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Abstract—This communication considers the distribution of the mutual
information of frequency-selective spatially uncorrelated Rayleigh fading
multiple-input–multiple-output (MIMO) channels. Results are presented
for orthogonal frequency-division multiplexing (OFDM)-based spatial
multiplexing. New exact closed-form expressions are derived for the vari-
ance of the mutual information. In contrast to previous results, our new
expressions apply for systems with both arbitrary numbers of antennas
and arbitrary-length channels. Simplified expressions are also presented
for high and low signal-to-noise ratio (SNR) regimes. The analytical
variance results are used to provide accurate analytical approximations
for the distribution of the mutual information, and the outage capacity.

Index Terms—multiple-input–multiple-output (MIMO) systems, mutual
information, orthogonal frequency-division multiplexing (OFDM).

I. INTRODUCTION

Multiple-input–multiple-output (MIMO) antenna technology has
emerged as an effective technique for significantly improving the
capacity of wireless communication systems. A great deal of work
has been done on analyzing the MIMO capacity in various flat-fading
channel scenarios, since the pioneering work of [1] and [2]. In par-
ticular, the mean (ergodic) capacity has now been comprehensively
investigated (e.g., see [3]–[18] and references therein).

In addition, the outage capacity has also been investigated for flat-
fading channels. This is an important capacity measure for systems
with stringent delay constraints, and it also provides information about
the system diversity [19]. With the exception of the exact two/three an-
tenna results presented in [20] and [21], outage capacity analysis has
typically involved approximating the distribution of the mutual infor-
mation, since exact closed-form solutions are not forthcoming. It has
been shown that the Gaussian distribution provides a good approxima-
tion in many cases [5], [8], [13], [22], [23].

In this communication, we consider frequency-selective MIMO
channels, which are applicable for many current high data-rate wire-
less systems. We focus on MIMO orthogonal frequency-division
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TABLE I
MIMO–OFDM PRESENCE IN STANDARDS

multiplexing (OFDM) systems, since they form the underlying tech-
nology for a many emerging MIMO standards, as summarized in
Table I, and consider spatial multiplexing transmission. Despite their
key practical significance however, for these systems (and indeed
frequency-selective MIMO channels in general), there are relatively
few analytic MIMO capacity results. The ergodic capacity (average
mutual information) was considered in [19] and [24]–[28], assuming
Rayleigh and Rician channels, respectively, and was found to be
easily obtained by summing the equivalent flat-fading ergodic MIMO
capacity of each individual OFDM subcarrier. In contrast, the outage
capacity does not decompose in this way.

Calculating the outage capacity for frequency-selective channels
is difficult due to the nonnegligible correlations between subcarrier
channel matrices. As such, the investigation of outage capacity has
usually been performed using simulation studies [19], [29], [30]. It
appears that the only current analytical outage capacity results for fre-
quency-selective channels are presented in [31]–[33], all of which de-
rive a Gaussian approximation for the mutual information distribution.
The results in [31], however, are based on deriving exact expressions
for the mutual information variance of single-input–single-output
(SISO) channels only, whereas the results in [33] and [32] are based
on approximating the mutual information variance using asymptotic
methods. Specifically, [33] considers multiple-input–single-output
(MISO) channels with asymptotically large channel lengths, whereas
[32] considers MIMO channels with infinite numbers of transmit and
receive antennas. We note also that for the extreme frequency-selective
fading case, i.e., where the MIMO subcarrier matrices are independent
across frequency, the variance of the mutual information could be
easily calculated by adapting known MIMO flat-fading variance
results given, for example, in [8] and [15]. For many practical systems,
however, the subcarrier channels are typically highly correlated across
frequency, and this approach cannot be applied.

In this communication, we consider MIMO–OFDM-based spatial
multiplexing systems with finite numbers of antennas and operating
over spatially uncorrelated Rayleigh fading channels with finite delay
spreads. We first derive new exact closed-form expressions for the mu-
tual information variance. We also give explicit reduced formulas for
the specific cases of single-input–multiple-output (SIMO), MISO, and
SISO systems. Moreover, simplified closed-form expressions are de-
rived for the variance in the high and low signal-to-noise ratio (SNR)
regimes.

Based on the new analytic variance results, along with known ana-
lytic mean results, we then present new approximations to the mutual
information distribution of OFDM-based spatial multiplexing systems.
In particular, we present a new closed-form Gaussian approximation,
which is shown to be extremely accurate for many different system and
channel scenarios. In the low SNR regime, we also present a new ana-
lytic Gamma approximation, which we show to be more accurate than
the Gaussian approximation in this case.

Finally, we use the analytic Gaussian approximation to estimate the
outage capacity. We find that the approximation is very accurate, and
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show that for outage levels of practical interest, the outage capacity
depends heavily on the delay spread of the channel.

This communication is organized as follows. In Section II, we de-
scribe the frequency-selective MIMO channel model, the OFDM-based
spatial multiplexing signal model, and the associated mutual informa-
tion. In Section III, we present the main analytical contributions of
this communication, namely, analytical expressions for the variance of
the mutual information. The proofs are relegated to the appendixes. In
Section IV, we approximate the distribution of the mutual information
and investigate the outage capacity.

The following notation is used throughout this communication. Ma-
trices are represented with uppercase boldface and vectors with lower-
case boldface. The superscripts ( � )T ; ( � )�, and ( � )y indicate matrix
transpose, complex conjugate, and complex conjugate transpose, re-
spectively. The matrix Ip denotes a p�p identity matrix. We use det( � )
and tr( � ) to represent the matrix determinant and trace operations, re-
spectively. The operator E[ � ] denotes expectation and Var( � ) denotes
variance. The real Gaussian distribution with zero-mean and unit-vari-
ance is denoted N (0; 1), the corresponding complex circularly sym-
metric Gaussian distribution is denoted CN (0; 1), and the chi-square
distribution with r degrees of freedom is denoted �2r .

II. OFDM-BASED SPATIAL MULTIPLEXING SYSTEMS

A. Channel and Signal Model

We consider a single-user OFDM-based spatial multiplexing system
employing Nt transmit antennas, Nr receive antennas, and N subcar-
riers. The channel is assumed to be frequency-selective and is modeled
as a length-L finite impulse response (FIR) filter (as in [19] and [25]),
for which the discrete-time input–output relation is given by [25]

y[q] =

L�1

p=0

�pH[p]x[q � p] + n[q] (1)

where x[q] 2 C
N �1 is the signal vector transmitted at sample index

q; y[q] 2 CN �1 is the corresponding received signal vector, and
n[q] 2 C

N �1 is the noise vector containing independent elements
�CN (0; 1). Also, �p, for p = 0; . . . ; L � 1, represents the channel
power delay profile and is normalized according to

L�1

p=0

�
2
p = 1: (2)

TheNr�Nt random matricesH[p], for p = 0; . . . ; L�1, represent
the MIMO channel impulse response. These matrices are assumed to
be mutually uncorrelated, and are assumed to be known perfectly at the
receiver but are unknown at the transmitter. The channel is assumed to
be quasi-static, remaining constant for the duration of a codeword, but
changing independently from codeword to codeword. Throughout this
communication, we assume that the channel elements exhibit spatially
uncorrelated Rayleigh fading,1 in which case each H[p] contains in-
dependent elements �CN (0; 1).

At the transmitter, the time-domain input sequence x[q] is gener-
ated as Nt parallel OFDM symbols. The symbols for each antenna
are OFDM modulated using an N -point inverse fast Fourier transform
(IFFT) prior to transmission. At the receiver, OFDM demodulation is
performed at each receive antenna using an N -point FFT. A key advan-
tage of OFDM-based spatial multiplexing is that equalization is simple,

1Note that a number of recent investigations have studied the impact of spatial
correlation on MIMO capacity/mutual information (see, e.g., [8], [9], [12], and
[13]). We do not follow this line of work here, however, since our primary focus
is to study the impact of frequency-selective fading on mutual information, in
which case the effect of correlation is observed across frequency.

since the frequency-selective MIMO channel is transformed into N or-
thogonal flat-fading MIMO subchannels via the IFFT/FFT processing.

