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Abstract— This paper presents new statistical properties of
complex noncentral matrix-variate quadratic forms. In contrast
to previous results, the expressions do not involve infinite sums
over partitions, or matrix-variate polynomials, and are easily and
efficiently computable. These properties are used to derive new
upper and lower bounds on the ergodic mutual information of
double-sided correlated Rician MIMO channels with arbitrary-
rank channel mean matrices. The bounds are shown to be tighter
than previous reported bounds in the literature.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) antenna systems

have received considerable research attention since they
were initially shown to provide significant channel capacity

improvements over single-antenna systems in uncorrelated

Rayleigh fading environments [1]. For these channels, the
capacity was shown to be equivalent to the ergodic mutual

information (MI) with isotropic Gaussian input signalling. Mo-

tivated by the results of [1], many bounds and exact ergodic MI
expressions (assuming isotropic inputs) have been derived for

more practical, spatially-correlated Rayleigh and uncorrelated

Rician MIMO channels (e.g. see [2–6] and references therein).

Few analytical MIMO MI results are available for spatially-

correlated Rician channels. In [7, 8], upper and lower bounds

were presented for single-sided correlated Rician channels
(i.e. correlation at either the transmitter or receiver, but not

both), with rank-1 mean matrices. In [9, 10] these results were

extended to mean matrices of arbitrary rank. All of these
previous results further restricted the single-sided correlation

matrix to occur only at the end of the transmission link with
the least number of antennas.

For double-sided correlated Rician channels, tight upper and

lower bounds on ergodic MI were derived in [9], however

those results involved infinite series over partitions of numbers
and matrix-variate Hayakawa polynomials, and were not suited

to efficient numerical evaluation. A more efficient, but much
looser, upper bound was also presented in [9]. Computationally

efficient bounds were presented for the special case of rank-1

mean matrices in [11].

The main difficulty in deriving tight analytic bounds on
ergodic MI of Rician MIMO channels with double-sided

correlation, is that statistical properties of complex noncentral
matrix-variate quadratic forms are required (rather than sim-

pler noncentral Wishart matrices, which arise in single-sided

correlated scenarios). For these random matrices, most known
statistical properties involve infinite series and matrix-variate

polynomials (see, for example, [12] and [9, Sect. II], as well

as [13, Chapt. 7] for real matrices), and cannot be easily or
efficiently computed.

In this paper we derive several new statistical properties of
complex noncentral matrix-variate quadratic forms. In contrast

to the existing properties in [9, 12, 13], the new results in this

paper are finite closed-form expressions which do not involve
infinite series or the evaluation of matrix-variate polynomials.

Based on these general statistical results, we then obtain

new upper and lower bounds on the ergodic MI of double-
sided correlated Rician channels with arbitrary-rank mean

matrices (DSC-ARM). Our numerical results show that the

upper bound is significantly tighter than previous reported
bounds in [9] and [11]. Our lower bound appears to be

the only computable DSC-ARM ergodic MI bound in the

communications literature, and is shown via simulations to
be tight.

II. NOTATION AND DEFINITIONS

A. Notation

Matrices are represented by uppercase boldface symbols,

and vectors by lowercase boldface. The superscript (·)† indi-

cates complex conjugate transpose, and the matrix Ip denotes
a p×p identity. The trace operation is denoted tr(·), and etr(·)
is shorthand notation for exp(tr(·)). The Kronecker product is

⊗, vec(A) is the operator which stacks the columns of A into
a single vector, and A > 0 denotes positive definiteness. We

use AF
G or (A)FG to denote submatrices of the p×q matrix A,

formed by taking only the rows indexed by F ⊆ {1, 2, . . . , p}
and columns indexed by G ⊆ {1, 2, . . . , q}, and {αn,m} to

denote the set of all
(
m
n

)
ordered length-n subsets of the

numbers {1, . . . , m}. Finally, all logarithms are taken to the

base-2 unless otherwise specified.

B. Multivariate Statistics Definitions

Denote CNp (µ,Φ) to be the p-variate complex Gaussian

distribution with mean vector µ ∈ Cp×1 and covariance matrix
Φ ∈ Cp×p > 0.

