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Abstract 

In this paper we finalize some threads in our investigations into the effects of chain 

length-dependent propagation (CLDP) on radical polymerization kinetics, confirming all 

our previous conclusions.  Additionally, and more significantly, we uncover some 

unexpected and striking effects of chain-length dependent chain transfer (CLDTr).  It was 

found that the observed overall rate coefficients for propagation and termination (and 

therefore the rate of polymerization) are not affected by whether or not chain transfer is 

chain-length dependent.  However this situation is different when considering the 

molecular weight distributions of the resulting polymers.  In the case of chain-length 

independent chain transfer, CLDP results in a considerable narrowing of the distribution 

at the low molecular weight side of the distribution in a chain-transfer controlled system.  

On the other hand, the inclusion of both CLDP and CLDTr yielded identical results to 

classical kinetics – in these latter two cases the molecular weight distribution is governed 

by the same, chain-length independent chain transfer constant, whereas in the case of 

CLDP only it is governed by a chain-length dependent chain transfer constant which 

decreases with decreasing chain length, thus enhancing the probability of propagation for 

short radicals.  Furthermore, it was shown that the inclusion of a very slow first addition 

step has tremendous effects on the observed kinetics, increasing the primary radical 

concentration and thereby the overall termination rate coefficient dramatically.  However, 

including possible penultimate unit effects does not significantly affect the overall picture 

and can be ignored for the time-being.  Lastly, we explore the prospects of using MWDs 

to probe the phenomena of CLDP and CLDTr.  Again, some interesting insights follow. 
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Introduction 

 

Recent years have seen a revival of research in free-radical polymerization kinetics, 

especially in regard to chain-length-dependent termination[1] and the determination of 

elementary rate coefficients in controlled radical polymerisation,[2-4] including both topics 

together.[5] While testing the performance of a simple, physically realistic, model for 

termination (i.e., the "composite termination model"[6]) at very low chain lengths (with 

number average degrees of polymerization, DPn ≈ 12 - 250), we discovered that for an 

adequate description of the kinetics in these systems the chain-length dependence of the 

propagation rate coefficient, kp, cannot be ignored.[7] Up to that point in time, it had been 

known, especially as result of experiments with nitroxides[8,9] and catalytic chain transfer 

agents,[10] that kp depends on the chain length of the propagating radical for the first few 

addition steps.[11] However it had not been realized that this chain-length dependence of 

kp would also be affecting the observed macroscopic kinetics for a conventional free-

radical polymerization in which polymers are produced with chain lengths longer than a 

few units. There was (and still is) some contention as to whether the chain-length 

dependence of kp extends beyond small chain lengths.[12,13] Ignoring, for the time being, 

any chain-length dependence of kp at higher chain lengths, we have explored theoretically 

how a short-chain chain-length dependence of kp can affect the observed macroscopic 

kinetics in a conventional free-radical polymerisation, and our preliminary findings 

indicate that chain-length dependent propagation (CLDP) affects the observed value for 

kp (i.e., 〈kp〉) and the rate of polymerization (Rp) in systems with DPn < ~100.[7,14-16] For 

polymerizations in which the first addition step is not slower than long chain propagation, 
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i.e., kp
1 ≥ kp, it was found that for a given DPn the macroscopic average termination rate 

coefficient (〈kt〉) is not significantly affected by CLDP, but in the case where kp
1 < kp, a 

significant increase in 〈kt〉 is observed.[15]  One of the objectives of the current study is to 

investigate the latter observation in more detail.  Furthermore, we wish to address two 

important points that hitherto we have ignored in our kinetic modelling: (1) the effects of 

a chain-length dependent chain transfer reaction, and (2) the incorporation of possible 

penultimate unit effects in the modelling of a slow first addition step.  Feeling that the 

(preliminary) model development is coming to maturation and that further development 

is not very sensible without new experimental data, we also investigate the possible effect 

of CLDP on the molecular weight distribution (MWD) in order to see whether it is 

possible to extract information regarding CLDP from experimental MWDs. 

 

Model Description 

 

Composite Termination Model 

Although it has been known for quite some time that the termination rate coefficient 

depends on the length of the reacting radical and that the rate-determining processes for 

the termination reactions of small and long radicals are center-of-mass and segmental 

diffusion, respectively,[17] it has not been until recently that all available experimental 

observations have been included in a simple, physically realistic model for termination.[6]  

The most relevant of these observations are: 

a. Termination rate coefficients for small, "monomeric", radicals are of the order of 

109 dm3 mol–1 s–1.[18] 
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b. The rate determining step for short radicals is center-of-mass diffusion.  It is 

known that the diffusion coefficient for such a process scales with chain length 

as ~ i–0.5 for styrene[19] and methacrylate[20,21] oligomers. 

c. The rate determining step for long radicals is segmental diffusion, for which the 

diffusion coefficient is known to scale with chain length as ~ i-0.16.[22,23] 

Combining these observations into a single simple model may appear a trivial exercise, 

but until we proposed the "composite termination model" a few years ago,[6] it was 

common practice to ignore one or two of the above observations when modelling chain-

length dependent termination.  In the composite termination model, the termination rate 

coefficient between two i-meric radicals, kt
i,i is given by Eq. 1, where we assume a 

critical chain length icrit of about 100 units as being where the rate determining process 

changes from center-of-mass diffusion (i ≤ icrit) to segmental diffusion (i > icrit): 
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The cross-termination rate coefficient between an i-meric and a j-meric radical can be 

specified in various ways, but it turns out that this choice has no significant effect on the 

kinetics.[24,25]  Given this and that kt
i,j = (kt

i,i×kt
j,j)1/2 greatly simplifies calculations,[6,24,26] 

we use this so-called geometric mean model in this work. 

