the stain. 

These results led to a few speculations.  Firstly, the cells may have been foam cells 

before incubation with oxLDL as there was a possibility that the cells might take up 

oxidised lipoprotein from the serum.  However, results from Table 4.3 ruled out the 

possibility that oxidation of lipoprotein in serum occurred.  So no oxLDL should have been 

present. Secondly, since GC analysis revealed that feeding the cells with oxLDL did not 

cause accumulation of CE there was a possibility that to form foam cells other forms of 

modified LDL was needed.  The possibility was deduced since Asmis et al., (2000b) 

claimed that in their study oxLDL did not cause foam cell formation in human 

macrophages unless when it was in aggregated forms.  In contrast to Asmis et al. (2000b) 

findings, GC analysis in this study shows that incubation of HMDMs with the modified 

lipoprotein whether or not it is aggregated did not induce accumulation of CE or free 

cholesterol in HMDMs (Figure 4.10).  This was rather surprising since others (Heinecke et 

al., 1991; Khoo et al., 1988; Maor et al., 1997) also had shown that aggregated lipoprotein 

induced accumulation of CE in the macrophages.  The results (Figures 4.8 and  4.10) also 

show that the total cholesterol contents were 50% less than the free cholesterol, which raise 

doubts about the reliability and suitability of using GC to analyse the lipid content of the 

HMDMs.  A few studies had reported the nonreliability of GC to analyse the oxysterols 

contents leading to false values of the oxysterols measured (Heinecke et al., 1991; Maerker 

et al., 1988; Malavasi et al., 1992; Sevanian et al., 1994).   

The lipid contents of HMDMs incubated with the modified lipoproteins were then 

reanalysed using HPLC by adopting methods established by Kritharides et al., (1993).  

When this experiment was repeated using HPLC, interestingly, there was 4-fold increase in 

CE levels of HMDMs incubated for 48 hours with the aggLDL, oxLDL and aggoxLDL in 

comparison to the control cells (Figure 4.14).  As expected, incubation of HMDMs with 

nLDL did not cause accumulation of CE (Figure 4.15).  The same 4-fold increment in CE 

levels of HMDMs treated with aggoxLDL was also observed when the cells were in RPMI 

containing 10% LPDS (Figure 4.16).  It is noteworthy that cells in RPMI containing 10% 

LPDS had more increment in CE levels.  There were 20-fold and 16-fold increment in CE 

level compared to control when HMDMs were incubated with aggLDL and oxLDL 

respectively.  The absence of HDL in LPDS prevented cholesterol efflux, thus higher 

levels of CE in the cells incubated in RPMI with LPDS.  This was proven by results shown 

in section 4.2.5.  These results disagree with the finding of Asmis and Jelk (2000b) that 

claimed oxLDL only caused CE accumulation when it was in aggregated form.   
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 Previous study (Brown et al., 1996) had shown that mouse macrophages that were 

incubated with 24 h copper-oxLDL for 24 hours displayed a profile of oxysterols 

remarkably similar to that of 24 h copper-oxLDL.  The later comprised approximately 50% 

of total sterols, 30% 7-KC with other sterols comprising the remainder (7α- and 7β-OH, α- 

and β- epoxides, and 6β-hydroxycholesterol).  The majority of CE and 7-KC in 24 h 

copper-oxLDL and copper-oxLDL macrophages contained fatty acyl chains which are 

presumed oxidised.  The same study (Brown et al., 1996) showed that the cholesterol 

content of copper-oxLDL loaded cells was 5-fold greater in comparison to the non-loaded 

cells and similar increment was also observed with the total cholesterol levels.  Another 

study (Asmis & Jelk, 2000b) showed that within 40 h after aggLDL and aggoxLDL were 

added to human macrophages, there were 15-fold and 10-fold increase in cellular CE levels 

respectively compared to cells incubated with unmodified LDL.  Different level of 

increment in the amount of cellular CE from different laboratories reflects its dependency 

on the culture conditions for example types of media, types and percentage of serum used 

and most importantly the type of cells used to form the foam cells.  Whatever the culture 

condition is, the accumulation of cellular CE is directly related to the uptake of the 

modified lipoprotein and it is the hallmark of formation of foam cells.  Importantly, the 

HPLC results clearly shows that in our culture conditions, incubation of HMDMs with 

aggLDL, oxLDL and aggLDL caused accumulation of CE in HMDMs thus formation of 

foam cells.   

 

4.3.3 High Performance Liquid Chromatography versus Gas 

Chromatography in Measuring the Lipid Contents of HMDMs 

 

The HPLC results (Figure 4.14 and 4.15), confirm the suspicion that GC technique might 

be the reason why there was no difference in CE levels between the control and modified 

LDL -treated HMDMs.  In this study the formation of foam cells cannot be shown by using 

GC technique but by using HPLC technique, the formation of CE loaded foam cells was 

clearly shown.  The relatively poor reproducibility and lack of consistency in the trends for 

the total cholesterol contents with GC analyses made it difficult to determine whether in 

our culture conditions the foam cells were formed or not.  There are several likely 

explanations for this inconsistency.  GC analysis while sensitive and specific is restricted 

by several factors discussed below.  Artifactual oxidation ex vivo during sample 

processing, storage and/or analysis are always a potential concern when dealing with 

oxidation products and this has been reported by many groups for oxysterols.  Several 
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studies have found that the lengthy manipulations involved in extracting the samples and 

the high temperature conditions during GC analyses can decompose or oxidised (even 

though BHT was added) the samples.  The HPLC approach may have spared the oxysterols 

high temperature during GC analyses.  When using HPLC to analyse the samples, hot 

alkaline saponification and TMS derivatisation were avoided, and samples were 

immediately extracted into organic solvent where they are more stable (Sevanian et al., 

1994).  This could explain the ability to detect the differences in the CE levels of the 

treated and non treated HMDMs.   

Analysis of samples by GC utilised a very high oven temperature for the detection 

of the desired peaks.  Oxysterols for example cholesterol 7α-hydroperoxide is known to be 

thermally labile (Malavasi et al., 1992) and prone to degradation in the alkaline conditions 

used for alkali saponification (Maerker et al., 1988) and even unstable in aqueous solution 

(Sevanian et al., 1994).  Although HPLC analysis of cholesterol oxides provided less 

resolution and lower sensitivity as compared to GC, a distinct advantage using HPLC was 

evident for direct measurements of cholesterol-7-hydroperoxides and 7-KC.  These two 

cholesterol oxides are particularly sensitive to storage in solvents, derivatisation 

procedures, and analytical conditions used for GC analysis, which are minimized or 

avoided when using HPLC (Sevanian et al., 1994). Indeed when 7-OOH was analysed by 

GC, two peaks resulted with the retention times and mass spectra of 7-KC and 7α- 

hydroxycholesterol were observed (Malavasi et al., 1992).  Hence it is likely that any 7-

OOH  present was thermally decomposed during GC analysis.  

Besides that in this study the samples for GC analysis were subjected to heat 

treatment during alkaline hydrolysis.  The heat treatment probably can lead to lost or 

reduced of sample yields during sample processing besides the possibility of conversion of 

oxysterols to other oxysterols.  For instance, 7-KC is dehydrated to form 7-KCdiene during 

hot alkaline saponification and 7-hydroxyperoxycholesterol (7-OOH) decomposes at 

elevated temperatures to form 7-KC and 7-hydroxycholesterol (7-OH) (Brown et al., 

1997).  This gives false values of compounds being measured.  In addition, cholesterol 

epoxides can be hydrolysed to the cholestane-triol (TRIOL) under acidic conditions 

(Maerker et al., 1988).  Alkaline hydrolysis of sterol esters present in oxLDL should be 

avoided since 7-OOH and 7-OH showed their conversion to 7-KCdiene in these conditions 

(Malavasi et al., 1992) 

The detection of sterols by HPLC and GC was compared in samples of LDL 

oxidised for various times by Brown et al., (1996).  In their hands, HPLC and GC had 

given comparable estimates of free cholesterol content of LDL at all stages of oxidation.  
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This was possible because Brown and colleagues (1996) subjected LDL to room 

temperature or cold alkali saponification for the GC analysis.  The saponification method 

was conducted on ice to minimize thermal decomposition of certain oxysterols.  The TMS 

derivatives of the oxysterols were also done at room temperature (Brown et al., 1996).  

Thus, GC analysis with room temperature TMS derivitisation and cold alkali 

saponification enable measurement of esterified and free forms of both cholesterol and 

oxysterols, which complemented HPLC methods.  Brown, et al., (1996) also showed that 

standard 7-KC produced a single peak on GC.  However when standard 7-KC was injected 

onto GC after being subjected to the hot alkaline saponification procedure a consistent 

peak of 7-KCdiene was detected, and this compound is assumed as artefact in 

saponification process. 

 

4.3.4 Susceptibility of Foam Cells to Cytotoxic OxLDL  

 

CE loaded or foam cells and HMDMs displayed similar susceptibility towards the 

cytotoxic effect of oxLDL (Figures 4.18-4.20).   There was no difference in the level of 

neopterin synthesised by the foam cells and HMDMs whether the cells were stimulated 

with γ-IFN or not (Figure 4.21).  Earlier studies in this laboratory (Hicks et al., 2007 

(unpublished data)
1
) showed that HMDMs stimulated with γ-IFN had both neopterin 

release and cell viability dropped hand in hand when exposed to increasing concentrations 

of oxLDL.  Contrary to HMDMs, the giant cells (multinucleated macrophages) were able 

to sustain neopterin release at higher concentrations of oxLDL.  This partially account for 

increased resistance of giant cells to oxLDL cytotoxicity as demonstrated by giant cells 

viability remaining at or above levels in the absence of oxLDL.  It can be postulated from 

Hicks et al, (2007) (unpublished data) that the similar susceptibility of foam cells and 

HMDMs towards lethal dose of oxLDL was due to the similar levels of 7,8-NP synthesised 

by both cell types when being exposed to oxLDL.  The fact that foam cells is less efficient 

than HMDMs in synthesising 7,8-NP (Figure 4.21b) increase the likelihood of their death 

due to the presence of various oxidants at the inflammatory site especially at the 

atherosclerotic plaques.  Since foam cells are lipid loaded cells storing cytotoxic products 

of oxLDL, their death contribute further damage and more detrimental to their 

surroundings due the release of the cytotoxic lipids.   

 Another study showed that foam cell formation resulted in a 36% and 44% 

reduction in the cellular α-tocopherol/total cholesterol ratio in unsupplemented and 

                                                
1
 Professor Barry Hicks was a visiting professor from U.S. Air Force Academy, CO.  
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vitamin E-supplemented foam cells, respectively (Asmis & Jelk, 2000a).  The loss of 

vitamin E was accompanied by an increase in the susceptibility of these foam cells to 

succumb to the cell lytic effects of oxLDL.  However, vitamin E supplementation did not 

protect macrophages or foam cells from oxLDL-mediated cell lysis suggesting that vitamin 

E loss is not the cause of their increased susceptibility to cell lysis.  It would be interesting 

to know what is the 7,8-NP level during foam cell formation.  The effect of supplementing 

the HMDMs with 7,8-NP on the toxic effect of oxLDL will be explored in the next 

chapter.  Apart from the studies above, there was no data found in literature research on the 

subjects of foam cells and toxic effect of oxLDL whether or not supplemented with 

antioxidant.   

 

4.4 Summary 
 

The presence of oxLDL up to 200 µg/ml apparently did not affect the rate of monocyte 

differentiation into macrophages.  Continuous increment in free cholesterol levels was 

observed during differentiation of monocytes into macrophages.  In contrast, the CE 

contents only increased up to day 4 during the culture period.  Therefore, even though the 

differentiated HMDMs appeared foamy and had oil red-O positive droplets, these are not 

due to the CE deposits but most probably attributed by triglycerides.    

This study shows that HPLC is superior to GC when analysing the lipid contents of 

the foam cells is concerned.  HPLC results show that foam cells were formed using the 

culture condition in this study.  Foam cells are cells that accumulate CE.  The HPLC 

demonstrated clearly that there were significant different in the CE levels between the 

control macrophages and macrophages treated with various modified LDL.  It can be 

concluded that foam cells were successfully developed in the present study by incubation 

of HMDMs with 200 µg/ml of aggLDL, or oxLDL or aggoxLDL.  The HPLC approach 

spares the samples of lengthy manipulations that may cause ex vivo oxidation.  Analysing 

the samples by GC, exposed the samples to high temperature during alkaline 

saponification, TMS derivitisation and GC analyses which alter the lipid composition and 

therefore affect their quantification.   

The oil red-O staining did not differentiate the foam cells from HMDMs since 

whether or not the cells accumulated CE, they still produced oil red-O positive droplets.  

Therefore, this study proves that foamy appearance and positive staining with oil red-O 

staining are not the criteria of foam cells.   
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Stimulation with γ-IFN caused similar level of neopterin production in the foam 

cells and HMDMs.  The effects of 7,8-dihydroneoperin on oxLDL-induced damaged in 

foam cells was not explored since there was no different in the susceptibility to cytotoxic 

oxLDL between HMDMs and foam cells.  Instead the effect of 7,8-dighydronepterin on 

oxLDL-induced damage in HMDMs was investigated as discussed further in Chapter 5.   
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5 OxLDL-induced Death in HMDM Cells and 

7,8-Dihydroneopterin Protection 

 

5.1 Introduction 
 

One of the major oxidants present within the atherosclerotic plaque is oxLDL for which 

considerable evidence point to its involvement in the progression and development of 

atherosclerosis (Niu et al., 1999; Salvayre et al., 2002).  In contrast to LDL, oxLDL is 

taken up by macrophages in a rapid and uncontrolled manner leading to the formation of 

cholesterol filled foam cells.  High concentration of oxLDL is cytotoxic and can cause both 

necrosis and apoptosis in a variety of cell types including macrophages.  Therefore, the 

change from fatty streak to complex plaque may be driven in part by the oxLDL-induced 

death of macrophages within the plaque (Hegyi et al., 1996). 

The exact mechanism of oxLDL cytotoxicity is difficult to ascertain since oxLDL 

is not a single, well-defined entity, but has structural and physical properties, which vary 

according to its means and degree of oxidation.  The nature of oxLDL prepared by 

laboratory to laboratory is different due to variations in the conditions for oxidation and the 

source of LDL.  Slight variations in the conditions of oxidation might result in a different 

degree of toxicity of oxLDL.  Also most authors do not characterise their oxLDL further 

than stating that it is oxidised.  This may in the past have given rise to discrepancies in the 

reported biological effects or mechanisms implicated in oxLDL-induced death.  The effect 

of oxLDL on various types of cells has been discussed in great detail in Chapter 1.   

There have been a large number of studies examining the beneficial effects of 

various antioxidants in preventing the development of atherosclerosis in both animal 

models and humans.  The majority of these studies have centred on the inhibition of 

oxLDL formation.  A number of studies had explored the effects of antioxidants on 

oxLDL-induced damaged in the cells.  α-Tocopherol has been shown to be a potent 

inhibitor of oxLDL cell toxicity even though it is uncertain whether this is due to its 

antioxidant effect.  α-Tocopherol was found to inhibit apoptosis in smooth muscle cells (de 

Nigris et al., 2000) and prevented apoptosis in U937 cells incubated with 7-KC (Lizard et 

al., 2000).  α-Tocopherol also inhibited oxLDL-induced apoptosis in mouse mesangial 

cells (Tashiro et al., 1999) and VSMCs (Guyton et al., 1995).  7β-hydroperoxycholesterol-

induced death in human dermal fibroblasts was significantly inhibited by α-tocopherol 

(Coffey et al., 1995).  Treatment of human aortic smooth muscle cells (HASMC) with 
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water soluble γ-tocopherol derivative Trolox suppressed oxLDL-specific increase in ROS 

and prevented down regulation of GAPDH (Sukhanov et al., 2006).  In human coronary 

artery endothelial cells (HCAECs) γ-tocopherol significantly decreased ox-LDL-induced 

apoptosis by inhibiting the activation of NF-kappaB (Li et al., 1999).  The down regulation 

effects of α-tocopherol on the scavenger receptors will be discussed in section 5.3.2.5.   

Interestingly, α-tocopherol supplementation of HMDMs did not prevent foam cell 

formation or alter the susceptibility of foam cells to lysis by oxidized LDL (Asmis & Jelk, 

2000a) suggesting that plasma membrane oxidation is not a significant factor in oxLDL 

toxicity. NADPH oxidase release of superoxide has been implicated as the possible source 

of oxLDL-induced radical production (Nguyen-Khoa et al., 1999). Yet, α-tocopherol 

supplementation of human monocytes was found to inhibit phorbol 12-myristate 13-acetate 

(PMA) respiratory burst decreasing the level of superoxide and superoxide derived 

oxidants within the plaque (Cachia et al., 1998).  The mechanism appears to be impairment 

to the NADPH-oxidase assembly through attenuation of the action of protein kinase C 

which phosphorylates the cytosolic factor p47
phox

 during translocation to the plasma 

membrane.   