Definition I [13]: The random matrix X ∈ Cp×q is said

to have a matrix-variate complex Gaussian distribution with

mean matrix Υ ∈ Cp×q and covariance matrix Φ⊗Ψ, where
Φ ∈ Cp×p > 0 and Ψ ∈ Cq×q > 0, if

vec
(
X†) ∼ CNpq

(
vec

(
Υ†) ,Φ⊗ Ψ

)
. (1)

For matrices with matrix-variate complex Gaussian distri-

butions we use the notation X ∼ CNp,q (Υ,Φ ⊗ Ψ), which
has probability density function (p.d.f.)

fG(X) = π−pq det (Φ)−q det (Ψ)−p

× etr
(
−Φ−1 (X− Υ)Ψ−1 (X − Υ)†

)
.

(2)
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fQ(Q) =
etr

(−Φ−1ΥΨ−1Υ†) etr
(−νΦ−1Q

)
det (Q)q−p

Γ̃p(q) det (Φ)q det(Ã)p

∞∑
k=0

∑
K

P̃K
(
Φ− 1

2 ΥΨ− 1
2

(
Iq − νÃ

)− 1
2

, Ã−1 − νIq ,Φ− 1
2 QΦ− 1

2

)

k! (q)K
(5)

Definition II: Let X ∼ CNp,q (Υ,Φ ⊗ Iq), with p ≤ q.

Then W = XX† has a complex noncentral Wishart distribu-
tion Wp (q,Φ,Θ) with p.d.f. [14]

fW (W) = f c
W (W) etr (−Θ) 0F̃1

(
q;ΘΦ−1W

)
(3)

where f c
W (W) is the complex central Wishart p.d.f.

f c
W (W) =

etr
(−Φ−1W

)
det (W)q−p

Γ̃p(q) det (Φ)q (4)

and where Θ = Φ−1ΥΥ† is the non-centrality param-
eter. Also, 0F̃1(·) is the complex Bessel hypergeomet-

ric function (of a matrix argument) [14] and Γ̃p(q) =
π

p(p−1)
2

∏p
j=1 (q − j)! is the complex multivariate gamma

function.

Definition III: Let X ∼ CNp,q (Υ,Φ⊗ Ψ), with p ≤ q, and

A ∈ Cq×q > 0. Then Q = XAX† is a noncentral matrix-

variate complex quadratic form. The distribution is denoted
Qp,q (A,Φ,Ψ,Υ).

The p.d.f. is given by (5) [12], where ν ≥ 0 is an arbitrary

constant, Ã = Ψ1/2AΨ1/2, and K = (k1, . . . , kp) is a
partition of k into p parts, with (k1 ≥ k2 ≥ . . . kp ≥ 0) and

k1 +k2 + . . .+kp = k. Also, (·)K is the complex multivariate

hypergeometric coefficient [14], and P̃K(·) is the complex

Hayakawa polynomial with two matrix arguments.

In [9], various general statistical properties were derived
for complex matrix-variate noncentral quadratic forms. These

properties however, also involved Hayakawa polynomials and

infinite summations, and were not suitable for efficient numer-
ical evaluation.

C. Elementary Symmetric Functions

Definition IV: The �th elementary symmetric function (e.s.f.)
of the matrix X ∈ Cn×n is defined as [15]

tr�(X) =
∑

{α�,n}
det

(
Xα�,n

α�,n

)
(6)

for � = 1, . . . , n, and tr0 (X) = 1.

III. NEW STATISTICAL PROPERTIES OF COMPLEX

NONCENTRAL QUADRATIC FORMS

We now present statistical properties of complex noncentral

quadratic forms. These results are new, unless otherwise
indicated. The new results are simple closed-form expressions

which do not involve any infinite series or matrix-variate

polynomials.

A. Moments of the Determinant

Theorem 1: Let Q ∼ Qp,q (A,Φ,Ψ,Υ). Then

E [det (Q)] = det (Φ)
∑

{αp,q}
det

(
Bαp,q

αp,q

) (
p − Lαp,q

)
!