To maintain orthogonality in the presence of intersymbol interfer-
ence caused by multipath, OFDM systems typically employ a cyclic
prefix extension. Assuming that the cyclic prefix is longer than the
delay spread of the channel, we can write the equivalent frequency do-
main input–output model for OFDM-based spatial multiplexing as fol-
lows:

rk = Hkak + nk; k = 0; . . . ; N � 1 (3)

where ak is the transmitted vector for the kth subcarrier, assumed to
be independent identically distributed (i.i.d.) Gaussian with covariance
matrix E[aka

y

k] =

N
IN ; rk is the received vector for the kth sub-

carrier, and nk is the corresponding complex additive white Gaussian
noise (AWGN) vector satisfying E[nkn

y

` ] = IN �[k � `], where �[ � ]
is the Kronecker-delta function. Also,Hk is the kth subcarrier channel
matrix given by

Hk =

L�1

p=0

�pH[p] exp �j2�
k

N
p (4)

containing independent entries (Hk)i;j � CN (0; 1). Note that due
to the finite-length impulse response, correlation exists between dif-
ferent subcarrier channel matrices. Using (4), the correlation coeffi-
cients between the channel elements on two arbitrary subcarriers k and
` is easily derived as follows (see also [34]):

�k�` = E[(Hk)i;j(H`)
�
i ;j ]

=

L�1

p=0

�
2
pe

�j2�(k�`)p=N
�[i� i

0]�[j � j
0] (5)

for all i; j; i0; j0. As expected, these frequency correlation coefficients
depend only on the difference between subcarriers (i.e., k� `) and not
on the subcarriers themselves.

Note that with the above model, the SNR per receive antenna per
subcarrier (henceforth referred to as “the SNR”) is given by .

B. Mutual Information

The focus of this communication is on the statistics of the mutual in-
formation of OFDM-based spatial multiplexing systems. It is now well
known that the instantaneous mutual information in bits per second per
Hertz (b/s/Hz) for a given channel realization is given by [19]

Iofdm =
1

N

N�1

k=0

Ik (6)

where Ik is the instantaneous mutual information for the kth OFDM
subcarrier, given by

Ik = log2 det IN +


Nt
HkH

y

k : (7)

Note that the loss in mutual information due to the cyclic prefix has
been neglected in (7). The mean (ergodic) mutual information is given
by

E[Iofdm] =
1

N

N�1

k=0

E[Ik]: (8)

It is obvious that (8) is equivalent to the ergodic mutual information of
a flat-faded channel, for which case closed-form expressions are now
available [6], [15], [35].
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III. VARIANCE OF THE MUTUAL INFORMATION

In this section, we derive new closed-form expressions for the vari-
ance of the mutual information of OFDM-based spatial multiplexing.
Our results are exact and apply for arbitrary finite system and channel
parameters. We also present simplified expressions for the variance in
the high and low SNR regimes, and give explicit reduced variance ex-
pressions for the cases of MISO, SIMO, and SISO systems. These re-
sults will be subsequently used in Section IV for providing accurate ap-
proximations to the mutual information distribution, and to the outage
capacity.

A. Exact Analysis at All SNRs

The following theorem presents an exact expression for the variance
of the mutual information of MIMO-OFDM systems.

Theorem 1: The variance of the mutual information of
MIMO–OFDM systems is given by

Var(Iofdm) =
(log2(e))

2

�m(n)�m(m)

�
2

N2

N�1

d=1

(N � d)'(�d) +

m

r=1

m

s=1

det(Br;s)

N

�
m
r=1 det(Ar)

2

�m(n)�m(m)
(9)

where m = min(Nr; Nt); n = max(Nr; Nt); and �m( � ) is the nor-
malized complex multivariate gamma function defined as

�m(n) =

m

i=1

�(n� i+ 1) (10)

and

'(�d) =

det(A )

� (n)� (m)
; j�dj = 0

m
r=1

m
s=1 e

2N = det(Cr;s(�d)); 0 < j�dj < 1
m
r=1

m
s=1 det(Br;s); j�dj = 1

(11)

The matrixAr is m �m, with (i; j)th element

(Ar)i;j =
b!; for j 6= r

b!eN =g1(b+ 1); for j = r:
(12)

The matricesBr;s andCr;s( � ) arem�mwith (i; j)th elements given
by (13) and (14), respectively, shown at the bottom of the page. Also,

b = n+m� i� j; � = n�m; z = � + i+ j�1; u = � + i+ t; v =
� + j + t, and G4;0

3;4( � ) is the Meijer-G function (see [36, eq. (9.301)]
for definition)

g1(z) =

z

h=1

Eh
Nt


(15)

g2(z) =

z

h=1

Eh
Nt

(1� j�dj2)
(16)

where Eh( � ) is the exponential integral (see [37, eq. (5.1.12)] for def-
inition). The function �i;j(�; �) is defined as

�i;j(f(z); �d) = �(� + j)

j�1

t=0

j � 1

t

1� j�dj
2

j�dj2

t

� (� + j � t)i�1f(z � t) (17)

for an arbitrary input function f , and ( � )r is the Pochammer symbol

(a)r = a � (a+ 1) � . . . � (a+ r � 1)

=
�(a+ r)

�(a)
; (a)0 = 1: (18)

Proof: See Appendix I.

Note that the exact variance expression in Theorem 1 can be easily
evaluated since it primarily involves simple polynomial and exponen-
tial terms, as well as standard functions such as exponential integrals
and Meijer-G functions, both of which are implemented as built-in pro-
cedures in various mathematical software packages such as Maple and
Mathematica. We also note that although Theorem 1 involves infinite
series of exponential integrals, its numerical evaluation can be made
more efficient by exploiting the following recurrence relations [37, eqs.
(5.1.7) and (5.1.14)]:

E1(z) = �Ei(�z)

En+1(z) =
1

n
(e�z � zEn(z)) (19)

for z > 0. As such, only a single exponential integral must be explicitly
evaluated when summing these series. Moreover, it turns out that this
infinite series converges quickly and can generally be evaluated with
less than 20 terms. Therefore, the computational challenge associated
with this series is very low.

The following corollary presents an exact variance expression for the
mutual information of SIMO/MISO–OFDM systems (i.e., cases with
m = 1; n > 1). To the best of our knowledge, this result is also new.

(Br;s)i;j =

b!; for j 6= r and j 6= s

b!eN =g1(b+ 1); for j = r or j = s; and r 6= s

2(Nt=)
b+1eN = b

t=0

b

t
(�1)tG4;0

3;4 Nt=j
t�b;t�b;t�b
0;t�b�1;t�b�1;t�b�1 ; for j = r = s

(13)

(Cr;s(�d))i;j =

�i;j(1; �d); for i 6= r; j 6= s

�i;j(g1(z); �d); for i = r; j 6= s

j�dj
2(i�j)�j;i(g1(z); �d); for i 6= r; j = s

(1� j�dj
2)z

j�dj2(j�1)
e 1

t=0

j�dj
2t�(u)�(v)g2(u)g2(v)

t!(� + t)!
; for i = r; j = s

(14)
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Corollary 1: The variance of the mutual information of
SIMO/MISO–OFDM systems is given by

Var(Iofdm)

=
(log2(e))

2

�(n)

2

N2

N�1

d=1

(N � d)'(�d)� �(n)e2N =(g1(n))
2

+
2eN =

N

Nt



n n�1

t=0

n� 1

t
(�1)n�1�t

� G4;0
3;4 Nt=j

�t;�t;�t
0;�t�1;�t�1;�t�1 (20)

where '(�d) is defined in (21), shown at the bottom of the page.

The following corollary presents an exact variance expression for the
mutual information of SISO–OFDM systems (i.e., m = 1; n = 1).

Corollary 2: The variance of the mutual information of
SISO–OFDM systems is given by

Var(Iofdm)

= (log2(e))
2 2

N2

N�1

d=1

(N � d)'(�d) +
2e1=

N

�G4;0
3;4 1=j0;0;00;�1;�1;�1 � e2=(g1(1))

2

(22)

where

'(�d) =

e2=(g1(1))
2; for j�dj = 0

(1� j�dj
2)e

� 1
t=0 j�dj

2t(g2(1 + t))2; for 0 < j�dj < 1
2e
N

G4;0
3;4 1=j0;0;00;�1;�1;�1 ; for j�dj = 1

(23)

Very recently, an equivalent expression for the SISO–OFDM vari-
ance given in (22) was presented in [31].2 In contrast to (22), however,
the equivalent result from [31] is not expressed in closed form, and it
requires the evaluation of infinite series of incomplete gamma func-
tions.

