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Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of 

Master of Applied Science 

 
Influence of a legume green manure crop on barley straw/stubble 

decomposition, and soil nitrogen retention and availability 
 

By D.B. Kapal 
 

The incorporation of cereal straw/stubble often immobilises nitrogen (N). This can help 

conserve N in soil in organic forms, thus reducing loss through leaching over dormant 

winter periods. However, N-depressions that arise during decomposition can reduce crop 

yield. The inclusion of a legume green manure can supply fixed-N, thus alleviating the low 

N availability to crops. In this study, the effect of lupin (Lupinus angustifolius L.) green 

manure incorporation on barley (Hordeum vulgare L.) straw/stubble decomposition, and N 

availability was investigated. A field experiment was used to determine the effects of the 

green manure on decomposition. Decomposition of straw/stubble was monitored using the 

litterbag technique. Following green manure incorporation, soil cores were incubated in a 

glasshouse to determine mineral-N availability. Though not significant, the inclusion of 

lupin green manure seemed to increase the decomposition of straw/stubble during the 

growth period, then slowing it after its incorporation at 110 d. This was described by a 

logarithmic pattern of loss of - 4.97 g AFDW residue day-1, with 60% remaining after 140 

d. Treatments without lupin had a linear decomposition of - 0.12 g AFDW residue day-1, 

with 49% remaining after 140 d. The loss of cellulose confirmed the differences in 

decomposition with the inclusion of lupin resulting in 2.79% less cellulose remaining in 

straw/stubble after 140 d compared to its exclusion. Lupin significantly increased pot oat N 

uptake and DM yield by 55 % and 46 %, respectively, compared to its exclusion. However, 

this effect was not observed in field sown wheat yields and the soil mineral-N 

measurements made. This study showed that the potential of lupin to increase 

straw/stubble decomposition by improving the retention and availability of N, leading to 

long-term yield benefits, needed further investigation. 

 

Additional keywords: Arable cropping, Avena sativa L., burning, crop residue, 

Hordeum vulgare L., leaching, Lupinus angustifolius L., 

nitrate, nutrient cycling, organic matter, Triticum aestivum L. 
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Chapter 1. Introduction 
 

1.1 Background 
 

The pressure to increase crop yield per unit area has intensified as a result of the 

exponential human population growth, and the steady decrease of land available for crop 

production due to urban growth and land degradation (Fageria et al. 2006). With the 

assistance of technological advances, increased global food production on the fixed arable 

land available has been achieved to address this intensification (Miller 2005; Fageria et al. 

2006; Maene, Sukalac et al. 2008). For example, crop production increased by 58 percent 

between the 1950s and 1990s, while land under cultivation actually declined by six percent 

(Roberts et al. 2008). In fact by the end of the 1990’s, average global cereal production per 

unit land area under cultivation had increased ten-fold as a result of such yield increases 

(Maene et al. 2008). 

 

Agricultural advancements that have led to increased productivity include the use of high-

yielding crop varieties, chemical fertilisers, farm machinery, and improved crop 

management practices (Maene et al. 2008). However, the increased production by high-

yielding crop varieties, which are more responsive to fertiliser and irrigation (FAO 2003), 

has often been accompanied by high nutrient inputs (fertilisers) and the removal of half the 

crop biomass (e.g. grains and straw) (Smil 1999). Such changes have appreciably altered 

the dynamics of nutrient cycling within the soil-plant system (Byrnes and Bumb 1998; 

McNeill and Unkovich 2007), with some having adverse impacts upon the environment. In 

particular, increased fertiliser usage coupled with under-utilisation by crops, has lead to the 

build up of nutrients within the soil profile which then move into ground and surface water 

causing pollution (Kumar and Goh 2000). Some of these excess nutrients are lost as gases 

that cause air pollution (Jenkinson 2001). In designing production systems, it is therefore 

important that management practices are used that can sustain soil productivity, whilst 

being environmentally friendly or benign. 
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The sustainability of most crop production systems depends on soil quality, with plant 

nutrient availability being the most important characteristic (Christensen 2004). When 

compared to natural ecosystems where nutrients are recycled, most nutrients in cropping 

systems are removed or lost in harvests, crop residues, erosion, leaching, and gaseous 

emissions with little returned to the cropping system (Campbell 1998). Hence, cropping 

systems are more susceptible to nutrient loss than natural ecosystem (Wild 2003) and as 

such are often supplemented with fertilisers to increase the amount of available nutrients. 

However, increased applications of inorganic fertiliser along with cultivation can impair 

the quality of soil, raise the costs of crop production, and have adverse effects on the 

environment (Fageria and Baligar 2005). To minimise such problems, alternative forms of 

nutrient input and cropping/cultivation practices are increasingly being utilised. 

Specifically, soil amendments with manures, crop residue retention and crop rotations are 

increasingly being practised with the aim of returning nutrients to the soil and increase soil 

organic matter (SOM) retention (Kumar and Goh 2000). Improving the levels of SOM 

through the incorporation of crop residues leads to improved soil quality and nutrient 

cycling while simultaneously providing an alternative means for biomass disposal (Smil 

1999). 

 

Soil organic matter is important for conserving and recycling plant nutrients. Vital 

processes in agroecosystems in particular the conservation and recycling of nitrogen (N) is 

of paramount importance, since this nutrient is limiting to production in many developed 

agricultural systems (Christensen 2004). For example, large amounts of N are required to 

support arable cropping systems, which are ultimately removed in harvests (Fageria and 

Baligar 2005). Such losses of N, coupled with leaching and atmospheric losses linked with 

cultivation practices that disturb the soil, are of major concern. Although N leaching is a 

natural process, increased loads of nitrate in soil-crop system increase the amount lost 

(Kirchmann et al. 2002). This is particularly important in temperate regions during winter 

when drainage flux is high and there is limited plant growth to take up the N and protect it 

from loss (Powlson 1993; Jenkinson 2001). Mitigation techniques used to reduce nitrate 

concentrations during these periods have been directed at either increased N-use efficiency 

or improved N conservation (Kirchmann et al. 2002; Sapek 2005). By allowing the 

conversion of mineral-N to organic N forms in SOM, N can be conserved and protected 

from loss and thus retained in the soil. In this respect, soil management practices, such as 

crop residue retention and green manuring, are of particular interest. 
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1.2 Purpose of study 
 

The incorporation of crop residues such as cereal straw which has wide C:N ratios often 

causes mineral N to be immobilised and bound in the decomposer biomass (Powlson 

1993). Such immobilisation of N helps to conserve it in the soil in organic forms for a long 

period of time, therefore, reducing loss especially loss via leaching (Parkinson 1993). 

However, the accompanying declines in mineral N availability can affect the yields of 

subsequent crops and usually have to be mitigated by applying fertiliser-N else organic 

materials with narrow C:N ratios. Equally, green manuring with legume crops can increase 

the mineralization of organic N making it available for plant uptake. On the other hand, the 

flux of available N, if not used quickly by plants, can be lost by gaseous emission or 

leaching exacerbating the declines in mineral N availability accompanying could assist 

reduce N-depressions caused by straw decomposition (Christensen 2004). 

 

By providing N which is essential to microbes both through N-fixation and residue 

incorporation, legume green manures have the potential to substitute for inorganic-N 

fertilisers that are often used to enhance straw decomposition. It is assumed that the slow 

decomposition and unavailability of N experienced when residues with wide ranging C:N 

ratios like cereal straw are incorporated into the soil may be improved by including a 

legume green manure in the crop rotation. However, little is known about the influence of 

legume green manures on the decomposition of a cereal crop residue (straw/stubble) and 

soil-N retention and availability. To study these influences, two straw management 

practices where residue was either retained or burnt, were compared in the presence and 

absence of a legume green manure. 
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Chapter 2. Literature Review 

2.1 Introduction 
 

Nutrient cycling in the soil-plant system is paramount for ensuring the health and 

sustainability of agroecosystems (Marschner and Rengel 2007). As an important attribute 

of soil quality, nutrient cycling facilitates the availability of nutrients for plant uptake. In 

this regard, SOM plays a vital role through its influence on nutrient cycling and retention 

in the soil-plant system (Dick and Gregorich 2004), and it is an intrinsic component of all 

soil-plant nutrient cycles. With significant amounts of nutrients being removed from arable 

cropping systems annually in grain crop biomass (Campbell 1998), the retention of crop 

residues becomes increasingly important as it ensures the recycling of these nutrients, 

whilst maintaining or improving SOM levels. However, the immobilisation of nitrogen (N) 

following crop residue incorporation leads to soil mineral N depletions that affect crop 

production. Such depletions are typically corrected by supplying N fertiliser or organic-N. 

Alternatively, residues are burned to prevent N immobilisation occurrence. 

 

Nitrogen cycling in agroecosystems is closely related to SOM turnover and cycling 

(Allison 1973; Christensen 2004). Nitrogen is also the nutrient most limiting to 

productivity in these systems (Jarvis et al. 1996; Christensen 2004). To sustain crop 

productivity and maintain soil quality, it is crucial that N-cycling is managed in 

agroecosystems. Green manures can assist in the recycling of N and other nutrients in 

cropping systems. The active growth of green manure utilises available N in the soil during 

fallow periods as well as capturing additional gaseous N through biological N-fixation. 

Upon incorporation into soil, green manures release N during decomposition that 

subsequently becomes available for uptake by crops. Green manures, thus help to retain N 

in the soil, and minimise its susceptibility to loss during winter months in temperate 

cropping systems. 

 

This review discusses the effects of burning and retention management of crop residues 

(straw, stubble and green manures) on organic matter and N cycling, and on the 

bioavailability of other nutrients, focusing on temperate arable cropping systems. 
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2.2 Organic matter cycling in agroecosystems 
 

The transformation of organic matter in soils forms a small but significant part of the 

overall global carbon (C) cycle. Soil organic matter is the largest C reservoir in 

agroecosystems as can be seen in Figure 2.1. The major inputs to SOM include plant and 

animal biomass returns while microbially induced transformation and oxidation through 

cultivation are responsible for the major SOM losses from agroecosystems. Soil organic 

matter is a large reservoir of nutrients and its role in nutrient cycling is often linked to soil 

health and fertility (Jarvis et al. 1996). Mineral nutrients are supplied to plants during SOM 

turnover, a process important for the improvement and maintenance of soil fertility. Soil 

microbial population levels and chemical properties of SOM are the main drivers of the 

decomposition process (Allison 1973). Additional benefits of SOM include its beneficial 

effect on soil structure and moisture retention/drainage character which condition the soil 

for nutrient cycling (Stevenson 1994). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Carbon cycling in an agroecosystem (Brady and Weil 2000). 
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Microbial activity is predominantly responsible for SOM turnover and is generally C-

limited in agricultural soils (Murphy et al. 2003). Microbial biomass responsible for these 

activities make up the active pool of SOM and derive energy from C sourced from 

recycled plant and animal residues. Microbial populations can increase and diversify as 

increased quantities of residues of various qualities are added to SOM, speeding up the 

movement of plant nutrients through the soil-plant systems, which is often a slow natural 

process (Allison 1973). The slow rates of nutrient movement are also accelerated when 

land is cultivated, since this serves to expose the SOM to microbial and chemical 

oxidation. 

 

Movement of crop produce from sites for consumption elsewhere results in limited residue 

return and therefore reduced microbial C supply (Haynes and Francis 1990; Byrnes and 

Bumb 1998). By ensuring that SOM levels are optimised, an equilibrium between the rates 

of nutrient release through microbial activity and removal by crop uptake can be 

maintained. Therefore, the constant addition of residues is important for SOM 

improvement, turnover and nutrient release as it supplies C for microbial decomposers and 

stabilises SOM. The gradual increase of soil organic-C in SOM can also help retain and 

conserve C, thus reducing contributions to greenhouse gas emissions (Stevenson and Cole 

1999; Goh 2004). 

 

In cropping systems, SOM levels can either increase or decrease slowly (Jarvis et al. 

1996). However, cultivation increases the rate of decline with some losses being as great as 

60 % of the original SOM (Prasad and Power 1997). This results in soil structural problems 

such as compaction or reduced soil aggregate stability. The latter condition is more 

common in continued arable cropping systems than in pasture systems or in mixed pasture 

and cropping systems that utilise grass sods (Allison 1973; Johnston 1991). Continuous 

annual cultivation in cropping systems leads to the destruction of humic matter with less 

residues returned to SOM pools (Tan 2003). 

