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Abstract
A Digital Image-based Elasto-Tomography (DIET) system for breast cancer screening has been proposed in which
the elastic properties of breast tissue are recovered by solving an inverse problem on the surface motion of a breast
under low frequency (50-100 Hz) mechanical actuation. The proposed means for capturing the surface motion
of the breast in 3D is to use a stroboscope to capture images from multiple digital cameras at preselected phase
angles. Photogrammetric techniques are then used to reconstruct matched point features in 3D. Since human skin
lacks high contrast visual features, it is necessary to introduce artificial fiducials which can be easily extracted from
digital images. The chosen fiducials are points in three different colours in differing proportions randomly applied
to the skin surface. A three-dimensional signature which is invariant to locally Euclidean transformations between
images is defined on the points of the lowest proportion colour. The approximate local Euclidean invariance
between adjacent frames enables these points to be matched using this signature. The remaining points are matched
by interpolating the transformation of the matched points. The points between the two cameras are matched by
matching ellipses in image space. Successful results are presented for simulated image sequences and for images of
a mechanically actuated viscoelastic gel phantom showing that the overall procedure is suitable for a DIET system.
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1 Introduction
Breast Cancer is a serious health problem amongst
women. It is the most common form of female cancer
and is the second most fatal cancer among women
worldwide. One in ten women will suffer from breast
cancer during their lives and25% of those who develop
it are predicted to die from the disease.

Mammography represents the principal and most
effective technology currently available for breast
cancer screening. However patients often report a
great level of pain and discomfort during the process
of compressing the breast. The patients are also
constantly subjected to radiation if regular screening
occurs and this provides an additional health risk.

Digital Image-Based Elasto-Tomography (DIET) is an
emerging new technology that uses digital imaging
of a sinusoidally actuated breast surface to determine
the surface motion of the tissue. The surface motion
is then used to reconstruct the three dimensional
internal elasticity distribution. The DIET system could
potentially increase screening compliance rates, as the
portable and low cost nature of the device means that
screening is more accessible, as well as eliminating the
disincentive for screening that the often uncomfortable
mammogram process initiates.

1.1 Problem Description

This paper is concerned with the problem of acquiring
the breast surface motion using multiple digital
cameras, or more precisely, reconstructing in 3D the
motion of a dense set of feature points on the breast

surface.

3D motion reconstruction involves a number of steps.
These are: synchronising images between cameras,
tracking the motion of feature points in the individual
camera frames, calibrating the cameras, and finding
correspondences between the tracked sequences of
points between cameras. Once the correspondence
problem has been solved, the 3D location of each point
at each time step can be found by triangulation.

In this paper, large numbers of coloured fiducial points
are randomly applied to the surface. These points
are tracked by a novel method which matches local
Euclidean-invariant signatures based on closest point
properties. The correspondence problem is then solved
by taking advantage of the fact that points on the
surface of a sinusoidally actuated elastic object will
follow elliptical paths in space, and hence elliptical
paths in each camera frame. Unlike point and line
features, there exists a correspondence condition for
matching ellipses between cameras [1] which is used
in conjunction with the epipolar constraint to match the
ellipses.

Results are presented from simulations using points on
the surface of a finite element model of a harmonically
actuated elastic cylinder.

2 Preliminaries

2.1 Camera Model

Digital CCD cameras can be accurately modeled as
perspective projection pinhole cameras. The 3D world



Figure 1: Cube used to calibrate cameras

spaceR3 can be embedded in projective spaceP3 with
homogeneous coordinates(X, Y, Z,W ) and the image
coordinate spaceR2 can be embedded in the projective
planeP2 with homogeneous coordinates(u, v, w). The
corresponding coordinates inR3 andR2, respectively,
are given by( X

W , Y
W , Z

W ) and ( u
w , v

w ). Similarly,
measured 3D coordinates and 2D image coordinates
can be embedded inP3 andP2 respectively by the maps
(X, Y, Z) 7→ (X, Y, Z, 1) and(u, v) 7→ (u, v, 1).

The camera represents a projection betweenP3 andP2,
which can be represented by a homogeneous matrix
P ∈ R3×4, whose kernel is the projection centre of
the camera. The projection from world coordinates
X = (X, Y, Z,W ) to image coordinatesu = (u, v, w)
is then described by the linear equation

λu = PX (1)

whereλ is a nonzero scalar. The calibration matrix
P can be factored intoP = K[R T ] where K is
an upper triangular matrix representing the intrinsic
camera parameters,R ∈ R3×3 is a rotation matrix
describing the relative orientations of the camera and
world frames, andT ∈ R3 is the origin of the world
coordinate system in the camera frame.

3 Method

3.1 Calibration

The cameras are calibrated from images of a precisely
machined calibration cube as depicted in Figure 1. The
vertices on three faces of the cube are automatically
detected and identified with the corresponding known
locations of squares. See [2] for more details.