In Fig. 1, we compare the analytical variance expression (9) with the
variance obtained via Monte Carlo simulation. Results are presented
for two different Nt � Nr antenna configurations as a function of
the channel length L. A uniform power delay profile is assumed (i.e.,
�2p = 1=L, for p = 0; . . .L � 1), eight subcarriers are used (simply
by way of example, similar results are obtained for higher numbers of
subcarriers), and the SNR is set to 10 dB. In all cases, we see a pre-

2Note that this expression was not explicitly stated in [31]. It can however be
obtained by following the derivation of (47) and using [31, eqs. (12), (41), and
(48)]

cise agreement between the simulated and analytic curves. Moreover,
the variance is seen to be largest for the system with the least antennas,
regardless of the channel length. For both antenna configurations, we
see that the variance reduces with increasing L, and that this reduction
is most significant for small L. For example, by increasing the channel
length fromL = 1 (flat-fading) toL = 2, the variance for both antenna
configurations is more than halved.

In Fig. 2, we plot the analytical variance expression (9) and Monte
Carlo simulation results for different SNRs, as a function of L. Again
we see a precise agreement between the analytical and simulated re-
sults. From this figure, we see that for a given channel length the vari-
ance of the mutual information varies monotonically with the SNR.
This increase is most significant for small values of L.

B. Analysis at High SNR

The following theorem presents a closed-form expression for the
variance of the mutual information of MIMO–OFDM in the high SNR
regime. This result is simpler than the exact general variance result
given in Theorem 1, as it does not involve any infinite series.

Theorem 2: In the high SNR regime, the variance of the mutual
information of MIMO–OFDM systems is given by

Var1(Iofdm)

= (log2(e))
2 2

N2

N�1

d=1

(N � d) ~'(�d) +
1

N

m�1

t=0

 0(n� t)

�
N � 1

N

m�1

t=0

 (n� t)

2

(24)

where

~'(�d) =

m�1
t=0  (n� t)

2
; for j�dj = 0

det( ~C (� ))

� (n)� (m)
; for 0 < j�dj < 1

m�1
t=0  0(n� t)

+ m�1
t=0  (n� t)

2
; for j�dj = 1

(25)

where ~Cr;s(�d) is anm�m matrix with (i; j)th element for the cases
i 6= r or j 6= s given by

~Cr;s(�d)
i;j

=

�i;j(1; �d); for i 6= r; j 6= s

�i;j( (z); �d); for i = r; j 6= s

j�dj
2(i�j)�j;i( (z); �d); for i 6= r; j = s

(26)
and for the case (i = r; j = s) by

( ~Cr;s(�d))i;j

= h2(�d)j�dj
2(i�j) �j;i(1; �d) + j�dj

2(i �j)�j ;i

� �j� j (z � 1); �d) + h(�d)(�i;j(H(z � 1); �d)

� ln(1� j�dj
2)�i;j(1; �d) + j�dj

2(i�j)

� (�j;i(H(z� 1); �d)� ln(1� j�dj
2)�j;i(1; �d)) (27)

'(�d) =

�(n)e2N =(g1(n))
2; for j�dj = 0

(1� j�dj
2)ne 1

t=0

j�dj
2t�(n + t)(g2(n+ t))2

t!
; for 0 < j�dj < 1

2eN = Nt



n
n�1
t=0

n� 1

t
(�1)n�1�tG4;0

3;4 Nt=j
�t;�t;�t
0;�t�1;�t�1;�t�1 ; for j�dj = 1

(21)
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Fig. 1. Variance of the mutual information of MIMO–OFDM for different N �N antenna configurations and different channel lengths (uniform power delay
profile). The “analytic variance” curves are based on (9). Eight subcarriers are considered, with SNR of 10 dB.

Fig. 2. Variance of the mutual information of MIMO–OFDM for different SNRs and different channel lengths (uniform power delay profile). The “analytic
variance” curves are based on (9). A 2� 2 system is considered with eight subcarriers.
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where i0 = max(i; j) and j0 = min(i; j). Also, �i;j( � ) is defined in
(17) in Theorem 1, ��( � ) is defined in (126), h( � ) is given by

h(�d) = ln(1� j�dj
2)�K (28)

and K = 0:5772 . . . is the Euler–Mascheroni constant. The function
H( � ) denotes the harmonic number

H(z) =
z

`=1
1
`
; for z > 0

0; for z = 0
(29)

and  ( � ) is the digamma function defined as [37, eq. (6.3.2)]

 (n� t) = H(n� t� 1)�K (30)

with first derivative  0( � ) corresponding to the polygamma function
[37, eq. (6.4.1)].

Proof: See Appendix III.

The following two corollaries present very simple high SNR vari-
ance expressions for the special case of SIMO/MISO and SISO sys-
tems, respectively.

Corollary 3: The variance of the mutual information of
SIMO/MISO–OFDM systems at high SNR is given by

Var1(Iofdm)

= (log2(e))
2 2

N2

N�1

d=1

(N � d) ~'(�d) +
 0(n)

N
(31)

where ~'(�d) is given by (32), shown at the bottom of the page, with
Li ( � ) denoting the dilogarithm function [37, eq. (27.7.1)].

Corollary 4: The variance of the mutual information of
SISO–OFDM systems at high SNR is given by

Var1(Iofdm) = (log2(e))
2

�
2

N2

N�1

d=1

(N � d)Li (1� j�dj
2) +

�2

6N
: (33)

It is important to note that the results in Theorem 2 and Corollaries 3
and 4 do not depend on the SNR. Therefore, a main insight that we can
draw from these expressions is that the variance of the MIMO–OFDM
mutual information converges to a deterministic limit as the SNR in-
creases, which we have now quantified precisely. This phenomenon is
illustrated in Fig. 3, where we plot the variance of the MIMO–OFDM
mutual information for different Nt �Nr antenna configurations, and
for different SNRs. The “analytic variance (high SNR)” dashed lines
are based on (24) for the 2�3 case, (31) for the 1�2 case, and (33) for
the 1� 1 case. The “analytic variance (exact)” curves are based on (9)
for the 2� 3 case, (20) for the 1� 2 case, and (22) for the 1� 1 case.
Monte Carlo simulated variance curves are also presented for further
verification. We see that the results converge quickly in all cases.

C. Analysis at Low SNR

The following theorem presents a very simple closed-form expres-
sion for the variance of the mutual information of MIMO–OFDM in
the low SNR regime.

Theorem 3: In the low SNR regime, the variance of the mutual in-
formation of MIMO-OFDM systems is given by

Var0(Iofdm) = (log2(e))
2

2Nr

NNt

1 + 2

N�1

d=1

N � d

N
j�dj

2 : (34)

Proof: See Appendix IV.

The following corollary gives upper and lower bounds (as a func-
tion of the frequency correlation coefficients) for the variance of the
MIMO–OFDM mutual information in the low SNR regime.

Corollary 5: In the low SNR regime, the variance of the mutual
information of MIMO-OFDM systems satisfies

1

N
�

Var0(Iofdm)

Var0(Iat)

=
1

N
1 + 2

N�1

d=1

N � d

N
j�dj

2 � 1 (35)

where Var0(Iat) denotes the mutual information variance for an i.i.d.
flat-fading Rayleigh MIMO channel. The left-hand side is an equality
for j�dj = 0 (independent fading across all frequency subcarriers), and
the right-hand side is an equality for j�dj = 1 (identical fading across
all subcarriers, i.e., flat-fading).

Proof: The proof follows by using

0 � j�dj � 1 (36)

in (34) and noting that

Var0(Iat) = (log2(e))
2

2Nr

Nt

(37)

which is found by directly setting N = 1 in (34).

It is interesting to note from (35) that in the low SNR regime, the
scaling of the MIMO–OFDM variance with respect to the flat-fading
variance depends only on the channel delay profile, and it is indepen-
dent of the number of transmit and receive antennas.

For the particular case of a uniform power delay profile (i.e., with
�2p = 1=L for all p = 0; . . . ; L� 1), we can obtain a simple insightful
expression for the variance ratio in (35), as given below.

