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ABSTRACT 
The effective delivery of sedation in critical care relies primarily on an accurate and 
consistent measure of a patient’s agitation level. However, current methods for 
assessing agitation are subjective and prone to error, often leading to over sedation or 
cycles between agitation and oversedation. This paper builds on previous work 
developing agitation sensors based on heart rate and blood pressure variability, and 
overall whole body motion. In this research, the focus is on real-time measurement of 
high resolution facial changes that are observed to occur in agitation. An algorithm is 
developed that measures the degree of facial grimacing from a single digital camera. 
The method is demonstrated on simulated patient facial motion to prove the concept. 
A consistent measure is obtained that is robust to significant random head movement 
and compares well against visual observation of different levels of grimacing. The 
method provides a basis for clinical validation. 
 

Keywords—Agitation Sensor, Sedation, Critical Care, Digital Camera, Image 
Processing, Facial Grimacing 
 

1. Introduction 
 

In critical care many patients are mechanically ventilated and sedated for 
relatively long periods. Sedative dosing is thus primarily titrated to provide a 
minimum level of unconsciousness to facilitate recovery while also minimizing 
patient agitation. 
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Patients commonly experience agitation in the ICU as a result of invasive life 
support systems, combined with their disease, injury and environment. Agitation 
reduces the ability of the patient to recover, thus potentially increasing length of stay 
and cost. Other potential risks include self extubation, removal of catheters and lines, 
and injury to staff [1].  

To reduce agitation, patients are commonly sedated by intermittent bolus or 
continuous infusion of sedative and analgesic drugs [1,2]. Therefore, effective 
delivery of sedation is fundamental in the ICU, and is the basis for providing comfort 
and relief to the critically ill. However, there is no accepted gold standard for 
measuring agitation and current methods are subjective and prone to error. This 
subjective level of assessment can lead to over sedation, variable delivery of sedative, 
and increased cost and prolonged length of stay [1, 3, 4]. 

A quantitative, consistent agitation sensor based on observed clinical behaviour 
could enable more effective sedation administration [5-7]. In previous work, agitation 
sensors based on blood pressure and heart rate variability [8] and digital imaging of 
whole body motion [9], have been developed and validated [10]. Furthermore, 
significant potential improvements in agitation and sedation management have been 
shown using clinically validated model simulation to examine automated or semi-
automated sedative infusion methods using agitation feedback [6,7]. These control 
methods were based on a physiological model of agitation and sedation 
pharmacodynamics [5,6,11,12].   

This paper extends the agitation sensor by creating a measure of the degree of 
facial grimacing and head motion. These motions are known to be an important 
indicator of agitation in the critically ill [13-15], offering the potential to provide 
earlier and/or consistent quantitative detection of agitation. Note that the whole body 
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movement approach [9,10] is limited to measuring essentially average body motion, 
and has relatively low resolution of the head and face. Since the camera takes images 
of the whole body there is an inherent perspective distortion due to the oblique 
viewing angle, potentially reducing the resolution of motion detection and 
measurement. Furthermore, in the case of paraplegic patients [16], whole body 
movement is not available, significantly hindering the use of [9,10]. Facial expression 
is also particularly important for measuring pain in pediatrics [17-20], is one of the 
key elements of Behavioural Pain Assessment [21] and is a significant part of pain 
measurement in general [22-25]. 

In this research, the camera is focused primarily on the head and face rather than 
an overall view of the whole body [9,10]. This approach provides potentially much 
greater facial resolution and thus the ability to detect subtle facial changes. More 
specifically, during, and prior to, agitation, there can be significant head movement 
and facial grimacing. Thus, dynamically changing features must be tracked and 
measured in real time, regardless of head movement. Thus, this problem presents two 
main problems: 1) tracking the head during potentially vigorous patient motion, and 
2) measuring facial grimacing and motion in that tracked facial region. Both tasks 
must occur in clinical real time, implying the need for computationally efficient, as 
well as accurate, methods.  

A number of facial recognition and tracking algorithms exist (e.g. [26-31]), 
However these algorithms usually deal with either the detection and tracking of static 
facial features [28], or purely describe qualitatively overall facial changes [31]. 
Neither task is typically done within the real time constraints needed for critical care, 
which are on the order of 1-5 times per second to effectively track changes [9,10]. 
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The goal in this paper is to develop methods for detecting and quantifying dynamic 
feature change related to facial grimacing, independent of head movement.  
 