In our proposal of the composite termination model, we suggested eS ≈ 0.5, eL = 

0.16 and icrit ≈ 100.[6]  This picture has subsequently been confirmed for various 

methacrylates[27-29] and for an itaconate[30] through careful, sophisticated experiments by 

the groups of Barner-Kowollik[29] and Buback.[27,28,30]  Notwithstanding that for acrylates 

a slightly different picture is emerging[31,32] (higher eS and lower icrit), in this work we 
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will use kt
1,1 = 1×109 dm3 mol–1 s–1, eS = 0.5, eL = 0.16 and icrit = 100 for calculations, as 

these were the values that have been found to describe MMA polymerization around 60 

˚C.[7,29] 

 

Chain-Length Dependent Propagation Model 

From the use of pulsed laser polymerization (PLP),[33-36] especially in the 1990s, many 

reliable propagation rate coefficients have become available.[37-41] From comparing the 

obtained values with those from small radical additions,[11,42,43] it was clear from the onset 

that small radical additions were faster than long-chain propagation.  This observation 

clearly suggested a chain-length dependence of the propagation rate coefficient.  In more 

recent PLP studies, a chain-length dependence of kp has also been observed.[12,44,45]  

There is, however, still some contention about whether this chain-length dependence is 

only operative at short chain lengths or whether it continues indefinitely.[12,13,44,45]  Since 

we believe that there is sufficient convincing proof for the existence of a short-chain 

chain-length dependence and that this is of a different nature to any possible long-chain 

effects, we have only focussed on short-chain CLDP until now.  Analysis of the available 

experimental and theoretical data to date suggests that the short-chain chain length 

dependence of kp can be described by the following (empirical) model:[16] 
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In this equation, kp is the long-chain propagation rate coefficient, C1 = (kp
1–kp)/kp is the 

factor by which kp
1 exceeds kp, and i1/2 is the chain length range over which kp

i–kp halves 

in value (i.e., it is like a "half-life").  Available data thus far suggest C1 ≈ 10-50 and i1/2 ≈ 
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0.5-1.5;[16] for MMA polymerization we found the values C1 = 15.8 and i1/2 = 1.12 

describe both our own steady-state data[7] and the PLP results of Van Herk et al.[13] 

 

Macroscopic Kinetics 

The fact that both kt and kp are chain-length dependent has an effect on the rate of 

polymerization (Rp) and the instantaneous number-average degree of polymerization 

(DPn).  Instead of using a constant value for kp and kt for the calculation of these 

parameters, one needs to use their chain-length averaged values, which depend on the 

individual kp
i
  and kt

i,j as in equations 3 and 4 respectively: 
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In these expressions, Ri and Rj
 denote i-meric and j-meric radicals, respectively, and [R] 

( ∑
∞

=

=
1

R 
i

i ) is the overall radical concentration.  It is important to note that in this work R1 

refers to a truly monomeric radical, whether it has been derived from initiator, chain 

transfer agent or chain transfer to monomer (so it does not refer to the radical after the 

first addition to monomer – this radical would be denoted as R2 here). 

Using the above definitions, the steady-state rate and Mayo equations are given by 

equations 5 and 6 respectively: 
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In these equations, f is the initiator efficiency, kd the initiator decomposition rate 

coefficient, λ is the fraction of termination by disproportionation, ktr,X is the rate 

coefficient for chain transfer to any chain transfer agent X (including monomer), and [I], 

[M] and [X] are the concentrations of initiator, monomer and chain transfer agent (CTA) 

respectively.  One has to be aware that equation 6 was derived using the long-chain 

approximation, which is strictly speaking not valid for the short chain lengths that are of 

our main interest here.  However, this problem is easily remedied by adding 1 to the 

value of DPn obtained by equation 6: DPn = DPn (eq. 6) + 1.  This is valid for those cases 

where dead chain formation is caused by chain transfer and/or disproportionation (as is 

the case here). 

It should be noted here that in equation 6 we used a chain-length independent 

value for ktr,X and in all our simulations and modelling thus far we have made this 

assumption.  One of the objectives of the current paper is to investigate the effect of 

including a chain-length dependent ktr,X on the generality of the results obtained thus far. 

In Figure 1 we have summarized our most important findings thus far.[15] It can be 

seen that: 

a. A fairly general correlation exists between 〈kt〉 and DPn, and further, this 

correlation corresponds very closely to Eq. 1, i.e., 〈kt〉 vs. DPn almost exactly 

overlays kt
i,i vs. i.[25,46]. However it is stressed that this finding is not exact: as 

shown, where there is a chain-length dependence of kp given by Eq. 2, 〈kt〉 at a 
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given DPn is slightly lower than in the absence of CLDP, while when the first 

addition step is really slow, there is a larger increase in 〈kt〉. 

b. The effect of CLDP on 〈kp〉 is noticeable up to DPn ≈ 100, even though kp
i reaches 

kp by i ≈ 10. 

c. The effect of CLDP counteracts the effect of CLDT on the rate for short chain 

lengths, except for the case when kp
1 < kp, where a significant retardation is 

observed. 

