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Abstract. This paper introduces a generalization of the matroid operation of
∆ − Y exchange. This new operation, segment-cosegment exchange, replaces
a coindependent set of k collinear points in a matroid by an independent set
of k points that are collinear in the dual of the resulting matroid. The main
theorem of the first half of the paper is that, for every field, or indeed partial
field, F, the class of matroids representable over F is closed under segment-
cosegment exchanges. It follows that, for all prime powers q, the set of excluded
minors for GF (q)–representability has at least 2q−4 members. In the second
half of the paper, the operation of segment-cosegment exchange is shown to
play a fundamental role in an excluded-minor result for k–regular matroids,
where such matroids generalize regular matroids and Whittle’s near-regular
matroids.

1. Introduction

The class of regular matroids is one of the best-known and most frequently stud-
ied classes of matroids. Moreover, this class plays a fundamental role within the
class of binary matroids. The corresponding subclass of the class of ternary ma-
troids is the class of near-regular matroids introduced by Whittle [28]. Consider
Q(α), the extension of the field Q by a transcendental α. A near-regular matroid is
one that is representable over Q(α) by a near-unimodular matrix, that is, a matrix
all of whose non-zero subdeterminants are members of {±αi(α−1)j : i, j ∈ Z}. An
important result of Whittle [29] shows that, just as the class of regular matroids
coincides with the class of matroids representable over all fields of size at least two,
the class of near-regular matroids coincides with the class of matroids representable
over all fields of size at least three. The importance of the classes of regular and
near-regular matroids motivated Semple [16] to introduce the following class. For
all non-negative integers k, a k–regular matroid is one that can be represented over
Q(α1, α2, . . . , αk), where α1, α2, . . . , αk are algebraically independent transcenden-
tals, by a k–unimodular matrix. The latter is a matrix for which every non-zero
subdeterminant is in the set Ak that consists of all products of integer powers of
differences of distinct members of {0, 1, α1, α2, . . . , αk}. Evidently, the classes of 0–
regular and 1–regular matroids coincide with the classes of regular and near-regular
matroids, respectively. Moreover, if k′ ≤ k, then the class of k′–regular matroids
is a subset of the class of k–regular matroids. A matroid is called ω–regular if it is
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k–regular for some k ≥ 0, and a matrix is ω–unimodular if it is k–unimodular for
some k ≥ 0.

It was noted above that, for k in {0, 1}, the set of k–regular matroids coincides
with the class of matroids representable over all fields with at least k + 2 elements.
Regrettably this result is not true for any k ≥ 2. Indeed, Semple [17] showed that
the matroid that is obtained by freely adding a point on a 2-point line of M(K4)
is representable over all fields of size at least four but is not k–regular for any k.
However, it is easy to see that, for all k, the class of k–regular matroids is contained
in the class of matroids representable over all fields of size at least k +2. Moreover,
it is hoped that, for all prime powers q, the class of (q − 2)–regular matroids will
play the same role within the class of GF (q)–representable matroids that the classes
of regular and near-regular matroids play within the classes of binary and ternary
matroids. To explain some of the grounds for this hope, we shall need the following
notion. A partial field P is a structure that behaves very much like a field except
that addition may be a partial operation. More precisely, Vertigan [27] has shown
that every partial field P can be obtained from a commutative ring R and a mul-
tiplicative group G of units of R for which −1 ∈ G. The partial field P associated
with the pair (G, R) has G∪{0} as its set of elements, and has the binary operations
of addition and multiplication restricted from R to G∪ {0}. Thus multiplication is
a total binary operation, but addition is a partial binary operation; that is, if a and
b are elements of G∪{0}, then their product ab is always in G∪{0}, but their sum
a + b need not be, in which case it is undefined. Partial fields were introduced in
[19] where it was shown that one can develop a theory of matroid representation for
them. Numerous properties of matroids representable over fields hold in the more
general setting of partial fields and a number of natural classes of matroids can be
characterized as classes of matroids representable over a fixed partial field. In par-
ticular, if M(P) is the class of matroids representable over the partial field P, then
M(P) is closed under the taking of duals, minors, direct sums, and 2–sums. Now
the set Ak defined in the last paragraph is a subgroup of the multiplicative group
of Q(α1, α2, . . . , αk), and −1 ∈ Ak, so there is a partial field Rk associated with
the pair (Ak,Q(α1, α2, . . . , αk)). Furthermore, the class of k–regular matroids is
precisely the class of matroids representable over Rk [16]. Semple and Whittle [19]
showed that, for all partial fields P, the matroid U2,3 ∈ M(P) if and only if M(P)
contains the class of regular matroids, while U2,4 ∈ M(P) if and only if M(P)
contains the class of near-regular matroids. One indication of the significance of
k–regular matroids was provided by Semple [17] when he generalized the last two
results by proving that U2,k+3 ∈ M(P) if and only if M(P) contains the class of
k–regular matroids.

Since the class of k–regular matroids is minor-closed, a natural problem is to
determine the set of excluded minors for this class. However, this problem seems
very difficult. Tutte [24] showed that the set of excluded minors for the class of
0–regular, that is, regular, matroids is {U2,4, F7, F

∗
7 }. Recently, Geelen [6] has

determined the set of excluded minors for the class of 1–regular matroids, that is,
near-regular matroids, but his argument is hard and is based on the new techniques
that were developed by Geelen, Gerards, and Kapoor [7] for finding the excluded
minors for the class of quaternary matroids. Indeed, it appears unrealistic with
currently available techniques to expect to find an explicit determination of all
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the excluded minors for the class of k–regular matroids. The problem that we shall
attack and, indeed, solve in this paper is to give an excluded-minor characterization
of the class of k–regular matroids within the class of ω–regular matroids. The results
of Tutte [24] and Geelen [6] noted above imply that an ω–regular matroid is 0–
regular if and only if it has no minor isomorphic to U2,4; and an ω–regular matroid
is 1–regular if and only if it has no minor isomorphic to U2,5 or U3,5. These two
results may suggest that, for arbitrary k, the set of ω–regular excluded minors for
the class of k–regular matroids consists only of uniform matroids. But this is not
true even for k = 2. What is true, however, is that the non-uniform matroids in
this set of excluded minors can be constructed from uniform matroids, indeed from
lines, in a very predictable way, which we shall describe next. This construction
seems both attractive and natural, and we think it will be of independent interest.

The operations of ∆ − Y and Y − ∆ exchange are of basic importance in graph
theory. For matroids, these operations are defined in terms of the generalized
parallel connection [4]. Let M1 and M2 be matroids such that M1|T = M2|T ,
where T = E(M1) ∩ E(M2). Let N = M1|T and suppose that T is a modular flat
of M1. The generalized parallel connection PN (M1, M2) of M1 and M2 across N is
the matroid on E(M1)∪E(M2) whose flats are those subsets X of E(M1)∪E(M2)
such that X ∩ E(M1) is a flat of M1, and X ∩ E(M2) is a flat of M2. In the case
when M1

∼= M(K4) and N is a triangle T of this matroid, Akkari and Oxley [1]
defined a ∆ − Y exchange on M across T to be the matroid that is obtained from
PN (M(K4), M2) by deleting T . Moreover, they proved that, for all fields F of size
at least three, the set of excluded minors for F–representability is closed under this
operation.

To motivate our generalization of ∆ − Y exchange, consider the following con-
struction. In PG(2,R), take a basis {b1, b2, b3} and a line L that is freely placed
relative to this basis. By modularity, for each i in {1, 2, 3}, the hyperplane of
PG(2,R) that is spanned by {b1, b2, b3}−{bi} meets L. Let ai be the point of inter-
section. We shall denote by Θ3 the restriction of PG(2,R) to {b1, b2, b3, a1, a2, a3}.
Clearly Θ3 is isomorphic to M(K4) and has {a1, a2, a3} as a modular line. To
generalize this construction, suppose that k ≥ 3 and let {b1, b2, . . . , bk} be a basis
B of PG(k−1,R) and let L be a line that is freely placed relative to B. As before,
modularity implies that, for each i, the hyperplane of PG(k−1,R) that is spanned
by {b1, b2, . . . , bk} − {bi} meets L, and we let ai be the point of intersection. Then
Θk will denote the restriction of PG(k−1,R) to {b1, b2, . . . , bk, a1, a2, . . . , ak}. Let
A = {a1, a2, . . . , ak}. By construction, each hyperplane of Θk meets the line A, so
this line is modular. It follows that if M is a matroid having a k–point line as a
restriction and the points of this line are labelled by the elements of A, then the
matroid PA(Θk, M) is well-defined. Hence so too is PA(Θk, M)\A. However, the
restriction of the dual of the last matroid to B need not be isomorphic to a k–
point line. The condition that one needs to ensure that [PA(Θk, M)\A]∗|B ∼= U2,k

is precisely that A is coindependent in M . When this extra condition holds, we
define ∆A(M) to be PA(Θk, M)\A. Moreover, this extra condition is needed in
the following theorem. This theorem, the main result of the first half of the paper,
generalizes the result of Akkari and Oxley noted above.
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Theorem 1.1. Let P be a partial field and M be an excluded minor for the class
M(P) of matroids representable over P. Let A be a subset of E(M) such that M |A
is isomorphic to a rank–2 uniform matroid and A is coindependent in M . Then
∆A(M) is an excluded minor for M(P).

Since every partial field is a field, we obtain, as a straightforward consequence
of this theorem, the following exponential lower bound on the number of excluded
minors for representability over GF (q).

Theorem 1.2. For all prime powers q, the set of excluded minors for the class of
GF (q)–representable matroids has at least 2q−4 distinct members.

In the second half of the paper, we solve the problem of determining precisely
which ω–regular matroids are k–regular. We shall denote by Un the class of all
n–element uniform matroids of rank and corank at least three. Note that Un is
empty when n < 6. The operation ∆A is called segment-cosegment exchange and
the dual operation ∇A is called cosegment-segment exchange. The latter is defined
as follows. Let M be a matroid having an independent set A such that M∗|A is
uniform of rank two. Then ∇A(M) = [PA(Θk, M∗)\A]∗.

Theorem 1.3. Let k be a non-negative integer and M be an ω–regular matroid.
Then M is k–regular if and only if it has no minor isomorphic to a member of Uk+4

or any matroid that can be obtained from U2,k+4 by a sequence of segment-cosegment
and cosegment-segment exchanges.

Unique representability results are very powerful tools in matroid representation
theory. Indeed, it is no coincidence that the only finite fields GF (q) for which
the sets of excluded minors have been completely determined are those over which
every 3–connected GF (q)–representable matroid is uniquely representable [2, 5, 7,
10, 21, 24]. Theorem 1.3 is the main tool in the proof of the following unique
representability result for k–regular matroids.

Theorem 1.4. Let k ≥ 0 and let M be a 3–connected k–regular matroid. Then all
ω–unimodular representations of M are equivalent.

The matroid terminology in this paper will follow Oxley [15]. The plan of the
paper is as follows. In Section 2, the operation of segment-cosegment exchange is
more formally defined and numerous properties of this and its dual operation are
obtained. Section 3 is devoted to the proof of Theorem 1.1. In Section 4, we consider
the class Λm of matroids that can be obtained from an m–point line by a sequence
of segment-cosegment and cosegment-segment exchanges. We introduce a way of
describing each such matroid via a vertex-labelled tree, and develop properties of
the members of Λm by using these “del-con” trees. Theorems 1.3 and 1.4 are proved
in Section 5. Finally, Section 6 answers a question of Oxley [14] by showing that the
union of the classes Λm for all m ≥ 4 is precisely the set of 3–connected matroids
for which every 3-connected minor of rank and corank three is isomorphic to P6,
the matroid that is obtained from a 6-point line by a single ∆ − Y exchange.
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2. Generalized ∆ − Y Exchange

In this section, we give a more formal definition of the operation of segment-
cosegment exchange and we establish a number of properties of this operation and
its dual. We begin by discussing the matroid Θk that plays the same role in the
generalized operation to that played by M(K4) in the ∆ − Y exchange.

For k ≥ 4, let α1, α2, . . . , αk−3 be algebraically independent transcendentals over
Q, and let Θk be the matroid that is represented over Q(α1, α2, . . . , αk−3) by the
matrix [Ik|Dk], where Dk is the matrix




b1 b2 a3 a4 a5 · · · ak

a1 0 1 1 1 1 · · · 1
a2 −1 0 1 α1 α2 · · · αk−3

b3 1 1 0 0 0 0
b4 1 α1 0 0 0 · · · 0
b5 1 α2 0 0 0 0
...

...
...

...
. . .

...
bk 1 αk−3 0 0 0 · · · 0



.

Let Θ2 and Θ3 be the matroids represented over the rationals by the matrices
[I2|D2] and [I3|D3], respectively, where D2 and D3 are the matrices

[ b1 b2

a1 0 1
a2 −1 0

]
and




b1 b2 a3

a1 0 1 1
a2 −1 0 1
b3 1 1 0


.

Thus Θ2 is isomorphic to the matroid obtained from U2,2 by adding exactly one
element in parallel with each member of the ground set of U2,2, and Θ3 is isomorphic
to M(K4). Evidently, for all k ≥ 2, the ground set of Θk equals A ∪ B where
A = {a1, a2, . . . , ak} and B = {b1, b2, . . . , bk}.

The first lemma is easily deduced by looking at [−DT
k |Ik], a canonical represen-

tation of Θ∗
k, and scaling appropriate rows and columns.

Lemma 2.1. For all k ≥ 2, the matroid Θk is self-dual. In particular, Θ∗
k
∼= Θk

under the map that interchanges ai and bi for all i.

In order to describe the structural properties of Θk, it will be helpful to list its
circuits.

Lemma 2.2. For all k ≥ 2, the collection of circuits of Θk consists of the following
sets:

(i) all 3-element subsets of A;
(ii) all sets of the form (B − bi) ∪ ai for which i ∈ {1, 2, . . . , k}; and



6 JAMES OXLEY, CHARLES SEMPLE, AND DIRK VERTIGAN

(iii) all sets of the form (B − bu) ∪ {as, at} for which s, t, and u are distinct
elements of {1, 2, . . . , k}.

Proof. The lemma is easily checked when k = 2. Now assume that k ≥ 3. We
show next that if σ is the permutation (2, 3, . . . , k, 1) of {1, 2, . . . , k}, then the map
that, for all i takes ai and bi to aσ(i) and bσ(i), respectively, is an automorphism
of Θk. To see this, begin with the matrix [Ik|Dk] as labelled above. Pivot on the
(1, 3)-entry of Dk and then on the (3, 1)-entry of the resulting matrix, where each
pivot includes the natural column interchange to return the matrix to standard
form [Ik|X ]. Next interchange the first two rows of the current matrix, and then
interchange column 1 with column 2, and column k + 1 with column k + 2. After
rescaling rows and columns, the resulting matrix is [Ik|D′

k] where D′
k is




b2 b3 a4 a5 · · · ak a1

a2 0 1 1 1 · · · 1 1
a3 −1 0 1 1−α1

1−α2
· · · 1−α1

1−αk−3
1 − α1

b4 1 1 0 0 · · · 0 0
b5 1 1−α1

1−α2
0 0 · · · 0 0

...
...

...
...

...
. . .

...
...

bk 1 1−α1
1−αk−3

0 0 · · · 0 0
b1 1 1 − α1 0 0 · · · 0 0




.

Now an immediate consequence of [16, Theorem 7] is that there is an automor-
phism ϕ of Q(α1, α2, . . . , αk−3) such that, for all i ∈ {1, 2, . . . , k − 4}, ϕ(αi) =
1−α1

1−αi+1
and ϕ(αk−3) = 1 − α1. Thus [Ik|D′

k] can also be obtained from [Ik|Dk] by
applying an automorphism of Q(α1, α2, . . . , αk−3) to each of its entries. It follows
that Θk does indeed have the permutation (b2, b3, . . . , bk, b1)(a2, a3, . . . , ak, a1) as
an automorphism.

It is clear that every 3-element subset of A is a circuit of Θk. Hence, by
Lemma 2.1, every 3-element subset of B is a cocircuit of Θk. It follows, by orthog-
onality, that every circuit of Θk that meets B contains at least |B| − 1 elements of
B. From considering the matrix [Ik|Dk], we deduce that (B− b1)∪a1 is the unique
k-element circuit of Θk containing B − b1. Thus, by the symmetry noted above,
(B − bi) ∪ ai is a circuit of Θk for all i.

All remaining circuits of Θk must have k + 1 elements and must contain exactly
k−1 elements of B. Thus it suffices to determine all such circuits containing B−b1

and avoiding b1. But, for every such circuit C, the set C − {b3, b4, . . . , bk} is a
circuit of Θk/{b3, b4, . . . , bk}\b1 containing b2. The last matroid is obtained from
a k-point line on A by adding b2 in parallel with a1. To see this, observe what
happens to [Ik|Dk] when, for all j ∈ {3, 4, . . . , k}, the j-th column and j-th row are
deleted. The 3-element circuits of Θk/{b3, b4, . . . , bk}\b1 containing b2 consist of
all sets of the form {b2, as, at} where s and t are distinct elements of {2, 3, . . . , k}.
Thus, for all such s and t, the set {b2, as, at} ∪ {b3, b4, . . . , bk} contains a circuit of
Θk. Since we have already identified all non-spanning circuits of Θk and none of
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these is contained in the last set, we deduce that the last set itself is a circuit of
Θk, and the lemma follows. �

The following is an immediate consequence of the last lemma.

Corollary 2.3. For all k ≥ 2 and all permutations σ of {1, 2, . . . , k}, the map that,
for all i, takes ai and bi to aσ(i) and bσ(i), respectively, is an automorphism of Θk.

On combining Lemmas 2.1 and 2.2, we see that, geometrically, Θk can be ob-
tained from a free matroid Uk,k by adding a point to each hyperplane of the latter
so that each of these hyperplanes becomes a circuit in the resulting matroid and
so that the restriction of Θk to the set of added points is a k–point line. This is
essentially the way that we described Θk in the introduction, and it is not difficult
to see that these different descriptions of Θk are equivalent.

The operation of generalized parallel connection of two matroids relies on the
presence of a modular flat in one of the matroids. Recall that a flat F of a matroid
M is modular if r(F ) + r(F ′) = r(F ∪ F ′) + r(F ∩ F ′) for all flats F ′ of M .

Lemma 2.4. For all k ≥ 2, the set A is a rank–2 modular flat of Θk, and B is a
basis of Θk.

Proof. It is clear from Lemma 2.2 that A is a rank–2 flat and B is a basis of Θk.
Now A is a modular flat of Θk if and only if r(A) + r(F ) = r(Θk) for all flats F
avoiding A such that F∪A spans Θk [4, Theorem 3.3] (see also [15, Proposition 6.9.2
(iii)]). For every such flat, r(F ) ≥ r(Θk) − 2. If r(F ) = r(Θk) − 2, then, certainly,
r(A) + r(F ) = r(Θk). Moreover, by Lemmas 2.1 and 2.2, every hyperplane of Θk

meets A. We deduce that A is indeed a modular flat of Θk. �

Now let M be a matroid such that M has a U2,k–restriction. Label the ele-
ments of this restriction a1, a2, . . . , ak. As before, let A = {a1, a2, . . . , ak}. By
Lemma 2.4, A is a modular line of Θk. Thus the generalized parallel connection
PA(Θk, M) of Θk and M across A exists. Hence the matroid PA(Θk, M)\A is cer-
tainly defined. If |A| = 2, then PA(Θk, M)\A is obtained from M by adding an
element in parallel with each of the elements of A and then deleting the elements
of A. Thus PA(Θ2, M)\A ∼= M . If |A| = 3, then, since Θ3

∼= M(K4), the matroid
PA(Θ3, M)\A is exactly the matroid that is obtained by performing a ∆ − Y ex-
change on M at A. While such a ∆−Y exchange is defined as long as A is a triangle
of M , the set B will be a triad in PA(Θ3, M)\A only if A is coindependent in M .
Indeed, the following extension of this observation is straightforward to prove.

Lemma 2.5. For all k ≥ 2, the restriction of (PA(Θk, M)\A)∗ to B is isomorphic
to U2,k if and only if A is coindependent in M .