×
det

((
p − Lαp,q + j + θi

)
θj−1

i

)
∏Lαp,q

i<j (θj − θi)
(7)

where θ1, . . . θLαp,q
are the non-zero eigenvalues of

Θ(αp,q) =
(
Bαp,q

αp,q

)−1 (
Ῡαp,q

)†
Ῡαp,q (8)

where

B = A1/2ΨA1/2 (9)

Ῡ = Φ−1/2ΥA1/2 . (10)

Proof: We start by writing

E [det(Q)] = E
[
det

(
XAX†)]

= E
[
det

(
Φ1/2X̄X̄†Φ1/2

)]
= det (Φ)E

[
det

(
X̄X̄†)] (11)

where

X̄ ∼ CN p,q

(
Ῡ, Ip ⊗ B

)
(12)

and where the last line followed from the property

det (CD) = det (C) det (D) (13)

for arbitrary square matrices C and D.

To calculate the expectation in (11) we expand the determi-
nant by applying the Cauchy-Binet formula for the determinant

of a product of two matrices (see [3, 16]), to give

E
[
det

(
X̄X̄†)] =

∑
{αp,q}

E
[
det

(
X̄αp,q

(
X̄†)αp,q

)]

=
∑

{αp,q}
E

[
det

(
X̄αp,q

(
X̄αp,q

)†)]

=
∑

{αp,q}
E

[
det

((
X̄αp,q

)†
X̄αp,q

)]
. (14)

Now, from [9, Lemma 1] we have(
X̄αp,q

)† ∼ CN p,p

((
Ῡαp,q

)†
,Bαp,q

αp,q
⊗ Ip

)
(15)

and therefore(
X̄αp,q

)†
X̄αp,q ∼ Wp

(
p,Bαp,q

αp,q
,Θ(αp,q)

)
. (16)

The theorem follows by directly evaluating the expectations
in (14) using (16), along with [9, Corr. 1], and substituting the

result into (11).

It is important to emphasize that the summation in (7)

is a finite summation over a collection of
(
q
p

)
subsets, as

defined in Section II-A. For example, for p = 2 and q = 3,
the summation involves only 3 terms corresponding to the

elements of {α2,3} = {{1, 2} , {1, 3} , {2, 3}}.
Theorem 2: Let Q ∼ Qp,q (A,Φ,Ψ,Υ). Then

E
[
det (Q)h

]
≥

⎛
⎝ q∏

i=q−p+1

λh
i

⎞
⎠ det (Φ)h Γ̃p(q + h)

Γ̃p(q)
etr(−Θ)

×
det

(
1F1(q + h − L + j, q − L + j, θi)θ

j−1
i

)
∏L

i<j (θj − θi)
(17)
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where θ1, . . . θL are the non-zero eigenvalues of

Θ = Φ−1ΥΨ−1Υ† (18)

and λ1 ≥ . . . ≥ λq > 0 are the eigenvalues of Ψ1/2AΨ1/2,

and 1F1(·) is the scalar confluent hypergeometric function.

Proof: We begin by noting that

E
[
det (Q)h

]
= E

[
det

(
X̃Ψ1/2AΨ1/2X̃

)h
]

(19)

where

X̃ ∼ CN p,q

(
ΥΨ−1/2,Φ ⊗ Iq

)
. (20)

Now applying the inequality [11]

det
(
CDC†) ≥

⎛
⎝ q∏

i=q−p+1

di

⎞
⎠ det

(
CC†) (21)

for D ∈ Cq×q > 0, with eigenvalues d1 ≥ . . . ≥ dq > 0, and
arbitrary C ∈ Cp×q (where q ≥ p), to the right-hand side of

to (19), and then directly applying [9, Theorem 1] yields the

desired result.

B. Expected Elementary Symmetric Functions

To derive the main theorem of this subsection we require the

following lemma, which is a simple extension of [9, Lemma
3] to allow for the case Ψ �= Iq.

Lemma 1: Let Q ∼ Qp,q (A,Φ,Ψ,Υ), and let t ≤ p. Then

Qαt,p
αt,p

∼ Qt,q

(
A,Φαt,p

αt,p
,Ψ,Υαt,p

)
(22)

Proof: Omitted.

