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II.  Abstract 

This thesis describes an analytical approach to the optical design of four-

mirror anastigmatic optical systems. In all cases investigated here the object is 

at infinity. In the introduction the field of reflecting, or “catoptric”, optical 

system design is discussed and given some historical context. The concept of 

the “simplest possible reflecting anastigmat” is raised in connection with Plate 

Diagram analysis. It is shown that four-plate systems are in general the 

simplest possible anastigmats, and that four-plate systems comprised of four 

spherical mirrors are the last family of “simplest possible reflecting 

anastigmats” for which the complete solution set remains unknown. In chapter 

2 third-order aberration coefficients in wavefront measure are derived in a 

form that is particularly suitable for Plate Diagram analysis. These coefficients 

are subsequently used to describe the Plate Diagram, and to detail the 

application of the Plate Diagram to the survey of all possible solutions for 

four-spherical-mirror anastigmats.  The Plate Diagram technique is also 

generalized to investigate its use as an optical design tool. In the example 

given a generalized Plate Diagram approach is used to determine solutions for  

four-mirror anastigmats with a prescribed first-order layout and a minimum 

number of conicoids.  
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In chapter 3 results are presented for the survey of four-spherical-mirror 

anastigmats in which all elements are required to be smaller than the primary 

mirror. Two novel families of four-spherical-mirror anastigmats are presented 

and these are shown to be the only examples of four-spherical-mirror systems 

that exist under the given constraints. 

Chapter 4 gives an example of the application of Plate Diagram analysis to the 

design of an anastigmatic system with a useful first-order layout and a 

minimum number of conicoid mirrors. It is shown that systems with useful 

first-order layouts and only one conicoid mirror can be obtained using this 

method. 

In chapter 5 results are presented of the survey of all remaining four-spherical-

mirror anastigmatic systems: that is systems in which elements are allowed to 

exceed the diameter of the entrance pupil, which includes systems with 

concave and convex primary mirrors. A wide variety of solutions are presented 

and classified according to both the underlying geometry of the solutions and 

the first-order layouts. Of these systems only one has been reported in 

previously published literature. 
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The results presented in this thesis complete the set of “four-plate” reflecting 

anastigmats, and it can now be said that all possible solutions for four-

spherical-mirror anastigmatic systems have been determined. 
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1. Introduction 

Anastigmatic optical systems are systems in which (at least) the third-order 

aberrations that produce blurring in the images of point sources are 

simultaneously brought to zero. These aberrations are spherical aberration, 

coma and astigmatism. The two remaining third-order aberrations are 

distortion and Petzval curvature. While these two aberrations respectively 

stretch (or squash) and curve the image of a plane object, they do not affect the 

sharpness of the image, and therefore do not increase the size of the minimum 

resolvable detail in an image.  

With one notable exception1, prior to the nineteenth century optical imaging 

systems were limited to the correction of spherical aberration only. Indeed it 

would have been difficult to correct for the off-axis aberrations as there existed 

no theoretical basis for classifying or quantifying the off-axis aberrations of an 

                                                 
1 The exception referred to is the afocal two-mirror system proposed by Marin Mersenne in 1636, which 

was a system consisting of confocal paraboloid mirrors in either the “Cassegrain” or “Gregory”  forms.  
While these names now have a particular meaning for two-mirror geometries, Mersenne’s work 
predated either of these two. Mersenne’s system was, entirely accidentally, the world’s first 
anastigmatic optical design. It is not clear who it was that first recognized the anastigmatic properties 
of the confocal paraboloid pair. Evidence suggests that it was McCarthy (1940). As to the first person 
to realize that Mersenne was the accidental inventor of the world’s first anastigmat, that was much 
later, possibly Willstrop in the 1980s. 
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optical system until pioneering work by Hamilton (1833) (though it does 

appear that Fraunhofer had achieved coma correction in his well known 

“aplanatic” refracting objective lenses, though how he achieved this correction 

is not clear, and the coma correction was not nearly so perfect as would be 

implied by the modern use of the term “aplanat” (King 1955)). While 

Hamilton’s work laid the basis for completely defining the properties of off-

axis point images, it wasn’t of much practical use to optical designers, as 

Hamilton’s Characteristic Function did not directly involve system 

constructional parameters. The first recorded instance of the formulation of 

aberration coefficients in terms of system constructional parameters was the 

work of Seidel (1856). The five third-order aberrations, now commonly 

referred to as “Seidel aberrations” are: spherical aberration, coma, 

astigmatism, distortion and Petzval curvature.  

It is interesting to note that there exists a strong set of circumstantial evidence 

suggesting that Petzval had independently developed an aberration theory 

useful for practical optical design, and encompassing higher orders of 

aberration that were not otherwise known until the work of Buchdahl (1954). 

A brief summary of this evidence follows: 

1) Von Rohr (1899) states categorically that Petzval did not utilize 

iterative trigonometric ray-tracing in his lens design. However, the first 
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Petzval portrait objectives had high-order spherical aberration balanced 

against third-order spherical aberration; if trigonometric ray tracing 

was not used for this then this balance could only practically have been 

achieved by balancing aberration coefficients.  

2) Aldis (1900) directly attributes the third-order aberrations to Petzval 

(with no reference). 

3) Schwarzschild (1905a) says “Petzval, the calculator of the first 

“portrait lens” gave this number (of fifth order aberration coefficients) 

as 12, from which seems to follow that despite his calculations 

extending to aberration coefficients of the 9th order, he did not see 

through the relationship all too deeply”. In fact relatively recent work 

(De Meijère and Velzel 1989) shows that one can formulate either 9 or 

12 fifth order aberration coefficients, depending on an arbitrary choice 

of definition of the pupil coordinates.  

This and other supporting evidence is to be the subject of a paper at the 2007 

SPIE annual general meeting (Rakich 2007). 

In 1874 Piazzi-Smyth invented the field-flattening lens, which allowed the 

transformation of, for example, a Petzval lens (which, ironically, suffered from 

Petzval curvature) to a flat-field anastigmat (Piazzi-Smyth 1874). Prior to this 
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development optical designers had resorted to using astigmatism to balance 

optimally against Petzval curvature. In this they sought to achieve a flat 

tangential focal surface, minimizing the residual aberration blur on a flat 

surface. Piazzi-Smyth commented that when optical designers deliberately 

introduced astigmatism to flatten the image they “relieved us of a blunder by 

substituting a sin”. 

By the early 1900s there existed a number of anastigmatic lens designs, 

notably the Rudolph’s “Tessar” and Taylor’s “Cooke Triplet” (Kingslake 

1980).  

While progress in the optical design of refracting systems had proceeded at 

pace, largely driven by the development of photography as well as increasing 

demands from the field of microscopy, prior to 1905 no-one had thought to 

apply aberration theory to correcting the field aberrations of reflecting 

telescopes. The optical design of two-mirror telescopes had not progressed 

since the pioneering work of Mersenne in 1636, followed by Gregory in 1663 

and Cassegrain in 1672 (Wilson 2004a).  The same could be said of the 

reflecting microscope objective, first proposed by Newton, with Cassegrain 

forms given by Smith in 1738 (Burch 1947). In neither case had any attempt 

been made to address and control field aberrations; this is not surprising as the 

theoretical development simply didn’t exist at that point.  
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 In the early 1900s the astronomer Karl Schwarzschild, conscious when 

comparing mirrors to lenses of both the price advantage and the lack of 

chromatic aberration available with mirror systems, became interested in all-

reflecting equivalents of the refracting astrograph objectives that were then in 

common use for astronomical sky surveys.  

In the first two of a series of three papers Schwarzschild revolutionized the 

field of optical design by developing a complete theory for the design of two-

mirror telescope systems compensated for field aberrations (Schwarzschild 

1905-1, 2). In the first of these papers Schwarzschild formulated third and fifth 

order aberration coefficients in wavefront measure in terms of optical system 

parameters. In the course of doing this he invented a convenient mathematical 

parameter used to define the asphericity of conic surfaces of revolution which 

has become the modern standard in optics, the conic constant. In the second 

paper Schwarzschild applied the third-order coefficients to an investigation of 

the on- and off-axis imaging properties of reflecting systems with one and two 

mirrors. In the course of this work he gave explicit formulae for aplanatic two-

mirror systems (systems simultaneously free of spherical aberration and coma, 

at least to the third order), but did not pursue such systems as the residual 

astigmatism would have intolerably limited the field of view that he was trying 

to achieve.  
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Later aplanatic two-mirror telescopes were independently re-discovered by 

Chrétien (1922) and the telescope that came to be known as the Ritchey-

Chrétien has dominated the field of large professional astronomical telescopes 

throughout the latter half of the twentieth century and up to the present day.  