 Results with ascorbic acid inhibition of oxLDL were rather inconsistent.  Ascorbate 

gave almost complete inhibition of apoptosis in human endothelial cells (Dimmeler et al., 

1997).  Ascorbic acid also protected human vascular smooth muscle cells against apoptosis 

induced by “moderately oxLDL” which contained high levels of lipid hydroperoxides 

(Siow et al., 1999).  However, later the same laboratory reported that ascorbic acid did not 

protect murine macrophage cell line J774 from moderately oxLDL, but produced a modest 

increase in apoptosis (Harris et al., 2006).  Increase in apoptosis was not mediated by a 

pro-oxidant mechanism since pretreatment of macrophages with ascorbate attenuated the 

increase in the expression of the antioxidant stress protein heme oxygenase-1.  The small 

increase in apoptosis observed may instead have been due to the ability of ascorbic acid to 

protect components of the apoptotic machinery against oxidative insult (Vissers et al., 

2001). 

In addition, Asmis et al., (1998) demonstrated that detoxification of oxLDL by 

dehydroascorbic acid (DHAA) but not ascorbic acid and isoascorbic acid completely 

inhibited apoptosis induced by oxLDL.  In contrast to oxLDL treated with ascorbic or 

isoascorbic acid, TBARS levels and lipid peroxide levels of oxLDL treated with DHAA 

were not substantially reduced.  This suggests that reduction of oxidized lipids is an 

unlikely mechanism for the inhibition of oxLDL-induced apoptosis by DHAA.  There is a 
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possibility that the inhibitory effect of DHAA is due to it reacting with reactive groups in 

the ApoB100 (Asmis & Wintergerst, 1998).   

Results with BHT also varied.  It had no protective effect against oxLDL with 

rabbit aortic smooth muscle cells (Liu et al., 1998), gave partial protection in VSMCs 

(Guyton et al., 1995) and but gave complete protection to human umbilical vein 

endothelial cells (Harada-Shiba et al., 1998).  BHT also blocked oxLDL-induced apoptosis 

of mouse peritoneal macrophages (Niu et al., 1996).  Antioxidants thiol can also prevent 

oxLDL-induced apoptosis.  NAC as well as GSH were  successful in vascular smooth 

muscle cells mouse with oxLDL (Hsieh  et al., 2001), mesanglia cells with oxLDL 

(Tashiro et al., 1999) and U937 cells with 7-KC as was GSH (Lizard et al., 2000).  

Increase in CPP32-like protease activity triggered by oxLDL was drastically reduced by 

the NAC, vitamin C and α-tocopherol.  The decreased CPP32-like protease activity 

correlated with a reduction in proteolytic cleavage of the CPP32 into the active p17 subunit 

and therefore, probably inhibits apoptosis through inhibition of caspase-3 activation 

(Dimmeler et al., 1997).  Probucol was partially protective with vascular smooth muscles 

(Guyton et al., 1995) and mouse mesangial cells (Tashiro et al., 1999).  Probucol also 

inhibited loss of membrane integrity by β-hydroperoxycholesterol (Coffey et al., 1995). 

7,8-NP is a redox active compound capable of acting as either a pro-oxidant or 

antioxidant depending on the chemical environment.  This laboratory has previously shown 

that at low µM concentrations, 7,8-NP is a very potent antioxidant.  It protects erythrocytes 

from lysis induced by peroxyl radicals, hydrogen peroxide and HOCL (Duggan et al., 

2001; Gebicki et al., 2000).  In separate studies, 7,8-NP has been demonstrated to protect 

free proteins, cellular proteins and protein thiols from oxidant damage (Duggan et al., 

2001; Duggan et al., 2002).  7,8-NP has also been shown to dramatically increases, in a 

dose dependent manner, the lag time of LDL oxidation mediated by copper and peroxyl 

radical (Gieseg et al., 1995).  7,8-NP has also been observed to prevent cell mediated LDL 

oxidation (Firth, 2006; Gieseg & Cato, 2003). 7,8-NP also effectively protect U937 cells 

from oxLDL-induced death at µM concentrations (Baird et al., 2005).  Altogether these 

findings led to the hypothesis that 7,8-NP is synthesised by γ-interferon-stimulated 

macrophages to protect themselves against the oxidants encounter within an inflammatory 

site (Gieseg et al., 2008a). 

Previous work in this laboratory concentrated on investigating the effect of oxLDL on 

THP-1 and U937 cell lines.  OxLDL caused necrotic death in U937 cells with a dramatic 

loss of cellular glutathione and caspase independent cell death which was associated with 

phosphatidylserine exposure on the plasma membrane (Baird et al., 2004).  In contrast, 
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oxLDL initiated THP-1 cell apoptosis with small reduction in cellular thiols, caspase-3 

activation and plasma membrane phosphatidylserine exposure (Baird et al., 2004).  The 

difference in response to oxLDL could be related to the varying mechanisms of uptake of 

oxLDL.  U937 cells express fourfold higher levels of CD36 scavenger receptor than do THP-

1 cells (Nguyen-Khoa et al., 1999) which may result in an initial burst of oxLDL uptake and 

more intensive oxidative stress.  In addition, U937 cells do not express the transcriptional 

regulator peroxisome proliferator-activated receptor-γ (PPAR- γ) in response to oxLDL, but 

THP-1cells do (Inoue et al., 2001).   

Another striking difference between the two cell lines is on the effect of 7,8-NP on 

oxLDL-induced damage (Baird et al., 2005).  The addition of 7,8-NP to THP-1 cells failed to 

inhibit oxLDL dependent loss of cell viability or restore the THP-1 cellular thiol content.  

Surprisingly, 7,8-NP was very effective at protecting U937 cells from oxLDL-induce viability 

and intracellular glutathione loss.  Peroxyl radical scavengers, Trolox and α-tocopherol had 

been shown to inhibit oxLDL- and 7β-hydroperoxycholesterol- induced apoptosis in blood 

derived macrophages and U937 cells respectively (Asmis & Begley, 2003; Coffey et al., 

1995).  It is possible that a similar mechanism is established in the U937 cells since 7,8-NP is 

a potent peroxyl radical scavenger .  NAC and GSH had been reported to inhibit oxLDL and 

7-KC induced apoptosis by increasing the intracellular thiol pool in macrophages and 

U937 cells (Kinscherf et al., 1998; Lizard et al., 2000).  Since 7,8-NP was unable to reduce 

the oxidized protein thiols it is unlikely that 7,8-NP can regenerate or increase the 

intracellular glutathione levels (Duggan et al., 2002).  Therefore, it is very likely that with 

U937, 7,8-NP is protecting the intracellular thiol pool by scavenging ROS generated in the 

presence of oxLDL.  It is unknown why with THP-1 cells this does not occur (Baird et al., 

2005).  

Since the literature on mechanisms implicated in oxLDL-induced death are 

controversial, the first aim of this section is to investigate whether the heavily oxidised 

oxLDL prepared in this laboratory exhibits a similar mechanism in inducing the death of 

HMDMs as reported in the literature (Asmis & Begley, 2003; Baird et al., 2004; Hsieh  et 

al., 2001; Lee & Chau, 2001; Porn-Ares et al., 2003).  In addition, by not using the 

immortal cell lines, HMDMs represent more closely of the physiological cells involved in 

the progression of atherosclerosis.  This work will extend our knowledge on the effect of 

oxLDL on cell lines to HMDMs.  Specifically, 7,8-NP mediated inhibition of oxLDL-

induced death has also never been studied in HMDMs.  The second aim of this section will 

be to determine whether 7,8-NP can protect oxLDL-mediated HMDMs’ death and whether 



Chapter 5 
_____________________________________________________________________________________________________________ 

 

143 

 

the protection given is similar to U937 cells.  From these two aims, the related mechanisms 

of 7,8-NP protection on oxLDL-induced damage will be further elucidated. 

As outlined in Chapter 1, different degrees of LDL oxidation exert different effect 

in the phases of atherosclerotic development.  Highly oxLDL appears to greatly increase 

the oxidative stress on cells leading to cell death in cells and other surrounding cells.  Since 

this study encompasses oxLDL’s effect on cell viability this type of oxLDL will be used.  

Besides that, highly oxLDL was used as it is very difficult to determine what mLDL is and 

also difficult to stop the oxidation process at this early stage.  

The cytotoxic effects of oxLDL on HMDMs were determined by the loss in cell 

viability and changed in the morphology of HMDMs as monitored under the light 

microscope.  The mode of HMDMs’ death induced by oxLDL was investigated by 

exploring whether oxLDL cause glutathione loss, ROS production, cytochrome c release, 

caspase-3 activation and phosphatidylserine exposure.  The effect of oxLDL at one oxLDL 

concentration that caused approximately 50% loss in cell viability was used to study the 

mechanism of 7,8-NP’s inhibition on the oxLDL-induced damage.  The mechanism of  

7,8-NP protection on HMDMs from oxLDL cytotoxicity was explored, by looking at the 

possibility whether 7,8-NP can inhibit the glutathione loss, scavenge the generated 

superoxide, prevent cytochrome c release and PS exposure.  Finally, the effect of 7,8-NP 

on the uptake of oxLDL was studied with the special interests on the ability of 7,8-NP to 

influence the scavenger receptors, SR-A and CD36 protein expression.  
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5.2 Results 

 

5.2.1 Effects of OxLDL on HMDMs 

 

5.2.1.1 Characterisation of Native LDL and OxLDL 

 

The oxLDL prepared in this study was characterised relative to the native LDL (nLDL) to 

provide means of comparison with oxLDL used by other groups.  Measurement of TBARs, 

relative electrophoretic mobility (REM) and degree of aggregation measured 

spectrophotometrically at wavelength 680 nm were used since these were the three most 

common properties mentioned in the literatures (Darley-Usmar et al., 1991; Ehrenwald et 

al., 1994; Fujiwara et al., 1998; Khoo et al., 1988; Maor et al., 1997).  

OxLDL was prepared at a concentration of 0.5 mg/ml and was compared to nLDL 

at the same concentration (0.5 mg/ml).  Native LDL contained very low levels of TBARs, 

which was significantly increased after oxidation, by approximately 52 –fold in the 

oxLDL.  The REMs of oxLDL and native LDL were compared using lipoprotein gel 

electrophoresis.  OxLDL’s mobility was 2.7 -fold greater than that of native LDL (Table 

5.1 and Figure 5.1).   

OxLDL usually becomes aggregated which can be quantified by a 

spectrophotometric measurement at 680 nm.  Both LDL and oxLDL were filtered through 

a 0.22 µm membrane filter before analysis.  At 0.5 mg/ml, the oxLDL was approximately  

7 -fold more aggregated than the native LDL.   

 

Table 5.1 Characteristics of native LDL and oxLDL. 

Analysis 

 

(n) Native LDL Oxidised LDL 

TBARs 4 56 + 10 nmol/mg    
2925 + 361 nmol/mg 

 

Absolute mobility 3 9 mm 24 mm 

Aggregation (680 nm) 4 0.003 + 0.001 0.026 + 0.009 

Data for TBARs, absolute mobility and degree of aggregation of 0.5 mg/ml native LDL and oxLDL.  

OxLDL was prepared by incubation of LDL with 300-350 µM CuCl2 for 24 hours.  All results are 

shown as the means + SD where. n represents the number of preparation of LDL.  The same preparation 

of LDL was used to prepare oxidised LDL.  
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Figure 5.1 Lipoprotein gel of LDL and oxLDL. 

Lanes 1 to 3 are native LDL and lanes 4-6 are LDL after incubation with 300-350 µM CuCl2 for 24 

hours. 
 

5.2.1.2 Effect of OxLDL on HMDMs Viability Incubated in RPMI Containing  10% 

HIHS  

All the experiments were conducted using HMDMs, which had been cultured for 14 days 

or longer since this was the period where more than 70% of the monocytes had 

differentiated into macrophages (Figure 3.3).  Initial studies determined a suitable 

concentration of oxLDL that caused approximately 50% loss in the cell viability.  HMDMs 

(5 x 10
6
 cells/ml) in RPMI containing 10% HIHS were incubated for 48 hours with a range 

of oxLDL concentrations.  Loss of HMDM viability was determined by MTT assay and 

the results were displayed as percentages of the control cells (no treatment).  Figure 5.2 

shows that oxLDL caused a concentration dependent loss in HMDMs viability.  Incubation 

of HMDMs with 0.1 mg/ml of oxLDL did not cause a loss in their viability (Figure 5.2).  A 

drastic 65% loss in cell viability was observed with 0.5 mg/ml oxLDL. 

 As 48 hours appeared to be a relatively long time to expose the cells to a toxic 

agent, the above experiment was repeated by incubating HMDMs with a range of oxLDL 

concentrations for 24 hours (Figure 5.3).  In contrast to Figure 5.2, cell death reached 

approximately 50% with 1 mg/ml oxLDL (Figure 5.3a).  Since 1 mg/ml oxLDL 

represented an approximately 50% viability loss, this was the concentration chosen in 

experiments examining the effect of 7,8-NP.  This MTT assay result was reproducible 
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though there were a few exceptions when viability loss was as high as 60% or as low as 

40% (data not shown).  Figure 5.3 shows that the percentage of loss of HMDMs viability 

were not consistent  between the MTT and the trypan blue assay.  While the MTT assay 

showed 50% loss in HMDMs viability (Figure 5.3a), the trypan blue assay revealed only 

30% loss in viability with 1 mg/ml oxLDL (Figure 5.3b).  The explanation for this 

observation will be discussed further in section 5.3.1.2. 

 The effect of oxLDL on HMDMs was also monitored by observing HMDMs’ 

morphology under the light microscope.  The control cells showed classic macrophage 

morphology of large, poached egg-like cells (Figure 5.4a).  After 24 hours incubation with    

1 mg/ml oxLDL, some of the HMDMs (Figure 5.3b) became enlarge and had a dendritic-

like appearance. Some other cells appeared shrunk and formed blebs.  With 2 mg/ml 

oxLDL, damage to HMDMs was apparent with the loss of cellular contents, appearance of 

shrunken cells, disruption of cellular membranes and presence of cellular debris (Figure 

5.2c).  A significant number of detached cellular clumps floating in the media was also 

observed.  These cellular morphologies appeared to be characteristic of both apoptotic and 

necrotic cell death. 

  A time course of oxLDL-mediated damage was conducted by incubating HMDMs 

in RPMI containing 10% HIHS with 1 mg/ml oxLDL for 24 hours.  Cell death appeared to 

be initiated slowly in HMDMs with a small insignificant drop in cell viability after 3 hours 

(Figure 5.5).  The HMDMs viability continued to decline by a slow 15% over the first 12 

hours but then dropped by further 35% over the following 12 hours.   
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Figure 5.2 Loss of HMDM viability after 48 h incubation with increasing 

concentrations of oxLDL. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with increasing 

concentrations of oxLDL.  After 48 hours, HMDMs were analysed for cell viability via MTT assay.  

Significance is indicated from 0 mg/ml oxLDL (control).  Results are displayed as mean ± SD of 

triplicates from a single experiment, representative of three separate experiments. 
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Figure 5.3 Loss of HMDM viability after 24 h incubation with increasing 

concentrations of oxLDL. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with increasing 

concentrations of oxLDL.  After 24 hours, HMDMs were analysed for cell viability via (a) MTT and  

(b) trypan blue exclusion staining.  Significance is indicated from 0 mg/ml oxLDL (control).  Results 

are displayed as mean ± SD of triplicates from a single experiment, representative of three separate 

experiments. 
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Figure 5.4 Morphological changes in cell appearance after 24 h incubation with 

varying concentrations of oxLDL.   
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with increasing 

concentrations of oxLDL.  After 24 h, cells were viewed in situ in tissue culture wells using an inverted 

microscope, (A) control no oxLDL, (B) 1 mg/ml oxLDL, and (C) 2 mg/ml oxLDL.  Original 

magnification was 40x and the picture was taken using a digital camera. 
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Figure 5.5 Time course of oxLDL-induced cell viability loss in HMDMs. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with 1 mg/ml of 

oxLDL.  At various times, HMDMs were analysed for cell viability by MTT assay with data expressed 

as a percentage of zero hour levels (control).  Significance is indicated from time zero.  Results are 

displayed as mean ± SD of triplicates from a single experiment, representative of three separate 

experiments. 

 

 

5.2.1.3 Effect of OxLDL on the Intracellular Glutathione Levels of HMDMs 
 

Cellular glutathione is a very potent antioxidant and can efficiently neutralise reactive 

oxygen species.  Analysis of the effect of oxLDL on the intracellular glutathione level of 

HMDMs was studied by incubating HMDMs with increasing oxLDL concentrations for 24 

hours.  Control HMDMs contained approximately 217 µmol/mg of cell protein glutathione 

and this level was reduced by 30% after exposure to 0.1 mg/ml oxLDL (Figure 5.6).  As 

observed for the cell viability studies, 0.1 mg/ml of oxLDL concentration did not affect the 

cell viability, but it was potent enough to disrupt the intracellular glutathione level.  

Incubation with 0.5 mg/ml oxLDL caused approximately 50% loss in the glutathione level 

of HMDMs.  Above 2 mg/ml of oxLDL, the intracellular glutathione was totally lost since 

no peak was detected on the HPLC chromatogram.  Similar to MTT assay, the glutathione 

results were reproducible although sometimes inter-experimental variation did account for 

a few exceptions when glutathione loss was as great as 65% or as low as 40% (data not 

shown) with 1 mg/ml oxLDL treatment.   

The intracellular glutathione loss in HMDMs over time was examined by 

incubating HMDMs with 1 mg/ml oxLDL for 24 hours.  In contrast with the cell viability 
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studies, the glutathione loss was very rapid with 20% reduction after 3 hours (Figure 5.7).  

