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Abstract of a thesis submitted in partial fulfilment of the 

requirements for the Degree of Master of Applied Science. 

 

Application of Artificial Neural Networks for 

Understanding and Diagnosing the State of Mastitis in 

Dairy Cattle 

 

by K.J. Hassan 

 

Bovine mastitis adversely affects the dairy industry around the world.  This 

disease is caused by a diverse range of bacteria, broadly categorised as minor and 

major pathogens.  In-line tools that help identify these bacterial groupings in the 

early stages of the disease are advantageous as timely decisions could be made 

before the cow develops any clinical symptoms.  The first objective of this 

research was to identify the most informative milk parameters for the detection 

of minor and major bacterial pathogens.  The second objective of this research 

was to evaluate the potential of supervised and unsupervised neural network 

learning paradigms for the detection of minor infected and major infected 

quarters in the early stages of the disease.  The third objective was to evaluate the 

effects of different proportions of infected to non-infected cases in the training 

data set on the correct classification rate of the supervised neural network models 

as there are proportionately more non-infected cases in a herd than infected 

cases.  

 

A database developed at Lincoln University was used to achieve the 

research objectives.  Starting at calving, quarter milk samples were collected 

weekly from 112 cows for a period of fourteen weeks, resulting in 4852 samples 
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with complete records for somatic cell count (SCC), electrical resistance, protein 

percentage, fat percentage, and bacteriological status.  To account for the effects 

of the stage of lactation on milk parameters with respect to days in milking, data 

was divided into three days in milk ranges.  In addition, cow variation was 

accounted for by the sire family from which the cow originated and the lactation 

number of each cow.  

 

Data was pre-processed before the application of advanced analytical 

techniques.  Somatic cell score (SCS) and electrical resistance index were 

derived from somatic cell count and electrical resistance, respectively.  After pre-

processing, the data was divided into training and validation sets for the 

unsupervised neural network modelling experiment and, for the supervised 

neural network modelling experiments, the data was divided into training, 

calibration and validation sets.  

 

Prior to any modelling experiments, the data was analysed using statistical 

and multivariate visualisation techniques.  Correlations (p<0.05) were found 

between the infection status of a quarter and its somatic cell score (SCS, 0.86), 

electrical resistance index (ERI, -0.59) and protein percentage (PP, 0.33).  The 

multivariate parallel visualisation analysis validated the correlation analysis.  

Due to significant multicolinearity [Correlations: SCS and ERI (-0.65: p<0.05); 

SCS and PP (0.32: p<0.05); ERI and PP (-0.35: p<0.05)], the original variables 

were decorrelated using principle component analysis. SCS and ERI were found 

to be the most informative variables for discriminating between non-infected, 

minor infected and major infected cases. 

 

Unsupervised neural network (USNN) model was trained using the 

training data set which was extracted from the database, containing 

approximately equal number of randomly selected records for each 

bacteriological status [not infected (NI), infected with a major pathogen (MJI) 

and infected with a minor pathogen (MNI)].  The USNN model was validated 
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with the remaining data using the four principle components, days in milk 

(DIM), lactation number (LN), sire number, and bacteriological status (BS).  The 

specificity of the USNN model in correctly identifying non infected cases was 

97%. Sensitivities for correctly detecting minor and major infections were 89% 

and 80%, respectively.  

 

The supervised neural network (SNN) models were trained, calibrated and 

validated with several sets of training, calibration and validation data, which 

were randomly extracted from the database in such a way that each set has a 

different proportion of infected to non-infected cases ranging from 1:1 to 1:10.  

The overall accuracy of these models based on validation data sets gradually 

increased with increase in the number of non-infected cases in the data sets (80% 

for the 1:1, 84% for 1:2, 86% for 1:4 and 93% for 1:10).  Specificities of the best 

models for correctly recognising non-infected cases for the four data sets were 

82% for 1:1, 91% for 1:2, 94% for 1:4 and 98% for 1:10. Sensitivities for 

correctly recognising minor infected cases for the four data sets were 86% for 

1:1, 76% for 1:2, 71% for 1:4 and 44% for 1:10. Sensitivities for correctly 

recognising major infected cases for the four data sets were 20% for 1:1, 20% for 

1:2, 30% for 1:4 and 40% for 1:10. Overall, sensitivity for the minor infected 

cases decreased while that of major infected cases increased with increase in the 

number non-infected cases in the training data set. Due to the very low 

prevalence of MJI category in this particular herd, results for this category may 

be inconclusive.  

 

This research suggests that somatic cell score and electrical resistance 

index of milk were the most effective variables for detecting the infection status 

of a quarter followed by milk protein and fat percentage. 

 

The neural network models were able to differentiate milk containing 

minor and major bacterial pathogens based on milk parameters associated with 

mastitis.  It is concluded that the neural network models can be developed and 
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incorporated into milking machines to provide an efficient and effective method 

for the diagnosis of mastitis. 

 

Keywords: Mastitis; Minor and Major Bacterial Pathogens; Somatic Cell Count; 

Electrical Resistance; Principle Component Analysis; Unsupervised Neural 

Networks, Supervised Neural Networks. 
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            CHAPTER 1  

1. INTRODUCTION 

Mastitis is a very complex and a costly disease for the dairy industry around the 

world and is associated with economic losses due to decreased milk quality, milk 

production, and increased veterinary and labor costs (Holmes et al., 2002; 

Losinger, 2005; Miller, Bartlett, Lance, Anderson, & Heider, 1993; Mungube et 

al., 2005; Seegers, Fourichon, & Beaudeau, 2003). Mastitis is also one of the 

reasons for early culling decisions (Grohn et al., 2005). 

 

In the USA, 70% of the total losses on a dairy farm are associated with 

mastitis and the cost per cow per year is around US$200 (NMC, 2006). In the 

United Kingdom, the prevalence of mastitis is approximately one million cases 

per year, costing 100M-400M sterling pounds to dairy farms (IAHUK, 2003). 

The monetary loss due to mastitis for the New Zealand dairy industry is around 

NZ$ 180 million per year (NMAC, 2006). 

 

Bovine mastitis is an inflammatory response of the mammary gland to 

pathogenic bacterial microorganisms. These organisms are of two main types, 

major and minor (Harmon, 1994) Major pathogens cause bigger changes in milk 

parameters compared to minor pathogens.  The most common major pathogens 

are Staphylococcus aureus (SA), Streptococcus uberis (SU), Streptococcus 

agalactiae (SA), Streptococcus dysgalactiae (SD), Escherichia coli (EC) and 

Klebsiella spp. (KS), while some common minor pathogens are Coagulase-

negative staphylococci (CNS), Corynebacterium bovis (CB) and 

Arcanobacterium pyogenes (AP) (Brown, 1976; Harmon, 1994).  

 

Bovine mastitis may be either clinical (CM) (with visible symptoms like 

fever, depression, inflammation, abnormal milk, loss of weight, shivering, and 

loss of appetite) or sub-clinical (SCM) (no visible symptoms as in CM) 

depending on the stage of the disease, virulence of the pathogen, immune 
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response of the host and the resulting symptoms (Livestock-Improvement, 2001; 

Schalm, Carroll, & Jain, 1971; Sharif et al., 1998). 

 

Major pathogens are generally the cause of CM, observable by the milker 

and characterised by obvious physical changes in milk appearance, such as clots, 

blood or flakes.  In some cases, minor pathogens are also able to cause CM.  

Detection of intra-mammary infection (IMI) in the early stages of infection 

would be advantageous as timely management decisions could be made before 

CM occurs. 

 

1.1 Research Aim 

The central aim of this research is to contribute to a better understanding of 

bovine mastitis by studying the milk parameters during the progression of the 

disease. Based on this main aim, the following specific objectives were set: 

  

1. Identify the most informative biological and physical characteristics of 

milk for the detection of the causative agents of bovine mastitis.  

 

2. Develop and assess the potential supervised and unsupervised neural 

network models for the detection of major and minor pathogens that cause 

bovine mastitis. 

 

3. Evaluate the impact of different proportions of infected to non-infected 

cases on the correct classification rate of the supervised neural network 

models as there are proportionately less infected cases in a herd compared 

to non-infected cases.  

 

1.2 Research Justification 

Traditionally, bacteriology is considered as the ‘gold standard’ for the 

identification of mastitis pathogens; however, this procedure requires a culture of 

suspected milk in the lab, making routine bacteriological monitoring of glands 
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expensive and time consuming.  Another option is the use of milk parameter 

information obtained in-line to predict the causal agents of IMI, where diagnosis 

would be made while the animal is being milked.  Mathematical algorithms used 

to detect changes in individual cows must be robust and able to deal with 

complex interactions, such as days in milk (DIM), season, cow age and breed 

(Hamann & Zecconi., 1998), making artificial neural networks (ANN) an ideal 

tool for analysing these type of multivariate data.     

 

Advances in milking technology offer the possibility of measuring several 

milk parameters during the milking process.  The proposed models offer the 

opportunity to use these milk parameters to detect the presence of particular types 

of mastitis pathogens, providing valuable information that can be used to manage 

mastitis in an efficient and effective manner.   
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1 Chapter Overview 

This chapter reviews the literature related to mastitis. Sections 2.2 and 2.3 

provide an overview of factors influencing susceptibility to bovine mastitis and 

the bovine immune system. Section 2.5 provides background to the mastitis 

diagnostic tests. Section 2.7 provides an introduction to ANNs. A brief overview 

of previous studies using ANN as a diagnostic tool for mastitis is given in section 

2.9. 

 

2.2 Factors Influencing Susceptibility to Bovine Mastitis 

This section provides an overview of the various factors influencing the 

susceptibility of cows to mastitis. The dairy industry relies on increased milk 

production. Advances in technology (for milk removal from the udder) and 

genetic selection have led to an increased milk production per cow at the expense 

of increased susceptibility to mastitis (Sordillo, 2005). Susceptibility to mastitis 

increases with a decrease in the immunity of the host. Immune response of the 

cow is a manifestation of the genetic, environmental and physiological factors. 

Genetic selection that enhances milk production can impose metabolic stress and 

thus increase susceptibility to mastitis (Heringstad, Klemetsdal, & Steine, 2003).  

Poor farm management system and resulting farm environment can also increase 

mastitis susceptibility (Hogan & Smith, 2003). It is well known that increased 

milk production induces physiological stress that impairs the bovine immunity, 

and therefore, increases susceptibility to mastitis. 

 

2.2.1 Genetic Factors 

A number of genes regulate the bovine immune response. Information about the 

exact genes and phenotypes responsible for the immune response is very limited. 

For example, some authors agree that breeding cows with low SCC does not 

guarantee protection against mastitis (M.E Kehrli & Shuster, 1994; Schukken et 
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al., 1995; Suriyasathaporn, Schukken, Nielen, & Brand, 2000), although, other 

authors  (Koivula, Mantysaari, Negussie, & Serenius, 2005) observed that 

susceptibility to mastitis was higher for cows with genetically higher SCC and 

that there was a linear relationship between SCC and CM. 

 

Some studies focused on improving the physical characteristics (teat 

length and shape, teat canal width, udder depth) for increasing resistance to 

mastitis (Shook, 1989). According to a number of studies, it is possible to breed 

cows resistant to mastitis (Abdel-Azim et al., 2005; Uribe, Kennedy, Martin, & 

Kelton, 1995). Therefore, it can be concluded that heredity plays an important 

role in influencing the bovine immune response to pathogens. 