Schwarzschild was primarily interested in anastigmats and gave explicit 

formulae for two-mirror anastigmats and two solved examples. One of these 

was for the special case of a two-mirror anastigmat with zero Petzval 

curvature, and the second was for an anastigmat with a concave primary 

mirror and non-zero Petzval curvature (figure 1.1). He showed that all focal 

two-mirror anastigmats would have a mirror separation equal to twice the 

system focal length, and that the only flat-field two-mirror anastigmat possible 

would have a convex primary mirror and a much larger concave secondary 

mirror. Disappointed, Schwarzschild abandoned his search for a two-mirror 

flat-field anastigmat and concentrated instead on the design of a two-mirror 

aplanat with an astigmatism flattened field. This system was later improved by 

Couder, who reverted to a two-concave-mirror anastigmatic system with 

residual Petzval curvature, and flattened the field by way of a singlet field-

flattening lens (Danjon and Couder 1935). 
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Figure 1.1. Two examples of two-mirror anastigmats, similar to examples given by 
Schwarzschild. The upper system has a convex primary mirror, both mirrors are 
oblate spheroids and the Petzval curvature is zero. The lower system is a concave 
primary system, later adapted by Couder to include a field-flattening lens near the 
focal plane. In his 1905 paper Schwarzschild reintroduced astigmatism to this system 
to flatten the field. As with all focal two-mirror anastigmats, the separation of the two 
mirrors is equal to twice the system focal length. 
 
A summary of Schwarzschild’s two papers is provided by the author (Rakich 

2005), and that paper is attached to this document as appendix E. 
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While Schwarzschild’s investigations did not lead to any particularly attractive 

systems for the application he had in mind (only two of his aplanats are known 

to have been made (Wilson 2004b)) Schwarzschild’s development of a 

practically useful aberration theory for reflecting systems opened up a whole 

new field for modern optical design. Within a relatively short space of time 

designs were also being proposed for anastigmatic catoptric microscope 

objectives (e.g. Maksutov 1932, Burch 1943-1, 1947, Brumberg 1943, Linfoot 

1938, 1943, Clay 1939), anastigmatic spectrograph cameras (McCarthy 1940), 

the Schmidt telescope (Schmidt 1936) and new three-mirror-anastigmat 

telescopes (Paul 1935, Dimitrov and Baker 1945).  

The field of reflecting optics, and in particular the area of three-or-more- 

mirror systems expanded rapidly in the second half of the 20th century. A 

thorough treatment of this development, at least with respect to reflecting 

telescope systems is given by Wilson (2004c). 

A little before the time that Schwarzschild began working in optics, Aldis 

(1900) published an interesting but little known paper. Using third-order 

aberration coefficients (that he ascribed to Petzval), he showed that 

anastigmatic optical correction could be achieved by means of four spherical 

surfaces. This work was subsequently picked up by Burch, who in a series of 

papers generalized Aldis’ approach and applied it to mirror systems in which 
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the elements could either be spheres or conicoids (for example Burch 1943-2). 

As will be described in the next chapter, Burch showed how a spherical 

mirror, which has optical power, could be replaced with a zero-power 

Schmidt-like plate that produced the same aberrations as the spherical mirror 

without introducing power, and how a conicoid mirror could be replaced by 

two such plates, one representing the spherical aberration contribution of the 

vertex sphere, and the other representing the spherical aberration contributed 

by the conic departure from the vertex sphere. In this elegant analysis, Burch 

showed how system sums of third-order aberrations could be represented as a 

mechanical system, which he called alternatively the “Optical See-Saw 

Diagram” or “Plate Diagram”. 

The main strength of the Plate Diagram was that it provided a way to cut 

through the complex algebra used to describe multi-mirror systems, giving an 

alternative representation of such systems that was much more amenable to 

intuitive grasp and manipulation. Fundamental optical concepts such as the 

stop-shift theorem and the optical properties of concentric systems become 

perfectly obvious when optical systems are transformed into a Plate Diagram. 

On this subject, Burch himself said “When one conducts an extended-paraxial 

analysis in term of these natural co-ordinates − as I regard them − the 

equations automatically assume a particularly suggestive form, the relations 
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appear which, though they must also be contained in the equally exact 

analysis, e.g. of Conrady, have remained to me, at least, hitherto invisible − 

shrouded in a dark miasma of algebraic artificial fog”. 

Using the Plate Diagram, Burch was able to generalize Aldis’ result for four 

spherical surfaces as mentioned above, and showed that an anastigmatic 

telescope (or microscope with an infinite long conjugate) could be arrived at 

with either two conicoid mirrors, three mirrors one of which was a conicoid or 

four spherical mirrors. Each of these classes of system could be represented by 

a Plate Diagram of four plates.  

In this sense the three possible types of four-plate systems can be regarded as 

the simplest possible reflecting anastigmats2. While two-mirror systems can be 

                                                 
2 There do exist certain degenerate special cases, such as the concentric spherical mirror pair, which 

happens to be anastigmatic and forms a real image of an infinitely distant object when the primary mirror 

is convex, the secondary concave, and the separation of the mirrors is in the ratio 1: 1.618 (the golden 

ratio) to the radius of the secondary mirror. When these conditions are met, the central obstruction ratio 

for the axial pencil is also in the golden ratio. It is interesting to note that this system is almost universally 

attributed to Schwarzschild, but it is clear from reading his papers that he did not realize that an all-

spherical anastigmatic two-mirror system was possible. Shafer (1978), in pointing this out, credits Burch 

with the discovery (Burch 1943). However, in the reference given, Burch makes no claim of originality 

and, in his discussions of two-concentric spherical-mirror anastigmats in his other published works, he 

treats them as if they are already well known.  
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represented by at most four plates, three-mirror systems can give rise to a 

maximum of six plates and four-mirror systems to eight (if all of the mirrors 

are aspheric). Therefore, for three- and four-mirror systems the four-plate 

systems represent interesting special cases of good correction with minimum 

optical complexity.  

 The two-aspheric-mirror case, first investigated by Schwarzschild (1905-2), 

has received considerable attention throughout the twentieth century. Aside 

from the references already given for Burch and Linfoot, examples of 

explorations and developments for two-mirror systems can be found in Steele 

(1950), Grey (1951), Erdös (1959), Stavroudis (1967), Rosin (1968), Wynne 

(1969), Gelles (1975), Sasian (1990) and Hannan (1992).  

The first three-mirror anastigmat design was presented by Paul (1935). This 

system, later described by Willstrop (1984, 1985) as the “Mersenne-Schmidt”, 

was indeed a combination of the afocal Mersenne confocal paraboloid pair 

with a Schmidt telescope. As pointed out in footnote 1, the Mersenne system is 

in fact anastigmatic. If a spherical mirror is used to form an image from the 

afocal output of a Mersenne system it will, in general, introduce aberration to 

the final image. However, if the concave spherical tertiary mirror is chosen 

such that its centre of curvature lies on the pole of the convex secondary 
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mirror of the Mersenne system, then it can be seen, by imagining the stop is 

placed at the secondary mirror, that the spherical tertiary mirror will not 

introduce any coma or astigmatism for exactly the same reason that these 

aberrations are absent from a Schmidt telescope. As with the mirror of a 

Schmidt telescope, this tertiary mirror will still introduce spherical aberration. 

However, if the radius of curvature of the tertiary mirror is chosen to be equal 

to that of the secondary mirror, then the amount of spherical aberration 

introduced by the tertiary mirror is exactly the same as the amount of spherical 

aberration introduced to the system by the paraboloidal figuring of the 

secondary mirror.  Therefore, if the secondary mirror is made spherical instead 

of paraboloidal, the three-mirror system sum for spherical aberration is 

reduced to zero, and as this change happened at the system stop, there is no 

effect on the correction of coma and astigmatism. Of course, once it is realized 

that such a system is anastigmatic, there is no restriction on the stop position, 

as by the stop-shift theorem the stop can be moved to any location within the 

system without re-introducing any of the first three third-order aberrations 

(and without having any effect on the residual third-order distortion). 

Paul’s system was the first, and arguably the most geometrically elegant, of 

the many possible “four-plate systems” obtainable with three mirrors, only one 

of which is aspheric. This system was independently re-discovered by 
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Dimitroff and Baker (1945) who improved it by making the secondary mirror 

ellipsoidal, which allowed the tertiary mirror to change its radius by the 

amount required to bring the Petzval sum to zero, without disturbing the 

anastigmatic correction of the system. Baker was unaware of Paul’s work, and 

it was brought to his attention in a private communication from Rumsey, 

which he acknowledged in a subsequent publication (Baker, 1969).  