After 24 hours, the glutathione level was reduced by 60%.   
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Figure 5.6 Loss of HMDM glutathione after 24 h incubation with increasing 

concentrations of oxLDL. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with increasing 

concentrations of oxLDL.  After 24 hours, the glutathione levels of HMDMs were analysed using 

HPLC analysis.  Data were expressed as a percentage of zero hour levels (control). Significance is 

indicated from 0 mg/ml oxLDL (control).  Results are displayed as mean ± SD of triplicates from a 

single experiment. 
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Figure 5.7 Time course of oxLDL-induced glutathione loss in HMDMs. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with 1 mg/ml of 

oxLDL.  At various times, the glutathione levels of HMDMs were analysed by HPLC analysis.  Data 

were expressed as a percentage of zero hour levels (control).  Significance is indicated from time zero.  

Results are displayed as mean ± SD of triplicates from a single experiment, representative of three 

separate experiments. 
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5.2.1.4 Uptake of DiI-LDL and DiI-oxLDL by HMDMs 
 

The uptake of LDL and oxLDL to HMDMs was measured by incubating HMDMs with     

1 mg/ml LDL or oxLDL which had been labelled with fluorescent DiI at 37 °C in RPMI 

containing 10% HIHS over 24 hours.  Figure 5.8 shows a very sharp increase in the uptake 

of DiI-LDL with HMDMs in the first 3 hours followed by a gradual increase until 12 

hours.  Then the association increased sharply again up to 24 hours.   

In contrast, the uptake of DiI-oxLDL (Figure 5.9) increased sharply between 6 and 

12 hours.  After 12 hours the rate of uptake levelled off and there was no significant 

increase in uptake after 12 hours.  This result agreed with HMDMs’ viability over 24 hours 

incubation with 1 mg/ml oxLDL (Figure 5.5) where the viability declined sharply after 12 

hours.  Twelve hours was also the time at which the oxLDL had caused almost maximum 

amount of glutathione loss (Figure 5.7).  Commitment to cell death might have occurred by 

this point. 
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Figure 5.8 Time course of DiI-LDL uptake with HMDMs. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C (to measure cell association) in RPMI containing 

10% HIHS with 1 mg/ml DiI-LDL.  At various times, the cells were harvested and the fluorescence 

intensity of DiI was measured as mentioned in the materials and methods.  Significance is indicated 

from time zero.  Each value shown is the mean + SD of triplicates.   
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Figure 5.9 Time course of DiI-oxLDL uptake with HMDMs. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C (to measure cell association) in RPMI containing 

10% HIHS with 1 mg/ml DiI-oxLDL.  At various times, the cells were harvested and the fluorescence 

intensity of DiI was measured as mentioned in the materials and methods.  Significance is indicated 

from time zero.  Each value shown is the mean + SD of triplicates.   

 

 

5.2.1.5 Effect of OxLDL on Generation of Reactive Oxygen Species by HMDMs  

 

Reactive oxygen species (ROS) are important regulators of apoptosis.  OxLDL has been 

reported to induce cellular apoptosis in a mechanism dependent upon ROS generation in 

vascular smooth muscle cells (Hsieh et al., 2001) and endothelial cells (Zmijewski et al., 

2005a).  The mitochondria has been suggested to be the main site of ROS production 

(Fleury et al., 2002).  In this study the effect of oxLDL on the generation of ROS in the 

mitochondria was investigated by using dihydroethidium (DHE) staining.  DHE is oxidised 

to ethidium fluorescent product by superoxide but to a much lower extent by hydrogen 

peroxide.  The change of DHE fluorescence of living cells allows quantitation of 

intracellular ROS mainly superoxide (O2
•−

).   

A time-dependent increase in ROS generation was revealed when HMDMs were 

exposed to 1 mg/ml oxLDL (Figure 5.10) as reflected by increase in fluorescence intensity.  

The appearance of the DHE fluorescence after only 3 hours incubation with oxLDL 

implies that ROS generation induced by oxLDL is an early event in HMDMs.  The ROS 

generation seems to reach maximum after 6 hours incubation. 
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Figure 5.10 The effect of oxLDL on the generation of superoxide anion (O2
••••-

) in 

HMDM.   
HMDM (5x10

6
 cells/ml) were grown on coverslips in 6-well plate in RPMI containing 10% HIHS.  

Cells were incubated with 1 mg/ml oxLDL for 3 and 6 hours (B-C).  Control (A) was cells without 

addition of oxLDL.  The intracellular distribution of O2
•-

 in the cells was detected by staining the cells 

with DHE staining.   
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5.2.1.6 Effect of OxLDL on Cytochrome c Release in HMDMs 
 

Intracellular accumulation of ROS may perturb the cell’s intracellular redox state and can 

cause the release of cytochrome c from the mitochondria into the cytoplasm (Chandra & 

Orennius, 2002).  It may occur at the very early stage and therefore, an important trigger of 

apoptotic programme (Berridge et al., 1996)).  Cytochrome c is required for the assembly 

of the apoptosome and hence, for the activation of the caspase cascade.  It has also been 

shown that there was a time-dependent migration of cytochrome c from mitochondria to 

the cytoplasm then to the nucleus (Heinloth, et al., 2002).  

In this study, immunofluorescence staining of HMDMs incubated with 1 mg/ml 

oxLDL for 12 hours showed a small increase in fluorescence intensity in both nuclei and 

the cytoplasm (Figure 5.11) when compared to control cells, suggesting the release of 

cytochrome c into the cytoplasm and translocation into the nuclei.  The release of 

cytochrome c was much lower than expected. 

 Western Blot analysis of subcellular fractionation verified cytochrome c release 

induced by oxLDL as depicted in Figure 5.12.  The cytochrome c band of 14 kDa was 

determined from the standard molecular weight marker and purified cytochrome c from 

bovine heart (gel not shown).  The result showed that there was already a low rate of 

cytochrome c release under basal conditions (Figure 5.12, Lane 2).  The presence of 

cytochrome c in the control cytosolic fractions were also detected by Heinloth et al.,  

(2002) and Walter et al.,  (1998) indicating a variable amount of background apoptosis that 

led to cytochrome c release under cell culture conditions.  This may also be an artefact of 

the subcellular fractionation procedure.  The release of cytochrome c observed after 3 

hours incubation with oxLDL was not different from that of control indicating that 

cytochrome c released at that time was not induced by oxLDL.  Only after 6 hours 

incubation, anincrease in cytochrome c was clearly seen.  Figure 5.13 shows a similar 

experiment with 12 hours incubation time of HMDMs with oxLDL.  In this experiment, no 

cytochrome c was detected in the cytosol of control cells but very clear distinct band of 

cytosolic cytochrome c band from HMDMs treated with oxLDL was observed.  The effect 

of 7,8-NP on cytochrome c release induced by oxLDL will be discussed in section 5.2.2.3.   
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Figure 5.11 The effect of oxLDL on the cytochrome c release in HMDMs.   
HMDM (5x10

6
 cells/ml) were grown on coverslips in 6-well plate in RPMI containing 10% HIHS.  

Cells were incubated with 1 mg/ml oxLDL for 12 hours (B).  The cytochrome c release in the cells was 

detected with anti-cytochrome c antibodies using fluorescence microscope.  A’ and B’ represent 

differential interference contrast of A and B respectively. 
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Figure 5.12 Effect of 7,8-NP on cytochrome c release induced by oxLDL, 0-6 hours.  
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS and 1 mg/ml of 

oxLDL with and without 200 µM 7,8-NP for 3 and 6 hours.  30 µg proteins of the organelle fraction and 

40 µg of the cytosolic fraction were loaded onto an SDS-PAGE.  The presence of cytochrome c release 

was detected by Western Blot .  β-actin was used as a control loading.  Data are representative of three 

separate experiments. 
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Figure 5.13 Effect of 7,8-NP on cytochrome c release induced by OxLDL after 12 hrs.  
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS and 1 mg/ml of 

oxLDL with and without 200 µM 7,8-NP for 12 hours.  30 µg proteins of the organelle fraction and 40 

µg of the cytosolic fraction were loaded onto an SDS-PAGE.  The presence of cytochrome c release was 

detected by Western Blot.  β-actin was used as a control loading.  Data are representative of three 

separate experiments. 
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5.2.1.7 Effect of OxLDL on Caspase-3 Activation 
 

Treatment of HMDMs with oxLDL caused the cells to have apoptotic and necrotic 

appearances (Figure 5.4).  Caspase activation is believed to have a pivotal role in the 

regulation of apoptosis and it had been shown to play a critical role in apoptosis of vascular 

cells in atherosclerotic plaque and in cultured vascular cells (Geng et al., 1995; Grutter, 

2000; Kroemer & Martin, 2005).  Since caspase-3 is an effector caspase involved in 

activation of a large number of apoptotic processes within the cells (Geng et al., 1995), its 

activation induced by oxLDL was therefore determined using Western Blot analysis.  On 

activation, proteolytic cleavage of procaspase-3 (32 kDa) releases two subunits as the 

active form (17 kDa or 20 kDa).   

 The incubation times of 12 and 24 hours; and oxLDL concentrations 1 and 2 mg/ml 

were chosen because these were the conditions that were found earlier to cause the 

appearance of apoptosis and or necrosis in the cells.  Figure 5.14 shows that incubation of 

HMDMs with 1 and 2 mg/ml oxLDL for 12 and 24 hours did not show a cleavage of 32 

kDa procaspase-3 into the p20 or p17 fragment of caspase–3.  The result suggests that 

under the conditions in this study, caspase-3 was not activated.  There seemed to be a small 

time dependent decrease in the 32 kDa band size of procaspase-3 of the treated samples 

(Lane 2-5, Figure 5.14) in comparison to control (Lane 1, Figure 5.14).  It is unlikely that 

this is due to unequal loading of samples since the protein concentration were 

predetermined. The similar size of β-actin bands confirm equal loading of samples onto the 

gel.  This raises the possibility that the procaspase-3 had been cleaved to some smaller 

products and this occurred in a time and concentration dependent manner. 

 

5.2.1.8 Effect of OxLDL on HMDMs Phosphatidylserine Exposure   
 

Cells lose their phospholipid membrane asymmetry and expose PS at the cell surface while 

maintaining their plasma membrane integrity intact, early during the process of apoptosis 

(van Engeland, et al., 1996).  PS externalisation functions as part of the recognition process 

for phagocytes, which clear away apoptotic cells before they reach the pro-inflammatory 

stage of secondary necrosis (Carpenter et al., 1994).  PS exposure as a result of incubation 

with oxLDL has been found in Jurkat T cells (Alcouffe et al., 1999), THP-1 monocytes 

(Baird et al., 2004; Vicca et al., 2000), U937 cells (Baird et al., 2004) and human vascular 

muscle cells (Siow et al., 1999).  Annexin-V was shown to interact strongly and 

specifically with PS and can be used to detect apoptosis by targeting for the loss of plasma 

membrane asymmetry (van Engeland, et al., 1996).   



Chapter 5 
_____________________________________________________________________________________________________________ 

 

159 

 

The time course of the effect of oxLDL on the exposure of PS by HMDMs was 

explored by incubating HMDMs with 1 mg/ml oxLDL.  The immunofluorescence staining 

demonstrated that oxLDL increased the exposure of PS in a time dependent manner 

(Figure 5.15).  The exposure of PS was detected as early as 3 hours incubation but only 

after 6 hours that a significant number of cells having PS became very obvious.  The 

number of cells having PS exposure was maximal after 12 hours incubation with oxLDL.  

This suggests that most of the cells were committed to apoptotic death at this stage.  The 

differential interference contrast image also shows that after 12 hours incubation the cells 

appear smaller (possibly due to cells’ shrinkage) than control cells.  This data is in 

agreement with the viability time course study where a sudden drop in viability was 

observed after 12 hours incubation with oxLDL. 

 

Lane 1  2     3  4        5 

 
 

 
mg/ml oxLDL      0  1           2         1           2    

 

Time of incubation (h)      0                       12                    12                     24             24      

  

Figure 5.14 OxLDL does not induce caspase-3 activation.  
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS and 1 or 2 mg/ml of 

oxLDL for 12 and 24 hours.  40 µg proteins of the total cell lysate were loaded onto an SDS-PAGE.  

The presence of caspase-3 (17 kDa) and procaspase-3 (32 kDa) was detected by Western Blot.  β-actin 

was used as a control loading.  Data are representatives of three independent experiments. 
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Figure 5.15 OxLDL induces phosphatidylserine exposure in HMDM in a time-

dependent manner. 
HMDM (5x10

6
 cells/ml) were grown on coverslip in 6-well plate in RPMI containing 10% HIHS.  After 

14 days, cells were incubated with 1 mg/ml oxLDL for 3, 6 and 12 hours (B-D).  Apoptotic cells were 

identified by immunofluorescence staining of phosphatidylserine with Annexin-FITC and viewed with 

40x magnification under fluorescence microscope.  A’, B’, C’ and D’ represent differential interference 

contrast correlates of A, B, C and D respectively. Data are representatives of three independent 

experiments. 
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5.2.2 7,8-Dihydroneopterin Effects on OxLDL-induced Damage on 

HMDMs 

 

5.2.2.1 7,8-Dihydroneopterin Inhibits OxLDL-induced Loss of Cell Viability and 

Intracellular Glutathione in HMDMs 

 

Gieseg and Cato (2003) noted that protection against cell-mediated LDL oxidation was 

maximum only when 7,8-NP was preincubated with the THP-1 adherent cells for 5 

minutes.  This was in agreement with Duggan, et al.  (2002) that 10 minute pre-incubation 

of cells with 7,8-NP was necessary for 7,8-NP to give maximum protective effect on U937 

cells against 2,2'-azobis (2-amidino propane) dihydrochloride (AAPH) peroxyl radicals.  

Consequently, a ten minute pre-incubation of HMDMs with 7,8-NP in RPMI containing 

10% HIHS was performed in this study, before addition of oxLDL. 

The potential antioxidant effect of 7,8-NP was studied by pre-incubating the 

HMDMs for ten minutes in RPMI containing 10% HIHS with various concentrations of 

7,8-NP.  OxLDL (1 mg/ml) was subsequently added and HMDMs were incubated for 24 

hours before analysing the effect of 7,8-NP on  the viability and intracellular levels of 

glutathione.  The addition of 7,8-NP gave a concentration dependent protection on the 

HMDMs viability loss (Figure 5.16).  A maximum protection was established with 100 of 

µM 7,8-NP, reducing the cell viability loss from 60% to 20% as compared to control.  The 

presence of 7,8-NP alone, up to a concentration of 400 µM did not affect the HMDMs 

viability (Figure 5.17).   

Incubation of 1 mg/ml oxLDL caused a 60% loss in the intracellular level of 

glutathione (Figure 5.18).  7,8-NP gave a concentration dependent protection against the 

intracellular glutathione loss, following the pattern of 7,8-NP protection against the cell 

viability loss.  The maximum protection was given by 200 µM of 7,8-NP, reducing the 

glutathione loss to 30%.  Surprisingly, 400 µM 7,8-NP did not further increase its 

protective effect (data not shown).  Moreover, in agreement with the cell viability studies, 

the presence of 7,8-NP alone up to 400 µM did not significantly affect the HMDMs 

glutathione level (Figure 5.19).  The difference in intracellular glutathione level when 100 

or 200 µM of 7,8-NP were present seemed to be sufficient to diminish oxLDL-induced 

cytotoxicity by 40%  (Figure 5.16) suggesting that GSH depletion is involved in  oxLDL 

induced macrophage death. 

Since 7,8-NP concentrations ranging from 100 to 400 µM exhibited a similar 

protection against cell death and 200 µM of 7,8-NP gave a maximum protection on 
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intracellular glutathione loss, therefore, 200 µM of 7,8-NP was used for subsequent 

experiments in testing the protective effect of 7,8-NP on HMDMs against oxLDL-induced 

damage. 