 

2.2.2 Stage of Lactation 

Many studies have reported higher incidence of mastitis in the early days of 

lactation, because at this stage the cow undergoes metabolic and physical stress 

(Abdel-Azim et al., 2005; Kelm et al., 1997). The majority of clinical mastitis 

(CM) cases occur in the early stage of lactation, although they can occur at any 

stage of lactation (Lund, Jensen, & Petersen, 1999).  

 

2.2.3 Seasonal Effects 

The incidence of mastitis is also influenced by seasonal variations (Abdel-Azim 

et al., 2005). This may be due to the variation of the causative organism due to 

season in the farm and its environment (Osteras, Solverod, & Reksen, 2006). 

Therefore, any model for mastitis diagnosis may benefit from incorporating the 

seasonal variations and their effects on disease prevalence. 

 

2.2.4 Neuro-endocrine System 

Higher incidence of mastitis is reported in the periparturent period that gives an 

indication of interaction between the neuro-endocrine and immune systems. For 

example, some hormones stimulate while others suppress the immune system. 

The somatotrophins have shown immunostimulatory effect (Burvenich et al., 
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1999). This phenomenon may be explained by the action of the growth hormone 

on bone marrow in releasing the immune cells. Glucocorticosteroids, on the other 

hand, have immunosuppressant activity because they slow down the oxidative 

burst capacity of the Polymorphnuclear Neutrophils (PMN) thereby reducing 

their capacity to protect the mammary gland from the pathogens (Hoeben et al., 

1999).  

 

The length of day and night (photoperiod) can also influence the immune 

function. The prolactin level is influenced by the photoperiod that leads to 

photoperiodic effects on the immune system (Auchtung, Salak-Johnson, Morin, 

Mallard, & Dahl, 2004). Estrogens and estrogen-active compounds with forage 

may also be associated with increased susceptibility to mastitis (Zdunczyk , 

Zerbe, & Hoedemaker, 2003).  

 

2.2.5 Lactation Number 

With advancing age, the immune response to pathogens is reduced. In the old 

cows (in their 3rd to 5th Lactation) the immune response is weaker as compared to 

younger cows (1st or 2nd lactation) (Abdel-Azim et al., 2005; Harmon, 1994; 

Koivula et al., 2005; Sordillo, 2005).  

 

2.2.6 Stress 

Increased oxygen demand during early lactation and mammary growth leads to 

increase in the reactive oxygen species (ROS) (Sordillo, 2005). These reactive 

oxygen species are responsible for inducing tissue injury and creates oxidant 

stress. 

 

2.2.7 Bacterial Resistance 

Some major pathogenic bacteria like Streptococcus uberis, Escherichia coli and 

Streptococcus dysgalactiae have shown persistent adherence to the mammary 

gland (Bradley, 2002; Leigh, 1999). Possible explanation for this phenomenon 
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could be that these pathogens have developed a capability (or resistance) to evade 

the host’s immune system. 

 

2.2.8 Nutrition 

Nutrition rich in elements that may enhance the immune system can greatly help 

the cow in combating the pathogenic attacks, but more research is needed in this 

area (Goff, 2006; Goff & Horst, 1997). In the early stages of lactation there is 

deficiency of protein and energy that may affect the cellular defense system, 

increasing the chances of mastitis (Barnouin & Chassagne, 1998). Proper 

nutrition at this period may improve the ability of the cow in fighting the 

pathogens.  

 

2.3 Bovine Immune System 

Nature has endowed every living organism with a certain potential to protect 

itself from the detrimental effects of the environment and other organisms. Cows 

also have developed special anatomical, cellular and soluble defense systems 

against the invading pathogens (Sordillo, 2005). The following figure illustrates 

the basic anatomical structure of the mammary gland: 
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Figure 2.3.1 Anatomy of the Mammary Gland. Source (Delaval, 2006). 

 

2.3.1 Anatomical Defense System  

The first point of entry for bacteria is the teat opening (Figure 2.3.1). A tight 

closure of the teat opening by the sphincter muscle and accumulation of keratin 

ensures a physical barrier against the invading pathogens (Nickerson, 1987; 

Zecconi et al., 2000). Larger teat diameter is directly correlated to higher somatic 

cell count (Chrystal, Seykora, & Hansen, 1999). Particularly during the lactation 

period, there is increased milk production and associated dilatation of the teat 

mouth and teat canal that makes the mammary gland susceptible to mastitis 

(Nickerson, 1987; Oliver & Sordillo, 1988). 
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2.3.2 Cellular Defense System 

When the pathogen enters the gland via the teat canal, then the cellular defense 

system - leukocytes (neutrophils, macrophages and lymphocytes) - of the host 

comes into play. Bacterial infection causes the release of inflammatory mediators 

from the gland that causes the leukocytes to move from the blood to the gland 

causing phagocytosis of bacteria (Persson, Larsson, & Sandgren, 1993). The 

severity and duration of infection depends on the availability and activity of these 

leukocytes at the site of infection. According to some scientists the initial 

response to an infection is the increased production of neutrophils and comprises 

90% of the total cellular defense system (Paape, Bannerman, Zhao, & Lee, 

2003). This type of cellular defense system is also known as non-specific or 

innate immunity (Sordillo, 2005). However, during the periparturent period, 

many functions of the neutrophils are altered or disabled that causes reduced 

immunity against bacteria making the cow highly susceptible to bacterial 

infections (Burton & Erskine, 2003; M. E Kehrli, Nonnecke, & Roth, 1989).  

 

Macrophages also exhibit innate as well as acquired immune response to 

bacterial infection. Lymphocytes are of two types: T-Lymphocytes and B-

Lymphocytes; and they have the capability to remember and identify a particular 

pathogen and either destroy the pathogen themselves or trigger other immune 

cells to attack the pathogens. 

 

2.3.3 Soluble Defense Systems 

Like the cellular defense system, these are also of two types: innate and acquired. 

The primary function of these molecules is to increase the phagocytosis potential 

of neutrophils and macrophages. These are immunoglobulins (Ig) of different 

types (IgG1, IgG2, IgM) acting as opsonins1. During the early stages of lactation 

their activity and levels are altered which might explain the increase in incidence 

of mastitis during the periparturent period (Sordillo, 2005).  

 

                                                 
1 These are molecules that increase the binding potential of the phagocyte with the pathogen.  
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2.3.4 Summary 

This section provided a brief introduction to factors affecting susceptibility of 

dairy cattle to mastitis.  In addition, the bovine immune system was briefly 

explored. Like any other biological phenomenon, it is a highly complex system.  

Next section provides an overview of the various diagnostic methodologies for 

the detection of mastitis.   

 

2.4 Diagnosis of Bovine Mastitis 

Mastitis causes a number of changes in milk parameters (i.e. biochemical milk 

profile). By measuring the chemical (i.e. citrate, phosphate, potassium, sodium 

and beta-hydroxybutyric acid) and compositional (i.e. lactose, somatic cells, 

minerals and enzymes) attributes of milk, it is possible to provide information 

about the health status of a cow (Hamann & Kromker, 1997).  

 

Physical signs (swelling of the udder, clots and color changes of milk) of 

clinical mastitis (CM) can be observed with the naked eye. But it is extremely 

difficult to observe the signs of sub-clinical mastitis (SCM). Bacteriological 

examination can provide an accurate detection of SCM. Some of the milk 

parameters like somatic cell count (SCC), electrical conductivity (EC), milk 

amyloid A (MMA) (an acute phase protein which acts as a signal to the immune 

system) and lactate (a bacterial metabolite) have been used in a number of studies 

for the detection of SCM. Some milk parameters show significant deviation from 

the normal levels, and therefore, can be used for the detection of the 

inflammatory response of the udder to mastitis (Hamann & Kromker, 1997).  

 

2.4.1 Bacterial Culture (BC) 

The main cause of mastitis is bacterial infection and therefore their accurate 

detection is the most effective method for the diagnosis of mastitis. 

Bacteriological examination of milk samples provide valid diagnosis for correct 

treatment (Obritzhauser, Deutz, & Fuchs, 1995). Detection of the type of 

pathogen can be used to design appropriate treatment and management strategies 
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at the cow and farm level. However, this is a very expensive and time consuming 

procedure. 

 

2.4.2 Somatic Cell Count (SCC) 

The level of SCC in milk reflects the response of the udder to an infection. High 

correlation exists between CM and higher levels of SCC (Koivula et al., 2005; 

Mrode, Swanson, & Winters, 1998; Schepers, Lam, Schukken, Wilmink, & 

Hanekamp, 1997; Suriyasathaporn et al., 2000). The pattern of SCC during the 

mastitis period may provide information about the type of pathogen involved 

(Heald, Kim, Sischo, Cooper, & Wolfgang, 2000). However, SCC is not only 

influenced by mastitis but also by cow’s genetics (Section 2.2.1), stage of 

lactation  (Section 2.2.2) and age of the cow (Section 2.2.5). 

 

Tests like California Mastitis Test (CMT) and Wisconsin Mastitis Test 

(WMT) involve the addition of a reagent to the milk sample and the resultant 

viscosity provides a rough estimate of the SCC (Higher the SCC, higher the 

viscosity and vice versa) (Whyte, Walmsley, Liew, Claycomb, & Mein, 2005). 

These are simple and economical cow side tests for the diagnosis of mastitis.  

 

2.4.3 Electrical Conductivity (EC) or Electrical Resistance (ER) 

Electrical conductivity or electrical resistance measures the ionic changes 

resulting from damage caused by bacteria to the alveoli (Kitchen, 1981). The EC 

or ER comes into play at a later stage of infection when the blood-milk barrier is 

broken. Like SCC, EC or ER of milk may also reflect the changes associated 

with a bacterial infection (Nielen, Deluyker, Schukken, & Brand, 1992). In one 

study, the sensitivity of EC in detection of SCM was 95% (Lein & Wan, 2000). 

In another study, the specificity (correct identification of healthy cases) and 

sensitivity (correct identification of infected cases) of a handheld EC meter was 

19% and 91%, respectively (Mansell & Seguya, 2003). Like SCC, it is also a 

simple and economical cow side test. However, the EC of milk varies from cow 

to cow within a herd, from herd to herd and from breed to breed. EC also varies 
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over the course of lactation. EC or ER even varies during milking (i.e. foremilk, 

mid flow and stripping) (Bansal, Hamann, Grabowski, & Singh, 2005). Nutrition 

type, fat content and temperature of milk can also affect the EC measurements. 

Therefore, deviation of EC from a normal quarter of a particular cow may be 

more informative than comparing the absolute EC values (Wang & 

Samarasinghe, 2005; Woolford, Williamson, & Henderson, 1998).  

 

2.4.4 Milk Lactate 

When bacteria enter the teat canal and start to increase in population, bacterial 

metabolites are released. Lactate is one of those metabolites and its detection in 

milk can be used as a diagnostic tool for CM and SCM (Davis et al., 2004). In 

their study, lactate concentration was positively correlated with the SCC. 

However, in one case, the SCC was high in one clinically ill cow but the lactate 

concentration was very low indicating the weakness of lactate as a diagnostic 

tool. The above study was conducted on a small number of animals and the 

authors concluded that more large scale studies are needed to establish the 

usefulness of lactate concentration in milk as a mastitis diagnostic tool (Davis et 

al., 2004). 