Since we should like an operation whose inverse is the dual of the original op-
eration, in defining this operation we shall impose the additional condition that
A is coindependent in M . Thus let M be a matroid having a U2,k restriction on
the set A and suppose that A is coindependent in M . We recall that ∆A(M) is
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defined to be PA(Θk, M)\A. We call this operation a ∆A–exchange or a segment-
cosegment exchange on A. As |A| = k, such an operation will also be referred to as
a ∆k–exchange or a segment-cosegment exchange of size k. Thus, for example, the
matroid U4,6 can be obtained from U2,6 by a segment-cosegment exchange of size
4.

In defining the dual operation of segment-cosegment exchange, we mimic the
definition of Y −∆ exchange in terms of ∆− Y exchange or, indeed, the definition
of contraction in terms of deletion. Let M be a matroid for which M∗ has a U2,k–
restriction on the set A. If A is independent in M , then ∇A(M) is defined to be
(∆A(M∗))∗, that is, [PA(Θk, M∗)\A]∗. This operation is called a ∇A–exchange or
a cosegment-segment exchange on A. As |A| = k, the operation will also be referred
to as a ∇k–exchange or a cosegment-segment exchange of size k.

Lemma 2.6. If |A| = k, then

r(∆A(M)) = r(M) + k − 2.

Proof. Now
r(PA(Θk, M)) = r(Θk) + r(M) − r(A)

[4, Proposition 5.5] (see also [15, p. 418]). Since A is coindependent in M , it is
coindependent in PA(Θk, M). Thus r(PA(Θk, M)) = r(∆A(M)) = k+r(M)−2. �

The next lemma determines the bases of ∆A(M) in terms of the bases for M .
Recall that E(Θk) − A = B, and B is a basis for Θk.

Lemma 2.7. A subset D of E(∆A(M)) is a basis of ∆A(M) if and only if D
satisfies one of the following:

(i) D contains B, and D − B is a basis for M/A;
(ii) D ∩ B = B − bi for some i in {1, 2, . . . , k}, and D − (B − bi) is a basis of

M/ai\(A − ai); or
(iii) D ∩ B = B − {bi, bj} for some distinct elements i and j of {1, 2, . . . , k},

and D − (B − {bi, bj}) is a basis of M\A.

Proof. By Lemma 2.6, r(∆A(M)) = r(M) + k − 2, where k = |A|, and therefore
every basis of ∆A(M) must contain at least k − 2 elements of B. First assume
that D contains B. Then D is a basis of ∆A(M) if and only if D − B is a basis
of ∆A(M)/B. Since B spans Θk in PA(Θk, M), it is not difficult to show that
∆A(M)/B = M/A. Therefore D is a basis of ∆A(M) containing B if and only if
D − B is a basis of M/A.

Now assume that D contains exactly k − 1 elements of B. Let D ∩ B = B − bi,
where i ∈ {1, 2, . . . , k}. Then D is a basis for ∆A(M) if and only if D− (B−bi) is a
basis for ∆A(M)/(B−bi)\bi. By Lemma 2.2, B−bi spans a unique element ai of A
in PA(Θk, M). Therefore ∆A(M)/(B − bi)\bi = M/ai\(A− ai). Thus D is a basis
of ∆A(M) containing B− bi if and only if D− (B− bi) is a basis of M/ai\(A− ai).

Lastly, assume that D contains exactly k − 2 elements of B. Let D ∩ B =
B−{bi, bj}, where i and j are distinct elements of {1, 2, . . . , k}. Then D is a basis of
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∆A(M) if and only if D− (B−{bi, bj}) is a basis of ∆A(M)/(B−{bi, bj})\{bi, bj}.
From considering the representation [Ik|Dk] of Θk and using Corollary 2.3, we
deduce that Θk/(B − {bi, bj}) is equal to the matroid that is obtained from Θk|A
by placing bi and bj in parallel with aj and ai, respectively. Therefore, by [15,
Proposition 12.4.14],

PA(Θk, M)/(B − {bi, bj}) = PA(Θk/(B − {bi, bj}), M).

Thus ∆A(M)/(B − {bi, bj})\{bi, bj} = M\A. Hence D is a basis of ∆A(M) con-
taining B − {bi, bj} if and only if D − (B − {bi, bj}) is a basis of M\A. �

A natural way of preserving the ground set of M in ∆A(M) is by relabelling bi

with ai, for all i in {1, 2, . . . , k}. For the rest of the paper, we adopt this convention
to preserve the ground set of a matroid under both ∆k– and ∇k–exchanges.

Lemma 2.8. (i) If ∆A(M) is defined, then ∆A(M)\A = M\A and ∆A(M)/A =
M/A. Moreover, ∆A(M)\ai/(A − ai) = M/ai\(A − ai) for all ai in A.

(ii) If ∇A(M) is defined, then ∇A(M)\A = M\A and ∇A(M)/A = M/A.
Moreover, ∇A(M)/ai\(A − ai) = M\ai/(A − ai) for all ai in A.

Proof. It is clear that (ii) follows from (i) by duality. The first two assertions of (i)
are straightforward to check. Moreover, the last follows from (ii) of the previous
lemma. �

The next lemma simply restates Lemma 2.7 under the convention that M and
∆A(M) have the same ground sets.

Lemma 2.9. Let ∆A(M) be the matroid with ground set E(M) that is obtained
from M by a ∆A–exchange. Then a subset of E(M) is a basis of ∆A(M) if and
only if it is a member of one of the following sets:

(i) {A ∪ B′ : B′ is a basis of M/A};
(ii) {(A − ai) ∪ B′′ : 1 ≤ i ≤ k and B′′ is a basis of M/ai\(A − ai)}; or
(iii) {(A − {ai, aj}) ∪ B′′′ : 1 ≤ i < j ≤ k and B′′′ is a basis of M\A}.

We shall classify each base of ∆A(M) as being of type (i), (ii), or (iii) depending
on which of the three sets in the last lemma contains the base. The remaining
results in this section not only show some of the attractive properties of ∆k– and
∇k–exchanges but are also needed for the proofs of the main theorems of the paper.
The proofs of these results make frequent use of Lemma 2.9. In particular, the first
such result follows straightforwardly from that lemma, and its proof is omitted.

Lemma 2.10. Let A be a coindependent set in a matroid M such that every 3-
element subset of A is a triangle.

(i) If X is a subset of E(M) avoiding A, then e is in the closure of X in M if
and only if e is in the closure of X in ∆A(M).

(ii) If {e, f} is a cocircuit of M , then {e, f} is a cocircuit of ∆A(M). Con-
versely, if {e, f} is a cocircuit of ∆A(M) avoiding A, then {e, f} is a co-
circuit of M .
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Lemma 2.11. Let A be a coindependent set in a matroid M such that every 3-
element subset of A is a triangle. Then ∇A(∆A(M)) is well-defined and

∇A(∆A(M)) = M.

Proof. Lemma 2.9 implies that A is independent in ∆A(M). Moreover, every 3–
element subset of A is a minimal set meeting every basis of ∆A(M) and hence is a
triad of ∆A(M). Therefore ∇A(∆A(M)) is well-defined. Now, by definition,

∇A(∆A(M)) = [∆A[(∆A(M))∗]]∗.

To prove the rest of the lemma, we shall show that [∆A[(∆A(M))∗]]∗ and M have
the same sets of bases. It follows from Lemma 2.9 that a subset of E(M) is a basis
of [∆A(M)]∗ if and only if it is a member of one of the following sets:

(i)′ {E(M\A) − B′ : B′ is a basis of M/A};
(ii)′ {(E(M\A) − B′′) ∪ ai : 1 ≤ i ≤ k and B′′ is a basis of M/ai\(A − ai)}; or
(iii)′ {(E(M\A) − B′′′) ∪ {ai, aj} : 1 ≤ i < j ≤ k and B′′′ is a basis of M\A}.

Now consider the bases of ∆A[(∆A(M))∗]. By Lemma 2.9, these bases are pre-
cisely the members of the following sets:

(i)′′ {A ∪ X ′ : X ′ is a basis of (∆A(M))∗/A};
(ii)′′ {(A − ai) ∪ X ′′ : 1 ≤ i ≤ k and X ′′ is a basis of (∆A(M))∗/ai\(A − ai)};

and
(iii)′′ {(A − {ai, aj}) ∪ X ′′′ : 1 ≤ i < j ≤ k and X ′′′ is a basis of (∆A(M))∗\A}.

Now X ′ is a basis of (∆A(M))∗/A if and only if X ′ is a basis of [∆A(M)\A]∗.
The latter holds if and only if E(M\A) − X ′ is a basis of ∆A(M)\A, and, by
Lemma 2.8,this holds if and only if E(M\A) − X ′ is a basis of M\A. Similarly,
using Lemma 2.8 again, we obtain that X ′′ is a basis of (∆A(M))∗/ai\(A − ai) if
and only if E(M\A) − X ′′ is a basis of M/ai\(A − ai). Finally, X ′′′ is a basis of
(∆A(M))∗\A if and only if E(M\A) − X ′′′ is a basis of M/A. Thus a subset of
E(M) is a basis of [∆A[(∆A(M))∗]]∗ if and only if it is a member of one of the
following sets:

(i)′′′ {E(M\A) − X ′ : E(M\A) − X ′ is a basis of M\A};
(ii)′′′ {(E(M\A) − X ′′) ∪ ai : E(M\A) − X ′′ is a basis of M/ai\(A − ai) and

1 ≤ i ≤ k};
(iii)′′′ {(E(M\A) − X ′′′) ∪ {ai, aj} : E(M\A) − X ′′′ is a basis of M/A and

1 ≤ i < j ≤ k}.

Since the union of the sets (i)′′′-(iii)′′′ is the collection of bases of M , the lemma
is proved. �

The dual of the last result is the following.

Corollary 2.12. Let A be an independent set in a matroid M such that every
3-element subset of A is a triad. Then ∆A(∇A(M)) = M is well-defined and

∆A(∇A(M)) = M.
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In the definition of a segment-cosegment exchange on a set A of M , we have
insisted that A must be a coindependent set of M . As we have seen, this ensures
that a cosegment-segment exchange can be performed on ∆A(M) to recover M .
From the perspective of the excluded-minor characterizations that will be discussed
later in this paper, there is another good reason for imposing this condition. As
we shall show, if we perform a segment-cosegment exchange on a matroid M that
is an excluded minor for representability over a partial field P, then we will obtain
another excluded minor for the class of P–representable matroids. However, if A is
not coindependent in M , then there is no guarantee that PA(Θk, M)\A is such an
excluded minor. For example, if |A| = 3, then PA(Θ3, U2,4)\A ∼= U3,4. However,
although U2,4 is an excluded minor for the class of binary matroids, U3,4 is not.

Recall that, for a ∆k–exchange to be defined, k ≥ 2.

Lemma 2.13. Suppose that ∆A(M) is defined. If x ∈ A and |A| = k ≥ 3, then
∆A−x(M\x) is also defined and

∆A(M)/x = ∆A−x(M\x).

Proof. By relabelling if necessary, we may assume that x = a1. If D is a basis
of ∆A(M)/a1, then D ∪ a1 is a basis of ∆A(M). Therefore, by Lemma 2.9, the
collections of type (i)-(iii) bases of ∆A(M)/a1 are

(i) {(A − a1) ∪ X ′ : X ′ is a basis of M/A};
(ii) {(A−{a1, ai})∪X ′′ : 2 ≤ i ≤ k and X ′′ is a basis of M/ai\(A − ai)}; and
(iii) {(A − {a1, ai, aj}) ∪ X ′′′ : 2 ≤ i < j ≤ k and X ′′′ is a basis of M\A}.

Now ∆A−a1(M\a1) is easily seen to be defined. By Lemma 2.9 again, the col-
lections of type (i)-(iii) bases of ∆A−a1(M\a1) are

(i) {(A − a1) ∪ Y ′ : Y ′ is a basis of M\a1/(A − a1)};
(ii) {(A−{a1, ai})∪Y ′′ : 2 ≤ i ≤ k and Y ′′ is a basis of M\a1/ai\(A − {a1, ai})};

and
(iii) {(A−{a1, ai, aj})∪Y ′′′ : 2 ≤ i < j ≤ k and Y ′′′ is a basis of M\a1\(A − a1)}.

Since |A| ≥ 3, the element a1 is a loop of M/(A−a1). Hence M\a1/(A−a1) = M/A.
Furthermore, M\a1/ai\(A−{a1, ai}) = M/ai\(A−ai) and M\a1\(A−a1) = M\A.
Hence the collection of bases of ∆A(M)/a1 is equal to the collection of bases of
∆A−a1(M\a1), and the lemma follows. �

Corollary 2.14. Suppose that ∇A(M) is defined. If x ∈ A and |A| ≥ 3, then
∇A−x(M/x) is also defined and

∇A(M)\x = ∇A−x(M/x).

Lemma 2.15. Suppose x ∈ clM (A) − A and let a be an arbitrary element of the
k–element set A. Then ∆A(M)/x equals the 2-sum, with basepoint p, of a copy
of Uk−1,k+1 with ground set A ∪ p and the matroid obtained from M/x\(A − a) by
relabelling a as p.
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Proof. Clearly ∆A(M)/x = PA(Θk, M)\A/x. Now let Θ′
k = PA(Θk, M)|(E(Θk) ∪

x). As A is a modular line of Θk, and x lies in the closure of this line in M , it
follows that A ∪ x is a modular line of Θ′

k. Thus PA(Θk, M) = PA∪x(Θ′
k, M), so

PA(Θk, M)/x = PA∪x(Θ′
k, M)/x. Moreover, by [4, Proposition 5.11], the last ma-

troid equals P[M|(A∪x)]/x(Θ′
k/x, M/x). But M |(A∪x) ∼= U2,k+1, so [M |(A∪x)]/x ∼=

U1,k. It follows, since a ∈ A, that PA(Θk, M)/x\(A− a) is the parallel connection,
with basepoint a, of Θ′

k/x\(A − a) and M/x\(A − a). Thus PA(Θk, M)/x\A is
the 2-sum of the last two matroids. When we recall the ground-set relabelling
that is done in forming ∆A(M), we obtain the lemma provided we can show that
Θ′

k/x\(A − a) ∼= Uk−1,k+1. To establish this isomorphism, it suffices to show that
Θ′

k/x\(A − a) has no non-spanning circuits.

Suppose that Θ′
k/x\(A− a) has a non-spanning circuit C. Then either (i) C ∪ x

is a non-spanning circuit of Θ′
k\(A − a), or (ii) C is a circuit of Θ′

k\(A − a)\x of
size at most k − 1. But Θ′

k\(A − a)\x = Θk\(A − a) and the last matroid has no
circuits of size less than k. Hence (ii) cannot occur. Suppose that (i) occurs. Then,
since every hyperplane of Θk that is spanned by a proper subset of B meets A in
exactly one element, C must contain a. It follows that C spans A in Θk, so |C| = k;
a contradiction. �

Both parts of the next lemma can be proved by comparing collections of bases
as above. We omit the straightforward details.

Lemma 2.16. Suppose that ∆A(M) is defined.

(i) If x ∈ E(M)−A and A is coindependent in M\x, then ∆A(M\x) is defined
and

∆A(M)\x = ∆A(M\x).
(ii) If x ∈ E(M) − cl(A), then ∆A(M/x) is defined and

∆A(M)/x = ∆A(M/x).

The next result is a useful consequence of the last two lemmas.

Corollary 2.17. Suppose that x ∈ E(M) − A, |E(M) − A| ≥ 3, and |A| ≥ 3.

(i) Suppose that ∆A(M) is defined.
(a) If M\x is 3–connected, then ∆A(M\x) is defined and

∆A(M)\x = ∆A(M\x).

(b) If M/x is 3–connected, then ∆A(M/x) is defined and

∆A(M)/x = ∆A(M/x).

(ii) Suppose that ∇A(M) is defined.
(a) If M\x is 3–connected, then ∇A(M\x) is defined and

∇A(M\x) = ∇A(M)\x.

(b) If M/x is 3–connected, then ∇A(M/x) is defined and

∇A(M/x) = ∇A(M)/x.
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Proof. By duality, it suffices to prove (i). Clearly (a) holds by Lemma 2.16(i)
unless A is not coindependent in M\x. But, in the exceptional case, since A is a
coindependent rank–2 set in M , it follows that {A, E(M)−(A∪x)} is a 2–separation
of M\x; a contradiction. Part (b) is an immediate consequence of Lemma 2.16(ii)
for, if x ∈ cl(A)−A, then M/x is not 3–connected since it has A as a parallel class
but has at least four elements. �

Lemma 2.18. Let M be a matroid, and S and T be disjoint subsets of E(M) such
that |S| ≥ 2 and |T | ≥ 2. If M |S ∼= U2,|S| and M |T ∼= U2,|T |, and both S and T are
coindependent in M , then

∆S(∆T (M)) = ∆T (∆S(M)).

Proof. Since T is coindependent in M , there is a basis of M avoiding T . It follows,
by Lemma 2.9, that ∆S(M) has a basis avoiding T , so T is coindependent in
∆S(M). Moreover, ∆S(M)|T = M |T . Hence ∆T (∆S(M)) is well-defined and,
similarly, so is ∆S(∆T (M)). We now establish the equality of these two matroids.
Using the fact that a set is a flat of a generalized parallel connection of two matroids
if and only if its intersection with each of the matroids is a flat in that matroid [15,
Proposition 12.4.13], it is routine to deduce that

PS(Θ|S|, PT (Θ|T |, M)) = PT (Θ|T |, PS(Θ|S|, M)).

As S and T are disjoint, this implies that

[PS(Θ|S|, PT (Θ|T |, M))\T ]\S = [PT (Θ|T |, PS(Θ|S|, M))\S]\T.

Therefore, by a result of Brylawski [4, Proposition 5.11] (see also [15, Proposi-
tion 12.4.14]),

PS(Θ|S|, PT (Θ|T |, M)\T )\S = PT (Θ|T |, PS(Θ|S|, M)\S)\T,

which in turn implies that

PS(Θ|S|, ∆T (M))\S = PT (Θ|T |, ∆S(M))\T.

Hence

∆S(∆T (M)) = ∆T (∆S(M))

as required. �

Corollary 2.19. Let M be a matroid, and S and T be disjoint subsets of E(M)
such that |S| ≥ 2 and |T | ≥ 2.

(i) If M∗|S ∼= U2,|S| and M∗|T ∼= U2,|T |, and both S and T are independent in
M , then

∇S(∇T (M)) = ∇T (∇S(M)).

(ii) If M∗|S ∼= U2,|S| and S is independent in M , and M |T ∼= U2,|T | and T is
coindependent in M , then

∇S(∆T (M)) = ∆T (∇S(M)).
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Proof. Part (i) follows without difficulty from the last lemma by using duality.
Consider (ii). By Lemma 2.11,

∇S(∆T (M)) = ∇S [∆T [∆S(∇S(M))]],

= ∇S [∆S [∆T (∇S(M))]], by Lemma 2.18,

= ∆T (∇S(M)), as required.

�

Two elements x and x′ are clones in a matroid M if the map that fixes every
element of E(M) − {x, x′}, but interchanges x and x′, is an automorphism of M .
Thus, up to labelling, two such elements are indistinguishable in M . The study
of clones was initiated in [8, Section 4]. A straightforward consequence of the
definition of clones is that if x and x′ are clones of M , and N is a minor of M
containing {x, x′}, then x and x′ are clones in N . We use this property in the next
result.

Lemma 2.20. Let x and x′ be clones in a matroid M . If A ∩ {x, x′} is empty or
A ⊇ {x, x′}, then x and x′ are clones in ∆A(M). Moreover, if {x, x′} is independent
in M , it is independent in ∆A(M), and if {x, x′} is coindependent in M , it is
coindependent in ∆A(M).

Proof. The lemma is straightforward if A ⊇ {x, x′} and we omit the details. Now
assume that A ∩ {x, x′} is empty. First suppose that {x, x′} is independent in
M . Since A is coindependent in M , there is a subset of E(M) − A that contains
{x, x′} and is a basis of M . Therefore, by Lemma 2.9, there is a basis of type (iii)
of ∆A(M) containing {x, x′}, so {x, x′} is independent in ∆A(M). Now suppose
{x, x′} is coindependent in M . Then E(M)− {x, x′} spans M and therefore spans
∆A(M). Hence {x, x′} is coindependent in ∆A(M).