 

INSERT FIGURE 1 

 

As stated before, the results in Figure 1 were obtained using two assumptions, viz. chain-

length independent chain transfer and no penultimate unit effects for systems in which kp
1 

< kp. The effects of these assumptions will be investigated in this paper. 

 

Kinetic Modelling 

 

The kinetic modelling in this paper was carried out by using an iterative procedure for 

solving the radical population, as outlined in previous publications.[6,15] DPn was 

calculated either by using Equation 6 or by evaluating the required moments of the full 

dead-chain chain length distribution. The weight-average degree of polymerization, DPw, 

was evaluated in the latter way. 

 

Results and Discussion 
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The Effect of Chain-Length Dependent Chain Transfer 

As stated before, in our simulations up to now we have ignored any possible chain-length 

dependence of the chain transfer reaction rate, which is in line with what has been 

generally assumed in kinetic modelling to date.  Since our main interest was primarily 

directed at the DPn-dependence of 〈kt〉 and 〈kp〉, we did not wish to complicate our 

modelling and the interpretation of the results any further by introducing an additional 

chain-length dependent rate coefficient.  Considering that theory suggests that the chain 

transfer reaction may have a chain-length dependence which is very similar to 

propagation (the Arrhenius pre-exponential factors of both reactions appear to be 

determined by very similar physical parameters),[47] it is important that we investigate 

whether this simplification is indeed justified and thus whether our conclusions regarding 

the DPn-dependence of 〈kt〉 and 〈kp〉 are valid.  Furthermore, it is important to know 

whether the use of long-chain chain transfer constants (CS
long) can be used for DPn 

predictions at smaller chain lengths. 

We investigated the effect of chain-length-dependent chain transfer (CLDTr) by 

considering three different situations: 

(1) CLDP (with kp
i given by equation 2) in combination with chain-length-

independent chain transfer (CLITr).  This is what we used in our previously 

published simulations, and in this situation the chain transfer rate coefficient for 

an i-meric radical, ktr
i, is given by (for simplicity we use the notation ktr rather 

than ktr,X from now on) 

 p
long
Str   kCk i ×=          (7) 
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 It is noted that such polymerization is thus characterized by a chain-length-

dependent chain transfer constant, CS
i = ktr

i/kp
i, that decreases with decreasing 

chain length of the i-meric radical. 

(2) CLDP (with kp
i given by equation 2) in combination with CLDTr.  Here we 

assume that the chain-length dependence of chain transfer is the same as the 

chain-length dependence of propagation.  In this case ktr
i is defined by: 

 ii kCk p
long
Str   ×=          (8) 

 Thus in effect the polymerization is characterized by a chain-length independent 

chain transfer constant, CS
i = ktr

i/kp
i = CS

long, that is constant for all chain lengths. 

(3) CLIP in combination with CLITr.  Here we only assume chain-length dependent 

termination and classical kinetics in terms of propagation and chain transfer.  In 

this case, the polymerization is also characterized by a chain-length independent 

chain transfer constant, CS
long. 

Note that in the event of CLDTr, ktr,X in Equation 6 must be replaced by 〈ktr,X〉, which is 

defined as in Equation 3, except that ktr
i replaces kp

i. 

The results of our simulations, in which parameters were chosen to ensure that the 

MWDs are controlled by chain transfer, are shown in Figure 2 in terms of DPn and in 

Figure 3 in terms of chain transfer agent concentration, [CTA].  It is immediately clear 

from Figure 2 that there is no significant effect of CLDTr on the dependence of 〈kt〉 and 

〈kp〉 (and hence also the rate) on DPn.  This validates our earlier conclusions regarding the 

effect of CLDP on the observed macroscopic kinetics. 

 

INSERT FIGURES 2 AND 3 
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An interesting observation is made, however, when we compare the 

polydispersity indices (PDI) from the simulations.  For high [CTA] (Figure 3d), and thus 

low DPn (Figure 2d), we observe a significant decrease in PDI for the simulations in 

which we combine CLDP with CLITr.  This effect of CLDP has previously been noted 

by us,[14] including that it seems to be observed in our experimental data,[7] not to mention 

other experimental data involving very short chains.[48]  What is new to this work and is 

especially interesting is that the effect disappears in the situations where CS
i
 = CS

long, for 

which one obtains identical results, regardless of whether or not CLDP (and CLDTr) are 

operative.  In these situations one has PDI ≈ 2, i.e., the classical limit for chain-transfer 

controlled polymerisations; values slightly greater than 2 are obtained at high DPn 

because of the effect of CLDT, which acts to broaden the MWD,[49] while at very low 

DPn this effect is overridden by the breakdown of the long-chain approximation, which 

acts to reduce PDI. 

In view of the above results we were stimulated to look at the entire (dead-chain) 

MWDs from our simulations.  The narrowing of the molecular weight distribution for the 

case of CLDP with CLITr is clearly evident in Figure 4a, where it can be seen that there 

are many more low-molecular-weight chains in the systems with a constant CS than in the 

system with CLDP+CLITr.  This is caused by the fact that in the latter system the 

probability of chain growth for small chains is higher than in the case of CLIP, and thus 

small chains are ‘protected’ from becoming dead chains, resulting in a narrowing of 

MWD and thus a lowering of PDI.  On the other hand, for larger chains there should be 

no difference in propagation probability, and that is indeed what is observed: the high 
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molecular weight parts of the distributions are identical.  This is also why the peak 

molecular weights for all three systems are the same. 