 

2.4.5 Milk Amyloid A (MAA) or Acute Phase Proteins (APP) 

The introduction of bacteria to the udder activates the immune response of the 

cow. During this period MAA/APP is released which can be detected in the milk 

(Eckersall et al., 2006). Early detection of the presence of MAA or APP can be 

used as a diagnostic tool before an increase in the SCC occurs. According to one 

study, a positive correlation between MAA or APP and SCC was found 

(Sensortech, 2006). 

 

2.4.6 Milk Protein and Fat Content 

Mastitis also affects protein (Urech, Puhan, & Schallibaum, 1999) and fat (King, 

1978) composition of milk. Measuring these parameters can also provide 

information about the health status of a cow.  



 13

2.4.7 Summary 

In this section, we explored the various methods available for the diagnosis of 

mastitis. Their strengths and weaknesses were also discussed.  Bacteriological 

examination of suspected milk is the most effective way to detect the type of 

pathogen to devise relevant treatment and management strategies. However, it is 

a costly and time consuming procedure. New in-line measurement technologies 

offer the opportunity to measure many milk parameters directly during milking. 

These parameters are affected when the mammary gland is invaded by 

pathogens. These changes can be used to detect the type of infection. The next 

section provides a brief introduction to ANNs. 
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2.5 Artificial Neural Networks 

2.5.1 Introduction 

This section provides a brief introduction to artificial neural networks (ANN). 

Those interested in details are advised to read “Neural Networks for Applied 

Sciences and Engineering” by Samarasinghe, (2006).  

 

Biological, chemical and physical processes on the surface of the planet 

are highly complex and interdependent. The ANNs are capable of handling 

complex and non-linear relationships (Hair, Anderson, Tatham, & Black, 1995; 

Samarasinghe, 2006). For example, crop production and quality depends on 

biological (cell division, genetics, reproduction, growth, death), biochemical 

(photosynthesis; proteins, carbohydrates, and lipids synthesis) and physical 

(respiration, heat transfer, solar radiation, air and soil temperatures, transpiration, 

evapotranspiration) factors. To understand and improve crop production and 

quality, scientists need a systematic approach that can integrate and model these 

linear and nonlinear phenomena with high reliability. The ANNs are capable of 

reliably integrating and modeling the behavior of such complex interactions and 

therefore, can solve a number of problems that are difficult to solve with 

conventional modeling approaches.  

 

The ANNs (hereafter called neural networks) are interconnected networks 

of artificial neurons that acquire knowledge by processing information in a 

manner analogous to the human brain. The basic unit of a neural network is an 

artificial neuron. The functionality of a single neuron is explored in Figure 

2.5.1.1.  
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Figure 2.5.1.1     Structure and functionality of a single neuron. 

 

The inputs to a neuron (X1……Xn) are multiplied by a set of weights 

(W1…..Wn). Input of 1 represents a bias and accounts for the factors not 

considered by the set of inputs. These weighted inputs are summed together and 

set into a nonlinear function . The commonly used functions are logistic, 

hyperbolic-tangent, arc tangent, Gaussian and sine. When a number of these 

neurons are set together in a network, it forms an ANN as shown in the Figures 

2.5.2.1 and 2.5.3.1 below. Neural networks may be supervised or unsupervised 

depending on the learning paradigm being used. They are explored in the 

following sections. 

 

2.5.2 Supervised Neural Networks 

In the case of supervised learning, the output for a given set of inputs is used in 

the training process (Rumelhart, Bernard, & Michael, 1994). A typical supervised 

neural network is shown in Figure 2.5.2.1; the inputs are multiplied by a set of 

weights, and passed through the hidden layer using one of the activation 

functions discussed earlier. There may be one or many hidden layers and neurons 

in the network, depending on the complexity of a problem. However, a large 

number of hidden layers and/or neurons is not necessarily a criterion for the 

successful solution to a problem. The optimum number of hidden layers and 

neurons has to be found through a search process. When the inputs are passed 

through the hidden layer or layers, the output of the network (y1….yn) is 

produced by the output layer.  
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Figure 2.5.2.1     Topology of a supervised neural network. Adopted from 

      Samarasinghe, (2006). 

 

This output is compared with the desired output (T1…..Tn); here, a cost 

function is applied that calculates the difference between the network output and 

the desired output. This error of the network is then back-propagated, that leads 

to changes in the connection weights of the network through delta rule, a 

powerful gradient based weight adaptation method. This is basically an iterative 

process and is repeated for a number of iterations. When the error is reduced to 

an acceptable level, then the training is stopped. This trained network can be used 

to identify similar patterns in a new situation and obtain the appropriate 

prediction or classification. 

 

 In supervised neural network modeling, a dataset is typically divided into 

three sets: training, calibration or test and validation. A network is trained with 

the training set while test or calibration set is used intermittently throughout the 

training to assess the generalization ability of the model. Training is stopped at 

the point where the generalization error is the minimum. The trained network is 

further assessed by the validation set that the network has not seen before. The 

statistical indicators of performance (R2, Mean Square Error etc) of the trained 

network on the validation set is typically presented as measure of accuracy of the 

model. 
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2.5.3 Unsupervised Neural Networks 

These type of neural networks learn without being shown any target output. Self 

Organising Feature Map (SOFM) (Kohonen, 1998) is one example of 

unsupervised neural networks. This type of network is composed of two layers 

(Figure 2.5.3.1), the input layer representing the input variables (X1……….Xn) 

and an output layer of neurons which are trained during the training process. 

Training involves the adaptation of the connection weights between the input and 

the output layer. After adaptation or training the output neuron become self 

organized and a feature map is formed between the inputs and output neurons.  

 

 

 

 

 

 

 

 

 

Figure 2.5.3.1     Topology of an unsupervised neural network. Adopted 

       from Samarasinghe, (2006). 

 

In the SOFM network, small random values are used to initialize the 

connection weights.  These weights are adopted during the training process. First 

the winning neuron is identified by calculating the distance of each neuron to the 

input vector. The most commonly used method for distance calculation is the 

Euclidean distance. The neuron that is closer to the input vector is the winner and 

will have higher activation or weight change as compared to one that is farther 

from it. In the SOFM network, the weight of the winner and  its neighboring 

neurons are updated, so that they move closer to the input vector using a learning 

rate and neighbor strength (Samarasinghe, 2006).  

 

x1 xn 
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Neighboring neurons that are closer to the winner get higher weight 

changes as compared to distant neighbors using a neighbor strength (NS) 

function. The most commonly used NS functions are Gaussian, Linear and 

Exponential. The NS is kept large at the beginning of training to ensure proper 

organisation of the weight vectors. It is essential to reduce the NS with advancing 

iterations; this will further improve the organisation of the weight vectors. The 

NS is reduced using linear or exponential decay functions.  

 

During training, the learning rate is kept high at the start and is reduced 

with iterations; Linear and Exponential learning rate decay functions are 

commonly used for this purpose. The trained neurons (i.e. their weights) 

represent the input data in a compressed form. In other words, the 

multidimensional data is represented in a two dimensional form, which can be 

easily analysed and evaluated.  

 

 In the SOM model development, a data set is divided into two sets: 

training and validation. The training set is used to train the network by adjusting 

weights and the validation set is used to assess the generalization ability of the 

model when assigned to unseen data. Once the trained map is clustered, then we 

can classify new data based on its cluster membership on the map. 

 

2.5.4 Summary 

This section provided a brief introduction to ANNs. The two main neural 

network learning paradigms were briefly discussed. They learn from past 

experience and are able to model complex phenomena. Neural networks can be 

applied for function approximation, classification, pattern recognition, time series 

modelling and, data processing and clustering. They are capable of modeling 

linear and non-linear phenomenon with high precision. They have been used in 

situations such as, automatic aircraft control, credit card fraud detection, medical 

diagnosis, face recognition and long term river flow forecasting. 
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The next section provides a review of the literature related to the use of neural 

networks for the diagnosis of mastitis.  

 

2.6  The Use of the Artificial Neural Networks (ANNs) for  

Mastitis Diagnosis 

ANNs have been used in a limited number of studies for the diagnosis of 

mastitis. This section provides an overview of the relevant previous studies with 

respect to the number and type of variables used and analysis of results. The 

relative strengths and weaknesses of various models with respect to their 

sensitivity and specificity are also discussed.   

 

In one study (Nielen, Schukken, Brand, Haring, & 

Ferwerdavanzonneveld, 1995), supervised neural networks were used to analyse 

in-line milking parlor data to detect CM in dairy cattle. They used automatically 

collected EC data as input to the ANN to classify mastitic and healthy quarters. 

Sensitivity (correct identification of diseased cases) and specificity (correct 

identification of healthy cases) of the model was approximately 75% and 90 %, 

respectively.  The network was trained with 13 mastitic and 17 healthy quarters. 

The model correctly classified 21 of 38 mastitic quarters (On Validation Set), and 

34 of 38 healthy quarters. They concluded that the ANN was able to classify 

healthy and mastitic quarters without any normalization for cow or herd level. 

However, according to other studies (Wang & Samarasinghe, 2005; Woolford et 

al., 1998) it was recognition of cow to cow variation in the absolute EC values 

that provided better discrimination between mastitic and healthy quarters. Nielen 

et. al. (1995) also suggested that in future studies large data sets and other 

mastitis related variables should be included in building more robust models. 

 

Yang et. al. (1999) used a supervised neural network to assess its ability in 

differentiating between healthy and diseased cows. They used SCC, lactation 

number, milk yield, days in milk, herd size on test day, mean SCC for herd, 

season of calving and milk components. They achieved an overall accuracy of 
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86% in classifying mastitic and healthy cows. They also found that different 

ratios of mastitic to healthy records (1:1, 1:10 and 1:300) and different output 

threshold values (0-1, 0.5 in most cases) had the same effect on the learning 

ability of the ANNs. In their research, the EC of milk was not used. They 

concluded that better data pre-processing and more accurate inputs for the ANN 

could have led to more accurate results.   

 

Heald et. al. (2000) used Dairy Herd Improvement Association (DHIA) 

and field survey data to categorize bacterial causes of mastitis in dairy herds 

using supervised ANN and linear discriminant analysis (LDA). The data used as 

inputs for the models consisted of individual cow data from the DHIA test day 

(Average SCC during current lactation, SCC of test day, milk production, 

lactation number, days in milk, number of severe test days i.e. SCC > 4.9*106, 

and SCC as % of bulk tank SCC) and a survey data related to herd management 

practices (Bulk tank standard plate count, cases of CM, cow housing and 

bedding, milking time practice of the herd, status of pre-dipping and average 

milking time). The four outputs were the foremilk bacteriological results for each 

quarter (Environmental, Contagious, Others and non-infected). The overall 

correct classification results were in the range 57 to 71% for ANNs as compared 

to 42 to 57% for Linear Discriminant Analysis (LDA). Sensitivity was 52% and 

specificity was 83% for the ANN with 100 cows, 45% and 80%, respectively, for 

the model with 200 cows, and 39% and 79%, respectively, for the model with 

300 cows.  

 

The results of Heald et. al. (2000) study indicates that overall, ANN 

performed better compared to LDA. The specificity of all the neural network 

models was high, but their sensitivity was low. One reason may be the type of 

data and variables used. The DHIA data were collected on a monthly basis and 

the bacteriological data was collected only once which might not have provided 

sufficient information for the ANN to identify patterns in the training data set and 

thus performed poorly on the validation data set. The EC or ER (which may have 
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improved the model results) were not used in their research. Due to the overall 

poor classification accuracy, the applicability of the model at the farm level may 

be low.  