Corollary 6: For a uniform power delay profile, (35) becomes

1

N
�

Var0(Iofdm)

Var0(Iat)

=
1

N
1 + 2

N�1

d=1

N � d

N

sin �dL

N

L sin �d

N

2

� 1 (38)

~'(�d) =

0; for j�dj = 0

Li (1� j�dj
2) �H2(n� 1) + 2 n�1

b=1
H(b�1)

b

+ n�1
b=1

1
b

j� j �1

j� j

b

ln(1� j�dj
2) � b�2

t=0 b�t�1
; for 0 < j�dj < 1

 0(n); for j�dj = 1

(32)
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Fig. 3. Variance of the mutual information of MIMO–OFDM for differentN �N antenna configurations, and for different SNRs. The “analytic variance (high
SNR)” lines are based on (24) for the 2� 3 case, (31) for the 1� 2 case, and (33) for the 1� 1 case. The “analytic variance (exact)” curves are based on (9) for
the 2� 3 case, (20) for the 1� 2 case, and (22) for the 1� 1 case. Sixteen subcarriers are considered, and the channel follows an eight-path uniform power delay
profile.

Fig. 4. Ratio of the MIMO–OFDM mutual information variance and the flat-fading MIMO mutual information variance at low SNR for different channel lengths
(uniform power delay profile). The “analytic variance ratio” curve is based on (38). A 2� 2 system at �25 dB is considered with 32 subcarriers.
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Fig. 5. The pdf of MIMO–OFDM mutual information for different N � N antenna configurations. The “analytic Gaussian approximation” curves are based
on the exact mean formula (48) and exact variance formula (9). Sixty four subcarriers are considered with SNR of 20 dB. The channel follows an eight-path
exponential power delay profile with K = 4.

where the left-hand side is an equality for L = N , and the right-hand
side is an equality for the case L = 1.

Proof: The proof follows trivially from (35) after noting that the
frequency correlation coefficients (5) in this case can be expressed as
[38]

�d =
sin

�dL
N

L sin
�d
N

e
j

: (39)

The summation in (38) is of a similar type to that in [32, eq. (60)],
which gave an asymptotic expression for the variance for large antenna
numbers and involved the same squared-ratio terms. As mentioned in
[32], as L increases, the ratio becomes more peaked as a function of
d, thereby decreasing the overall sum. Thus, from (38), we see that the
variance of the mutual information varies inversely with the channel
delay spread in the low SNR regime. This agrees with previous ob-
servations seen via simulation studies in [19], and for the regime of
large antenna numbers in [32]. These results are further corroborated
in Fig. 4, where (38) is plotted as a function of the channel length L.

IV. OUTAGE APPROXIMATION OF MIMO–OFDM-BASED

SPATIAL MULTIPLEXING

We now use the analytic expressions from the previous section to
present and investigate approximations for the distribution of mutual
information. We then use the approximations to estimate outage ca-
pacity.

Unless otherwise stated, for all results in this section, we model the
channel according to the exponential power delay profile [39]

�
2
p =

1� e�1=K

1� e�L=K
e�p=K ; for 0 � p < L

0; otherwise
(40)

where Kexp is a parameter that characterizes the rate of decay of the
power delay profile as a function of p, and is loosely related to the root
mean square (RMS) delay spread [39].

A. Gaussian and Gamma Approximations

We first investigate the accuracy of a Gaussian approximation for
various system configurations and channel scenarios.

Fig. 5 presents the analytical Gaussian approximation for the
MIMO–OFDM mutual information probability density function (pdf)
based on the exact mean and variance expressions in (48) and (1),
respectively, as well as empirically generated pdfs (Monte Carlo his-
togram), for different antenna configurations. A 64-subcarrier system
is considered with SNR of 20 dB. We see that the analytic curves
match the true distribution almost perfectly for both antenna con-
figurations. We also present curves for a simulation-based Gaussian
approximation (based on the mean and variance of the Monte Carlo
generated histograms) for further verification. Note that these curves
are indistinguishable from our new analytical Gaussian approximation
curves.

Fig. 6 compares the analytical Gaussian approximation with empir-
ically generated pdf curves, for different channel RMS delay spreads.
Again we see that the analytic Gaussian approximation is accurate in
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Fig. 6. The pdf of MIMO–OFDM mutual information for different RMS delay spreads (channels follow an eight-path exponential power delay profile with
differentK ). The “analytic Gaussian approximation” curves are based on the exact mean formula (48) and exact variance formula (9). Sixteen subcarriers are
considered with SNR of 20 dB.

Fig. 7. The pdf of MIMO–OFDM mutual information. The “analytic Gaussian approximation ” curve is based on the exact mean formula (48) and exact variance
formula (9). The “asymptotic Gaussian approximation (from [32])” curve is based on [32, eqs. (59) and (60)]. The 2�2 antennas and 32 subcarriers are considered
with 20-dB SNR. The channel follows an eight-path uniform power delay profile.
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Fig. 8. The pdf of MIMO–OFDM mutual information at high SNR. The “analytic Gaussian approximation (high SNR)” curves are based on the
high SNR mean formula [3, Th. 2], and the variance formula (24) for the 2� 2 case, (31) for the 1� 2 case, and (33) for the 1� 1 case.
Sixteen subcarriers are considered with SNR of 35 dB. The channel follows an eight-path exponential power delay profile with K = 4.

all cases. Moreover, we see a significant reduction in the variance of the
mutual information as the RMS delay spread increases (i.e., as Kexp

increases). Again note that the Monte Carlo Gaussian approximation
is indistinguishable from our new analytical Gaussian approximation
curves.

Fig. 7 compares our new analytic Gaussian approximation with
the asymptotic Gaussian approximation previously derived in [32],
formally derived under the assumption of asymptotically large antenna
numbers. To our knowledge, this is the only other comparable
analytical result in the literature that applies for arbitrary-length
frequency-selective MIMO channels. In the figure, we consider a
2�2 system at 20-dB SNR. The channel has a uniform power-delay
profile, for which simple approximations to the mean and variance
of the mutual information were explicitly presented in [32, eqs.
(59) and (60)]. Clearly, although the approximation in [32] was
shown to be quite accurate for some practical scenarios, Fig. 7
shows that our analytic Gaussian approximation is more accurate
(although it is only shown for 32 subcarriers, the same observation
has been made for all systems investigated).

Fig. 8 presents the distribution of the mutual information at high
SNRs, comparing MIMO, SIMO, and SISO systems. The analytic
Gaussian approximation curves are based on a high SNR mean
formula from [3, Th. 2], and the high SNR variance formula (24)
for the MIMO case, (31) for the SIMO case, and (33) for the
SISO case. We see that the analytic Gaussian approximation is
accurate in all cases. Again note that the Monte Carlo Gaussian
approximation is indistinguishable from our new analytical Gaussian
approximation curves.

Fig. 9 presents the distribution of the mutual information at low
SNRs. The analytic Gaussian approximation curve is generated based

on the low SNR mean formula obtained by combining (131) and (133)
and the low SNR variance formula (34). In this case we see that a
Gaussian distribution no longer accurately predicts the mutual informa-
tion pdf. This can be explained by examining (131), where we see that
at low SNRs the mutual information for each subcarrier is a function
of tr(HkH

y

k
), which for i.i.d. Rayleigh fading is ��22N N . Hence,

the overall mutual information (8) is distributed as the sum of N cor-
related �22N N random variables, which (for small N ) is clearly quite
different from Gaussian.

Motivated by this observation, we propose to approximate the mu-
tual information pdf at low SNR with a Gamma distribution. Note that
a Gamma approximation was previously considered in the context of
flat-fading channels in [40]. The Gamma pdf is given by

f(x) =
�rxr�1e��x

�(r)
; x � 0 (41)

where r is the shape parameters and � is the scale parameter. By
matching the first two moments, a Gamma approximation for the
mutual information pdf of MIMO–OFDM is obtained by evaluating

r =
E [Iofdm]

Var (Iofdm)
(42)

and

� =
E2[Iofdm]

Var(Iofdm)
: (43)

This analytic Gamma approximation is plotted in Fig. 9, based on
the same low SNR analytic mean and variance formulas as used

Authorized licensed use limited to: University of Canterbury. Downloaded on November 16, 2008 at 21:45 from IEEE Xplore.  Restrictions apply.



3270 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 7, JULY 2008

Fig. 9. The pdf of MIMO–OFDM mutual information at low SNR. The “analytic Gaussian approximation (low SNR)” and “analytic Gamma approximation (low
SNR)” curves are based on the low SNR mean formula obtained by combining (131) and (133) and the low SNR variance formula (34). A 2� 2 system with 32
subcarriers is considered with SNR of �25 dB. The channel follows a four-path exponential power delay profile withK = 2.