3.2 Fiducials

Because of the large density of features required,
designing a system of fiducials, or marker points, which
would be viable in a clinical context is a somewhat
difficult problem. The markers need to be very easy to
apply and remove, and yet still be able to be uniquely
identified in images. The solution devised to this

problem is to randomly apply small dots in different
colours to the breast surface, and to design an invariant
signature on the dots which can be used to identify
the points. For the purposes of this article, the dots
are red, green, and blue. The location of each of
these points is easily extracted from colour images
by converting the images into the HSV colour space,
threshholding the hue (H) channel, and choosing the
centroid of each resulting blob as the point location.
Note that the centroid of a circle/ellipse is invariant
under perspective projection.

3.3 Feature tracking

3.3.1 Tracking using invariant signatures
The idea behind feature tracking using signatures is
to construct a mapping from the image space to some
abstractsignaturespace which is invariant under the
image point motion. The points can hence be matched
by matching their signatures in this signature space.
In this paper, a simple signature based on invariants
of the Euclidean group is presented, which is suitable
for tracking applications in which the non-Euclidean
component of the transformation in image space is
small. The concept of a signature based on geometric
invariants for registration was presented in [3], where
a Euclidean-invariant signature curve was constructed
for smooth curves inR2 and used for applications in
object recognition.

The signature presented here is based on a 3-point joint
invariant of the Euclidean group which is composed
of the three 2-point joint invariants between each pair
of points, i.e. the interpoint distances. The Euclidean
group was chosen of a less restrictive transformation
group such as the affine or projective group because
the invariants, because they involve only distances, and
not ratios or other nonlinearities are significantly more
resilient to noise. The point triples are chosen to be
nearby each other, which means the transformation
must be only locally Euclidean, as only local Euclidean
distances are used. Because the transformations are
not exactly Euclidean, the signature space does distort
between frames, but the signature space is sufficiently
spread that the signature points are still able to be
uniquely identified, i.e. the motion to point spacing
ratio is significantly lower in the signature space.

3.3.2 Signature definition
Consider image points in two-dimensional Euclidean
space,u ∈ E2, and denote the Euclidean distance
metric byd(,̇)̇. A signature functionf : (E2)(×3) 7→
R3 can be defined on ordered triples of these points as
follows:

f : (u1,u2,u3) 7→
(d(u2,u1), d(u3,u1), d(u3,u2)) (2)

Note that Eq. 2 defines a complete set of functionally
independent joint invariants for a three point
configuration, as the 2D configuration of points has six



degrees of freedom, and a Euclidean transformation
three, hence there are three functionally independent
joint invariants.

To find the ordered triples, the signature is defined
on the points of one colour only (red). The ordered
triple for each red point is defined to be itself, along
with its nearest blue, and nearest green neighbour by
Euclidean distance. To facilitate matching high point
densities, the red points are applied at a significantly
lower density than the green and blue points, which
means that a smaller quantity of points is matched using
the signature method, allowing the rest to be matched
by interpolating the motion of the matched red points.
The matching procedure is summarised in the next
section.

3.3.3 Tracking procedure
The tracking procedure consists of a few simple steps.

(1) extract all of the red, green, and blue point
locations from the images

(2) Find the nearest blue and green neighbours to
each red point to form the point triples

(3) Compute the signature (Eq. 2) for each red
point

(4) Match triples by matching their signatures
in signature space, discarding matches if they
violate some upper bound on the transformation
magnitude

(5) Match the remaining unmatched points by
interpolating the transformation of the matched
points

3.4 Feature correspondence between
two views

The human breast can be well-modelled with a linear
model. This means that if it is sinusoidally actuated,
points on the breast surface will move in an ellipse
in space. Moreover, the perspective projection of
these ellipses onto camera images will also be ellipses.
The tracked contours from the previous section over
one period of the actuation should thus form an
ellipse. Ellipses can be fitted by nonlinear least squares,
minimising geometric error, to these points, see [4]

3.5 Ellipse correspondence

The fitted ellipses are represented as 3x3 symmetric
matrices in homogeneous coordinates. Following the
derivation in [1], let C,C ′ be two corresponding
ellipses in two different images, i.e.uT Cu = 0 and
u′T C ′u′ = 0 are the equations for the ellipses. Then,
in homogeneous world coordinatesXT AX = 0 and
XT BX = 0 whereA = PT CP , B = P ′T C ′P ′ and
P, P ′ are the projection matrices of the two cameras.
A,B are rank 3 quadric surfaces, i.e. cones with

vertices at the centres of projection of the two cameras.
Enforcing the constraint that the intersection of these
two cones be a conic section yields the following
constraint on the entries of A and B

∆ = I2
3 − 4I2I4 = 0 (3)

wherep(λ) = I1λ
4 + I2λ

3 + I3λ
2 + I4λ + I5 is the

characteristic polynomial of the matrix pencilA + λB.
See [1, 5] for more details.