Theorem 3: Let Q ∼ Qp,q (A,Φ,Ψ,Υ). Then the ex-

pected value of the �th e.s.f. of Q is given by

E [tr� (Q)] =
∑

{α�,p}
det

(
Φα�,p

α�,p

) ∑
{α�,q}

det
(
Bα�,q

α�,q

)

× (� − Lα�,q
)!

det
((

� − Lα�,q
+ j + θi

)
θj−1

i

)
∏Lα�,q

i<j (θj − θi)
(23)

where B is defined as in (9), and θ1, . . . θLα�,q
are the non-zero

eigenvalues of

Θ(α�,q, α�,p) =
(
Bα�,q

α�,q

)−1
Ῡ(α�,q, α�,p)†Ῡ(α�,q, α�,p)

(24)

where

Ῡ(α�,q, α�,p) =
((

Φα�,p
α�,p

)−1/2
Υα�,pA1/2

)
α�,q

(25)

Proof: The proof follows by first applying Definition IV
to the left-hand side of (7), and then directly invoking Lemma

1 and Theorem 1.

Note that for the special case Φ = Ip, Ψ = Iq , A = Iq,

this result can be shown to reduce to an expression reported
previously in [17].

C. Expected Characteristic Polynomial

Theorem 4: Let Q ∼ Qp,q (A,Φ,Ψ,Υ), and µ be an

arbitrary real-valued constant. Then the expected characteristic

polynomial of Q is given by

E
[
det

(
µIp − Q

)]
=

p∑
�=0

µp−�(−1)�
∑

{α�,p}
det

(
Φα�,p

α�,p

)×
∑

{α�,q}
det

(
Bα�,q

α�,q

)
(� − Lα�,q

)!
det

((
� − Lα�,q

+ j + θi

)
θj−1

i

)
∏Lα�,q

i<j (θj − θi)
(26)

where θ1, . . . , θLα�,q
and B are defined as in Theorem 3.

Proof: We begin by writing

E
[
det

(
µIp − Q

)]
= µpE

[
det

(
Ip − 1

µ
Q

)]

= µpE

[
p∑

�=0

tr�

(
− 1

µ
Q

)]

=
p∑

�=0

µp−�(−1)�E [tr� (Q)] (27)

where the second line followed from a determinant expansion

given in [16], and the last line followed from Definition IV.
The result is now obtained by application of Theorem 3.

Note that, for the special case Ψ = Iq and A = Iq , it can be

easily verified that this generalized result agrees with previous

expressions given in [9].

IV. MUTUAL INFORMATION OF DOUBLE-SIDED

CORRELATED RICIAN MIMO CHANNELS

Consider a flat-fading Nt × Nr MIMO link modelled by

r = Ha + n (28)

where r ∈ CNr×1 is the discrete-time received signal vector,

a ∈ CNt×1 is the transmitted signal vector satisfying the power

constraint E[a†a] ≤ P , and n ∈ CNr×1 is a vector of zero-
mean additive complex Gaussian noise with E[nn†] = σ2

nINr .

Also, H ∈ CNr×Nt is the DSC-ARM MIMO channel matrix,

with (i, j)th element containing the complex fading parameter
between the jth transmit and ith receive antenna.

The columns of H are complex Gaussian random vectors,

each having the same Hermitian covariance matrix given

by the receive correlation matrix R. We allow the mean
vectors of each of the columns of H to be different. The

rows of H are also modelled as complex Gaussian random

vectors (transposed), each with covariance matrix given by the
transmit correlation matrix S. We assume R and S are positive

definite full rank. Under these assumptions, the channel may
be decomposed as

H =
√

aM +
√

bR1/2HwS1/2 (29)

∼ CNNr,Nt

(√
aM, bR ⊗ S

)
where R1/2 and S1/2 denote the Hermitian square roots

of R and S respectively, M is the arbitrary rank mean

matrix satisfying tr
(
MM†) = NrNt, a and b are power

normalization coefficients1, and Hw ∼ CNn,m(0, Ip ⊗ Iq).
We note that this decomposition has been used extensively

1In most cases, a and b are chosen to satisfy a + b = 1.
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in the literature [18, 19], and is also supported by physical

measurements [20].