A final variant of the Paul system was proposed by an amateur astronomer 

(Stevick 1993) who also independently re-discovered the Paul system while 

investigating Schiefspiegler designs3. Stevick was the first person to consider 

using the Paul system off-axis. The Paul system is particularly well suited to 

this approach as the Stevick-Paul variant uses the complete rotationally 

symmetrical paraboloid primary mirror, and the off-axis components are 

                                                 
3 While “Schiefspiegler” literally means “tilted mirrors”, it has come to mean reflecting telescope systems 

which are free from central obstruction. These can indeed be obtained by using mirrors that have been 

tilted with respect to the optical axis. However the common usage of the term Schiefspiegler also includes 

unobstructed systems that are based on portions of parent systems that are symmetrical about some 

common axis. An axially-symmetrical parent system can be rendered as a Schiefspiegler by using an off-

axis portion of the pupil, or by using only a small range of field points surrounding some off-axis field 

point, or by a combination of both of these approaches. The Stevick-Paul system is based on the axially-

symmetrical Paul parent system, and is off-axis in field but retains an axially-symmetrical pupil.  
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strictly spherical, and so do not pose the difficulties of manufacture or 

alignment that would be associated with off-axis aspheric components.  

Following Paul, the next “simplest possible” three-mirror anastigmats were 

produced in two papers by Rumsey (1971, 1972). In the first of these, Rumsey 

investigated pairs of spherical-mirror correctors capable of giving anastigmatic 

performance to a paraboloidal primary mirror. Rumsey showed that, apart 

from the Paul form, there were two other possible types of two-spherical-

mirror corrector for a concave paraboloid mirror. In his second paper, Rumsey  

showed that there existed four types of correctors for the case in which the 

primary mirror was a mild hyperboloid. In fact that primary mirror to which 

Rumsey applied his results was the hyperboloid primary mirror of the Anglo-

Australian Telescope, a Ritchey-Chrétien system.  

Cook (1987) produced another three-mirror, one-mirror-aspherized, 

Schiefspiegler design. This system was unique among the simplest possible 

three-mirror designs produced up until that point, in that it achieved zero 

Petzval curvature while maintaining two strictly spherical mirrors.  

Despite a large amount of work in the area of the analytical design of three-

mirror anastigmats in the last three decades of the twentieth century, for 

example Rumsey (1970), Korsch (1973), Robb (1978), Yamashita and Nariai 
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(1983), Epps and Tadeka (1983) and Stone and Forbes (1991), it wasn’t until 

2001 that new solutions in the simplest possible three-mirror anastigmat 

family were produced.  

Here, the author, together with Rumsey, produced a complete solution set 

containing all possible solutions for three-mirror telescopes in which the 

primary mirror was concave and two mirrors were kept strictly spherical 

(Rakich 2001, Rumsey and Rakich 2002). This work utilized the simplicity of 

the Burch analysis to formulate an analytical solution for three-mirror 

anastigmats in three separate cases, depending on which of the primary, 

secondary or tertiary mirrors were aspherized. In each case, for a given set of 

starting parameters, a cubic equation could be defined which would lead to 

three unique anastigmat solutions. By applying this solution to all points in a 

plane defined by two of the optical system constructional parameters, Rumsey 

and Rakich generated geometrically nine distinct families of solution. On 

investigation these solution sets were shown to contain, as expected, all of the 

“simplest possible” three-mirror systems described above, as well as a number 

of examples of new design variants.  

Perhaps the most notable among these was a system the author referred to as 

the “Paul-Rumsey” system. In this case the Paul system was modified to 

produce a system with a flat field while retaining two strictly spherical mirrors. 
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This was achieved by changing the primary mirror from the paraboloid of the 

Paul system to an ellipsoid with a conic constant quite close to -1.  

Following the success of this survey it was decided to explore the final set of 

simplest possible reflecting anastigmats, the four-spherical-mirror set, using a 

similar approach.  

While four-mirror systems in general have received some attention since the 

first investigation by Steele (1953), the field has not developed at the same 

pace as that of the two or three-mirror anastigmats. While it is true that until 

relatively recent improvements in coating technology, making possible high 

efficiency broadband multilayer dielectric optical coatings, such systems 

would have been considered by many as too “lossy”, it is also undoubtedly the 

case that many have considered the algebraic complexity of an analytical 

approach to four-mirror system design as impractical. For example, Lerner et 

al. (2000) refer to the idea of an analytical solution for four-mirror lithography 

systems as “unfeasible”.  

While analytical approaches to four-mirror systems do exist in the literature, 

for example those of Korsch (1973, 1991), and also Howard and Stone (2000), 

most publications concerning four-mirror anastigmatic or aplanatic telescopes 

focus on a particular design, or few designs,  rather than on a general 
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analytical solution and its application to a survey of the field of possible 

solutions. As well as in the reference listed immediately above, examples of 

work on four-mirror telescope systems can be found in Meinel et al. 1984, 

Sasian 1987, Wilson and Delabre 1994, Gilmozzi et al. 1998 and Goncharov 

2004 .  

In all of the work done in the field of four-mirror telescope systems, the only 

author who has produced designs for anastigmats comprised of four spherical 

mirrors is Shafer (1978, 1988). In the first of these papers, Shafer started by 

coupling anastigmatic subsystems to produce systems with four or five 

reflections that were themselves anastigmatic. Shafer showed how the two-

concentric-spherical mirror telescope described above was also anastigmatic 

when used in reverse, i.e. with collimated light from an infinitely distant object 

incident on the larger primary mirror instead of on the smaller convex mirror 

(figure 1.2). However, in this case a virtual image is formed behind the 

secondary mirror, though this image is still anastigmatic. Shafer showed how, 

by combining this system with a two-concentric-spherical mirror anastigmatic 

relay system, the virtual image could be re-produced as a real image by the 

resultant four-spherical mirror anastigmatic system. In Shafer’s example the 

base system produced 100% central obstruction, but Shafer was able to 

produce a Schiefspiegler free from obstruction, by using off-axis portions of 
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the pupil and an off-axis field. This system remains the only existing example 

in the published literature, prior to the author’s work, of a four-spherical-

mirror anastigmatic telescope in which the primary mirror is the element with 

the largest diameter.  

 

Figure 1.2. Two-concentric-spherical-mirror anastigmats 
 

A) The two-concentric-spherical-mirror anastigmat produces a real curved image 
of an object at infinity. In this diagram collimated light from the object is 
incident on the smaller, convex primary mirror from the left of the page.  

B) When the same system is used in reverse, with light from an infinitely distant 
object now incident first on the larger concave mirror, the system is still 
anastigmatic, but the image is now virtual, behind the smaller convex mirror.  
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The only other example in the literature of a four-spherical mirror anastigmatic 

telescope is in Shafer’s 1983 paper. Here he describes a system with a convex 

primary mirror which is used on axis.  

This thesis presents the results of a complete survey of all possible four-

spherical mirror telescope systems. The survey utilizes an analytical solution 

for four-spherical-mirror anastigmats derived by using an approach based on 

Burch’s Plate Diagram analysis.  This survey and its results are primarily 

described in two papers. At the time of writing both of these papers have been 

submitted and accepted by Optical Engineering. These papers are included in 

this document as appendices A and C.  

The paper attached as appendix A details the method employed in the four-

spherical-mirror survey in the case where the primary mirror is concave and is 

also the optical element with the greatest diameter in the system. The paper 

attached as appendix C details the results of an equivalent survey conducted in 

the case where the primary mirror is allowed to be either convex or concave, 

and optical elements subsequent to the primary mirror are allowed to be larger 

in diameter than the primary mirror itself. The paper attached as appendix B 

presents the results of a separate but related investigation. In this case, an 

investigation is made into the feasibility of using surveys of solution space 

analogous to those used for the four-spherical-mirror surveys as a more 
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general optical design tool. The aim of the investigation is to locate 

anastigmatic systems with a minimum number of conic surfaces when one 

starts from a four-mirror system that has a useful first-order layout (but is not 

corrected for spherical aberration, coma or astigmatism). It is demonstrated in 

the example given in the paper that, using such a baseline system,  the survey 

method is capable of throwing up both unthought-of geometries and also 

solutions similar in first-order layout to the baseline system that are also 

anastigmatic with only one mirror required to be a conicoid.  

This document is intended to provide some background and context for these 

papers. Hence, following this introduction, the next chapter of this document 

will elaborate on the method employed for the survey, including details of the 

analytical solutions derived. Chapter 3 will then give a description and 

summary of the papers attached in appendices A, B and C. Appendix D 

contains an example of the Mathematica™ code used to conduct the surveys 

described in appendices A and C.  Appendix E is a copy of an SPIE 

conference paper given on the subject of Schwarzschild’s first two 1905 

papers on optics, which the author, with the assistance of Dr Werner Friedrich 

of Industrial Research Limited, New Zealand, had translated in 2002. It is 

included in this document, as it provides useful and relevant background 

information to the work presented in this thesis, helping to set it in its 
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historical context. Appendices F and G are copies of SPIE conference papers 

on which the Optical Engineering papers in appendices A and B respectively 

are based. The conference papers are in fact superseded by the journal papers, 

but are included in this document for completeness.  
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2. Method  

This chapter summarizes the methods used in the surveys conducted in the 

papers presented as appendices A, B, C, F and G of this thesis. In section 2.1 

primary aberration coefficients in wavefront measure will be derived in forms 

useful to the Plate Diagram analysis. Section 2.2 will be a general discussion 

of the Plate Diagram method applied to the survey of four-spherical-mirror 

telescopes as developed and used in the papers provided in appendices A and 

C. Section 2.3 will look at how this method was generalized in the paper of 

appendix B to investigate four-mirror systems with one, two or three conicoid 

mirrors.  