Fig. 10. The cdf of MIMO–OFDM mutual information for different RMS delay spreads (channels follow an eight-path exponential power delay profile with
differentK ). The “analytic Gaussian approximation” curves are based on the exact mean formula (48) and exact variance formula (9). A 2� 2 system with 16
subcarriers is considered with SNR of 20 dB.

for the low SNR Gaussian approximation above. We clearly see
that the Gamma approximation is much more accurate than the
Gaussian approximation in this low SNR regime, and it follows
the simulated pdf very closely.

B. Outage Capacity

The outage capacity Iout;q is defined as the maximum information
rate guaranteed to be supported for 100(1 � q)% of the channel
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realizations,3 i.e.,

P (Iofdm � Iout;q) = q (44)

where q denotes the outage probability, and is thus directly obtained
by inverting the cumulative distribution function (cdf) of Iofdm. If the
distribution of the mutual information is Gaussian, then the outage ca-
pacity can be computed from the derived mean and variance as [33, eq.
(26)]

Iout;q = E[Iofdm]� Var(Iofdm)Q
�1(q) (45)

where Q( � ) is the Gaussian Q-function.
Fig. 10 plots the outage probability for channels with different RMS

delay spreads. The “analytic Gaussian approximation” curves are gen-
erated by approximating the cdf in (44) as a Gaussian distribution, and
using the exact mean and variance formulas in (48) and (1) respectively.
Clearly, this analytic Gaussian approximation matches closely with the
empirically generated cdf (Monte Carlo histogram) in all cases. More-
over, we see that for outage probabilities of practical interest (e.g.,
q = 1%), increasing the RMS delay spread can yield a significant im-
provement in outage capacity.

V. CONCLUSION

This communication has considered the mutual information dis-
tribution of frequency-selective MIMO channels, in the context of
OFDM-based spatial multiplexing systems. Exact closed-form expres-
sions were presented for the mutual information variance, applying
for arbitrary finite system and channel parameters. These results were
used to provide accurate analytical approximations for the distribution
of mutual information, and the outage capacity. We observed that
for most scenarios a Gaussian approximation is accurate, while also
noting that for low SNR a Gamma approximation yielded even higher
accuracy.

APPENDIX I
PROOF OF THEOREM 1

Proof: By definition, the variance of the mutual information is
given by

Var(Iofdm) = E I2ofdm � E
2[Iofdm]: (46)

Noting that E[Iofdm] = E[Iat], and using (6), we have

Var(Iofdm)

= E
1

N2

N�1

k=0

N�1

`=0

IkI` �E
2 [Iat]

=
1

N2

N�1

k=0

N�1

`=0; 6̀=k

E[IkI`] +

N�1

k=0

E I2k � E
2[Iat]

=
1

N2

N�1

k=0

N�1

`=0; 6̀=k

E[IkI`] +
1

N
E I2at �E

2[Iat]

(47)

3Strictly speaking, computing the outage capacity would require performing
a numerical optimization over all possible input distributions, as discussed in
[1]. Here, however, we adopt a common slight abuse of terminology and use
the term outage capacity to denote the outage rate for the case of OFDM-based
spatial multiplexing systems with equal power Gaussian inputs.

where Iat denotes the mutual information of a flat-fading channel.
Note that the last line followed by noting that, under the assumptions
in Section II-A, the channel statistics for each subcarrier (and there-
fore, the mutual information statistics) are identical [19], and moreover,
these statistics are equal to that of a flat-fading i.i.d. Rayleigh channel.
The first and second moments of the mutual information for flat-fading
channels has been previously derived in terms of incomplete gamma
functions in [15, eqs. (29) and (31)]. Using [37, eq. (6.5.9)], we per-
form some basic manipulations to express these results in alternative
simplified forms as follows:

E[Iat] =
log

2
(e)

�m(n)�m(m)

m

r=1

det(Ar) (48)

E I2at =
(log

2
(e))2

�m(n)�m(m)

m

r=1

m

s=1

det(Br;s) (49)

whereAr and Br;s are defined in (12) and (13), respectively.
The challenge is to evaluate the cross correlation of the mutual infor-

mation across frequency subcarriersE[IkI`] which, using (7), is given
by

E [IkI`] = E log
2
det IN +



Nt

HkH
y

k

� log
2
det IN +



Nt

H`H
y

`

= E

m

i=1

log
2

1+


Nt

�i

m

j=1

log
2

1+


Nt

!j (50)

where ��� = f�ig
m
i=1 and !!! = f!ig

m
i=1 are the nonzero eigenvalues of

HkH
y

k and H`H
y

` , respectively. Defining

�(x) = log
2

1 +


Nt

x (51)

we have

E[IkI`] = E

m

i=1

m

j=1

�(�i)�(!j)

=

m

i=1

m

j=1

E[�(�i)�(!j)]: (52)

Now, to evaluate the expectations in (52), we first simplify the problem
by exploiting the symmetry with respect to the �i’s and !j ’s. To this
end, let � and ! be randomly (uniformly) chosen eigenvalues from ���

and !!!, respectively. Then, clearly

Pr(� = �i; ! = !j) =
1

m2
(53)

for any given i 2 f1; . . . ;mg; j 2 f1; . . . ; mg. Hence, we can also
write

E [�(�)�(!)] =

m

i=1

m

j=1

Pr(� = �i; ! = !j)

�E[�(�)�(!)j� = �i; ! = !j ]

=
1

m2

m

i=1

m

j=1

E[�(�i)�(!j)] (54)

where the second line follows from (53). Therefore, by directly com-
paring (54) with (52), it follows that

E[IkI`] = m
2
E[�(�)�(!)]: (55)

We point out that the simplification from (52)–(55) is particularly im-
portant, since in order to evaluate the expectation in (55), clearly we
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only require the distribution of a pair of arbitrarily selected eigenvalues
� and !. This turns out to be much more convenient than dealing with
the distributions of the individual pairs of ordered eigenvalues, i.e., �i
and !j , required to directly evaluate (52).

The joint pdf of � and ! is presented in Lemma 1 in Appendix II.
From this lemma, we see that f(�;w), and correspondingly, E[IkI`]
in (55), only depends on k and ` through their absolute difference, i.e.,
since f(�;w) only depends on k and ` via j�k�`j, and from (5)

j�k�`j = j��`�kj = j�`�kj: (56)

Therefore, the left-hand summation in (47) can be written as

N�1

k=0

N�1

`=0; 6̀=k

E[IkI`] = 2

N�1

d=1

(N � d)E[I0Id]: (57)

Note that for subcarrier spacings d for which the frequency matrices
are independent (i.e., �d = 0) or completely correlated (i.e., �d = 1),
the expectations in (57) are evaluated trivially as

E[I0Id] = E
2[Iat]; �d = 0

E[I0Id] = E I2at ; �d = 1: (58)

For the case 0 < j�dj < 1, such a direct evaluation is not possible, and
we use (55) in Lemma 1 and (67) to evaluate the expectations in (57)
as follows:

E[I0Id] = m
2

1

0

1

0

�(�)�(!)j�dj�m(n�1)

�m(n)�m(m)m2(1� j�dj2)m

�
m

r=1

m

s=1

det(Dr;s(�;!))d�d!

=
j�dj�m(n�1)

�m(n)�m(m)(1� j�dj2)m
m

r=1

m

s=1

det(Dr;s) (59)

for 0 < j�dj < 1, whereDr;s is an m�m matrix with (i; j)th element
defined in (60), shown at the bottom of the page.