2. Methodology 

 
The primary focus is on calculating a view independent measure of facial 

grimacing. Therefore, the head must first be tracked, specific regions of the face need 
to be located and a measure of grimacing based on image properties must be 
developed. The methodology for this approach is presented in a general manner but is 
explained in terms of two specific simulated examples. The first example concentrates 
on the tracking of the dot with no facial expression. The second example demonstrates 
the full development of a measure of facial grimacing independent of the camera 
viewing angle. The section is organized by starting with a description of the 
experimental setup, followed by a step by step overview of the proposed algorithm. 
Each step of the algorithm is then described and explained in more detail. 
  

 Experimental Setup 
 

Video broadly imitating the full possible range of facial grimacing of a patient in 
critical care provide proof of concept data, using a Canon IXUS 40 digital camera. 
The digital camera is focused approximately normal to the patient’s face, as shown in 
Figure 1. The images cover a range of grimacing from calm to exaggerated 
expression. 
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Camera details include: 
• Video format: ‘.avi’  
• Resolution of video frame: 320*240 
• Frame/ Second: 30  
• Video Compression: 'MJPG' 
• Video frames colour: RGB 
 

The video simulates: 
1. A patient moving head with no expression 
2. A patient moving head and grimacing 

Each frame is stored as a jpeg file and processed frame-by-frame using MATLAB 7.1. 
MATLAB is used to develop the algorithms, but in a manner that would generalise to 
an implemented real-time system. 
 
 

 Overview of proposed algorithm 
 
The algorithm has five fundamental processing steps: 
 
Step 1.  Detect head position 

A reference point(s) is placed on the patient (e.g. black dot on forehead or 
ventilator tube) to enable a simple and efficient automated method for consistently 
locating a known location on the head. 

 
Step 2.  Put boundary around face 
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To ensure accuracy in isolating the required regions of the face, the boundary 
contour surrounding the face is extracted. The results segregate the portion of the face 
visible to the camera for processing. 
 

 
Step 3.  Segment the face 

The face is segmented into pre-determined sections based on regions that are 
clinically claimed to be most representative of the grimacing evidenced in patient 
agitation. These regions are clinically selected, but can be arbitrarily changed based 
on new clinical input. 

 
Step 4.  Evaluate grimacing 

Each pre-determined region of the face in step 3 is analysed to measure the degree 
of facial change relative to a static, resting case calibration with no appreciable facial 
expression. All information including the magnitude and frequency of head 
movement, grimacing and facial features from step 4 are combined to create a metric 
reflecting the amount of change. 

 
Step 5.  Compute agitation measure 

Combines the information from step 4 with other heart rate or blood pressure 
measurements as in [8] to compute an overall agitation measure that can be used as a 
feedback control quantity to provide more effective sedation [6,7]. 

 

 Reference point tracking (Step 1) 
 



 - 7 - 

To easily determine head position, a white marker containing a black dot is placed 
on the forehead, as shown in Figure 2. The aim is to detect the marker in the first 
frame and follow it in the following frames. In a critical care setting a patient usually 
has a ventilator and/or tubes from the mouth so that several artificial points could be 
placed. These markers would be permanent, except during the possibility of extreme 
patient agitation where they may grab the ventilator and/or tubes and attempt to 
remove them from the mouth. However, if a marker was dislodged this would be 
easily automatically detected as missing from the image and could then be placed 
back on the patient by clinical staff. 

 To detect the dot, the RGB image is first converted to greyscale. For 
computational efficiency and improved accuracy, a rectangular area is then placed 
around the dot such that for any position of the head, the dot always stays within this 
area, as shown in Figure 2(a). Thus, only this limited area has to be processed to find 
the dot position. This area would have to be pre-set by the nursing staff for a few 
patients and/or set relatively large.   

The greyscale image of the rectangular area is smoothed by replacing each pixel 
intensity by the average of itself and its 8 neighbouring pixel intensities. This 
smoothing is applied two times and the rectangular area is then normalized by re-

scaling the pixels from 0 to 10. Specifically, let minI  and maxI  be the minimum and 
maximum intensities respectively. The new-scaled intensity, Ī, corresponding to I is 
defined:   

minmax
min

minmax

1010
II

I
II
II

−
−

−
=      (1) 

Using Equation (1) it is easily shown that 0=minI and 10=maxI . This scaling 

enables a consistent threshold level to be chosen independent of changes in 
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brightness, which allows pixels above this threshold to be readily deleted. Figure 2(b) 
shows Figure 2(a) after this process. 

Once thresholding is done, the rectangle is processed to eliminate elements that 
are not the required dot. Figure 3 shows four cases representing each possible 
outcome. The methods keep only black objects surrounded by white, which is 
precisely the property of the artificially placed reference point. The first step takes the 
complement image and the second makes all white areas touching a border black. In 
cases (a), (b) and (c); every unwanted area is deleted leaving only the white dot. 
Nevertheless, if there is any other black object circled by white, it will remain, as 
shown in Figure 3 (d). 