In this paper we focus on the MI of DSC-ARM MIMO

channels with isotropic input signalling. In this case it is well
known that the ergodic MI is given by

I = E

[
log det

(
INr +

γ

Nt
HH†

)]
(30)

where γ = P/σ2
n is the average signal-to-noise ratio (SNR).

Define n = min(Nr, Nt), m = max(Nr, Nt), and

Λ ∆=
{

R for Nr ≤ Nt

S for Nr > Nt
Σ ∆=

{
S for Nr ≤ Nt

R for Nr > Nt

M̄ ∆=
{

M for Nr ≤ Nt

M† for Nr > Nt
(31)

Now substituting (29) into (30), and noting that

det (I + AB) = det (I + BA) (32)

for arbitrary A and B, we may write

I = E

[
log det

(
In +

γ

Nt
Q

)]
(33)

where

Q ∼ Qn,m

(
Im, bΛ, Σ,

√
aM̄

)
. (34)

In this paper we are interested in finding bounds on the

ergodic MI (33) using the new statistical properties derived in
Section III. These are presented in the following section.

V. BOUNDS ON THE MUTUAL INFORMATION

A. Upper Bound

In this subsection we derive an efficiently computable upper

bound on ergodic MI. We note that an upper bound for the
general DSC-ARM MIMO channels considered in this paper

was derived previously in [9, Theor. 9], and an upper bound

for the more restrictive case of rank-1 means was presented
in [11, Theor. 8]. We will show in Section VI that the new

upper bound derived in this subsection is significantly tighter

than these previous results.

We start by noting that log det (·) is a concave function on
the set of Hermitian positive definite matrices [1], and using

Jensen’s inequality to upper bound the ergodic MI as follows

I ≤ log E

[
det

(
In +

γ

Nt
Q

)]
. (35)

We now evaluate the expectation in (35) using (34) and
Theorem 4, and perform some basic algebraic manipulation,

to obtain the closed-form upper bound expression

I ≤ log

(
n∑

�=0

(
bγ

Nt

)� ∑
{α�,n}

det
(
Λα�,n

α�,n

) ∑
{α�,m}

det
(
Σα�,m

α�,m

)

× (� − Lα�,m
)!

det
((

� − Lα�,m
+ j + θ̃i

)
θ̃j−1

i

)
∏Lα�,m

i<j

(
θ̃j − θ̃i

)
)

(36)

where θ̃1, . . . , θ̃Lα�,m
are the non-zero eigenvalues of

Θ̃(α�,m, α�,n) =
a

b

(
Σα�,m

α�,m

)−1 (
M̄α�,n

α�,m

)† (
Λα�,n

α�,n

)−1 (
M̄α�,n

α�,m

)
(37)

At high SNRs, this expression reduces to

I ≤ n log
(

bγ

Nt

)
+ log det (Λ) + log

( ∑
{αn,m}

det
(
Σαn,m

αn,m

)

× (n − Lαn,m)!
det

((
n − Lαn,m + j + θ̃i

)
θ̃j−1

i

)
∏Lαn,m

i<j

(
θ̃j − θ̃i

)
)

(38)

For the commonly-assumed special case where M̄ is rank-1
(e.g. see [7, 8, 11]), this becomes

I ≤ n log
(

bγ

Nt

)
+ log det (Λ) + log(n − 1)!

+ log

( ∑
{αn,m}

det
(
Σαn,m

αn,m

) (
n + tr

(
Θ̃(αn,m, αn,n)

)))

(39)

We remark that (38) and (39) can also be directly used to

obtain tight bounds on the high SNR power offset of DSC-
ARM MIMO channels, as defined in [21]2.

B. Lower Bound

In this subsection we derive the first general, computable
lower bound on the ergodic MI of DSC-ARM MIMO chan-

nels. Note that computable lower bounds were derived previ-

ously only for the special case of n×n systems [9, Theor. 7],
and for the special case of rank-1 mean matrices [11].