Using the identity [11]

1

0

ln(1 + ��) �q�1e�b�d� = �(q)eb=�b�q
q

h=1

Eh
b

�
(61)

we can evaluate b(i; j) and c(i; j) in closed form as

b(i; j) =
log2(e)e

N =�(� + j) j�dj�
(1� j�dj2)�j

�
j�1

t=0

j � 1

t

j�dj2
1� j�dj2

t
�(u)

(� + t)!
g1(u) (62)

and

c(i; j) =
log2(e)e

N =�(� + i) j�dj�
(1� j�dj2)�i

�
i�1

t=0

i� 1

t

j�dj2
1� j�dj2

t
�(v)

(� + t)!
g1(v) (63)

respectively. We evaluate the remaining integral a(i; j) by using the
power series expansion

I� (x) =

1

k=0

x

2

�+2k 1

k!(� + k)!
(64)

and integrating term by term using (61) to obtain

a(i; j) = (log2(e))
2
e j�dj� 1� j�dj2 �+i+j

�
1

t=0

j�dj2t �(u)�(v)
t!(� + t)!

g2(u)g2(v): (65)

Substituting (62), (63), and (65) into (60), we perform some basic al-
gebraic manipulations to write (59) as follows:

E[I0Id] = (log2(e))
2e2N =

�m(n)�m(m)

m

r=1

m

s=1

det(Cr;s(�d)) (66)

for 0 < j�dj < 1. The proof is completed by substituting (66) and
(58) into (57), and then substituting (57), (49), and (48) into (47) and
simplifying.

APPENDIX II
JOINT PDF OF ARBITRARILY SELECTED EIGENVALUES

OF SUBCARRIER MATRICES

Lemma 1: Let � and ! be arbitrarily selected nonzero eigenvalues
of the subcarrier matrices HkH

y
k and H`H

y
` , respectively. Then, the

joint pdf of � and ! is given by

f(�; !) =
j�dj�m(n�1)

�m(n)�m(m)m2(1� j�dj2)m

�
m

r=1

m

s=1

det(Dr;s(�;!)) (67)

where d = k�`; � = n�m, andDr;s(�;!) is an m�m matrix with
(i; j)th element given by (68), shown at the bottom of the next page,
where I� ( � ) is the modified Bessel function of the first kind [37, eq.
(9.6.10)].

Proof: From (5), we see thatHkH
y
k andH`H

y
` are (frequency)

correlated Wishart matrices. In [41], the joint ordered eigenvalue den-
sity for matrices of this general form was evaluated for cases where the

(Dr;s)i;j =

a(i; j)
�
=

1

0

1

0
� +i�1! +j�1e

�
e
�

I�
2j� j

1�j� j

p
�! �(�)�(!)d�d!; for i = r; j = s

b(i; j)
�
=

1

0

�(�+j)j� j

(1�j� j )
e����+i�1

j�1
t=0

j � 1

t

j� j �

1�j� j

t
�(�)
(�+t)!

d�; for i = r; j 6= s

c(i; j)
�
=

1

0

�(�+i)j� j

(1�j� j )
e�!!�+j�1 i�1

t=0

i� 1

t

j� j !

1�j� j

t
�(!)
(�+t)!

d!; for i 6= r; j = s

�(�+j) j� j

(1�j� j )

j�1
t=0

j � 1

t

j� j
1�j� j

t
(�+i+t�1)!

(�+t)!
; for i 6= r; j 6= s

(60)
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correlation coefficient was real. Extending this result to complex cor-
relation coefficients, and to unordered eigenvalues, we obtain the joint
eigenvalue density

fu (���;!!!) =
1

m!2
j�dj�m(n�1)

�m(n)�m(m)(1� j�dj2)m

� exp �
m

t=1(�t + !t)

1� j�dj2 �m(���)�m(!!!)

� det (�i!j) I�
2j�dj

1� j�dj2 �i!j (69)

where �m( � ) is a Vandermonde determinant, defined as

�m(���) =

m

i<j

(�j � �i) = det �j�1i : (70)

Note that the extension from ordered to unordered eigenvalues simply
involved the addition of the leading 1=m!2 factor in (69), whereas the
extension from real to complex correlation coefficients is trivial, and
the proof is omitted.

To evaluate (67), we marginalize (69) as follows:

f(�; !) =
1

0

� � �
1

0

fu (���;!!!) d���1d!!!1 (71)

where d���1 = d�2 � � � d�m; d!!!1 = d!2 � � � d!m, and we have let
�1 = � and !1 = !. We evaluate these integrals by first expanding
the Vandermonde determinants in (69) according to

�m(���)�m(!!!) =
�

(�1)per(�)
m

i=1

�� �1
i

�
�

(�1)per(�)
m

j=1

!
� �1

j (72)

where the sums are over all permutations � = f�1; . . . ; �mg and � =
f�1; . . . ; �mg of f1; . . . ;mg, and (�1)per(�) and (�1)per(�) denote
the signs of the permutations. Substituting (72) and (69) into (71) yields

f(�; !) =
1

0

� � �
1

0

j�dj�m(n�1)

�m(n)�m(m)(m!)2(1� j�dj2)m

� exp �
m

t=1(�t + !t)

1� j�dj2
�

(�1)per(�)

�
m

i=1

�� �1
i

�

(�1)per(�)
m

j=1

!
� �1

j

� det (�i!j) I�
2j�dj

1� j�dj2 �i!j d���1d!!!1

=
j�dj�m(n�1)

�m(n)�m(m)(m!)2 (1�j�dj2)m
� �

(�1)per(�)+per(�)

�
1

0

� � �
1

0

det(a(�i; !j ; �i; �j))d���1d!!!1 (73)

where

a(�i; !j ; �i; �j) = �
+� �1

i !
+� �1

j e
�

� e
�

I�
2j�dj

1� j�dj2 �i!j : (74)

Expanding the determinants, integrating term by term, and reforming
determinants, we obtain

f(�; !) =
j�dj�m(n�1)

�m(n)�m(m)(m!)2(1� j�dj2)m
�

� �

(�1)per(�)+per(�) det( ~D�;�(�; !)) (75)

where ~D�;�( � ) is an m � m matrix with (i; j)th element given by
(76), shown at the bottom of the page. Reordering rows and columns
yields

det( ~D�;�(�; !)) = (�1)per(�)+per(�) det(D� ;� (�; !)) (77)

where

(D� ;� (�; !))i;j =

a(�; !; i; j); for i = �1; j = �1
b(�; i; j); for i = �1; j 6= �1
c(!; i; j); for i 6= �1; j = �1
d(i; j); for i 6= �1; j 6= �1:

(78)

Applying (77) in (75), we can further simplify as follows:

f(�; !) =
j�dj�m(n�1)

�m(n)�m(m)(m!)2 (1� j�dj2)m
�

� �

det(D� ;� (�; !))

=
j�dj�m(n�1)((m� 1)!)2

�m(n)�m(m)(m!)2(1� j�dj2)m

(Dr;s(�; !))i;j =

� +i�1! +j�1e
�

e
�

I�
2j� j

1�j� j

p
�! ; for i = r; j = s

�(�+j) j� j

(1�j� j )
e����+i�1 j�1

t=0

j � 1

t
j� j �

1�j� j

t
1

(�+t)!
; for i = r; j 6= s

�(�+i)j� j

(1�j� j )
e�!!�+j�1 i�1

t=0

i� 1

t
j� j !

1�j� j

t
1

(�+t)!
; for i 6= r; j = s

�(�+j) j� j

(1�j� j )

j�1
t=0

j � 1

t
j� j

1�j� j

t
(�+i+t�1)!

(�+t)!
; for i 6= r; j 6= s

(68)

( ~D�;�(�; !))i;j =

a(�; !; �i; �j); for i = 1; j = 1

b(�; �i; �j)
�
=

1

0
a(�; !j ; �i; �j)d!j; for i = 1; j 6= 1

c(!;�i; �j)
�
=

1

0
a(�i; !; �i; �j)d�i; for i 6= 1; j = 1

d(�i; �j)
�
=

1

0

1

0
a(�i; !j ; �i; �j)d�id!j; for i 6= 1; j 6= 1

(76)
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�

m

� =1

m

� =1

det(D� ;� (�; !))

=
j�dj

�m(n�1)

�m(n)�m(m)m2(1� j�dj2)m

�

m

r=1

m

s=1

det(Dr;s(�;!)): (79)

The result now follows by combining (74), (78), and (79), and by
evaluating the integrals b( � ); c( � ), and d( � ) inside the remaining de-
terminant, using the identities [41]

1

0

x
a+ �1

e
�cx

It(2 fx)dx

=
(t+ a� 1)!

c +a

f

c
e

a�1

r=0

a� 1

r

f

c

r

(t+ r)!
(80)

for integers a and t, and [36]
1

0

x
t
e
�axdx = �(t+ 1)a�(t+1) (81)

for integer t � 0.