The protective effect of the oxidised form of 7,8-NP, neopterin, on oxLDL-induced 

glutathione loss was also explored since some literatures had reported that neopterin could 

be a pro- or antioxidants.  Co-incubation of HMDM with 1 mg/ml oxLDL and neopterin up 

to 200 µM did not provide any protective effect against the intracellular glutathione loss 

(Figure 5.20).  Moreover, the concentrations of neopterin used in this study did not further 

enhance the toxicity of oxLDL. 
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Figure 5.16 Effect of 7,8-NP on HMDM viability loss in the presence of 1 mg/ml 

oxLDL. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with 1 mg/ml oxLDL 

and increasing concentrations of 7,8-NP.  Controls were conducted in the absence of oxLDL and 7,8-

NP.  After 24 hours, HMDMs were analysed for cell viability via MTT assay.  Significance is indicated 

from 0 µM 7,8-NP (control).  Results are displayed as mean ± SD of triplicates from a single 

experiment, representative of three separate experiments. 
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Figure 5.17 Effect of 7,8-NP on HMDM viability loss. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with increasing 

concentrations of 7,8-NP.  Controls were conducted in the absence of 7,8-NP.  After 24 hours, HMDMs 

were analysed for cell viability via MTT assay.  Significance is indicated from 0 µM 7,8-NP.  Each 

value shown is the mean + SD of triplicates.   
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Figure 5.18 Effect of 7,8-NP on glutathione loss in the presence of 1 mg/ml oxLDL. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with 1 mg/ml oxLDL 

and increasing concentrations of 7,8-NP.  Controls were conducted in the absence of oxLDL and 7,8-

NP.  After 24 hours the glutathione levels of HMDMs were analysed by HPLC analysis.  Data were 

expressed as a percentage of control.  Significance is indicated from 0 µM 7,8-NP.  Results are 

displayed as mean ± SD of triplicates from a single experiment, representative of three separate 

experiments. 
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Figure 5.19 Effect of 7,8-NP on HMDM glutathione loss. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with increasing 

concentrations of 7,8-NP.  Controls were conducted in the absence of 7,8-NP.  After 24 hours the 

glutathione levels of HMDMs were analysed by HPLC analysis. Significance is indicated from 0 µM 

7,8-NP.  Each value shown is the mean + SD of triplicates.   
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Figure 5.20 Effect of neopterin on glutathione loss in the presence of 1 mg/ml 

oxLDL. 
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with 1 mg/ml oxLDL 

and increasing concentrations of neopterin.  Controls were conducted in the absence of oxLDL and 

neopterin.  After 24 hours, the glutathione levels of HMDMs were analysed by HPLC analysis.  Data 

were expressed as a percentage of control.  ANOVA analysis revealed no statistical significance from 0 

µM neopterin.  Each value shown is the mean + SD of triplicates.  
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5.2.2.2 Decreased in OxLDL-stimulated Reactive Oxygen Species Production of 

HMDMs with the Presence of 7,8-dihydroneopterin 

 

There is a possibility that the protective effect of 7,8-NP on glutathione loss induced by 

oxLDL is due to 7,8-NP’s ability to scavenge the ROS generated in the presence of oxLDL 

(Kappler et al., 2007).  The inhibitive effect of 7,8-NP on the ROS generation induced by 

oxLDL was studied by incubating HMDMs with 1 mg/ml of oxLDL and 200 µM of      

7,8-NP for 3 to 12 hours.   

Figure 5.21 clearly shows that at 3 hours, the presence of 7,8-NP reduced the DHE 

fluorescence intensity.  This suppressive effect of 7,8-NP could be seen up to 6 hours of 

incubation time.  In a separate experiment, 7,8-NP was still able to suppress the DHE 

fluorescence intensity after 12 hours incubation with oxLDL (Figure 5.22).  This result 

clearly indicates the role of 7,8-NP as radical scavenger.  The data also suggests that 7,8-

NP may be entering the cell to provide this apparent scavenging activity. 

 

5.2.2.3 The Presence of 7,8-Dihydroneopterin Does Not Inhibit OxLDL-stimulated 

Cytochrome c Release from the Mitochondria of HMDMs  

 

Mitochondrial-mediated ROS generation may promote or mediate the release of 

cytochrome c from mitochondria into the cytosol (Madesh & Hajnoczky, 2001; Petrosillo 

et al., 2003).  Since 7,8-NP was able to scavenge the ROS, therefore, the effect of 7,8-NP 

on oxLDL-induced cytochrome c release in HMDMs was investigated.  HMDMs were 

incubated with 1 mg/ml of oxLDL and 200 µM of 7,8-NP for 3 to 12 hours.  Figure 5.12  

(incubation up to 6 hours) shows that 7,8-NP clearly did not inhibit the release of 

cytochrome c.  The 12 hours incubation (Figure 5.13) result also showed  that 7,8-NP 

failed to inhibit the cytochrome c release from the mitochondria. 
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Figure 5.21 The effect of 7,8-NP and oxLDL on the ROS levels in HMDM.  
HMDM (5x10

6
 cells/ml) were grown on coverslips in 6-well plate in RPMI containing 10% HIHS.  

Cells were incubated with 1 mg/ml oxLDL (B-C) and 1 mg/ml oxLDL and 200 µM 7,8-NP (D-E) for 3 

and 6 hours.  The intracellular distribution of ROS in the cells was detected by staining the cells with 

DHE.  
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Figure 5.22 The effect of 7,8-NP and oxLDL on the superoxide anion (O2
••••-

) 

generation in HMDMs after 12 hours incubation.  
HMDM (5x10

6
 cells/ml) were grown on coverslips in 6-well plate in RPMI containing 10% HIHS.  

Cells were incubated with 1 mg/ml oxLDL (B) and 1 mg/ml oxLDL and 200 µM 7,8-NP (C) for 12 

hours.  Control (A) was cells without addition of oxLDL.  The intracellular distribution of ROS in the 

cells was detected by staining the cells with DHE.   
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5.2.2.4 Decreased in OxLDL-stimulated Phosphatidylserine Exposure of HMDMs 

with the Presence of 7,8-dihydroneopterin  

 

The 7,8-NP protective effect on the exposure of PS was first explored by incubating 

HMDMs with 1 mg/ml oxLDL up to 24 hours with 7,8-NP.  Figure 5.23 shows that co-

incubation with 7,8-NP at 100 and 200 µM (Figure 5.23c and d) did not reduce the number 

of HMDMs having PS exposure as compared to exposure to oxLDL alone (Figure 5.23b).  

This experiment was repeated by incubating HMDMs with oxLDL and 7,8-NP for 

up to 12 hours.  Figure 5.24 shows that 200 µM of 7,8-NP could delay the effect of            

1 mg/ml of oxLDL.  This result could suggest that the protective effect of 7,8-NP on 

oxLDL-induced damage can only be observed within certain time which agreed with Baird 

et al ., (2005).  The greatest protective effect of 7,8-NP on HMDMs on PS exposure was 

seen by 6 hours incubation time even though the protective effect can still be seen up to 12 

hours incubation with oxLDL.  This clearly suggests that 7,8-NP can only slowing down 

the PS exposure over a 12 hour period.  
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Figure 5.23 7,8-NP does not protect HMDM from oxLDL induced 

phosphatidylserine exposure after 24 h incubation. 
HMDM (5x10

6
 cells/ml) were grown on coverslips in 6-well plate in RPMI containing 10% HIHS.  

Cells were incubated with 1 mg/ml oxLDL in B, with 1 mg/ml oxLDL and 100µM 7,8-NP in C and 1 

mg/ml oxLDL and 200µM 7,8-NP in D for 24 hours.  Apoptotic cells were identified by 

immunofluorescence staining of phosphatidylserine with Annexin-FITC and viewed with 40x 

magnification under fluorescence microscope.  Differential interference contrast (DIC) photos are 

shown in (E-H). 



Chapter 5 
_____________________________________________________________________________________________________________ 

 

170 

 

 
 

 OxLDL 

 

1 mg/ml oxLDL and 

200 µµµµM 7,8-NP 

 

3
 h

o
u

rs
 

 
 

 
 

 

6
 h

o
u

rs
 

 
 

 
 

 

1
2

 h
o

u
rs

 

 
 

 

Figure 5.24 Phosphatidylserine exposure was reduced up to 12 hours incubation of 

HMDMs with oxLDL.  
HMDM (5x10

6
 cells/ml) were grown on coverslips in 6-well plate in RPMI containing 10% HIHS.  

Cells were incubated with 1 mg/ml oxLDL in (A-C) and with 1 mg/ml oxLDL and 200µM 7,8-NP in 

(D-F) for 3, 6 and 12 hours.  Apoptotic cells were identified by immunofluorescence staining of 

phosphatidylserine with Annexin-FITC and viewed with 40x magnification under fluorescence 

microscope.  
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5.2.2.5 Role of 7,8-Dihydroneopterin in Protecting the Glutathione Loss Induced by 

OxLDL 

 

There is a possibility that 7,8- NP inhibits the toxic effects of OxLDL, by protecting the 

intracellular glutathione pool.  This was explored by first depleting the intracellular 

glutathione synthesis using L-buthionine-S-sulfoxomine (BSO), a specific inhibitor of      

γ-glutamylcysteine synthethase (GCS). GCS is the rate-limiting enzyme in glutathione     

de novo synthesis.  In this experiment, the aim was to deplete the intracellular glutathione 

level as low as possible and see if in the presence of oxLDL, 7,8-NP has any effect on its 

repletion.  Therefore, the HMDMs were first treated with varying concentrations of BSO 

and time of incubations to see the maximum glutathione level depletion with minimum 

time of incubation. 

Incubation of HMDMs with 100 to 500 µM of BSO for 12 hours did not affect the 

cell viability (Figures 5.25a and 5.25b).  Surprisingly, incubating the HMDMs with the 

same BSO concentrations (Figure 5.25c) for 12 hours depleted the GSH synthesis to the 

same level, that is 60% of that control untreated HMDMs.  There is a possibility that these 

range of concentrations were too high and saturated the cells.  Therefore, the experiment 

was repeated with longer incubation time, 24 hours and lower BSO concentrations, ranging 

from 50 to 200 µM.  However, as Figure 5.26b shows, a similar 60% drop in GSH level 

was demonstrated.  The cell viability remained 100% with 50 to 200 µM of BSO (Figure 

5.26a).  The effect of a higher BSO concentration was explored.  Figure 5.27 shows that    

1 mM of BSO depleted the GSH level of HMDMs to approximately 60% after 20 and 26 

hours incubation.  This suggests that the HMDMs intracellular glutathione pool was quite 

resistant to glutathione depletion as compared to other cells (Esteban-Pretel & López-

García, 2006).  The viability assays show that the BSO concentrations used (Figure 5.27a) 

had no effect on the viability of HMDMs.  Therefore, in subsequent experiments a low 

concentration of BSO and shorter exposure time i.e. 200 µM and 12 hours respectively, 

were used.  Lower concentration of BSO and shorter exposure time are favoured to avoid 

cell adaptation to oxidative stress and the difference in metabolic capabilities and 

competence of BSO-treated cells from that of controls.   

Macrophages treated with BSO (Figure 5.28) were able to restore their glutathione 

content almost to the same level as control cells after 24 hours (treatment D, Figure 5.28).  

As previously shown, there was a protective effect of 7,8-NP on glutathione loss induced 

by oxLDL (comparing treatments B and C, Figure 5.28).  Interestingly, adding 7,8-NP 

together with BSO was able to restore the glutathione level to the same level as treatment 
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of HMDMs with oxLDL and 7,8-NP (treatments C and E, Figure 5.28).  This suggests that 

there is a possibility that oxLDL acts by inhibiting the synthesis of glutathione, and 7,8-NP 

to a certain extent is able to protect γ-glutamylcysteine synthethase.   
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Figure 5.25 Loss of HMDMs viability and glutathione after 12 h incubation with 

increasing concentration of BSO.  
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with increasing 

concentrations of BSO.  After 12 hours, HMDMs were analysed for cell viability via (a) MTT assay and 

(b) trypan blue exclusion staining and (c) glutathione levels with HPLC analysis.  Significance is 

indicated from 0 µM BSO.  Each value shown is the mean + SD of triplicates.   
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Figure 5.26 Loss of HMDMs viability and glutathione after 24 h incubation with 

increasing concentration of BSO.  
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS with increasing 

concentrations of BSO.  After 12 hours, HMDMs were analysed for cell viability via (a) MTT assay and 

(b) glutathione levels with HPLC analysis.  Significance is indicated from 0 µM BSO.  Each value 

shown is the mean + SD of triplicates.   
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Figure 5.27 Time course for the loss of HMDMs viability and glutathione after 

incubation with 1 mM of BSO.  
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS 1 mM of BSO.  After 

4, 20 and 26 hours, HMDMs were analysed for cell viability via (a) trypan blue exclusion staining and 

(b) glutathione levels with HPLC analysis.  Significance is indicated from control of each time of 

incubation. Each value shown is the mean + SD of triplicates.    
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A. control 

B. incubate with 1 mg/ml oxLDL for 24 h 

C. incubate with 1 mg/ml oxLDL and 200 µM 7,8-NP for 24 h 

D. pretreat with 200 µM BSO for 12 h then add full media back for another 24 h 

E. pretreat with 200 µM BSO for 12 h then add 200 µM 7,8-NP  and 200 µM BSO for 

24 h 

F. pretreat with 200 µM BSO for 12 h then add 1 mg/ml oxLDL and 200 µM 7,8-NP 

for 24 h 

G. pretreat with 200 µM BSO for 12 h then add 1 mg/ml oxLDL for 24 h 

 

Figure 5.28 Effect of glutathione depletion on the protective effect of 7,8-NP.   
HMDMs (5x10

6
 cells/ml) were incubated for 12 hours with 200 µM BSO in RPMI containing 10% 

HIHS at 37 °C.  Then the cells were washed twice in PBS and incubated further with 7,8-NP or oxLDL 

or BSO as indicated under the Figure above.  The glutathione levels were measured using HPLC 

analysis.  Results are displayed as mean ± SD of triplicates from a single experiment, representative of 

three separate experiments.  Significance is indicated from treatment B. 
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5.2.2.6 7,8-Dihydroneopterin Inhibits Uptake of Non-toxic Concentrations of DiI-

oxLDL by HMDMs 

 

There is a possibility that 7,8-NP’s protective effect against oxLDL-induced damage is 

established by influencing the uptake of oxLDL.  This was studied by incubating HMDMs 

with 200 µM of 7,8-NP and 1 mg/ml of DiI-oxLDL.  The amount of association and 

binding of DiI-oxLDL to HMDMs were measured as described in chapter 2.  The amount 

of DiI-oxLDL uptake was calculated by subtracting the value of binding from the value of 

association. 

 There was a time dependent uptake of DiI-oxLDL by HMDMs (Figure 5.29c).  A 

decrease in DiI-oxLDL uptake in the presence of 7,8-NP after 1 and 24 hours incubation 

was observed (Figure 5.29c), however it was not statistically significant.  It is possible that 

the toxic effect of 1 mg/ml oxLDL overwhelmed any ability of 7,8-NP to inhibit the 

oxLDL uptake.  This theory was investigated by incubating the HMDMs with lower 

oxLDL concentrations, 0.2 and 0.12 mg/ml.  These concentrations had been shown before 

not to affect the cell viability.  With these oxLDL concentrations, a very significant 

inhibitory effect of 7,8-NP on the uptake of oxLDL (Figure 5.30 and Figure 5.31) was 

clearly shown.  The oxLDL uptake was reduced by 50% (Figure 5.30) and 80% after 

exposure to 0.2 and 0.12 mg/ml oxLDL respectively.  7,8-NP had no effect on DiI-oxLDL 

uptake within one hour incubation (Figure 5.30) possibly because there was not enough 

time for it to establish its effect on the cells.  However, after 2 hours incubation there was 

an inhibitory effect even though it was not significant (Figure 5.31).  Therefore, 7,8-NP 

was able to inhibit the oxLDL uptake when non-toxic oxLDL concentrations were used. 

 



Chapter 5 
_____________________________________________________________________________________________________________ 

 

177 

 

 

(a) 

0

25

50

75

100

125

150

175

200

o
x

L
D

L
 a

ss
o

ci
a

te
d

 a
t 

3
7

 °
C

(M
F

/m
g

 o
f 

ce
ll

 p
ro

te
in

)

 
(b) 

0

2

4

6

8

10

o
x

L
D

L
 b

o
u

n
d

 a
t 

4
 °

C

(M
F

I/
m

g
 o

f 
ce

ll
 p

ro
te

in
)

 
(c) 

0

25

50

75

100

125

150

175

200

2
4

 h
 w

it
h

D
iI

-o
x

L
D

L

1
 h

 w
it

h

D
iI

-o
x

L
D

L

1
 h

 w
it

h
 D

iI
-o

x
L

D
L

+
 7

,8
-N

P

2
4

 h
 w

it
h

 D
iI

-o
x

L
D

L

+
 7

,8
-N

P

 o
x

L
D

L
 u

p
ta

k
e

(M
F

I/
m

g
 o

f 
ce

ll
 p

ro
te

in
)

 
 

Figure 5.29 Effect of 7,8-NP on DiI-oxLDL uptake by human macrophages. 
HMDMs (5x10

6
 cells/ml) were incubated at (a) 37 °C to measure cell-association and (b) 4 °C to 

measure binding in RPMI containing 10% HIHS with 1 mg/ml DiI-oxLDL and with or without 200 µM 

7,8-NP.  After 1 and 24 hours, the cells were harvested and fluorescence intensities were measured.  