For Figure 3(d), this process requires a correct initial position of the black dot. 
Thus, for the first frame, an upper and lower bound Nmin, and Nmax, is placed on the 
number of pixels making up the black dot. All regions not within the Nmin-Nmax pixel 
bound are deleted, leaving the required black dot. This method will leave regions that 
have a similar number of pixels to the black dot. However this case should be rare in a 
controlled clinical environment. Finally, by taking an average of all the pixels in the 
black dot, the centre of the black dot in Figure 2 (a) is found. 

For subsequent frames, the correct dot is identified by requiring it to be within a 
predefined tolerance from the black dot in the previous frame. This tolerance is 
chosen to be +4 and -4 pixels given the 30 fps image rate. For faster computation, the 
rectangle area can also be reduced once the dot in the first frame is found. 
 

 Extracting boundary contour of face (Step 2) 
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With only one dot to act as a landmark point, the location of this dot is not 
sufficient to consistently enable the placement of a rectangle around the cheek region 
or any other region restricted to certain areas on the face. For significant rotations of 
the head, part of the cheek on one side can disappear and the size of such regional 
rectangles will change significantly. To correct this error would require either more 
artificial points to be placed on the face or natural facial features to be tracked. In a 
hospital environment, it is undesirable and impractical to require too many artificial 
points to be placed on a patient’s face. Thus, a form of the latter option is chosen. 

Since the boundary contour of the visible part of the face remains largely 
unchanged during facial grimacing, a method for tracking the contour is developed. 
Common methods for tracking face contour use snakes with gradient [30] or colour 
information [27] as exterior forces on the snakes to aid the process. However, in this 
application thousands of frames need to be tracked in real time. Thus, the method of 
snakes would be computationally heavy. In addition, that high a level of accuracy is 
not required, as only the essential facial outline is needed. Therefore, a simpler 
computationally efficient method is used based on skin colour segmentation and 
constrained by a restriction on movement between frames. 

Note that the case simulated in this paper is a conservative choice where only one 
artificial landmark point is used. In practice, with tubes and a ventilator on a patient, 
many more artificial landmark points would be available, making the job of motion 
tracking and identifying facial regions simpler. Any tubes crossing the boundary 
could be accounted for in an initialization which would incorporate user input if 
required. The position of the tubes would be known throughout time by tracking the 
artificial landmark points.  
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However, if there is a sufficient number of landmark points such that facial 
regions of interest can be easily located, a boundary algorithm may not be required. 
This possibility is left to future clinical trials. Importantly, the methodology in this 
paper is designed to track any number of landmark points and utilize the boundary of 
the face as required. Also note that a longer term goal is to apply the method in the 
general wards, where there are less artificial landmark objects/points available as 
patients are less likely to be on a ventilator or have tubes. 
 

2.4.1  Skin recognition 
 

Extraction of the contour uses a skin hue property to detect the edge of the face. 
Specifically, the R/G ratio of the intensity value on the red (R) channel to the intensity 
on the green (G) channel can be used to represent skin [32,33]. Using the position of 
the dot to get a sample of the skin hue on the forehead, it is thus possible to detect 
skin on the face of a specific patient. Note that the studies of [32,33] successfully 
detect skin on a very large data set containing a wide number of skin types. In critical 
care patients there is the possibility of paler skin due to their severe illness. However, 
measurements have shown that paler skin has almost the same chromaticity as 
yellowish or dark skin [34-36] thus presenting no further significant difficulty. Skin 
can also show up more white than usual due to changes in light, but this effect is 
normalized out by taking colour ratios and is shown to have minimal effect on skin 
detection [36-38]. 

 
Figure 4 shows examples of detecting skin based on deleting pixels that have an 

intensity ratio R/G greater than a specified tolerance of the sample skin intensity. 
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However, as can be seen in Figure 4, the face is not precisely defined and requires 
further processing to accurately isolate areas associated with grimacing. In addition, 
bandages or other coverings would hide skin, although such areas would not 
contribute to agitation detection either. 

 
 
 

2.4.2  Contour extraction 

 
Thresholding of the R/G ratio can be used to approximate the boundary of the face 

separating skin from non-skin. However, this method does not always accurately 
detect all parts of the boundary. Therefore an initial contour extraction is done on the 
first image of the sequence. This contour is found by using the R/G ratio to find all the 
discrete boundary points on the face, thus forming the contour. This contour must 
then be checked by the user before the algorithm proceeds, making corrections if 
necessary.  