Wang and Samarasinghe, (2006) compared the efficacy of supervised 

ANN and unsupervised ANN and LDA for the classification of CM and healthy 

cows. They used two versions of cow and herd normalised EC (EcMax-peak 

electrical conductivity and EcDV-maximum relative deviation of EC among four 

quarters for a cow) and cow and herd normalized quarter yield fraction (QYF: 

Ratio of milk production of a quarter to the sum total milk production from all 

four quarters). The correlation analysis revealed high correlation among the input 

variables; therefore, they used principle component analysis (PCA) and used 

principle components instead of variables in their original form. The 

classification results using LDA showed a sensitivity of 81% and specificity of 

100%. For the Multi Layer Perceptron (MLP) network (a type of supervised 

ANN), sensitivity was 84% and specificity was 100%. Therefore, there was no 

significant difference between the two modeling approaches. However, for the 

self organizing feature map (SOFM) model (a type of unsupervised ANN) the 

sensitivity was 95% and specificity was 100% indicating high efficacy of SOFM 

compared to MLP and LDA (Wang & Samarasinghe, 2005).  

 

Nielen et al. (1995) explored the prediction accuracy of logistic regression 

model (LRM) and multiplayer perceptron neural networks for SCM using in-line 

milking data. The variables used in their research were, EC per quarter (measured 

every 5 seconds), Lactation Number (LN), days in milk (DIM), and milk 

production per cow. They pre-processed the input variables before presenting to 

the models. Milk production data were used to calculate the expected production 

in each milking. Parity and DIM were divided into groups. The EC level for a 

cow was calculated from the individual quarter’s measurements. The first dataset 

contained 5139 classified as healthy cow milkings and 1244 classified as SCM. 

The second dataset had 4614 cow milkings classified as healthy and 1080 

classified as SCM. The SCC measurements (measured twice weekly) were used 
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to define healthy periods (four consecutive cow readings of SCC levels <200  

103 cells/ml). Sub-clinical periods were defined for SCC levels >500  103 

cells/ml, for a minimum of 1 week (14 milkings) (Nielen, Schukken, Brand, 

Deluyker, & Maatje, 1995). Two datasets were created for analysis. 

 

If the signals were higher than the SCM threshold for more that 6 signals 

out of 14, then the period was termed SCM and otherwise termed healthy. 

Sensitivity for SCM periods with the specified threshold was 54% for the logistic 

regression model and 66% for neural network model. Specificity for healthy 

periods was 92% and 80%, respectively, for the two models (Nielen, Schukken, 

Brand, Deluyker et al., 1995). Their research indicated that historical EC data can 

be used to assess the health status of individual cows.  

 

López-Benavides (2004) developed a Self Organising Feature Map 

(SOFM) model to cluster quarter milk samples into different health categories for 

the diagnosis of mastitis. The variables used in the study were EC, SCC, protein 

percentage (PP) fat percentage (FP), and bacteriological growth results for each 

of every quarter milk samples collected on a weekly basis. The data pre-

processing led to a number of new variables. EC and Inter-Quarter Ratio2 (IQR) 

for each quarter were used to calculate a conductivity index3 (CI) and Somatic 

Cell Score4 (SCS) was derived from SCC. The composite milk index5 (CMI) was 

derived from the original variables and their derivatives. The SOFM model used 
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two inputs, CMI and CI for the classification of quarters into arbitrarily defined 

health categories (healthy, moderately ill, ill and severely ill).  

 

In the study, it was found that as the health status changed from healthy to 

severely ill, somatic cell count, conductivity index, and composite milk index 

changed significantly (p<0.001). The percentage of non-infected cases in the 

healthy category was 93%, moderately ill 92%, ill 90% and severely ill 50%. 

About 8% of cases in the healthy category were infected due to small or no 

changes in their milk parameters.  

 

2.6.1 Summary 

This section explored the literature related to the use of ANNs (and statistical 

methods where relevant) in mastitis detection. In only one study (Heald et. al. 

2000), neural networks were used to classify the bacterial causes of mastitis with 

limited success. In their study, electrical conductivity or electrical resistance, 

protein and fat percentages were not studied. These are important milk 

parameters and may provide useful information for detecting the type of 

infection. 

 

The proposed study is an effort in developing more robust models for the 

detection of major and minor infections that cause mastitis. A number of milk 

parameters along with other important variables such as days in milk, lactation 

number and sire number will be used in this research.  

 

The next chapter explores the materials and methods employed to achieve 

the proposed objectives.  
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CHAPTER 3 

3. MATERIALS AND METHODS 

3.1 Introduction 

This chapter explores the materials and methods used to achieve the research 

objectives. Sections 3.2 and 3.3 provide information about the experimental data 

and the data preprocessing steps followed to prepare the data for advanced 

analysis. Sections 3.4 and 3.5 provide details of the data partitioning procedures. 

Section 3.6 describes the analysis performed on the preprocessed data and section 

3.7 explores the configurations of the neural network models. 

 

3.2 Experimental Data 

Data analysed in this research were collected at the Lincoln University 

dairy farm, in Canterbury, New Zealand, from August to November 2002.  

Starting at calving, quarter foremilk samples were collected weekly from 112 

cows for a period of 14 weeks, resulting in 4852 samples with complete records 

for SCC, ER, FP, PP and bacteriological status (Lopez-Benavides, 2004). 

Records with missing values for any one of the milk parameters were not used in 

the analysis. Similarly, records with unusually very high or very low values for a 

particular infection status were considered as outliers and were not used in the 

analysis.  Cows were daughters of three different sires.  In summary, SCC, FP 

and PP were measured using CombiFoss 500 (Foss Electric, Denmark) at 

Livestock Improvement Corporation Hamilton, New Zealand; ER was measured 

using the Draminski Mastitis Detector (Draminski, Warsaw, Poland), and 

bacteriological analysis of milk samples was performed according to the standard 

guidelines (NMC, 1999) at the Dexcel Mastitis Research Lab in Hamilton, New 

Zealand.  
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3.3 Data pre-processing 

The following transformations were performed on the raw data before advanced 

analysis; due to its skewed distribution SCC (1000/ml) was transformed into 

Somatic Cell Score (SCS), as shown in equation [1] (Dabdoub & Shook, 1984; 

Lopez-Benavides, 2004).  

5
100

log 2 
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i

SCC
SCS      [1] 

Electrical Resistance Index (ERI) for each quarter was developed to 

account for within and between cow variations as shown in equation [2]. From 

various attempts at normalization, the relationship shown in equation [2] was 

adopted as it provided better separation of infected and non-infected quarters 

than the approaches reported in literature and several others tested in this study.  

Individual quarter ERI was derived from cow ER values, which is the 

relationship of the individual quarter ER to the total ER for a cow, and to the 

maximum ER of a quarter on the test day. 
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Where ERi is the ER of quarter i, ERmax is the maximum ER observed from 

an individual cow and 
4

i
iER  is the total ER from all four quarters on the test 

day.  

To account for the effects of stage of lactation on milk parameters with 

respect to stage of lactation or days in milk (DIM), data were divided into three 

ranges (Range 1 = 1 to 30 DIM; Range 2 = 31 to 57 DIM and Range 3 = 58 to 

125 DIM). Similarly, cow variation was accounted for by the sire family (SN) 

from which the cow originated and the lactation number (LN) of each cow.  

Bacteriological status (BS) was coded according to bacteriology of each case (no 

infection = NI; minor pathogen infection = MNI; major pathogen infection = 

MJI).   
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3.4  Data Partitioning for Unsupervised Neural Network 

  (USNN) Model  

In order to develop the USNN model for the detection of infection status of a 

quarter, the dataset was partitioned into training and validation sets. The training 

set was used to develop the USNN model and the validation set to assess its 

generalization capability. The training set was obtained by random extraction of 

an approximately equal amount of data from each BS using STATISTICA, 

(2006).  This consisted of 50 NI, 43 MNI and 37 MJI cases. The remaining data 

containing 4411 NI, 301 MNI and 10 MJI cases were used for validating the 

USNN model. 

 

3.5  Data Partitioning for Supervised Neural Network (SNN) 

Model 

Data set for SNN models was partitioned into training, calibration and validation 

sets. The two main objectives for the development of the SNN models were, (1) 

to evaluate the potential of this modelling paradigm in detecting the infection 

status of a quarter, and (2) to evaluate the effects of different proportions of 

infected and non-infected cases in the training data set on the correct 

classification rate of the model. 

 

Three data sets were extracted randomly using STATISTICA, (2006). The 

training and calibration sets were used to develop the model and the validation 

set was used to assess its accuracy on unseen or new data. The datasets were 

extracted as shown in Table 3.5.1. 
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Table 3.5.1  Datasets for training, calibration and validation of supervised  

neural networks (SNN). 

 

3.6 Data Analysis   

3.6.1 Introduction 

Before developing any model, it is important to identify any linear and non-linear 

relationships between the input and output variables. To identify relationships 

between variables, data were analysed using statistical (MINITAB, 2003 ; 

STATISTICA, 2006) and multivariate data visualization (XmdvTool, 2006) 

software. Correlation analysis between variables was conducted to identify the 

most influential input variables. The principle component analysis (PCA) was 

carried out to eliminate multicollinearity between the input variables. 

Configurations of the best neural network models are also described in this 

section. 

 

3.6.2 Correlation Analysis 

Correlations (p < 0.05) were found between the input and output variables in the 

training data set for the USNN model (Table 3.6.2.1). The SCS and ERI were 

strongly correlated to BS (r = 0.86, r = -0.59, respectively). Moderate correlation 

was observed between PP and BS (r = 0.33), while no correlation was observed 
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1:1  217 56  71 33 4 10 260 65 82 510 125 163 798 

1:2  217 56  71 33 4 10 496 113 170 746 173 251 1170 

1:4  217 56  71 33 4 10 1009 230 313 1259 290 394 1943 

1:10  217 56  71 33 4 10 2496 601 780 2746 661 861 4268 
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between FP and BS (r = 0.07). However, strong correlations between ERI and 

SCS (r = -0.65), and moderate correlations between PP and SCS (r = 0.32), and 

PP and ERI (r = -0.35) were observed. Weak correlations were observed between 

FP and ERI (r = 0.18), DIM and ERI (r = 0.19); and DIM and PP (r = -0.22). No 

significant correlations were observed for SN and LN. 

 

Table: 3.6.2.1  Correlations between the Input and Output variables 

[Training dataset for unsupervised neural network 

model (n=130)]. 

Key BS = Bacteriological State; SCS = Somatic Cell Score; ERI = Electrical 

Resistance Index; PP = Protein Percentage; FP = Fat Percentage;   * p < 0.05 

 SCS ERI PP FP DIM LN BS 

SCS       0.86* 

ERI -0.65*      -0.59* 

PP 0.32* -0.35*     0.33* 

FP 0.12 0.18* 0.09    0.07 

DIM -0.08 0.19* -0.22* 0.07   -0.08 

LN -0.01 0.09 -0.12 0.12 0.08  -0.03 

SN -0.03 0.13 -0.03 -0.04 -0.01 -0.12 0.06 

 

 

The following scatter plot (Figure 3.6.2.1) shows the relationships 

between the input and output variables. There are no strong non-linear 

relationships between the variables. SCS and ERI provide good discrimination 

between the three bacteriological states, while PP and FP are weak 

discriminators. 
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Key: BS = Bacteriological State [No Infection = 0, Minor Infection = 1 and 

Major Infection =2]; SCS = Somatic Cell Score; ERI = Electrical Resistance 

Index; PP = Protein Percentage; FP = Fat Percentage. 