 

The maintenance of SOM at relatively high levels is necessary to optimise plant nutrient 

supply and soil physical conditions. Soil physical benefits of SOM include increased 

aggregate stability, improved infiltration and water-holding capacity, and increased 

drainage and soil aeration (Swift 1991; Nichols and Wright 2004; Havlin et al. 2005). Soil 

chemical benefits of SOM include pH buffering, increased cation exchange capacity, and 
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adsorption, desorption, chelation, solubilisation and hydrolysis reactions that enhance 

nutrient availability (White and Zelany 1986; Chen et al. 1994; Hanes 1997; Weil and 

Magdoff 2004). Apart from these influences, SOM has indirect benefits such as non-

nutrient growth stimulations (Kononova et al. 1966; Chen et al. 1994; Muscolo and Nardi 

1997; Nardi et al. 1997), weed and disease suppression (Klöcking et al. 1997; Stone et al. 

2004), and the deactivation of organic chemicals and xenobiotics (Schnitzer and Khan 

1972; De Simone et al. 1997; Kalbitz et al. 1997). These effects of SOM assist in crop 

production, while preventing environmental degradation. 

 

Management practices that directly improve and maintain SOM levels in soil include crop 

rotation, animal manure application, green manuring, and crop residue incorporation. Of 

these, green manuring and crop residue incorporation are more applicable in continuous 

arable cropping systems that exclude grass leys (Allison 1973; Goh and Haynes 1986; 

Kumar and Goh 2000) or animal manures. Plant residues retained in soil can supply 

nutrients either through immediate mineralisation, or at a slower rate as part of the 

humification process. Nutrients removed in crop residues can be recycled while green 

manures add much needed nutrients like N to the active fraction of SOM which aid with 

decomposition. The fixation of N along with mobilisation of nutrients such as phosphorus 

(P) by green manure crops (Horst et al. 2001; Fullen and Catt 2004) can also make these 

nutrients available for subsequent plant uptake. 

 

It is clear that SOM, along with an adequate quantity and balanced availability of macro- 

and micronutrients required for optimum plant growth, is an important soil quality attribute 

(Christensen 2004). Furthermore, SOM turnover, although principally a part of the global 

C cycle, also contains other important nutrient elements that are involved in separate but 

linked biogoechemical cycles. One such nutrient element is nitrogen. The N cycle is a 

major cycle, where N availability in the mineral form often controls the rate of 

decomposition of SOM. Its importance in agroecosystems is discussed next. 
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2.3 Nitrogen cycling in agroecosystems 
 

Nitrogen is an integral element of many essential biological compounds such as amino 

acids, enzymes, nucleic acids and chlorophyll (Haynes 1986; Brady and Weil 2000). These 

compounds are building blocks of most living organisms and control numerous biological 

processes vital for growth and survival. Although abundant in soil, N is often present in 

forms that are unavailable to plants, especially organic forms (>95 %) which occur in SOM 

(Allison 1973; Brady and Weil 2000). Less than two percent of the N in SOM is available 

for plant uptake as mineral-N (Haynes 1986). Only through the process of mineralisation 

can the organic-N present in SOM be made available to plants (Haynes and Goh 1978; 

Kumar and Goh 2000; Christensen 2004). Mineralisation and the simultaneous 

immobilisation of N are important transformation processes in the soil-plant N cycle 

(Figure 2.2), which is the most important subset of the global N cycle. Biological N-

fixation is a transformation process which provides N input to the soil-plant system while 

other N turnover processes in soil e.g. volatilisation, nitrification and denitrification are 

pathways for N loss from the soil-plant system. 

 

Nitrogen enters the soil-plant system mainly through N2 fixation, organic matter turnover, 

plant and animal residue (manure) decomposition, and mineral fertiliser dissolution. 

Mineral fertiliser application provides the largest N input to agroecosystems (Havlin et al. 

2005). However, it is the least sustainable due to the limited long-term benefits on soil 

physical, chemical and biological properties. Hence, organic N inputs are increasingly 

perceived as more beneficial. Symbiotic N2 fixation by the bacteria Rhizobia and other 

microorganisms contribute on average between 112-224 and 30-112 kg ha-1 yr-1 of 

atmospheric N in perennial and short-season annual legumes, respectively (Allison 1973; 

Brady and Weil 2000; Havlin et al. 2005). Specific examples include a range of 20-173 kg 

N ha-1 fixed on average by several annual legumes (Frye et al. 1988), and 70-150 kg N ha-1 

fixed by annual clovers (Sarrantonio and Gallandt 2003). 
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Figure 2.2 Nitrogen flow in the rooting zone of a ‘typical’ arable soil showing major 

inputs, outputs, and pools of nitrogen (Christensen 2004). 

 

Large amounts of N are removed from cropping systems through uptake by growing 

plants, and by leaching and gaseous N losses. Plants use inorganic N from the soil solution 

namely nitrate (NO3
-) and ammonium (NH4

+) ions, and traces of nitrite which are made 

available through mineralisation (Vinten and Smith 1993; Kumar and Goh 2000). Nitrate is 

usually the dominant form of plant available N in agricultural (oxidised) soils due to the 

rapid oxidation of NH4
+ to NO3

- (Fageria and Baligar 2005; McNeill and Unkovich 2007), 

and particularly in arable soils where NO3
--N is most preferred (Haynes and Goh 1978; 

Haynes 1986; Vinten and Smith 1993). 
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Mineralisation involves the liberation of ammonium (NH4
+) from organic-N compounds, 

often termed ammonification (McLaren and Cameron 1996). This process is often 

followed closely by oxidation of NH4
+ into nitrate (NO3

-) (nitrification) (Smith et al. 1993; 

Vinten and Smith 1993). The opposite is true during immobilisation where the conversion 

of mineral N back into organic N by microorganisms occurs, often simultaneously with 

mineralisation. The net balance between both opposing processes determines the rate of 

mineral N (and other nutrient) release (Kumar and Goh 2000; Pierzynski et al. 2005). The 

two-part conversions in the mineralisation process are: 

 

R–NH2 + 2H2O → R–OH + NH4
+ + OH- (Ammonification) 

NH4
+ + 2O2 → 4H+ + NO2

- + O2 → NO3
- + H2O + 2H+ (Nitrification)

 

Most N turnover processes such as mineralisation are dependent on microbially mediated 

transformations, often in association with SOM turnover (Jenkinson 2001; Christensen 

2004). N-turnover in the decomposer biomass and labile organic matter is considerably 

faster than that in stable organic matter. Microbes respond readily to plant residue and 

animal manure application and soil disturbance such as tillage. The residues and manures 

added often have narrow ranging C:N ratios (25:1 or less) (Rahn et al. 2003; Wolf and 

Snyder 2003) that provide microbes with energy, while tillage exposes SOM to microbial 

access and oxidation. 

 

Given the importance of soil microbes in N transformation and turnover, organic sources 

of N need to be properly managed to provide an environment conducive for microbes 

(Pierzynski et al. 2005). This can be addressed through SOM improvement, which tends to 

induce optimum microbial activity through its effects on soil physical, chemical, and 

biological properties (Kumar and Goh 2000). Although the mineralisation of N from SOM 

provides a significant portion of the N required by plants, it is inadequate to achieve 

economically optimum yields for important agricultural crops (Gasser 1982). However, the 

long-term use of manures or leguminous rotational crops can greatly increase the amount 

of potentially mineralisable organic-N in soils, leading to markedly reduced fertiliser N 

requirements (Kumar and Goh 2000; Pierzynski et al. 2005). Though the reduction of the 

latter is considered important from economic and environmental perspectives, the overall 

increase in N inputs to the N cycle is still a liability (O'Hara 1998). In this respect, the 

doubled global N fixation rate caused by anthropogenic management or interference in the 
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N cycle has intensified nitrous oxide (N2O) production during microbial nitrification and 

denitrification (Jenkinson 2001; Bergström et al. 2005), and increased nitrate-N leaching 

from agroecosystems. The existence of nitrate-N in the soil is often short-lived due to its 

susceptibility to denitrification and loss through leaching (Haynes 1986). Considering the 

dominance of nitrate-N in cropping systems, any practice that either improves the 

efficiency of nitrate-N use, or allows it to be converted into organic forms thereby reducing 

losses from the system, is worthy of investigation. 
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2.4 Nitrogen dynamics in temperate arable cropping 
systems 

 

In temperate cropping systems, reduced cropping intensity during winter, coupled with 

increased moisture and net water percolation down the soil profile creates a high potential 

for N loss (Bergström and Kirchmann 2004). Leaching occurs naturally, however, the 

increased loads of nitrate-N released from agroecosystems owing to the accelerated N 

cycling in managed agroecosystems augment the quantities leached (McNeill and 

Unkovich 2007). Nitrate-N that is not leached remains in soil but can be further lost 

through denitrification, owing to the anaerobic conditions created by high soil moisture 

conditions, therefore, increasing gaseous losses. Such losses of N can be mitigated by 

reducing nitrate concentrations in soil during winter through increased crop N recovery and 

transformation into organic-N (Sapek 2005). 

 

The cropping system dominant in the Canterbury Plains of New Zealand is one in which 2 

to 4-years of fertility-depletive cereals and other cash crops are rotated with 2-4 years of 

grazed pastures (Haynes and Francis 1990; Roberts et al. 2008). Continuous cropping on 

the same site during the arable phase of such a system often depletes readily mineralisable-

N and hence additional inputs of N are required (Gasser 1982; Kumar and Goh 2000). For 

example, up to 190 kg N ha-1 can be removed in wheat grains and straw in a 10 t ha-1 grain 

yield crop (Haynes and Francis 1990), and this needs to be replaced. 

 

Crop rotations with nutrient returning crops such as legumes are common. However, where 

their use is limited, inorganic fertilisers are used to replace the N lost from arable cropping 

systems. The inclusion of legume crops, whether in rotations or in grass-legume leys, 

ensures a more sustainable system with the capacity to fix atmospheric N while improving 

SOM and ultimately the soil. N-fixation contributes to agricultural production through the 

use of legumes as green manures, legumes as cash crops, and legumes as forage crops 

(Goh and Haynes 1986; Kumar and Goh 2000). Symbiotically fixed N can thus be 

transferred to other crops, with the use of legume as a green manure maximising this 

transfer. 
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Cultivation during the arable phase is necessary for land clearance and seedbed 

preparation. The ploughing under of pastures, catch (or cover) crops, crop residues, and 

green manures not only introduces new SOM to the soil-crop system, but also exposes old 

SOM for oxidation and microbial attack. Cultivation therefore greatly increases the rate 

and amount of N made available through mineralisation. At the same time, microbial 

immobilisation of N released during decomposition can significantly depress mineral N 

availability and reduce crop yield. The decomposer microbes that breakdown residues, 

especially those high in lignin, immobilise N, therefore, reducing the amount of mineral N 

available to plants. 

 

Residues with high N and low lignin and polyphenol concentrations can be decomposed 

rapidly, with large amounts of N released; while those low in N, but with large lignin and 

active polyphenol concentrations decompose and release N slowly (Handayanto et al. 

1997; Kumar and Goh 2000). The former meet the immediate N demands of crops but 

contribute little to SOM maintenance, while the latter lock up most of the N in soil, 

releasing it slowly over time. An option to balance these effects is to co-incorporate 

materials of wide ranging C/N ratios with those with narrow ranging C/N ratios an this has 

shown to reduce N leaching (Rahn et al. 2003). However, the retention of plant material in 

soil has both advantages and disadvantages, and specific management options would be 

needed to satisfy the N requirement of different cropping systems. The next sections 

discuss management options for cereal residues (straw/stubble), and green manure, and 

their effects in arable cropping systems. 
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2.4.1 Residue (straw/stubble) management 
 

Straw is a tough fibrous material that is resilient to decomposition (Staniforth 1982). Its 

fibres are made up of cellulose strands bound in a matrix of hemicellulose and lignin, 

making them partially protected from decay (Summers et al. 2003). Together cellulose, 

hemicellulose and lignin make up 80 % of the chemical constituents of straw (Table 2.1). 

With such properties, the incorporation of a heavy crop of straw into soil will make it dry 

and less compact, impeding the movement of moisture (water repellent) (de Jonge et al. 

2007) and nutrients (Staniforth 1982). However, this problem can be solved by thoroughly 

breaking up and mixing straw with moist and well aerated soil at a sufficiently high 

temperature so as to encourage breakdown. 

 

Table 2.1 Chemical constituents of straw (Butterworth 1985). 

 Approximate % Breakdown rate 

Water soluble materials (e.g. sugars) 8 – 12 (6*) Days 

Cellulose ( a polymer of glucose) 38 – 44 (40*) Months 

Hemicellulose (a polymer of glucose & other sugars) 32 – 36 (39*) Months 

Lignin (a polymer of phenols) 10 – 15 (13*) Years 

*Proximate chemical composition of barley residues (Lynch 1979). Values as % of dry weight. 

