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SPATIAL INTERPOLATION OF RAINFALL IN THE DRY 

ZONE OF SRI LANKA 

B. V. R.. Punyawardena, Natural Resources Management Centre, Department of 

Ag riculture, Sri Lanka 

Don KlIlasiri, Applied Management and Computing Division, Lincoln Universitv, 

Canterbury, New Zealand 

Abstract: One of the problems which often arises in climatology is either data at a given site 

is missing or the site is ungauged. In this study, a spatial interpolation model was aeveloped 

to estimate the weekly rainfall of the Dry zone of Sri Lanka at ungauged sites assuming that 

the spatial continuity of rainfall at two neighbouring locations are exponentially correlated. 

Twenty years of weekly rainfall data from six stations located in the Dry zone was used in the 

study. To support the methodology, the results of the exponential model were compared with 

the other two methods of spatial interpolation techniques, namely, the local mean and the 

inverse distance methods. The results of the study indicate that the exponential correlation 

model is a promising candidate for estimating mean weekly rainfall of the Dry zone. 

However, the local mean and the inverse distance methods compare quite well along with the 

exponential model, indicating that more complex models have no particular advantage over 

simple models for estimating rainfall in the Dry zone of ,)ri Lanka. Nevertheless, the results 

point towards the relative importance 'of the exponential model as opposed to the other two 

models when the neighbouring locations do not have long series of historical records. 
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I:'JTRODCCTION 

The complex. interacting atmospheric processes that give rise to rainfall make it a 

variable phenomenon across the landscape. Therefore, recorded rainfall from a rain gauge 

usually represents only an extremely small area of the catchment. ~Iost of the time rain 

gauges in the Dry zone are usually separated by several kilometres. Therefore, existing 

network of gauges may not be sufficient enough to estimate the parameters that are needed for 



hydrological and climatological applications. This problem is further aggravated by the 

frequent appearance of missing data in the observed rainfall sequences. Thus, there is a need 

for a methodology of spatial interpolation of rainfall that uses only minimum available data. 

Spatial interpolations of data available at other sites are being used in the field of 

hydrology and climatology to generate the data for ungauged locations. In most cases, simple 

methods of point estimation are applied. The availability of computing facilities has 

encouraged the development of advanced methods of interpolation. As a result, a number of 

spatial interpolation techniques are available today with varying degrees of complexity such 

as local mean, Thiessen polygon, inve~'se distance, inverse square distance, isohyetal and 

krigging. 1
• 2 Some of them are very simple with limited applicability while others involve 

complex mathematical frameworks and needs a large number of data points to obtain a 

reasonable level of accuracy. 

METHODS AND MATERIALS 

Spatial continuity exists in most earth science data sets and two data sets close to each 

other are expected to have closer values than those that are far apart.3 A function can be 

developed to describe the continuity of the relationship between the value of one variable at a 

point and the value of the same variable at another point, a given distance aW:ly. I Correlation, 

covariance and variogram functions have been used to express the spatial continuity of a 

random variable. Similar assumptions have been made about rainfall phenomena over an 

area, and estimation methods used in earth science have been applied to rainfall data to 

estimate the values at ungauged sites. 

The spatial correlation models for rainfall have been presented in inverse power and 

exponential forms+ : 
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= spatial correlation coefficient between stations A and B 

a coefficient 

= a power coefficient 



d = distance between the pair of stations 

Assuming homogeneity and isotropicity,5 a study was undertaken to determine the 

appropriateness of point estimation of weekly rainfall by an exponential spatial correlation 

model for the Dry zone's climatic environment. In this study, two distinctive regions of the 

Dry zone were considered, the north-central part and the southern part of the Dry zone (Figure 

1). Both regions exhibit fairly similar physiography of gently-undulating to rolling, with 3 to 

4 per cent slopes. However, some geographical features are not alike. The north-central part 
• 

of the Dry zone, abbreviated NCDZ, is generally an inland region. The southern part of the 

Dry zone, abbreviated SDZ, resembles an area that is more closer to the ocean. Therefore, the 

amount of water vapour in the atmosphere, what is available to become cloud with the chance 

of subsequently becoming rain, may not be comparable in the two regions. Thus, the 

correlation structure of the rainfall process could be different in the two regions. This 

necessitates the evaluation of the spatial correlation model for the two regions separately to 

meet the assumptions made on the isotropicity and homogeneity. 