 

INSERT FIGURE 4 

 

The surprising result from Figure 4a is that the MWD is identical for the two 

cases of CLDP+CLDTr and CLIP+CLITr.  This is a surprise because the values of ktr
i are 

different in each case (see Equation 8), meaning that one would expect different rates of 

production of dead chains of length i in each case.  The explanation for this riddle lies in 

the fact that this rate of production depends also on [Ri].  In fact one can show (derivation 

presented later) for the case of transfer control that the increase in ktr
i due to CLDTr is 

exactly counterbalanced by a decrease in [Ri], with the result that the product of these 

two terms is the same as in the absence CLDP and CLDTr (i.e., classical polymerization).  

Thus the results of Figure 4a should not be interpreted as meaning that CLDP+CLDTr 

has no effect on the radical chain-length distribution: it does, with CLDP reducing values 

of [Ri] at small i.  But, in contrast to the case of CLDP+CLITr, this effect is not expressed 

in the dead-chain MWD. 

The above results quite naturally prompt one to wonder how Mayo plots are 

affected: do they yield the long-chain value of CS? To investigate this we constructed 

Mayo plots from our results; these are presented in Figure 4b.  From Equation 6 it is 

evident that for classical kinetics a plot of 1/DPn vs. [CTA]/[M] will have slope of CS (= 

1 in our simulations) while 1/DPw vs. [CTA]/[M] will have slope of CS/2 (= 0.5 here).  It 

is evident from Figure 4b that only for the case of CLDP+CLITr is there a significant 
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deviation in the slope from the long-chain value of CS.  Of practical significance is that 

this deviation is much smaller for DPw than for DPn.[50]  It should also be noticed that the 

DP at the peak of the w(log M) distribution corresponds in almost all cases to DPw, and 

that for all three systems these values lie on the same straight line. All these results are as 

would be expected given the findings already discussed above. 

To summarize the above, we can conclude that inclusion of CLDTr does not 

affect the overall rate of polymerization but it does affect the molecular weight 

distribution.  In terms of rate we find that: Rp(CLIP+CLITr) < Rp(CLDP+CLDTr) ≈ 

Rp(CLDP+CLITr).  In terms of PDI we find that PDI(CLIP+CLITr) = 

PDI(CLDP+CLDTr) > PDI(CLDP+CLITr). 

It is now interesting to consider the available experimental data.  As already 

mentioned, our published data on methyl methacrylate polymerizations in the presence of 

large amounts of dodecane thiol (DDM) indeed show a decrease in PDI with increasing 

[CTA][7], and this trend was quantitatively reproduced by our modelling with CLDP and 

CLITr.[14] Our present work indicates that this trend should largely be absent if CLDTr is 

operative.  Taken together these results suggest that chain transfer to DDM has a much 

weaker chain length dependence than propagation.  This might reflect that DDM is a 

relatively large CTA, meaning that the variation of transition state mass with oligomer 

chain length i is relatively small, such mass variations largely being the origin of chain-

length-dependent variations of propagation and transfer rates.[16,47]  An interesting test of 

this suggestion would be to carry out experiments with a smaller CTA, for example butyl 

mercaptan: does it give rates and MWDs more in line with those predicted here for the 

case of CLDP+CLDTr?  In carrying out such investigations, it is important to be aware 
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that standard SEC analyses of very low molecular weight polymers is fraught with 

uncertainties; polymer properties which are constant for high molecular weight polymers, 

such as the differential refractive index increment (dn/dc) and the UV absorption, depend 

on the chain length for short chains.[51] For this reason we feel that more careful 

experimental studies are required that especially focus on the molecular weight 

distributions of very short polymers. 

 

The Effect of Incorporating the Penultimate Unit Effect in Propagation 

In previous studies we also investigated the impact of using kp
1 ≠ (C1+1)kp, a situation 

which is of practical relevance as initiator- or transfer-derived primary radicals are 

seldom the same as a truly monomeric radical.  In these previous studies we assumed that 

the dimeric radical resulting from all first addition steps to monomer has the same 

reactivity as a dimeric radical resulting from the addition of a truly monomeric radical; in 

other words, we ignored any possible penultimate unit effect (PUE) in the reactivity of 

the radical, and regardless of the value of kp
1 we used kp

i given by Equation 2 for i ≥ 2. 

Since we know that PUEs are operative in copolymerization,[52] there is no a priori 

reason to assume that they are negligible in CLDP.  Therefore we will here examine the 

effect on kinetics of a PUE in CLDP, even though this introduces greater complexity into 

our simulations and we must somewhat guess at the quantitative nature of such PUEs, 

given the absence of definite information about them. 