This initialization is used to assist in extracting the contour in future frames. The 
number of pixels defining the facial contour curve is set to 50 equally spaced points 
(in Euclidean distance) around the perimeter of the contour. This number is arbitrary, 
but provides enough segments to adequately define the fundamental visible face in an 
image. More or less points might be equally effectively used. 

 The amount of pixel movement between frames at 30 fps is relatively small, and 
can be bounded above by a predefined tolerance δ. Therefore, each new contour will 
lie inside an envelope around the previous contour. In particular, for every point on 
the previous contour, the boundary of the new contour is searched for along the line 
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segment perpendicular to the tangent of the curve, with a length determined by the 
pre-defined tolerance δ. Figure 5, shows this line segment in an example image.  

The goal is to detect which point along the line A to B best meets the criteria for 
the border of the face. The gradient of the red, green and blue intensities between 
points A and B would appear to be a simple way of doing this task. However, there is 
not always a clearly defined boundary, which can result in no significant change in 
the gradient across the boundary leading to potentially false points being chosen. A 
more robust solution uses the ratio of the red and green signals, which is shown in 
Figure 6. 

When the ratio of the red and green is above a predefined threshold, which is 
chosen as 1.18 in Figure 6, it is considered to be skin. The first point of the segment 
that is above the threshold is defined as the boundary. If no such point is found, no 
point is stored. The resulting gaps left in the curve are then linearly interpolated using 
equally spaced points.  

For additional robustness, a simple learning system can be used. For every tracked 
position of the black dot, the boundary contour can be stored. Thus, when the head 
comes back to a point close to a known position, the corresponding stored contour can 
be used instead of re-calculating. 
 

 Measuring dynamic facial grimacing (Steps 3-4) 
 

During grimacing, extra wrinkles appear on the face and similarly for agitation 
evidenced by biting or chewing the endo–tracheal tube. These wrinkles occur 
dynamically and can be detected as extra edges on the image. Since edges are largely 
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unaffected by the rotation of the head and different lighting conditions, edge detection 
was chosen as the basis for defining a grimacing measure.  

To accomplish this task in a computationally efficient manner, a high-pass filter is 
applied on an extracted region of the image to locate the edges corresponding to the 
wrinkles. The specific filter looks for zero crossings after filtering the image with a 
Laplacian of the Gaussian filter [39]. 

For better consistency, this high-pass filter is applied only where the wrinkles are 
most likely to be located. Specifically, from above the eyebrows to the sides of the 
mouth, as seen for a series of facial grimaces in Figures 9-10. This approach saves 
computation by examining areas of known occurrence. It also provides a more 
dynamic measure by ignoring areas where little change is likely to occur. 

The overall approach first finds the facial contour. The face is then segmented 
from above the eyebrows to below the mouth. The head tracking dot position is used 
to find these regions relative to the dot’s location and provide a consistent facial 
segmentation.  

Next, a sequence of initialization frames is chosen with a calm face to calibrate the 
grimacing measure. This can be done by ensuring the measure was as constant as 
possible during a rotation of the head. Clinically, it would have to be done manually. 
Figure 7 shows the grimacing level as a function of the distance from the initial dot 
position before calibration. Also shown in Figure 7 is the best least squares fitted 
straight line. This line can be used to correct the grimacing measure using the 
formula: 

axGG −=      (2) 
where a  is the gradient of the line in Figure 7, x  the distance between the  initial 
position and the current position of the white dot and G  is the grimacing measure.  
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Thus, in summary, the position of the dot is used to correct unwanted changes that 
occur in the grimacing measure due to rotation of the head. Once the coefficient a is 
found, Equation (2) is applied to every image in the movie sequence. This process 
corrects the grimacing signal by returning a constant grimacing level during periods 
of calm in the patient. 

Lastly, the grimacing measure is low pass filtered and normalized between 0 and 1 
using a method similar to Equation (1). This step is important as it normalizes out any 
initial facial wrinkles in elderly patients, and other marks or scars present in the calm 
facial state. This approach ensures only the change from the calm state is measured 
which corresponds to a grimace. 
 