The uptake of  oxLDL (c) was calculated as the difference between (a) and (b).  Each value shown is the 

mean + SD of triplicates.   Significance is indicated from treatment with DiI-oxLDL for the same hour 

of incubation. 
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Figure 5.30 Effect of 7,8-NP on DiI-oxLDL uptake by human macrophages. 
HMDMs (5x10

6
 cells/ml) were incubated at (a) 37 °C to measure cell-association and (b) 4 °C to 

measure binding in RPMI containing 10% HIHS with 40 µg protein/ml (200 µg/ml) DiI-oxLDL and 

with or without 200 µM 7,8-NP.  After 1 and 24 hours, the cells were harvested and fluorescence 

intensities were measured.  The uptake of  oxLDL (c) was calculated as the difference between (a) and 

(b).  Each value shown is the mean + SD of triplicates from a single experiment.  Significance is 

indicated from treatment with DiI-oxLDL for the same hour of incubation. 
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Figure 5.31 Effect of 7,8-NP on DiI-oxLDL uptake by human macrophages. 
HMDMs (5x10

6
 cells/ml) were incubated at (a) 37 °C to measure cell-association and (b) 4 °C to 

measure binding in RPMI containing 10% HIHS with 25 µg protein/ml (125 µg/ml) DiI-oxLDL and 

with or without 200 µM 7,8-NP.  After 2 and 24 hours, the cells were harvested and fluorescence 

intensities were measured.  The uptake of  oxLDL (c) was calculated as the difference between (a) and 

(b).  Each value shown is the mean + SD of triplicates from a single experiment. Significance is 

indicated from treatment with DiI-oxLDL for the same hour of incubation. 
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5.2.2.7 Enrichment of HMDMs with 7,8-Dihydroneopterin Does Not Influence SR-A 

Protein Expression But Has Ambiguous Effect on CD36 Protein Expression  

 

There are at least six classes of scavenger receptors (SRA, SR-B, SR-D, SR-E, SR-PSOX 

and SR-G)  so far reported to be involved in the uptake of oxLDL.  SR-A and CD36 of 

SRA and SR-B classes respectively have been repeatedly shown to play an important role 

in the early uptake of oxLDL and deletion of these receptors can limit atherosclerotic 

progression in mouse model (Febbraio et al., 2000; Kunjathoor et al., 2002).  In addition it 

appears that the majority of modified LDL processed by macrophages is via CD36 and SR-

A (40-90%) (Febbraio et al., 2000; Huh et al., 1996; Nakagawa et al., 1998).  Therefore, 

the discovery of reduced uptake of oxLDL in the presence of 7,8-NP in the present study 

might suggest that 7,8-NP might modulate at least these two receptors in exerting its 

protective effect against oxLDL-induced damage.   

This theory was investigated by incubating the HMDMs with various 

concentrations of 7,8-NP for 24 hours.  The levels of protein expression of SR-A and 

CD36 were investigated by using Western Blot analysis.  According to Gough, et al . 

(1999) under the nonreducing SDS-PAGE conditions, SR-A should migrate predominantly 

as a mixture of monomers (Mr ≈90 to 70 kDa) and disulphide-linked dimers (Mr ≈170 to 

150 kDa) with a small amount of trimers (Mr ≈240 to 220 kDa).  As a result of varying 

degrees of CD36 glycosylation more than one of CD36 bands can be observed (Alessio et 

al., 1996; Munteanu et al., 2005). These bands are of different molecular masses and they 

correspond to different glycoforms.  The molecular massed displayed also depend on the 

type of cell (Alessio et al., 1996; Greenwalt et al., 1990).  Alessio et al ., (1996) showed 

that phorbol 12-myristate 13-acetate induced the expression of CD36 in U937 and THP-1 

cells.  A 74-kDa intracellular precursor was first synthesised that later processed into 

mature form of 90-105 kDa (Alessio et al., 1996).   

In this study, the Western Blot analysis of SR-A of HMDMs did not reveal the 

presence of dimers and trimers (Figure 5.32a).  However, four distinct bands of monomers 

were detected and they migrated predominantly between 70 and 102 kDa.  If anything, the 

presence of 50 to 200 µM of 7,8-NP caused a very small increase in the  intensity of 81 

and 91 kDa bands as compared to control (Figure 5.32a).  However, the analysis of the 

band signals (Figure 5.32b) showed that the increase is so small and not significant since 2 

repeats of this  experiment showed that  the presence of 7,8-NP did not have any effect on 

the protein expression of any of the bands.     

 



Chapter 5 
_____________________________________________________________________________________________________________ 

 

181 

 

 

(a) 

 

 

        µM 7,8-NP       control          50       100           200 

 (b)  

0 50 100 200
0

20

40

60

80

100

120

70 kDa

81 kDa

91 kDa

102 kDa

µµµµM 7,8-NP

%
 S

R
-A

 e
x

p
r
e
ss

io
n

 

 

Figure 5.32 Effect of 7,8-NP enrichment of HMDMs on expression of SR-A protein.  
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS and 7,8-NP for 24 

hours.  40 µg proteins of the total cell lysate were loaded onto an SDS-PAGE. (a) The presence of SR-A 

was detected by Western Blot.  Data for (a) and (b) is from single experiment, and representatives of 

three independent experiments. β-actin was used as a control loading.  (b)The % of SR-A expression 

was determined from signals of the monomer bands on the membranes analysed using Syngene Tool. 
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 The results below are the preliminary data on the  of enrichment of HMDMs with 

increasing concentrations of 7,8-NP on the CD36 protein expression. Interestingly the 

results varied from one experiment to another.  As shown in Figure 5.33, two well 

separated bands of CD36 of molecular weights 80 and 100 kDa were seen after incubation 

of HMDMs with 7,8-NP for 24 hours.  The presence of more than one CD36 band is 

probably due to the product of CD36 glycosylation.  The intensity of the 80-kDa band 

decreased with increasing concentrations of 7,8-NP (Figure 5.33a) and this was 

complemented by Figure 5.33b that shows that 7,8-NP down regulated the percentage of 

the 80-kDa’s expression in a concentration dependent manner.  At 200 µM, 7,8NP 

decreased the 80-kDa’s expression by 55%.  However, 7,8-NP had different effect on the 

100-kDa’s expression.  The treatment with increasing concentrations of 7,8-NP increased 

the intensity of the 100 kDa’s band (Figure 5.33a) and this was confirmed by increased in 

the percentage of its expression.  The down regulation effect of 7,8-NP on the 80-kDa’s 

expression was achieved twice but further repetitions of the experiment gave different 

results as discussed below. 

 Figure 5.34 shows that treatment of HMDMs with increasing concentrations of 7,8-

NP for 24 hours results in the presence of two distinct bands.  However, in contrast to 

Figure 5.33, the bands were quite close together and the bands had molecular weights of 75 

and 86 kDa (Figure 5.34a).  Moreover, the percentage CD36 expression of both bands 

increased with increasing concentrations of 7,8-NP (Figure 5.34b) peaking with 100 µM 

concentration of 7,8-NP for 86 kDa and 200 µM for 75 kDa.   This result suggests that 7,8-

NP did not down regulate CD36 expression.   

The above two results were further complicated with another Western Blot results.  

Even though the protein concentration used for gel loading (Figure 5.35a vs. Figures 5.33a 

and 5.34b) was doubled (from 40 to 80 µg/well), the bands still looked weaker in intensity.  

Besides that, Figure 5.35a shows that treatment of HMDMs with increasing concentrations 

of 7,8-NP for 24 hours results in the presence of only single CD36 band of 86 kDa.  The 

percentage of CD36 expression also increased with increasing concentrations of 7,8-NP 

(Figure 5.35a).  Taken together, the CD36 Western Blot results suggest that CD36 protein 

expression is decreased by 7,8-NP when two bands of far apart present together.  In this 

situation, 7,8-NP could only down regulate the expression of the lower molecular weight 

proteins and increased the protein expression of the 100 kDa.    

Perhaps the effect of 7,8-NP was not clearly seen because the incubation time was 

too long.  As the previous data for inhibitory effect of 7,8-NP on PS exposure and ROS 

production shown, the protective effect of 7,8-NP was maximum up to 12 hours incubation 
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of HMDMs with 7,8-NP.  Therefore, it is necessary to repeat these experiments with 

shorter incubation times.  Figures 5.36 and 5.37 show the time course of effect of 7,8-NP 

enrichment on the expression of CD36 protein.  It is to be noted that the experiments were 

carried out by Tina Yang, a PhD student in this laboratory and under the author’s 

supervision.   Interestingly the results of time course experiment were also inconsistent.  

Figure 5.36 shows the presence of 3 glycoforms of CD36 with molecular weights of 75, 86 

and 115 kDa.  Two hundred µM 7,8-NP had remarkably down regulated the CD36 protein 

expression of all the 3 glycoforms even though the  115-kDa’s expression was up regulated 

during the first hour.  After 24 hours incubation with 7,8-NP, all three glycoforms protein 

expression dropped to below 30%.  7,8-NP also seemed to  down regulate the CD36 

protein expression in a time dependent manner.  Figure 5.37 shows that there was only two 

glycoforms present which were of 75 and 115 kDa.  In contrast to Figure 5.36, the 

incubation of HMDMs with 7,8-NP up regulated the 115-kDa’s expression, while the 

effect on the 75-kDa’s expression seemed to be subtle.  
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Figure 5.33 Effect of 7,8-NP enrichment of HMDMs on expression of CD36 protein.  
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS and 7,8-NP for 24 

hours.  40 µg proteins of the total cell lysate were loaded onto an SDS-PAGE.  (a) The presence of 

CD36 was detected by Western Blot.  β-actin was used as a control loading.  (b) The % of CD36 

expression was determined from signals of the bands on the membrane and analysed using Syngene 

Tool.  Data is representative of two separate experiments.   
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Figure 5.34 Effect of 7,8-NP enrichment of HMDMs on expression of CD36 protein.  
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS and 7,8-NP for 24 

hours.  40 µg proteins of the total cell lysate were loaded onto an SDS-PAGE.  (a) The presence of 

CD36 was detected by Western Blot.  β-actin was used as a control loading.  (b) The % of CD36 

expression was determined from signals of the bands on the membrane and analysed using Syngene 

Tool.  Data is from single experiment.   
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Figure 5.35 Effect of 7,8-NP enrichment of HMDMs on expression of CD36 protein.  
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS and 7,8-NP for 24 

hours.  80 µg proteins of the total cell lysate were loaded onto an SDS-PAGE.  (a) The presence of 

CD36 was detected by Western Blot.  β-actin was used as a control loading. (b) The % of CD36 

expression was determined from  signals of the bands on the membrane and analysed using Syngene 

Tool .  Data is representative of two separate experiments.   
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Figure 5.36 Time course of effect of 7,8-NP enrichment of HMDMs on expression of 

CD36 protein.   
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS and 200 µM 7,8-NP 

for 0-24 hours.  40 µg proteins of the total cell lysate were loaded onto an SDS-PAGE.  (a) The 

presence of CD36 was detected by Western Blot (a).  β-actin was used as a control loading.  Three 

different molecular masses of CD36 were detected (113, 86 and 75 kDa). (b) The % of CD36 

expression was determined from signals of the bands on the membrane and analysed using Syngene 

Tool.  Data is from a single experiment.   
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Figure 5.37 Time course of effect of 7,8-NP enrichment on the expression of CD36 

protein.   
HMDMs (5x10

6
 cells/ml) were incubated at 37 °C in RPMI containing 10% HIHS and 200 µM 7,8-NP 

for 0-24 hours.  40 µg proteins of the total cell lysate were loaded onto an SDS-PAGE. (a) The presence 

of CD36 was detected by Western Blot.  β-actin was used as a control loading.  Two different molecular 

masses of CD36 were detected (115 and 75 kDa). (b) The % of CD36 expression was determined from 

signals of the bands on the membrane and analysed using Syngene Tool.  Data is from a single 

experiment.   
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5.3 Discussion 

 

5.3.1 Effect of OxLDL on HMDMs 

 

5.3.1.1 Characterisation of Native LDL and OxLDL   

 

There are significant differences in the characteristics of oxLDL prepared by different 

laboratories.  A few factors can contribute to the differences which include the 

concentration of LDL when oxidised, types of oxidants and their concentrations, the length 

of the oxidation, temperature of oxidation and transition metal or metal chelator 

concentration (Lougheed & Steinbrecher, 1996; Ziouzenkova et al., 1998).   

The REM value of oxLDL prepared in this study was similar to those published by 

Darley-Usmar, et al.  (1991), Asmis and Jelk (2000b) and Baird, (2003), while the degree 

of oxLDL’s aggregation prepared in this study was similar to that of Baird, (2003).  

OxLDL was more aggregated than the native LDL even though it was filtered before 

analysis that would have removed very large aggregates.  However, LDL is known to 

aggregate during oxidation or even during handling (Maor et al., 1997). 

OxLDL prepared in this study also had a very high TBAR value i.e 52 -fold more 

than the native LDL.  In contrast, oxLDL prepared by (Baird, 2003) had only 9 –fold more 

TBARs than the native LDL even though comparatively same concentration of CuCl2 was 

used to oxidise LDL.  This study used 300-350 µM CuCl2 to oxidise 3 mg/ml LDL 

whereas Baird, (2003) used 50 µM CuCl2 to oxidise 0.5 mg/ml oxLDL.  Therefore, same 

ratio of copper to LDL molecule which is 250 copper per LDL molecule was used, (refer 

to appendix I for calculation).  Hence, the extent of oxidation of LDL may depend on the 

absolute concentration of LDL and copper, even if the ration of of copper to LDL is kept 

constant.  Another most likely explanation for the disparity in the TBARs values is that 

nLDL is very heterogeneous.  It has different ratios of components such as PUFAs and 

antioxidants from each group of donors, which will then affect the properties of the oxLDL 

(Esterbauer et al., 1990). The high value of TBARs gave indication that the oxLDL was 

highly toxic and all three characteristics mentioned above suggest that the oxLDL prepared 

in this study was heavily oxidised. 

 

5.3.1.2 Loss of Cell Viability and Intracellular Glutathione Levels in the Presence of 

OxLDL   

 

The loss of viability was dependent on oxLDL concentration and time of incubation 

(Figures 5.3 and 5.5).  In this study, the oxLDL concentrations greater than 0.2 mg/ml were 
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toxic to the HMDMs in terms of loss in the cell viability.  The presence of toxic 

concentrations of oxLDL caused the HMDMs to undergo death processes of both apoptotic 

and necrotic appearance.  Analyses of plaque and time course investigations have indicated 

that 7-KC and 7-OH are later stage products (Brown et al., 1997; Jessup & Kritharides, 

2000; Upston et al., 2002).  In addition, analysis of highly oxLDL revealed that it 

contained almost exclusively of 7-KC (Harris et al., 2006).  Therefore, there was a 

possibility that 7-KC accounted for the cytotoxicity of oxLDL.  7-KC had been shown to 

be potent inducers of apoptosis in various cell types (Berthier et al., 2004; Leonarduzzi et 

al., 2006; Lizard et al., 1998). 

The trypan blue assay showed smaller decrease in cell viability compared to the 

MTT assay with all concentrations of oxLDL (Figure 5.3).  This disparity may be due to 

the difficulty in determining the dead cell (blue in colour) from the live cells (transparent 

in colour) in trypan blue assay.  The HMDMs were quite large and the blue dye that 

entered them appeared as little dots instead of the whole cells becoming blue in colour.  

This caused an uncertainty in assigning them as dead or live cells.  In contrast, the MTT 

assay measures the cells ability to reduce MTT to the formazan may be by mitochondrial 

enzymes distinct from the plasma membrane/phagosome enzyme NADPH oxidase 

(Mosmann, 1983).  This makes the assay very sensitive to changes in the cell’s metabolic 

state.  The trypan blue exclusion measures the failure of the cell membrane and therefore, 

tends to be less sensitive (Duggan et al., 2001). 

By labelling oxLDL with DiI, it was demonstrated that oxLDL was taken up by the 

HMDMs in a time dependent manner that correlates with the time point where the 

HMDMs were committed to death (Figure 5.9).  Interestingly, there was a lag phase in DiI-

LDL and DiI-oxLDL uptake between 3 and 6 hours.  It is not known why there was a lag 

phase in uptake between these times.  There was a linear relationship between the 

association of DiI-oxLDL with HMDMs and incubation time up to 12 hours (Figure 5.9).  

After 12 hours, there was no more increase in the association of DiI-oxLDL with HMDMs.  

This result was complemented by the finding that HMDMs required 12 hours exposure to 

oxLDL before a drastic drop in cell viability happened (Figure 5.5).  12-hour incubation 

was possibly required to saturate all the scavenger receptors to oxLDL before the free 

oxLDL can exert its toxic effect maximally, and this led to a sudden drop in cell viability 

(Figure 5.5).  However, the loss of intracellular glutathione has been shown to happen 

between 3 and 12 hours.  

The 24 h-incubation with 1 mg/ml of oxLDL (Figures 5.6 and 5.7) depleted 

intracellular glutathione level to a similar extent as treatment with 50 µM to 1 mM BSO 
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(Figures 5.25 to 5.27).  HMDMs treated with diethyl maleate (DEM) a reagent that 

alkylates glutathione also caused a similar loss in glutathione level (Tina Yang, personal 

communication
2
).  However, glutathione depletion by BSO or DEM, even by as much as 

60% by themselves, did not promote HMDMs death, indicating that oxLDL-induced 

decrease in intracellular glutathione is necessary.  In addition, the time course of the cell 

viability and glutathione loss (Figures 5.5 and 5.7 respectively) show that the loss of 

glutathione occurred immediately and at all time points were at faster rates than the loss of 

the cell viability.  This could indicate that the gradual collapse of the glutathione level 

induced by oxLDL preceded macrophage death.  This could also suggest that glutathione 

depletion was required for oxLDL-induced macrophage toxicity.  These observations are in 

good agreement with results obtained by Darley-Usmar et al.  (1991), Gotoh et al.  (1993) 

and Wang et al.  (2006) demonstrating that depletion of reduced glutathione enhances 

oxLDL cytotoxicity in human macrophages.  The most likely explanation for this is that 

the depletion of reduced glutathione by oxLDL (Wang et al., 2006) alters the glutathione 

thiol redox state (GSH/GSSG ratio).  Since GSH/GSSG ratio is one of the principal 

determinants of the cellular redox environment, any alteration in the redox environment 

can lead to cellular dysfunction and cell death (Schafer & Buettner, 2001). Depletion of 

cellular glutathione by BSO or DEM alone was not sufficient to promote macrophage 

death and a likely explanation for this observation is that in contrast to oxLDL, BSO 

treatment did not significantly alter thiol redox environment.  