2.1 Aberration coefficients in wavefront measure in forms useful 

for Plate Diagram analysis.  

For the analysis of multi-mirror systems the wavefront measure of aberration 

(as opposed to the transverse or longitudinal measures) is particularly useful. 

This is because the system sum of third-order aberrations in wavefront 

measure can be obtained by simple addition of contributions from each 

individual element in the system, whereas with transverse or longitudinal 

measures more algebra is required to take into account scaling changes from 
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surface to surface. The following derivations give third-order coefficients for 

spherical aberration, coma and astigmatism in forms useful and directly 

applicable to Plate Diagram analysis. The derivation of the first spherical 

aberration coefficient in eq. 2.16 below follows Hopkins (1950), while the 

derivations for coma and astigmatism coefficients were presented by Rakich 

(2001) based on analysis by Aldis (1900) and Burch (1943-2).  

 

Figure 2.1.1. Refraction at a surface. All quantities shown here are positive. and 
 are refractive indices before and after refraction and P is the point at which the 

marginal ray is incident on the surface. All other quantities are either self-evident from 
the diagram or will be explained as they are used in the text.  

N
'N

 

The spherical aberration in wavefront measure arising at an optical surface is 

usually quantified in terms of the maximum optical path difference (OPD) 

introduced between the incident and transmitted wavefronts, where the 

incident wavefront emanates from an axial object point (i.e. the wavefront has 
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axial symmetry about the optical axis of the surface). In this case the marginal 

ray of the axial pencil is the only ray required to quantify the primary spherical 

aberration contribution from a given surface.  

Figure 2.1.1 above shows a ray refracting at a spherical surface. All quantities 

shown in figure 2.1.1 are positive, defining the sign convention used here. 

Using these symbols, the OPD introduced to the ray by the surface can be 

written as  

 
'( ' PO ') ( PO)W N L N L= − − − . (2.1)      

 

Observing that 

2 2 2

2 2

PO ( )
2

Y L Z
L Y LZ Z

= + −

= + − + 2

2

2

 (2.2) 

 
and that for a spherical surface the profile equation is 
 

2 2Y rZ Z= − , we obtain (2.3) 
 
 

2 22rZ Y Z X= + = , or  (2.4) 
 

2

2 XZ
r

= . (2.5) 

 
Therefore,  
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Using the binomial theorem, 
 

2 4
2

2

1 1 1 1PO (1 ( ) ( ) (6)).
2 8
X XL

L r L L r L
= − − − − −Ο  (2.7) 

 

Excluding high-order terms and rearranging gives 

2 4 2

2 4

1 1 1 1 1 1 1( PO) ( ) ( ( )) ,
2 8

1 1 1 1 1 1 1'( ' PO ') '( ) ( '( ))
2 ' 8 '

N L X N X N
r L r L NL

N L X N X N
r L r L N L

− = − + −

− = − + − 2 .
' '

 (2.8) 

 
Now W from 2.1 can be defined in terms of 2.8. 
 
In the paraxial limit Snell’s law becomes 
 

' 'Ni N i=  (2.9) 
 
Adopting the convention of replacing upper-case symbols with the 

corresponding lower-case symbols, when the quantity that they represent is a 

paraxial quantity, gives: 
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'
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N N
r l r l

φ

φ

= − = −

= − = −

→ − = − ).

 (2.10) 

Also,  

.X y→  (2.11) 
 

Applying the paraxial approximations to W and disregarding high-order terms 

gives: 

4 2

2

2

1 1 1 1( ( )) ( )
8 '
1 ( ( )) ( )
8 '
1 '( ) ( ).
8 '

W y N
r l N l Nl

1
'

'
y y y yy N
r l N l Nl

u uy Ni
N N

= − −

= − −

= −

 (2.12) 

 

This is the third-order spherical aberration coefficient for a single spherical 

optical surface in wavefront measure. In this thesis two alternative forms of 

this coefficient are used, both of which are simplified versions of the general 

result above. The simplified versions only apply to the spherical aberration 

arising at a spherical reflecting surface in air, where: 

21, 1, ' 1, ' 1.N N N N= ± = = =m 2  (2.13) 
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A variable introduced here is the surface reciprocal radius, or curvature, 

1 .c
r

=  Using this and quantities defined in figure 2.1.1 the following 

relationships can be obtained: 

( ) ( )

( ) ;

' ' ,

yu i c y
r

u cy
c

yu i u i cy
r

φ −Ρ
= − = = −Ρ

+ Ρ
→ =

+ = + = =

 (2.14) 

and, 

2 2' '' ' ' '( ' ')
' '

( ' ) ( ' ),

2 .

u u u uN N N u Nu N u i N u
N N N N

N Ny yc N N
r

Ncy

− = − = − = + − +

−
= = −

= −

( ),i

 (2.15) 

 

Substituting this result into 2.12 gives: 

2

3 2 2

2 2

1 ( ) ( 2 )
8

1
4
1 .
4

W Ni y Nc

N i cy

Nci y

= −

= −

= −

y

 (2.16) 
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In collimated light, where 0u = for the axial pencil, ,yi
r

= = yc  and 2.16 

becomes: 

3 41 .
4

W Nc= − y  (2.17) 

 

Finally, by noting that i c= Ρ , and using relationships from 2.14 and 2.16 

another form of the spherical aberration coefficient is obtained as follows: 

2 2

2

2 2

1
4
1 (( ) ( )
4
1 ( ) .
4

W Nci y

u cPNc cP
c

Nc u cP

= −

+
= −

= − Ρ +

2)
 (2.18) 

 

Note that the “P” used in 2.14 and 2.18 is the length of the perpendicular from 

the centre of curvature of the surface to the incident ray, and is not to be 

confused with the point of incidence of the ray on the surface, P. Also note that 

2.18  2.17 as  → 0.u →

The design of anastigmatic systems also requires coefficients for third-order 

coma and astigmatism in wavefront measure. To derive these in a form that is 
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particularly convenient for Plate Diagram analysis we start by considering 

Burch’s concept of the “annulling plate” (Burch, 1943-2).  

The annulling plate is a zero-powered Schmidt plate that replaces a spherical 

mirror. By the correct choice of strength and location for the plate it can 

introduce exactly the same aberrations into the optical system as the spherical 

mirror it replaces.  

Figure 2.1.2 below shows how a spherical mirror can be replaced by an “anti-

Schmidt plate” which contributes exactly the same aberrations as the mirror it 

replaces, without contributing any power.  

To proceed we consider a single spherical mirror which can be thought of as 

being illuminated by collimated, divergent or convergent pencils of rays from 

on- and off-axis objects. The spherical aberration, as defined by 2.1, is first 

determined for the mirror surface using 2.16, 2.17 or 2.18 as appropriate. 

Having established the magnitude of the spherical aberration contributed by 

the mirror we now determine the profile equation of an annulling plate, placed 

at the centre of curvature of the spherical mirror, which will produce exactly 

this quantity of spherical aberration.  
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Figure 2.1.2. The annulling plate.  
A) Spherical mirror with the aperture stop at the centre of curvature. Coma and 
astigmatism free, but image suffers from spherical aberration over a curved field.  
B) Introducing a Schmidt plate with a spherical contribution equal in magnitude and 
opposite in sign to that of the mirror, at the centre of curvature, corrects spherical 
aberration. By the Stop-Shift Theorem, the stop can now be moved anywhere without 
re-introducing coma or astigmatism. 
C) Introducing an “anti-Schmidt plate” cancels the correction described in B, 
returning the aberration condition to that of the original spherical mirror. 
D) Removing the original spherical mirror and Schmidt correcting plate leaves the 
anti-Schmidt plate, giving the same aberrations as the original spherical mirror, 
including astigmatism and coma as the stop moves away from the plate. 
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This plate will advance or retard a wavefront in proportion to 4 ,y  where  is 

the distance from the axis at which the ray is incident on the plate. The 

constant of proportionality,

y

,κ  is chosen so that the wavefront reached the 

value atW ,cy  where cy is the value at the plate for the marginal ray of the 

axial pencil. In general cy at the plate is not equal to y at the mirror surface, 

cy y ru= − and:  

4
4 .c
c

Wy W
y

κ κ= → =  (2.19) 

 

 

Figure 2.1.3. Quantities in the plane of the plate.  
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Now consider an oblique pencil for which the principal ray crosses the plate at 

the height , as depicted in figure 2.1.3. Here the pencil has a semi-diameter 

of

pcy

cy . In the cross section of the pencil we set up polar co-ordinates 

( , ),ρ θ with the origin on the principal ray, with 0θ = for the vertically 

upwards direction and with ρ ranging from zero to cy . 