 In our previous modelling we observed the largest effects of kp
1 on the DPn-

dependences of 〈kp〉, 〈kt〉 and the rate when kp
1 < kp.[15,16] For this reason we chose this 

situation of retardation to investigate how a possible PUE would affect kinetics.  For a 
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system in which we varied DPn by changing [I], we treated the initiator-derived radicals 

to have an addition rate coefficient of kp
1 = kp/10.  We then compared the situations 

where only the first addition (kp
1) was slower than given by Equation 2, with the 

situations where the first two additions (kp
1 and kp

2), then the first three and finally the 

first four additions were slower (see Figure 5).  It is important to note here that using a 

value of kp
1 that is ten times smaller than the long-chain value is by no means fiction.  For 

example, the addition of cyanoisopropyl radical (i.e., the radical derived from AIBN 

decomposition) is roughly 150 and 50 times slower than long chain propagation at 42 °C 

for vinyl acetate and methyl acrylate, respectively.[16,36,53] 

 

INSERT FIGURES 5 AND 6 

 

The results of these simulations are presented in Figure 6.  From Figure 6a it is 

clear that the behaviour of 〈kt〉 is not significantly affected by inclusion of PUEs, as the 

data lie on virtually the same curve.  It is, however, important to note that all these 〈kt〉 

values are observably higher than those obtained in systems with CLIP or with CLDP 

without retardation (i.e., kp
1 ≥ kp).  We will study this effect in more detail in the 

following section.  The effect of including PUEs on 〈kp〉 seems to be more pronounced 

(Figure 6b): the more i for which kp
i is less than its Equation-2 value, the smaller is 〈kp〉 

for a given DPn.  However, the effect does not seem to be larger than about 10%.  Hence, 

the combined effect of 〈kp〉 and 〈kt〉 in the rate seems to be negligible (see Figure 6c).  

Since we are currently mainly interested in the effects of CLDP on the macroscopic 

kinetics and MWDs, we conclude that until there is specific information regarding PUEs, 



 17

it is probably safe to ignore them in seeking to model and understand data: the dominant 

effect is that of retardation (kp
1 significantly less than kp), and any associated PUE has 

only a small additional effect in comparison. 

From a general point of view the results in Figure 6 are very interesting.  What is 

shown is that a slow primary radical addition has a tremendous retardative effect on the 

observed kinetics and that this effect is a combination of slower propagation and faster 

termination.  Especially the latter is interesting as we found that the DPn-dependence of 

〈kt〉 was not significantly affected by the parameter values of C1 and i1/2, with all data 

being only slightly below the data obtained for CLIP.[15]  The fact that the inclusion of 

only one slow first addition causes the 〈kt〉-values to increase dramatically is the subject 

of following section. 

 

The Origin of Retardation in Systems with Slow Initiation or Retardative Chain Transfer  

In a previous work[16] we considered the situation of re-initiation from transfer occurring 

with a different rate coefficient (kp
B) to that for addition of primary radicals from initiator 

(kp
A), where these rate coefficients replace what up until now has all been lumped under 

the umbrella of kp
1.  Where kp

B is significantly less than kp one has the situation 

commonly referred to as ‘degradative chain transfer’, i.e., transfer tends to result also in 

termination because of the creation of a long-lived, highly mobile radical, and thus there 

is significant rate retardation.  Quite obviously this is because of elevation of 〈kt〉, and in 

our previous work we showed that kinetically there is no distinction between this effect 

being caused either by slow initiation (kp
A « kp) or slow re-initiation (kp

B « kp).[16]  

However, what is slightly surprising is that even for systems with the same value of DPn, 
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the value of 〈kt〉 is observably larger for the case of retardation.  This is shown clearly in 

the results of Figure 7, which presents simulation output for variation of [CTA], one set 

of calculations having kp
A and kp

B both equal to kp
1 of Equation 2, the other being 

identical except for having kp
B = kp/10. 

 

INSERT FIGURE 7 

 

In an effort to understand why retardation elevates 〈kt〉 even where DPn is 

identical, we had a look at the radical chain-length distribution, [Ri], from two such 

simulations: see Figure 8.  It is evident that the distributions are quite different in each 

case, even though both result in the same value of DPn.  Although both DPn and 〈kt〉 are 

functions of the [Ri], they are so in different ways, and thus it is plausible that two 

different [Ri] distributions can result in identical DPn but different 〈kt〉, as here.  In 

particular attention is drawn to the value of [R1] = [RA] + [RB] for the case of retardation: 

due to the very low value of kp
B, it is two orders of magnitude higher than it would 

otherwise be.  Due to the high value of kt
1,1 this gives an enormous boost to the value of 

〈kt〉 (see Equation 4), one that evidently even overrides the fact that for 2 ≤ i ≤ 40 the 

value of [Ri] is less than in the absence of retardation.  So it would seem that it is this 

outstandingly high value of [R1] that gives undue elevation of 〈kt〉 in the case of 

retardation. 

 

INSERT FIGURE 8 
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Obtaining Information on CLDP from Molecular Weight Distributions 

In the final section of this paper we would like to anticipate further necessary studies.  

Clearly the field of RP kinetics has advanced in recent times through an interplay of 

experiment and theory: the composite termination model[6] was proposed on the basis of 

hints in experimental data, and subsequently it has found spectacular confirmation via 

improved experiments;[27-30] similarly, transition state theory[54] was used to probe CLDP 

on the basis of insinuations in experimental data, and since then a variety of 

experiments[7,12,13,44,45] have added considerable weight to this theoretical picture.[16]  

Now we have introduced CLDTr into considerations.  Especially with regard to CLDP 

and, even more so, CLDTr, it is evident that modelling is now well ahead of what is 

experimentally known with confidence.  Therefore the need for further experimental 

input is currently the rate-determining step for further progress. 