 

Straw disposal has become a problem due to changes in farming methods, particularly 

where mixed animal and crop farming has been replaced by agriculture specialising in 

either crops or animals (Ellis 1979). Historical usages of straw for livestock feed and 

bedding has declined thus increasing the amount that needs disposal. In New Zealand, 

baling and burning have been the traditional disposal methods (Beare et al. 2002). Given 

an average of 6 t ha-1 of cereal grains were harvested from a 12 t ha-1 crop (mean harvest 

index (HI) of 0.5), a quantity of 6 t ha-1 of cereal residues produced would either be burnt 

or baled (MAF 2004). However, the removal of cereal residues is fast changing as farmers 

become more aware of the problems of soil organic matter and nutrient loss (Kumar and 

Goh 2002), and air pollution (Smil 1999). Soil incorporation of straw/stubble is an option 

that is being accepted by many farmers as a means of addressing the disposal problem. 
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2.4.1.1 Burning 
 

Burning of straw/stubble is widely practised around the world and for various reasons, with 

reduction of crop residue biomass, and control of weeds, pests and diseases being the main 

ones (Campbell 1998; Smil 1999; Kumar and Goh 2000). In New Zealand, where cereal 

production is high (Roberts et al. 2008), burning is often practised to clear land, reduce 

grass weeds like brome (Bromus sterilis/Bromus commutatus), eliminate slugs, and reduce 

diseases such as ‘take-all’ in wheat-wheat rotations (FAR 2006). Burning is the quickest 

and easiest method of land clearance. The reduced cost of land preparation and drilling 

make burning more appealing and practical. Furthermore, burning helps to reduce weed 

pressure, and eliminate pests and diseases through sterilisation (Staniforth 1982; 

Butterworth 1985), thereby reducing the input of herbicides and pesticides. The ash 

obtained from straw burning contains nutrients such as potassium (K) and phosphorus (P). 

In addition, N from soil microbes killed during the burn is returned to the soil, often 

resulting in vigorous growth of subsequently planted crops. 

 

Crop yield improvements associated with burning have been attributed to nutrient release 

and reduced weed, pest and disease occurrence. For example, long-term trials in Letcombe 

showed high yields of winter wheat where straw residues had been burnt, compared to 

plots where residues had been retained (Butterworth 1985). More recently, Chan & Heenan 

(2005) reported improved wheat yields following stubble burning in a 19-year trial in 

South Australia. 

 

However, the benefits of burning have gradually been overshadowed by the increasing 

concerns over air pollution and soil degradation as SOM and nutrients are lost in the 

process via erosion and volatilisation. In Canada, Biederbeck et al. (1980) found that a 

normal burn resulted in 32 % and 27 % loss of straw dry matter and N content, 

respectively. Although results from some long-term trials showed no changes in SOM 

content when burning was compared with other methods of disposal (e.g. (Staniforth 

1982)), return of any crop residue is beneficial for SOM maintenance and nutrient cycling. 

Apart from C, N and sulphur (S) are almost entirely lost from the soil-crop system during 

combustion of straw/stubble (Smil 1999). Other nutrients such as P are either retained on 

the ground (Biederbeck et al. 1980), or in airborne particles that drift no more than 10 to 

100 m (Campbell 1998). The nutrients that remain on the soil surface are prone to erosion 
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before plant recolonisation takes place.  The oxides of some nutrients such as K and 

calcium (Ca) can increase soil pH when hydrolysed (Campbell 1998). 

 

Apart from its effects on SOM and nutrients, fires pose a threat to flora and fauna, 

infrastructure and even lives when not controlled. A more subtle problem that results from 

long-term burning is the reduced number and activity of deep-burrowing earthworm, along 

with other surface- and soil-inhabiting invertebrates and this can lead to soil structural 

problems (Edwards and Lofty 1979). Reduced microbial activity after a fire and SOM 

destruction add to the problems associated with soil fertility loss. In arable cropping 

systems, where the loss of organic matter is rapid due to continuous cultivation, burning 

can amplify this loss. For this reason, and also because of atmospheric pollution issues, 

stubble burning is being phased out in numerous parts of the world. 

2.4.1.2 Retention and incorporation into arable cropping systems 
 

Straw contains a fair amount of nutrients as shown in Table 2.2, and its retention in arable 

cropping system has been an option that has been explored with various outcomes. The 

benefit it bestows in terms of improved long-term productivity is mainly due to the 

addition of organic matter, which is particularly important in lighter textured soils 

(Butterworth 1985). Since organic matter decomposition in soil is a microbial process, 

increased microbial activity results as energy sources in the form of residues are added to 

soil. Microbe activity is affected by factors such as moisture, temperature, aeration, straw 

length, and nutrient availability, N in particular is required for decomposition. Under 

optimum conditions, nutrients in crop residues are recycled and gradually become 

available for crop uptake as the residues are decomposed. 

 

Table 2.2 Nutrients contained in stubble from a 2 t/ha crop of wheat (Hermann 1992). 
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The gradual release of nutrients from cereal straw does not often produce yield increases 

by subsequent cereal crops. However, the conditioning effect that new organic matter has 

on the soil appears to improve nutrient uptake. Cereal straw incorporation has been found 

to increase the uptake of N, P and K by succeeding wheat crops even though yields were 

not increased (Fullen and Catt 2004). 

 

Populations of other organisms that aid decomposition such as fungi, earthworms, and 

other invertebrates will also flourish as a result of straw incorporation (Lynch 1979); 

(Curry and Byrne 1997). Soil physical properties such as aggregation and moisture 

retention can be improved through this practice. Improved soil fertility should ultimately 

lead to reduced fertiliser requirements, reducing the costs of inputs. Other benefits such as 

reduction in wind and water erosion result either directly from straw/stubble mulch or 

because of the SOM increases straw incorporation produces (Douglas and Rickman 1992). 

 

Although the long-term incorporation of straw/stubble is beneficial, numerous immediate 

problems are associated with this practice. The most obvious problem is the physical 

impediment straw, stubble or chaff residues present to mechanical cultivation equipment 

that can lead to high costs of cultivation when compared to burning. Another problem is 

that straw residues can inactivate herbicides, making weed eradication more difficult and 

costly (Schnitzer and Khan 1972; Kumar and Goh 2000). The presence of pests and 

diseases in crop residues can also be a problem for new crops, while the release of toxins 

from the decomposition of straw/stubble can interfere with germination and plant growth. 

Not only will the toxins retard growth, but N immobilised by microbial biomass when 

cereal residues with wide ranging C:N ratios (>80:1) are incorporated in soil can lead to 

yield depressions in subsequent crops (Allison 1973; Kumar and Goh 2000). Refusal by 

farmers to incorporate straw/stubble is often due to fears of such yield losses occurring 

(Beare et al. 2002). However, if straw/stubble is used in combination with other organic 

soil amendments such as slurry, green manure and catch crop or application of N fertiliser, 

the risk of yield depression is significantly reduced. Thomsen and Sorensen (2006) 

associated this yield depression reduction with the long-term contribution of stubble 

residues to SOM whose decomposition was aided by the high N residues that were co-

incorporated. Fullen and Catt (2004) found that the application of 2-6 kg of N per tonne of 

straw was enough to off-set immobilisation during the decomposition process. As an added 

benefit, the incorporation of material with wide ranging C/N ratios along with high lignin 
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and polyphenol like cereal straw/stubble, have been shown to effectively lower N available 

for nitrification and denitrification, thus reducing loss from soil-crop systems (Kumar and 

Goh 2003; Sarkodie-Addo et al. 2003). 

 

Regardless of problems with the practice, more farmers are considering straw 

incorporation as a way of managing SOM better and allaying public concerns over the 

impacts of straw burning on air pollution (Beare et al. 2002). 
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2.4.2 Green manure and its role in N dynamics 
 

The re-emergence of the age-old practice of green manuring is mainly due to the increased 

knowledge of the ecological principles involved. This, along with increasing costs of 

agricultural inputs, particularly following the energy crisis and rising fertiliser costs in the 

1970’s (Frye et al. 1988) and the need to address the global problem of soil degradation 

(Sarrantonio and Gallandt 2003), has propelled the re-mergence if this practice. Green 

manure, according to Allison (1973), includes any plant material turned into the soil while 

still green (before physiological maturity) for the primary purpose of improving soil 

fertility. In particular, it refers to legumes grown to enhance the short-term N fertility of 

the soil (Sarrantonio and Gallandt 2003). However, green manure also includes other non-

legume crops that are turned under before or near maturity while still green, but which 

were sown originally for cover, break or catch crops (Magdoff 1992; Kumar and Goh 

2000). 

 

In temperate arable cropping systems, legume green manure crops play an important role 

in the N dynamics of the soil-crop system, mainly through their ability to biologically fix 

N2 and utilise residual N. Grown typically through the autumn – winter period when the 

potential for leaching is high, green manures reduce loss from soil by acquiring additional 

plant available N. This is largely due to the good root systems developed by such crops 

that enable the crops to capture nitrate-N at both shallow and deeper depths which would 

otherwise be lost by leaching or denitrification (Stevenson and Cole 1999). Crops such as 

lupin (Lupinus spp. L.) have been shown to be as effective as cereals in taking up N, as 

well as fixing atmospheric N (Fowler et al. 2004). After the green manures are ploughed 

into the soil in late winter – early spring, N either fixed or taken up by the green manure 

crop is released through decomposition and becomes available to subsequent crops. The 

increased supply of readily degradable organic matter in the green manure supports large 

microbial populations, which in turn increase the rate of oxidation of soil organic matter 

facilitating the release of N and other nutrients for crop uptake (Stevenson and Cole 1999). 

 

Apart from supplying nutrients, the addition of green manure to SOM results in improved 

soil physical properties such as better aggregation, water infiltration, aeration, and moisture 

retention. Furthermore, chemical properties like cation/anion exchange, pH buffering, and 
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chelation, adsorption and complexing reactions are also improved (Thorup-Kristensen et 

al. 2003; Wolf and Snyder 2003). The incorporation of green manure does not always 

improve yields immediately, but over time they do often increase significantly due to the 

gradual improvement in SOM quantity and quality (Stevenson and Cole 1999; Stark et al. 

2006). The added benefit of green manure in terms of weed suppression and pest and 

disease control further assist with yield improvements and more over reduce costs of 

chemical (pesticide and herbicide) inputs (Allison 1973; O'Hara 1998). 

 

The bioavailability of N following green manuring is largely microbially mediated, and is 

consequently dependent on factors that affect microbial (particularly bacterial) activity 

(Sarrantonio and Gallandt 2003). These include soil moisture, temperature, microbial 

access to substrate, and pH, which in turn are influenced by weather, soil type, tillage, and 

residue size and composition (Thorup-Kristensen et al. 2003). Most of these factors can be 

manipulated through manipulating the SOM content of soil. 

 

The timing of application and the quality of green manures are more important than the 

quantity, as the former factors influence mineralisation and the ability of crops to utilise 

the N and nutrients released. In cropping systems, the timely use of high N containing 

green manure in combination with low N materials will allow for the manipulation of net 

mineralisation to ensure a steady cycling of N within the system (Kirchmann et al. 2002). 

Wagger (1989) found that when ploughed into the soil before maturity, legumes had lower 

dry matter but higher N concentration and low C/N, and that decomposition was faster. On 

the other hand, the high cellulose, hemicellulose and lignin contents of legumes ploughed 

in at a matured age reduced the speed of decomposition. Immature green manure crops 

have high levels of sugars, starch, amino acids and proteins present and narrow ranging 

C:N ratios that are close to those of microorganisms (10:1) than those of mature materials 

(>25:1) (Wolf and Snyder 2003). 

 

Legumes have been shown to provide nutrients other than N, including P from sources not 

accessible to many non-leguminous plants (Fullen and Catt 2004; Wasaki et al. 2008). 

Ohno and Gannel (1996) found that increased dissolved organic C in green manure 

increased the bioavailability of P by releasing aluminium (Al) adsorbed onto surfaces of 

complexes, which in turn reduced the potential for P complexation by Al. Randhawa et al. 

(2005) reported a daily gross organic P mineralisation of 0.27 mg P kg-1 from lupin green 
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manure amended soils. This efficiency was a result of the ability of lupins to produce 

exudates that mobilise P from available, acid and also stable residual soil P fractions 

(Kamh et al. 1999). 