Then, if ( , )X Y denote co-ordinates in the plane of ( , ),ρ θ but with an origin 

at the optical axis: 

sin
cos .pc

X
Y y

ρ θ
ρ θ

=
= +

 (2.20) 

 

Using 2.19, the advance or retardation, ,Wδ for any point on the plate is: 

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2

4 3 2 2 2 3 4 2 2
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( sin 2 cos cos )

( 2 cos )
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κ κ ρ θ ρ θ

κ ρ θ ρ θ ρ θ

κ ρ θ ρ

κ ρ θ ρ θ ρ θ ρ

+ = + +

= + + +

= + +

= + + + + + ρ

 (2.21) 

 

The six terms in the final line of equation 2.21 represent, in order of 

appearance, a constant displacement (piston) term, distortion, astigmatism1, 

coma, spherical aberration and astigmatism2. The two astigmatism terms can 
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be written 2 2 22 (1 2cospcy ).ρ θ+ Equation 2.21 shows the dependence of 

various aberrations on ,ρ θ and  We most often wish to have a single 

number for each aberration. This is usually the maximum value for the 

permitted range of 

.pcy

,ρ θ and though an exception is usually made in the 

case of astigmatism, where we still use the maximum values of

,pcy

ρ and but 

most commonly set

,pcy

cos 0.θ =  

For the investigation of anastigmatic systems we can discard the piston and 

distortion terms. Setting ρ to its maximum value, assuming has its 

maximum value, substituting 

,cy pcy

cos 1θ = for the coma term and cos 0θ = for 

the astigmatism term, and substituting 4
c

W
y

for ,κ we obtain the following 

expression for the total third-order aberration: 

4 3 2 2
4

2

2

( 4 2 )

(1 4 2 ) .

c pc c pc c
c

pc pc

c c

WTotal third order aberration y y y y y
y

y y
W

y y

= + +

= + +
 (2.22) 
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2.2 The Plate Diagram method applied to a survey of four-

spherical-mirror telescopes 

The Plate Diagram method of Burch forms the basis of the analytical approach 

to all of the work produced in this thesis. It is described in detail in the 

“method” section of “Four-mirror anastigmats I: A complete solution set for 

all-spherical telescopic systems”, which is attached as appendix A. That 

section is repeated with some additional clarification below.  

The Plate Diagram analysis of an optical system gives a system of Schmidt 

plates in collimated light which reproduce exactly the wavefront primary 

aberration condition of a system consisting of any number of concave or 

convex, conicoid or spherical, refracting or reflecting optical surfaces and 

spaces. In this work we are limited to considering systems of mirrors.  

It was shown in section 2.1 that a spherical mirror can be replaced by an “anti-

Schmidt plate” which contributes exactly the same aberrations as the mirror it 

replaces, without contributing any power.  

The “strength” of the anti-Schmidt plate representing the spherical mirror can 

be thought of as with as defined in equations 2.16, 2.17 or 2.18 as 

appropriate.   

,W W
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Remembering that pcy is the height of the principal (chief) ray of the most 

oblique pencil in the plane of the centre of curvature of the mirror, it can be 

seen that this quantity will be zero if the stop position coincides with that of 

the plate representing the spherical mirror, and non-zero as the stop moves 

away from the plate. As can be seen from figure 2.2.1, pcy  is directly 

proportional to x , the axial distance from the stop to the plate representing the 

mirror, so following from equation 2.22 we have the following 

proportionalities: 

2

Coma
Astigmatism

xW
x W

∝

∝
 (2.23) 

                                                  

  
Figure 2.2.1. As the plate is moved axially away from the stop, the height of the 
intercept of the principal ray of the most oblique pencil with the plate, pcy , grows in 
direct proportion to the axial separation of the plate and the stop, x . 
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A conicoidal mirror can be thought of as consisting of two plates. One plate 

represents the vertex sphere as described above, and the other plate represents 

the primary wavefront spherical aberration induced by the aspheric departure, 

given by: 

3 4

.
4

c
Conicoid

kc yW =  (2.24) 

 

Here  represents the conic constant of the conicoid. The conic constant, first 

introduced by Schwarzschild (1905-1), is given by 

k

2 ,k e= − where e is the 

eccentricity of the conic section that is rotated about its axis to produce the 

conicoid. This plate lies on the pole of the conicoid mirror. Coma and 

astigmatism introduced by this plate arise exactly as for the spherical mirror as 

described in equation 2.22. 

For multiple-mirror telescope systems the positions of the plates are 

determined by imaging the centre of curvature of spherical mirrors (or vertex 

spheres) and mirror poles in the case of conic contributions, into infinite 

conjugate space through all preceding elements in the system. Figure 2.2.2 

gives an example of the Plate Diagram for a Paul three-mirror anastigmat. 

With plate strengths and distances from the entrance-pupil evaluated for 

multiple mirrors it is a simple matter to determine the aberration condition of a 
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multi-mirror system. The primary wavefront aberration contributions from 

each mirror are simply additive, so for a system of plates, the system sum 

for spherical aberration can be given as: 

N

SYS
1

Sphericalaberration .
n

i
i

W
=

= ∑  (2.25) 

 
 

 
Figure 2.2.2. Plate Diagram for a Paul three-mirror anastigmat. The primary mirror is 
a paraboloid giving rise to two plates,  from the vertex sphere and 1W 1ν from the conic 
departure. Note that the plates are of equal magnitude and opposite sign, consistent 
with the fact that the paraboloid has no spherical aberration. The plate representing 
the spherical secondary mirror, , is in object space at CoC2, the image of the centre 
of curvature of the secondary mirror through the primary. Similarly the plate 
representing the spherical tertiary mirror,  is at CoC3’’, the image of the centre of 
curvature of the tertiary mirror through the secondary, then the primary. Note that 

and  are also equal in magnitude and opposite in sign, so the system spherical 
aberration is zero.  Using the Plate Diagram it is a simple matter to prove that system 
sums for coma and astigmatism are also zero. See also the description of this 
“Mersenne-Schmidt” system given in the introduction. 

2W

3W

2W 3W
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Following from equation 2.23, sums linearly proportional to the system totals 

of coma and astigmatism are given by: 

SYS
1

2
SYS

1

Coma ,

Astigmatism .

n

i i
i

n

i i
i

xW

x W

=

=

∝

∝

∑

∑
 (2.26) 

  

In seeking anastigmatic systems, the goal is to drive these aberrations to zero, 

so only relative quantities are required. The extra step of calculation required 

in finding actual system sums for coma and astigmatism is not necessary.  

 

In the case of four spherical mirrors there are four plates, one for each of the 

mirrors. If the height of the marginal paraxial ray on the primary mirror is y1 

and the reciprocal of the radius of the primary is then the plate 

strength, of the plate replacing the primary mirror is given by equation 

2.17. Subsequent mirrors in the system will not in general be in collimated 

light so the plate strengths of these mirrors can be found using equation 2.16. 

1,c

1,W

 

Without loss of generality we can fix the radius of the primary mirror as 

2 (unit focal length) and the diameter as 0.4 Then, by equation 2.17, we 

have: 

m m.
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1 0.00005m.W =  (2.27) 
 
The plate equations 2.25 and 2.26 can now be formulated as a system of 

simultaneous equations: 

2 3 4

1 2 2 3 3 4 4
2 2 2 2
1 2 2 3 3 4 4

0.00005m 0 (sphericalaberration)
0.00005m 0 (coma)

0.00005m 0 (astigmatism).

W W W
x W x W x W x

x W x W x W x

+ + + =
× + + + =

× + + + =

 (2.28) 

                                                
An interesting step at this point is the key to solving these equations. The 

position of the entrance-pupil is of fundamental importance to the plate 

equations, as all ix  are measured from this. If we now state that the aperture 

stop for the system lies at the centre of curvature of the quaternary mirror we 

can immediately simplify the coma and astigmatism equations in 2.28, 

as 4x will be zero.  

 

Here it is important to take note of the Stop Shift Theorem (Schwarzschild 

1905-1).  The Stop Shift Theorem orders the four Seidel aberrations spherical 

aberration, coma, astigmatism and distortion by the power to which the 

changes in the quantities of different types of aberrations that are contributed 

to a system by a spherical optical element are dependent on the position of the 

aperture stop. It can be shown that the change in spherical aberration is 

independent of this position, the change in coma is linearly proportional, the 

change in astigmatism is quadratically proportional and the change in 
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distortion is cubically proportional to the change in aperture stop position. 