3. Results 
 

 Reference point tracking – Step 1 
 

The black dot was successfully tracked throughout a 1336 frame (44.5 seconds) 
movie sequence, with the results of five frames shown in Figure 8, where the 
rectangle bounding the movement of the dot is also drawn. The left image shows the 
picture, while the right shows only the resulting binary image with the tracked dot. 
The rectangle is bigger in the first image because the position of the dot is unknown. 
After this initial frame the rectangle size is reduced. The white dot in the binary 
images of Figure 8 can be seen to accurately follow the position of the black dot, as 
denoted by a cross in the left image and thus the position of the head. The dot was 
successfully tracked for all 1336 frames with no lost or missed frames. 
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 Extracting boundary contour of face – Step 2 
 

The contour of the face is tracked through a 1336 frame movie sequence, and 9 
frames representing extreme cases are shown in Figure 9, with the extracted facial 
contours plotted in green. The boundary of the face was successfully tracked in all 
frames. As Figure 9 shows, the results are sufficiently accurate for this application, 
which requires only identification of the basic face area for further processing. 

  

 Facial grimacing (dynamic) – Steps 3-4 
 

The same 9 frames shown in Figure 9 are shown in Figure 10 with an agitation bar 
on the two sides of each image. The results show good consistency between the 
visually observed level of grimacing and the measured value shown on the bar is 
shown by the height of the panels to the left and right of the face in each image. The 
normalized level of grimacing is also plotted as a function of frame number in Figure 
11; and consistent cycles can be seen that match the observed level of grimacing in 
Figure 10. Note that the number in each frame of Figure 10 are also shown in the plot 
of Figure 11 for added clarity. Finally, note that the qualitative levels and normalized 
quantitative assessments match well regardless of the rolling head motion that also 
occurs in the video. 

 

4. Discussion and Conclusions 
 

This paper has investigated the image processing and feasibility of measuring the 
degree of facial grimacing in ICU patients using a single digital camera. The goal is to 
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develop methods for high-resolution measurement of changes in specific facial 
features that have been clinically observed to correlate with patient agitation and pain. 
Such a measure would enable more sensitive, quantitative, objective and accurate 
agitation assessment in critical care. Several simulations imitating a patient with 
differing degrees of grimacing and significant head movement are used to validate the 
approach. 

Accurate position tracking was achieved with the artificial placement of a black 
dot locally surrounded by white. This dot can be placed either on the patients’ 
forehead or on the ventilator tubing near the mouth. This dot is the only invasive 
feature of the overall approach. 

To isolate the face an efficient algorithm was developed for tracking the overall 
facial contour based on skin hue and colour ratios. The cheek and eyebrows regions 
are used to detect agitation-based grimacing using edge detection methods. Good 
resolution was obtained for the normalized degree of grimacing measured and the 
results compared well to visually observed grimacing in the recorded images. Note 
that other methods, such as image surface roughness which could be measured using 
for example the fractal dimension [40,41], might also be used equally effectively. 

In practice, any noise that occurs could be filtered leaving the essential dynamics 
required for this assessment. The orientation of the head could also be estimated to 
compensate for slight changes in the grimacing measure that occur due to the change 
in the angle of the camera as the head moves, particularly at extreme head rotations. 
Future experience with a number of critical care patients will allow a consistent angle 
correction factor to be chosen and other issues to be assessed. 

The method can also be applied in real time as the computational time for 
processing 1 frame in Matlab 7.1, on a Pentium 4 with 3 GHz and 2 GB Ram, took 
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0.4 seconds. This is equivalent to 2.5 frames/s in Matlab, which is not real-time for a 
30 fps application. However, reasonably optimized C code would provide a 10x-20x 
improvement, or 25 to 50 frames per second. Hence, the computational requirements 
are not too onerous for real-time application. 

Future work will require clinical validation of the methods in this paper. In 
particular, direct comparison of the computed agitation level based on grimacing with 
agitation graded by nursing staff using the Riker Sedation-Agitation Scale or similar 
scale [30,31], will be required. 
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Figure 1: Scheme of Experimental setup for video acquisition - (a) Side view - (b) Front view 

 

 
Figure 2:  (a) Original Jpeg image containing the analysed area; (b)  Image of rectangle after 

doing a normalised thresholding 
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Figure 3: Deleting unwanted regions to identify the required dot 

 
 

 
 
 

 
Figure 4: Example of skin hue recognition 
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  [a-d]: Four cases representing every possibility  
Step 1: Compute the complement Image 

Step 2:  Colouring in black the white structures connected to image borders 
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Figure 5: Searching for new boundary within an envelope of the previous boundary. 
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Figure 6: Difference between Red and Green pixel intensity along the line A to B 
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Figure 7: Edge detection level in function of head position 
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Figure 8: Tracking the reference point throughout a movie sequence.  Five frames, frame 1, 140, 

280, 440 and 530 out of 1336 frames are shown, including the binary image of the dot.  
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Figure 9: Tracking face contour 
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Figure 10: Corresponding picture of the curve 
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Figure 11: Grimacing Measure (Dynamic) after angle correction 
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