Because CLDP and CLDTr are phenomena involving very small chains, an 

obvious suggestion for learning more about them is to carry out kinetic studies at low 

DPn, and in particular the idea arises of carrying out careful analysis of the resulting 

molecular weight distributions: intuition is that CLDP and CLDTr might impact upon 

MWD in a distinctive way at very small chain lengths, and thus provide an avenue for 

learning about these phenomena.  Therefore it is of interest to carry out some simulations 

to see whether there is substance to this idea. 

First of all we present results for two different systems with very low and 

identical DPn: Figure 9a gives the MWD as w(logM), as would be obtained from size 

exclusion chromatography, while Figure 9b shows the same results as the natural 

logarithm of the number distribution, lnP(M), vs. M.  The two different systems are 



 20

CLDP+CLITr and CLIP+CLITr (the latter being the same as CLDP+CLDTr, as already 

discussed).  This comparison enables the pure effect of chain-length-dependent 

propagation on MWD to be seen. 

 

INSERT FIGURE 9 

 

Perhaps the most remarkable result of Figure 9a is that these two MWDs have the 

same DPn, even though they are differently positioned.  The reason for this becomes clear 

from Figure 9b: the concentrations of monomeric, dimeric and trimeric chains are much 

lower for the case of CLDP, which acts to increase DPn and counterbalances the effect of 

lower numbers of long chains, an effect that acts to reduce DPn.  This latter effect is 

emphasized in w(logM) because of the nature of this form of the MWD, but such 

differences in w(logM) at high M have only a relatively weak effect on DPn. On the other 

hand, they have a much greater effect on DPw, and indeed, this quantity is much less for 

the case of CLDP than CLIP (22.5 vs. 28.4 in our example). 

The above discussion highlights several important things about CLDP: (1) It has a 

spectacular effect on P(M) at very low M, as is clearly evident in Figure 9b.  The origin 

of this effect is that fast propagation reduces the probability of dead-chain formation, and 

thus low numbers of oligomers are formed when CLDP is operative.  (2) While CLDP 

has a large effect on P(M) at low M, this effect is not visible in w(logM) – compare 

Figures 9a and 9b – because of the nature of the latter distribution.  Further, the effect of 

CLDP is a negative one, i.e., it results in something less measurable rather than more 

measurable.  We therefore conclude that CLDP would be very difficult to detect using 
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size exclusion chromatography (SEC) to look at oligomers, not just because the signal 

differences would be small (see Figure 9a), but even more so because they would be very 

difficult to distinguish from baseline noise and uncertainty.  Curvature of lnP(M) plots is 

common,[50] and it is almost always impossible to say with confidence whether it is 

mechanistic in origin or whether it is instrumental artefact – if in practice one converted 

SEC data to lnP(M) and obtained the strongly concave-down shape of the CLDP results 

of Figure 9b, how could one be sure that these results were genuine or whether they were 

an artefact of calibration errors, baseline selection, and so on? (3) Insofar as CLDP does 

have an observable effect on w(logM), in fact it is in the broadness of the distribution, as 

discussed earlier (lowering of PDI) and as shown clearly in Figure 9a (narrower MWD). 

So somewhat unexpectedly, we conclude that the best prospects for seeing CLDP in SEC 

results is to look at the bulk of the distribution and not at what is obtained for oligomers. 

The above conclusions have been made on the basis of results for DPn = 15, 

which is indeed very low.  The impact of CLDP on the shape of P(M) at very low M will 

always be present regardless of the value of DPn, so an experimental method that, in 

contrast to SEC, can measure P(M) directly for oligomers should always have good 

prospects for detecting CLDP.  Therefore the emergence of a reliable such method would 

be a major boost for the investigation of CLDP.  On the other hand, the effect of CLDP 

on distribution broadness becomes less and less as DPn increases, with Figure 2d showing 

that it is virtually absent by DPn ≈ 100.  So for SEC studies one can only hope to see 

CLDP effects where the average chain size is very short; as already mentioned, it is not 

straightforward to obtain reliable results under such circumstances.[51]  
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Clay and Gilbert[55] urged the plotting of MWD data as lnP(M) vs. M because the 

slope of such plots, given the symbol ΛΜ, tells a clear mechanistic story.[50,55]  It is 

already obvious that this idea has merit in terms of detecting CLDP, so we decided to 

pursue this further in the present context.  What is perhaps confusing about the results of 

Figure 9b is that once they reach a constant slope, it is different in each case.  This is 

because it was necessary to use a different value of [CTA] in each calculation in order to 

get the same DPn.  Therefore we decided to analyze results with the same [CTA]; those 

of Figure 4a meet this criterion, and so they are re-presented in Figure 10a in the form of 

lnP(M) vs. M.  From these distributions one may calculate ΛΜ = d(lnP(M))/dM, which is 

plotted in Figure 10b.  It is clear that, as desired, both distributions now have the same 

slope (ΛΜ) once beyond low M. 