Figure 3.6.2.1  Scatter plots of SCS, ERI, FP, PP and BS. [Training data 

set for unsupervised neural network model (n=130)]. 

 

3.6.3     Analysis of Variance of Milk Parameters for the three 

Bacteriological States 

To analyze differences in mean values of milk parameters for the three 

bacteriological states, One Way ANOVA was used (Table 3.6.3.1, Figures 

3.6.3.1, 3.6.3.2, 3.6.3.3 & 3.6.3.4).  Mean SCS increased (p = 0.001) linearly 

from non-infected to minor and major infected cases. A negative linear trend was 

observed for the electrical resistance index (ERI), but only MJI cases were 

different. The protein percentage (PP) was higher only for the major infected 

cases. The means for fat percentage (FP) were not different between the three 

bacteriological states.  
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Table 3.6.3.1    Milk parameters means (SEM) for each bacteriological  

    status for the training dataset (n=130). 
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Figure 3.6.3.1 Least square means difference of somatic cell score 
between the three bacteriological states for training data 
set (n=130).  

 Bacteriological Status 

Milk Parameters NI MNI MJI (p<0.001) 

Somatic cell score 2.71 0.21 6.05  0.23 9.04  0.24 All states 

Electrical resistance index 0.72  0.01 0.69  0.01 0.60  0.01 MJI only 

Milk protein (%) 3.54  0.05 3.60  0.05 3.86  0.06 MJI only 

Milk fat (%) 3.53  0.22 4.04  0.24 3.76  0.26 None 
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Figure 3.6.3.2  Least square means difference of electrical resistance 
index between the three bacteriological states for 
training dataset (n=130).  
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Figure 3.6.3.3  Least square means difference of protein percentage 
between the three bacteriological states for training  
dataset (n=130). 
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Figure 3.6.3.4  Least square means difference of fat percentage between  

the three bacteriological states for training dataset 
(n=130).  

 

 

3.6.4 Multivariate Parallel Visualisation Analysis (MPVA) 

Results of the MPVA supported the correlation analysis. In general, as BS 

changed from NI to MNI (Figure 3.6.4.1 A and B), the mean values of SCS 

increased significantly, FP and PP increased slightly, while ERI decreased 

slightly (Figure: 3.6.4.1B). Here, again, SCS is observed as a major factor in 

discriminating between the two bacteriological states (NI vs. MNI). However, 

there were some overlapping regions, as some of the MNI cases had high ERI as 

well as high SCS (Figure 3.6.4.1 A), probably representing infection cases in 

their early stages. 
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A (Total Data Points)        B (Mean Values) 

BS = Bacteriological State [0=NI, 1=MNI]; SCS = Somatic Cell Score; ERI = 

Electrical Resistance Index; PP = Protein Percentage; FP = Fat Percentage. 

Figure: 3.6.4.1  Multivariate parallel visualization of data: minor- 

   infected and non-infected cases [Training dataset for  

   unsupervised neural network model (n=130)]. 

 

      

A (Total Data Points)     B (Mean Values) 

BS = Bacteriological State [0=NI, 2=MJI]; SCS = Somatic Cell Score; ERI = 

Electrical Resistance Index; PP = Protein Percentage; FP = Fat Percentage. 

Figure 3.6.4.2      Multivariate parallel visualization of data: major-infected 

                             and non-infected cases [Training dataset for unsupervised  

                             neural network model (n=130)]. 

 

The same MPVA was also performed between the MJI and NI cases 

(Figure 3.6.4.2 A and B). Here the differences were more pronounced. For MJI 
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cases, mean values of SCS increased significantly, PP and FP slightly increased, 

and ERI significantly decreased.  

 

The relationship between the MNI and MJI cases was also evaluated with 

the same MPVA method (Figure 3.6.4.3 A and B). This analysis indicated that 

the discrimination ability of SCS, ERI and PP was high, while FP was not good a 

discriminator. The mean values (Figure 3.6.4.3 B) of the milk parameters for the 

two bacteriological states were also significantly different except for FP.  

 

    

A (Total Data Points)     B (Mean Values) 

BS = Bacteriological State [1=MNI, 2=MJI]; SCS = Somatic Cell Score; ERI = 

Electrical Resistance Index; PP = Protein Percentage; FP = Fat Percentage. 

Figure 3.6.4.3    Multivariate parallel visualization of data: major-infected 

     and minor-infected cases [Training dataset for  

     unsupervised neural network model (n=130)]. 

 

The analyses indicate (Figures 3.6.4.1, 3.6.4.2 and 3.6.4.3) that SCS and 

ERI are the most informative milk parameters for the detection of infection status 

of a quarter. The SCS shows increased activity in the transition from non-

infected to minor infected as well as major infected cases. The minor infections 

do not bring significant changes in the ERI and PP (Figure 3.6.3.1), while major 

infections strongly influence these two milk parameters (Figure 3.6.3.2). It was 

observed that FP has low potential for detecting the infection status of a quarter. 
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3.6.5 Principle Component Analysis (PCA) 

Based on the correlation analysis, it was important to address the strong 

multicolinearity that existed between SCS, ERI, PP and FP. Therefore PCA was 

carried out and four principle components were extracted. The correlation matrix 

of variables was used to derive four PCs. The eigenvalues (EV), proportion of 

variance (PV) explained by each PC, cumulative eigenvalues (CE) and 

cumulative percentages (CP) of the variance of the four PCs were analysed.  

 

PC-1 had the largest eigenvalue (1.54) and explained 38.6% of total 

variance in the data; followed by PC-2 (eigenvalue = 1.07; proportion of variance 

= 26.9%), PC-3 (eigenvalue = 0.9; proportion of variance = 22.5%) and PC-4 

(eigenvalue = 0.47; proportion of variance = 11.8%). This analysis indicated that 

all the four PCs were important, because every PC explained a significant 

amount of variance in the data. The first three PCs explained 88% of variance in 

the data and therefore, were more important as compared to PC-4 which 

explained the remaining 11% of the variance. 

 

The contributions of the original variables towards each PC were 

examined (Table 3.6.5.1). The SCS and ERI were strongly correlated and 

contributed most towards PC-1 (71%). The PP and ERI were also correlated and 

they contributed entirely towards PC-2 (100%). The FP which was not strongly 

correlated to SCS, ERI or PP, had maximum contribution towards PC-3 (84%), 

while PC-4 explained the remaining variance of SCS and ERI (77%).  
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Table 3.6.5.1  Factor/variable contributions (n=130).  

Factor Variable Contributions 

 Factor 1 Factor 2 Factor 3 Factor 4 

Somatic Cell Score 0.46 0.00 0.06 0.47 

Electrical Resistance Index 0.25 0.38 0.07 0.30 

Protein Percentage 0.13 0.62 0.02 0.22 

Fat Percentage 0.15 0.00 0.84 0.00 

 

 

The correlation of each variable with each PC was also examined (Table 

3.6.5.2). The SCS (-0.85), PP (-0.45) and FP (-0.49) were negatively and ERI 

(0.62) positively correlated to PC-1. The ERI (-0.64) and PP (-0.82) were 

negatively correlated to PC-2. The FP (-0.87) was negatively correlated to PC-3. 

Finally, SCS (0.47) and ERI (0.38) were positively correlated to PC-4. 

 

Table 3.6.5.2  Factor/variable correlations (n=130). 

Factor Variable Correlations 

 Factor 1 Factor 2 Factor 3 Factor 4 

Somatic Cell Score -0.85 -0.05 0.24 0.47 

Electrical Resistance Index 0.62 -0.64 -025 0.38 

Protein Percentage -0.45 -0.82 0.15 -033 

Fat Percentage -0.49 0.03 -0.87 -0.03 
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3.7 Development of Models 

3.7.1 Introduction 

In this study, unsupervised neural network and supervised neural network were 

the two modelling methodologies used for detecting mastitis causing major and 

minor bacterial pathogens present in milk samples. This section provides details 

of the configuration of the best models in terms of their correct classification rate 

for detecting the infection status of a quarter for the validation data sets. Sections 

3.7.2 and 3.7.3 explore the configuration of unsupervised neural network and 

supervised neural network models, respectively.   

 

3.7.2 Unsupervised Neural Network (USNN) Model Configuration 

The data set mentioned in section 3.4 of this chapter was used for the 

development of the USNN model using Kohonen’s self organising map 

algorithm (see Section 2.5.3 for details). The training data set was used to train a 

map with 66 neurons in the output layer of the model that clustered the input 

vectors. When the training error was reduced to a minimum level, the training 

was considered as complete. The trained neurons were further grouped into three 

clusters, representing the three bacteriological states using the SOM-Ward 

clustering method, which uses a combination of hierarchical clustering algorithm 

of Ward and SOM methods (Viscovery-SOMine, 2005). 

 

The training data set containing the four principle components, days in 

milk ranges, lactation number, sire number, and bacteriological state were used to 

develop the USNN model. The model was validated using the validation data set 

with the four principle components, days in milk, lactation number and sire 

number.  

  

3.7.3 Supervised Neural Network (SNN) Model Configuration 

Supervised neural network learning paradigm was applied to develop SNN 

models using the datasets described in section 3.5. A variant of the back-

propagation training algorithm known as quick-propagation was used in these 
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experiments (Fahlman, 1988). The algorithm treats the weights as if they were 

quasi-independent and attempts to use a simple quadratic model to approximate 

the error surface (Alyuda-Research, 2001-2005; Fahlman, 1988).  

 

 There were nine neurons in the input layer representing the input 

variables: four principle components, days in milk, lactation number and sire 

number (three neurons representing the three sire families). There were three 

neurons in the output layer representing the three bacteriological states.  

 

Training and calibration datasets were used to train and calibrate the SNN 

models while the validation datasets were used to evaluate their generalization 

capability. Learning rate was kept at 0.1 for all experiments. Quick-propagation 

coefficient parameter of 1.75 was used. In the hidden and output layers, logistic 

activation function was used. The criterion for evaluating the models was based 

on their correct classification rate (CCR) on the validation data sets. Training was 

stopped when there was no improvement in the average CCR for the calibration 

data set. 

 

3.7.4 Summary  

This chapter explored the experimental data, data pre-processing steps and data 

partitioning steps before the application of advanced analytical methods. It is an 

established fact that using pre-processed data for the development of neural 

network models increases the probability of creating robust models. In contrast, 

raw data may contain outliers which may have adverse effects on the learning 

process of the neural network and thereby reduce the generalization capability of 

the model. The data analysis procedures and configurations of the neural network 

models were also explored in this chapter. 

The following chapter provides details of the results of the neural network 

models on the validation data sets. 
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CHAPTER 4  

4. RESULTS 

4.1 Introduction 

This chapter provides details of the results of the neural network models for the 

validation data sets. Section 4.2 explores the results for the USNN model, while 

section 4.3 for the SNN models.  

 

4.2 Results of Unsupervised Neural Network Model 

The USNN model was developed using the self organizing feature map 

algorithm. The configuration of the final trained and clustered neurons, 

representing the three bacteriological states is shown in the following Figure 

4.2.1.  The USNN model was able to identify the three bacteriological states 

using the milk parameters data. The neurons have been clustered in such a way 

that the neurons representing the non-infected state are distant from the neurons 

representing the major infected state, but border with the neurons representing 

the minor infected state. 