 

Legumes are known to contain significant amounts of P, K, Ca, Mg, Boron (B) and 

Molybdenum (Mo) (Seiter and Horwath 2004; Wolf and Snyder 2003), which are all 

released upon legume residue and microbial biomass decomposition. Nutrient recovery 

from green manures varies with different environmental factors (e.g. climate, soil 

conditions), type of management (e.g. shredding, mixing, soil incorporation) and tissue 

quality characteristics (e.g. C, N, cellulose, lignin, polyphenol contents). When managed 

well, green manures can assist in maintaining soil fertility by improving SOM content and 

nutrient release, ultimately leading to improved production in arable cropping systems. 
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2.5 Hypotheses and Objectives 
 

Studies on the use of green manures to alleviate N depressions reviewed so far have not 

looked at incorporating a green manure crop during straw/stubble decomposition at the 

same site immediately after the cereal crop harvest. Straw management practices and the 

use of green manures have either been studied individually or together but with the 

treatments such as green manure and straw being grown separately elsewhere and brought 

together at the site of study. The effects of a growing green manure and its subsequent 

incorporation into the soil on straw/stubble decomposition at the same site need to be 

investigated. Particularly, the influences these practices have on N and its availability to 

plants. Hence, the following hypotheses and objectives were arrived at. 

 

2.5.1 Hypotheses 
 

i. The retention of cereal straw/stubble compared to the practice of burning will 

improve N retention in the soil, thereby preventing loss. 

ii. The inclusion of a legume green manure in the crop rotation will significantly 

increase the decomposition of straw/stubble by increasing N availability through N-

fixation and mineralisation. 

iii. The inclusion of a legume green manure will significantly increase overall N-

mineralisation and plant availability. 

 

2.4.3 Objectives 
 

i. To measure the effects of cereal straw/stubble inclusion and burning on N retention 

and availability in the soil; 

ii. To measure the effects of a legume green manure incorporation on straw/stubble 

decomposition; 

iii. To measure the effects of a legume green manure incorporation on overall N-

mineralisation and plant availability. 
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Chapter 3. Materials and methods 

3.1 Trial site 
 

A 1.08 ha area in the Horticultural Research Area (HRA) at Lincoln University was used 

for the field experiments. The Templeton sandy loam soil (immature pallic soil) (NZ Soil 

Bureau 1968) had previously been cropped with nutrient depletive crops, with ryegrass 

(Lolium multiflorum L.) the last grown, and had a pH of 5.80, 1.91 % C and 0.164% N at 

the beginning of this study. Spring barley (Hordeum vulgare L.) was sown on the trial area 

in September 2006, and grown to maturity with 50 kg N ha-1 applied after sowing. At 

harvest in February 2007, the crop produced a yield of 7.38 t ha-1 of grain and 5.99 t ha-1 of 

straw. 

 

Monthly rainfall, minimum and maximum air temperatures, and soil temperature at 10 cm 

depth, which were recorded during the study period, are shown in Figure 3.1. 
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Figure 3.1 Total rainfall, minimum, maximum air temperatures, and soil temperature at 

10 cm depth recorded between January 2007 and February 2008. Source: 

Broadfield, Crop and Food, Lincoln, NZ from Cliflo database. 
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3.2 Field experiment 
 

The first objective of the decomposition experiment was to determine the effects of 

decomposing straw/stubble on nitrogen retention and availability in the soil. This was 

achieved by measuring the decomposition of straw/stubble in litterbags over 5 months 

(autumn-winter), along with total N and mineral N in the surrounding soil. The second 

objective was to determine the effects of incorporating a legume green manure on 

straw/stubble decomposition. The legume used in this study was Lupinus angustifolius L. 

var. Blue Lupin that was tolerant to low temperatures and would be ready for ploughing in 

after 4 months. The agronomic yield and nutrient contents of the green manure were 

measured before it was ploughed in. 

 

A randomised complete block design was used to test four treatment combinations, each of 

which was replicated four times giving a total of 16 plots. Net plot areas were 135 m2 (9 m 

x 15 m) each, giving a total trial area of 2160 m2. The plots had 5 m spacing between them 

to allow access by machinery. The four treatment combinations were: 

(i) Straw/stubble burned with legume green manure (B+L); 

(ii) Straw/stubble burned without legume green manure (B−L); 

(iii) Straw/stubble retained with legume green manure (S+L); 

(iv) Straw/stubble retained without legume green manure (S−L). 

 

The treatment combinations were applied as follows. At the barley harvest in February 

2007, the straw was threshed and spread as evenly as possible over all plots. The average 

rate of straw/stubble application was 5.99 t ha-1, however, some spots had coverage rates 

measuring up to 7 t ha-1 as can be seen in the foreground of Figure 3.2. Barley 

straw/stubble on plots with treatment combinations (i) B+L and (ii) B−L were burned 

using a tractor-mounted gas flame weeder for a more controlled and consistent burn 

(Kumar and Goh 2002). All straw/stubble was retained in plots with treatment 

combinations (iii) S+L and (iv) S−L. 
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Light discing was done on all plots after straw/stubble treatment application, following 

which the legume green manure crop were sown into plots with treatment combinations 

B+L and S+L. Straw/stubble burning and legume sowing were all completed between the 

5th and 8th of March 2007 (autumn). All weeds in plots without lupin (B−L and S−L) were 

controlled with glyphosate herbicide (Roundup®). At the end of July 2007 (winter), the 

legume green manure was rotary hoed in the B+L and S+L treatment plots. All 16 plots 

were then ploughed to a depth of 20 cm. 

 

 
Figure 3.2 Plots with straw retained (foreground) and those being burned (background) 

during treatment application on March 5 2007. 
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3.2.1 Straw/stubble decomposition 
 

Straw/stubble decomposition in 8 of the 16 plots with straw/stubble retained treatments 

S+L and S−L were monitored using litterbags by the method described by Beare et al. 

(2002). Fibreglass-nylon litterbags (20 x 20 cm, 4-mm mesh) were filled with 30 g of 

oven-dried (65°C) postharvest barley stems and leaves cut to 5-cm lengths, giving a 

straw/stubble application rate of 7.5 t/ha. These were then buried horizontally at 10 cm 

depth directly following lupin sowing on March 9, 2007. Lupin seeds were removed, 

litterbags buried after which the seeds re-sown. The chemical composition of the 

straw/stubble used in the litterbags is presented in Table 3.1. 

 

Two litterbags were sampled from each plot at 10, 50, 80, 110, 120, 130 and 140 days after 

burial between March and August 2007 (autumn-winter). Sampling at 110 days 

corresponded with the time of green manure incorporation. All remaining litterbags were 

removed and stored at 4°C, then reburied immediately after lupin incorporation. This was 

to be completed simultaneously between June 27 and 29 2007, however due to very wet 

field conditions, lupin was not turned under until 4 weeks (20 days) later in July 25 2007. 

The 4-week ‘out of the ground’ period was not counted as there would be no 

decomposition. 

 

Residues from the litterbags were sieved (1 mm), weighed and oven-dried at 70°C for 48 

hours before being ground using a Cyclotec 1093 sample mill. Two sets of subsamples (0.5 

g) of the ground residues were ashed in a muffle furnace at 550°C for 5 hours to determine 

the ash content (Beare et al. 2002). The averaged ash contents were then used to adjust 

weights as ash-free dry weights (AFDW) and N content to account for contamination. 

These was done by determining the percentage ash content of samples, then subtracting the 

weight or percentage N content to get final ash-free weights and N contents. The AFDW 

values obtained were then used to determine the amount of litter decomposed by weight 

loss. Total C and N of the ground residues were determined using a LECO C/N/S analyser, 

while lignin and cellulose contents were determined using the acid-detergent fibre (ADF) 

proximate analysis described by van Soest (1994). 
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Table 3.1 Chemical composition of initial barley straw/stubble placed in litterbags. 

Total C Total N C/N Ash Organic matter Lignin* Cellulose* 

46.06 % 0.58 % 80 5.7 % 94.3 % 6 % 44.1 % 

*Proximate analysis reported on the basis of organic matter content of straw/stubble. 

 

3.2.2 Green manure production 
 

Blue lupin was sown in early autumn (March 8, 2007) at 160 kg/ha into plots with 

treatment combinations B+L and S+L. Lupin was sampled at the end of June 2007 just 

before flowering at 16 weeks old. Two sets of above ground biomass samples (inclusive of 

weeds) were taken from each of the 8 treatment plots, using 0.204 m2 quadrants. No 

sample was collected from plots with B-L and S-L treatments, as they had had herbicide 

applied. The above ground biomass samples collected were grouped as lupin, carryover 

barley and other weeds. These were weighed separately before being dried at 65°C for 48 

hours. The dry weights of the 3 groups were recorded separately for dry matter and yield 

determination. All samples were then ground using the Cyclotec 1093 sample mill. Total C 

and N in lupin and barley were measured using a LECO C/N/S analyzer. 

3.2.3 Nitrogen availability 
 

The availability of N in soil was determined by measuring total C and N, and mineral-N. 

Soil was sampled the same day litterbags were retrieved. Soil sampling that coincided with 

litterbag retrieval at 140 d was in fact taken 160 d after straw/stubble incorporation, 

henceforth referred to as sampling at 160 d. The discrepancy in days was due to the 20-

days (4 weeks) ‘out of the ground’ period for the litterbags. Six cores (3.0 cm inner 

diameter) were taken at two soil depths (0–7.5, 7.5–15 cm) per plot with samples from 

each depth bulked seprately, giving a total of 32 samples (8 per treatment combination). 

After moisture determination, all samples were sieved (2 mm) and split into two and half 

dried while the other half was stored at 4 °C for subsequent chemical extraction. 

 

Ammonium-N and nitrate-N were extracted from the field moist samples with 2M KCl, 

using 5 g of field moist soil and with 40 ml of KCl, according to the method described by 

Blakemore et al. (1987) and Beare et al. (2002). All extracts were stored in a deep freezer 

(<-20 °C) to prevent microbial degradation (Clough et al. 2001) until analysis when they 
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were thawed. Analysis was done using the Alpkem FS3000 twin channel flow injection 

analyser (FIA). Total C and N of air-dried soil samples were analysed using a LECO 

C/N/S analyser. 

3.2.4 Soil pH 
 

The pH of soil samples were analysed by mixing 10 grams of air-dried soil with 15 ml 

deionised water and allowed to stand overnight before pH determination (Blakemore et al. 

1987). 



 29

3.3 Glasshouse experiments 
 

The overall effects of the treatment combinations on N mineralisation and crop availability 

were determined in a glasshouse using soil cores taken from the field after green manure 

incorporation. Two methods of determination were employed: (1) a leaching experiment to 

determine the rate and amount of N released, and (2) a pot trial to determine N uptake by a 

crop. 

3.3.1 Soil cores 
 

Two sets of re-constituted soil cores (16 cm diameter x 16 cm depth) were taken from each 

plot (total 32 cores) on July 25, 2007, 3 days after the incorporation of green manure. Due 

to the rotary hoeing of all plots during lupin incorporation, intact soil cores could not be 

collected. Instead, soil was packed into lysimeter casings using a spade, a modified version 

of the method described by McLenaghen et al.(1996). Two spades-full of soil, and plant 

residues, were collected in a bucket. From this bucket, a marked container was used to fill 

the lysimeters, pre-packed with sand to 5 mm from the base to assist filtration and prevent 

clogging. The volume of all cores collected was kept constant at approximately 2.5 litres of 

soil per core. The cores were transferred to a glasshouse and set up for N mineralisation 

and N availability measurements between August and October 2007 (winter-mid spring) 

(Figure 3.3). The minimum and maximum glasshouse temperatures during this period were 

14°C and 20°C, respectively, and the mean temperature was 18.8°C. 

3.3.2 Nitrogen release 
 

A variation of the leaching incubation method proposed by Stanford and Smith (1972), 

illustrated in Figure 3.3a, was used to determine N released from the soil by mineralisation. 

This involved the leaching of 16 of the packed cores (4 per treatment combination) every 

14 days over 3 months (6 events) with one pore volume (1.5 L) of 0.01M CaCl2, between 

August 10 and October 19, 2007. The pore volume used was averaged for the 16 cores. 

The total volumes of leachate collected from all cores during each event were recorded. 

Sub-samples (100 ml) of leachate were kept for analysis and the rest was discarded. Air 

was pumped into the cores (Figure 3.4), after free drainage, to remove excess moisture and 
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prevent water-logging at the base. The concentrations of NO3
--N and NH4

+-N in the 

leachate collected were measured using the FIA (Section 3.2.3). 