We show next that x and x′ are clones in ∆A(M). Let B(∆A(M)) denote the col-
lection of bases of ∆A(M) and let B′(∆A(M)) be the set obtained from B(∆A(M))
by interchanging the elements x and x′, and fixing every other element of E(M).
By the definition of clones, it suffices to show that B(∆A(M)) = B′(∆A(M)). By
Lemma 2.9, the collection of bases of ∆A(M) consists of the union, over all subsets
A′ of A having size at least |A|−2, of the collection BA′ of bases that meet A in A′.
But each such BA′ is obtained by adjoining A′ to every basis of some fixed minor
MA′ of M , where MA′ has ground set E(M)−A and depends only on A′. Therefore,
since x and x′ are clones in each MA′ , it follows that B(∆A(M)) = B′(∆A(M)), as
desired. �

The dual of the last lemma is as follows.

Corollary 2.21. Let x and x′ be clones in a matroid M . If A∩{x, x′} is empty or
A ⊇ {x, x′}, then x and x′ are clones in ∇A(M). Moreover, if {x, x′} is independent
or coindependent in M , then it is independent or coindependent, respectively, in
∇A(M).
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3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. This proof will require some more prelim-
inaries. These results are stated in the context of partial fields, which were defined
in the introduction. The first two propositions contain elementary properties of
determinants that generalize to partial fields.

Proposition 3.1. [19, Proposition 3.1] Let X be a square matrix with entries in a
partial field P.

(i) If Y is obtained from X by interchanging a pair of rows or columns, then
det(Y ) is defined if and only if det(X) is defined. Moreover, when det(X)
is defined, det(Y ) = −det(X).

(ii) If Y is obtained from X by multiplying each entry of a row or a column by
a non-zero element q of P, then det(Y ) is defined if and only if det(X) is
defined. Moreover, when det(X) is defined, det(Y ) = qdet(X).

(iii) If det(X) is defined and Y is obtained from X by adding two rows or two
columns whose sum is defined, then det(Y ) is defined and det(Y ) = det(X).

Proposition 3.2. [19, Proposition 3.2] Let X be a square matrix (xij) with entries
in a partial field P. Let Xij denote the submatrix obtained by deleting row i and
column j from X.

(i) If X has a row or a column of zeros, then det(X) = 0.
(ii) If xij is the only non-zero entry in its row or column, then det(X) is de-

fined if and only if det(Xij) is defined. Moreover, when det(X) is defined,
det(X) = (−1)i+jxijdet(Xij).

Recall that a matrix over Q(α1, α2, . . . , αk) is k–unimodular if all its non-zero
subdeterminants are products of positive and negative powers of differences of dis-
tinct elements of {0, 1, α1, α2, . . . , αk}, that is, they are members of the set

Ak = {±
k∏

i=1

αli
i

k∏
i=1

(αi − 1)mi

∏
1≤i<j≤k

(αi − αj)ni,j : li, mi, ni,j ∈ Z}.

A k–regular matroid is one that can be represented by a k–unimodular matrix. In
particular, a 0–regular matroid is just a regular matroid and a 1–regular matroid
is exactly a near-regular matroid [28, 29].

The next lemma generalizes [16, Proposition 4] to partial fields. Moreover, the
proof of [16, Proposition 4] will work for this generalization by replacing the field
“F” with the partial field“P”.

Lemma 3.3. Let P be a partial field. If there are k distinct elements a1, a2, . . . , ak

in P − {0, 1} such that, for all distinct i and j in {1, 2, . . . , k}, both ai − 1 and
ai − aj are in P, then the class of P–representable matroids contains the class of
k–regular matroids.

Evidently both Θ2 and Θ3 are regular matroids.

Lemma 3.4. Θk is (k − 3)–regular for all k ≥ 4.
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Proof. By our definition of Θk, it suffices to show that the matrix [Ik|Dk] over
Q(α1, α2, . . . , αk) is (k − 3)–unimodular. Thus we need to show that if X is an
m × m submatrix of [Ik|Dk], then det(X) is in Ak−3 ∪ {0}. This is certainly true
if m ≤ 2. Now suppose that m ≥ 3. If X avoids one of the first two rows or one of
the first two columns of Dk, then, it follows by (3.2) and the fact that all non-zero
2× 2 subdeterminants of Dk are in Ak−3, that the determinant of X is either zero
or in Ak−3. Thus we may assume that X meets both the first two rows and the
first two columns of Dk. Hence X is of the form




0 1 1 1 · · · 1
−1 0 y1 y2 · · · yn

1 x1 0 0 0
1 x2 0 0 0
...

...
. . .

1 xn 0 0 0




,

where x1, x2, . . . , xn, y1, y2, . . . , yn are elements of {1, α1, α2, . . . , αk−3}.

Let X ′ be the matrix obtained from X by pivoting on the (1, 3)–entry. Then X ′

is




0 1 1 1 · · · 1
−1 −y1 0 y2 − y1 · · · yn − y1

1 x1 0 0 0
1 x2 0 0 0
...

...
. . .

1 xn 0 0 0




.

By (3.1), the determinant of X is in Ak−3 ∪ {0} if and only if the determinant of
X ′ is in Ak−3 ∪ {0}. By expanding the determinant of X ′ down the last column,
we see that det(X ′) is either zero or is in Ak−3. We conclude that [Ik|Dk] is
(k − 3)–unimodular and the lemma follows. �

Let X be the following matrix

[
1 0 1 1 1 · · · 1
0 1 1 α1 α2 · · · αk−3

]

over Q(α1, α2, . . . , αk−3). Then X is a (k − 3)–unimodular representation for U2,k

for all k ≥ 3. Moreover, it is clear that we can extend this (k − 3)–unimodular
representation of U2,k to a (k − 3)–unimodular representation of Θk. Up to per-
muting columns, this extended matrix is [Ik|Dk], which we used to define the ma-
troid Θk. Now let P be a partial field. Suppose there are k − 3 distinct elements
x1, x2, . . . , xk−3 in P− {0, 1} such that, for all distinct i and j in {1, 2, . . . , k − 3},
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both xi − 1 and xi − xj are in P. Let X ′ be the matrix obtained from X by re-
placing αi by xi for all i. Then X ′ is a P–representation for U2,k. Consider the
matrix [Ik|Dk]′ obtained from [Ik|Dk] by replacing αi by xi for all i. Certainly
[Ik|Dk]′ extends the matrix X ′. Moreover, by Lemmas 3.3 and 3.4 and from the
proof of [16, Proposition 4], [Ik|Dk]′ is a P–representation for Θk. Thus, given a
P–representation of U2,k in the form displayed above, one can always extend it to
a P–representation for Θk. We make use of this property of U2,k and P in the next
lemma.

A matrix X over a partial field P is a P–matrix if det(X ′) is defined for every
square submatrix X ′ of X .

Lemma 3.5. Let k ≥ 2 and let M be a matroid such that M |A ∼= U2,k. If M and Θk

are both representable over P, then the generalized parallel connection PA(Θk, M)
of Θk and M across A is representable over P.

Proof. The result is clear for k = 2. Therefore assume that k ≥ 3. Since the
independent sets of a P–representation for M are preserved under the operations
of interchanging a pair of rows or columns, multiplying a column or row by a non-
zero scalar, and performing a pivot on a non-zero entry of the representation [19,
Proposition 3.5], we may assume that M has as a P–representation the matrix

Y =


 Y1 0

Y2
1 0 1 1 1 · · · 1
0 1 1 y1 y2 · · · yk−3




where y1, y2, . . . , yk−3 are distinct elements of P − {0, 1} such that, for all i and
j in {1, 2, . . . , k − 3}, both yi − 1 and yi − yj are in P. By Lemma 2.4, A is a
modular line of Θk. Furthermore, by the remarks preceding the statement of this
lemma, the 2 × k submatrix in the bottom-right corner of Y can be extended to a
P–representation of Θk. Let Z be the matrix




Y1 0 0 0

Y2
1 0 1 1 1 · · · 1
0 1 1 y1 y2 · · · yk−3

0
0 1

−1 0

0 0 Ik−2

1 1
1 y1

1 y2

...
...

1 yk−3




.

We shall show that Z is a P–matrix. From this it will follow that Z is a P–
representation of PA(Θk, M). To see this, let N be the matroid that is represented
by Z. Then N/A is isomorphic to (M/A) ⊕ (Θk/A). Thus, by the extension of [4,
Proposition 5.9] to matroids [15, Proposition 12.4.15], N = PA(Θk, M), as required.
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To complete the proof, we now show that all subdeterminants of Z are defined.
Label the last two columns of Z by b1 and b2, respectively. Also label the last k−2
rows of Z by b3, b4, . . . , bk. Let Z ′ be a square submatrix of Z. By (3.2), to verify
that Z is a P–matrix, we may assume that Z ′ avoids the third column of blocks of
Z. If Z ′ avoids both of the columns b1 and b2, or all of the rows b3, b4, . . . , bk, then
det(Z ′) is defined since Y is a P–representation for M . Thus, by (3.2), we may
assume that Z ′ meets the block B in the bottom-right corner of Z. Let Z ′′ be the
matrix obtained from Z ′ by pivoting on a non-zero entry z′ij of Z ′ that is also in B.
Then, by (3.1), det(Z ′) is defined if and only if det(Z ′′) is defined. Now the only
entries of Z ′ that are affected by this pivot are those that correspond to the last
two columns of Z. Let Z ′′

ij denote the matrix obtained from Z ′′ by deleting the i-th
row and j-th column. If Z ′ meets B in one column, then, by (3.2) and the fact that
Y is a P–representation for M , it follows that det(Z ′′

ij) is defined and, therefore,
so is det(Z ′). Therefore we may assume that Z ′ meets B in two columns. If Z ′

meets B in at least two rows, then, by pivoting twice in Z ′, once on z′ij and once
on another entry of B that is in a different row and column from z′ij , we deduce
that det(Z ′) is defined. Thus we may also assume that Z ′ meets B in exactly one
row and two columns. Hence Z ′ is a submatrix of the matrix




Y1 0 0

Y2
1 0 1 1 1 · · · 1
0 1 1 y1 y2 · · · yk−3

0 1
−1 0

0 0 1 z′


 ,

where z′ is an element of {1, y1, y2, . . . , yk−3}. If Z ′ avoids either the second- or
third-last rows of this matrix, then, by (3.2), it is easily seen that det(Z ′) is defined.
Therefore Z ′ meets the last three rows and last two columns of the above matrix.
Now let Z ′′ be the matrix obtained from Z ′ by adding the last row to the second-last
row of Z ′ and then deleting the last row and second-last column of the resulting
matrix. Then, by (3.1) and (3.2), det(Z ′) is defined if and only if det(Z ′′) is
defined. Since Z ′′ is either a submatrix of Y or a submatrix of Y with one column
repeated, the latter holds. Thus Z is a P–matrix and so Z is a P–representation
for PA(Θk, M). �

The next result generalizes [30, Lemma 5.7] from a ∆3–exchange to a segment-
cosegment exchange of arbitrary size. Two matrix representations of a matroid over
a partial field P are equivalent if one can be obtained from the other by a sequence
of the following operations: permuting rows; permuting columns (along with their
labels); multiplying a row or column by a non-zero element of P; replacing a row by
the sum of that row and another; and applying an automorphism of P to the entries
of the matrix. The two matrix representations are strongly equivalent if one can be
obtained from the other by a sequence of these operations that avoids applying an
automorphism of the partial field P.

Corollary 3.6. Let P be a partial field and let M be a matroid. If M is P–
representable, then the strong-equivalence classes of P–representations of M are in
one-to-one correspondence with the strong-equivalence classes of P–representations
of ∆A(M).
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Proof. By Lemma 3.5, ∆A(M) is P–representable. Let Y and Z, respectively,
denote the first two matrices in the proof of Lemma 3.5. Now consider the P–
representations of M and ∆A(M) given, respectively, by the matrix Y and the
matrix Z ′ obtained from Z by deleting the second column of blocks. Just as we may
assume that a P–representation of M has the same form as Y , we may also assume
that a P–representation of ∆A(M) has the same form as Z ′. The corollary now
follows by observing the canonical bijection between these two P–representations.

�

Corollary 3.7. Let M(P) be the class of matroids representable over the partial
field P. Let M be a matroid. Then M is in M(P) if and only if ∆A(M) is in
M(P).

Proof. If M is in M(P), then, by Lemma 3.5, ∆A(M) is in M(P). Now suppose
that ∆A(M) is in M(P). By Lemma 2.11, ∇A(∆A(M)) is well-defined and equal to
M . Therefore it suffices to show that ∇A(∆A(M)) is in M(P). Now M(P) is closed
under duality [19, Proposition 4.2]. Therefore, as ∇A(∆A(M)) = [∆A[(∆A(M))∗]]∗

and ∆A(M) is in M(P), it follows by Lemma 3.5 that ∇A(∆A(M)) is in M(P). �

At last we prove Theorem 1.1, which we restate for convenience.

Theorem 1.1. Let M be an excluded minor for M(P). Let A be a subset of E(M)
such that M |A is isomorphic to a rank–2 uniform matroid and A is coindependent
in M . Then ∆A(M) is an excluded minor for M(P).

Proof. Let M ′ = ∆A(M) and let |A| = k. If k = 2, then M ′ ∼= M and so M ′ is
an excluded minor for M(P). Therefore assume that k ≥ 3. Suppose that M ′ is
not an excluded minor for M(P). Then, by Corollary 3.7, there is an element x of
E(M ′) such that either M ′\x or M ′/x is not in M(P). The proof is partitioned
into four cases:

(i) x ∈ A and M ′/x 6∈ M(P);
(ii) x ∈ A and M ′\x 6∈ M(P);
(iii) x 6∈ A and M ′/x 6∈ M(P); and
(iv) x 6∈ A and M ′\x 6∈ M(P).

In the proof of these cases, we freely use the fact that both the parallel connection
and the 2-sum of two matroids in M(P) is also in M(P) [19, Proposition 4.2].

Case (i). x ∈ A and M ′/x 6∈ M(P).

By Lemma 2.13, M ′/x = ∆A(M)/x = ∆A−x(M\x). Thus, as M\x ∈ M(P), it
follows that ∆A−x(M\x), and hence M ′/x, is also in M(P); a contradiction.

Case (ii). x ∈ A and M ′\x 6∈ M(P).

Since every 3-element subset of A is a triad of M ′, it follows that the elements of
A− x are in series in M ′− x. Thus M ′\x is isomorphic to the 2-sum of M\(A− x)
and a circuit and so M ′\x is certainly in M(P); a contradiction.
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Case (iii). x 6∈ A and M ′/x 6∈ M(P).

First suppose that rM/x(A) = 2. Then, by Lemma 2.16, M ′/x = ∆A(M)/x =
∆A(M/x). Now M/x ∈ M(P). Therefore, by Corollary 3.7, ∆A(M/x), and hence
M ′/x, is in M(P). This contradiction implies that rM/x(A) 6= 2. Hence we may
assume that rM/x(A) = 1, that is, x ∈ clM (A). Then M |(A ∪ x) ∼= U2,k+1 and,
since A is coindependent in M , the ground set of M properly contains A ∪ x.
Thus U2,k+1 ∈ M(P) and hence Uk−1,k+1 ∈ M(P). Now, by Lemma 2.15, M ′/x
is isomorphic to the 2-sum of M/x\(A − a) and a copy of Uk−1,k+1, where a is
some element of A. Since the last two matroids are both in M(P), we obtain the
contradiction that M ′/x ∈ M(P).

Case (iv). x 6∈ A and M ′\x 6∈ M(P).

Since M ′ = PA(Θk, M)\A, it follows that M ′\x = PA(Θk, M\x)\A. But
M\x ∈ M(P), so by Lemma 3.5, PA(Θk, M\x) ∈ M(P). Hence M ′\x ∈ M(P); a
contradiction. �

The following is the dual of the last result.

Corollary 3.8. Let M be an excluded minor for M(P). Let A be a subset of E(M)
such that A is independent in M and M∗|A is isomorphic to a rank–2 uniform
matroid. Then ∇A(M) is an excluded minor for M(P).

4. Del-con Trees

In this section, we study a class of matroids that will be fundamental in solving
the problem of which ω–regular matroids are k–regular.

Let M and N be matroids. Then M is ∆ − ∇–equivalent to N if there is
a sequence M0, M1, . . . , Mn of matroids such that, for all i in {1, 2, . . . , n}, the
matroid Mi is obtained from Mi−1 by either a ∆–exchange or a ∇–exchange, M0 =
N and Mn

∼= M . Evidently, if M is ∆ − ∇–equivalent to N , then N is ∆ − ∇–
equivalent to M .

For m ≥ 4, let Λm denote the class of matroids that are ∆ − ∇–equivalent to
U2,m. In other words, if M is a member of Λm, then M can be obtained from U2,m

by a sequence of operations each of which consists of a segment-cosegment or a
cosegment-segment exchange. Lemma 4.2 shows that Λm is closed under duality.
As a step towards that result, we first show that a rank–2 uniform matroid is
∆ −∇–equivalent to its dual.

Lemma 4.1. Let E be the disjoint union of sets X and Y , and let N be a rank–2
uniform matroid on E. If |X | ≥ 2 and |Y | ≥ 2, then

∆Y (∆X(N)) = N∗.

Proof. By Lemma 2.6, r(∆Y (∆X(N))) = |E|−2. Now every 3–element subset of Y
is a triad of ∆Y (∆X(N)) and, since ∆Y (∆X(N)) = ∆X(∆Y (N)), every 3–element



GENERALIZED ∆ − Y EXCHANGE AND k–REGULAR MATROIDS 21

subset of X is a triad of ∆Y (∆X(N)). Thus [∆Y (∆X(N))]∗ is a rank–2 uniform
matroid on E unless it has a 2–circuit {x, y} for some x in X and some y in Y .
Hence we may assume that the exceptional case holds. Then, for x′ in X − x,
Lemma 2.20 implies that x and x′ are clones in ∆Y (∆X(N)). Hence {x′, y} is a
circuit of [∆Y (∆X(N))]∗ and, therefore, so too is {x, x′}; a contradiction. �

Lemma 4.2. Let m ≥ 4. If M ∈ Λm, then M∗ ∈ Λm.

Proof. This is a straightforward consequence of the last lemma and the fact that
[∆A(N)]∗ = ∇A(N∗). The details are omitted. �

In general, 3–connectivity is not preserved under a ∆–exchange or, dually, under
a ∇–exchange. To see this, consider the following example. Let Q6 be the matroid
obtained by placing a point on the intersection of two lines of U3,5. Then the
matroid obtained from Q6 by performing a ∆3–exchange on one of its triangles
is not 3–connected. However, as we show next, every matroid in

⋃
m≥4 Λm is 3–

connected.

Lemma 4.3. Let M be a matroid in
⋃

m≥4 Λm. Then M is 3–connected.

Proof. For all k ≥ 0, it follows from [18, Corollary 4.2] that U2,k+4 is an excluded
minor for the class of k–regular matroids. By Theorem 1.1, so too is every matroid
that is ∆ − ∇–equivalent to U2,k+4. Thus every matroid in Λk+4 is an excluded
minor for the class of k–regular matroids. But, for all k ≥ 0, the class of k–
regular matroids is closed under the taking of direct sums and 2–sums. Hence every
excluded minor for this class must be 3–connected. In particular, every member of
Λk+4 is 3–connected, and so every member of

⋃
m≥4 Λm is 3–connected. �

Next we shall associate a particular type of labelled tree with every member of⋃
m≥4 Λm. Before specifying this association, we begin by describing the class of

trees being considered. A del-con tree is a tree T for which every vertex v is labelled
by one of the ordered pairs (Ev, del) or (Ev, con) such that the following conditions
hold:

(i) each Ev is a finite, possibly empty, set;
(ii) if u and v are distinct vertices, then Ev and Eu are disjoint;
(iii) if v is a degree-one vertex of T , then |Ev| ≥ 2; and
(iv) if two vertices of T are adjacent, then the second coordinates of their labels

are different.