Glutathione has been observed to be expelled from cells as a mechanism of 

apoptosis (Ghibelli et al., 1998; van den Dobbelsteen et al., 1996).  Cells induced to 

apoptosis extrude glutathione in the reduced form concomitantly with (U937 cells) or 

before (HepG2 cells) the development of apoptosis, much earlier than plasma membrane 

leakage and the presence of inhibitors of carrier mediated GSH extrusion, methionine or 

cystathionine, are capable of decreasing the GSH efflux and the extent of apoptosis. 

Interestingly, both undifferentiated and PMA-differentiated THP-1 cells respond to 

lower concentration of oxLDL (concentrations that did not affect the cell viability) by 

increased GSH synthesis (Darley-Usmar et al., 1991; Gotoh et al., 1993).  Increased in 

reduced thiol levels was also observed in U937 cells treated with lower oxLDL 

concentration by Baird (2003) but in contrast to Darley-Usmar et al.  (1991) and Gotoh et 

al.  (1993), Baird (2003) did not detect any increase in the reduced thiols in THP-1 cells.  

Increased expression of enzymes involved in GSH synthesis in response to oxLDL was 

observed in murine macrophage-like cell lines RAW 264.7 and J774 A.1 as well as mouse 
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peritoneal macrophages (Bea et al., 2003; Shen & Sevanian, 2001).  In contrast to these 

cell lines, this study and the study of Wang et al.  (2006) did not detect an increase in total 

glutathione levels in primary HMDMs in response to any oxLDL concentration tested, 

even at the concentrations that did not affect the cell viability (Figures 5.3 and 5.6).  The 

possibility that oxLDL stimulated GSH synthesis in HMDMs cannot be ruled out.  

However, any increase in GSH synthesis induced by oxLDL clearly was insufficient to 

compensate for the GSH-depleting effect of oxLDL.  Probably, the apparent inability of 

HMDMs to respond to thiol oxidative stress with increased GSH synthesis distinguishes 

primary human macrophages for widely used immortalised and highly proliferative cell 

lines.   

 Study by Wang et al.  (2006), suggested that oxLDL promotes intracellular GSH 

depletion by alkylation of GSH and not through accumulation of GSSG or GSH efflux.  

They further confirmed this finding by showing that the peroxyl radical scavenger Trolox 

(a potent inhibitor of oxLDL-induced macrophage death) did not prevent GSH depletion 

and restore the GSH/GSSG, ratio confirming that nonoxidative mechanisms, e.g. 

alkylation, are likely to contribute to the depletion of GSH by oxLDL.  Treatment with 

Trolox prevents oxLDL-induced protein-S-glutathionylation suggesting that peroxides and/ 

or peroxyl radicals may be directly involved in the enhanced S-glutathionylation of 

proteins induced by oxLDL.  Wang et al., (2006) using knockdown experiments with 

siRNA directed against glutathione reductase and glutaredoxin showed that both enzymes 

are essential for the protection of macrophages against oxLDL.   

 

5.3.1.3 OxLDL Induces the Generation of Mitochondrial ROS in HMDMs 

 

This study also revealed a correlation between the loss of intracellular glutathione 

and inductions of oxidative stress in HMDMs upon exposure to oxLDL.  Glutathione is a 

key component of the cellular defence mechanisms against oxidative and nitrosative 

stresses and play important roles in the detoxification of free radicals.  Loss of glutathione 

would then certainly exacerbate the oxidative effect of the oxLDL.   

ROS generation occurred as early as 3 hours and the possibility that it happened 

earlier than 3 hours (Figure 5.10) cannot be ruled out.  The time of ROS (Figure 5.10) 

generation observed in this study is paralleled with the sudden drop in glutathione level 

(Figure 5.6) as well as sharp association of DiI-oxLDL with HMDMs (Figure 5.9).  It is 

difficult to determine whether the loss of glutathione level precedes ROS generation or 
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vice versa as the fluorescent intensity observed under the fluorescent microscope was just a 

qualitative measurement.   

 OxLDL has been reported to be able to induce the generation of ROS (Hsieh  et al., 

2001; Zmijewski et al., 2005a; Zmijewski et al., 2005b) in the vascular cells and 

mitochondria are the major site of ROS production (Fleury et al., 2002).  When ROS is 

released it will react with cellular macromolecules, either damaging them directly or 

setting in motion a chain reaction wherein the free radical is passed form one 

macromolecule to another, resulting in extensive damage to cellular structures such as 

membranes.  ROS production may induce some modifications at various cellular levels.  

 ROS could react with the thiol groups of glutathione localised at the mitochondrial 

membrane level (Zamzami et al., 1997) and contribute to lower glutathione level.  A low 

level of glutathione could favour the decrease in mitochondrial membrane potential which 

would subsequently affect the mitochondrial permeability transition (MPT) to finally 

induce the release of AIF and/ or cytochrome c (Stridth et al., 1998). 

Studies of Lizard, Monier et al. (1999) have extensively examined major oxysterols 

such as 7β-OH as active components of human oxLDL and inducers for cell death.  

Another study (Lizard et al., 1998) demonstrated that glutathione is implicated in the 

control of 7-KC-induced apoptosis of U937 cells associated with the production of ROS.  

NAC, a scavenger of free radicals or a precursor of glutathione contributes to the observed 

protection against VSMC death induced by oxLDL-treatment (Hsieh  et al., 2001).   

 

5.3.1.4 Effect of OxLDL on Cytochrome c Release, Phosphatidylserine Exposure 

and Caspase-3 Activation 

 

Incubation of cells with toxic concentrations of oxLDL induces progressive alterations of 

cell morphology and finally induces either apoptosis or necrosis of cultured cells 

depending on the balance between pro- and anti-apoptotic proteins.  Cells undergoing 

apoptosis show an early reduction of the mitochondrial transmembrane potential with 

concomitant release of the mitochondrial protein cytochrome c.  In the cytosol, cytochrome 

c in combination with Apaf-1 activates caspase-9, which finally leads to activation of 

caspase-3 (Stridth et al., 1998). Caspase-8 via plasma membrane receptors can also 

activate caspase-3.  Caspase-3 is an executioner caspase, carrying out the protein cleavage 

processes of apoptosis, rather than merely forming part of the signalling cascade 

(Ashkenazi, et al., 1998).  Its presence would therefore be a reliable indicator of the 

occurrence of caspase-mediated apoptosis in the cells.  Apoptosis is further characterised 
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by labelling of the cell for clearance by phagocytes through exposure of phosphatidylserine 

on the cell’s surface.  In the absence of other cells to engulf the apoptotic cells secondary 

necrosis may follow apoptosis.   

This study shows that the generation of ROS precede the release of cytochrome c 

and phosphatidylserine exposure when HMDMs were exposed to oxLDL.  Cytochrome c 

release occurred after 6 hours incubation with oxLDL.  OxLDL significantly triggered the 

cells to exhibit PS exposure after 6 hours incubation and maximum number of cells had PS 

exposure after 12 hours incubation indicating that apoptosis death start occurring after 6 

hours exposure to oxLDL.   

Caspase-3 is believed to be a key enzyme in the apoptosis program yet, in this 

study, Western Blot analysis of procaspase-3 revealed no proteolytic activation in oxLDL-

treated cells regardless of the oxLDL concentrations (1 and 2 mg/ml oxLDL) and time of 

incubations (12 and 24 hours) used (Figure 5.14).  This is in agreement with an earlier 

work in this laboratory (Gieseg et al., 2008b) showing no caspase-3 activity through the 

absence of DEVD-AMC (acetyl-asp-glu-val-asp-7-amido-4-methyl-coumarin) cleavage in 

HMDMs treated with 0 to 3 mg/ml oxLDL for 24 hours.  Even though Gieseg et al., 

(2008b) (Figure 2 in Gieseg et al., 2008b) used 3 mg/ml of oxLDL to achieve 50% death 

of HMDMs, and in the present study 1 mg/ml oxLDL was used, the data is comparable 

since both concentrations caused approximately 50 % loss in cell viability.   

Previous studies with HMDMs showed that oxLDL induced caspase-3 activation 

(Wintergerst et al., 2000; Muralidhar et al., 2004), though activation of caspase-3 does not 

promote macrophage lysis or death (Wintergerst et al., 2000).  However, oxLDL induced-

apoptosis were carried out in serum free RPMI (Asmis & Jelk, 2000) or in RPMI 

containing foetal calf serum (Muralidhar et al., 2004).  By indirect immunofluorescent 

staining of the 7A6 antigen, an apoptosis-related mitochondrial membrane protein, 

Wintergerst et al., (2000) clearly showed that apoptosis induced by oxLDL was completely 

suppressed when human serum was present in the media.   

Incubation of macrophages with oxLDL resulted in a prominent cytochrome c 

translocation has been demonstrated earlier (Heinloth, et al., 2002).  Cytochrome c 

translocation has been found to parallel the accumulation of p53 and enhanced nuclear 

condensation (Heinloth, et al., 2002).  The relevance of cytochrome c released with no 

caspase-activation in the present study was not clear, since it is presumed that release of 

cytochrome c from mitochondria into the cytosol is a central event in intrinsic apoptosis 

signalling: the Apaf-1-driven formation of apoptosomes and downstream caspase 

activation designating a point-of-no-return in apoptosis.  Formation of apoptosome 
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requires ATP or dATP (Aoshima et al., 1997; Hampton et al., 1998; Zou et al., 1999).  

OxLDL has been shown to down regulate intracellular glyceraldehydes-3-phosphate 

dehydrogenase (GAPDH) level in U937 cells (Katouah
3
, unpublished data).  Moreover, in 

endothelial cells, oxLDL downregulated GAPDH via a H2O2-dependent decrease in 

protein stability as shown by pulse-chase labelling experiments (Sukhanov et al., 2006).  

Down regulation of GAPDH resulted in reduction in glycolysis rate and consequently 

marked depletion of cellular ATP levels (Sukhanov et al., 2006).  Since ATP was needed 

for the assembly of apoptosome to execute caspase-3 (Fadeel et al., 1998), its depletion 

could also correlate to the inhibition of caspase-3 activation.   

In addition, only a small fraction of cytochrome c is commonly utilised in the 

formation of apoptosome and redox characteristics of cytochrome c are not essential for 

this process (Fadeel et al., 1998).  Recent finding suggest that cytochrome c has two other 

important functions (Kagan, et al., 2004). Both functions are directed towards oxidation of 

two phospholipids: cardiolipin in the mitochondria and PS in the plasma membrane.  

Binding of cardiolipin with cytochrome c yields the cytochrome c/CL complex (Kagan, et 

al., 2006) that leads to the generation of cardiolipin hydroperoxides.  This happens after 

the production of reactive oxygen species (Fernandez et al., 2002) in the mitochondria.  

The oxidised cardiolipin binds to cytochrome c poorly (Shidoji, et al., 1999) and, therefore, 

can participate in the formation of the mitochondrial permeability transition pore that 

facilitates the release of cytochrome c from the mitochondria into the cytosol.  Cytochrome 

c released into the cytosol also binds to PS located at the cytoplasmic surface of the plasma 

and induces its oxidation (Tyurina, et al., 2000; Bayir, et al., 2006).  This leads to 

redistribution of PS to the outer membrane and recognition of PS on the cell surface by 

specialised receptors of phagocytes.    

The present study also revealed that PS exposure occurred in the presence of 

oxLDL in the absence of caspase-3 activation.  Similar observation was seen in U937 cells 

(Baird et al., 2004).  PS exposure was initially described as strictly caspase-dependent but 

now it is known that it can be regulated by caspase dependent or independent pathways 

(Yu et al., 2000).  Experiments with stimulated neutrophils have suggested that the flipping 

of PS might instead depend on oxidative stress (Fadeel et al., 1998; Hampton et al., 2002). 

The mitochondrial permeability transition pore (mPTP) is a multi-ion thiol sensitive 

channel (Crompton, 1999).  The oxLDL-induced loss of cellular glutathione could result in 

the oxidation of the mPTP and therefore the loss of the mitochondrial transmembrane 

potential.  The changes in mPTP have the effect of regulating the release of mitochondrial 
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molecules such as AIF and cytochrome c, though this may not account for all activating 

agents and cells types (Stridh, et al.,1998).  The idea of a thiol sensitive channel on 

mitochondria is also supported by a study where incubation of U937 cells with 7-KC 

caused a loss of endogenous glutathione that favoured apoptotic features such as decreased 

mitochondrial membrane potential and cytochrome c release (Lizard, et al., 1998).  

OxLDL-induced release of AIF from mitochondria and thereby promote caspase-

independent apoptosis was recently reported in endothelial cells (Chen et al., 2004; Vindis, 

et al., 2005).  The immunofluorescence staining reported by Vindis et al.  (2005) revealed 

that oxLDL treated cells exhibited a partial relocation of AIF in the cytoplasm and the 

nucleus.  Their data showed that AIF release is calcium dependent but independent of 

mPTP opening and calpain activation which is in contrast to cytochrome c release.   

In the present study (Figure 5.11), the immnunofluorescent staining of cytochrome 

c showed increase in fluorescence intensity of the nuclei and cytosol in oxLDL-treated 

cells in comparison to the control cells.  Studies by Nur-E-Kamal et al.  (2004) using HeLa 

cells also showed that cytochrome c released from mitochondria gradually accumulates in 

the nucleus upon apoptosis induction with ultraviolet and campthothecin.  Parallel to 

nuclear accumulation of cytochrome c was the released of acetylated histone H2A which 

preceded chromatin condensation and independent of caspase-3 activity.  Changes in 

nuclear morphology in U937 and THP-1 cells treated with oxLDL (Baird, 2003) had been 

demonstrated in this lab using Hoechst 33342 staining.  Therefore, there is a possibility 

that oxLDL-induced nuclear accumulation of cytochrome c in HMDMs may be directly 

involved in the remodelling of chromatin in inducing caspase-independent nuclear 

apoptosis. 

Caspase activities require the presence of a free thiol residue within the active site 

of the enzymes.  The active thiol groups which include a reduced cysteine thiol residue, are 

prone to oxidation in the presence of oxidants such as hydrogen peroxide, resulting in 

caspase inactivation (Hampton, et al., 2002; Fadeel, et al., 1998).  The rapid loss of 

HMDMs intracellular glutathione, which precedes the viability loss, would make caspase 

thiols prone to oxidation and activity loss.  The importance of the glutathione in caspase 

activity is highlighted by comparison between monocyte like, U937 and THP-1 cells.  

U937 cells treated with oxLDL rapidly lose cellular glutathione and fail to activate 

caspase-3 while THP-1 cells glutathione levels are only reduced by 25% with caspase-3 

being activated along with the appearance of an apoptotic annexin-V staining population 

(Baird et al., 2005).  Similarly, in THP-1 cells rapid loss of glutathione caused by the 

AAPH peroxyl radicals also resulted in the loss of caspase activity (Kappler et al., 2007).  
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Macrophage like RAW264.7 cells treated with BSO has also been reported to lose caspase 

activity during nitric oxide donor initiated apoptosis (Boggs, et al., 1998).  

While some studies (Chen et al., 2004; Vindis et al., 2005; Walter et al., 1998) 

showed that oxLDL induced caspase-3 activation, other (Porn-Ares et al., 2003)) reported 

that apoptosis in the endothelial cells is independent of caspase-3.  Porn-Ares et al . (2003) 

demonstrated that oxLDL induced polyubiquitination of caspase-3 which cause 

degradation and hence loss of caspase-3 activity.  Ubiquitination (covalent conjugation of 

8.5 kDa ubiquitin molecules, in the form of multi-ubiquitin chains) of caspases has been 

reported previously to inactivate the caspases (Huang, et al., 2000; Suzuki, et al., 2001).  

The discrepancy in their results is probably due to differences in the level of LDL 

oxidation.  The oxLDL of Vindis et al.  (2005) and Chen et al.  (2004) are mildly oxidised 

(6 to 9 nmol TBARS per mg apoB), whereas those used by Porn-Ares et al. (2003) were 

extensively oxidised (25 to 45 nmol BARS per mg apoB).  The higher level of oxidised 

lipids may explain both ubiquitination and enzyme inactivation, because highly oxidised 

LDL may induce cell protein modification and enzyme inactivation.  This is consistent 

with the finding that moderately oxidised oxLDL  (8 to 8.4 nmol/mg TBARS) promoted 

caspase-3 activation in human macrophages (Asmis & Begley, 2003; Wintergerst et al., 

2000). 