The selected rainfall recording stations from the NCDZ region are located at Maha-

III uppallama, Pelwehera and Maradankadawala. Out of these three stations, 

Maradankadawala which lies in between the other two stations was considered as the location 

where rainfall values to be estimated. The areal distances from Maradankadawala to Maha-

Illuppallama and from Maradankadawala to Pelwehera are 17 km and 25 km respectively, 

while the areal distance between Maha-Illuppallama and Pelwehera is 38 km. From the SDZ 

region which represents a coastal area, Angunakolapellessa, Ambalantota and Wccrawila 

were selected for the study. In this region, Ambalantota which lies in between the other two 

stations was considered as the location where the rainfall values to be estimated. The areal 

distances from Ambalantota to Angunakolapellessa and from Ambalantota to Weerawila are 

3 



15 km and 27 km respectively, while the areal distance between Angunakolapellessa and 

Weerawila is 38 km. In the selection of the rainfall recording stations, care was given to 

select the locations with reliable data with a maximum number of record lengths to be on par 

with the guidelines stipulated by the Hydrology and Water Resources Program, Department 

of Civil Engineering, Colorado State University.5 The said guidelines prescribe that data 

records with more than 30 years should be used. But most of the ~ime, the available length of 

the records from the selected locations were 20 years. Although there are some other 

locations in the Dry zone which have the minimum of 30 years of records, a large number of 

missing data and unreliability of the measurements forced us not to select them for the study. 

In addition, the models were also evaluated for situations with short series of 

historical data and when the stations are located relatively far away. Weekly rainfall values 

for Angunakolapellessa were interpolated using 10 years of historical rainfall records from 

two neighbouring locations, Embilipitiya and Tangalle. As the reliable rainfall data from the 

immediate vicinity of a rainfall station in the Dry zone was unavailable, these two locations 

were selected from the neighbouring Intermediate zone. The areal distances from 

Embilipitiya to Angunakolapellessa and from Angunakolapellessa to Tangalle are 18 km and 

20 km respectively, while the areal distance between Embilipitiya and Tangalle is 35 km. An 

evaluation of the interpolation models for the stations located farther apart was carried out by 

interpolation of weekly rainfall at Weerawila using Tangalle and Lahugala (eastern part of the 

Dry zone). The areal distance from Lahugala to Tangalle is 143 km whereas distances from 

Lahugala to Weerawila and from Weerawila to Tangalle are 93 and 58 km respectively. 
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The spatial correlation coefficient I "h for weekly rainfall values can be determined 

using contemporaneous observation pairs from stations A and B. Using the calculated r "il 

and the distance between stations A and B, the coefficient (ex) of equation (2) can be found. 

-Cll' Yah = e 

In r ilh = -a.d 

In r ah a=---
d 

(3) 

The observed spatial correlation coefficients between the two stations, A and B, and the value 

for a from equation (3) can be used in equation (2) to estimate the correlation coefficients 

between stations A and B with the station C ( r ac and I he ). Let the unbiased linear estimator 

for the normalised rainfall at station C be: 

where 

R* = estimated normalised rainfall at station C 
c 

R* = observed normalised rainfall at station A 
" 

R* = observed normalised rainfall at station B 
b 

Wa weight assigned to the station A 

W h = weight assigned to the station B 

(4) 

The least squares regression for equation (4) can be written in matrix notation: 

c w = 

Yah 

[

Yae] 
Yhe 
1 

(5) 

The matrix C consists of the covariance value of rainfall between the two sample locations. 

The vector r consists of the covariance values of rainfall between two sample locations and 

the location where we need the estimation. The vector w consists of the weight given to each 

location and the Lagrange parameter )l3. To solve for the weights, mUltiply both sides of 

equation (5) by C -I. 