APPENDIX III
PROOF OF THEOREM 2

Proof: We start by noting that at high SNR, (7) approaches

Ik = log2 det


Nt

Wk (82)

where it is an m�m complex Wishart matrix given by

Wk =
HkH

y

k; for Nr � Nt

H
y

kHk; for Nr > Nt:
(83)

Substituting (82) into (47) and using (57), we write the variance of
the MIMO–OFDM mutual information at high SNR as follows:

Var1(Iofdm)

=
2

N2

N�1

d=1

(N�d)E log2 det


Nt

W0 log2 det


Nt

Wd

+
1

N
E log2 det



Nt

W0

2

�E2 log2 det


Nt

W0 :

(84)

Noting that

log2 det


Nt

W0 = m log2


Nt

+ log2 det(W0) (85)

we apply some simple algebra to (84) and find that the terms involving
 cancel perfectly, leaving

Var1(Iofdm)=
2

N2

N�1

d=1

(N�d)E[log2 det(W0) log2 det(Wd)]

+
1

N
E[(log2 det(W0))

2]�E2[log2 det(W0)] :

(86)

SinceW0 is a complex Wishart matrix, we invoke results from [3] to
give

E[log2 det(W0)] = log2(e)

m�1

t=0

 (n� t) (87)

E[(log2 det(W0))
2])

= (log2(e))
2

m�1

t=0

 
0(n� t) +

m�1

t=0

 (n� t) : (88)

We now consider the remaining expectation
E[log2 det(W0) log2 det(Wd)] in (86). For the extreme
cases of �d = 0 and �d = 1, this is directly obtained from (87) and
(88), respectively. The main challenge is to obtain a closed-form
finite-sum expression for 0 < j�dj < 1.

We start by following the same procedure as used in (50)–(60) in the
proof of Theorem 1, which yields

E[log2 det(W0) log2 det(Wd)]

=
j�dj

�m(n�1)

�m(n)�m(m)(1� j�dj2)m

m

r=1

m

s=1

det( �Dr;s) (89)

for 0 < j�dj < 1, where �Dr;s is an m�m matrix with entries corre-
sponding to (60), but with the �( � ) functions replaced with

~�(x) = log2(x): (90)

We now evaluate the integrals for the elements of �Dr;s corresponding
to b(i; j) and c(i; j) in (60), using the identity [36, eq. (4.352.1)]

1

0

x
q�1

e
�bx ln(x)dx

=
�(q)

bq
( (q)� ln(b)); q > 0; b > 0: (91)

This gives

b(i; j) =
log2(e)�(� + j) j�dj

�

(1� j�dj2)�j

�

j�1

t=0

j � 1

t

j�dj
2

1� j�dj2

t
�(u) (u)

(� + t)!
(92)

and

c(i; j) =
log2(e)�(� + i)j�dj

�

(1� j�dj2)�i

�

i�1

t=0

i� 1

t

j�dj
2

1� j�dj2

t
�(v) (v)

(� + t)!
: (93)

To evaluate the remaining integrals in �Dr;s, i.e., for the elements
a(i; j), we use (64) and (91) to obtain

a(i; j) = (log2(e))
2j�dj

�(1� j�dj
2)�+i+j (94)

�

1

t=0

j�dj
2t�(u)�(v)

t!(� + t)!
(H(u� 1) + h(�d))

� (H(v � 1) + h(�d)): (95)

Next we use (92)–(94) in (89), and perform some basic simplifications
to obtain

E[log2 det(W0) log2 det(Wd)]

=
(log2(e))

2

�m(n)�m(m)

m

r=1

m

s=1

det( ~Cr;s(�d)) (96)

where ~Cr;s(�d) is an m � m matrix with (i; j)th element given by
(97), shown at the bottom of the next page. Expression (24) follows by
using (96), (88), and (87) in (86).
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To complete the proof, we must express the infinite summation in
(97) in the simplified finite-sum form of (27). This simplification re-
quires significant algebraic manipulations, which we now detail. Start
by recalling the definitions u = t + � + i and v = t + � + j, and
writing the infinite sum in (97) as follows:

~Cr;s(�d)
i;j

=
(1� j�dj2)z
j�dj2(j�1) S(j�dj2) (98)

where

S(x) �
=

1

t=0

xt(� + t+ i� 1)!(� + t+ i� 1)!

t!(� + t)!

� (h(
p
x) +H(� + t+ i� 1))

� (h(
p
x) +H(� + t+ j � 1)): (99)

Note that the series (99), and those that follow below, are convergent
for jxj < 1 [a condition which holds in (98)].

Now, (99) can be written as

S(x) = h
2(
p
x)S1(1; 1; x) + h(

p
x)(S1(H(i);1; x)

+S1(1;H(j); x)) + S1(H(i);H(j); x) (100)

where

S1(f1(i); f2(j); x)
�
=

1

t=0

xt(� + t+ i� 1)!(� + t+ j � 1)!

t!(� + t)!

� f1(� + t+ i� 1)f2(� + t+ j � 1) (101)

for arbitrary functions f1 and f2. We now consider each of the infinite
sums in (100) in turn.

First consider S1(1; 1; x). Following a similar general approach to
that used in [42], we perform the following sequence of operations4

S1(1; 1; x) =
1

t=0

xt(� + t+ i� 1)!(� + t+ j � 1)!

t!(� + t)!

=
d�+i�1

dx�+i�1

1

t=0

xt+�+i�1(� + t+ j � 1)!

(� + t)!

=
d�+i�1

dx�+i�1

1

t=�

xt+i�1(t+ j � 1)!

t!

=
d�+i�1

dx�+i�1

1

t=0

xt+i�1(t+ j � 1)!

t!

=
d�+i�1

dx�+i�1
x
i�1

1

t=0

xt(t+ j � 1)!

t!

4Note that for this particular case, a finite expression could be also found
by directly matching the infinite series to a hypergeometric function, and using
associated identities; something which cannot be done in the other cases.

=
d�+i�1

dx�+i�1
x
i�1 dj�1

dxj�1

1

t=0

x
t+j�1

=
d�+i�1

dx�+i�1
x
i�1 dj�1

dxj�1

1

t=0

x
t

: (102)

Via application of the Leibnitz formula, it can be shown that

S1(1; 1; x)

=

i�1

b=0

� + i� 1

� + b

(i� 1)!

b!
x
b d�+j+b�1

dx�+j+b�1

1

t=0

x
t

= �(� + i)

i�1

b=0

i� 1

b

xb

(�+b)!

d�+j+b�1

dx�+j+b�1

1

t=0

x
t
: (103)

Now noting that

1

t=0

x
t =

1

1� x
; jxj < 1 (104)

with derivatives

dr

dxr

1

t=0

x
t =

r!

(1� x)r+1
(105)

we can write (103) as follows:

S1(1; 1; x)

=
�(� + i)

(1� x)�+j

i�1

b=0

i� 1

b

x

1� x

b
(� + j + b� 1)!

(� + b)!

=
�(� + i)xi�1

(1� x)z

i�1

b=0

i� 1

b

1� x

x

b

(� + i� b)j�1

=
xi�1�j;i(1;

p
x)

(1� x)z
: (106)

Now consider S1(H(i);1; x). Following the same sequence of op-
erations as in (102) and (103), we find that

S1(H(i);1; x)

=
d�+j�1

dx�+j�1
x
j�1 di�1

dxi�1

1

t=0

x
t
H(t)

= �(� + j)

j�1

b=0

j � 1

b

� xb

(� + b)!

d�+i+b�1

dx�+i+b�1

1

t=0

x
t
H(t) : (107)

Now we use [43]

1

t=0

x
t
H(t) =

� ln(1� x)

1� x
; jxj < 1 (108)

( ~Cr;s(�d))i;j =

�i;j(1; �d); for i 6= r; j 6= s

�i;j( (z); �d); for i = r; j 6= s

j�dj2(i�j)�j;i( (z); �d); for i 6= r; j = s
(1�j� j )

j� j

1
t=0

j� j �(u)�(v)(h(� )+H(u�1)) (h(� )+H(v�1))
t!(�+t)!

; for i = r; j = s

(97)
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and the corresponding derivatives

dr

dxr

1

t=0

x
t
H(t) =

r!

(1� x)r+1
(H(r)� ln(1� x)) (109)

to write (107) as follows:

S1(H(i); 1; x)

=
�(� + j)

(1� x)�+i

j�1

b=0

j � 1

b

x

1� x

b
(� + i+ b� 1)!