 

 

Figure 4.2.1 Clusters formed on the trained USNN model, representing 

three bacteriological states. 
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Figures 4.2.2 & 4.2.3 illustrate the values for PCs at each neuron of the 

trained map. The colors of the dots represent the values of a variable at that point 

in the map. The dark red color indicates a higher value, and the dark blue 

represents a lower value for a particular variable. The values of PC-1 decrease 

from non-infected towards minor and major infected cases, providing a good 

separation between the three infection states.  PC-1 and PC-4 provided maximum 

discrimination between the three bacteriological states. 
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No Infections

Minor-Infections

Major Infections

-5.6 -4.0 -2.3 -0.6 1.1
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No Infections
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Figure 4.2.2  Representation of inputs PC-1 and PC-2 on the trained map. 
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Figure 4.2.3  Representation of inputs PC-3 and PC-4 on the trained map. 

 

The validation data set was used to assess the generalization ability of the 

model. The recall feature of the Viscovery® SOMine software was used to 

classify the validation data set using the trained and clustered map. As discussed 

earlier in section 3.7.2, only three clusters were formed based on the three 

infection states. The results are given in the following lines.   

 

The classification results of the model for the validation dataset are shown 

in Table 4.2.1. Overall, the correct classification rate for this data set was 97%. 

Specificity of the model was 97% (4289/4411) and sensitivities for minor and 

major pathogens were 89% (269/301) and 80% (8/10), respectively. 

Misclassification rates were, 3% for non-infected cases (NI), 11% for minor 

infected (MNI) and 20% for the major infected (MJI) cases.  A total of 1% 

(36/4411) NI cases were misclassified as MJI and 2% (86/4411) as MNI.  Also, a 

total of 1% (4/301) of MNI cases were misclassified as NI and 9% (28/301) as 

MJI. Similarly, 20% (2/8) of MJI cases were misclassified as MNI and none as 

NI. 

 

 

Table 4.2.1 Matching matrix of observed and predicted classes using the 
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unsupervised neural network model (validation data set  

n=4722). 

USNN Predicted (n) 
Specificity and 

Sensitivity  Bacteriological status 
Observed 

(n) 
NI MNI MJI Total (%) 

Not Infected (NI) 4411 4289 86 36 4411 97 

Minor Infected (MNI) 301 4 269 28 301 89 

Major Infected (MJI) 10 0 2 8 10 80 

Total 4722    4722  

 

 

In terms of mastitis pathogens, 87% of coagulase-negative staphylococci 

(131/150) and 92% of Corynebacterium bovis (138/150) were classified correctly 

in the MNI category. For MJI, 71% of Streptococcus uberis (5/7), 100% of 

Streptococcus dysgalactiae (2/2) and 100% of Streptococcus agalactiae (1/1) 

were classified correctly.  

 

Differences in mean values of the milk parameters and PCs were analysed 

(Table 4.2.2) for each cluster using One Way ANOVA.  Mean values were 

different (p < 0.001) for milk parameters as well as each PC, with the exception 

of PP.  Principle components provided maximum discrimination between each 

bacteriological state. 

 

 

 

 

 

 

 

 

Table 4.2.2 Milk parameter means (SEM) for each bacteriological status  
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cluster formed on the self organizing map for the validation 

dataset. Milk samples were clustered into not-infected (NI), 

infected by minor pathogens (MNI) or infected by major 

pathogens (MJI). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Results of Supervised Neural Network Models 

 Bacteriological Status Cluster 

Milk Parameters NI MNI MJI (p < 0.001) 

Somatic cell score 3.14  0.02 5.31  0.07 7.06  0.15 All clusters 

Electrical resistance index 0.72  0.00 0.71  0.00 0.57  0.00 MJI 

Milk protein (%) 3.57  0.00 3.56  0.01 3.57  0.03 Not Significant 

Milk fat (%) 3.44  0.02 4.03  0.07 2.88  0.17 All clusters 

Principle component-1 0.15 0.01 -0.76  0.04 -2.66  0.09 All clusters 

Principle component-2 -0.03  0.01 -0.31  0.05 2.46  0.11 All clusters 

Principle component-3 -0.08  0.02 0.43  0.05 1.61  0.11 All clusters 

Principle component-4 -0.08  0.01 0.88  0.05 -0.49  0.11 All clusters 
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This section provides details of the supervised neural network modelling 

experiments for the four datasets developed in Section 3.5. The inputs used in 

these experiments were the four principle components, days in milk, lactation 

number and sire number. The output was the bacteriological status of each 

quarter.  

  

The heuristic network architecture search method of the Alyuda 

NeuroIntelligence 2.2 software (Alyuda-Research, 2001-2005; Fahlman, 1988) 

was used to search for the best network. A range from 2 to 200 neurons in the 

hidden layer was used to search for the optimal number of neurons in the hidden 

layer. 

 

4.3.1  Results of Supervised Neural Network (SNN) Models for Dataset 

1 (Infected to non-infected ratio 1:1) 

Table 4.3.1.1 provides details of the results of the trained SNN models using the 

first dataset described in Section 3.5. Models number 7, 8, 12, 13 and 14 with 

hidden neurons ranging between 87 and 97, achieved highest accuracy for this 

data set. The CCR on the validation datasets of these models ranged from 76% to 

80%. The effect of the different number of neurons in the hidden layer on the 

correct classification rate (CCR) of the model was evident. When the number of 

neurons in the hidden layer was either increased from 97 or decreased from 87, 

the average CCR deteriorated.  

 

 

 

 

 

 

 

 

Table 4.3.1.1  Results of models trained using dataset with 1:1 ratio of  
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    infected to non-infected cases. 

Overall Correct Classification Rate 
(CCR) % 

Multi Layer Perceptron 
Network Architecture 

M
od

el
 

N
u

m
b

er
 

Input 
Layer

Hidden 
Layer 

Output 
Layer 

Number 
of 

Weights Training 
Set 

Calibration 
Set 

Validation 
Set 

1 9 2 3 29 77 78 71 
2 9 200 3 2603 84 83 74 
3 9 124 3 1615 86 86 74 
4 9 77 3 1004 95 84 74 
5 9 48 3 627 95 85 72 
6 9 106 3 1381 89 84 72 
7 9 94 3 1225 90 85 79 
8 9 87 3 1134 98 85 76 
9 9 101 3 1316 84 84 75 
10 9 98 3 1277 83 86 70 
11 9 91 3 1186 87 87 73 
12 9 96 3 1251 93 84 77 
13 9 97 3 1264 94 85 80 
14 9 95 3 1238 93 84 76 

 

 

                     Number of Iterations 

Figure 4.3.1.1  Correct classification rate (vertical axis) for training (blue 

    line) and calibration (green Line) datasets for the best model  

    against number of training iterations; dataset with 1:1 ratio  

    of infected to non-infected cases. 

The best network was number 13 with 97 neurons in the hidden layer. For 

this network, Figure 4.3.1.1 shows the changes in CCR as the training 
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progressed.  The blue line indicates the CCR for the training dataset while the 

green line for the calibration dataset. The network was saved at a point (seen as a 

red dot) where the classification accuracy was high for the calibration dataset. 

Beyond this point it was found that the network was learning noise or 

peculiarities in the training dataset without any improvement on the calibration 

dataset.  

 

The model (# 13) was evaluated using the validation data set. The overall 

CCR for validation data set was 80%. The specificity of the model for correctly 

detecting non-infected cases was 82%, while, sensitivities for correctly detecting 

infected cases were 86% for minor infections and 20% for major infections 

(Table 4.3.1.2). Due to data limitations, the number of major infected category in 

the training data set was low, resulting in a low CCR for this category.  

 

Table 4.3.1.2     Matching matrix of observed and predicted classes from the 

                          supervised neural network model based on the validation  

    dataset with infected to non-infected cases ratio of 1:1. 

SNN Predicted (n) 
Specificity and 

Sensitivity  Bacteriological status 
Observed 

(n) 
NI MNI MJI Total (%) 

Not Infected (NI) 82 67 15 0 82 82 

Minor Infected (MNI) 71 10 61 0 71 86 

Major Infected (MJI) 10 0 8 2 10 20 

Total 163    163  

 

 

The impact of each input variable on the model output was evaluated (Table 

4.3.1.3) using sensitivity analysis. This analysis was performed by removing one 

input variable at a time and analysing the deterioration in the model output.  It 

was found that PC-1, PC-3 and PC-4, representing SCS, ERI and FP were the 
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most important input variables for this model. Figure 4.3.1.2 provides the results 

of sensitivity analysis in graphical format.  

 

Table 4.3.1.3  Results of sensitivity analysis of the model, contribution of  

 each input variable towards the model output for the dataset  

                       with infected to non-infected cases ratio of 1:1. 

 

 

 

 

 

 

 

 

 

 

   with Input Variables Contribution, % 

Principle Component – 1 33 

Principle Component – 2 3 

Principle Component – 3 19 

Principle Component – 4 16 

Days In Milk 9 

Lactation Number 6 

Sire Number 11 
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Key: PC-1 = Principle Component 1, PC-2 = Principle Component 2, PC-3 = 

Principle Component 3, PC-4 = Principle Component 4, DIM = Days in Milk, 

LN = Lactation Number, SN = Sire Number. 

Figure 4.3.1.2   Results of sensitivity analysis in graphical format. On the  

                          horizontal axis are input variables and on the vertical axis 

    their contribution to the model output based on the  

    validation dataset with infected to non-infected cases ratio 

    of 1:1. 
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4.3.2 Results of Supervised Neural Network Models for Dataset 2  

 (Infected to non-infected ratio 1:2) 

Table 4.3.2.1 provides details of the results of the trained models using the 

second dataset as described in Section 3.5. Models number 4, 6, 9, 13 and 14 

with hidden neurons ranging between 77 and 118, achieved highest accuracy for 

this dataset (ratio 1:2 of infected to non-infected cases). The overall CCR on the 

validation datasets of these models ranged from 82% to 84%. The changing 

number of neurons in the hidden layer affected the CCR of the networks; when 

the number of neurons in the hidden layer was either increased from 118 or 

decreased from 77, the average CCR deteriorated.  

 

The best network was number 9 with 112 neurons in the hidden layer. 

Figure 4.3.2.1 shows the changes in CCR for this network as the training 

progressed.  The blue line indicates the CCR for the training dataset while the 

green line for the calibration dataset. The network was saved at a point (seen as a 

red dot) where the classification accuracy was the highest for the calibration 

dataset. Beyond this point, the performance of the network improved for the 

training dataset without any improvement on the calibration dataset. 
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Table 4.3.2.1   Results of the models trained using the dataset with 1:2 ratio 

   of infected to non-infected cases. 