A vertex v of a del-con tree T will be referred to as a del or con vertex in the
obvious way, and the corresponding set Ev will be called a del or con class of T .
Now suppose v is a degree-one vertex of T . Let T ′ be the tree obtained from T
by deleting v and keeping all vertex labels inherited from T except on the unique
neighbour u of v in T . In the exceptional case, we retain the second coordinate of
the label, but change the first coordinate to Eu ∪Ev. This operation on T is called
shrinking, and T ′ is said to be obtained from T by shrinking v into u.
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Let T be a del-con tree and let |V (T )| = n. Let E = ∪v∈V (T )Ev and assume that
|E| ≥ 4. We now describe how to obtain, from T , a matroid M(T ) that is in Λm

where m = |E|. Let T1, T2, . . . , Tn be a sequence of del-con trees such that Tn = T
and, for all i in {1, 2, . . . , n−1}, the tree Ti has i vertices and is obtained from Ti+1

by shrinking a degree-one vertex into its unique neighbour. We call such a sequence
a chain of del-con trees. Since E = ∪v∈V (Tn)Ev, it follows that E = ∪u∈V (Ti)Eu

for all i in {1, 2, . . . , n}. In particular, the unique vertex of T1 is labelled (E, del)
or (E, con). We define M(T1) to have ground set E and to be isomorphic to U2,|E|
or U|E|−2,|E| depending on whether the vertex of T1 is a del or a con vertex. In
general, for all i ≥ 1, if Ti+1 is obtained from Ti by shrinking the vertex v into
the vertex u, we define M(Ti+1) to be ∆Ev (M(Ti)) or ∇Ev (M(Ti)) according to
whether v is labelled (Ev, con) or (Ev, del). Define M(T ) = M(Tn). We need to
show that M(T ) is well-defined. The proof of this will use the following lemma,
the straightforward proof of which follows from Lemma 4.1 and the definition of a
∇–exchange.

Lemma 4.4. Let the ground set E of U2,|E| be the disjoint union of sets X and Y .
If |X | ≥ 2 and |Y | ≥ 2, then

∆X(U2,|E|) = ∇Y (U|E|−2,|E|).

Lemma 4.5. Let T be a del-con tree, let E = ∪v∈V (T )Ev, and assume that |E| ≥ 4.
The matroid M(T ) is a well-defined member of Λ|E|. Moreover, if v is a vertex of
T and |Ev| ≥ 2, then either v is a del vertex and M(T )|Ev is uniform of rank two,
or v is a con vertex and M(T ).Ev is uniform of corank two.

Proof. We prove both parts of the lemma simultaneously, arguing by induction on
|V (T )|. We note first that the result is certainly true if |V (T )| = 1. If |V (T )| = 2,
let V (T ) = {v1, v2}. Without loss of generality, we may assume that v1 is a del
vertex and v2 is a con vertex. Then M(T ) can be constructed in exactly two ways:
from the del-con tree obtained by shrinking v2 into v1, and from the del-con tree
obtained by shrinking v1 into v2. The first of these constructions yields ∆Ev2

(U2,|E|)
and the second ∇Ev1

(U|E|−2,|E|). But, by Lemma 4.4, these are equal and each is
in Λ|E|. Moreover, M(T )|Ev1 is uniform of rank two and M(T ).Ev2 is uniform of
corank two.

Now let |V (T )| = n ≥ 3, and assume that every matroid obtained from a del-con
tree T ′ with fewer vertices is well-defined and is in Λm where m is the cardinality
of the union of the first coordinates of the vertex labels of T ′. Assume also that,
for every such T ′, the restriction to every del class of M(T ′) of size at least two
is uniform of rank two and the contraction to every con class of M(T ′) of size at
least two is uniform of corank two. We need to show that M(T ) is independent
of the chain of del-con trees used in its construction. For each j in {1, 2}, let
T1j, T2j , . . . , Tnj be a chain of del-con trees such that Tnj = T . We shall show next
that M(Tn1) = M(Tn2) and that this matroid is in Λ|E|.

Suppose first that T(n−1)1 = T(n−1)2. Then, by the induction assumption,
M(T(n−1)1) = M(T(n−1)2) and this matroid is ∆ − ∇–equivalent to U2,|E|. By
Lemma 4.3, M(T(n−1)1) is 3–connected. Let the vertex v be shrunk into the ver-
tex u in Tn1 to produce T(n−1)1. Assume first that u is a del vertex of T(n−1)1.
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Then, by the induction assumption, M(T(n−1)1)|(Eu ∪ Ev) is uniform of rank two.
Therefore, as M(T(n−1)1) is 3–connected, Ev is a coindependent set of this ma-
troid. Thus, when u is a del vertex of T(n−1)1, the matroid M(Tn1), which equals
∆Ev(M(T(n−1)1), is a well-defined member of Λ|E|. A similar argument shows that
M(Tn1) is a well-defined member of Λ|E| when u is a con vertex of T(n−1)1.

We may now assume that T(n−1)1 6= T(n−1)2 and that T(n−1)i is obtained by
shrinking vi into ui for each i where v1 6= v2. Since |V (T )| ≥ 3, the vertices v1 and
u2 are distinct, as are v2 and u1. Let T ′′ be the del-con tree obtained from T(n−1)1

by shrinking v2 into u2. Then T ′′ can also be obtained from T(n−1)2 by shrinking
v1 into u1. Now, by the induction assumption, each of M(T ′′), M(T(n−1)1), and
M(T(n−1)2) is a well-defined member of Λ|E| and hence is independent of the chain
of del-con trees used to construct it. First suppose that v1 and v2 are both con
vertices of T . Then

M(Tn1) = ∆Ev1
(M(T(n−1)1))

= ∆Ev1
[∆Ev2

(M(T ′′))]

= ∆Ev2
[∆Ev1

(M(T ′′))] by Lemma 2.18,

= ∆Ev2
(M(T(n−1)2))

= M(Tn2).

Moreover, M(Tn1) is certainly in Λ|E|. Similar arguments establish that M(Tn1) =
M(Tn2) and that this matroid is in Λ|E| when v1 and v2 are both del vertices, and
when one is a del vertex and one a con vertex.

It remains to establish that the restriction of M(T ) to a del class of size at least
two is uniform of rank two and the contraction of M(T ) to a con class of size at
least two is uniform of corank two.

Recall that T(n−1)1 is obtained from Tn1 by shrinking v1 into u1. We shall only
treat the case when v1 is a con vertex, as a similar argument covers the other case.
Clearly M(Tn1).Ev1 is uniform of corank two and, if |Eu1 | ≥ 2, then M(Tn1)|Eu1 is
uniform of rank two. Now let w be a vertex of T other than u1 or v1. If w is a del
vertex of Tn1, then it is a del vertex of T(n−1)1 and so every 3–element subset X of
Ew is a triangle of M(T(n−1)1). Since M(T(n−1)1)|X = M(Tn1)|X for every such
set X , it follows that M(Tn1)|Ew is uniform of rank two. If w is a con vertex of Tn1,
then it is a con vertex of T(n−1)1 and so every 3–element subset Y of Ew is a triad of
M(T(n−1)1) that is disjoint from Ev1 ∪Eu1 and hence is disjoint from the closure in
M(T(n−1)1) of the last set. Thus Y is a triad of the generalized parallel connection
across Ev1 of M(T(n−1)1) and Θ|Ev1 |. Now M(Tn1) is a spanning restriction of this
generalized parallel connection. Since M(Tn1) is 3–connected, it follows that Y ,
which must contain a cocircuit of this matroid, is actually equal to a cocircuit of
M(Tn1). Thus M(Tn1).Ew is uniform of corank two. �

A del-con tree T is reduced if there is no vertex v of V (T ) such that either
d(v) = 1 and |Ev| = 2, or d(v) = 2 and Ev is empty. Given a del-con tree T that is
not reduced, one can obtained a reduced del-con tree T ′ from T by a sequence of
the following two operations:
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(i) Suppose there is an element v of V (T ) such that d(v) = 1 and |Ev| = 2.
Let u be the unique neighbour of v in T . Then T is replaced by the tree
that is obtained from it by shrinking v into u.

(ii) Suppose there is an element v of V (T ) such that d(v) = 2 and Ev is empty.
Let u and w be the neighbours of v in T . Then u and w have the same
second coordinate. Let T/{uv, vw} denote the tree obtained from T by
contracting the edges {u, v} and {v, w}. Then T is replaced by T/{uv, vw}
with all vertices of T/{uv, vw} retaining their labels from T except the
vertex corresponding to u, v, and w. That vertex has Eu ∪ Ew as its first
coordinate, and its second coordinate is the second coordinate of u and w.

Lemma 4.6. Let T be a del-con tree and let T ′ be obtained from T by applying
either of the reduction operations above. Then M(T ) = M(T ′).

Proof. Suppose there is a vertex v of T such that d(v) = 1 and |Ev| = 2. Let u
be the unique neighbour of v in T and let T ′ be the del-con tree obtained from
T by shrinking v into u. By definition, either M(T ) = ∇Ev(M(T ′)) or M(T ) =
∆Ev(M(T ′)) depending on whether v is a del or con vertex of T , respectively. Since
|Ev| = 2, it follows that, in both cases, M(T ) = M(T ′).

Now suppose that v is a vertex of T such that d(v) = 2 and |Ev| = 0. Let u
and w be the neighbours of v in T . The graph T − v has exactly two components,
Tu and Tw containing u and w, respectively. From T , we construct a sequence of
del-con trees as follows. Pick a vertex of Tu that is the maximum distance from u,
and hence has degree one, and, in T , shrink this vertex into its neighbour. Repeat
this process until the only remaining vertex of Tu is u itself. Let T ′

u be the del-con
tree that is obtained at the conclusion of this process. Now consider Tw. Pick a
vertex of it that is the maximum distance from w and, in T ′

u, shrink this vertex into
its neighbour. Repeat this process until the only remaining vertex of Tw is w itself.
We now have a del-con tree T3 with vertices u, v, and w whose second coordinates
match their second coordinates in T and whose first coordinates are, respectively,
E′

u, ∅, and E′
w where E′

y = ∪x∈V (Ty)Ex. Finally, let T2 and T1 be obtained from
T3 and T2, respectively, by shrinking u into v and shrinking w into v. We have
now constructed a chain of del-con trees whose last term is T and whose first three
terms are T1, T2, and T3.

Let E = E′
u ∪ E′

w. Now v is either a del or a con vertex of T . In the first case,
M(T1) has ground set E and is isomorphic to U2,|E|. Moreover, since M(T3) =
∆E′

u
(∆E′

w
(M(T1))), it follows by Lemma 4.1 that M(T3) has ground set E and is

isomorphic to U|E|−2,|E|. A similar argument shows that, if v is a con vertex of T ,
then M(T3) has ground set E and is isomorphic to U2,|E|. In both cases, M(T3) is
the dual of M(T1).

The sequence of shrinkings that produced T3 from T induces a corresponding
sequence when applied to T ′ and produces a tree T ′

3 with a single vertex whose
first coordinate is E and whose second coordinate matches that of u in T . Thus
M(T ′

3) = M(T3) and hence M(T ′) = M(T ). �
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Our interest in del-con trees is that they give us a convenient way to deal with
members of

⋃
m≥4 Λm. Indeed, every matroid in

⋃
m≥4 Λm can be described by a

del-con tree. To see this, note that if M is in
⋃

m≥4 Λm, then M can be obtained
from U2,m by a sequence of operations each consisting of a ∆–exchange or a ∇–
exchange. This sequence of matroids beginning with U2,m induces a chain of del-con
trees beginning with a single-vertex tree whose vertex is labelled (E(M), del). The
final tree in this chain is a del-con tree corresponding to M .

Now we consider some examples of del-con trees and their associated matroids.
Let R7 be the matroid whose geometric representation is shown in Figure 4. Let
E(R7) = {1, 2, . . . , 7} and let {1, 2, 3} and {4, 5, 6} be the triangles of R7. If TR7

is the del-con tree that is a path consisting of three vertices labelled, in order,
({1, 2, 3}, del), ({7}, con), and ({4, 5, 6}, del), then R7 = M(TR7). Moreover, TR7

is a reduced del-con tree. Note that we can also describe R7 with the del-con tree
that is a path consisting of four vertices labelled, in order, ({1, 2}, con), ({3}, del),
({7}, con), and ({4, 5, 6}, del), but this last del-con tree is not reduced.

We show next that the del-con tree corresponding to the dual M∗(T ) of M(T )
can be readily obtained from T . Let T ∗ denote the tree obtained from T by changing
the second coordinate of the vertex labels so that all del vertices in T become con
vertices in T ∗ and all con vertices in T become del vertices in T ∗.

Lemma 4.7. Let T be a del-con tree. Then M∗(T ) ∼= M(T ∗).

Proof. We argue by induction on the cardinality of V (T ). Suppose that T consists
of exactly one vertex v. If v is a del vertex, then M(T ) is U2,|Ev| and so M∗(T )
is U|Ev|−2,|Ev|. Now v is a con vertex in T ∗ so M(T ∗) is U|Ev|−2,|Ev|. Hence the
lemma holds for |V (T )| = 1. Suppose that T consists of exactly two vertices u and
v. Without loss of generality, we may assume that u is a del vertex and v is a con
vertex. Let E = Eu ∪Ev. Then M(T ) is the matroid ∆Ev (U2,|E|). By Lemma 4.4,

[∆Ev(U2,|E|)]∗ = [∇Eu(U|E|−2,|E|)]∗

= [(∆Eu(U2,|E|))∗]∗

= ∆Eu(U2,|E|).

The last matroid is M(T ∗). Hence the lemma also holds for |V (T )| = 2. Let T
be a del-con tree such that |V (T )| = n, where n ≥ 3. Suppose that the lemma
holds for |V (T )| = n−1. Let v be a degree-one vertex of T and let u be the unique
neighbour of v in T . Let Tv be the tree obtained from T by shrinking v into u. Since
|V (Tv)| = n − 1, it follows by the induction assumption that M∗(Tv) = M(T ∗

v ).
Assume first that v is a con vertex of T . Then v is a del vertex of T ∗ and therefore,
as u is a con vertex of T ∗,

M(T ∗) = ∇Ev (M(T ∗
v ))

= [∆Ev (M∗(T ∗
v ))]∗

= [∆Ev (M(Tv))]∗ by the induction assumption.

But ∆Ev (M(Tv)) = M(T ) and so M∗(T ) = M(T ∗). Since (T ∗)∗ = T , it follows
that the lemma also holds when v is a del vertex of T . This completes the proof of
Lemma 4.7. �
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We show next that the removal of an element e from a del-con tree T corresponds
to the deletion or contraction of e from M(T ) depending on whether e is in a del
or a con class of T .

Lemma 4.8. Let v be a vertex of a del-con tree T and let E =
⋃

u∈V (T ) Eu. Suppose
that |E| ≥ 5 and that if v has degree one, then |Ev| ≥ 3. Let e be an element of Ev

and let T \e denote the tree obtained from T by removing e from Ev.

(i) If e is in a del class of T , then M(T \e) = M(T )\e.
(ii) If e is in a con class of T , then M(T \e) = M(T )/e.

Proof. We first prove (i). Let |V (T )| = n and construct a chain of del-con trees
as follows. Let Tn = T . For each i in {2, 3, . . . , n}, find a vertex in Ti that
is a maximum distance from v and shrink that vertex into its unique neighbour
to produce Ti−1. Then T1 has v as its unique vertex and this vertex is labelled
(E, del). Moreover, if Ti\e is obtained from Ti by removing e from the del class
corresponding to v, then it is clear that T1\e, T2\e, . . . , Tn\e is a chain of del-
con trees and Tn\e = T \e. Also, for all i, exactly the same ∆– or ∇–exchange
that produced M(Ti) from M(Ti−1) produces M(Ti\e) from M(Ti−1\e). We shall
show, by induction, that M(Tj\e) = M(Tj)\e for all j in {1, 2, . . . , n}. Certainly
M(T1\e) = M(T1)\e since M(T1\e) and M(T1) are rank-2 uniform matroids on
E − e and E, respectively. Assume that M(Tj−1\e) = M(Tj−1)\e. Now either
(a) M(Tj) = ∇A(M(Tj−1)), or (b) M(Tj) = ∆A(M(Tj−1)). Consider the first
case. Clearly M(Tj\e) = ∇A(M(Tj−1\e)). Since this ∇A–exchange is defined,
it follows that A has rank two and is coindependent in M∗(Tj−1\e). Thus, by
the induction assumption, A has rank two and is coindependent in M∗(Tj−1)/e.
But, since ∇A(M(Tj−1)) is also defined, A has rank two and is coindependent in
M∗(Tj−1). Thus e is not in the closure of A in M∗(Tj−1). Hence

M(Tj\e) = ∇A[M(Tj−1\e)]
= ∇A[M(Tj−1)\e] by the induction assumption,

= ∇A[M(Tj−1)]\e by the dual of Lemma 2.16(ii),

= M(Tj)\e
A similar argument establishes that M(Tj)\e = M(Tj\e) in case (b). We conclude,
by induction, that M(Tn)\e = M(Tn\e).

The proof of (ii) follows by a straightforward combination of (i) and the preceding
lemma. �

The following is an immediate consequence of the last lemma.

Corollary 4.9. Let T ′ be a del-con tree that is obtained from a del-con tree T by a
sequence of operations each consisting of removing an element from a vertex class,
or reducing the tree. Then M(T ′) is a minor of M(T ).

Recall from the introduction that P6 is the matroid that is obtained from a
6–point line by a single ∆ − Y exchange.
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Lemma 4.10. Let e be an edge of a reduced del-con tree T and let V1 and V2 be
the vertex sets of the components of the graph obtained from T by deleting e. If
{x1, y1, z1} ⊆ ⋃

v∈V1
Ev and {x2, y2, z2} ⊆ ⋃

v∈V2
Ev, then either

(i) M(T ) has a P6–minor on {x1, y1, z1, x2, y2, z2} in which {x1, y1, z1} is a
triangle or a triad; or

(ii) M(T ) or its dual has an R7–minor in which {x1, y1, z1} and {x2, y2, z2}
are both triangles.

Proof. Suppose, to the contrary, that M(T ) has no such minor. Moreover, assume
that |E(M(T ))| is minimal. We break the proof into two cases. In the first case,
suppose that T has at least three degree-one vertices. Then, without loss of gen-
erality, T [V1], the subgraph of T induced by V1, contains at least two degree-one
vertices of T . Choose one of these vertices of T [V1], say v, so that Ev contains an
element w where w 6∈ {x1, y1, z1}. By condition (iii) in the definition of a del-con
tree, such an element exists. Let T ′ be the tree obtained from T by first removing
w and then, if possible, reducing the resulting tree. In T ′, the edge e still sep-
arates {x1, y1, z1} and {x2, y2, z2}. Therefore, by the last corollary, M(T ′) has a
minor of the required type. Since |E(M(T ′))| < |E(M(T ))|, the choice of M(T ) is
contradicted. Hence T does not have at least three degree-one vertices.

For the second case, suppose that T has exactly two degree-one vertices. Then
T is a path. If one of the degree-one vertices of T , say v, has the property that Ev

contains an element w such that w 6∈ {x1, y1, z1, x2, y2, z2}, then w can be removed
from T and, as in the first case, the choice of M(T ) is contradicted. Thus the
subsets of E(M(T )) associated with the degree-one vertices of T are {x1, y1, z1}
and {x2, y2, z2}. Suppose first that T has an even number of vertices. Then one
degree-one vertex of T is a del vertex and the other is a con vertex. If T has no
degree-two vertices, then M(T ) is isomorphic to P6; a contradiction. If T has a
degree-two vertex, then by removing an element from the corresponding vertex class
and reducing the resulting tree, we again obtain a contradiction to the choice of
M(T ). We conclude that T has an odd number of vertices. But a similar argument
to that just given now shows that M(T ) has an R7– or R∗

7–minor depending on
whether the degree-one vertices of T are del or con vertices, respectively. This
contradiction completes the proof of the lemma. �

As noted in [8], it is immediate from the definition of clones that elements x
and x′ are clones in M if and only if they are clones in M∗. Also, recall from the
last section that if x and x′ are clones of a matroid M , and N is a minor of M
containing {x, x′}, then x and x′ are clones in N . We shall use both these facts in
the next result, the first of two corollaries of the last lemma.

Corollary 4.11. Let T be a reduced del-con tree. Then elements x and x′ of M(T )
are in the same vertex class of T if and only if x and x′ are clones in M(T ).