(� + b)!

� (H(� + i+ b� 1)� ln(1� x))

=
xj�1�(� + j)

(1� x)z

j�1

b=0

j � 1

b

1� x

x

b

(� + j � b)i�1

� (H(z � 1� b)�ln(1� x))

=
xj�1

(1� x)z
(�i;j(H(z�1);

p
x)�ln(1�x)�i;j(1;

p
x)): (110)

Now consider S1(1; H(j); x). Using exactly the same approach as for
S1(H(i);1; x), we obtain

S1(1; H(j); x) =
xi�1

(1� x)z
(�j;i(H(z� 1);

p
x)

� ln(1� x)�j;i(1;
p
x)): (111)

Finally, consider S1(H(i);H(j); x). We follow the same sequence
of operations as in (102) and (103). In this case, it is convenient to take
the successive derivatives based on the order of i and j. In particular,
with i0 = max(i; j) and j0 = min(i; j), we obtain

S1(H(i);H(j); x)

=
d�+i �1

dx�+i �1
x
i �1 dj �1

dxj �1
S2(x)

= �(� + i
0)

i �1

b=0

i0 � 1

b

xb

(� + b)!

d�+j +b�1

dx�+j +b�1
S2(x) (112)

where

S2(x) �
=

1

t=0

x
t
H(t)H(t+ i

0 � j
0): (113)

In this case, in contrast to the previous summations in (104) and (108),
the infinite summation in (113) cannot be directly expressed in a finite
form. To evaluate this series in finite form, we start by using (29) to
write

S2(x) =
1

t=1

x
t
H(t) H(t) +

i �j

q=1

1

t+ q

=

1

t=1

x
t
H(t)2 + S3(x)

=
Li (1� x) + ln2(1� x)

1� x
+ S3(x) (114)

where Li ( � ) is the dilogarithm function [37, eq. (27.7.1)], and S3( � )
is given by

S3(x) �
=

i �j

q=1

1

t=1

xtH(t)

t+ q
: (115)

Note that the last line in (114) followed by using an identity from [43].
We now manipulate S3( � ) as follows:

S3(x) =
i �j

q=1

1

xq

1

t=1

xt+qH(t)

t+ q
(116)

=

i �j

q=1

1

xq

1

t=1

x
t+q�1

H(t)dx

=

i �j

q=1

1

xq
x
q�1

1

t=1

x
t
H(t) dx

=

i �j

q=1

� 1

xq
xq�1 ln(1� x)

1� x
dx: (117)

For q > 1, consider

xq�1

1� x
= �xq�2 + xq�2

1� x
= � � �

=
1

1� x
�

q�1

v=1

x
v�1

; q > 1 (118)

so, therefore

S3(x) =
i �j

q=2

1

xq

q�1

v=1

x
v�1 ln(1� x)dx

�
i �j

q=1

1

xq
ln(1� x)

1� x
dx: (119)

Using [36, eq. (2.729)]5

y
m ln(1� y)dy

=
1

m+1
(ym+1 � 1) ln(1� y)�

m+1

k=1

ym�k+2

m�k+2
+const (120)

and noting that

ln(1� x)

1� x
dx = � ln(1� x)

d

dx
ln(1� x)dx

= � ln2(1� x)

2
+ const (121)

we can now express S3(x) in finite form as follows:

S3(x) =
i �j

q=2

1

xq

q�1

v=1

1

v
(xv � 1) ln(1� x)�

v

t=1

xt

t

+
ln2(1� x)

2

i �j

q=1

1

xq
: (122)

Note that it can be easily verified, using (116), that the integration con-
stant generated in going from (119) to (122) is zero. After much alge-
braic manipulation, it can be shown that (122) reduces to

S3(x) = ln(1� x)

2

i �j

q=1

ln(1� x)

xq

+

i �j �1

q=1

ln(1� x)H(i0 � j0 � q)

xq
� ln(1� x)H(q)

xq+1

� 1

xq

i �j �q

r=1

H(r + q � 1)�H(r � 1)

r
:

(123)

5There is a missing (�1) factor in this reference.
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Now substituting (123) into (114), we can express S2(x) as the finite
sum

S2(x) = Li (1� x) + ln2(1� x)

1� x
+

ln(1� x)

2

i �j

q=1

ln(1� x)

xq

+

i �j �1

q=1

ln(1� x)H(i0 � j0 � q)

xq
� ln(1� x)H(q)

xq+1

� 1

xq

i �j �q

r=1

H(r + q � 1)�H(r� 1)

r
:

(124)

The corresponding derivatives can be obtained after tedious algebra as
follows:

dr

dxr
S2(x) = r!

(1� x)r+1
�x(r) (125)

where

�x(r) = Li (1� x) + ln2(1� x)� 2H(r) ln(1� x)

+

r

b=1

2H(b� 1)� f1;b�1(x)

b

+
1

2

�

q=1

ln(1� x)fq;r(x)�
r�1

b=0

fq;b(x)

r � b

+

��1

q=1

(H(� � q)fq;r(x)�H(q)fq+1;r(x) + �q;r(x)K(q))

(126)

where � = i0 � j0, and recall that Li ( � ) is the dilogarithm function
[37, eq. (27.7.1)]. Also, K( � ) is a constant given by

K(q) =

��q

t=1

H(t+ q � 1)�H(t� 1)

t
(127)

and

fq;r(x) =

r�1

t=0

�q;t(x)

r � t
� �q;r(x) ln(1� x) (128)

where

�q;r(x) =
q + r � 1

r

(x� 1)r+1

xr+q
: (129)

Substituting (125) into (112), we obtain

S1(H(i); H(j); x) =
�(� + i0)

(1� x)�+j

i �1

b=0

i0 � 1

b

x

1� x

b

� (� + j0 + b� 1)!

(� + b)!
�x(� + j0 + b� 1)

=
xi �1�(� + i0)

(1� x)z

i �1

b=0

i0 � 1

b

1� x

x

b

� (� + i0 � b)j �1�x(z � b� 1)

=
xi �1�j ;i (�x(z � 1);

p
x)

(1� x)z
: (130)

Finally, substituting (130), (111), (110), and (106) into (100), and
then combining with (98) and simplifying, we obtain the desired fi-
nite-sum expression in (27).

APPENDIX IV
PROOF OF THEOREM 3

Proof: We start by following [44] and [45] and applying a first-
order Taylor approximation to (7) near  = 0 to give

Ik � log2(e)


Nt

tr HkH
y

k : (131)

Note that, as also mentioned in [44] and [45], we emphasize that this
result is only accurate for the low SNR regime; in general, requiring
that the condition k(=Nt)HkH

y

kk < 1 is satisfied.
Now, substituting (131) into (47) and using (57), we write the vari-

ance of the MIMO–OFDM mutual information at low SNR as follows:

Var0(Iofdm) = (log2(e))
2 

Nt

2

� 2

N2

N�1

d=1

(N � d)E[tr(H0H
y
0)tr(HdH

y

d)]

+
1

N
E[tr2(HatH

y

at)]� E2[tr(HatH
y

at)] (132)

whereHat is a flat-fading i.i.d. Rayleigh fading channel matrix. From
[7], we have the following results:

E[tr(HatH
y

at)] = NrNt (133)

E[tr2(HatH
y

at)] = NrNt(1 +NrNt): (134)

For the remaining expectation in (132), we write

E[tr(H0H
y
0)tr(HdH

y

d)]

= E

N

i=1

N

j=1

j(H0)i;jj2
N

k=1

N

`=1

j(Hd)k;`j2

=

N

i=1

N

j=1

E[j(H0)i;j j2j(Hd)i;j j2] + (NrNt)
2 �NrNt (135)

where the second line followed by noting that
E[j(H0)i;j j2j(Hd)k;`j2] = 1 for all (i; j) 6= (k; `). Now
using (5), it can be easily shown that

E[j(H0)i;j j2j(Hd)i;j j2]
= j�dj2E[j(Hd)i;j j4] + (1� j�dj2)E[j(E)i;j j2]
= 1 + j�dj2: (136)

Substituting (136) into (135), we find that

E[tr(H0H
y
0)tr(HdH

y

d)] = NrNt(j�dj2 +NrNt): (137)

The theorem now follows by substituting (137), (134), and (133) into
(132) and then performing some basic simplifications.
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