Overall Correct Classification Rate 
(CCR) % 

Multi Layer Perceptron 
Network Architecture 

M
od

el
 

N
u

m
b

er
 

Input 
Layer

Hidden 
Layer 

Output 
Layer 

Number 
of 

Weights Training 
Set 

Calibration 
Set 

Validation 
Set 

1 9 2 3 29 84 85 79 
2 9 200 3 2603 86 88 80 
3 9 124 3 1615 87 86 81 
4 9 77 3 1004 87 84 82 
5 9 48 3 627 88 85 79 
6 9 106 3 1381 86 86 82 
7 9 94 3 1225 87 86 80 
8 9 117 3 1524 91 85 81 
9 9 112 3 1459 91 85 84 
10 9 121 3 1576 90 86 79 
11 9 115 3 1498 87 84 80 
12 9 119 3 1550 87 86 79 
13 9 118 3 1537 90 86 83 
14 9 116 3 1511 93 85 83 

  

 

                     Number of Iterations 

Figure 4.3.2.1   Correct classification rate (vertical axis) for training 

                           (blue line) and calibration (green Line) datasets for the best  

                           model; [ratio of infected to non-infected cases of 1:2]. 
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The model was evaluated using the validation data set. The overall CCR 

for validation data set was 84%. The specificity of the model for correctly 

detecting non-infected cases was 91%, while, sensitivities for correctly detecting 

infected cases were 76% for minor infections and 20% for major infections 

(Table 4.3.2.2). 

 

These results reveal the effect of increasing the proportion of non-infected 

cases. For example, there is a substantial increase in the correct classification of 

these healthy cases from 82% to 91%. Adding healthy cases has also increased 

the region of overlap between healthy and minor infection regions thereby 

reducing correct classification of minor infections. It has also pushed the minor 

and major infection regions closer thereby classifying some minor infections as 

major infections.  

 

Table 4.3.2.2    Matching matrix of observed and predicted classes from the  

    supervised neural network model based on validation data  

    set with infected to non-infected cases ratio of 1:2. 

SNN Predicted (n) 
Specificity and 

Sensitivity  Bacteriological status 
Observed 

(n) 
NI MNI MJI Total (%) 

Not Infected (NI) 170 154 16 0 170 91 

Minor Infected (MNI) 71 14 54 3 71 76 

Major Infected (MJI) 10 0 8 2 10 20 

Total 251    251  

 

 

The impact of each input variable on the model output was evaluated 

(Table 4.3.2.3) using sensitivity analysis. It was found that PC-1 and PC-4, 

representing SCS and ERI, were the most important input variables for this 

model.  
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Compared to the case with 1:1 ratio of infected to non-infected cases, 

these results suggest that the effect of the minor variable Fat percentage, is 

masked when the prevalence of non-infected cases increases. Also, the relevance 

of other variables DIM and Sire number has slightly diminished. Figure 4.3.2.2 

provides the results of sensitivity analysis in graphical format for this model. 

 

Table 4.3.2.3   Contribution of each input variable to the model output of  

the best network based on sensitivity analysis for the dataset  

with infected to non-infected cases ratio of 1:2. 

Input Variables Contribution, % 

Principle Component –1 45 

Principle Component –2 2 

Principle Component –3 6 

Principle Component –4 22 

Days In Milk 5 

Lactation Number 9 

Sire Number 9 
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Key: PC-1 = Principle Component 1, PC-2 = Principle Component 2, PC-3 = 

Principle Component 3, PC-4 = Principle Component 4, DIM = Days in Milk, 

LN = Lactation Number, SN = Sire Number. 

Figure 4.3.2.2       Results of sensitivity analysis in graphical format. On the  

                              horizontal axis are input variables and on the vertical axis  

                              are their percentage contributions, assessed on the dataset  

                              with infected to non-infected cases ratio of 1:2. 
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4.3.3 Results of Supervised Neural Network Models for Dataset 3 

(ratio of infected to non-infected cases of 1:4) 

Table 4.3.3.1 provides details of the results of the trained models using the third 

dataset described in Section 3.5. Models number 3, 4, 7, 9, 13 and 15 with hidden 

neurons ranging from 77 to 124, achieved highest accuracy for this dataset. The 

overall CCR on the validation dataset of these models ranged from 84% to 86%. 

 

Table 4.3.3.1    Results of models trained using dataset with 1:4 ratio of  

                          infected to non-infected cases. 

Overall Correct Classification Rate 
(CCR) % 

Multi Layer Perceptron 
Network Architecture 

M
od

el
 

N
u

m
b

er
 

Input 
Layer

Hidden 
Layer 

Output 
Layer 

Number 
of 

Weights Training 
Set 

Calibration 
Set 

Validation 
Set 

1 9 2 3 29 86 84 82 
2 9 200 3 2603 90 87 83 
3 9 124 3 1615 90 87 85 
4 9 77 3 1004 91 87 85 
5 9 48 3 627 91 87 82 
6 9 106 3 1381 93 86 83 
7 9 94 3 1225 91 88 86 
8 9 65 3 848 94 88 82 
9 9 87 3 1134 92 87 84 
10 9 72 3 939 91 89 81 
11 9 83 3 1082 92 88 82 
12 9 80 3 1043 92 89 83 
13 9 75 3 978 90 88 84 
14 9 78 3 1017 91 88 82 
15 9 76 3 991 91 86 84 

 

The best network was number 7 with 94 neurons in the hidden layer. 

Figure 4.3.3.1 shows the changes in the overall CCR for this network as the 

training progressed.  The blue line indicates the CCR for the training data set 

while the green line indicates that for the calibration data set. The network was 

saved at a point (seen as a red dot) where the classification accuracy was the 
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highest for the calibration data set. Training the model beyond this point did not 

improve its performance on the calibration data set. 

 

 

                     Number of Iterations 

Figure 4.3.3.1  Correct classification rate (Y-axis) for training (blue line)  

     and calibration (green Line) datasets for the best model  

                         against training iterations for the dataset with infected to  

                         non-infected cases ratio of 1:4. 

 

Model was evaluated using the validation dataset. The overall CCR for 

validation dataset was 86%. The specificity of the model for correctly detecting 

non-infected cases was 94%, while, sensitivities for correctly detecting infected 

cases were 71% for minor infections and 30% for major infections (Table 

4.3.3.2). Compared to the previous model (with dataset 1:2 ratio), CCR for the 

non-infected and major infected cases increased while for minor infected cases a 

decrease was observed. 

 

 Here, the effect of adding more NI cases is to further improve 

classification accuracy of NI cases and to continue the trend of deteriorating 

classification accuracy on MNI further taking it down to 71% compared to 76% 

for 1:2 ratio and 86% for 1:1 ratio. There is a 10% increase in the classification 

accuracy of MJI, although, this is due to classifying one more case accurately. 

 



 56

Table 4.3.3.2   Matching matrix of observed and predicted classes from the  

                         supervised neural network model based on the validation  

  dataset with infected to non-infected cases ratio of 1:4. 

SNN Predicted (n) 
Specificity and 

Sensitivity  Bacteriological status 
Observed 

(n) 
NI MNI MJI Total (%) 

Not Infected (NI) 313 295 18 0 313 94 

Minor Infected (MNI) 71 26 42 3 71 59 

Major Infected (MJI) 10 0 7 3 10 30 

Total 394    394  

 

   

The impact of each input variable on the model output was evaluated 

(Table 4.3.3.3) using sensitivity analysis. It was found that PC-1 and PC-4, 

representing SCS and ERI, were the most important input variables for this 

model. The contribution of PC-1 was 42% and that of PC-2 was 18% followed 

by days in milk and sire number. These results are presented in graphical format 

in Figure 4.3.3.2. 
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Table 4.3.3.3     Contribution of input variables to the output of the network  

                           based on sensitivity analysis [dataset with infected to  

                           non-infected cases ratio of 1:4]. 

Input Variables Contribution, % 

Principle Component –1 42 

Principle Component –2 5 

Principle Component –3 8 

Principle Component –4 18 

Days In Milk 10 

Lactation Number 6 

Sire Number 12 
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Key: PC-1 = Principle Component 1, PC-2 = Principle Component 2, PC-3 = 

Principle Component 3, PC-4 = Principle Component 4, DIM = Days in Milk, 

LN = Lactation Number, SN = Sire Number. 

Figure 4.3.3.2       Results of sensitivity analysis in graphical form. On the  

                              horizontal axis are input variables and on the vertical axis  

          is their percentage contributions based on the dataset with  

                              infected to non-infected cases ratio of 1:4. 
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4.3.4  Results of Supervised Neural Network Models for Dataset 4    

 with infected to non-infected cases ratio of 1:10 

Table 4.3.4.1 provides details of the results of the trained models using the fourth 

dataset as described in Section 3.5. Models number 5, 7, 10, 11, 12 and 13 with 

hidden neurons ranging from 167 to 188, achieved highest accuracy for this data 

set.  

 

Table 4.3.4.1   Results of models trained using the dataset with 1:10 ratio of  

                         infected to non-infected cases. 

Overall Correct Classification Rate 
(CCR) % 

Multi Layer Perceptron 
Network Architecture 

M
od

el
 

N
u

m
b

er
 

Input 
Layer

Hidden 
Layer 

Output 
Layer 

Number 
of 

Weights Training 
Set 

Calibration 
Set 

Validation 
Set 

1 9 2 3 29 92 92 90 
2 9 200 3 2603 96 94 91 
3 9 124 3 1615 95 94 91 
4 9 77 3 1004 96 94 91 
5 9 170 3 2213 94 94 92 
6 9 152 3 1979 96 94 91 
7 9 188 3 2447 94 93 93 
8 9 181 3 2356 96 94 91 
9 9 163 3 2122 96 94 91 
10 9 176 3 2291 94 94 92 
11 9 167 3 2174 96 94 92 
12 9 173 3 2252 94 94 92 
13 9 171 3 2226 96 94 92 
14 9 168 3 2187 96 93 91 
15 9 169 3 2200 94 94 91 

 

The best network was number 7 with 188 neurons in the hidden layer. For 

this network Figure 4.3.4.1 shows the changes in overall CCR as the training 

progressed.  The blue line indicates the CCR for the training data set while the 

green line for the calibration data set. The network was saved at a point (seen as a 

red dot) where the classification accuracy was the highest for the calibration data 
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set; further training beyond this point was not helpful in improving the 

performance of the model on the calibration data set. 

 

                     Number of Iterations 

Figure 4.3.4.1   Overall correct classification rate for training (blue line) 

                and calibration (green Line) datasets for the best model  

                against training iterations; dataset with 1:10 ratio of infected  

     to non-infected cases. 

 

The best model (# 7) was evaluated using the validation dataset. The 

overall CCR for validation dataset was 93%. The specificity of the model for 

correctly detecting non-infected cases was 98%, while, sensitivities for correctly 

detecting infected cases were 44% for minor infections and 40% for major 

infections (Table 4.3.4.2).  
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Table 4.3.4.2     Matching matrix of observed and predicted classes using the 

supervised neural network model based on the validation 

data set with infected to non-infected cases ratio of 1:10. 

SNN Predicted (n) 
Specificity and 

Sensitivity  Bacteriological status 
Observed 

(n) 
NI MNI MJI Total (%) 

Not Infected (NI) 780 763 17 0 780 98 

Minor Infected (MNI) 71 38 31 2 71 44 

Major Infected (MJI) 10 1 5 4 10 40 

Total 861    861  

 

As expected, the classification rate for NI cases increased to 98% due to 

the increase of NI cases in the dataset. Continuing the previous trend, the CCR 

for MNI plummeted to 44%. However, CCR of MJI increased from 30% to 40%, 

although again this was the result of classifying one new case correctly. 

Nevertheless, it could be a realistic trend due to sharpening of boundary of the 

MJI region with the increase of NI cases. However, this minor increase in 

classification rate for NI and MJI cases comes at a great expense of 

misclassifying MNI. The use of realistic infected to non-infected ratio in the 

dataset appeared to misclassify a large quantity of MNI. It may be advisable to 

use realistic ratios for effectively discriminating between NI and MJI cases, and 

an artificially reduced ratio for separating MNI from NI cases. 