Proof. Suppose first that x and x′ are in different vertex classes of T . Clearly T
has at least two vertices and so T has at least two degree-one vertices. Let e be
an edge of T such that x and x′ are in different components of the graph obtained
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from T by deleting e. Now T is a reduced del-con tree. Therefore, by Lemma 4.10,
either M(T ) has a P6–minor in which y1 is in a triad, y2 is in a triangle and
{y1, y2} = {x, x′}, or M(T ) or its dual has an R7–minor in which x and x′ are in
different triangles. In each case, x and x′ are not clones in the distinguished minor.
Hence x and x′ are not clones in M(T ).

To prove the converse, suppose that x and x′ are in the same vertex class of T .
We argue by induction on the cardinality of V (T ) that x and x′ are clones in M(T ).
This is clearly true if T has exactly one vertex. Assume it true for |V (T )| < n and
let |V (T )| = n ≥ 2. Let u be a degree-one vertex of T such that {x, x′} ∩ Eu is
empty. By duality, we may assume that u is a del vertex of T . Let w be the unique
neighbour of u in T and let T ′ be the reduced del-con tree obtained from T by
shrinking u into w. By the induction assumption, x and x′ are clones in M(T ′).
Therefore, as {x, x′} ∩ Eu is empty, it follows by Lemma 2.20 that x and x′ are
clones in ∆EuM(T ′). But this last matroid is M(T ) and so x and x′ are clones in
M(T ). This completes the proof of Corollary 4.11. �

Without the requirement that T is reduced, Corollary 4.11 may fail. For example,
let T be a del-con tree consisting of three vertices u, v, and w, where |Ev| = 0 and
u and w are degree-one con vertices such that |Eu| = |Ew| = 3. Then M(T ) is
isomorphic to U4,6. But, if x ∈ Eu and x′ ∈ Ew, then x and x′ are clones in M(T )
belonging to different vertex classes of T .

Corollary 4.12. Let T be a reduced del-con tree. If x, y, and z are three elements
of E(M(T )) such that no vertex class of T contains all three, then {x, y, z} is neither
a triangle nor a triad of M(T ).

Proof. Clearly, we may assume, without loss of generality, that there is an edge e of
T such that x and y are in a different component from z in the graph obtained from
T by deleting e. Then, by Lemma 4.10, {x, y, z} is contained in a minor of M(T )
that is isomorphic to one of P6, R7, or R∗

7 but has {x, y, z} as neither a triangle nor
triad. Since none of these three minors has a circuit or cocircuit of size less than
three, it follows that {x, y, z} is neither a triangle nor a triad of M(T ). �

Next we describe the 3–separations of the members of
⋃

m≥4 Λm. Since every
matroid in this set is 3–connected, all such 3–separations are exact. But, as Λ4 =
{U2,4} and Λ5 = {U2,5, U3,5}, every matroid in Λ4 ∪ Λ5 has infinite connectivity
and so has no 3–separations. Thus we shall confine attention to the members of⋃

m≥6 Λm.

Lemma 4.13. Let M be a member of Λm where m ≥ 6, and let TM be a reduced
del-con tree for which M = M(TM ). Let v be a vertex of TM and let {X, Y } be
a partition of E(M) into subsets each of size at least three such that, for every
component T ′ of TM − v, the set

⋃
z∈V (T ′) Ez is contained in either X or Y . Then

{X, Y } is a 3–separation of M .

Proof. By Lemmas 4.7 and 4.8, it suffices to show that the result holds when v
is a del vertex of TM . We argue by induction on |V (TM )| noting first that if
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|V (TM )| = 1, then the result is clear. Now let |V (TM )| = n where n ≥ 2, and
assume that the lemma holds for all matroids that correspond to reduced del-con
trees having fewer vertices. If v is a degree-one vertex of TM , then the result
certainly holds. Therefore we may assume that v is not a degree-one vertex. Let u
be a degree-one vertex of TM and let w be its unique neighbour in TM . Let Tu be
the tree obtained from TM by shrinking u into w. Then M is either ∆EuM(Tu) or
∇EuM(Tu) depending on whether u is a con or a del vertex of TM . Now, by the
induction assumption, if {X, Y } is a partition of E(M) into subsets each of size at
least three such that, for every component T ′′ of Tu − v, the set

⋃
z∈V (T ′′) Ez is

contained in either X or Y , then {X, Y } is a 3–separation of M(Tu). Therefore,
as u and w are in the same component of TM − v, the lemma is proved provided
we can show that {X, Y } is also a 3–separation of M . But, by the definitions of
segment-cosegment and cosegment-segment exchange, it is easy to deduce that this
is indeed the case. �

The next lemma shows that the only 3–separations of a member of Λm are those
described in the last lemma.

Lemma 4.14. Let M be a member of Λm where m ≥ 6, and let TM be a reduced
del-con tree for which M = M(TM ). If {X, Y } is a 3–separation of M , then there is
a vertex v of TM such that, for every component T ′ of TM − v, the set

⋃
z∈V (T ′) Ez

is contained in either X or Y .

Proof. Assume that M has a 3–separation {X, Y } that is not of the type described.
Colour the elements of X red and the elements of Y green. Let v be a vertex of TM .
If Ev is empty, we call v colourless. If Ev is non-empty and all of its elements are the
same colour, we assign that colour to v itself. A subgraph of TM is monochromatic
if it does not contain both red and green vertices.

We begin by showing the following.

4.14.1. TM has no edge e such that neither component of TM −e is monochromatic.

Proof. Assume, to the contrary, that TM has such an edge e. Let V1 and V2 be
the vertex sets of the components of TM − e. For each i in {1, 2}, let ri and gi,
respectively, be a red and a green element of

⋃
u∈Vi

Eu. The last set has at least
three elements as do both X and Y . Thus, by relabelling if necessary, we may
assume that

⋃
u∈V1

Eu contains a red element r′1 such that r′1 6= r1 and
⋃

u∈V2
Eu

contains a green element g′2 such that g′2 6= g2. Therefore, by Lemma 4.10, either

(i) M has a P6–minor on {r1, g1, r
′
1, r2, g2, g

′
2} in which {r1, g1, r

′
1} is a triangle

or a triad; or
(ii) M or M∗ has an R7–minor in which {r1, g1, r

′
1} and {r2, g2, g

′
2} are both

triangles.

Furthermore, since this minor has at least three red and at least three green ele-
ments, the minor has a 3–separation induced by its sets of red and green elements.
But the only 3–separation of P6 has the triangle on one side and the triad on the
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other. Moreover, the only 3–separations of R7 contain a triangle on each side. By
(i) and (ii), neither {r1, r

′
1, r2} nor {g1, g2, g

′
2} is a triangle or a triad in the relevant

minor. This contradiction completes the proof of (4.14.1). �

By (4.14.1), for each edge e in TM , at least one component of TM−e is monochro-
matic. This implies that TM has at most one vertex v for which Ev contains both
red and green elements. If there is such a vertex v, then every component of TM −v
must be monochromatic and so {X, Y } is a 3–separation of the type described in
the lemma. This contradiction implies that no such vertex exists in TM . Next we
show the following.

4.14.2. If v is a vertex of TM , then exactly one of the components of TM − v is
not monochromatic. Moreover, the monochromatic components of TM − v all have
the same colour as each other and, unless v is colourless, this colour matches that
of v.

Proof. Suppose first that TM − v has two components, T1 and T2, that are not
monochromatic. Let e be the edge connecting T1 to v in TM . Then neither com-
ponent of TM − e is monochromatic and (4.14.1) is contradicted. Thus there is
at most one component of TM − v that is not monochromatic. If there is no such
component, then {X, Y } is a 3–separation of the type described in the lemma. This
contradiction completes the proof of the first part.

To establish the second part, consider the component of TM − v that is not
monochromatic, and let w be the neighbour of v in this component. Since there are
both red and green elements in one component of TM − vw, the other component
must be monochromatic, and the second part of (4.14.2) follows. �

We now use (4.14.2) to complete the proof of the lemma. The choice of {X, Y }
ensures that TM must have at least one red and at least one green vertex. Let
v0v1 . . . vn be a minimum-length path in TM that begins at a red vertex and ends at a
green vertex. Then all of v1, v2, . . . , vn−1 are colourless. A straightforward induction
argument shows that, for all i in {0, 1, . . . , n − 1}, all the components of TM − vi

are red except for the one containing vn, and the latter is non-monochromatic.
By symmetry, for all i in {n, n − 1, . . . , 1}, all the components of TM − vi are
green except for the one containing v0, and the latter is non-monochromatic. In
particular, if n > 1, then TM − v1 has two non-monochromatic components, one
containing v0 and the other containing vn. This contradiction to (4.14.2) implies
that n = 1. Now consider TM −v0v1. By (4.14.1), it certainly has a monochromatic
component, and we may assume that it is the one containing v0. But deleting the
green vertex v1 from TM produces a red component, namely the one containing v0.
This contradiction to (4.14.2) completes the proof of Lemma 4.14. �

We shall say that the 3–separation {X, Y } in the last lemma is based on a del or
con class depending on whether the distinguished vertex v is a del or con vertex of
TM . The next lemma determines when a certain 3-separation of a member M of⋃

m≥6 Λm induces a 3-separation of a 3–connected single-element extension of M .
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Lemma 4.15. Let M ′ be a 3–connected matroid such that M ′\e is a member M of⋃
m≥6 Λm. Let {X, Y } be a 3–separation of M based on a del class Ev of a reduced

del-con tree TM for which M(TM ) = M . Then either

(i) {X ∪ e, Y } or {X, Y ∪ e} is a 3–separation of M ′; or
(ii) M ′ has a minor isomorphic to a single-element extension of R∗

7 in which
neither triad of R∗

7 is preserved.

Proof. Let M ′ be a counterexample to the lemma for which |E(M ′)| is a minimum.
As (i) fails, rM ′(X∪e) = rM (X)+1 and rM ′ (Y ∪e) = rM (Y )+1. Thus r(M ′) > 2,
so TM has more than one vertex.

Suppose that v has degree one. By Lemma 4.14, we may assume that X contains
Eu for all u in V (TM ) − v. Then rM (X) = r(M), so

r(M ′) ≥ rM ′(X ∪ e) = rM (X) + 1 > r(M);

a contradiction. Therefore the degree of v exceeds one, and hence TM has at least
three vertices. Assume that TM has a non-empty del class Eu other than Ev. Let
x be an element of Eu and assume, without loss of generality, that Eu is contained
in X . By Lemma 4.8, M\x = M(TM\x), so M\x is a member of

⋃
m≥5 Λm.

Hence, by Lemma 4.3, M\x is 3–connected. In particular, X is not a triad. As
r(X) + r(Y ) − r(M) = 2 and Y is non-spanning, it follows that |X | ≥ 4. Thus
{X − x, Y } is a 3–separation of M\x. Moreover, this 3–separation is based on
the del class Ev of the reduced del-con tree obtained from TM\x. As M ′\x is
3–connected, the choice of M ′ implies that M ′\x obeys the lemma. But (ii) does
not hold for M ′ so M ′\x cannot have a minor of the specified type. Moreover,
rM ′((X − x) ∪ e) = rM (X − x) + 1 and rM ′(Y ∪ e) = rM (Y ) + 1, so neither
{(X − x) ∪ e, Y } nor {X − x, Y ∪ e} is a 3–separation of M ′\x. This contradiction
implies that TM has no non-empty del classes other than, possibly, Ev. Therefore
every degree-one vertex of TM is a con vertex for which, since TM is reduced, the
associated con class has size at least three.

Now suppose that X contains two distinct triads X1 and X2 of M each of which
is contained in a con class of TM corresponding to a degree-one vertex. Then
rM (Y ) ≤ r(M\(X1 ∪ X2)) ≤ r(M) − 2. Thus X1 ∪ X2 contains an element c that
is not in clM ′(Y ∪ e). Now, in M/c, we have

rM/c(X − c) + rM/c(Y ) − r(M/c) = rM (X) − 1 + r(Y ∪ c) − 1 − (r(M) − 1)
= rM (X) + rM (Y ) − r(M)
= 2.

Thus {X−c, Y } is a 3–separation of M/c. Moreover, this 3–separation is based on a
del class of the reduced del-con tree obtained from TM\c. Since M(TM\c) = M/c,
Lemma 4.8 implies that M/c is 3–connected. We shall show next that M ′/c is
3–connected and hence that M ′/c obeys the lemma. If M ′/c is not 3–connected,
then, as M ′ and M ′\e/c are both 3–connected, {e, c} is contained in a triangle of
M ′. As rM ′(X ∪ e) = rM (X) + 1, the third element of this triangle is not in X ;
nor is it in Y since c 6∈ clM ′(Y ∪ e). Thus M ′/c is indeed 3–connected. But, as
is easily checked, neither {(X − c) ∪ e, Y } nor {X − c, Y ∪ e} is a 3–separation of
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M ′/c. Since M ′/c certainly cannot have a minor of the type specified in (ii), we
have a contradiction to the choice of M ′. We conclude that X does not contain two
distinct triads with the specified properties. By symmetry, nor does Y . Thus each
con class corresponding to a degree-one vertex of TM has size three. Moreover, TM

has exactly two such con classes, one in X and the other in Y . Also, since TM is
reduced and has more than one vertex but has at most one non-empty del class, it
follows that TM has exactly three vertices and |Ev| ≥ 1.

Let x and y be the neighbours of v in TM where Ex ⊆ X and Ey ⊆ Y . Then
|Ex| = |Ey| = 3. Since |E(M)| ≥ 7, one side of the 3–separation of M , say X , has
at least four elements. Thus there is an element f in X ∩ Ev. Clearly {X − f, Y }
is a 3–separation of M\f . Moreover, rM ′\f ((X − f) ∪ e) = rM\f (X) + 1 and
rM ′\f (Y ∪ e) = rM\f (Y ) + 1, so neither {(X − f) ∪ e, Y } nor {X − f, Y ∪ e} is a
3–separation of M ′\f . If |Ev| > 1, then Ev − f is non-empty and therefore M ′\f
contradicts the choice of M ′. Thus we may assume that |Ev| = 1.

We now know that M is R∗
7 and M has a 3–separation {X, Y } such that neither

{X ∪ e, Y } nor {X, Y ∪ e} is a 3–separation of M ′. Let T ∗
1 and T ∗

2 denote the
two triads of R∗

7, and let z denote the unique element of E(R∗
7) − (T ∗

1 ∪ T ∗
2 ). By

symmetry, we may assume that (X, Y ) = (T ∗
1 , T ∗

2 ∪ z). Then

rM ′ (T ∗
1 ∪ e) = rM (T ∗

1 ) + 1 = 4

and
rM ′ ((T ∗

2 ∪ z) ∪ e) = rM (T ∗
2 ∪ z) + 1 = 4.

Hence neither T ∗
1 nor T ∗

2 is a triad of M ′. We conclude that M ′ is a 3–connected
single-element extension of R∗

7 with no triads. This last contradiction completes
the proof of the lemma. �

The next result shows that, for every member of
⋃

m≥4 Λm except U2,4, there is
a unique associated reduced del-con tree.

Lemma 4.16. Let T and T ′ be reduced del-con trees. If M(T ) = M(T ′), then either
M(T ) ∼= U2,4 and |V (T )| = |V (T ′)| = 1, or there is a bijection φ : V (T ) → V (T ′)
such that, for all u and v in V (T ),

(i) u and v are neighbours in T if and only if φ(u) and φ(v) are neighbours in
T ′; and

(ii) the vertex labels of v and φ(v) are equal.

Proof. Let E =
⋃

v∈V (T ) Ev. We prove the lemma by induction on |V (T )|. Suppose
that |V (T )| = 1. Then M(T ) is isomorphic to a uniform matroid of rank 2 or corank
2. Since all reduced del-con trees associated with such matroids consist of a single
vertex, it follows that if T ′ is a reduced del-con tree such that M(T ) = M(T ′),
then either M(T ) ∼= U2,4 and |V (T ′)| = 1, or there is a bijection from V (T ) into
V (T ′) with properties (i) and (ii). Thus the lemma holds for |V (T )| = 1. Now
let |V (T )| = n ≥ 2 and assume the lemma holds for all reduced del-con trees with
fewer vertices. In particular, it follows that |E| ≥ 6.
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Let v be a degree-one vertex of T . By duality, we may assume that v is a del
vertex of T . We first show that T ′ has a degree-one vertex with the same labelling
as v in T . Since M(T ) = M(T ′), it follows by Corollary 4.11 that the non-empty
vertex classes of T and T ′ coincide. Therefore, by Lemma 4.5, there is a vertex v′

in T ′ with the same labelling as v in T . It remains to show that v′ has degree one.
Assume not and let T ′

1 be a component of T ′ − v′ and X ′ be a proper non-empty
subset of Ev. Let X ′′ = X ′ ∪ (

⋃
u∈V (T ′

1) Eu). Then, by applying Lemma 4.13, we
deduce that {X ′′, E − X ′′} is a 3–separation of M(T ′) and hence of M(T ). Since
Ev meets both X ′′ and E−X ′′, Lemma 4.14 implies that {X ′′, E −X ′′} must be a
3–separation of M(T ) based on v. But v has degree one in T so every 3–separation
of M(T ) based on v must have one part that is a subset of Ev. Since neither X ′′

nor E − X ′′ is a subset of Ev, we have a contradiction. We conclude that v′ does
indeed have degree one in T ′.

Let Tv denote the tree that is obtained from T by shrinking v into its unique
neighbour u. Then M(Tv) = ∆EvM(T ). Let T ′

v′ denote the tree that is obtained
from T ′ by shrinking v′ into its unique neighbour u′. Then M(T ′

v′) = ∆EvM(T ′)
and so M(T ′

v′) = M(Tv). Now |V (Tv)| = n − 1. Therefore, by the induction
assumption and the fact that both u and u′ are con vertices, it follows that there is
a bijection φ1 : V (Tv) → V (T ′

v′) with properties (i) and (ii). Consider the function
φ : V (T ) → V (T ′) defined by φ(u) = u′, φ(v) = v′, and φ(w) = φ1(w) for all
w ∈ V (T ) − {u, v}. As this function is clearly a bijection from V (T ) into V (T ′)
with properties (i) and (ii), Lemma 4.16 now follows. �

Evidently, the converse of Lemma 4.16 also holds. We end this section by proving
Theorem 1.2, an exponential lower bound on the cardinality of the set of excluded
minors for GF (q)–representability.

Proof of Theorem 1.2. Since U2,q+2 is an excluded minor for GF (q)–representability,
it follows by Theorem 1.1 that every member of Λq+2 is an excluded minor for
GF (q)–representability. We shall prove the theorem by bounding below the number
of members of Λq+2 for which the associated del-con tree is a path. To construct
these paths, we first arrange the elements 1, 2, . . . , q + 2 consecutively in a line.
There are q − 3 gaps between consecutive elements i and i + 1 such that i ∈
{3, 4, . . . , q − 1}. In each of these gaps, we choose whether or not to insert a
bar. Thus there are 2q−3 such sequences consisting of elements and inserted bars.
With each of these sequences, we associate a reduced del-con tree, which is a path,
defined as follows: for some k ≥ 1, the bars partition {1, 2, . . . , q + 2} into k
non-empty subsets Ev1 , Ev2 , . . . , Evk

ordered in the natural way with 1 ∈ Ev1 .
Let Ev1 , Ev2 , . . . , Evk

be the first coordinates of the vertex labels of consecutive
vertices in a k–vertex path, where the second coordinates alternate between “del”
and “con” beginning with “del”. Clearly the number of such paths is 2q−3 and
each is a reduced del-con tree. Dividing by 2 to account for a potential symmetry
that arises by beginning the path at the right-hand instead of the left-hand end, we
deduce, by Lemma 4.16, that there are at least 2q−4 non-isomorphic members of
Λq+2 for which the associated reduced del-con tree is a path. The theorem follows
immediately. 2
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It is clear that the bound in Theorem 1.2 can be improved. The point of the
theorem is not to provide a sharp bound but rather to show that the number of
excluded minors for GF (q)–representability is at least exponential in q.

5. Two Theorems on k–regular Matroids

In this section, we prove Theorems 1.3 and 1.4. Each of these proofs relies
on the theory of “stabilizers” and “universal stabilizers” initiated in [30] and [8],
respectively. We now outline the definitions and results from these papers that will
be used in proving Theorems 1.3 and 1.4.