W = C- I
. r (6) 
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Based on the homogeneity and isotropicity assumptions, the estimated mean rainfall and the 

standard deviation of the rainfall at station C can be calculated using the following linear 

estimation: 

k =AC[7{, -~)] 
C AB (7) 

(8) 

where 

Rc = estimated mean rainf'tJI at station C 

Ra = observed mean rainfall at station A 

Rh = observed mean rainfall at station B 

o c = estimated standard deviation of rainfall at station C 

O = observed standard deviation of rainfall at station A a 

o h = observed standard deviation of rainfall at station B 

AB = distance between stations A and B in km 

AC = distance between stations A and C in km 

Once the above parameters are determined from the observed data, equation (4) can be used 

to estimate the rainfall in each week of the year. 

RESULTS 

The validity and applicability of the foregoing interpolation model was examined by 

comparing the model output with the observed data from Maradankadawala and 

Ambalantota. In addition, a further comparison of the model output was made with the other 

two interpolation techniques, namely, the local mean method ;.:md the inverse distance 

method. Use of local mean or the arithmetic mean in spatial interpolation is the most 

simplistic approach. It assumes equal weight from all nearby sample locations, using the 

sample mean as the estimate. Inverse distance method is a technique which gives more weight 
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to the closest samples and less to those that are farthest away. Thus, weight for each sample 

is inversely proportional to its distance from the point being estimated: 

where 

R = estims-.te of rainfall for ungauged location 

observed value at the ith location Vi = 

(9) 

d i = distance from each location to the point being estimated 

Comparison of estimated and observed rainfall 

Figures 1 and 2 show the mean estimated and observed rainfall in each week for 

Maradankadawala and Ambalantota respectively. Typically, we want a set of estimates that 

comes as close as possible to the true values. Thus, we would prefer the results shown in 

Figures 1 and 2. There was no significant difference between the observed values and the 

estimated values at both Ambalantota and Maradankadawala. The standard deviations of the 

.observed sequences of rainfall were comparable with the estimated sc-Iuences of rainfall from 

the exponential model (Tables 1 and 2). However, most of the time the variability of the 

estimated values from the exponential model was less than that of the observed variability. 

This trend was more apparent at Ambalantota in the SDZ region. Reduced variability of 

estimated values is often referred to as "smoothing" and is a consequence of combining two 

or more sample values to form an estimate.] As more sample values are incorporated in a 

weighted linear combination, the resulting estimates generally become less variable. 
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Figure 3 shows the performance of the exponential model in interpolating weekly 

rainfall at Angunakolapellessa with a short series of historical data from neighbouring two 

locations. It is clear that the estimated data do not represent the observed data well compared 

to the estimations at Maradankadawala and Ambalantota. However, the differences between 

the estimated mean values and the observed mean values were npt significant at the 5% 

probability level. The estimated mean weekly rainfall at Weerawila from the historical data 

of Tangalle and Lahugala are shown in Figure 4. It is clear that there is a distinct deviation of 

the estimated mean values from the observed mean values. In general, these mean deviations 

were significant at the 5% probability level, especially during the second half of the year. 

Comparison between different interpolation methods 

The results of the other two interpolation methods described in a preceding section of 

this paper were compared with the outcome of exponential correlation model. As the first 

criterion for comparing the different methods, the means in each week were computed. 

Figures 5 and 6 show the means of weekly interpolated rainfall values from the three 

methods for Maradankadawala and Ambalantota, respectively. It may be seen that practically 

all of the interpolation techniques reproduce the means well. None of these means were 

significantly different from each other and also from the observed values. The estimated 

values from all three models at Maradankadawala are almost identical (Figure 5). At 

Ambalantota, though it is not significant, a small discrepancy between estimated values from 

the three models is noticeable during the two dry periods and during the Yala season, mid­

March to mid-May, (Figure 6). The differences between estimated values from the three 
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models at both Angunakolapellessa and Weerawila were also not significant. However, most 

of the time the closset value to the observed value was found with the exponential model. 

Another way of checking the appropriateness of the model is to calculate the 

correlation coefficient between the observed and the estimated values. It is a good index for 

summarising how close the points on a scatter plot .come to falling on a straight line, and 

therefore can make use to compare different estimation models. The correlation coefficient 

-between the observed and the estimated values from each model was calculated for every 

week of the year. These values were averaged over a four different time periods of the year, 

namely, first dry season ( early February to mid March), second dry season (late March to late 

September), Yala season (mid March to mid May) and Maha season (early October to late 

January). At both Maradankadawala and Ambalantota, the seasonal correlation coefficients 

were always above 0.65 except during the Yala season at Ambalantota (Table 3). It is 

interesting to note that when the correlation between the estimated and the observed values is 

low, it is consistent with all the three models. 