 

The impact of each input variable on the model output was evaluated 

(Table 4.3.4.3) using sensitivity analysis. It was found that PC-1, PC-4, lactation 

number and sire number were the most important input variables for this model. 

As compared to the data set with infected to non-infected ratio of 1:4, the 

contribution of PC-1and PC-4 decreased while that of lactation number 

increased. For PC-2, PC-3, DIM and Sire number no substantial change was 

observed. These results in graphical format are presented in Figure 4.3.4.2. 
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Table 4.3.4.3   Contribution of input variables to the output of the network  

                         based on sensitivity analysis on the dataset with infected to  

                         non-infected cases ratio of 1:10. 

Input Variables Contribution, % 

Principle Component -1 32 

Principle Component -2 4 

Principle Component -3 8 

Principle Component -4 14 

Days In Milk 9 

Lactation Number 20 

Sire Number 12 
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Key: PC-1 = Principle Component 1, PC-2 = Principle Component 2, PC-3 = 

Principle Component 3, PC-4 = Principle Component 4, DIM = Days in Milk, 

LN = Lactation Number, SN = Sire Number. 

Figure 4.3.4.2    Results of sensitivity analysis in graphical form. On the  

                            horizontal axis are input variables and on the vertical axis is  

                            their contribution (dataset with infected to non- infected 

      cases ratio of 1:10). 
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4.4 Summary 

This section explored the results of the USNN and SNN modelling experiments 

in detecting the infection status of a quarter. Training datasets were used to 

develop the models and the validations datasets were used to assess their 

generalisation capability.  

 

The USNN model achieved a specificity (correctly identifying non-

infected cases) of 97% and sensitivities for correctly identifying minor and major 

infected cases were 89% and 80%, respectively. Analysis of the clusters of three 

infection states revealed that all four PCs were significantly different for each 

cluster.  However, PC-1 and PC-4 representing SCS and ERI were found to be 

the most important input variables for this model. 

 

The overall CCR of the SNN ranged from 80 to 93%. The CCR for the NI 

cases ranged from 82 to 98%, while for minor and major infected cases ranged 

from 44 to 86% and 20 to 40%, respectively. Increasing the proportion of NI 

cases in the data set improved the classification accuracy for NI and MJI cases; 

however, this increase came at the cost of misclassifying more of the MNI cases.  

 

Results of the sensitivity analysis for the SNN suggested that PC-1, PC-3 

and PC-4, representing SCS, ERI and FP were the most important input 

variables. These results were consistent with those of the USNN model, where 

SCS and ERI were found to be the most important variables. The next section 

provides a detailed discussion on the results of this research. 
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CHAPTER 5 

5. DISCUSSION AND CONCLUSIONS 

5.1 General Discussion 

Mastitis is the most costly disease for the dairy industry around the world. This 

disease is caused by minor and major bacterial pathogens. The main objectives of 

this research were: 

 

1. To identify the most informative milk parameters for the identification of 

minor and major bacterial pathogens;  

 

2. To develop and evaluate supervised and unsupervised neural network 

models for the detection of these pathogens in the early stages of the 

disease;  

 

4. Evaluate the impact of different proportions of infected to non-infected 

cases on the correct classification rate of the supervised neural network 

models as there are proportionately less infected cases in a herd compared 

to non-infected cases.  

 

To achieve the above objectives, a database was used that contained quarter 

based milk parameters and bacteriological examination data. 

 

To achieve the first objective of this research, correlation analysis, analysis 

of variance and multivariate parallel visualisation analysis were used. The results 

of these analyses are discussed in the following paragraphs. 

 

It is well known that SCC/SCS reflects the immune response of a cow to 

bacterial infections, which was also observed in this study. For example, SCS 

shows the highest increase as a response to minor infections compared to small 

changes in the other milk parameters (Table 3.6.3.1, Figures 3.6.3.1, 3.6.3.2, 
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3.6.3.3, 3.6.3.4, 3.6.4.1). The high correlation between SCS and bacteriological 

state observed in this study (Table 3.6.2.1) agrees with Berning and Shook 

(1992), although they found that SCS did not differentiate between the MNI and 

MJI cases.  In the current study, it was found that SCS can effectively 

discriminate between NI, MNI and MJI cases (Figures 3.6.3.1, 3.6.4.1, 3.6.4.2 

and 3.6.4.3; Table 3.6.3.1). 

 

Another useful milk parameter for discriminating between infected and 

non-infected cases was electrical resistance (ER) [inverse of electrical 

conductivity (EC)], and more specifically electrical resistance index (ERI).  The 

EC/ER is the reflection of ionic changes resulting from the damage caused by 

bacteria to the alveoli (Kitchen et al., 1980).  It was found that ERI was lowest 

for MJI cases, suggesting that tissue damage caused by major pathogens was 

noticeably higher compared to minor pathogens (Figures: 3.6.3.2, 3.6.4.1, 3.6.4.2 

& 3.6.4.3; Table: 3.6.3.1). The mean difference in the ERI values between the NI 

and MNI cases was very low, suggesting little damage of mammary tissues by 

the minor pathogens. This indicates that ERI has greater ability in discriminating 

glands infected with major pathogens from glands that are not infected or that 

have a minor pathogen infection. 

 

Mastitis-related changes in protein content are not conclusive as results 

reported in literature are either contradictory or at odds.  Mastitis may cause milk 

protein content to increase (Auldist, Coats, Rogers, & McDowell, 1995), 

decrease (Lee, Yu, Jeong, Back, & Yoon, 1991) or even stay unchanged  

(Rogers, Mitchell, & Bartley, 1989).  In the current study, it was found that there 

was no significant difference in the protein percentage (PP) of NI and MNI cases 

(Table: 3.6.3.1), which agrees with the findings of Rogers et al. (1989). 

However, PP was higher for MJI cases (Table: 3.6.3.1; Figures: 3.6.3.3, 3.6.4.2 

and 3.6.4.3), which agrees with Auldist et al. (1995).   
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In a similar manner, mastitis-related changes in fat percentage (FP) are also 

not conclusive. Mastitis causes changes in the milk fat content, but without a 

definitive trend, as it may increase (Mitchell, Rogers, Houlihan, Tucker, & 

Kitchen, 1986), decrease (Kitchen, 1981) or remain unchanged (Rogers et al., 

1989). In this study, no significant change in FP was observed between NI, MNI 

and MJI cases (Table: 3.6.3.1; Figures: 3.6.3.4, 3.6.4.1, 3.6.4.2, 3.6.4.3), which 

agrees with Rogers et al. (1989).  

 

To achieve the second objective of this research, unsupervised and 

supervised neural network models were developed. The USNN model classified 

the validation data set with an overall CCR of 97% (Table: 4.2.1). These results 

are superior to previous models developed by Heald et al. (2000), where the 

overall correct classification rate ranged from 57% to 71%.  The input variables 

and neural network learning paradigm used by Heald et al. (2000) were different 

to those used in the current study. They classified pathogens according to their 

mode of transmission (contagious, environmental & others). In the current study, 

cases were classified based on the response of the mammary gland to infection, 

which gave better results.  

 

In some instances the USNN model classed cases into a wrong cluster.  For 

example few NI cases were classed as MJI by the model probably because they 

had high SCS and low ERI values.  Similarly, some NI cases were also classed as 

MNI due to their relatively high SCS and low ERI values.  One reason for these 

results could be that these were either cases of early or late infections which were 

not detected during the bacteriological examinations. Another reason could be 

that the measurement devices failed to give correct readings for the milk 

parameters for these cases. In addition to the above two possible reasons, these 

few cows may have had inherently high SCS and low ERI values, making it 

difficult for the model to detect them correctly. 
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The overall CCR of the SNN models (SNN) ranged from 80-93%. The 

CCR of the SNN models was low compared to the USNN model developed in 

the current study. However, results of the current SNN modelling experiments 

were better than previous models developed by Heald et al. (2000), who used the 

SNN learning paradigm.  

 

Overall results of the sensitivity analysis of SNN models (Figures 4.3.1.2, 

4.3.2.2, 4.3.3.2 and 4.3.4.2) suggested that PC-1, and therefore, SCS and ERI 

were the most important input variables for discriminating between the three 

bacteriological states. The FP (through PC-3), days in milk and sire number had a 

moderate effect; while, PP (through PC-2) and lactation number had very low 

impact on the CCR of the SNN models.  

 

To achieve the third objective of this research, SNN models were developed 

using different proportions of infected to non-infected cases in the training 

datasets. This was done to observe the effect of not keeping to proportions of 

infected to non-infected cases as found in real data, which is small with a ratio of 

1:12. The SNN models were built using different proportions of infected and 

non-infected cases in the training data set. The CCR for the NI cases increased 

from 82% to 98%, as the proportion of infected to non-infected cases increased 

with ratios of 1:1, 1:2, 1:4 and 1:10, confirming that the CCR for NI cases 

increased when they were more prevalent in the database. These results also 

indicate that NI cases may be spread within a larger area in the input space 

compared to infected cases, as was found by Wang and Samarasinghe (2005).  

 

The CCR for the MNI cases decreased from 86% to 44%, as the proportion 

of NI cases increased in the database, demonstrating that the NI region can 

overlap with the MNI region when there is a higher prevalence of NI cases. 

Finally, the CCR for MJI cases increased marginally from 20% to 40% when the 

proportion of NI cases increased in the database in the ratios previously stated. 
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This marginal increase may be due to a better separation of this class as the NI 

cases increased demarcating major infection region better.  

 

The low CCR for the MJI category may be attributed to the low prevalence 

of this category in the dataset, rather than the capability of the neural network 

models. This point is supported by the high accuracy of the models for the minor 

infected category; especially when infected to non-infected ratios were lower (1:1 

and 1:2) most probably due to the higher prevalence of this category in this 

particular herd.  

 

Overall, CCR of infected cases decreased when the number of NI cases 

increased in the training dataset which agrees with the previous findings  

(Lacroix, Salehi, Yang, & Wade, 1997; Yang, Lacroix, & Wade, 1999). The 

current findings revealed that in classification of mastitis, the CCR of a neural 

network for NI category increases as the number of records in the training data 

set increases for that category. With more data available it may also be true for 

MNI and MJI cases as well. Future research may focus on using larger number of 

cases of each bacteriological state in the training data set to build more robust 

models. 
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5.2 Conclusions 

Based on the results of this research it is concluded that milk parameters 

associated with mastitis can be used to build robust ANN models for detecting 

NI, MNI and MJI quarters. The incorporation of such models in in-line milking 

systems may improve the efficiency and efficacy of detecting mastitis causing 

pathogens in milk before any clinical manifestations occur. This may form a 

reliable basis for managing and controlling mastitis at the farm level. 

 

The USNN model performed better compared to SNN in detecting the 

infection status of a quarter. The correct classification rate of the SNN for a 

particular category decreased as the proportion of cases for that category 

decreased in the training data set. Due to the low prevalence of MJI cases in the 

dataset, the results of the models for this category may be inconclusive as more 

data are needed to develop more robust models. 

 

In terms of variables suitable for detecting the infection status of a quarter, 

SCS and ERI were by far the most informative. The SCS was good for 

discriminating the three bacteriological stats, while ERI was a good discriminator 

for MJI.  Further research may focus on studying the inclusion of other milk 

parameters such as milk amyloid A and milk lactate, which may help optimise 

the discrimination between the three bacteriological states. 
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