 

INSERT FIGURE 10 

 

The most important conclusion from Figure 10 is that in the absence of CLDTr, 

the phenomenon of CLDP leaves a very clear imprint on lnP(M) at very low M: not only 

is ΛΜ positive rather than negative, but it is very strongly positive.  However, if there is 

concomitant CLDTr, then this effect entirely disappears, and ΛΜ is a constant and 

negative value for all M, exactly as is also the case when both propagation and transfer 

are chain-length independent.  Thus in the case of an invariant ΛΜ it is not possible to 

distinguish between models, however the case of a positive ΛΜ at low M can 

unambiguously be taken as evidence for CLDP.  In this respect it is interesting that some 

experimental results of ours from nearly a decade ago – again for methyl methacrylate 
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(MMA) with dodecyl mercaptan – do in fact look just like the ‘CLDP only’ results of 

Figure 10a (see Figure 4 of ref. [50]).  Of course given the caveats already discussed about 

SEC, one needs to be wary of over-interpreting experimental results such as these.  

Nevertheless it is interesting that CLDP provides a framework for explaining 

experimental results that otherwise have to be (and were) dismissed as artefactual, 

exactly as also the low PDI values – of order 1.5 for low-DPn PMMA – obtained by 

Zammit et al.[48] 

Finally, it is of interest to see whether the convergence in Figure 10b of all results 

to the same constant value of ΛΜ is consistent with theory.  For the case of dominant 

dead-chain formation by transfer, one can show that 

 
    
P(i) ~ ktr

i [CTA][Ri ] ~ ktr
i [CTA]
kp

i [M]
1+

ktr
i [CTA]
kp

i [M]

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

j=1

i

∏
−1

 (9) 

This result assumes only steady-state and negligible dead-chain formation by termination, 

otherwise it is general, e.g. it allows for both CLDP and CLDTr.  Evident from Equation 

(9) is that [Ri] is markedly different for the cases of CLDP+CLDTr and CLIP+CLITr, 

even though these end up giving the same P(M), something that is now very easy to 

show.  This is because both these cases have ktr
i/kp

i = CS, independent of i.  In this event 

Equation (9) simplifies to 

 
    
P(i) ~ 1+ CS

[CTA]
[M]

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j=1

i

∏
−1

= 1+ CS
[CTA]

[M]
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−i

 (10) 

For this situation one has 

 
    

d(ln P(i))
di

= ln 1+ CS
[CTA]

[M]
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

≈ −CS
[CTA]

[M]
 (11) 
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Since di = dM/Mo, where Mo is the molar mass of monomer, Equation 11 can be 

transformed to 

 
    
ΛM =

d(ln P( M ))
dM

=
1

Mo
ln 1+ CS

[CTA]
[M]

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

≈ −
CS
Mo

[CTA]
[M]

 (12) 

We note that Gilbert and Clay[55] only ever derive and present results for ΛM in the long-

chain limit (last entries of Equations 11 and 12), but as shown by our derivation above, 

there is absolutely no need to make this approximation for the situation of transfer 

control. 

 Equation 12 provides a framework for understanding the results of Figure 10b: 

(1) It is immediately clear why ΛM is independent of M for the two cases with chain-

length-independent CS. (2) It is also clear from this derivation that the case of chain-

length-dependent CS must also give this same constant value of ΛM once the effects of the 

chain-length dependencies have died out. (3) Equation 12 predicts this value to be (see 

Figure 10 for parameter values) ΛM = –9.5 × 10–4 mol g–1 (exact), –1.0 × 10–3 mol g–1 

(approximate).  It is evident from Figure 10b that this is indeed what was found in our 

simulations.  (4) Clearly Equation 9 must quantitatively describe variations of ΛM with M 

– e.g. that of Figure 10b – that occur as a result of CLDP. 

 In summary, in the event of CLDP the quantity ΛM remains a powerful guide to 

mechanism and a useful index for quantitative determination of rate coefficients. 
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Conclusion 

 

It can be exasperating that so many complexities enter into the kinetics of radical 

polymerization.  For a long time it was vigorously debated whether termination is chain-

length dependent.  By the time it had become clear that it definitely is, suggestions began 

to emerge that propagation is also chain-length dependent.  It may be said that this is no 

longer disputed, even if there is still conjecture about the nature of this variation.  Now 

we have introduced the possibility of transfer being chain-length dependent, something 

that really must be expected given that propagation, a reaction similar in nature, is chain-

length dependent.  All this may give a feeling of hopelessness in the face of 

overwhelming complexity.  And yet it should not, for it is really just a challenge to 

understand things that have never really been understood properly and are of real-world 

importance.  What makes this challenge especially fascinating is that sometimes these 

effects are there but hidden.  This is implicit in the fact that for so long the simple 

classical model of RP kinetics held sway, even though it may now be seen to be deficient 

in so many ways.  What this points to is that sometimes effects cancel out, as has been 

illustrated in this paper.  For example, CLDP+CLDTr results in the same MWDs as 

CLIP+CLITr.  Or CLDP+CLDT results in rates that at low chain lengths look like those 

of CLIP+CLIT.  We continue to be stimulated by the challenge of trying to understand all 

these nuances, and we hope that in some small way our work both inspires others to take 

up this challenge – one that is both experimental and theoretical – and helps them in 

doing so. 
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Fig. 1.  Dependence of (a) 〈kt〉, (b) 〈kp〉 and (c) 〈kp〉/〈kt〉1/2 on DPn.  For all figures kp = 831 

dm3 mol–1 s–1 and CLDT is according to the composite termination model using the 

parameter values given in the text. Filled circles ( ): chain length independent 

propagation; empty triangles ( ): CLDP with C1 = 10 and i1/2 = 1; filled triangles ( ): 

CLDP with kp
1 = 0.1×kp and kp

i according to Eq. (2) with C1 = 10 and i1/2 = 1 for all i ≥ 2.  