Disregarding distortion, equations 2.25 and 2.26 imply this. The Stop Shift 

Theorem also shows that if the system sums for “lower ranked aberrations”, 

using the ranking by dependence on aperture stop position described above, 

are zero, then the zero system sums of all of these lower ranked aberrations, 

and also the quantity of the lowest ranking of system aberration that is non-

zero, will be independent of stop position. Therefore, the corrected spherical 

aberration, and uncorrected coma in a Newtonian telescope are independent of 

stop position, as are the corrected spherical aberration and coma and 

uncorrected astigmatism in a Ritchey-Chrétien system. Also, the system sum 

for distortion in an anastigmatic system will be independent of stop position, 

but more importantly for the work presented in this thesis, so will the system 

sums for spherical aberration, coma and astigmatism. 

 

It is important to note that while setting the position of the aperture stop is a 

necessary step in the formulation presented here, the resultant anastigmat is 

not limited by this; the position of the aperture stop can be set anywhere in the 

system without disturbing the correction of an anastigmatic system. 

 

Setting 4x to zero, the coma and astigmatism equations in 2.28 can be 

rearranged to give: 
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3 3 2 2 10.00005m ,W x W x x= − − × and (2.29) 

2 2
3 3 2 2 10.00005m .W x W x x= − − × 2  (2.30) 

 
At this point two further simplifications are made. Firstly the entrance-pupil 

position is set, and it can be set to any point in object space. By definition, the 

entrance-pupil position is the image in object space of the system aperture 

stop, which has been set at the yet-to-be-located centre of curvature of the 

quaternary mirror. We are free to place the entrance-pupil anywhere in object 

space because at this point the secondary and tertiary mirrors are undefined.  

If we define the entrance-pupil position as the axial distance from the pole of 

the primary mirror, and give it the symbol ε , we can immediately evaluate 

1x (which is simply 1Rε − , where 1R is the radius of curvature of the primary 

mirror). At this point we also assign arbitrary values to the separation of 

primary and secondary mirrors, and the curvature of the secondary mirror.  

With these,  and 

1,t

2 ,c

2W 2x  can be calculated using 2.16 and standard relationships 

in paraxial optics to calculate the required values for and 2 2,i y 2x . Now the 

right-hand sides of equations 2.29 and 2.30 can be completely evaluated. 
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This allows us to calculate  and 3W 3x by first dividing equation 2.30 by 

equation 2.29 to give 3x , and then dividing equation 2.29 by the newly-

acquired value of 3x  to give .  3W

We now need to translate the plate quantities 3x  and  back into optical-

system constructional parameters. These are needed to determine the actual 

position of the centre of curvature of the quaternary mirror, and finally the 

curvature of the quaternary mirror. To proceed we rearrange equation 2.18 as 

follows: 

3W

2 2 2 21 1
3 3 3 3 3 3 3 3 3 3 3 3 3 34 4( ) ( )W N c P u c P N c P u c P W= − − → − − − = 0.  (2.31) 

 
Here  is the angle that the marginal paraxial ray from the secondary to the 

tertiary mirror makes with the optical axis and is the length of the 

perpendicular to this ray from the centre of curvature of the tertiary mirror. 

Equation 2.31 is cubic in  and as all other quantities in equation 2.31 can be 

obtained from standard paraxial relationships,  can immediately be 

evaluated. Analytical expressions for the solutions for the general cubic 

equation: 

3u

3P

3c

3c

2 3
0 1 2 0a a x a x x+ + + = , (2.32) 

             
can be given as: 
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3 3
2

33

2 ,
3 3 3 2

Z Qa YSA
Z Q

+−
= − +

+
 (2.33) 

3
2

33

(1 3)(1 3) ,
3 3 4( ) 6 2

i Z Qa i YSB
Z Q

+ +− −
= + −

+
 (2.34) 

3
2

33

(1 3)(1 3) ,
3 3 4( ) 6 2

i Z Qa i YSC
Z Q

− +− +
= + −

+
 (2.35) 

 
where,  

2 3
1 2 0 1 2 23 ; 27 9 ; 4Y a a Z a a a a Q Y Z= − = − + − = + +3 2 .  (2.36) 

 
 

Here 1.i = −  With each of the three values of  thus obtained, and the 

locations of the tertiary mirror set by imaging the plate position

3c

3x through the 

primary and secondary mirrors respectively, a different position of the centre 

of curvature of the quaternary mirror can now be calculated by imaging the 

position of the entrance pupil that was defined at an earlier stage back through 

the primary, secondary and tertiary mirrors. This determines the position of the 

centre of curvature of the quaternary mirror. With the system up to the tertiary 

mirror defined (three times, once for each solution to equation 2.31) the 

quantities and  can be determined, and  can be obtained from 

rearranging the spherical aberration equation in 2.28 and substituting in values 

for  and obtained above to give : 

4u 4P 4W

3W 2W
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4 2 3( 0.00005m).W W W= − + +  (2.37) 

                                  

Now it only remains to formulate a similar cubic to equation 2.31 and solve 

for : 4c

2 2 2 21 1
4 4 4 4 4 4 4 4 4 4 4 4 4 44 4( ) ( )W N c P u c P N c P u c P W= − − → − − − = 0.  (2.38) 

 
 Again, there will be three solutions to this cubic in  4.c

To summarize, for each point in the three-dimensional parameter space 

defined by and1 2, ,t c ε , there will be a total of nine geometrically distinct 

anastigmatic systems, arising from the nine possible combinations of the 

solutions to equations 2.31 and 2.38. 

This completes the derivation of the constructional parameters of nine distinct 

four-spherical-mirror anastigmats for any given input values of , and1 2,t c ε . 

Using the method described above nine distinct anastigmatic solutions are 

obtained, because as we have seen, for each of the three values of there are 

three distinct values of . These nine anastigmats can justifiably be thought 

of as belonging to geometrically distinct families; the remaining members of 

each family can be found by repeating the method described above for a large 

3c

4c
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number of different points, sampling the 3-space defined by , and 1 2,t c ε  with 

sufficient density so as to accurately map out the solution spaces.  By solving 

for enough points in this parameter space the entire set of solutions for four-

spherical-mirror anastigmats can be mapped with a large but not 

unmanageable amount of computing. 

2.3 Extension to four-mirror systems containing one, two or three 

conicoid mirrors  

An exploration was made into the application of the Plate Diagram based 

method described above to systems which could be described as five, six or 

seven plate systems (four-mirror systems with one, two or three conicoid 

mirrors). The aim in this case was to start from a system with a first-order 

layout chosen for its desirable characteristics, for example, relatively low 

central obstruction, convenient focal plane location, reasonably sized optics 

and so on, and then to investigate what sort of systems could be obtained with 

decreasing numbers of mirrors from the original four-sphere system allowed to 

become conicoids. 

In general, for a system of fixed spherical mirrors, allowing mirrors to have 

conicoid departures superposed on the original base spheres will allow for the 

correction of third-order aberrations, excluding Petzval curvature. This idea 

N

N
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is referred to by Wilson (2004e) as the “generalized Schwarzschild theorem”, 

recognizing that Schwarzschild first pointed this fact out in 1905 

(Schwarzschild 1905-2).  

Starting from a chosen base system of four spherical mirrors, this investigation 

has looked at rendering the system anastigmatic with, at first, three conicoids 

and all base mirrors fixed in their original radii and positions, then with two 

conicoids and the curvature and position of the quaternary mirror free to vary, 

then finally with one conicoid and the radius and position of both tertiary and 

quaternary mirrors free to vary. By choosing spacing and radii variables to be 

as close to the focal plane (close in terms of their sequential order) as possible, 

the disturbance to the baseline first-order layout is minimized.  

2.3.1. Three conicoid mirrors 

In the first case considered here, three mirrors are allowed to become 

conicoids and conic constants are found that simultaneously zero spherical 

aberration, coma and astigmatism. This is a trivial exercise in a modern ray-

tracing program but the Plate Diagram approach is included here as an 

example. 

With the radii and positions of the four mirrors set we can immediately 

calculate plate strengths and positions for the plates representing the four 
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baseline spheres in object space using equations 2.16 or 2.17 and simple 

paraxial optics. Setting the position of the entrance pupil to any convenient 

location allows us to calculate ix  and hence system sums for spherical 

aberration, coma and astigmatism arising from the baseline system, following 

equations 2.25 and 2.26: 

SYS
1

SYS
1

2
SYS

1

spherical

coma

astigmatism .

n

i
i

n

i i
i
n

i i
i

W

xW

x W

=

=

=

=

∝

∝

∑

∑

∑

 (2.39) 

 

As mentioned earlier, the coma and astigmatism “sums” are only proportional 

to the actual values for coma and astigmatism, but as these quantities are being 

used to drive the final system sum to zero that does not matter. To obtain the 

necessary combination of conicoids required for anastigmatic correction it is 

simply a matter of formulating and solving the following linear system of plate 

equations for , using standard paraxial optics relationships to determine the 

fixed values of

kiW

kix and placing the system sums from equation 2.39 on 

the RHS : 
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2 3 4 SYS

2 2 3 3 4 4 SYS
2 2 2

2 2 3 3 4 4 SYS

spherical
coma

astigmatism

k k k

k k k k k k

k k k k k k

W W W
x W x W x W

x W x W x W

+ + =−
+ + =−

+ + =−

 (2.40) 

 

Once the are thus determined, can be obtained by rearranging 

and evaluating equation 2.24 for each case. The subscripts refer to 

the fact that in the example given here the primary mirror remains spherical 

and conicoids are sought for the secondary, tertiary and quaternary mirrors. In 

practice any of the four mirrors could have been chosen to remain spherical 

without any further complication. 

kiW 2 3 4, andk k k

2 3 4, andk k k

While this case was relatively trivial, the next case, which departs from the 

generalized Schwarzschild theorem in that two conicoids are being used to 

correct three aberrations, is somewhat more interesting.  