Stabilizers. A well-closed class of matroids is one that is minor-closed, closed
under isomorphism, and closed under duality. For example, the class of matroids
representable over a certain partial field is a well-closed class. Recall that two
matrix representations of a matroid over a partial field P are strongly equivalent
if one can be obtained from the other by a sequence of the matrix operations that
define equivalent representations, but without needing to apply an automorphism
of P.

Let P be a partial field and let M and N be matroids representable over P
such that N is a minor of M . Then N stabilizes M over P if a P–representation
of M is determined up to strong equivalence by a P–representation of any one of
its N–minors. In other words, if a P–representation of N can be extended to a
P–representation of M , then all such representations of M are strongly equivalent.

Let N be a well-closed class of P–representable matroids and let N be a matroid
in N . Then N is a P–stabilizer for N (or N stabilizes N over P) if N stabilizes every
3–connected matroid in N with an N–minor. Surprisingly, determining whether a
matroid is a P–stabilizer is a finite task.

Theorem 5.1. ([30, Theorem 5.8]) Let N be a well-closed class of matroids repre-
sentable over a partial field P and let N be a 3–connected matroid in N . Then N
stabilizes N over P if and only if N stabilizes every 3–connected matroid M in N
that has one of the following properties.

(i) M has an element x such that M\x = N .
(ii) M has an element y such that M/y = N .
(iii) M has a pair of elements x and y such that M\x/y = N , and both M\x

and M/y are 3–connected.

We can use stabilizers to bound the number of inequivalent representations of a
matroid over a partial field. The next result combines Proposition 5.4 and Corol-
lary 5.5 of [30]. As for fields, a matroid M is uniquely representable over a partial
field P if all P–representations of M are equivalent. The class of all P–representable
matroids will be denoted by M(P).

Proposition 5.2. Let N be a P–stabilizer for M(P).
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(i) If N has n inequivalent P–representations, then every 3–connected matroid
in M(P) with an N–minor has at most n inequivalent P–representations.

(ii) If N is uniquely representable over P, then every 3–connected matroid in
M(P) with an N–minor is uniquely representable over P.

Universal stabilizers. Let x be an element of the matroid M . The matroid M ′ is
obtained from M by cloning x with x′ if M ′ is a single-element extension of M by x′,
and x and x′ are clones in M ′. If it is not possible for x to be cloned with x′ so that
{x, x′} is independent, then x is fixed in M . Dually, x is cofixed in M if no single-
element coextension of M by x′ has the property that {x, x′} is a coindependent
pair of clones in this coextension. The next result [8, Proposition 4.7] enables us
to determine that an element is fixed in a matroid from the fact that it is fixed in
certain minors of the matroid.

Proposition 5.3. Let x be an element of a matroid M .

(i) If M has an element e such that x is fixed in M\e, then x is fixed in M .
(ii) If M has distinct elements e and f such that {e, f, x} is independent in M ,

and x is fixed in both M/e and M/f , then x is fixed in M .

Let N be a well-closed class of matroids. Let N be a 3–connected member of
N . Then N is a universal stabilizer for N if the following holds: whenever M and
M\x are 3–connected matroids in N for which M\x has an N–minor, the element
x is fixed in M ; and, whenever M and M/x are 3–connected matroids in N for
which M/x has an N–minor, the element x is cofixed in M . Just as for stabilizers,
the task of determining if a matroid is a universal stabilizer for a well-closed class
of matroids can be decided by a finite case check.

Theorem 5.4. ([8, Theorem 6.1]) Let N be a 3–connected matroid in a well-closed
class of matroids N and suppose that |E(N)| ≥ 2. Then N is a universal stabilizer
for N if and only if the following three conditions hold.

(i) If M is a 3–connected member of N with an element x such that M\x = N ,
then x is fixed in M .

(ii) If M is a 3–connected member of N with an element y such that M/y = N ,
then y is cofixed in M .

(iii) If M is a 3–connected member of N with a pair of elements x and y such
that M\x/y = N , and M\x is 3–connected, then x is fixed in M .

Let N be a member of a well-closed class of matroidsN . The notion of a universal
stabilizer was introduced in [8] to identify the underlying matroid structure that
ensures that, whenever P is a partial field over which N is representable, N is a
P–stabilizer for all members of N which are P–representable. Indeed, we have the
following result [8, Theorem 5.1].

Theorem 5.5. Let N be a 3–connected matroid that is a universal stabilizer for
a well-closed class N of matroids and let P be a partial field over which N is
representable. Then N is a P–stabilizer for the class N ∩M(P).
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One last set of preliminaries is required. A flat of a matroid is cyclic if it is the
union of a set of circuits. Let x and y be elements of a matroid M . Then x is freer
than y in M if every cyclic flat of M that contains x also contains y. Furthermore,
if x is freer than y, but y is not freer than x, then x is strictly freer than y. The
next, and last, result of these preliminaries is a combination of Proposition 4.4(i)
and Proposition 4.5(iv) of [9].

Proposition 5.6. Let x and y be distinct elements of a matroid M .

(i) If x is fixed in M/y, but not in M , then x is freer than y.
(ii) If x is strictly freer than y in M and x is not a coloop of M , then y is not

cofixed in M .

We noted in the introduction that the pair (Ak,Q(α1, α2, . . . , αk)) is a partial
field denoted by Rk. Moreover, a matroid is representable over Rk if and only if it
is k–regular, that is, if and only if it can be represented by a k–unimodular matrix.
Extending these ideas, we let Aω be the subset of Q(α1, α2, . . .) consisting of all
products of integral powers of differences of distinct elements in {0, 1, α1, α2, . . .}.
Then (Aω ,Q(α1, α2, . . .)) is a partial field, which we denote by Rω. Clearly a
matroid is Rω–representable if and only if it is ω–regular.

Most of the work in proving Theorems 1.3 and 1.4 goes into the following two
things: for all k ≥ 1, (i) establishing that every member of Λk+3 is a universal sta-
bilizer for the class of k–regular matroids; and (ii) determining the minor-minimal
3–connected ω–regular matroids that are not stabilized over Rω by some member
of Λk+3. These two tasks are completed in Lemmas 5.25 and 5.29, respectively.
The ground work for these lemmas was laid in the last section. However, we still
need to establish some results particular to ω–regular matroids before we are in
a position to prove these lemmas. In particular, as we will use Theorems 5.1 and
5.4 in the proof, we need to determine all 3–connected ω–regular matroids that are
single-element extensions of members of Λk+3.

The first two results were proved in [18]. Geometric representations for the
matroids T k

3 , where k ≥ 0, and S10 appearing in the statement of Lemma 5.8 are
shown in Figures 1 and 2. A matroid M is strictly k–regular if M is k–regular but
not (k − 1)–regular.

Lemma 5.7. Let k ≥ 0. Then U2,k+3 is strictly k–regular. Moreover, all ω–
unimodular representations of U2,k+3 are equivalent.

Lemma 5.8. Let M be a simple rank–3 k–regular matroid.

(i) If k < 2, then M is a restriction of T k
3 .

(ii) If k = 2, then M is a restriction of T 2
3 or S10.

(iii) If k > 2, then M is a restriction of U3,k+3, T k
3 , or S10.

The next result is a straightforward consequence of the last lemma.

Corollary 5.9. For all k ≥ 3, the unique 3–connected ω-regular single-element
extension of U3,k+3 is U3,k+4.
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k + 2
k + 3

1

32

Figure 1. The matroid T k
3 .

Figure 2. The matroid S10.

The proof of Lemma 5.11 will make repeated use of the following result [16,
Lemma 6].

Lemma 5.10. Let z1 and z2 be distinct elements of Rk − {0, 1} such that both
z1 − 1 and z2 − 1 are in Rk. Then z1 − z2 is in Rk if and only if

(i) there are distinct elements a, b, c, and d of {0, 1, α1, α2, . . . , αk} such that
{z1, z2} is one of

{
a−b
c−b , d−b

c−b

}
,
{

c−b
a−b ,

c−b
d−b

}
,
{

a−b
c−b , a−d

c−d

}
, or

{
a−b
c−b , (a−b)(c−d)

(c−b)(a−d)

}
;

or
(ii) there are distinct elements a, b, c, d1, and d2 of {0, 1, α1, α2, . . . , αk} such

that {z1, z2} =
{

(a−b)(c−d1)
(c−b)(a−d1)

, (a−b)(c−d2)
(c−b)(a−d2)

}
.
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Lemma 5.11. For all r, n − r ≥ 2, all ω–unimodular representations of Ur,n are
equivalent.

Proof. The cases r = 2 and n − r = 2 follow by Lemma 5.7 and duality. Now
consider the case where a representation of U3,6 is obtained by coextending a rep-
resentation of U2,5. Using the fact that U2,5 is uniquely representable over Rk and
the fact that pivoting is an allowable operation on matrices over partial fields [19,
Proposition 3.5], it follows that


 1 0 0 1 1 1

0 1 0 1 α1 α2

0 0 1 1 x1 x2




is an ω–unimodular representation for U3,6, where x1 and x2 are non-zero elements
of Rk such that both x1 − 1 and x2 − 1 are in Rk. Therefore each of the sub-
determinants x1 − α1, x2 − α2, and x2 − x1 must be a non-zero member of Rk.
Via a routine case analysis of the possibilities for x1 and x2 using Lemma 5.10, we
deduce that, for some j ≥ 3, we have x1 = α1(1−αj)

α1−αj
and x2 = α2(1−αj)

α2−αj
. Thus all

ω–unimodular representations of U3,6 are equivalent.

The general case follows similarly by induction. �

Next we show that very little can happen in a 3–connected ω–regular matroid
with a U3,6–minor. The proof of this will rely on the following result that does not
involve representability.

Lemma 5.12. Let M be a 3–connected non-uniform matroid that is a single-
element extension of a uniform matroid of rank and corank at least three. Then M
has as a minor a 3–connected non-uniform single-element extension of U3,6.

Proof. We argue by induction on |E(M)| noting that the result is immediate if
|E(M)| = 7. Assume it true for |E(M)| < n and let |E(M)| = n ≥ 8. Let e be the
element of M for which M\e is uniform, and let C be a minimum-sized circuit of
M containing e. Then |C| ≤ r(M). If r(M) = 3 and x ∈ E(M) − C, then M\x is
a 3–connected non-uniform single-element extension of a uniform matroid of rank
and corank at least three, so the result follows by the induction assumption. Thus
we may assume that r(M) ≥ 4. In that case, choose an element y of M so that if
|C| = 3, then y ∈ E(M) − C and if |C| ≥ 4, then y ∈ C − e. In each case, M/y is
a 3–connected non-uniform single-element extension of a uniform matroid of rank
and corank at least three, and the result follows by the induction assumption. �

Corollary 5.13. If M is a 3–connected ω–regular matroid having a U3,6–minor,
then M is uniform.

Proof. Let N be a uniform matroid that is a minor of M , has a U3,6–minor, and
has the maximum number of elements among such minors. We may assume that
N 6= M otherwise the corollary holds. Then, by the Splitter Theorem [22] (see also
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[15, Corollary 11.2.1]), N has a 3–connected single-element extension or coextension
N1 that is a minor of M . Since N1 is clearly non-uniform, Lemma 5.12 implies that
N1 or N∗

1 has as a minor a non-uniform single-element extension of U3,6. Thus, by
Corollary 5.9, N1 or N∗

1 is not ω–regular; a contradiction. �

By combining the last result with the next one, we can deduce that the 3–
connected ω–regular matroids with U3,6 as a minor are precisely the members of⋃

n≥6 Un, where we recall that Un is the class of n–element uniform matroids whose
rank and corank are both at least three.

Lemma 5.14. All uniform matroids are ω–regular.

Proof. By Corollary 5.9, all uniform matroids of rank or corank at most three are
ω–regular. Now suppose that M ∼= Ur,n for some r and n−r exceeding 3. Consider
the r × n matrix Dr,n that equals



1 0 1 1 1 · · · 1
0 0 1 α1 α2 · · · αn−3

0 0 1 α2
1 α2

2 α2
n−3

0 0 1 α3
1 α3

2 α3
n−3

0 0 1 α4
1 α4

2 α4
n−3

...
...

. . .
...

0 1 1 αr−1
1 αr−1

2 · · · αr−1
n−3




.

We show first that the determinant of every r×r submatrix X of Dr,n is in An−3−
{0}. If such a matrix X avoids the second column of Dr,n, then it is a Vandermonde
matrix with distinct columns and so its determinant is a non-zero member of An−3.
If X uses the second column of Dr,n, then, by expanding det(X) about that column,
we have that | det(X)| is again the determinant of a Vandermonde matrix with
distinct columns. Hence every r×r subdeterminant of Dr,n is indeed in An−3−{0}.

Now let Ar be the r×r matrix consisting of the first r columns of Dr,n. Consider
the matrix A−1

r Dr,n. Clearly this has the form [Ir |D′
r,n]. We shall complete the

proof of the lemma by showing that this matrix is an (n−3)–unimodular represen-
tation of M . Let Y ′ be an s × s submatrix of [Ir |D′

r,n] for some s in {1, 2, . . . , r}.
Let Y be the r× r submatrix of [Ir |D′

r,n] whose columns are the s columns used by
Y ′ together with the r − s columns of Ir that are zero in all the rows of Y ′. Then
| det(Y )| = | det(Y ′)|. Moreover, Y = A−1

r X for some r × r submatrix X of Dr,n.
Thus det(Y ) = [det(Ar)]−1 det(X). Since both det(Ar) and det(X) are non-zero
members of An−3, so is det(Y ). Thus so is det(Y ′) and the lemma follows. �

The next two results summarize some of the useful properties of the members of
Un.

Lemma 5.15. Let k ≥ 3 and suppose N ∈ Uk+3. Then

(i) N is strictly k–regular;
(ii) N is an excluded minor for the class of (k − 1)–regular matroids; and
(iii) N is a splitter for the class of k–regular matroids.
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(a) (b) (c) (d)

Figure 3. Four 7–element rank–3 matroids.

U7R7

Figure 4. The matroids R7 and U7.

Proof. By Lemma 5.8 and the proof of Lemma 5.14, N is certainly k–regular. The
first part follows because, by Lemma 5.11, a representation of N over Rω must use
at least k of the transcendentals in {α1, α2, . . .}. To prove (ii), we note first that,
when k = 3, it follows from Lemma 5.8 that the unique member of Uk+3, namely
U3,6, is an excluded minor for the class of 2–regular matroids. The proof of (ii) is
completed by arguing by induction on k using (i). Finally, (iii) is a straightforward
consequence of (i). �

Corollary 5.16. Let k ≥ 3 and suppose N ∈ Uk+3.

(i) If N stabilizes a matroid M over Rω, then N = M ; and
(ii) N is not stabilized over Rω by any of its proper minors.

For k ≥ 1, let {X, Y } be a 3–separation of a matroid N in Λk+3. If M is a 3–
connected single-element extension of N , then, by Lemma 4.15, either (i) {X∪e, Y }
or {X, Y ∪ e} is a 3–separation of M , or (ii) M has a minor isomorphic to a single-
element extension of R∗

7 in which neither triad of R∗
7 is preserved. The next two

results show that if M is ω–regular, then (i) must hold.

Lemma 5.17. Let M be a single-element extension of R∗
7 having no triads. Then

M has a minor isomorphic to one of the matroids in Figure 3.

Proof. Suppose, to the contrary, that M has no minor isomorphic to any of the
matroids in Figure 3. Let E(M) − E(R∗

7) = {e}, and, for each i in {1, 2}, let
{xi, yi, zi} be a triad T ∗

i of R∗
7. Also let U7 denote the second matroid shown in

Figure 4. We first observe that, as M has no triads, e is not in the closure of either
T ∗

1 or T ∗
2 . The proof is based on the following observation.
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5.17.1. If u ∈ T ∗
1 ∪T ∗

2 and {e, u} is in no triangles of M , then M/u is isomorphic
to either R7 or U7.

To see this, we first observe that R∗
7/u is isomorphic to P6. Thus M/u is a 3–

connected single-element extension of P6. But M/u has no 4–point line restriction
since e is in the closure of neither T ∗

1 or T ∗
2 . Moreover, M/u is not isomorphic to

any of the matroids in Figure 3. Hence M/u is isomorphic to either R7 or U7.

If e is in neither a 3– nor a 4–circuit of M , then M/x1 is isomorphic to the matroid
in Figure 3(a). Thus there is either a 3– or 4–circuit of M containing e. Suppose
that e is in a 3–circuit C of M . Without loss of generality, we may assume that
C = {x1, e, x2}. Moreover, C is the only 3–circuit of M since circuit elimination
using two 3–circuits containing e produces an immediate contradiction. Consider
M/y1. If y1 is in no 4–circuit of M that contains e, then M/y1 is isomorphic to
the matroid in Figure 3(b); a contradiction. Therefore, by (5.17.1), M/y1 must be
isomorphic to U7 and so {y1, e, y2, z2} is a circuit of M . But then it is not possible
for M/z2 to be isomorphic to either R7 or U7 contradicting (5.17.1). Thus M has
no 3–circuits.

Now suppose that e is in a 4–circuit C′ of M . Let w be the unique element of
E(R∗

7) that is not contained in a triad. There are two cases to consider: w ∈ C′

and w 6∈ C′. First assume that w ∈ C′. Then, without loss of generality, we may
assume that C′ = {w, x1, x2, e}. Consider M/x1. If {x1, e} is contained in no 4–
circuit of M other than C′, then M/x1 is isomorphic to the matroid in Figure 3(b);
a contradiction. Therefore, by (5.17.1), M/x1 is isomorphic to U7 and {x1, e, y2, z2}
is a 4–circuit C′′ of M . By considering M/x2 and applying the last argument to
x2 instead of x1, we get that {x2, e, y1, z1} is a 4–circuit of M . Now, since M/y1

must be isomorphic to U7, it follows that {y1, e, y2, z2} is a 4–circuit C′′′ of M .
Therefore, by the circuit elimination axiom, (C′′ ∪C′′′)− e contains a circuit of M ;
a contradiction. We conclude that w 6∈ C′. Then, we may assume, without loss of
generality, that C′ = {x1, x2, y1, e}. Now arguing as above, we deduce, since M/x1

and M/y1 must both be isomorphic to U7, that {e, x1, y2, z2} and {e, y1, y2, z2} are
both circuits of M . Then circuit elimination again gives a contradiction. �

By Lemma 5.8, none of the matroids in Figure 3 is ω–regular. Using this, the
next corollary follows immediately from the last lemma.

Corollary 5.18. If M is a single-element extension of R∗
7 having no triads, then

M is not ω–regular.

We remark here that we implicitly use Lemma 2.10 in the proof of the next
lemma.

Lemma 5.19. Let m ≥ 4 and let M be a 3–connected single-element extension of
a matroid N in Λm such that M\e = N . Suppose that none of the matroids in
Figure 3 is a minor of M . Then there is a sequence M0, M1, . . . , Mn of matroids
with M0 = M and Mn\e ∼= Um−2,m such that, for all i in {0, 1, . . . , n − 1},
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(i) there is a set Ai that avoids e and has size at least three so that Mi+1 is
either ∆Ai(Mi) or ∇Ai(Mi);

(ii) Mi+1 is 3–connected and Mi+1\e ∈ Λm; and
(iii) the exchange that produced Mi+1 from Mi can be applied to Mi\e and, when

this is done, it produces Mi+1\e.

Proof. Let TN be a reduced del-con tree for which N = M(TN). We prove all parts
of the lemma simultaneously by induction on |V (TN)|. Suppose that |V (TN)| = 1.
If TN consists of a single con vertex, then the lemma certainly holds. Furthermore,
if TN consists of a single del vertex, then it is easily seen that the lemma also holds.
Now let |V (TN )| = n ≥ 2 and assume that the lemma holds for every 3–connected
single-element extension of a matroid in Λm for which there is an associated del-con
tree with fewer vertices.