3.3.3 Plant nitrogen uptake 
 

The remaining 16 packed soil cores (4 per treatment) were sown with oats (Avena sativa L. 

var. Hokonui); 3 plants per core (Figure 3.3b), on August 3, 2007. The sowing was done 

14 days after cores were collected to allow the soil to settle and also to minimise any 

allelopathic growth inhibitions caused by the decomposing green manure. Plants were 

watered daily but no nutrient was supplied. The above ground plant biomass was harvested 

after 3 months, the same day leaching ended and the soil cores sampled. Plants were oven-

dried at 65°C for dry matter determination and ground for C and N measurements as in 

3.2.2. Soil in pots was sampled and mineral-N was extracted and determined as described 

in section 3.2.3. 

 

  

Figure 3.3 Glasshouse experiment: (a) soil cores used to determine N mineralisation and 

release by leaching; (b) pots used for assessing N availability for crop uptake. 

 

(b) (a) 
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Figure 3.4 Air compressor system to remove excess moisture from soil cores after each 

leaching event. 
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3.4 Crop response 
 

To determine the effects of the treatment combinations on a subsequently sown arable crop 

in the field, all plots were uniformly cropped with spring wheat (Triticum aestivum L. var. 

Conquest). The wheat was drilled after the last lot of litterbags had been retrieved at the 

end of August 2007. Superphosphate was applied and cultivated in at 250 kg ha-1 in all 16 

plots before sowing to counter deficiencies that would have caused growth differences, 

especially since the lupin had been ploughed in three weeks before as green manure. In 

October, each of the 16 plots was split in half with one half getting two split applications of 

urea at 50 kg N ha-1 four weeks apart, while the other half had no N applied. At maturity in 

February 2008, plant samples from all 32 subplots were collected for dry matter and grain 

yield determinations. 

3.4.1 Residual available soil nitrogen 
 

Five cores of soil were sampled at 0-15 cm depth and bulked from each of the 32 sub-plots 

at the time of wheat harvest, and then used to determine residual mineralisable nitrogen 

(RMN). The method used was adapted from that by Campbell et al. (1993). Two 25 g sub-

samples of field moist soil were taken from each of the 32 samples. One set of sub-samples 

was immediately extracted with 80 ml of 2M KCl, filtered and frozen, while the second set 

of subsamples was incubated for four weeks at 25°C before extraction. The extracts were 

analysed for ammonium and nitrate using the FIA as described in section 3.2.3. The 

residual mineralisable-N (RMN) was determined as the difference between the NH4
+-N 

and NO3
--N data from the two sets of extractions. 
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3.5 Statistical analysis 
 

All data sets were statistically tested using the Genstat® 10.0 package. The methods used 

varied for different data sets as listed below. 

1. Two-way analysis of variance (ANOVA) (in randomised block) was carried out for 

all balanced data (n = 16). These included data collected from all 16 plots at 

individual dates and depths (for soil samples), such as mineralisable-N from soil 

extracts and leachates, accumulated mineralisable-N totals at all sampling dates, 

soil C and N, oat yields, oat biomass C and N, and wheat yields without the 

nitrogen factor. 

2. For unbalanced data, where 8 of the 16 plots were sampled (n = 8), particularly for 

lupin green manure production, two-sample t-test analyses were conducted on dry 

matter yield data for lupin and carryover barley, and on lignin, cellulose, C and N 

contents of straw/stubble remaining after decomposition. 

3. Split-plot ANOVA was conducted on wheat yield data from the 32 subplots. 

4. For data collected over time, but with unequal time intervals, particularly for the 

litterbag residue decomposition, the Restricted Maximum Likelihood (REML) 

procedure for repeated measures with unequal time points was used, sequentially 

adding terms to the fixed model. 

5. Normal repeated measures ANOVA was carried out for leachate collected over 

time. 

6. Regression and curve-fitting were done to determine rates where appropriate, with 

slopes tested for statistically significant differences using ANOVA. 

 

Data transformations were conducted where required before analysis of variances were 

carried out. 
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Chapter 4. Results 

4.1 Field experiment 

4.1.1 Straw/stubble decomposition 
 

Decomposition was monitored in treatment combinations where straw/stubble was retained 

with either the inclusion (S+L) or exclusion of lupin (S−L). Due to the high variability of 

the ash-free dry weights (AFDW) of the residues, neither the slopes of the curves nor 

residues remaining at individual dates were statistically analysed. The variability was 

mainly caused by soil contamination of the residues, which could not be thoroughly 

removed by sieving. Hence, the dry weights of residue remaining for some of the plots 

were higher than the initial weights of straw/stubble placed in the litterbags, as is obvious 

in Figure 4.1 where the curves start at 105 % rather than 100 %. 
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Figure 4.1 Amount of straw/stubble residue measured in litterbags retrieved from S+L 

and S−L plots over 140 days of decomposition. Values are means (n = 8) of 

mass remaining expressed as ash-free dry weight (AFDW). Error bars 

represent standard error of means (SEM). 

 

Green manure incorporation 
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Straw/stubble decomposition in plots with lupin (S+L) proceeded in two distinct phases. 

Decomposition was rapid initially (40 % loss) until after 110 d when it slowed (4 % loss) 

(Figure 4.1). This was best described by a logarithmic decomposition rate of - 4.97 g of 

AFDW residue per day. At least 33 % of the initial 30 g of straw/stubble was lost in the 

first 50 days. The slow decomposition in the second phase resulted in 60 % of the residue 

(18 g) remaining after 140 d. In contrast, plots with no lupin (S−L) lost 0.12 g of AFDW 

straw/stubble residue steadily each day, following a linear decomposition pattern during 

the 140-day period. Of the initial 30 g of straw/stubble, 26 % was decomposed after 50 d 

with less than half (49 %) remaining after 140 d. Loss before green manure incorporation 

amounted to 37 % while that after 110 d was 12 %. 

 

The analysis of the two distinct phases of decomposition before (10-80 d) and after (110-

140 d) green manure incorporation in Figure 4.1 showed differences that were almost 

significant. Decomposition during the first phase (10-80 d) was rapid for straw/stubble in 

plots with lupin (S+L) (p = 0.08), then became slower after 110 d (p = 0.09) compared 

with those without lupin (S−L). The noticeable separation of the curves after 110 days 

coincided with the ploughing in of the green manure. However, the overall inclusion of 

lupin did not have a significant effect on residue decomposition during the period of 

measurement. 

 

Changes in the chemical composition of straw/stubble showed that the differences in 

Figure 4.1 were closely related to differences in cellulose decomposition (Table 4.1). 

Lupin significantly increased (p<0.05) the decomposition of cellulose between 0 and 50 d 

with S+L and S−L having lost 12 % and 2 % of the initial cellulose, respectively. 

Decomposition was slowed to a halt between 60 and 100 d in both treatments until after 

100 d when 13.4 % of cellulose in plots without lupin (S−L) was lost compared with the 

6.3 % loss in plots with lupin (S+L). Extrapolation of the polynomial curves resulted in the 

disappearance of cellulose after 198 and 224 d in S−L and S+L, respectively. On average, 

residues in plots with lupin contained 2.79 % less cellulose compared to those with lupin 

(p<0.05) mainly due to the initial rapid loss during the study period (Table 4.1). 
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Table 4.1 Mean (n = 4) amounts of cellulose measured in straw/stubble residues in S+L 

and S−L over 140 d decomposition. 

Treatment 

Cellulose 

at 0 d (%) 

Cellulose 

at 50 d 

(%) 

Cellulose 

at 110 d 

(%) 

Cellulose 

at 140 d 

(%) Significance SED 

S+L 100 89.2 89.9 86.7 

S−L 100 97.2 100 91.1 
* 2.76 

Note: SED indicates standard error of the differences of means. 

 * Significant at p<0.05 

 

Due to heavy soil contamination of the litterbag samples, cellulose as a percentage of the 

organic matter content (100% - Ash content) in straw/stubble was used rather than the 

percentage dry matter. This resulted in the underestimation of the amount of cellulose lost 

through decomposition. Hence, the total decomposition of cellulose did not correspond 

with the total mass loss of straw/stubble presented in Figure 4.1. 

 

Lignin contents of residues in both treatment combinations (S+L, S−L) increased from 6 to 

14 % over the 140-day decomposition, therefore, there were no significant differences in 

the means obtained (Table 4.2). Residue C/N in both treatments decreased from 80 to 56 

and 55 for S+L and S−L, respectively, with the means for the 140 days being similar 

(Table 4.2). Lupin had no significant effect on either lignin or C/N ratios of the residues 

retrieved from the litterbags. 

 

Table 4.2 Average lignin, cellulose and C/N contents of straw/stubble residue 

determined in litterbags sampled throughout the 140 d study period. 

Treatment Lignin (% om) Cellulose (% om) C/N 

S+L  14.5 38.8 52 

S−L 14.6 41.6 52 

Significance NS * NS 

SED 0.20 1.22 1.8 

Note: SED indicates standard error of the differences of means. 

 * Significant at p<0.05 

 



 37

4.1.2 Green manure production 
 

Above ground dry matter yields of lupin and weeds including carryover barley, and their N 

contents from treatment combinations that included lupin green manure regardless of 

straw/stubble management, are shown in Table 4.3. Lupin dry matter production in plots 

with straw/stubble retained (S+L) were significantly (p<0.05) lower by 839 kg/ha (27 %) 

compared with plots where burning was used (B+L), while the opposite trend was 

observed for carryover barley weeds. The dry matter yields of weeds other than barley 

from the B+L and S+L treatments were 84 and 107 kg/ha, respectively, and were not 

significantly different. 

 

Table 4.3 Above ground dry matter (DM) and nitrogen (N) determined in the lupin 

green manure crop and carryover barley weeds. 

Treatment 
Lupin DM 

(kg/ha) 

Carryover barley 

DM (kg/ha) 

N in lupin 

(kg/ha) 

N in barley 

(kg/ha) 

B+L 3083 669 80.1 14.9 

S+L 2244 1390 60.7 28.4 

Significance * ** ** ** 

SED 302.0 206.2 4.91 3.41 

Note: SED indicates standard error of the differences of means. 

 * Significant at p<0.05 

 ** Significant at p<0.01 

 

There were significant differences in the N contents of lupin and carryover barley between 

the different straw/stubble management treatments (Table 4.3). Lupin biomass from burned 

plots (B+L) contained 32 % more N compared to that from plots where the straw/stubble 

had been retained (S+L). In contrast, the N content of carryover barley on burned plots was 

only half that of treatments where the straw/stubble had been retained. The C/N ratio of the 

lupin biomass was 17.5 and 16.9 and for carryover barley was 19.7 and 21.6, on the B+L 

and S+L treatments, respectively (data not shown). However, these ratios were not 

significantly different (p>0.05). Overall, total green manure dry matter incorporated in 

straw/stubble burned and retained plots were 3836 and 3741 kg/ha, with 80.4 % and 60.0% 

being comprised of lupin, respectively, but these values were not significantly different 
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(p>0.05). Likewise, the total incorporation of green manure containing 95.0 and 89.2 kg N 

ha-1 in burned and retained plots, respectively, were not significantly different (p>0.05). 

 

4.1.3 Nitrogen availability 

Ammonium-N 

Mineral-N measured in the soil during the decomposition period had no ammonium-N 

(NH4
+−N) at 110 d and therefore could not be statistically analysed (Figure 4.2a). 

Otherwise, amounts measured at the two depths (0−7.5, 7.5−15 cm) at 80 and 160 days 

were not significantly different for the 4 treatment combinations. Similarly, the cumulative 

totals of 10.7, 9.4, 8.7 and 6.2 mg N kg-1 of soil from S+L, S−L, B+L, and B−L, treatments 

respectively, were not significantly different. 
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Figure 4.2 Ammonium− (a) and nitrate−N (b) determined in soil sampled at 0-15 cm 

depth during the decomposition period. Error bars represent standard error 

of means (SEM). 
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Nitrate-N 

Nitrate-N (NO3
-−N) in soil at 0−7.5 cm depth after 110 d showed significant differences 

between treatment combinations and have been presented as total mineral-N in Table 4.4 

since there was no ammonium−N measured at 110 d. Nitrate-N in burned plots without 

lupin (B−L) was 30 % higher than those that had straw/stubble retained but without lupin 

(S−L), showing that burning significantly increased NO3
-−N release. However, these 

differences were not observed in soil at 7.5−15 cm depth at 110 d. Neither were the nitrate-

N values from soil at the two depths at 80 and 160 d significantly different. Figure 4.2b 

illustrates NO3
-−N for the combined depths (0−15 cm). More nitrate-N was mineralised by 

110 d than by the other 2 dates, with S+L and S−L treatments having the highest and 

lowest nitrate-N levels, respectively, albeit the levels were not significantly different 

(p>0.05). More than a 70 % reduction in nitrate level occurred between 110 d and 160 d. 