The correlation coefficients between the estimated and the observed values at 

Angunakolapellessa were always above 0.5 with all the three models where the estimati<?n . 

was based only on 10 years of historical data (Table 4). However, at Weerawila, where the 

estimation was based on two neighbouring locations separated by over 100 km distance, only 

the first dry season exceeded the 0.5 boundary. During the Maha season, correlation 

coefficient was closer to 0.5 with the exponential model. But, during both the Yala and the 

second dry seasons, correlation coefficients were below 0.40 with all the three models (Table 

4). 
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DISCUSSION 

Overall, the results show that mean weekly rainfall of both Ambalantota and 

Maradankadawala are well preserved. However, the discrepancy between the observed and 

the estimated values at Maradankadawala is less than the same at Ambalantota. The 

correlation of rainfall between any two locations is highest for places which are close to each 

other, in flat country and away from the coa~t.6 The areal distances between the two sample 

locations at both regions are almost equal. The topography of the two regions is also 

comparable to each other. Thus, closeness to the ocean could be the main determining factor 

for the small discrepancy between the observed and the estimated values at Ambalantota in 

SDZ region. However, the performance of the exponential model based on a short series of 

historical data (ie, 10 years) is not comparable to its performance with a long historical data. 

This confirms that the more historical data available, the better the estimation will be. The 

situation becomes worse when the neighbouring locations are further apart (ie, 100 km or in 

excess). This could be attributed to the fact that the correlation structure is being weakened 

when the stations are farthest away. 

The e.xponential method and the inverse distance method should gIve a better 

estimation of weekly rainfall data compared to the local mean method. Because, they give a 

varying weight depending on the distance apart rather than a equal weight as in the case of 

local mean method. Therefore, it is reasonable to expect an improvement to the correlation 

with the exponential method and the inverse distance method over the local mean method. 

However, the correlation coefficient values of three models are almost similar at both 

Maradankadawala and Ambalantota (Tables 3) suggesting that performances of all the three 

models are similar under the given environments. Thus, if one is interested only in mean 
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rainfall, as is often the case in climatological applications, then there is no particular 

advantage in computing a complex exponential relationship; rather a simple inverse distance 

or local mean will suffice. 

Although the difference between the correlation coefficient values among the three 

models is not large, both at Weerawila and Angunakolapellessa, the resulted correlation 

coefficient values from the e,tponential model were always higher than that from the other 

two models except during the Yala season at Weerawila (Table 4). Thus, when the 

neighbouring locations are farther away or especially with short series of historical data, the 

individual estimations of the exponential model would approximate the real values 

comparatively better than the other two models. 

In conclusion, the results of this study suggest that the exponential correlation model 

IS a promising candidate for estimating weekly rainfall of the Dry zone of Sri Lanka. 

However, the less sophisticated local mean and inverse distance methods rate quite well along 

with the exponential model. There is no particular basis to claim that the exponential model 

is significantly better than the other two methods tested under the given environments. 

Nevertheless correlation analysis shows an improvement to the estimates with the exponential 

model, especially when the neighbouring locations do not have long series of historical data. 
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Table 1 Standard deviations of the observed and the estimated rainfall 
from the exponential model during major dry seasons at 
lYlaradankadawala and Ambalantota in the Dry zone 
of Sri Lanka. 