First suppose that TN has a degree-one del vertex u. Since N is 3–connected,
Eu is coindependent in N and hence in M . Therefore ∆Eu(M) is well-defined since
N |Eu, and hence M |Eu, is uniform of rank 2. If Tu is the tree that is obtained by
shrinking u in TN , then N = M(TN) = ∇Eu(M(Tu)) and so M(Tu) = ∆Eu(N).
Now, by Lemma 2.16(i), ∆Eu(M)\e = ∆Eu(M\e) = ∆Eu(N). The last matroid is
certainly 3–connected. Suppose that ∆Eu(M) is not 3–connected. Then ∆Eu(M)
has a 2–circuit. But this cannot occur since ∆Eu(M) is a restriction of a generalized
parallel connection of two simple matroids. We conclude that ∆Eu(M) is a 3–
connected single-element extension of ∆Eu(N). Since the last matroid is equal to
M(Tu) and Tu has fewer vertices than TN , the induction assumption implies that
the lemma holds for M(Tu) and hence for M .

We may now assume that all degree-one vertices of TN are con vertices. Then,
in particular, |V (TN )| ≥ 3, so TN certainly has a del vertex v. Let {X, Y } be a
3–separation of N that is based on v and chosen so that X and Y contain con
classes Ex and Ey, respectively, each of which corresponds to a degree-one vertex
of TN . Since M has no minor isomorphic to one of the matroids in Figure 3,
it follows by Lemmas 4.15 and 5.17 that either {X ∪ e, Y } or {X, Y ∪ e} is a
3–separation of M . Without loss of generality, we may assume the former. As
e ∈ clM (E(M) − e − Ey), it follows that e 6∈ clM∗(Ey). Thus, as every 3–element
subset of Ey is a triangle of N∗, and N∗ = M∗/e, every 3-element subset of Ey is
a triangle of M∗, that is, a triad of M . Since Ey is independent in N and hence in
M , we deduce that ∇Ey(M) is well-defined. Moreover, by the dual of Lemma 2.16,
∇Ey(M)\e = ∇Ey(M\e) = ∇Ey(N). Thus ∇Ey(M) is a single-element extension of
∇Ey(N). But the last matroid equals M(Ty) where Ty is the del-con tree obtained
from TN by shrinking y. Hence ∇Ey(N) is 3–connected. If ∇Ey(M) is also 3–
connected, then, since it is a single-element extension of ∇Ey(N), it follows by the
induction assumption that the lemma holds for ∇Ey(M) and hence for M .

It remains to consider when ∇Ey(M) is not 3–connected. Then ∇Ey(M) has a
2–circuit, {e, f} say, containing e. But, since M , which equals ∆Ey [∇Ey(M)], has
no 2–circuits, {e, f} meets Ey. Hence f ∈ Ey. We show next that e must lie in the
meet of cl(X) and cl(Y ) in M . Since M is obtained from ∇Ey(M) by performing
a ∆Ey–exchange, the closure of Ey in M must contain e. Therefore, as {X ∪ e, Y }
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Figure 5. The matroids Pn1,n2 and Qm1,m2 .

is a 3–separation of the 3–connected matroid M , and Ey is contained in Y , we get
that e ∈ cl(X) ∩ cl(Y ). Therefore {X, Y ∪ e} is a 3–separation of M . We may
now apply the argument that began in the previous paragraph, interchanging X
with Y and y with x, to deduce that the lemma holds for M unless ∇Ex(M) has
a 2–circuit {e, g} containing e where g ∈ Ex. Assume the exceptional case occurs
and consider ∇Ex(∇Ey(M)) which is certainly defined and equals ∇Ey (∇Ex(M)).
Since e is parallel to f in ∇Ey(M) and to g in ∇Ex(M), it is not difficult to see that
f is parallel to g in ∇Ey(∇Ex(M))\e, and that this matroid equals ∇Ey(∇Ex(N)).
This is a contradiction since the last matroid is in Λm. �

Let M be a 3–connected single-element ω–regular extension of a member of
Λk+3, where k ≥ 1. By the dual of Lemma 5.19, M∗ is ∆ − ∇–equivalent to a
3–connected single-element coextension of U2,k+3 that is ω–regular. Figure 5 gives
geometric representations for the matroids Pn1,n2 and Qm1,m2 , which are defined
for all integers n1, n2, m1, and m2 exceeding one.

Lemma 5.20. Let k ≥ 1. For a matroid M , the following two statements are
equivalent:

(i) M is a 3–connected ω–regular matroid such that M/x ∼= U2,k+3.
(ii) (a) M is k–regular and, for some m1 and m2 with m1 +m2 = k +2, there

is an isomorphism between M and Qm1,m2 under which x maps to the
element of Qm1,m2 that is on no non-trivial line; or

(b) M is strictly (k + 1)–regular and M is isomorphic to U3,k+4 or to a
member of {Pn1,n2 : n1 + n2 = k + 3}.

Moreover, every matroid that is ∆−∇–equivalent to a member of {Pn1,n2 : n1+n2 =
k + 3} is a member of Λk+4.

Proof. Using Lemma 5.8, it is routine to deduce that a matroid is a 3–connected
single-element ω–regular coextension of U2,k+3 if and only if it is isomorphic to a
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member of

{U3,k+4} ∪ {Pn1,n2 : n1, n2 = k + 3} ∪ {Qm1,m2 : m1, m2 = k + 2}.
Furthermore, by the same lemma, every member of {Qm1,m2 : m1 + m2 = k + 2} is
k–regular and every member of {Pn1,n2 : n1 +n2 = k+3} is strictly (k+1)–regular.

To prove the second part of the lemma, we need to show that every member of
{Pn1,n2 : n1 + n2 = k + 3} is in Λk+4. This is certainly true if either n1 or n2 is
equal to two. Therefore assume that both n1 and n2 exceed two. Let X be the set
of points of one of the non-trivial lines of Pn1,n2 , and let x be the unique element
of E(Pn1,n2) that is on no non-trivial lines. Using Lemma 2.9, it is straightforward
to check that the bases of ∇X∪x[∆X(Pn1,n2)] coincide with the bases of U2,k+4.
Therefore Pn1,n2 is indeed a member of Λk+4. �

In the proof of Lemma 5.21, we use the fact that X is a flat of a matroid M if
and only if E(M) − X is the union of a (possibly empty) set of cocircuits of M .

Lemma 5.21. For k ≥ 1, let M be a 3–connected matroid such that M\x ∈ Λk+3.
Suppose that x is not fixed in M . If x 6∈ A, then

(i) x is not fixed in ∆A(M); and
(ii) x is not fixed in ∇A(M).

Proof. Let M ′ be a matroid obtained from M by independently cloning x with x′.
Consider part (i). Since ∆A(M) is well-defined, it follows that ∆A(M ′) is also well-
defined. By Lemma 2.20, the elements x and x′ are independent clones in ∆A(M ′).
Therefore, by definition, x is not fixed in ∆A(M) and part (i) is proved.

Now consider part (ii) of the lemma. As every 3–element subset of A is a triad
of M , the set E(M) − A is a flat F of M . First assume that x is in a circuit C of
M |F . Then (C − x) ∪ x′ is a circuit of M ′|(F ∪ x′) and so F ∪ x′ is a flat of M ′

such that rM (F ) = rM ′(F ∪ x′). Therefore every 3–element subset of A is a triad
of M ′ and so, as A is independent in M ′, the operation ∇A(M ′) is well-defined.
By Corollary 2.21, it follows that x is not fixed in ∇A(M).

Now assume that x is not in a circuit of M |F . Then x is a coloop of M |F and
so F − x is a flat of M . Therefore A ∪ x is the union of a set of cocircuits of M .
Let C∗ be a cocircuit of M that contains x and is contained in A ∪ x. Since every
3–element subset of A is a triad of M and M is 3–connected, it follows that there
are exactly 2 elements of A in C∗. Thus every 3–element subset of A ∪ x is a triad
of M . Therefore every 2–element subset of A is a cocircuit of M\x, so M\x is not
3–connected, contradicting the fact that M\x is a member of Λk+3. This completes
the proof of Lemma 5.21. �

We remark here that, in general, a ∇–exchange on a matroid M does not neces-
sarily preserve the property of an element of E(M) being not fixed. For example,
suppose that M is isomorphic to M(K2,3) and let A denote the set of elements of
one triad of M . Now every element of M is not fixed. However, every element of
∇A(M), which is isomorphic to M(K4), is fixed.
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By Lemma 2.11 and its dual, the following corollary is an immediate consequence
of Lemma 5.21.

Corollary 5.22. For k ≥ 1, let M be a 3–connected matroid such that M\x ∈
Λk+3. Suppose that x is fixed in M . If x 6∈ A, then

(i) x is fixed in ∆A(M); and
(ii) x is fixed in ∇A(M).

Lemma 5.23. For k ≥ 1, let M be a 3–connected k–regular matroid such that
M\x = N and N ∈ Λk+3. Then

(i) x is fixed in M ; and
(ii) N has an element x′ such that either M\x′ or M/x′ is a member of Λk+3

depending upon whether x′ is a del or a con element, respectively, of a
reduced del-con tree TN for which N = M(TN ).

Proof. Since M is k–regular, it has none of the matroids in Figure 3 as a minor.
Thus we may apply Lemma 5.19 to M . Let M0, M1, . . . , Mn be the sequence of
matroids whose existence is established in that lemma. As Mn\x ∼= Uk+1,k+3 and
Mn is k–regular, it follows, by Lemma 5.20, that there is an isomorphism between
Mn and Q∗

m1,m2
under which x maps to the element of Qm1,m2 that is on no non-

trivial lines. For convenience, we shall assume that this isomorphism is the identity.
Let F1 and F2 be the complements of the two non-trivial lines of Qm1,m2 . Then it
is not difficult to check that {F1, F2} is a modular pair of flats in Mn meeting in
{x}, so x is fixed in Mn. Hence, by Corollary 5.22, x is fixed in M .

Next we show, by induction on n, that the element x′ of Mn that lies on both
non-trivial lines of M∗

n has the property asserted in (ii) of the lemma. If n = 0,
then M ∼= Q∗

m1,m2
and N ∼= Uk+1,k+3. Moreover, it is straightforward to deduce

that M/x′ is a member of Λk+3. The reduced del-con tree TN associated with N
has a single vertex, which is labelled “con”, so (ii) holds for n = 0.

Now let n ≥ 1 and suppose that (ii) holds for all smaller values of n. Let
N1 = M1\x. Then M1 is 3–connected and k–regular, and N1 ∈ Λk+3. Let TN1

be the reduced del-con tree corresponding to N1. By the induction assumption,
either M1\x′ or M1/x′ is a member of Λk+3 depending upon whether x′ is a del or
a con element, respectively, of TN1. There are four cases to consider depending on
whether M is ∆A(M1) or ∇A(M1) and whether x′ is or is not in A.

Case (1). M = ∆A(M1) and x′ ∈ A.

Since |A| ≥ 3, it follows that M1/x′ 6∈ Λk+3. Hence M1\x′ ∈ Λk+3 and x′ is a del
element of TN1 . By Corollary 2.17, N = ∆A(N1). Thus x′ is a con element of TN .
Now M/x′ = ∆A(M1)/x′ = ∆A−x′(M1\x′) by Lemma 2.13. As M1\x′ ∈ Λk+3, we
conclude that M/x′ ∈ Λk+3.

Case (2). M = ∆A(M1) and x′ 6∈ A.
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In this case there are two possibilities. Suppose first that x′ is a del element
of TN1 . Then x′ is a del element of TN . Moreover, by the induction assumption,
M1\x′ is in Λk+3 and so is 3–connected. Thus, by Corollary 2.17,

M\x′ = ∆A(M1)\x′ = ∆A(M1\x′).

We conclude that M\x′ is a member of Λk+3.

Now suppose that x′ is a con element of TN1. Then x′ is a con element of TN .
Moreover, by the induction assumption, M1/x′ is in Λk+3 and so is 3–connected.
Thus, by Corollary 2.17,

M/x′ = ∆A(M1)/x′ = ∆A(M1/x′).

We conclude that M/x′ is a member of Λk+3, thereby completing case (2).

In the two cases that remain, M = ∇A(M1). In these cases, by applying the
arguments just given with M∗ replacing M , we obtain the desired conclusion. It
follows, by induction, that (ii) holds. �

The next lemma is somewhat technical. It plays a crucial role in the proofs of
Lemmas 5.25 and 5.29, the two main tools used to prove Theorems 1.3 and 1.4.

Lemma 5.24. Suppose k ≥ 1 and let M be a 3–connected ω–regular matroid such
that M\x/y ∈ Λk+3 for some elements x and y. Assume that every proper minor
of M having a minor in Λk+3 is k–regular. Then

(i) x is fixed in M/y; and
(ii) if M\x is 3–connected, then x is fixed in M .

Proof. Part (i) is certainly true if {x, y} is contained in a triangle of M . But if not,
then M/y is a 3–connected extension by x of a member of Λk+3 and it follows by
Lemma 5.23(i) that (i) holds.

We prove (ii) by contradiction. Suppose that M\x is 3–connected, but x is not
fixed in M . Since (M∗/x)\y ∈ Λk+3, the matroid M∗/x is a 3–connected k–regular
single-element extension of a member of Λk+3. Therefore, by Lemma 5.23(ii), either
(M∗/x)\y′ or (M∗/x)/y′ is a member of Λk+3 for some y′ 6= y. This implies that
either M\x/y′ or M\x\y′ is a member of Λk+3.

Suppose that M\x\y′ ∈ Λk+3. Since M\y′ is certainly 3–connected and k–
regular, x is fixed in M\y′ by Lemma 5.23(i). Thus, by Proposition 5.3(i), x is
fixed in M ; a contradiction.

Now suppose that M\x/y′ ∈ Λk+3. Then, by (i), x is fixed in M/y′. Since x
is also fixed in M/y but x is not fixed in M , it follows by Proposition 5.3(ii) that
{x, y, y′} is a triangle of M .

Next we show that y is cofixed in M . Clearly, M/y\x ∼= M/y\y′ so M/y\y′ ∈
Λk+3. Hence M∗/y′\y ∈ Λk+3. Therefore, by (i), y is fixed in M∗/y′, that is, y
is cofixed in M\y′. Similarly, y is also cofixed in M\x. But {x, y, y′} is a triangle
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of M and M 6∼= U2,4, so {x, y, y′} is not a triad of M . Therefore, by the dual of
Proposition 5.3(ii), y is cofixed in M .

Since x is fixed in M/y, but not in M , it follows by Proposition 5.6(i) that x
is freer than y in M . Thus either {x, y} are clones in M , or x is strictly freer
than y in M . If x and y are clones in M , then, as M is 3–connected, x and y
are coindependent clones in M and so y is not cofixed in M ; a contradiction. If
x is strictly freer than y, then, by Proposition 5.6(ii), y is not cofixed in M ; a
contradiction. �
Lemma 5.25. Let k ≥ 1. Then every member of Λk+3 is a universal stabilizer for
the class of k–regular matroids.

Proof. Let N be a member of Λk+3 and M be a k–regular matroid. We shall use
Theorem 5.4. If M\x = N , then, by Lemma 5.23(i), x is fixed in M . Dually, if
M/y = N , then y is cofixed in M . Finally, if M\x/y = N and M\x is 3–connected,
then, by Lemma 5.24, x is fixed in M . We now conclude using Theorem 5.4 that
the lemma holds. �

The next corollary follows immediately from combining Lemma 5.25 with The-
orem 5.5.

Corollary 5.26. Let k ≥ 1. Then every member of Λk+3 is an Rω–stabilizer for
the class of k–regular matroids.

Lemma 5.29, one of the two primary tools in the proofs of the main theorems of
this section, will use two more preliminary results. The first of these is easily seen
to be implicit in the first paragraph of the proof of Theorem 5.1 of [8].

Lemma 5.27. Let P be a partial field. If M and N are both 3–connected P–
representable matroids such that M\x = N and x is fixed in M , then N stabilizes
M over P.

Lemma 5.28. An ω–regular matroid M that is not k–regular cannot be stabilized
over Rω by a k–regular matroid.

Proof. This follows immediately from the fact that an ω–unimodular representation
of a matroid that is not k–regular requires at least k + 1 algebraically independent
transcendentals over Q. �
Lemma 5.29. Let k ≥ 1. Suppose that M is a 3–connected ω–regular matroid that
has as a minor a member of Λk+3 that does not stabilize M over Rω. Then M has
a minor isomorphic to a member of {U3,k+4, Uk+1,k+4} ∪ Λk+4.

Proof. It suffices to consider the case when M is a minor-minimal 3–connected ω–
regular matroid having a minor in Λk+3 that does not stabilize M over Rω. By
Corollary 5.26, M is not k–regular. Moreover, by Theorem 5.1, for some member
N of Λk+3 that does not stabilize M over Rω, there are elements x and y of M
such that (i) M\x = N , or (ii) M/y = N , or (iii) M\x/y = N and both M\x and
M/y are 3–connected.
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First let M\x = N . By Lemma 5.20 and the remarks preceding it, either M is
isomorphic to Uk+1,k+4, or M is ∆−∇–equivalent to a member of {P ∗

n1,n2
: n1+n2 =

k +3}. In the second case, by Lemma 5.20, M is a member of Λk+4. Thus, in both
cases, M is isomorphic to a member of {U3,k+4, Uk+1,k+4} ∪ Λk+4. By duality, if
M/y = N , then, again, M is isomorphic to a member of {U3,k+4, Uk+1,k+4}∪Λk+4.

Now assume that M\x/y = N and both M\x and M/y are 3–connected. Then
Lemma 5.28 and the minimality of M imply that both M\x and M/y are k–regular.
Therefore, by Lemma 5.25, y is cofixed in M\x and x is fixed in M/y. Furthermore,
as M\x is k–regular but M is not k–regular, Lemma 5.28 implies that M\x does
not stabilize M over Rω. Thus, by Lemma 5.27, x is not fixed in M . Therefore, by
Lemma 5.24(ii), M has a proper minor M ′ that is not k–regular and has a minor in
Λk+3. Since |E(M)| = k+5, it follows that M ′ has an element z such that M ′\z or
M ′/z ∈ Λk+3. Since M ′ is not k–regular, we conclude that M ′ is 3–connected and
that no member of Λk+3 stabilizes M ′. Thus M ′ contradicts the choice of M . �

At last we are in a position to prove Theorems 1.3 and 1.4. Indeed, most of the
work in proving these theorems has already gone into proving Lemmas 5.25 and
5.29.

The proof of Theorem 1.3 is by induction on k and relies on Theorem 5.1. Due to
certain properties of the class of ω–regular matroids, it turns out that, for k ≥ 1, the
ω–regular excluded minors for the class of k–regular matroids can be determined
from the ω–regular excluded minors for the class of (k − 1)–regular matroids by
simply performing the stabilizer check of Theorem 5.1 on each of the latter matroids.
Before proving Theorem 1.3, we restate it for convenience. Recall that Un is the
class of n–element uniform matroids whose rank and corank are both at least three.

Theorem 1.3. Let M be an ω–regular matroid and let k ≥ 0. Then M is k–regular
if and only if it has no minor isomorphic to a member of Uk+4 ∪ Λk+4.

Proof. We argue by induction on k. If k = 0, the theorem is an immediate con-
sequence of Tutte’s excluded-minor result for the class of regular matroids [24].
Now assume that the theorem holds for k < n and let k = n ≥ 1. First we note
that, by Lemmas 5.7 and 5.15, U2,k+4 and all the members of Uk+4 are ω–regular
excluded minors for the class of k–regular matroids. Hence, by Theorem 1.1 and
Corollary 3.8, every member of Λk+4 is also an excluded minor.

Now suppose that M is an ω–regular matroid that is an excluded minor for the
class of k–regular matroids but is not isomorphic to a member of Uk+4 ∪ Λk+4.
Since M is not (k − 1)–regular, the induction assumption implies that M has a
minor N isomorphic to a member of Uk+3 ∪Λk+3. Moreover, by Lemma 5.28, M is
not stabilized over Rω by N . Suppose that N ∈ Λk+3. Then, by Lemma 5.29, M
has a minor isomorphic to a member of {U3,k+4, Uk+1,k+4}∪Λk+4; a contradiction.
Thus we may suppose that N 6∈ Λk+3. Then N ∈ Uk+3, so k ≥ 3. Thus M is an
ω–regular matroid having a U3,6–minor. Thus, by Corollary 5.13, M is uniform.
Since M has more than k + 3 elements, it follows that M has a member of Uk+4 as
a minor. This contradiction completes the proof. �
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A consequence of Theorem 1.3 is that, given a partial field P, we can bound the
number of inequivalent P–representations of certain k–regular matroids.