 

5.3.2 7,8-Dihydroneopterin and Protection Against OxLDL-induced 

Damaged on HMDMs 

 

5.3.2.1 7,8-Dihydroneopterin  Inhibits Cell Viability Loss  

 

The present study found that 7,8-NP provided significant protection for HMDMs against 

oxLDL’s toxic effect (Figure 5.16).  The loss of viability induced by oxLDL on HMDMs 

was reduced in the presence of 7,8-NP.  Previous study in this laboratory had shown that 

incubation of the oxLDL with 7,8-NP during 2 hours prior to addition to U937 did not 

decrease the toxicity of oxLDL (Baird, 2003).  This suggests that 7,8-NP did not influence 

the oxLDL directly and the inhibition of oxLDL-induced damage was mediated via cellular 

processes.  Trolox, a peroxyl radical scavenger, had also been shown to completely prevent 

human macrophage death from oxLDL-induced death (Wang et al., 2006).  Since this 

study utilised heavily oxLDL whose characteristics include high lipid peroxyl radical 

contents, it is therefore possible that 7,8-NP’s protective effect is also partly due to its 

ability to scavenge peroxyl radical.  This idea is supported by previous studies in which 
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7,8-NP had been shown to protect erythrocytes from lysis induced by peroxyl radical 

(Duggan et al., 2001; Gebicki et al., 2000).  Moreover, spin trapping study had clearly 

demonstrated that 7,8-NP effectively scavenged peroxyl radical (Oettl et al., 1997).   This 

laboratory had shown that 7,8-NP inhibited cellular damage to red blood cells and the 

monocyte like human-derived  U937 cells from a range of oxidants including hydrogen 

peroxide, HOCL, aqueous peroxyl and direct plasma membrane oxidation by ferrous ions 

(Duggan et al., 2002; Gieseg et al., 2000a; Gieseg et al., 2000b) 

The effective protective concentrations of 7,8-NP was significantly higher than 

those in serum during immune activation.  However, taking into account that activated T-

lymphocytes, macrophages and neutrophils accumulate at the site of inflammation and 

release cytokines, oxygen-free radicals and pteridines, the concentration of 7,8-NP may be 

much higher than that in serum.  It should be noted that in this study, 7,8-NP 

concentrations utilised was not toxic to cells. 

 The protective effect of 7,8-NP depends on the type of oxidants and cell types.  For 

example, it protected U937 cells but not THP-1 cells from oxLDL-induced death and it 

offered no protective effect on ethanol-induced death on U937 cells (Baird, 2003).  7,8-NP 

also delays the development of the cytopathic effect of influenza A virus in canine kidney 

epithelial cells (MDCK) but not the cytopathic effect by Coxsackie B5 virus in human 

larynx carcinoma epithelial (Hep-2) cells (Bratslavska et al., 2007).   Treatment of virus 

with 7,8-NP prior to addition to cells did not decrease the virus titer, which further support 

that 7,8-NP’s effect was mediated via cellular processes.  

 

5.3.2.2 7,8-Dihydroneopterin Inhibits Intracellular Glutathione Loss and Scavenges 

ROS Generated in the Presence of OxLDL 

 

Loss of glutathione may exacerbate the oxidative stress effect of the oxLDL on HMDMs.  

Co-incubation of oxLDL with 200 µM 7,8-NP restored 40% of the glutathione loss caused 

by 1 mg/ml oxLDL (Figure 5.18).  Similar experimental condition also restored 40% of the 

cell viability (Figure 5.16).  It is usually assumed that GSH depletion reflects an 

intracellular oxidation, although direct evidence for it causing ROS production is difficult 

to obtain.  In the present study, increased in ROS generation in a time-dependent manner 

was observed when HMDMs were challenged with oxLDL (Figure 5.10).  The protection 

given by 7,8-NP up to 6 hours incubation (Figure 5.21) points to the ability of 7,8-NP to 

potently quench the ROS thus helping to create a more reducing environment and revive 

the cells.   
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 Prevention of glutathione loss is important as it is required to maintain a reducing 

environment within the cells and hence maintaining their viability.  For example in U937 

cells, a rapid decrease in intracellular glutathione content was observed during 7-KC-

induced apoptosis.   The addition of glutathione and NAC was able to prevent the cell 

death implying the role of glutathione in the 7-KC-induced apoptosis (Lizard, et al., 1998).  

By using a laser confocal microscopy, an early involvement of ROS overproduction was 

proven to occur during 7-KC induced apoptosis in J774A.1 macrophages (Leonarduzzi et 

al., 2006).  The almost complete inhibition of 7-KC-dependent ROS increase by two 

selective inhibitors of NADPH-oxidase (diphenylene iodonium and aminoethyl-

benzenesulfonylfluoride) points to the ability of 7-KC to potently and rapidly induce 

oxidative burst in J774A.1 cells by activating NADPH-oxidase.  In addition antioxidant 

epicatechin was also able to quench the ROS production induced by 7-KC (Leonarduzzi et 

al., 2006). 

 Thiol loss caused by 2-oxoaldehydes methylglyoxal and 3-deoxyglucosone was 

suppressed by NAC and enhanced by BSO in U937 cells and this was reflected in the 

viability (Okado et al., 1996).  U937 cells lost 50% of their reduced glutathione with t-

BuOOH (agent that caused rapid oxidation of mitochondrial pyridine nucleotides) followed 

by mitochondrial production of ROS by 2 hours (Nieminen et al., 1997) and the addition of 

antioxidant caffeic acid halved this loss (Nardini et al., 1998).  GSH and NAC could also 

impair apoptosis caused by etoposide (inhibitor of topoisomerase II) but not cycloheximide 

(inhibitor of protein synthesis) (Lizard et al., 1998).  NAC, deferoxamine and catalase all 

of which are radical scavenging agents were found to contribute to the observed protection 

against vascular smooth muscle cells induced by oxLDL (Hsieh et al., 2001).  Altogether 

these studies support the idea that protecting the cellular glutathione loss and eliminating 

the ROS will protect the cells from death. 

 

5.3.2.3 7,8-Dihydroneopterin Does Not Inhibit Cytochrome c Release From 

Mitochondria into the Cytosol Induced by OxLDL  

 

The presence of 7,8-NP in HMDMs culture that had been exposed to oxLDL did not 

prevent the release of cytochrome c from the mitochondria (Figures 5.12-13).  This is not 

surprising since oxLDL generated high level of ROS species in the mitochondria.  Even 

though 7,8-NP can scavenge the ROS to a certain extent, the damage done by oxLDL on 

the mitochondrial membrane does not appear to be prevented.  One of the proposed 

mechanisms for ROS induction of apoptosis is that, ROS act upon mitochondria, causing a 
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disruption of mitochondrial membrane potential and the release of cytochrome c (Chandra 

& Orennius, 2002; Stridth et al., 1998).  The ROS could also possibly assist in the 

formation of the mitochondrial permeability transition pore that facilitates in the release of 

cytochrome c from the mitochondria into the cytosol (Shidoji, et al., 1999).  OxLDL-

induced apoptosis has been shown to be caused by a decrease in mitochondrial membrane
 

potential and increased cytochrome c release in human aortic
 
vascular smooth muscle cells 

(Li et al., 2003), endothelial cells (Walter et al., 1998) and human macrophages (Asmis & 

Begley, 2003).  Treatment of endothelial cells with cyclosporin A completely inhibited the 

oxLDL-induced release of cytochrome c (Walter et al., 1998).  This implies the importance 

of restoring the mitochondrial membrane potential in preventing the cytochrome c release.  

The inability of  7,8-NP to prevent the cytochrome c release in the present study, suggests 

that 7,8-NP has very little effect on restoring the mitochondrial membrane potential.   

 

5.3.2.4 7,8-Dihydroneopterin Inhibits Phosphatidylserine Exposure in the HMDMs 

Exposed to OxLDL 

 

7,8-NP failed to inhibit PS exposure in HMDMs when HMDMs were exposed to oxLDL 

for 24 hours (Figure 5.23).  Interestingly, when HMDMs were exposed to oxLDL for a 

shorter time, a significant decrease in PS externalisation was observed (Figure 5.24).  

Similar to the ROS quenching ability, the 7,8-NP inhibitory effect on PS exposure was best 

achieved up to 6 hours incubation of the HMDMs with oxLDL.  These results suggest that 

there is a correlation between the time of HMDMs exposure to oxLDL and the effective 

protective effect of 7,8-NP.  The ability of 7,8-NP to quench ROS and inhibit the PS 

exposure clearly showed that the best protective effect of 7,8-NP was up to 6 hours’ 

incubation of HMDMs with oxLDL.  These results complemented the finding of previous 

studies in this lab (Baird et al., 2005) where 7,8-NP could be added toU937 cells up to  6 

hours after oxLDL exposure and still provided a significant increase in U937 cells 

viability.   

PS is being externalised to the outer plasma membrane when it is being oxidised.  

Therefore, once again it is the ability of 7,8-NP to scavenge the ROS, thus, providing a 

more reducing environment that prevents the PS from being oxidised and externalised.   
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5.3.2.5 7,8-Dihydroneopterin Inhibits OxLDL Uptake – The Role of CD36 and     

SR-A  

 

ANOVA analysis revealed that 1 and 24 hour incubation of 7,8-NP with 1 mg/ml of DiI-

oxLDL did not significantly reduce the DiI-oxLDL uptake by HMDMs (Figure 5.29).  

However, when lower concentrations of DiI-oxLDL (not toxic to HMDMs) were used, a 

significant decrease in the DiI-oxLDL uptake was observed (Figures 5.30-31).  This is 

intriguing because earlier, the present study has shown that 7,8-NP was able to restore the 

viability, inhibit the glutathione loss, quench the ROS and inhibit the PS exposure caused 

by oxLDL at 1 mg/ml concentration.  There is a possibility that the protective effect of 7,8-

NP is a time-effect.  For instance, as shown in Figure 5.23, incubation of 7,8-NP with 1 

mg/ml oxLDL for 24 hours did not show inhibition in PS exposure.  However, time course 

study demonstrated that 7,8-NP gave maximum protection against 1 mg/ml oxLDL-

induced PS exposure up to 12 hours incubation (Figure 5.24).  Similarly ROS generation 

were efficiently inhibited when HMDMs were incubated with 7,8-NP and oxLDL up to 12 

hours incubation (Figure 5.21 and 5.22).  Therefore, future studies could investigate the 

existence of time correlation in 7,8-NP preventing the oxLDL uptake.  Nevertheless, the 

reduction in oxLDL uptake by HMDMs might imply that 7,8-NP has the capacity to 

prevent oxLDL from being taken up by HMDMs.  Another implication of this finding is 

that 7,8-NP might influence oxLDL uptake either through modulation of scavenger and/or 

non-scavenger receptor mechanisms.   

The dominant paradigm in atherosclerosis, is that uptake of oxLDL by SR-A and 

CD36 constitutes the major pathways for cholesteryl ester accumulation and therefore 

foam cell formation and atherogenesis.  This paradigm arises from the experiments in mice 

in which these macrophage SR pathways were inactivated by homologous recombination.  

Several studies, though not all, suggested that deletion of the gene locus that codes for SR-

A or CD36 substantially decrease arterial lipid accumulation in hyperlipidemic mouse 

models (de Winther et al., 1999; Febbraio et al., 2000; Gough et al., 1999).  This is 

supported by a study that demonstrated that macrophages lacking both SR-A and CD36 

show an 80-90% reduction in the internalisation and degradation of oxLDL and acLDL 

(Kunjathoor et al., 2002).  The same study also revealed that the predominant receptor 

involved was CD36 and the combined effect of absence of both SRs was not significantly 

greater than the absence of CD36 alone.  

Treatment of vascular cells with antioxidant and anti-inflammatory agent seemed to 

be able to reduce the SRs expression.  In THP-1 cell lines and PBMCs obtained from 
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healthy volunteers, IL-10 reduced baseline CD36 expression and stimulate the expression 

of the cellular cholesterol exporters, ABCA1 and ABCG1 (Rubic & Lorenz, 2006).  

Marleau, et al.  (2005) reported that EP 80317, a CD36 ligand derived from the growth 

hormone (GH)-releasing peptide family but devoid of any GH releasing activity reduced 

oxidized low density lipoproteins internalisation and up-regulated genes involved in 

cholesterol efflux, including peroxisome proliferator-activated receptor γ (PPARγ), liver x 

receptor α (LXRα), and the ATP binding cassette (ABC) transporters ABCA1 and 

ABCG1.  Long-term treatment of apoE/CD36 double-deficient mice with EP 80317 did 

not modulate the expression of genes of the PPARγ-LXRα-ABC transporters pathway 

suggesting that the effect of EP 80317 was CD36 dependent.  These two studies (Marleau 

et al., 2005; Rubic & Lorenz, 2006) support a role of CD36 in regulating peripheral 

cholesterol trafficking. 

Treatment of smooth muscle cells with α-tocopherol inhibits oxLDL uptake by a 

mechanism involving downregulation of CD36 protein and mRNA expression (Ricciarelli, 

et al., 2000).  In J774 cells, vitamin E reduces the uptake of DiI-acLDL and suppresses 

ACAT activity, resulting in less cholesterol esterification in macrophages (Shige et al., 

1998).  Another study (Teupser et al., 1999) associates this effect with a reduced SR-A 

mRNA expression and activity of AP-1 binding transcription factors in the presence of α-

tocopherol.  Devaraj et al. (2001) has further characterised the effect of α-tocopherol on 

CD36 mRNA human macrophages where down regulation of CD36 mRNA was clearly 

demonstrated to reduce the DiI-AcLDL and DiI-oxLDL uptake with concomitant decrease 

in cholesteryl ester accumulation. 

 Therefore, in the present study interest has been focused on the effect of 7,8-NP on 

SR-A and CD36 protein expression in HMDMs.  7,8-NP up to 200 µM failed to exert any 

effect on the SR-A protein expression.  None of the monomer bands seemed to be reduced 

in the presence of 100 and 200 µM of 7,8-NP.   

Interestingly, the effect of 7,8-NP on the CD36 protein expression was quite 

ambiguous.  Another interesting finding was that, while most authors showed their 

Western Blot of CD36 as only a single band of 88 kDa protein, the present study was in 

agreement with others (Alessio et al., 1996; Munteanu et al., 2005) where CD36 could 

undergo glysosylation and have more than one glycoforms.  The present study showed that 

CD36 could display a single or up to three glycoforms while Alessio et al., (1996) and 

Munteanu et al., (2005) showed that the U937 and THP-1 cells had three glycoforms.  The 

present study and that of Alessio et al., (1996) and Munteanu et al., (2005) also showed 

that the molecular weight of the glycoforms were between 75 to 115 kDa.   
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In the present study the down regulation of CD36 expression was seen when the 

two glycoforms present were of further apart (80 and 100 kDa) with only the lower 

molecular weight, 80 kDa, decreased in its intensity and protein expression (Figure5.33).  

However, when the bands were very close to each other (75 and 86 kDa) or presence as a 

single band (86 kDa), their intensity seemed to be increased with increasing concentrations 

of 7,8-NP (Figures 5.34 and 5.35).  If time course of 7,8-NP effect on oxLDL-induce PS 

exposure and ROS generation revealed that 7,8-NP protective was indeed time-related, 

effect of 7,8-NP on CD36 protein expression was still uncertained.  The time course 

studies gave inconsistent results in terms of down regulatory effect of 7,8-NP on CD36 

protein expression.  While one result showed a remarkable time-dependent down 

regulatory effect of 7,8-NP on all the glycoforms present (Figure 5.36) , the other result 

showed increase in the CD36 protein expression with increasing incubation time with 7,8-

NP (Figure5.37).   

It is not understood why the CD36 bands were different in molecular weight with 

each experiment and also why the number of bands (CD36 glycoforms) present was also 

different.  It has been shown that when THP1 and U937 were stimulated with PMA the  

74-kDa CD36 band was converted to 90-106 kDa glycoforms (Alessio et al., 1996).  

However, since the HMDMs that were utilised for all the experiments in the present study 

were of the same age and were predominantly macrophages, the maturation of CD36 could 

not be accounted for the presence of different pattern of bands.  Also the human serum 

used for culturing these cells was of the same age, therefore the variation in the factors 

presence in the serum that could influence the CD36 expression could also be ruled out.  

Perhaps the variable effect of 7,8-NP on CD36 protein expression is because of many 

critical factors that might interact with 7,8-NP.  However, which factor that influence the 

effect of 7,8-NP is difficult to ascertain here.   

However, if there is a down regulation effect of 7,8-NP on CD36 specifically the 

80-kDA band, this can be related to Kunjathoor, et al., (2002)  study where they showed 

that the predominant receptor involved in the processing of oxLDL and acLDL was CD36 

since the combined effect of absence of both SRs was not significantly greater than the 

absence of CD36 alone.  This result points to the ability of 7,8-NP to downregulate the 

CD36 surface receptor and therefore decrease the oxLDL uptake by HMDMs to a certain 

extent.  However, since this was not a 100% inhibition in oxLDL uptake, other 

mechanisms of oxLDL uptake should also be accounted to.   

There is considerable evidence pointing out that LDL-derived lipids can enter 

macrophage via other pathways.  According to the response-to-retention hypothesis 
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(Carpenter et al., 1995a), serum lipoproteins accumulate in the arterial intima where a 

variety of modifications, including but not limited to oxidation, can alter their structure and 

enhance their uptake by recruited macrophages.  LDL needs oxidation or acetylation to 

become a high-affinity ligand for the scavenger receptors.  In contrast modifications 

induced by enzymes (e.g., sphingomyelinase, phospholipase C, or secretory phospholipase 

A2) can lead to increased retention of lipoproteins by matrix proteoglycans and 

aggregation into large macromolecular complexes that are internalised by non-scavenger 

receptor-mediated pathways, such as phagocytic, patocytic, or pinocytic uptake 

mechanisms (Kruth et al., 2005; Lougheed & Steinbrecher, 1996).  Krieger and Herz 

(1994) reported that both SR-AI and SR-AII mediates endocytosis of acLDL and oxLDL.  