We begin by applying the general lower bounding approach
in [6] to (33), which yields

I ≥ log

⎛
⎝1 +

n∑
�=1

(
γ

Nt

)� ∑
{α�,n}

exp
(
E

[
ln det

(
Qα�,n

α�,n

)])⎞⎠
(40)

We now reformulate the remaining expectation using a stan-
dard moment generating function technique (e.g. see [9]) as

E
[
ln det

(
Qα�,n

α�,n

)]
=

d
ds

ln E
[
det

(
Qα�,n

α�,n

)s] ∣∣∣∣
s=0

(41)

Omitting details, we calculate a closed-form lower bound on

the expectation on the right-hand side of (41) by applying

Lemma 1 and Theorem 2, and evaluate the remaining deriva-
tives using a technique from [10]. Substituting the resulting

expression into (40) yields the desired closed-form ergodic

MI lower bound given by

I ≥ log

(
1 +

n∑
�=1

(
bγ

Nt

)�
(

m∏
t=m−�+1

st

)
exp

(
�−1∑
t=0

ψ (m − t)

)

×
∑

{α�,n}
det

(
Λα�,n

α�,n

)
exp

⎛
⎝∑Lα�,n

t=1 det
(
Vα�,n,t

)
∏Lα�,n

i<j

(
θ̃j − θ̃i

)
⎞
⎠

)
(42)

where ψ(·) is the digamma function, s1 ≥ . . . ≥ sm > 0
are the eigenvalues of Σ, and θ̃1, . . . , θ̃Lα�,n

are the non-zero

eigenvalues of

Θ̃(α�,n) =
a

b

(
Λα�,n

α�,n

)−1
M̄α�,nΣ−1

(
M̄α�,n

)†
. (43)

Also, Vα�,n,t is an Lα�,n
×Lα�,n

matrix with (i, j)th element

defined in (44), where Vα�,n,j = m − Lα�,n
+ j, and Ei(·) is

the exponential integral.

2In [21], high SNR power offset expressions were presented for DSC-ARM
MIMO channels, but only for the special case of n × n systems.
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(
Vα�,n,t

)
i,j

=

⎧⎨
⎩

θ̃j−1
i for i �= t

θ̃j−1
i

(
ln(θ̃i) − Ei(−θ̃i) + ψ(Vα�,n,j) +

∑Vα�,n,j−1

k=1
(k−1)!

(−θ̃i)k

(
e−θ̃i − (Vα�,n,j−1

k

)))
for i = t

(44)
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Fig. 1. Upper bounds and simulation results for mutual information of
correlated Rician MIMO channels for various antenna configurations, with
rank-1 mean matrix and Rician K-factor = 10. Correlation parameters are
θr = π
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Fig. 2. Lower bounds and simulation results for mutual information of
correlated Rician MIMO channels for various antenna configurations, with
rank-2 mean matrix and Rician K-factor = 10. Correlation parameters are
θr = π
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VI. NUMERICAL RESULTS

We consider a common power normalization model with

a = K/(K + 1) and b = 1/(K + 1), where K is the Rician
K-factor which is the ratio of the power in the fixed (mean)

component with respect to the average power in the fading

components. Since a + b = 1, for fixed total transmit power
the received SNR remains constant for any value of K .

The mean and correlation matrices are generated using the

practical channel model from [22].

Fig. 1 gives the upper bound (36) and simulated ergodic MI

curves for 2×3, 3×5, and 4×7 systems. Results are shown for
rank-1 mean matrices with K = 10. The previously reported

general upper bound in [9, Theor. 9], as well as the more

restrictive bound from [11, Theor. 8] (i.e. applying only for
the rank-1 mean case), are also shown for comparison. Clearly

the new bound (36) is much tighter than these previous results

in all cases.
Fig. 2 gives the lower bound (42) and simulated ergodic

MI curves for 2 × 2, 5 × 3, and 7 × 4 systems. We see that
the lower bound is tight in all cases. It is important to note

that there do not appear to be any other lower bounds in the

literature which apply for these general DSC-ARM channels.
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