However, there were no obvious differences in NO3
-−N mineralisation between treatments. 

The mean concentrations from S+L, B+L, B−L and S−L treatments at 160 d of 12.9, 12.3, 

12.0 and 10.6 mg N kg-1 of soil, respectively, were not significantly different. 

 

Table 4.4 Total mineral−N measured in soil sampled from the four experimental 

treatments at various depths and times during the decomposition period. 

Treatment 
Total N at all depths & times 

(mg N kg-1 soil) 

Total N at 0−7.5 cm at 110 d   

(mg N kg-1 soil) 

B+L 77.1 27.2 b 

B–L 73.7 32.8 a 

S+L 83.4 28.2 b 

S–L 68.5 22.0 c 

Significance NS * 

SED 8.08 1.13 

Note: SED indicates standard error of the differences of means. Means with the same 

letters were not different when separated using LSD values. 

* Significant at p<0.05 

 



 41

Total mineral-N 

The REML analysis of total soil mineral-N (NH4
+− and NO3

-−N) during decomposition 

showed a mean increase of 64 % after 80 d and a 77 % reduction after 110 d. This trend 

was significant (p<0.05) with B−L and S−L having the most and least concentration 

changes, respectively. Differences in cumulative total mineral-N at all depths and times 

were not significant (Table 4.4). Similarly, total mineral-N at individual depths and times 

was not significantly different, except for soil sampled at 0−7.5 cm depth after 110 d, 

which was actually due to the significant differences in nitrate−N levels presented in 

Figure 4.3b. 

 

The overall influence of lupin on total mineral-N was significant (p<0.01) at the two soil 

depths at 80 d and at 160 d (0−15 cm depth) (Figure 4.3). At 80 d, mineral-N in the 0−7.5 

cm depth was significantly lower (p<0.01) in plots with lupin (B+L plus S+L) compared to 

those without lupin (B−L plus S−L). The respective concentrations were 5.1 and 9.2 mg N 

kg-1 of soil. The opposite was true in the 7.5−15 cm depth at 80 d with concentrations of 

11.5 and 6.4 mg N kg-1 of soil in plots with lupin and those without lupin, respectively, and 

their differences were also significant (p<0.05). At 160 d, plots with lupin had significantly 

(p<0.05) higher soil mineral-N concentrations than those without lupin with means of 12.4 

and 10.2 mg N kg-1 of soil, respectively. Differences at 110 d were not significant. The 

C/N ratio of soil (0−15 cm depth) for all treatments remained at a mean of 12 throughout 

the trial period. 
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Figure 4.3 Total mineral-N measured in plots with (B+L plus S+L) and without lupins 

(B-L plus S-L) during the 160 d since straw/stubble was initially incorporated. 

Error bars represent standard error of means (SEM). 

 

4.1.4 Soil pH 
 

Soil pH on plots with straw/stubble plus lupin (S+L) was significantly (p<0.05) higher than 

that on other treatment plots during decomposition with a mean of 6.46 on average over the 

three sampling times compared with the collective mean of 6.08 on the other treatments 

(Figure 4.4). All treatments had a slight drop in pH at 110 d before increasing, however, 

these changes were only slight with the mean for all treatment combinations being less that 

0.1 unit. The magnitude of increase and decreases at 10 d from the initial pH of 6.23 were 

similar and ranged from 0.1 to 0.2 units. 
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Figure 4.4 Soil pH measured during the straw/stubble decomposition period between 10 

and 160 d. Error bars represent standard errors of means (SEM). 
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4.2 Glasshouse experiment 

4.2.1 Leachate ammonium- and nitrate-N 
 

The concentrations of ammonium-N in leachate collected during all leaching events were 

negligible (<0.2 mg N L-1) except for the first event. The concentrations were 0.7, 0.5, 0.3 

and 0.3 mg N L-1 measured in S−L, B+L, B−L and S+L treatments, respectively, and were 

not significantly different (p>0.05). 

 

Nitrate-N concentrations fluctuated throughout the 12 weeks (Figure 4.5) and were highly 

variable. Differences noted at individual events were not significant (p>0.05), nor were the 

cumulative totals of 46.5, 38.5, 37.2 and 29.2 mg N L-1 for B+L, S+L, B−L and S−L 

treatments, respectively. However, nitrate concentrations in leachate collected after 4 

weeks from treatments where straw/stubble was burned (B+L plus B−L or B±L hereon) 

were almost significantly higher (p=0.07) than those with straw/stubble retained (S+L plus 

S−L or S±L). Likewise, the overall incorporation of lupin (B+L plus S+L) produced an 

almost significant increase (p=0.08) in the amount of nitrate-N leached after 4 weeks, 

compared with treatments without lupin (B−L plus S−L). 

 

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

2 4 6 8 10 12
Weeks

L
ea

ch
at

e 
N

O
3- -N

 (m
g 

L-1
) B+L

B-L
S+L
S-L

 
Figure 4.5 Nitrate-N measured in leachate collected during the 12 weeks. Error bars 

represent standard error of means (SEM). 
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No obvious trends or significant differences were found in the total mineralisable-N 

released over 12 weeks from the 4 treatment combinations when subjected to repeated 

measures analysis. Figure 4.6 shows the cumulative mineralisable-N measured over the 12-

week period. Amounts released from treatment combinations with burn and lupin (B+L) 

were high, followed by straw/stubble retained with lupin (S+L) and burn without lupin 

(B−L) with straw/stubble retained without lupin (S−L) the lowest. However, the slopes 

were not significantly different, nor were the cumulative total mineralisable-N measured 

after 12 weeks (p>0.05, sed = 17.1) due to high variability between treatments and 

replicates. The cumulative totals from B+L, S+L, B−L and S−L were 72.9, 63.0, 58.6 and 

48.9 kg N ha-1, respectively. 
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Figure 4.6 Cumulative total N measured in leachate collected fortnightly for 12 weeks 

between August 10 and October 19, 2007 from the 4 treatment combinations. 

Error bars represent standard errors of means (SEM). 
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4.2.2 Plant N availability 
 

Above ground dry matter yield of oats, along with herbage N content and C/N values, are 

presented in Table 4.5. Oats in burn with lupin plots (B+L) gave the highest dry matter 

yield and N uptake, the amounts being twice those on the S−L treatment, although the 

values were not significantly different (p>0.05). The N uptake in oats accounted for 88, 67, 

79 and 70 % of mineralisable-N measured in the leachate for B+L, B−L, S+L and S−L, 

respectively. Mineralisable-N not taken up by oats was 8.6, 19.4, 13.2 and 14.2 kg N ha-1 

in the same order. The C/N of oats for the treatments was not significantly different. 

 

Table 4.5 Above ground dry matter yield, nitrogen uptake and C/N values determined 

in oats grown in pots following green manuring. 

Treatment 
Dry matter     

(kg ha-1) 

N uptake        

(kg N ha-1) 

C/N 

B+L 6075 64.3 40.8 

B–L 4459 39.2 48.9 

S+L 4852 49.8 39.7 

S–L 3039 34.7 36.8 

Significance NS NS NS 

SED 857.9 12.02 4.19 

Note: SED indicates standard error of the differences of means. 

 

When the two treatment factors were analysed separately, significant differences (p<0.05) 

were apparent (Figure 4.7). The overall inclusion of lupin green manure (B+L plus S+L) 

significantly increased oat dry matter yield by 1714 kg ha-1. Similarly, total N uptake in 

oats from treatments with lupin green manure (B+L plus S+L) was significantly higher 

(p<0.05) than those without lupin (B−L plus S−L). 
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Figure 4.7 Total above ground dry matter (a) and N uptake (b) of oats measured in lupin 

and no lupin treatments in the presence and absence of straw/stubble. Error 

bars represent standard errors of means (SEM). 

 

Mineral-N measured in soil at the time of harvesting oats was not significantly different 

between the four treatment combinations. The values were 3.23, 5.13, 5.16 and 7.11 mg N 

kg-1 from treatments B+L, B−L, S+L and S−L, respectively. Treatment effects were more 

obvious when nitrate-N was analysed. Straw/stubble retention (S±L) significantly 

increased (p<0.01) nitrate-N retention in soil while the inclusion of lupin (B+L plus S+L) 

significantly increased (p=0.01) its release, resulting in low amounts remaining in the soil 

at oats harvest. The amounts of nitrate-N were 3.44 and 1.89 mg N kg-1 of soil for S±L and 

B±L, respectively, and 2.14 and 3.19 mg N kg-1 of soil for B+L plus S+L and B−L plus 

S−L, respectively. 

 

(a) (b) 
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4.3 Crop response 

4.3.1 Yield 
 

The main treatment combinations had no significant effects on the total above ground 

biomass and grain yields of the succeeding wheat crop (Table 4.6). Although N application 

consistently increased yields, its effect was not significant on either dry matter or grain 

yield components. Plots with burn and lupin (B+L) gave the highest dry matter and grain 

yields from both the plus and minus fertiliser-N subplots, while burn plots without lupin 

(B−L) yielded the lowest. No significant interactions were detected. 

 

Table 4.6 Total above ground dry matter and grain yields determined for the succeeding 

wheat grain crop over the 2007-08 season. 

 Total dry matter (kg/ha) Grain yield (kg/ha) 

Treatment No N applied N applied No N applied N applied 

B+L 8268 8806 3756 3956 

B–L 7262 7783 3108 3420 

S+L 7505 7891 3276 3324 

S–L 7504 8118 3291 3753 

Significance NS NS 

SED 715.8 393.6 

Note: SED indicates standard error of the differences of means. 

 

4.3.2 Residual mineralisable-N 
 

Concentrations of ammonium-N were very low and are not reported here. The residual 

mineralisable nitrate-N (RMN) values measured in all 32 subplots were not significantly 

different (p>0.05, sed = 8.67), even though plots where fertiliser-N was applied were 

generally higher than where no fertiliser-N had been added (Figure 4.8). The RMN in the 

B+L treatment with and without fertiliser-N addition were 28.6 and 30.9 mg N kg-1 of soil, 

respectively. Nitrate-N released in the subplots without N application in the other 3 

treatments was half that of B+L. The concentrations of RMN in the subplots with fertiliser-

N in the 4 treatment combinations were similar. 
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Figure 4.8 Residual mineralisable-N (RMN) measured in soil collected from all plots with 

and without N application. Error bars represent standard error of means 

(SEM). 
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4.4 Summary of results 
 

• The inclusion of lupin green manure (S+L) resulted in an apparent increase in 

straw/stubble decomposition in the first growth phase, then reduction after green 

manure incorporation. This was best described by a logarithmic decomposition rate 

of - 4.97 g of residue AFDW day-1. Straw/stubble without lupin (S−L) decomposed 

linearly at -0.12 g of residue AFDW day-1. However, the effects were not significant. 

• Lupin green manure (S+L) significantly increased cellulose decomposition in the first 

50 d then caused the decomposition to be slower than in straw/stubble without lupin 

(S−L) after green manuring at 110 d. 

• Straw/stubble retention resulted in a significant 27 % reduction in lupin dry matter 

yield with a corresponding N content decrease. This was accompanied by a 50 % 

increase in weed dry matter yield, which resulted in the total green manure biomass 

and N incorporated not being significantly different. 

• Nitrate was the dominant form of mineral-N in the soil sampled during 

decomposition. Amounts in the 0−7.5 cm depth were low in treatments where 

straw/stubble was retained and green manure growth was active, indicating 

immobilisation and plant uptake. 

• Soil pH was stable during the experiment. The S+L treatment had a significantly 

higher (p<0.05) pH throughout the period compared to the pH values on the other 

treatments. 

• Mineral-N release and uptake by oats, and dry matter yield were not significantly 

different on all treatments. The two methods used gave similar mineralisable-N 

results. 

• Overall inclusion of lupin green manure significantly increased N available to plants, 

consequently increasing dry matter yield of oats. 

• Dry matter production of wheat sowed in the field was increased by fertiliser-N 

application. Residual mineralisable-N in the B+L treatment was high but not 

significantly different. 
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Chapter 5. Discussion 

5.1 Straw/stubble decomposition 

5.1.1 Litter decomposition 
 

Barley straw decomposition is reportedly a rapid process compared to the decomposition 

of other cereal straws (Smith and Peckenpaugh 1986; Summerell and Burgess 1989). The 

33 % and 26 % loss of initial barley straw/stubble in plots with (S+L) and without lupin (S-

L), respectively, in the first 50 d (Figure 4.1) were comparable with those reported 

elsewhere (Cookson et al. 1998; Beare et al. 2002; Curtin and Fraser 2003) for similar 

studies near Lincoln University, New Zealand, and at the Askov Experimental Station in 

Denmark (Christensen 1986). At least half the initial amount of straw/stubble had 

decomposed after 140 d, with 60 % and 49 % remaining in plots with and without lupin 

treatments, respectively. 