The dashed lines in (a) are the overall fits for CLDP described by C1 = 10 – 50 and i1/2 = 

0.5 – 5.[12] 
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Fig. 2.  Dependence of (a) 〈kt〉, (b) 〈kp〉, (c) 〈kp〉/〈kt〉1/2 and (d) PDI on DPn.  For all figures 

2fkd[I] = 1 × 10–9 mol dm–3 s–1, kp = 1000 dm3 mol–1 s–1, [M] = 10 mol dm–3, C1 = 10, i1/2 

= 1.0, CS
long = 1 and CLDT is according to the composite termination model using the 

parameter values given in the text.  Empty triangles ( ): CLDP + CLITr; empty 

diamonds (◊): CLDP + CLDTr; filled circles ( ): CLIP + CLITr. 
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Fig. 3.  Dependence of (a) 〈kt〉, (b) 〈kp〉, (c) 〈kp〉/〈kt〉1/2 and (d) PDI on [CTA].  All 

parameter values and symbols are exactly as for Figure 2. 
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Fig. 4.  (a) Normalized instantaneous molecular weight distributions (using M = i × 

100.12 g mol–1) from the results of Figures 2 and 3 for [CTA] = 1 mol dm–3.  Dashed 

line: CLDP+CLDTr and CLIP+CLITr; full line: CLDP+CLITr.  (b) Mayo-plots for 

degrees of polymerization, DP, from the results of Figures 2 and 3. Open symbols: DPn; 

filled symbols: DPw; half-filled symbols: DP of peak of the w(logi) distribution. 

Triangles: results for CLDP+CLITr; squares and circles: CLDP+CLDTr and 

CLIP+CLITr (identical results). 
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Fig. 5.  Chain-length dependence of kp
i
 used in simulations investigating the effect of 

PUEs in kp
i.  In all cases the general chain-length dependence is given by Equation 2 with 

C1 = 15.8 and i1/2 = 1.12 (dotted line). ( ): kp
1 according to Eq. 2 with C1 = 15.8 and i1/2 

= 1.12; ( ): CLDP with kp
1 = 0.1kp; empty triangles: CLDP with kp

1 = 0.1kp and kp
2 < 

Eq. 2; triangles with filled right half: CLDP with kp
1 = 0.1kp and kp

2 < kp
3 < Eq. 2; 

triangles with filled left-half: CLDP with kp
1 = 0.1kp and kp

2 < kp
3 < kp

4 < Eq. 2. 
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Fig. 6.  Dependence of (a) 〈kt〉, (b) 〈kp〉 and (c) 〈kp〉/〈kt〉1/2 on DPn.  CLDT is according to 

the composite termination model using the parameter values given in the text.  Filled 

circles (λ): CLIP; all other symbols: kp
i
 as in Figure 5.  Dashed line in (a): best fit from 

using Equation 2 for kp
i.[12] 
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Fig. 7. Dependence of 〈kt〉 on DPn for 2fkd[I] = 1 × 10–9 mol dm–3 s–1, kp = 1000 dm3 mol–

1 s–1, [M] = 10 mol dm–3, C1 = 10, i1/2 = 1.0, kp
A given by Equation 2, CS

long = 1 and 

CLDT according to the composite termination model using the parameter values given in 

the text.  Empty circles (O): kp
B = kp

A (fast re-initiation after transfer); filled squares ( ): 

kp
B = kp/10 (slow re-initiation). 
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Fig. 8. Radical chain-length distributions from the results of Figure 7 for DPn = 18.33.  

Empty circles (O): kp
B = kp

A (fast re-initiation after transfer); filled squares ( ): kp
B = 

kp/10 (slow re-initiation; note the outstandingly high value for i = 1). 
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Fig. 9. Normalized instantaneous molecular weight distributions (using M = i × 100.12 g 

mol–1) for 2fkd[I] = 1 × 10–9 mol dm–3 s–1, kp = 1000 dm3 mol–1 s–1, [M] = 10 mol dm–3, CS 

= 1 and CLDT according to the composite termination model using the parameter values 

given in the text.  Circles (O): CLIP and [CTA] = 0.73 mol dm–3, giving DPn = 14.7; 

triangles ( ): CLDP with C1 = 10, i1/2 = 1.0, and [CTA] = 1 mol dm–3, giving DPn = 

14.6. MWDs as (a) w(logM), (b) lnP(M). 
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Fig. 10.  Instantaneous molecular weight distributions from Figure 4a plotted as (a) 

lnP(M) vs. M, and (b) its first derivative, ΛM . Results are as indicated for CLDP (and 

CLDITr), giving DPn = 14.6, and CLDP+CLDTr and CLIP+CLITr (same), giving DPn = 

11.0.  Important parameter values: M = i × 100.12 g mol–1, [CTA] = 1 mol dm–3, [M] = 

10 mol dm–3 and CS = 1. 

 
 