2.3.2. Two conicoid mirrors 

Here the position of and curvature of the quaternary mirror are also being 

allowed to vary. In this way four variables, two conic constants, one position 

and one surface power, are being used to solve for three aberrations. The result 

is that the solutions form a set that can be mapped as a 1-dimensional curve in 

some 2-parameter space. 
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In this example two mirrors, the primary and quaternary mirrors, will remain 

strictly spherical. This is only one of six possible arrangements of two 

conicoids amongst four mirrors, but serves as a representative example. The 

secondary and tertiary mirrors are allowed to be conicoids. To achieve 

anastigmatic correction the position and curvature of the quaternary mirror 

must be varied. In this case we will start with the primary, secondary and 

tertiary mirrors retaining some arbitrary but promising first-order layout. We 

then will solve for the position and radius of the quaternary mirror. 

 To proceed we imagine that the aperture stop is placed at the centre of 

curvature of the quaternary mirror. Also, we assign some arbitrary position to 

the entrance pupil, which after imaging through primary, secondary and 

tertiary mirrors, will locate the centre of curvature of the quaternary mirror. In 

this way, the coma and astigmatism equations in 2.40 are reduced to: 

2 2 3 3 SYS

2 2
2 2 3 3 SYS

coma

astigmatism
k k k k

k k k k

x W x W

x W x W

+ =−

+ =−
 (2.41) 

 
That is, only contributions from the two conicoids provide variables to balance 

against system coma and astigmatism; by placing the stop on the centre of 

curvature of the quaternary mirror the 4x value for the plate associated with this 

mirror is now zero so its coma and astigmatism contributions are necessarily zero. 

Note that here and  are values calculated from the SYScoma SYSastigmatism

57 



spherical primary and vertex spheres of the secondary and tertiary mirrors. Values 

of kix can be obtained and equations 2.41 can be used to solve for and hence, 

by re-arranging equation 2.24, for  and . Using the values of thus 

obtained we can now solve for the spherical aberration contribution of the 

quaternary mirror by rearranging the spherical aberration equation in equations 

2.4 (and substituting for in this case): 

kiW

2k 3k kiW

quatW 4kW

quat SYS 2 3kW spherical W W=− − − k . (2.42) 

 
 
 
 
 
Now we have the position of the centre of curvature of the quaternary mirror 

(from setting the initial position of the entrance pupil) and the spherical 

aberration contribution of the quaternary mirror from equation 2.42. Also, by 

simple paraxial optics we can obtain , the angle the marginal ray of the axial 

paraxial pencil makes with the axis after reflection from the tertiary. We can 

also calculate the quantity which from figure 2.1.1 is the length of the 

perpendicular from the centre of curvature of the quaternary mirror to the 

marginal ray of the axial paraxial pencil after reflection from the tertiary 

mirror. Using these, and equation 2.38, we can solve the resultant cubic 

equation in  (the curvature of the quaternary mirror).  

4u

,P

4c
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Using these three solutions, for each initial position of the entrance pupil (and 

therefore the position of centre of curvature of the quaternary mirror) we 

obtain a maximum of three distinct anastigmatic telescopes. These telescopes 

differ only in the position and curvature of the quaternary mirror (and hence in 

other related parameters such as focal ratio, Petzval curvature and central 

obstruction). It remains to scan through the available solution space, there will 

be three solutions for each initial choice of entrance pupil position. By plotting 

some system parameter, such as against the position of the image of the 

centre of curvature of the quaternary mirror in object space (which was the 

original position of the entrance pupil for the system) we can build up three 

curves representing available solutions.  

4 ,c

Note also that while the position of the aperture stop and hence entrance pupil 

was set initially to reduce the number of unknowns in equations 2.40, once an 

anastigmatic system is achieved the aperture stop can be moved to any 

convenient location without affecting the anastigmatic correction, as given by 

the stop shift theorem. 

2.3.3. One conicoid mirror 

In this final example we look at the case in which there is one conicoid mirror 

and three spheres. While in this case the secondary mirror has been chosen to 
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be the conicoid, the method described below is readily adapted to 

accommodate any choice of mirror as the conicoid. The primary and 

secondary mirrors can be imagined to have the same characteristics and 

positions as in the system considered in 2.3.1 and 2.3.2. Now the curvatures 

and positions of the tertiary and quaternary mirrors are varied to solve for 

anastigmats. The first step is similar to that described in the previous section 

2.3.2. As in the previous example, the initial position of the aperture stop is 

chosen to eliminate one set of variables from the plate equations. In this case 

placing the aperture stop at the pole of the secondary mirror prevents the plate 

associated with the conic constant of the secondary mirror from having any 

effect on the coma or astigmatism of the system. Now we can form the 

following equations: 

tert tert quat quat prim prim sec sec

2 2 2 2
tert tert quat quat prim prim sec sec

( )

( )

x W x W x W x W

x W x W x W x W .

+ =− +

+ =− +
 (2.43) 

 

Here “prim, “sec”, “tert” and “quat” refer to quantities derived from the 

spherical primary through quaternary mirrors respectively (or vertex sphere in 

the case of the conicoid secondary mirror). The upper equation is the condition 

for zero coma and the lower equation is the condition for zero astigmatism. 

Quantities on the RHS are known. To proceed further we assign values to , 2t
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the separation of the secondary and tertiary mirrors and , the radius of the 

tertiary mirror, from which we can calculate 

3r

tertx and .  tertW

Moving all known quantities in the above equations to the RHS, and dividing 

the astigmatism equation by the coma equation from equations 2.43 gives: 

2 2 2
prim prim sec sec tert tert

quat
prim prim sec sec tert tert

x W x W x W
x

x W x W x W
+ +

=
+ +

, (2.44) 

 

from which we obtain: 

prim prim sec sec tert tert
quat

quat

( )
.

x W x W x W
W

x
+ +

=−  (2.45) 

 

Now that all  are known apart from the one associated with the conicoid, 

we can solve for the conicoid using the spherical aberration plate sum equation 

2.39 and a rearranged 2.24: 

iW

2 prim sec tert quat3 4
2 2

4 (k W W W W
c y
−

= + + + ).  (2.46) 

 
It is interesting to note that in the above derivation the necessary spherical 

aberration contribution from the quaternary mirror is defined before the radius 

or position of the quaternary mirror is determined. The final remaining step is 
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to solve for the radius and position of the quaternary mirror, which is done 

exactly by deriving necessary paraxial quantities and formulating and solving 

equation 2.38. As in the previous case, this leads to three distinct systems, this 

time for each choice of the starting values and . Again, as in the previous 

case, each of the three exact algebraic solutions to equation 2.38 can be 

evaluated independently for a large number of initial values of the parameters 

and . In this way a map of the solutions can be built up over this 2-

parameter space for solutions SA, SB and SC.  

2t 3c

2t 3c

In these maps anastigmats that are physically impossible can be filtered out, 

and there is also the opportunity to write custom filters targeting systems with 

particular characteristics, for example sizes of mirrors, space envelope, central 

obstruction etc. Approaches to filtering the large solution sets obtainable by 

applying the methods described in sections 2.2 and 2.3 will now be discussed. 

2.4 Techniques for filtering solution sets  

The methods described in sections 2.2 and 2.3, with one exception, produce 

one, two or three dimensional solution sets of anastigmatic systems. The basis 

vectors for these solution sets are certain system constructional parameters, 

such as mirror separations, curvatures or conic constants. While it is true that 

in the methods discussed in the sections above there are always anastigmatic 
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solutions for each point in the specified parameter space, there is no guarantee 

that these solutions are physically valid.  

For example solutions SA, SB or SC from equations 2.33, 2.34 and 2.35 

respectively may have imaginary components. In this case the solutions do not 

give physically-realizable anastigmatic systems. It is also possible for real 

solutions to be physically invalid if they require mirrors or the focal plane to 

occupy virtual spaces (the word “virtual” is used here in the sense of optical 

imaging). Solutions with all-real components may still be uninteresting 

because of excessively large optical elements or mirror separations. These 

systems can also suffer from total, or at least, unacceptably high, self-

obstruction.  