 

The linear decomposition rate of residue in plots without lupin (S-L) at 0.39 % d-1 was 

higher than the rate of 0.26 % d-1 reported by Beare et al. (2002) and that of 0.07 % d-1 

reported by Christensen (1986). This was reasonable, however, given the burial of 

litterbags in the present study was in early autumn when air temperatures ranged from 10 

to 22°C as opposed to late autumn when temperatures below 10°C reduce the speed of 

decomposition (Beare et al. 2002). With the high rate of straw/stubble decomposition in 

this study, the time of disappearance of the straw/stubble in the plots without lupin was 

expected to be sooner than those in other studies (e.g. (Christensen 1986; Smith and 

Peckenpaugh 1986; Beare et al. 2002; Curtin and Fraser 2003). 

 

Unlike the steady decomposition of straw/stubble without lupin, decomposition in plots 

with lupin (S+L) proceeded in two phases with an initial rapid loss (40 %) followed by a 

slower (4 %) loss of residue mass. Cookson et al. (2002) and Curtin and Fraser (2003) 

reported a similar 2-phase decomposition with a rapid initial loss of the residue labile 

fraction, followed by a slower loss of the recalcitrant fraction. Microbial products 

synthesised during the initial flush were found to protect the surface of straw substrates and 

impede enzymatic hydrolysis, further slowing decomposition (Murayama 1984). The 

almost significant difference in straw/stubble mass loss noted before (p=0.08) and after 
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(p=0.09) 110 d suggested that lupin green manure had some influence on the 

decomposition in the two phases. Lupin green manure appeared to increase decomposition 

during the growth period, then slowed decomposition after being ploughed in albeit the 

data failed to read significance. The increased availability of mineral-N due to 

contributions by lupin N2 fixation (Evans et al. 1989; Heenan 1995; Fowler et al. 2004) 

would have led to the increased decomposition while the ploughing in of green manure 

reduced decomposition of straw/stubble due to the addition of fresh organic matter (Kumar 

and Goh 2000). 

 

The differences in straw/stubble mass loss from the litterbags earlier were closely related 

to the loss of cellulose from residues in the two treatment combinations. The three stages 

of cellulose decomposition were from 0 to 50 d when the 12 % loss in straw/stubble with 

lupin (S+L) was greater than the 2 % in straw/stubble without (S-L); followed by a halt 

during 60 – 100 d; and finally when decomposition after 110 d in S-L (13.4 % loss) was 

faster than in S+L (6.3 % loss). The initial rapid loss of cellulose supported the first phase 

in straw/stubble decomposition, which was similar to the 10 % loss in barley straw 

reported by Henriksen and Breland (1999). The introduction of additional cellulose with 

the green manure incorporation resulted in reduced decomposition of straw/stubble, thus 

explaining the slow loss of cellulose after 110 d compared to treatment S-L which had no 

green manure. The halt between these two phases coincided with decreasing temperatures 

between mid May and July 2007, which slowed decomposition by reducing efficiency of 

soil microbial biomass (Smith et al. 1993; Henriksen and Breland 1999). The full effect of 

lupin green manure after ploughing could not be determined due to the removal of all 

litterbags. Hence, the significantly (p>0.05) low cellulose content of straw/stubble residue 

remaining during the 140 d due to the overall inclusion of lupin (Table 4.2) was mainly 

due to the high loss during the first phase. 

 

The mass and cellulose loss of straw/stubble in this study were rapid and were expected to 

end sooner than the losses reported in other studies (e.g. (Christensen 1986; Henriksen and 

Breland 1999; Beare et al. 2002). The changes in lignin and C/N during decomposition 

were the same in both treatment combinations, and these were not influenced by lupin. The 

increase in lignin content (6 % to 14 %) was consistent with reports by Summerell and 

Burgess (1989), and was mostly due to residues losing cellulose and hemicellulose and 

becoming more recalcitrant over time. 
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Due to the high variability of the amount of straw remaining in litterbags, differences in 

decomposition rates were not statistically tested. In hindsight, the method used could have 

been modified by first drying then sieving the samples to remove fine soil that was 

attached to residues before grinding, or else washing the residues before drying. However, 

this would have further disintegrated most of the finer decomposed residues and created 

other artefacts. In addition, the two sets of ashing of residues done could have been 

increased to three to further reduce the variability in mass loss of straw/stubble. 

5.1.2 Green manure production 
 

The retention of straw/stubble significantly reduced lupin dry matter (DM) production, an 

observation also noticed in 5 of the 13 years of study conducted by Heenan et al. (2000). 

Lupin growth in plots with straw/stubble retained was restricted by the presence of weeds, 

especially carryover barley. Plots with straw/stubble retained were dominated by carryover 

barley in contrast to burned plots (Figure 5.1) resulting in a reduced emergence of lupin in 

the former plots (Heenan et al. 2000). This led to a significant (p<0.05) reduction of lupin 

dry matter production by 839 kg/ha in plots with straw/stubble retained (S+L) compared to 

plots where burning was used (B+L). Straw/stubble burning was effective in reducing 

weed occurrence and resulted in good establishment of the lupins as seen in other studies 

(Staniforth 1982; Heenan et al. 2000; FAR 2006). 

 

The 3083 and 2244 kg DM ha-1 yields of lupin and corresponding N uptake of 80 and 61 

kg ha-1 in B+L and S+L treatments were comparable with those obtained by other workers 

(Janson 1984; (McLenaghen et al. 1996; Francis et al. 1998; Fowler et al. 2004; Cherr et al. 

2006). The difference in lupin dry matter yields between the B+L and S+L treatments 

disappeared when total green manure ultimately turned under was considered, which were 

3836 and 3741 kg DM ha-1, respectively. The reduced lupin DM yield in S+L treatment 

was compensated for by the carryover barley in these treatments. Lupin compositions of 

the total green manure incorporated were 80.4 % and 60 % for the straw/stubble burned 

and retained treatments, respectively. 

 



 54

The differences in lupin N content were reasonable given the low aboveground dry matter 

yield. The high lupin dry matter yield in burned plots resulted in a 32 % higher N content 

compared to plots were straw/stubble were retained. The reduction in N uptake of lupin 

growing with straw/stubble retained was compensated for by the significantly higher 

barley N uptake compared to lupin in burned plots. Barley N uptake in both treatments fell 

within the range for non-legumes summarised by Thorup-Kristensen et al. (2003). As with 

the dry matter yields, the total N incorporated in the green manure in B+L (95 kg N ha-1) 

and S+L (89 kg N ha-1) treatments was not significantly different. 

 

  
Figure 5.1 Lupins at 100 d showing the dominance of carryover barley weeds in plots 

with straw/stubble retained (a) and with sparse weeds in burned plots (b).  

 

The C:N ratios of lupins and barley from two treatment combinations were not 

significantly different. The mean of 17 for lupins was similar to that reported by Fowler et 

al. (2004). The C/N for both lupin (17) and barley (21) from both treatment combinations 

fell within the green manure crops C/N ranges of other studies reviewed by Thorup-

Kristensen et al. (2003). Net mineralisation would probably have occurred given that these 

values were below 25 (Kumar and Goh 2000). 

(a) (b) 
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5.1.3 Nitrogen availability 
 

The low concentrations of ammonium-N in the soil during the decomposition indicated 

gross nitrification, even at low temperatures, as was observed by Magid et al. (2001) and 

Cookson et al. (2002) (Figure 4.2a). The absence of ammonium-N in soil sampled at 110 d 

was due to both low temperatures during June (0.2 – 11.6 °C) and July (2.2 – 10.5°C) 

(Figure 3.1), which slowed mineralisation of organic N (Kumar and Goh 2000), plus the 

complete nitrification of all mineralised ammonium-N (Magid et al. 2001). In contrast, 

nitrate-N concentration during this period was higher than those at 80 and 160 d (Figure 

4.2b). The nitrate-N concentrations measured ranged from 32.8 to 22.0 mg N kg-1 of soil in 

decreasing order: B–L > S+L = B+L > S–L. Nitrogen released during the burn, mostly 

from residues and dead microbial biomass (Biederbeck et al. 1980), was not used by plants 

as it was in plots with lupin green manure, nor was it immobilised by straw/stubble 

decomposition in the 0–7.5 cm soil depth. The inclusion of lupin in S+L and B+L 

treatments reduced nitrate-N concentrations through plant uptake by the lupins (Fowler et 

al. 2004). However, the supply of fixed N by lupin in the two treatments compensated the 

reductions that were otherwise observed in the S–L treatment. This effect was more 

obvious near the soil surface due to the depth at which straw/stubble was buried, ash on the 

soil surface after the burn, and the length of plant roots (Curtin and Fraser 2003). The 

retention of straw/stubble compared to burning immobilised N resulting in its reduced 

availability for plant uptake evident in the 0–7.5 cm depth samples (Christensen 1986; Beri 

et al. 1995; Bhogal et al. 1997). 

 

Apart from low temperatures slowing the mineralisation of organic-N, the accumulation of 

mineral-N at 110 d also coincided with lupin maturity and a high biomass related to high 

N2 fixation (Evans et al. 1989). Low concentrations of mineral-N after 80 d indicated crop 

uptake while high rainfall (137 mm) during June and July (Figure 3.1) led to leaching of 

nitrate-N resulting in the 77 % reduction of total soil mineral-N at 160 d. The variations 

between treatments in concentrations of mineral-N over time and depths were not 

significantly different, nor were the amounts of total mineral-N measured in soil during the 

160 d. It was obvious that the four replicates used in this study may not have been 

sufficient to reduce variations in the collected data, resulting in treatment combinations 

having similar effects. 
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The inclusion of lupin (B+L plus S+L) significantly reduced mineral-N by 44 % at 0–7.5 

cm soil depth after 80 d compared to the exclusion of lupin (B–L plus S–L), confirming N-

uptake during early growth of green manure. The application of herbicide in the latter 

treatments also reduced plant uptake of mineral N thus contributing to the higher soil N 

content. The increase in mineral-N in soil at 7.5–15 cm depth compared to that at 0–7.5 cm 

indicated the accumulation of N either not taken up by plants or leached. This difference 

was not observed in the combined depths of 0–15 cm (Figure 4.3) due to totals being 

similar. Similarly, the total mineral-N contents at 110 d were not significantly different. 

However, the significantly high mineral N content at 160 d due to the mineralisation of 

lupin green manure incorporated compared to treatments without lupin emphasised the 

importance of including a legume green manure in crop rotations. 

5.1.4 Soil pH 
 

The changes over time in soil pH for the individual treatment combinations were not 

significant (Figure 4.4). Soil pH in straw/stubble retention and lupin green manure 

combination (S+L) was 0.4 units higher than the other treatments throughout the 224 d 

study period. This is thought to have been due to the decarboxylation of organic anions 

released during residue decomposition (Singh and Rengel 2007). However, this difference 

could have also arisen from the increased incorporation of organic matter diluting the 

amount of soil material in the pH measurements done. 
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5.2 Glasshouse experiment 

5.2.1 Mineralisable-N release 
 

The objective of the incubation/leaching glasshouse experiment was to determine the total 

amount of mineral-N that could be released after green manure incorporation. All 

treatments had significant amounts of ammonium-N (>0.2 mg N L-1) only during the first 

leaching event and these concentrations (0.3 - 0.7 mg N L-1) were similar to those 

measured by Fowler et al. (2004). Cultivation carried out before soil core collection and 

transfer into the glasshouse would have contributed to the disappearance of ammonium-N 

either through volatilisation or oxidisation into nitrate-N. Previous studies have shown the 

dominance of nitrate-N in leachate (McLenaghen et al. 1996; Fowler et al. 2004), which 

was found to result from the increased mineralisation of N in crop residues and soil organic 

matter following soil cultivation disturbances (Shepherd et al. 1993). 