Furthermore, another study reported that (Kruth, et al., 2005) native LDL can also be 

internalised by macropinocytosis thus recognising foam cell formation via a non-receptor-

mediated mechanisms. As the concentrations of native or aggregated LDL determined in 

human intimal samples typically exceed 100 mg/dl, these forms of LDL may provide 

substantially greater amounts of lipid than can be taken up by the SR pathways, which 

saturates at lipoprotein concentrations 25-50 µg/ml (Rohrer et al., 1990).  

The involvement of SR-A or CD36 in the uptake of oxLDL in the present study 

was not really proven and therefore, should be considered for future studies.  However, the 

fact that CD36 is more specific in taking up oxLDL (Boullier et al., 2000; Endemann et al., 

1993) whereby SR-A is being related more to acLDL than oxLDL (Kunjathoor et al., 

2002; Suzuki et al., 1997), and also 7,8-NP has an effect on CD36 and not SR-A probably 

relate to the involvement of CD36 in taking up the oxLDL in the present study.   

Some literature reported that the heterogeneity in terms of the extent of oxidation of 

LDL and/or the degree of aggregation in oxLDL also affect the mechanisms of oxLDL 

uptake.  Lougheed and Steinbrecher (1996) reported that the extent of copper oxidation of 

LDL affects its mechanism of uptake and that about half of the uptake of very extensively 

oxLDL appears to be via a pathway distinct from the SR-AI and SR-AII.  The uptake of 

very extensively oxidised LDL was not affected by cytochalasin D, an inhibitor of 

phagocytosis and also by an antibody to CD36 in HMDM or in THP-1 cells, suggesting 

that this alternate pathway does not involve CD36.  In addition, studies of SR-A or CD36 

knockout mice showed that disruption of SR-A or CD36 only partially inhibits oxLDL 

uptake in macrophages and prevents atherosclerotic progression in hypercholesterolemic 

mice (Febbraio et al., 2000; Suzuki et al., 1997) implying that other SRs or other 

mechanisms of oxLDL were involved. 
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5.4 Summary 

 

Macrophage derived foam cells have been identified as the most abundant cells found in 

the proximity of necrotic core.  The involvement of macrophage injury and death in the 

lesion progression and the formation of necrotic core have been extensively studied for a 

few decades.  A lot of oxidants can cause the injury and death.  However, since oxLDL is a 

prominent component of atherosclerotic lesions it is therefore believed to be the major 

factor that caused the macrophage injury and death.   

 In the present study, the heavily oxLDL caused loss in HMDMs’ viability and the 

death caused by 1 mg/ml of oxLDL was of apoptotic and necrotic appearances.  Higher 

concentration of oxLDL caused the HMDMs to commit necrotic death.  Therefore, the 

mechanism of death caused by 1 mg/ml of oxLDL was investigated in the present study.  

Even though oxLDL induced cytochrome c released into the cytosol, apoptotic death 

through caspase-3 activation was unlikely since oxLDL failed to activate caspase-3 

activity.  This was not surprising since the glutathione loss caused by oxLDL was very 

tremendous and this affect the thiol group of the caspases.  ROS was generated by the 

HMDMs shortly after exposure to oxLDL causing oxidative stress to the cells and 

therefore creating a less reducing environment which favours the rapid loss of glutathione.  

The present study further demonstrated that glutathione depletion was required for oxLDL-

induced toxicity to HMDMs.  The oxidative stress also caused cytochrome c to be released 

into the cytosol and PS being externalised to the outer plasma membrane.   

 The protective effects of 7,8-NP on HMDMs seemed to be due to its ability to 

scavenge the ROS and inhibit oxLDL uptake.  7,8-NP at 200 µM effectively reduced the 

cell viability loss caused by oxLDL.  7,8-NP was shown to scavenge the mitochondrial 

ROS generated due to oxLDL, inhibit glutathione loss and PS from being externalised to 

the outer membrane.  7,8-NP also significantly inhibited the uptake of oxLDL but only at 

non-toxic concentration of oxLDL.  This admittedly was only measured at 1 and 24 hours.  

7,8-NP clearly did not affect SRA protein expression.  However, in 50% of the 

experiments 7,8-NP significantly reduced the CD36 protein expression.  This inconsistent 

effect of 7,8-NP on CD36 still needs to be defined.  The ability of 7,8-NP to protect 

HMDMs from oxLDL-induced death provides evidence that this antioxidant is secreted by 

HMDMs to protect them against the oxidative damage in the highly oxidative environment 

of atherosclerotic plaque.  The relevance of these data on the possible action of 7,8-NP to 

inhibit or slow cell death in the advance plaque formation will be discussed in Chapter 6. 
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6 General Discussion and Conclusions 
 

6.1 Effect of OxLDL on HMDMs 
 

Exposure to subtoxic concentration of oxLDL causes monocyte-macrophages to proliferate 

(Chisolm & Chai, 2000).  Macrophages take up oxLDL, accumulate CE and transform into 

foam cells which is a hallmark of atherosclerosis.  This thesis shows that the foamy 

appearance and presence of lipid droplets stained with oil red-O was not dependent on 

accumulation of CE.  This raises a doubt on the suitability of using oil red-O stain to 

identify the foam cells.  The fact that foam cells were as susceptible as HMDMs to toxic 

oxLDL contributes a greater detrimental effect to the atherosclerotic plaque. 

 HMDMs were found to undergo concentration-dependent viability loss in the 

presence of oxLDL.  Concentrations of oxLDL above 0.2 mg/ml were toxic to HMDMs 

with 1 mg/ml causing approximately 50% loss in cell viability after 24 hour incubation.  

The time course study with 1 mg/ml oxLDL showed that the cell viability drop was quite 

gradual with a sudden drop in viability occurring after 12 hours incubation.  Twelve hours 

incubation period was also the time point where the association of HMDMs with DiI-

oxLDL plateau off suggesting that 12 hours exposure to 1 mg/ml was the time point where 

the cells committed to death. There is a high possibility that 7-KC contributes most to the 

toxicity of oxLDL in this study since time course investigations by other researchers 

(Brown et al., 1997; Harris et al., 2006; Jessup & Kritharides, 2000; Upston et al., 2002) 

demonstrated that highly oxLDL contain almost exclusively of 7-KC.  This is of relevance 

to the in vivo situation where analysis of plaque revealed that 7-KC was the major sterol 

detected at late stage of lesion development (Brown et al., 1997). 

 The drop in cell viability caused by oxLDL was correlated to the loss of 

intracellular glutathione.  At any time point, the percentage loss of glutathione was greater 

than the loss of cell viability.  The sublethal dose of 0.1 mg/ml oxLDL caused 30% loss of 

HMDMs glutathione indicating that HMDMs’ intracellular glutathione content was very 

sensitive to oxLDL.  Moreover, the loss of glutathione was very rapid with 30% loss after 

3 hours exposure to 1 mg/ml of oxLDL.  Potential mechanism of glutathione loss reported 

previously in HMDMs was through alkylation of GSH and not through accumulation of 

GSSG or GSH efflux (Wang et al., 2006).  Treatment of HMDMs with BSO and DEM for 

24 hours also caused a similar drop in glutathione level.  However, glutathione depletion 

by BSO or DEM, did not promote HMDMs death, indicating that oxLDL-induced decrease 

in intracellular glutathione was necessary.  It is possible that depletion of reduced 

glutathione by oxLDL alters the glutathione thiol redox state (GSH/GSSG ratio) (Wang et 
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al., 2006) leading to cellular dysfunction and cell death (Schafer & Buettner, 2001).  

Depletion of cellular glutathione by BSO or DEM was not sufficient to promote HMDMs 

probably because they did not significantly alter the thiol redox environment. 

 OxLDL had been reported previously to be able to induce the generation of ROS in 

the SMCs and ECs (Hsieh et al., 2001; Zmijewski et al., 2005a; Zmijewski et al., 2005b). 

Similarly, HMDMs also generated ROS in the presence of oxLDL just after 3 hours of 

incubation.  This thesis cannot ascertain whether ROS generation caused the drop in 

intracellular glutathione level or vice versa.  However, these two events already 

contributed to a significant oxidative stress to macrophages. 

This thesis demonstrated clearly that the generation of ROS and glutathione loss 

precede the release of cytochrome c and phosphatidylserine exposure since the last two 

events occur significantly after 6 hours exposure of HMDMs to oxLDL.  The loss of 

glutathione contributed to decreased mitochondrial membrane potential with subsequent 

release of cytochrome c (Lizard et al., 1998; Stridth et al., 1998; Zmijewski et al., 2005a)  

In addition mitochondrial ROS generation can lead to the formation of cardiolipin 

hydroperoxides (Kagan et al., 2006) that binds to cytochrome c poorly (Shidoji, et al., 

1999).  The complex can participate in the formation of the mitochondrial permeability 

transition pore that facilitates the release of cytochrome c from the mitochondria into the 

cytosol.  Cytochrome c can then bind to PS inducing its oxidation and redistribution to the 

outer membrane (Tyurina, et al., 2000; Bayir, et al., 2006).    

The release of cytochrome c from mitochondria into the cytosol is known to be a 

central event in intrinsic apoptosis signalling.  However, despite the occurrence of PS 

exposure, no caspase-3 activation was detected within 24 hours incubation of HMDMs 

with oxLDL.  PS exposure was initially described as strictly caspase-dependent but 

experiments with stimulated neutrophils have suggested that the flipping of PS might 

instead depend on oxidative stress (Fadeel et al., 1998; Hampton et al., 2002) as mentioned 

above.  Thus, future studies is needed to investigate the exact mechanism of how oxLDL-

induced PS externalisation. 

 Others had reported that oxLDL induced caspase-3 activation (Chen et al., 2004; 

Vindis et al., 2005; Walter et al., 1998).  The absence of caspase-3 activity in this thesis 

probably correlated with the rapid loss of glutathione.  Caspases activities require the 

presence of free thiol residues within the active site of the caspase enzymes.  These active 

thiol groups are prone to oxidation (Hampton, et al., 2002; Fadeel, et al., 1998).  

Therefore, the rapid loss of HMDMs intracellular glutathione causes oxidation of caspase 

thiols and therefore loss of their activities.  Modulation of apoptotic pathways by oxidative 
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stress, through Bcl-2 or ceramide for example, can also replace caspase regulation of 

events.  Another explanation for the absence of caspase-3 activity is the ability of oxLDL 

to induce polyubiquitination of caspase-3 which cause degradation and ultimately loss of 

caspase-3 activity (Huang, et al., 2000).  The differences in the level of LDL oxidation 

could also affect caspase-3 activity.  The higher level of oxidised lipids may cause both 

ubiquitination and enzyme inactivation, since highly oxidised LDL may induce cell protein 

modification and enzymes inactivation.  The execution of caspase-3 also requires dATP 

and or ATP.  Therefore, it is of interest to investigate the effect oxLDL on HMDMs energy 

metabolism in order to clarify whether rapid loss of energy could contribute to caspase 

inactivation.  The uptake of oxLDL against loss of metabolic function is also another area 

that needs to be explored.   

 

6.2 The Protective Effect of 7,8-NP on OxLDL-induced 

Damage 

 

This thesis shows that supplementation of HMDMs with 200µM 7,8-NP able to restore 

40% of the HMDMs viability and glutathione losses caused by 1 mg/ml oxLDL.  Previous 

study had shown that incubation of 7,8-NP with oxLDL (in the absence of cells) does not 

reduce oxLDL cytotoxicity (Baird, 2003) suggesting that inhibition of oxLDL-induced 

damage was mediated via cellular processes.  The mechanism appears to involve the 

protection of the intracellular glutathione pool by scavenging the intracellular oxidants 

generated by the oxLDL thus maintaining the redox status of the cell.  The same 

mechanism appears to occur with 7,8-NP protection of U937 cells on oxLDL-induced 

necrosis (Baird et al., 2005). 

 Although 7,8-NP can quench the ROS, it provides no protection against oxLDL-

induced cytochrome c release from mitochondria to the cytosol.  This is rather intriguing. It 

is postulated that the absence of protection may be caused by the failure of the 7,8-NP to 

restore the mitochondrial membrane potential which lead to the release of cytochrome c.  

Perhaps, future research that measures the timing of loss of mitochondrial membrane 

potential and cytochrome c release will give a better understanding of 7,8-NP’s role on the 

cytochrome c release. 

 Similar to the ROS quenching ability, the 7,8-NP inhibitory effect on PS exposure 

is best achieved up to 6 hours incubation of the HMDMs with oxLDL which suggest a 

correlation between the time of HMDMs exposure to oxLDL and the effective protective 

effect of 7,8-NP.  Thus, the best protective effect of 7,8-NP was up to 6 hours’ incubation 
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of HMDMs with oxLDL.  These results complement the finding of Baird et al., (2005) 

where 7,8-NP could be added to U937 cells up to 6 hours after oxLDL exposure and still 

provided a significant increase in U937 cells viability.  Since the externalisation of PS 

involves its oxidation, this further support 7,8-NP’s protective mechanism which is 

scavenging the ROS thus, providing a more reducing environment that prevents the PS 

from being oxidised and externalised.   

The most surprising finding was that 7,8-NP efficiently inhibits the uptake of 

oxLDL labelled with DiI after 24 hours incubation.  However, it does so with only 

subtoxic concentration of oxLDL and not with  1 mg/ml oxLDL.  Therefore, a future study 

investigating the existence of time correlation in 7,8-NP preventing the oxLDL uptake is 

needed since 7,8-NP inhibition of ROS generation and PS externalisation were correlated 

with time of incubation.  The inhibition of oxLDL uptake by 7,8-NP implies that 7,8-NP 

might influence oxLDL uptake by interacting with the scavenger receptors or other 

mechanisms of oxLDL uptake.  Since administration of 7,8-NP decreases the uptake of 

oxLDL it is beneficial to measure whether 7,8-NP affect the CE accumulation.  If 7,8-NP 

inhibits CE accumulation, this could suggest a protective effect against the conversion of 

macrophages into foam cells. 

7,8-NP up to 200 µM failed to exert any effect on the SR-A protein expression.  It 

has been shown previously that SR-A is being related more to acLDL than oxLDL 

(Kunjathoor et al., 2002; Suzuki et al., 1997).  7,8-NP has no effect on SR-A probably 

because it does not involve in the uptake of oxLDL.  Having said that a further study is 

therefore needed to clarify whether SR-A involve in the uptake of oxLDL by HMDMs in 

this thesis.    

 The down regulation of CD36 protein and mRNA expression by α-tocopherol 

which correlates to reduce uptake of oxLDL has been reported elsewhere (Devaraj, et al., 

2001; Ricciarelli, et al., 2000).  This thesis shows that in 50% of experiments, 7,8-NP 

effectively down regulated the levels of CD36 receptor protein in HMDM cells.  It is 

important to note that the number of CD36 isoform varied from one sample to another and 

normally there was more than one CD36 isoform.  The presence of isoforms is due to the 

glycosylation of CD36.  Interestingly, 7,8-NP exerts different effects on the isoforms 

present in the same sample.  It could lower the expression of one isoform but had no effect 

or increased the expression of the other isoform in the same sample.  This pattern of results 

was displayed after 24 hours incubation or using time course examinations.  Perhaps the 

variable effect of 7,8-NP on CD36 protein expression is because of many critical factors 

that might interact with 7,8-NP.  However, which factor that influence the effect of 7,8-NP 
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is difficult to ascertain here.  More experiments are needed to determine the exact role of 

7,8-NP on CD36.   

 

6.3 7,8-NP in the Atherosclerotic Plaque 

 

Atherosclerotic plaque represents site of chronic inflammation and contain a range of 

reactive oxidants including oxLDL that can trigger cells death.  This thesis contributes 

more evidence that high concentration of oxLDL is cytotoxic to macrophages and to the 

hypothesis that 7,8-NP is synthesised in vivo to protect macrophages from oxidative 

damage.   

The finding that 7,8-NP can protect HMDMs from oxLDL-induced death is very 

important to the atherosclerotic plaque development since 7,8-NP is synthesised by the 

macrophages themselves.  In vivo, the production of 7,8-NP is expected to occur 

predominantly at sites of inflammation since this is where macrophages are recruited.  

Even though the protective concentration of 7,8-NP used in vitro is far higher than the 

level found in vivo, this should not be trivialised since, over the course of years it could 

contribute significantly to minimising the oxidative damage.  In addition, when the cells 

produce the antioxidant by themselves as oppose to having it exogenously added, it can 

therefore be a better antioxidant.  The ability of 7,8-NP to inhibit LDL oxidation and 

macrophage death could then prevent the growth of plaques and their development to 

complex and unstable plaques.  
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Appendix I 
 

Total mass of LDL = 3 mg /ml which is equivalent to 3 g/L  

Molecular weight of LDL = 2.5 x 10
6
 dalton  

Therefore [LDL]= 3 / 2.5 x 10
6
 = 1.2 x 10

-6
  M = 1.2 µM 

Copper concentration used to oxidize LDL = 300 µM 

Therefore, 300/1.2 = 250 Cu/LDL  

 

 

Total mass of LDL = 0.5 mg /ml which is equivalent to 0.5 g/L  

Molecular weight of LDL = 2.5 x 10
6
 dalton  

Therefore [LDL]= 0.5 / 2.5 x 10
6
 = 0.2 x 10

-6 
M = 0.2 µM 

Copper concentration used to oxidize LDL = 50 µM 

Therefore, 50/0.2 = 250 Cu/LDL 

  

 