3.6 Correspondence Procedure

Firstly, the epipolar constraint is used to identify
potential corresponding ellipses within a threshhold
between images. This saves having to evaluate
Eq. 3 for all ellipse pairs between the images. This
narrows down the potential ellipse matches to a much
more manageable number per ellipse. Because the
expression 3 is based on 4th order polynomials, the
values can be fairly large. It is thus more practical to
deal withlog ∆ instead.

∆ is evaluated for each pair of potentially
corresponding ellipses. The resulting value is
considered to be thecost of the matching. The best
matching of ellipses is determined by solving the
resulting weighted matching problem by the standard
Hungarian Method, see e.g. [6] for details.

4 Results

4.1 Simulation

A finite element of an elastic cylinder with similar
elastic properties to a human breast with a high
stiffness inclusion was used to generate realistic data.
The model was developed by Ashton Peters, from
the University of Canterbury. The 17000 node
finite element mesh was produced in GAMBIT, and
the model simulated in Fortran 90, with the matrix
inversion being done with the direct sparse matrix
inversion package, MUMPS. The model was simulated
with a 50Hz actuation frequency, with a 0.5mm peak
to peak amplitude. See Figure 2 for a rendering of the
cylinder.

400 Points, 80 red, 160 green, and 160 blue were
projected onto one quarter of the surface of the cylinder.
The motion of the finite element nodes was interpolated
onto these points. Two camera models were set up90◦
apart at a distance of 30cm from the cylinder. The
resulting image point locations were computed over
one phase of the actuation, with 20 frames. Gaussian
noise was added to the measured image point locations,
with standard deviation in each orthogonal direction
of 0.2 pixels. This value is reasonable, as the image
point locations in practice will be determined by taking
the centroid of a blob ofO(100) pixels. The expected
measurement error should therefore be well under one
pixel.

The points were then tracked using the algorithm



Figure 2: Finite element cylinder model used for
simulation

described in Section 3.3.3 over 20 frames, including the
last frame to the first frame, giving elliptical contours.
Those points that were not successfully tracked through
all 20 frames (i.e. the 20th point in the sequence doesn’t
track back to 1) were discarded.

The reconstructed points are shown in Figure 3.

4.2 Gel Phantom Simulation

4.2.1 Experimental setup
The computer experiment from Section 4.1 was
duplicated on real laboratory equipment. A cylindrical
gel phantom made from an A-431 and LSR-05 silicone
gel composite was placed on the platform of a
mechanical actuator. A number of red, green, and blue
coloured speckles made from finely cut coloured paper
were applied to the surface of the cylinder, see Figure
4. The actuator was controlled by a simple control
system written in Simulink and implemented in real
time in dSpace to give a 50Hz, 1mm peak to peak
sinusoid at the actuator plate. Still images at arbitrary
phase were generated by strobing the cylinder in a dark
enclosure at the actuation frequency at a user-specified
phase separation from the actuator input signal, and
the images were captured using a 6 megapixel Canon
Powershot G5 digital CCD camera. A set of 20 images
was captured in this manner to cover the entire sinusoid
at 18 degree phase differences.

Figure 3: Reconstructed surface

Figure 4: Reconstructed surface

4.2.2 Results
Red, green, and blue regions were determined by
directly threshholding the RGB image and comparing
colour channels, and the point locations were taken
to be the centroids of the coloured blobs,. This
process takes a little under a second per image for
a 6 megapixel image in Matlab. An example of the
extracted points is depicted in Figure 5. Note that
with this simple approach not all the image points
are recognised, however this is not a concern as only
a certain density of points is needed to be matched,
rather than every individual point. The matching
procedure was tested on various image pairs, and it
was found that it successfully matched over90% of
the points with fewer than1% mismatches (from visual
inspection). The points that didnt get matched werent
matched for one of three simple reasons. Firstly,
some points were not picked up by the simple feature
detection process. Therefore some points simply did
not have corresponding points. Secondly, for some
points only part of the coloured region comprising the
point was detected. Finally, in some regions there



Figure 5: Reconstructed surface

were not sufficient red points, and hence insufficient
point triples, to allow accurate interpolation of the
motion of the points matched by the signature method
in order to match the remaining points. As was done
with the simulation example, the remaining number of
mismatched points are easily ruled out by applying the
constraint that the 20th point matches the first point.

5 Conclusion
This paper implemented an algorithm for
reconstructing surface motion from digital images
of an actuated gel phantom. The results in both the
real and simulated cases validate the procedure and
show that sufficiently accurate motions can be obtained
that will would then go into a finite element based
inverse problem that identifies the tissue distribution of
the phantom. In the case of a breast, regions of high
stiffness would suggest a tumour.

To implement the tracking, a Euclidean-invariant
signature has been presented and successfully tested as
a proof of concept for using local signatures for feature
tracking and matching. The points were identified
between the different cameras by matching ellipses in
image space. Overall the results show good potential
for practical implementation in a DIET system with
the potential for low cost and portable breast cancer
screening.
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