Corollary 5.30. Let k ≥ 1. Let M be a 3–connected strictly k–regular matroid
that is not in Uk+3. Suppose that M is representable over a partial field P and let
n be the number of inequivalent P–representations of U2,k+3. Then M has at most
n inequivalent P–representations.

Proof. By Lemma 5.15, all members of Uk+3 are splitters for the class of k–regular
matroids. Therefore, by Theorem 1.3, M has a minor N isomorphic to a member
of Λk+3. By Lemma 5.25, N is a universal stabilizer for the class of k–regular
matroids, and so, by Theorem 5.5, N stabilizes M over P. Thus, by Proposition 5.2,
the number of inequivalent P–representations of M is no more than the number
of inequivalent P–representations of N . Moreover, it is straightforward to deduce
from Corollary 3.6 that there are exactly n inequivalent P–representations of N .
The corollary follows immediately. �

Next we prove Theorem 1.4.

Theorem 1.4. Let k ≥ 0 and let M be a 3–connected k–regular matroid. Then all
ω–unimodular representations of M are equivalent.

Proof. Suppose that M is strictly k–regular. Then, by Theorem 1.3, M has a minor
N isomorphic to a member of Uk+3 ∪Λk+3. Since, by Lemma 5.15, all members of
Uk+3 are splitters for the class of k–regular matroids, if N ∈ Uk+3, then N = M and
so, by Lemma 5.11, all ω–unimodular representations of M are equivalent. Thus
we may assume that N ∈ Λk+3. Then, by Corollary 5.26, M is stabilized by N over
Rω. But, by Lemma 5.7 and Corollary 3.6, N is uniquely representable over Rω.
Hence, by Proposition 5.2, all ω–unimodular representations of M are equivalent.
The theorem now follows readily. �

Let k be a positive integer and suppose that M is a 3–connected strictly k–regular
matroid that is not in Uk+3. If M is representable over a partial field P, then, by
Corollary 5.30, the number of inequivalent P–representations of M is no more than
the number of inequivalent P–representations of U2,k+3. The next corollary shows
that a member of each equivalence class of P–representations of M can be obtained
via a k–unimodular representation of M .

Corollary 5.31. Let k be a positive integer and P be a partial field with the prop-
erty that there are k distinct elements a1, a2, . . . ak in P − {0, 1} such that, for all
distinct i and j in {1, 2, . . . , k}, both ai − 1 and ai − aj are in P. Let M be a
3–connected matroid that is strictly k–regular and has a minor N isomorphic to a
member of Λk+3. Then the matrix obtained from a k–unimodular representation of
M by replacing αi with ai for all i is a P–representation of M . Moreover, up to
equivalence, all P–representations of M can be obtained in this way.

Proof. The fact that the matrix obtained from a k–unimodular representation of
M by replacing αi with ai for all i is a P–representation for M follows from [16,
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Proposition 4] and [19, Corollary 5.2]. We now show that all P–representations of
M , up to equivalence, can be obtained in this way.

Consider a P–representation of U2,k+3. Since all k–unimodular representations
of U2,k+3 are equivalent, it is clear that all P–representations of U2,k+3 can be
obtained from the following k–unimodular representation of U2,k+3 by replacing αi

with ai for all i in {1, 2, . . . , k}.

[
1 0 1 1 1 · · · 1
0 1 1 α1 α2 · · · αk

]

Since N ∈ Λk+3, it follows by Corollary 3.6 that, up to equivalence, every P–
representation of N can be obtained from a k–unimodular representation of N by
replacing αi with ai for all i.

Let X be a k–unimodular representation of N and Y be the P–representation of
N obtained by replacing αi with ai for all i. By combining Lemma 5.25 and Theo-
rem 5.5, we deduce that N stabilizes M over P. Therefore if Y can be extended to
a P–representation of M , then all such representations of M are strongly equiva-
lent. Moreover, by Theorem 1.4, X is guaranteed to extend to some k–unimodular
representation X ′ of M , so one of these representations can be obtained from X ′

by substituting ai for αi for all i. Corollary 5.31 is now proved. �

An immediate consequence of Corollary 5.31 is that if M is a non-binary 3–
connected near-regular matroid representable over a partial field P, then all P–
representations of M can be obtained in the way described in its statement. This
result is [29, (2.12)] and has an important role to play in the theorems of [28, 29].

6. A Characterization of an Excluded-Minor Class of Matroids

There are exactly five non-isomorphic 3–connected matroids of rank and corank
three, namely the matroids M(W3),W3, Q6, P6, and U3,6. The first of these ma-
troids is the rank–3 wheel. Each of the other four matroids in this sequence can
be obtained from its predecessor by relaxing a line or, more formally, relaxing a
circuit-hyperplane. In [14], it was noted that, of the five classes of matroids that
result from excluding four of these matroids as minors, all have been described ex-
cept EX(M(W3),W3, Q6, U3,6), the class of matroids having no minor isomorphic
to any of the matroids M(W3), W3, Q6, and U3,6. In this section, we complete the
picture by describing EX(M(W3),W3, Q6, U3,6).

Lemma 6.1. If M is in
⋃

m≥4 Λm, then M ∈ EX(M(W3),W3, Q6, U3,6).

Proof. Evidently, if |E(M)| ∈ {4, 5, 6}, then the lemma holds. Therefore assume
that |E(M)| ≥ 7. Suppose, to the contrary, that M has a minor N isomorphic to
one of the matroids M(W3), W3, Q6, and U3,6. If N is M(W3), then replace N with
the largest wheel minor of M , while if N is W3, then replace N with the largest whirl
minor of M . Clearly, for all r ≥ 3, neither the rank–r wheel nor the rank–r whirl
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has two elements that are clones, hence neither matroid is a member of
⋃

m≥4 Λm.
Since M is 3–connected, it now follows by Seymour’s Splitter Theorem [22] (see
also [15, Corollary 11.2.1]) that there is a sequence M0, M1, . . . , Mn of 3–connected
matroids with M0

∼= N and Mn = M such that, for all i in {0, 1, . . . , n − 1}, the
matroid Mi is a single-element deletion or a single-element contraction of Mi+1.
Since Mn is in

⋃
m≥4 Λm but M0 is not, there is clearly an index j in {1, 2, . . . , n}

such that
⋃

m≥4 Λm contains Mj but not Mj−1. Let E(Mj)−E(Mj−1) = {e}. Let
TMj be a reduced del-con tree for which Mj = M(TMj ), and let v be the vertex of
TMj for which e ∈ Ev. Then, as Mj−1 6∈ ⋃

m≥4 Λm, it follows by Lemma 4.8 that
either

(i) Ev is a del class of TMj and Mj/e = Mj−1, or
(ii) Ev is a con class of TMj and Mj\e = Mj−1.

By duality, we may assume that (i) holds. Now v is not a degree-one vertex of
TMj , otherwise Mj/e is non-simple. Let {X, Y } be a 3–separation of Mj based on
v and suppose that e ∈ X . Then both X and Y span Ev. Thus {X − e, Y } is a
2–separation of Mj/e. Therefore Mj/e is not 3–connected and so the connectivity
of Mj−1 is contradicted thereby completing the proof of the lemma. �

The next theorem is the main result of this section. Its proof will use the following
result.

Lemma 6.2. If M is a connected matroid having a minor isomorphic to U3,6 or
Q6, and e ∈ E(M), then M has a U3,6– or Q6–minor that uses e.

Proof. By a result of Seymour [20] (see also [15, Corollary 11.3.9]), it suffices to
check that the lemma holds when |E(M)| = 7. We omit the routine case check. �
Theorem 6.3. A matroid is a 3–connected member of EX(M(W3),W3, Q6, U3,6)
if and only if it is a member of

⋃
m≥4 Λm ∪ {U0,0, U0,1, U1,1, U1,2, U1,3, U2,3}.

The following lemma contains the core of the proof of this theorem.

Lemma 6.4. Let N be a 3–connected member of EX(M(W3),W3, Q6, U3,6) having
an element e such that N\e ∈ Λm for some m ≥ 6. Suppose that there is a sequence
N0, N1, . . . , Nk of matroids with N = N0 and Nk\e ∼= Um−2,m such that, for all i
in {0, 1, . . . , k − 1},

(i) there is a set Ai that avoids e and has size at least three so that Ni+1 is
either ∆Ai(Ni) or ∇Ai(Ni);

(ii) Ni+1\e ∈ Λm; and
(iii) the exchange that produced Ni+1 from Ni can be applied to Ni\e and, when

this is done, it produces Ni+1\e.

Then Nk has neither a Q6– nor a U3,6–minor.

Proof. Assume the contrary taking a counterexample for which m is a minimum.
Then, by Lemma 6.2, Nk has a Q6– or a U3,6–minor using e. Thus, since Nk has
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corank 3, there is a subset D of E(N) − e such that Nk/D is isomorphic to Q6 or
U3,6.

Consider the sequence N0\e, N1\e, . . . , Nk\e. By Corollary 2.17, each member
of this sequence can be obtained from its predecessor by a ∆–exchange or a ∇–
exchange. Moreover, Nk\e ∼= Um−2,m and N0\e = N\e. Construct the sequence
Tk, Tk−1, . . . , T0 of del-con trees as follows. Let Tk have a single vertex labelled
(E(N) − e, con). Then M(Tk) = Nk\e. In general, assume that M(Tj) = Nj\e for
all j in {i, i + 1, . . . , k} and let the ∆– or ∇–exchange that produced Ni−1\e from
Ni\e determine how Ti−1 is constructed from Ti.

Now let x be an element of D, and consider the sequence T0\x, T1\x, . . . , Tk\x
of del-con trees. Then M(Tk\x) ∼= Um−3,m−1 and, by Lemma 4.8, M(Ti\x) is
M(Ti)\x or M(Ti)/x depending on whether x is in a del or a con class of Ti. In
particular, M(Ti\x) is 3–connected. By hypothesis, the same sequence of ∆– and
∇–exchanges that produced Nk from N0 also produces Nk\e from N0\e, that is,
produces M(Tk) from M(T0). Now M(Ti+1) is either ∆Ai(M(Ti)) or ∇Ai(M(Ti)).
Thus M(Ti+1\x) is, respectively, ∆Ai−x(M(Ti\x)) or ∇Ai−x(M(Ti\x)).

Let N ′ be N\x or N/x depending on whether x is a del or con element of N\e.
Then it is not difficult to check, using Lemmas 2.13 and 2.16 and Corollary 2.14,
that, by beginning with N ′, one can apply the same sequence of operations that
produced M(Tk\x) from M(T0\x) to obtain Nk/x.

Suppose that N ′ is 3–connected. Since x ∈ D, the matroid Nk/x has a Q6– or
a U3,6–minor and Nk/x\e ∼= Um−3,m−1. Thus N ′ contradicts the choice of N since
(i)–(iii) hold for N ′, where we note that both the operations ∆Ai−x and ∇Ai−x

equal the identity when |Ai −x| = 2. We conclude that N ′ is not 3–connected. But
N ′\e ∈ Λm−1 so N ′\e is 3–connected. Thus N ′ = N/x, otherwise N ′ = N\x and
so N ′ is 3–connected since both N and N\x\e are. As N/x is not 3–connected,
but both N and N/x\e are, we deduce that {x, e} is in a triangle of N .

We may assume the following:

6.4.1. Every element x of D is a con element of N\e and lies in a triangle of N
with e.

We show next that

6.4.2. |D| ≤ 2.

Proof. Suppose first that, in N , there are at least three non-trivial lines through e
that each contains an element of D. If there are three such coplanar lines, then it is
easy to see that N has one of M(W3),W3, Q6, and U3,6 as a minor; a contradiction.
We may now assume that we have three non-trivial lines L1, L2, and L3 through e
whose union has rank four such that each contains an element of D. Let {e, di, fi} ⊆
Li for each i, where di ∈ D. Then no two of d1, d2, and d3 are clones in N\e. Hence
d1, d2, and d3 are in different vertex classes of T0. Thus, by two applications of
Lemma 4.8, we deduce that N\e/d1, d2 = M(T0\d1, d2). But M(T0\d1, d2) is in
Λm−2 and so is simple whereas N\e/d1, d2 has {f1, f2} as a circuit; a contradiction.
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We conclude that there are at most two non-trivial lines through e that contain
elements of D. Thus |D| ≤ 2 unless there is a line through e containing two elements
of D.

Now suppose that N has a line L containing {e, d, d′} where {d, d′} ⊆ D. Then
{e, d, d′} is not a circuit of Nk otherwise Nk/d\e, which is isomorphic to Um−3,m−1,
has a minor isomorphic to Q6 or U3,6; a contradiction. Thus, for some i, the set Ai

meets {d, d′} where we recall that Ni+1 is either ∆Ai(Ni) or ∇Ai(Ni). For the first
such i, since d and d′ are con elements of T0, the set Ai is a con class of Ti, and so
Ni+1 = ∇Ai(Ni). In Ni, every 3–element subset of Ai is a triad. Since e 6∈ Ai but
{e, d, d′} is a triangle of Ni, we deduce that Ai ⊇ {d, d′} and |Ai| = 3. Since each
Tj+1 is obtained from Tj by shrinking a vertex and, for all degree-one vertices v of
T0, the set Ev has at least three elements, we deduce that Ai is a vertex class of T0

and so is a triad of N . By orthogonality, there is no other element of N on the line
L through {e, d, d′}. Thus |D| ≤ 2 unless there is another non-trivial line through
e meeting D. Consider the exceptional case, letting {e, d′′, f} be a subset of a line
L′ through e where d′′ ∈ D and L′ 6= L. Then, by orthogonality, d′′ is in a vertex
class of T0 that is different from Ai. Thus N\e/d, d′′ = M(T0\d, d′′) but the former
has parallel elements, while the latter cannot. We conclude that (6.4.2) holds. �

Since Nk/D is isomorphic to Q6 or U3,6, it follows from (6.4.2) that Nk has
at most 8 elements. Hence N0 has at most 8 elements. Moreover, N0\e ∈ Λm

and, since Nk has a Q6– or U3,6–minor, Nk 6∈ Λm+1. Suppose that N0\e has rank
two. Then so does N0 and hence N0 ∈ Λm+1; a contradiction. Now suppose that
N0\e has corank two. Then N0\e = Nk\e, so no ∆– or ∇–exchanges are used to
produce N0\e from Nk\e. Hence no exchanges are used to produce N0 from Nk,
so N0 = Nk. This is a contradiction since N0 ∈ EX(M(W3),W3, Q6, U3,6). We
may now assume that both the rank and corank of N0\e exceed two. Then T0 has
at least two vertices containing at least three elements and so M(T0), which equals
N0\e, has a P6–minor.

Assume that |E(N0)| = 7. Then, since N0 ∈ EX(M(W3),W3, Q6, U3,6), it is not
difficult to check that N0

∼= P2,4 or N0
∼= P3,3, where Pn1,n2 is as shown in Figure 5.

By Lemma 5.20, N0 is in Λ7 and hence so is Nk; a contradiction. We may now
assume that |E(N0)| = 8. Then, for some element f of N0, either N0\e\f ∼= P6 or
N0\e/f ∼= P6. Moreover, |D| = 2. Thus either

(a) there is a line through e containing two con elements of N0\e, or
(b) there are two non-trivial lines through e each containing a con element of

N0\e.

In particular, N0\e has at least two con elements.

Suppose that N0\e\f ∼= P6. Then, from the case when |E(N0)| = 7, we deduce
that both N0\e and N0\f are isomorphic to members of {P2,4, P3,3}. As N0\e has
at least two con elements, it follows that N0\e ∼= P2,4. It is not difficult to check
that (a) holds and so N0

∼= P3,4. Thus N0, and hence Nk, is in Λ8; a contradiction.
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Next, suppose that N0\e/f ∼= P6 and (b) holds. Then N0 has rank and corank
4. Let C∗ be a cocircuit that is the complement of a flat spanned by two non-trivial
lines through e. Then C∗ is a triad and C∗ has no element g for which N0/g is
3–connected otherwise N0 has a Q6–, M(W3)–, or W3–minor. Thus, by a result
of Lemos [11], there are two triangles of N0 meeting C∗ in distinct subsets. Hence
every element of C∗, and therefore every element of N0, is in a triangle. Thus N∗

0 is
a minimally 3–connected matroid of rank 4 having 8 elements. Therefore, by [12],
N∗

0 is a wheel or whirl of rank 4; a contradiction.

Finally, suppose that N0\e/f ∼= P6 and (a) holds. Then, since N0\e is 3–
connected, it follows by duality from the case when |E(N0)| = 7 that N0\e is
isomorphic to P ∗

2,4 or P ∗
3,3. Using geometric representations of these two matroids

along with the fact that (a) holds, we obtain by a straightforward case analysis
that either N0 6∈ EX(M(W3),W3, Q6, U3,6) or N0 ∈ Λ8. Both possibilities yield
contradictions. �

Proof of Theorem 6.3. Since the members of {U0,0, U0,1, U1,1, U1,2, U1,3, U2,3} are all
of the 3–connected matroids with at most three elements, it follows by Lemma 6.1
that we need to show that if M is a 3–connected member of EX(M(W3),W3, Q6,
U3,6) with at least four elements, then M is a member of

⋃
m≥4 Λm. If either

r(M) = 2 or r∗(M) = 2, then M is certainly in
⋃

m≥4 Λm. Therefore we may
assume that both the rank and corank of M are at least three. If M is binary,
then it follows, by Tutte’s Wheels-and-Whirls Theorem [26] (see, for example, [15,
Corollary 11.2.14]), that M has a minor isomorphic to M(W3). Hence M is non-
binary and so M has a U2,4–minor [24]. Since M and U2,4 are both 3–connected
and since, for r ≥ 3, M has no minor isomorphic to the rank–r whirl, it follows
by the Splitter Theorem [22] that M has a 3–connected minor isomorphic to either
a single-element extension or a single-element coextension of U2,4. Thus M has
either a U2,5– or U3,5–minor. But M has rank and corank at least three, so, by
[14, Theorem 1.6], M has a minor isomorphic to U3,6, Q6, or P6. The first two
possibilities are excluded. Hence M has a P6–minor. Thus there is a sequence
M0, M1, . . . , Mn of 3–connected matroids with M0

∼= P6 and Mn = M , such that,
for all i in {1, 2, . . . , n}, the matroid Mi−1 is a single-element deletion or a single-
element contraction of Mi. Let j be the least index i for which Mi−1 is in

⋃
m≥4 Λm

but Mi is not. Such an index certainly exists since P6 is in
⋃

m≥4 Λm and M is not.
By duality, we may assume that Mj\e = Mj−1.

Each of the matroids in Figure 3 has either Q6 or U3,6 as a minor. Therefore
Mj has none of the matroids in Figure 3 as a minor. Thus, by Lemma 5.19, there
is a sequence N0, N1, . . . , Nk of matroids with Mj = N0 and Nk\e ∼= Um−2,m such
that (i)–(iii) of Lemma 6.4 hold. Thus, by that lemma, Nk has neither a Q6– nor
a U3,6–minor.

To complete the proof of the theorem, we now show that N∗
k is isomorphic to

Pn1,n2 for some n1 and n2 that sum to m. First, we observe that e is in no non-
trivial lines of N∗

k since N∗
k/e ∼= U2,m. Moreover, since N∗

k has rank three, N∗
k does

not have two intersecting non-trivial lines otherwise it has a Q6–minor. Hence N∗
k

has at most two non-trivial lines otherwise it has a U3,6–minor. If N∗
k has exactly
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two non-trivial lines having n1 and n2 points, respectively, than N∗
k
∼= Pn1,n2 . If

N∗
k has at most one non-trivial line, then, since N∗

k has no U3,6–minor, N∗
k must

have exactly one such line and this line must use all but three of the elements of
the matroid. In this case, N∗

k
∼= P2,m−2. We conclude that N∗

k is indeed isomorphic
to Pn1,n2 for some n1 and n2 that sum to m. Therefore N∗

k , and hence Nk, is in⋃
m≥4 Λm. Thus Mj, which equals N0, is in

⋃
m≥4 Λm; a contradiction. 2
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