 

Although nitrate-N released from the B+L treatment was higher than the rest of the 

treatments particularly at weeks 4 and 12 with concentration of 10.0 mg N L-1 measured 

(Figure 4.5), the high variability in the concentrations led to the differences being non-

significant. Similarly, burning of straw/stubble resulted in increased N release from the 

residues compared with the retention of straw/stubble as seen in the study done by 

Biederbeck et al. (1980) though the differences in the present study were almost 

significant. The consistently low amounts of nitrate-N released from straw/stubble retained 

without lupin (S-L) throughout the leaching periods indicated immobilisation of N 

resulting in 17 to 37 % reduction in the cumulative nitrate-N leached. This was consistent 

with studies conducted elsewhere under similar conditions, and especially during winter 

(Nicholson et al. 1997). The mineralisation of up to 80 kg N ha-1 in the lupin green manure 

incorporated led to an almost significantly high nitrate-N release in treatments with lupin 

(B+L plus S+L) than those without lupin (B–L plus S–L) as previously observed by 

Fowler et al. (2004). With mineral-N totals being comparable with those obtained by 

Francis (1995) for leguminous grain crops (75 kg N ha-1),  the inclusion of lupin green 

manure seemed to increase the release of mineral-N. 
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5.2.2 Plant nitrogen uptake 
 

The second method used to determine mineral N released after green manure incorporation 

was by measuring the actual uptake in plants in a concurrent pot trial. The uptake of 

mineral N by oats in pots (Table 4.5), accounted for 88, 79, 66 and 71 % of the total 

released mineral N measured in leachate from the respective treatment combinations. 

Though the treatments were not significantly different, conditions in treatments with 

straw/stubble burn and lupin (B+L) seemed to encourage mineral-N release and uptake by 

oats, resulting in the high dry matter (DM) yield of 6.1 t ha-1 (Table 4.5). In comparison, 

oats in treatments with straw/stubble and no lupin (B–L) had low N uptake with 19.4 kg N 

ha-1 released not accounted for and hence, gave a low DM yield of 4.4 t ha-1. The overall 

retention of straw/stubble (S±L) that significantly increased mineral N immobilised in the 

soil, reduced its availability for plant uptake. In contrast, the incorporation of lupin (B+L 

plus S+L) that gave significantly high soil mineral N remaining in pots meant the release 

of N from the green manure for oat uptake was slower than the growth of oats. The yields 

obtained were comparable with those obtained in a study by Fowler et al. (2004) (4.2 t oat 

DM ha-1 at 150 d after sowing) and those predicted by Hughes et al. (1984) for forage oats 

(~0.5–1.9 t DM ha-1) harvested 60 days after sowing in various sites in New Zealand. The 

differences in yields can be explained by the fact that this study was conducted in a 

glasshouse with higher temperatures and in pots compared to the lysimeter and field trials 

conducted during winter by the other researchers. 

 

Although yield differences were not significant on average over burn and no burn 

treatments, the inclusion of lupin green manure significantly increased N uptake and oat 

DM yield by 55 % and 46 %, respectively, compared to the exclusion of lupin (Figure 4.7). 

This further supports the benefits of including a legume green manure for improving N 

supply and availability. On the other hand, the retention of straw/stubble was effective at 

immobilising and retaining N in the soil. Residual mineral-N in pots at harvest accounted 

for some of the N released during leaching that was not taken up by oats. 

 

More than 70 % of the mineral N measured by the leaching incubation method was taken 

up by oats in the pot experiment. Hence, the results from the two methods of measuring 

mineralisable-N used in this study showed they were comparable. 
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5.3 Crop response 
 

To confirm the differences between treatments observed in the glasshouse, the wheat crop 

was grown following green manuring in field conditions three weeks after oats were sown. 

As with oats in the glasshouse trial, there were no significant differences in the dry matter 

and grain yields from the four treatment combinations either with or without fertiliser-N 

application. Wheat yield in treatments with straw/stubble burned and lupin (B+L) was 

higher than the other treatments as was observed in oat dry matter yield, though these 

differences were not significant. Wheat grain yields were relatively low but comparable to 

those reported by Curtin and Fraser (2003) following cereal, and half that produced on 

ungrazed plots reported by Francis et al. (1998). The differences in wheat yields were 

reasonable given green manure followed ryegrass/clover crop (Francis et al. 1998) 

compared to spring barley used in this study. Furthermore, no irrigation and lower than 

average rainfall received during the growth period in this study (Figure 3.1) meant water 

availability was the major limiting factor. With irrigation, differences between the 

treatments presumably would have been greater. 

 

The application of fertiliser-N generally increased yield, with the increases in DM and 

grain in plots where straw/stubble was retained without lupin (S–L) being the highest. 

Straw/stubble with lupin (S+L) was least influenced by fertiliser-N with 5 % and 1.5 % 

increase in DM and grain yields, respectively, resulting from fertiliser-N application. These 

increases were low compared to the 20 % reported by Dalal et al. (2007) from a similar 

study done in Australia, where fertiliser-N was applied at 75 kg N ha-1 after straw 

incorporation compared to no fertiliser-N. The lack of sufficient soil moisture again limited 

crop uptake of fertiliser-N and ultimately affected grain yields. The lupin green manure 

used in this study seemed to have supplied enough N for both straw/stubble decomposition 

and crop growth, hence obscuring the effect of the fertiliser-N. Peoples et al. (2001) found 

that the amount of fixed N in soil after a grain legume like lupin was sufficient to cater for 

at least one subsequent non-legume crop. In contrast, the supply of fertiliser-N in this study 

would have not only supplied the much needed N for plant growth in plots without lupin 

(S–L), but also released N previously immobilised during straw/stubble decomposition, 

resulting in increased yield. 
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The initial flush of soil mineral N after the burning of straw/stubble seemed to have 

disappeared with both DM and grain yields in the B–L treatment being the lowest, 

however, the differences were not significant. This indicated nutrient limitations, 

particularly N, that would have been due to low gross mineralisation and microbial mass 

and activity (Biederbeck et al. 1980; Kumar and Goh 2002; Hoyle and Murphy 2006). The 

similarities in DM and grain yields meant the effects of burning were comparable with 

straw/stubble retention, which was also observed by Curtin and Fraser (2003). 

5.3.1 Residual mineralisable-N 
 

Though not significant, the high yield from the B+L treatment was supported by the high 

amount of residual mineralisable-N (RMN) in both N- and no N-applied subplots (Figure 

4.8). The low amount of RMN in treatments with straw/stubble retained indicated that 

some of the fertiliser-N applied was immobilised in the residues. Bhogal et al. (1997) 

reported immobilisation of up to 10 kg ha-1 of spring-applied N by 7.5 t ha-1 wheat straw 

incorporated in autumn, depending on extent of decomposition. Similarly, some of the 

fertiliser-N would have been immobilised reducing availability as mineral-N however, the 

actual amount could not be determined as bulk density measurements were not done. Yield 

in treatment, particularly where straw/stubble was retained with lupin (S+L), was increased 

by fertiliser-N, which reflected the influence of fertiliser-N on mineralisation. The release 

of N immobilised in straw/stubble decomposition and that released from green manure 

would have resulted in the increased residual mineral-N still available in the soil after 

wheat harvest. The inclusion of lupin seemed to improve the bioavailability of N, however, 

the yield differences were not significant. This was in agreement with Francis (1995) who 

found lupin maintained rather than increased the yield of the following wheat crop 

compared to oats and mustard, which reduced yields.  
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Chapter 6. General Discussion & Conclusions 
 

The general consensus that the incorporation of crop residues with wide C/N ratios like 

cereal straw immobilise N thus conserving it from loss could not be confirmed in this 

study. The retention of barley straw/stubble, compared to its burning, seemed to reduce the 

immediate availability of mineral-N to plants that resulted in non-significant reductions in 

dry matter yields of subsequent crops. The immobilisation of N in straw/stubble that 

resulted in low mineral-N contents was obvious in the 0−7.5 cm depth soil, showing the 

effect of straw/stubble in the depth it was buried. Consequently, crop N uptake in the 

presence of barley residues was reduced. However, oats and wheat biomass yields obtained 

in this study showed that the retention of straw/stubble had a similar effect as burning on 

crop production. The fact that straw/stubble application reduced N losses even though they 

were not accompanied by increased crop yields is consistent with other studies (e.g. 

(Hobbs and Brown 1957). Yield increases often reported are from long-term studies and 

have been related to improved SOM and general fertility and not the increased retention of 

N. Hence, the effects of straw/stubble retention were not visible given the short-term 

nature of the present study. 

 

This study showed that the ability of lupin green manure to alleviate the reduced 

availability of N in the presence of barley straw/stubble was only effective during its 

growth phase and not after it was ploughed in. The fixed N supplied by lupin increased the 

decomposition of the straw/stubble, especially cellulose, which was a contributor to the 

overall mass loss of the residue. Although lupin establishment and growth was restricted 

by straw/stubble incorporation, N fixation was optimised by the low mineral-N content. 

This was confirmed by the low N concentrations in the top 7.5 cm of soil during lupin 

green manure growth, indicating both plant uptake and immobilisation, whilst the N that 

was fixed by lupin accumulated in the 7.5−15 cm depth during that period. After being 

ploughed in, lupin green manure would have initially slowed straw/stubble decomposition 

as fresh organic C sources were introduced to the decomposer biomass before increasing 

decomposition as a result of gross mineralisation of the lupin with narrow C/N of 17. An 

extension of the period of measurement beyond 140 d was required to confirm further the 

effect of lupin on decomposition. Apart from that, more replicates were required and the 
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method for residue retrieval from litterbags needed to be improved to reduce the variability 

in weights of remaining residues observed in this study. 

 

The burning of straw/stubble and lupin inclusion seemed to be the ideal combination for 

increased N availability and crop biomass production. Burning of straw/stubble had its 

advantages in that nutrients released in the ash and dead microbial biomass remaining after 

the burn would have been easily accessible to plants. Burning also reduced the occurrence 

of weeds, pests and diseases that reduce emergence and restrict growth, and resulted in the 

high population density of lupin that led to high DM yields. However, the release of 

nutrients after burning was short-lived without the inclusion of lupin as was shown by the 

low wheat yields obtained where burning without the legume was employed. The residual 

mineralisable-N present after the crops were harvested indicated a prolonged beneficial 

effect of lupin green manure incorporation. This, combined with lupin encouraging greater 

population of bacteria and fungal hyphae (microbial diversity) (Cookson et al. 1998), 

improving aggregate stability (Chan et al. 1994), and the overall contribution to SOM, 

could support continued benefits for crop production. This agreed with other workers who 

showed that the effects of lupin increased with time (Heenan 1995; Stark et al. 2006). 

 

The leaching incubation and pot trial used in the glasshouse to determine N mineralisation 

and availability, although different, gave results that were comparable. The N uptake of 

oats in pots that accounted for up to 88 % of the N released by leaching, combined with 

residual mineral-N in pots after harvest, resulted in amounts of mineral-N similar to those 

obtained by leaching. Further, the consistent trends in biomass yields of oats in the pot and 

wheat in the field displayed the versatility of the pot trial. Not only can it be used to 

measure the potential mineralisable-N, but crop yield trends to determine differences in 

treatments, therefore reducing the need for a field trial. Given that oats were harvested two 

months earlier than wheat, the biomass yield differences in the corresponding treatments 

between the two crops would have been reduced if oats were allowed to reach maturity. 

 

This study showed lupin green manure, that is also a catch crop and an organic source of 

N, had the potential to assist with the decomposition of residues with wide C:N ratios 

during its growth. This is useful in arable cropping systems that are dominated by cereal 

rotations and winter fallows. Legumes can be included in cereal rotations to help reduce 

cereal residues that are otherwise burned off, and to restore soil fertility in the same field. 
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Furthermore, long-term benefits of soil fertility improvement and maintenance, and 

reduced environmental pollution and degradation exist with the use of a legume green 

manure. However, the importance of synchronising N release and N use after a legume 

green manure is hereby emphasised to reduce loss, particularly after incorporation as was 

noted in the pot experiment in this study. 

 

Further research on the influence of a legume green manure on the different phases of 

decomposition before and after its incorporations over a longer period of time is required. 

The differences in cellulose decomposition can be studied more closely to confirm the 

patterns that were observed in this study. Results can further determine the minimum time 

required for decomposition before a subsequent crop can be sown without significant yield 

reductions. 

 

Herewith the main conclusions derived from this study: 

 

i. The retention of straw/stubble contributed to soil N retention only in the 0-7.5 cm 

depth and did not result either in crop yield increases or decreases when compared 

to straw/stubble burning; 

ii. The inclusion of lupin green manure significantly increased cellulose 

decomposition presumably through its contribution in supplying fixed N, which 

contributed to the mass loss observed during the growth period; 

iii. The beneficial effects of lupin green manure were not obvious in this study, 

although there was some evidence of it improving the availability of N for plant 

(oats) uptake resulting in higher biomass yield compared to its exclusion. 
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