Maradankadawala Ambalantota 
Standard Week Observed Estimated Observed Estimated 

No. (mm) (mm) (mm) (mm) 
First dry season 

6 21.5 27.0 20.7· 19.8 
7 27.4 31.5 19.1 33.1 
8 15.5 14.3 16.2 13.1 
9 41.6 45.0 21.2 14.0 
10 40.6 55.3 29.1 19.5 
11 13.4 10.1 13.3 17.0 

Second dry season 
22 30.9 14.6 26.9 24.6 
23 4.2 5.5 12.6 11.1 
24 6.4 5.1 16.2 11.6 
25 0.9 2.5 27.8 13.7 
26 1.8 4.2 10.6 9.0 
27 10.9 11.7 12.6 7.1 
28 28.6 29.0 15.2 10.0 
29 25.5 23.5 IS.2 17.0 
30 21.6 10.1 10.5 S.1 
31 4.6 11.3 11.9 7.8 
32 28.2 18.8 26.4 16.2 
33 1.4 2.3 16.1 9.5 
34 15.4 13.6 11.9 5.4 
35 9.5 4.2 26.6 11.1 
36 5.7 7.9 8.5 6.3 
37 38.2 38.7 19.5 17.9 
38 35.3 23.5 21.2 16.0 
39 33.7 44.3 22.2 17.5 
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Table 2 Standard deviations of the observed and the estimated rainfall 
from the exponential model during major rainy seasons at 
Maradankadawala and Ambalantota in the Dry zone 
of Sri Lanka. 

Maradankadawala Ambalantota 
Standard Week Observed Estimated Observed Estimated 

No. (mm) (mm) (mm) (mm) 
Rainy season - Yala 

12 16.0 14.5 14.6 12.6 
13 31.6 17.2 19.8 14.9 
14 31.3 33.8 14.6 21.0 

" 15 30.8 37.1 26.9 24.7 
16 57.8 54.8 22.0 29.5 
17 43.8 50.1 14.8 19.9 
18 48.4 43.6 18.3 14.7 
19 25.7 18.7 23.2 25.8 
20 29.7 33.0 27.1 21.0 
21 27.0 29.7 20.2 28.7 

Rainy season - Maha 
40 42.8 51.6 17.1 16.2 
41 49.6 57.6 18.5 16.3 
42 49.4 44.4 26.5 26.2 
43 58.7 62.2 50.3 26.2 
44 62.8 51.4 39.1 28.9 
45 39.9 38.0 40.9 26.0 
46 60.8 59.5 62.6 49.0 
47 52.2 56.6 29.0 24.4 
48 50.9 47.3 37.1 26.0 
49 27.0 31.3 18.5 17.6 
50 34.0 30.6 30.2 24.6 
51 60.5 63.3 14.4 19.6 
52 33.4 30.9 16.6 10.9 
1 52.3 47.9 26.3 20.1 
2 51.6 45.8 19.5 15.1 
3 21.3 33.5 30.6 35.2 
4 10.5 11.6 4.3 8.1 
5 21.6 14.7 4.6 7.4 
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Table 3 Seasonal correlation coefficients between the observed and the estimated 

values from the three models at Maradankadawala and Ambalantota. 

First dry season 

Second dry season 

Yala season 

Maha season 

First dry season 

Second dry season 

Yala season 

Maha season 

Exponential 

model 

Inverse 

distance 

model 

Maradankadawala 

0.77 0.77 ,.. 
0.66 0.66 

0.72 0.72 

0.77 0.77 

Ambalantota 

0.76 0.74 

0.71 0.72 

0.41 0.40 

0.69 0.69 

Local mean 

model 

0.78 

0.65 

0.73 

0.77 

0.74 

0.71 

0.38 

0.68 
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Table 4 Seasonal correlation coefficients between the observed and the estimated 

values from the three models at Angunakolapellessa and Weerawila. 

Exponential Inverse Local mean 

model distance model 

model 

Angunakolapellessa 

First dry season 0.79 0.76 0.76 

Second dry season 0.67 0.63 0.64 

Yala season 0.52 0.50 0.50 

Maha season 0.63 0.57 0.57 

Weerawila 

First dry season 0.62 0.59 0.59 

Second dry season 0.34 0.31 0.32 

Yala season 0.36 0.38 0.39 

Maha season 0.49 0.45 0.45 
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Figure 1 Observed and estimated rainfall 
at Maradankadawala in the Dry 
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Figure 4 Observed and estimated rainfall 
at Weerawila in the Dry zone of 
Sri Lanka. 
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Figure 5 Estimated weekly rainfall from three 
models at Maradankadawala in the 
Dry zone of Sri Lanka. 
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Figure 6 Estimated weekly rainfall from three 
models at Ambalantota in the Dry 
zone of Sri Lanka. 
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