In the general approach described in preceding sections, points in the relevant 

parameter space are iteratively sampled with a relatively high density. At each 

sampled point the relevant analytical solution for an anastigmatic reflecting 

system is applied, and for systems not containing imaginary components in 

some part of their solutions, all system constructional parameters are 

evaluated. Once the system constructional parameters are obtained the system 

can be screened with logical operators in the program. For example, airspaces 

can be checked for sign, and systems containing airspaces requiring virtual 
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mirrors for example can be rejected. Similarly, upper and/or lower limits can 

be set on acceptable mirror separations, mirror sizes etc.  

The filters described so far are trivial to implement in practice. A more 

complicated example of filtering arises when we try to control the central 

obstruction. To calculate the central obstruction of a four mirror system an 

approach has been adopted here that first sorts systems by the relative 

arrangement of all of the mirrors and of the focal plane, and then to assign two 

rays, one a marginal ray of the axial pencil, and one an axial pencil ray that is 

selected to lie at some height between the axis and the marginal ray. These 

rays are traced through the system and for each portion of their path through 

the system, for example, from the object to M1, then from M1 to M2, from M2 

to M3, from M3 to M4 and from M4 to the focal plane, checks are made to see 

whether or not the beam encompassed by the two selected rays will be 

obstructed by any of the mirrors, or the focal plane if applicable, that lie in that 

portion of the path.  

If we label the primary through quarternary mirrors as 1 through 4 and the 

image space as 5, then a 5-digit number comprised of these five numerals can 

be used to categorize the system according to the order that the optical 

components are arranged. For example, with incident collimated light 

traveling from left to right, a system designated “21435” would be a system in 
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which the order of placement of elements from left to right would be 

secondary mirror, primary mirror, quaternary mirror, tertiary mirror and focal 

plane. An example of a 45231 system is given in figure 2.4.1.   

It turns out that there are 16 possible permutations of the “order of occurrence” 

of four mirrors and focal plane in valid four-mirror imaging systems. Using 

the system described above, these can be represented by the following sets of 

digits: 

21435, 21453, 24513, 24153, 24135, 24531, 24351, 24315, 45213, 42513, 

42153, 42135, 45231, 42531, 42351 and 42315. 

This classification system can be useful. For example, when designing 

microscope objectives it would make sense to limit the investigation to 

systems with “5” as the last digit, representing systems for which the “image” 

was beyond all of the optics (though for a microscope objective the “image” 

here would typically be the object and the image space would have the infinite 

long conjugate). 

To apply a filter to remove systems with unacceptable central obstruction, a 

system having passed successfully through the other filter processes described 

above, is then sorted into one of the sixteen possible categories of element 

arrangement. For each different arrangement, there are now known potential 
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obstructions for each portion of the optical path through the system, and 

appropriate calculations can now be made to check whether or not appropriate 

components impinge on the beam over each of these portions. 

 
 
Figure 2.4.1. Classification based on the order of optical components. In the 
classification system described in the text this system would be described as a “45231” 
system. 
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3. Results: Four spherical mirrors with no 

element larger than the entrance pupil 

It is interesting to note at this point that of the three four-plate systems referred 

to in the introduction, the two-conicoid mirror solutions lie along a curve in 2-

parameter space (figure 3.1) and the three-mirror, one conicoid solutions lie in 

2-dimensional regions (figure 3.2). Now we have four-spherical-mirror 

solutions occupying 3-dimensional solution spaces (figure 3.3). While in each 

case there are four plates involved, in the case of systems with conicoid 

mirrors the two plates representing the conicoid have an extra element of 

coupling which effectively reduces the dimensionality of the solution space. 

 

As described in section 2.4, solutions from the initial “unfiltered” solution set, 

as depicted in figure 3.3, are not necessarily physically-realizable anastigmats. 

Physically-unrealizable solutions fall into two categories. In one, the solution 

involves at least one mirror located in a virtual space. Also, any solutions with 

imaginary components will not be physically-realizable anastigmats.  
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The plot in figure 3.2 shows an example of an unfiltered solution-set map, in 

this case for three-mirror anastigmats with two spherical mirrors. In this map 

gray areas represent physically-unrealizable solutions, while white and black 

regions are possible anastigmats with positive and negative Petzval curvature 

respectively. While a large range of different system metrics could be plotted 

for the valid solutions, the Petzval curvature has been chosen in this case to 

allow for the ready identification of flat-field solutions.  

 

Figure 3.1. These two plots represent the complete solution set for two-mirror or 
Schwarzschild anastigmats. In both cases the primary mirror has been set with a focal 
length of +/- 1 m (so c1 =  +/-  0.5 m-1). In both cases the secondary mirrors are concave. 
The horizontal line in the right-hand plot intersects the solution curve at the point 
representing a flat-field anastigmat. In both cases the mirrors are, in general, 
conicoids. 
 
The mapping of four-spherical-mirror anastigmat sets has now been carried 

out. Of the nine distinct families of solution, four were empty sets when 

physically-unrealizable solutions were filtered out. The remaining five solution 
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sets contain a large amount of data. Figure 3.3 is an example of several cross 

sections of one of these as defined for figures 3.1 and 3.2. As in figure 3.2, 

gray areas represent physically-unrealizable solutions, and white and black 

regions represent solutions with positive and negative Petzval curvature 

respectively. 

 

Once a set of physically-realizable solutions has been achieved, the physically-

realizable set represents the complete range of possible solutions, and is thus a 

truly global solution set. Nevertheless, various conditions for practicality can 

be used to further refine the set. 
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Figure 3.2. These plots are four out of the seven plots representing the complete 
solution set for three-mirror anastigmats with two strictly spherical mirrors. In these 
plots solutions with positive Petzval curvature are plotted white and solutions with 
negative Petzval curvature are plotted black (grey points correspond to non-physical 
solutions). Hence flat-field solutions lie along loci where black and white regions abut. 
Clearly there are 4 families of flat-field three-mirror anastigmat with two spherical 
mirrors: only one of these appeared in the literature prior to Rakich (2001). 
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Figure 3.3. A number of cross sections taken from one of the five solution families for 
four-spherical-mirror anastigmats with concave primary mirrors. The horizontal and 
vertical axes represent and  respectively. The number in the centre top of each 
plot is related to

1t 2c
ε , the initial position of the entrance-pupil, for each cross section. 

White points represent solutions with positive Petzval curvature, black points systems 
with negative Petzval curvature. Flat field solutions lie along curves where white 
regions abut black regions. 
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 Possible impracticalities include mirrors with huge diameters, large inter-

mirror distances, and large or complete self-obstruction by system elements. 

Removing such systems from consideration is achieved by writing “filters” 

into the program used to map the solution space, as described in section 2.4.  

When further filtering is introduced to remove systems with unfeasibly large 

element spacing and diameters larger than the primary mirror, the number of 

populated solution sets for four-spherical-mirror anastigmats with no elements 

larger than the entrance pupil reduces from 5 to 2. It was initially reported that 

there were no such viable solutions with usefully-low central obstructions 

(Rakich, 2004), but recent automation of the search process for low-

obstruction systems has produced useful systems (Rakich, 2007-2). These 

systems represent the viable systems when axially-symmetrical systems are 

considered. Figures 3.4-3.7 contain examples of both afocal and focal systems 

of each solution type. Table 3.1 gives corresponding design parameters. As a 

result of the analytical approach taken in this work it can now be stated with 

certainty that the sets of solutions represented by figures 3.4-3.7, and in table 

3.1, are the only feasible all-spherical reflecting anastigmats with concave 

primary mirrors, in the case where no element is allowed to exceed the 

entrance pupil in diameter.  
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Figure 3.4. Two afocal four-spherical-mirror anastigmats. System A is comprised of 
coupled pairs of two-concentric-spherical-mirror anastigmatic systems. The linear 
central obstruction of this system is 50%. System B is a more general version that can 
not be broken down into individually-anastigmatic sub-systems.   
 

The linear central obstructions of the systems presented here range from 50% 

to 75%. With 50% central obstruction, the afocal system in figure 3.4A 

represents the minimum possible central obstruction for the class of system 

under discussion. This fact has been determined by successively eliminating 

systems while reducing the central obstruction allowed until finally only one 

solution point remains out of the 3-dimensional solution space. For focal 
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systems of focal ratio less than f/15, the minimum-achievable linear central 

obstruction appears to be approximately 60% as represented by figure 3.5C. 

 

 

Figure 3.5. Two examples of focal versions of the solution type shown in figure 3.4. 
Drawings B and D give an expanded view of the last three elements of systems A and C 
respectively. This solution type contains as special cases systems that are comprised of 
two pairs of concentric two-spherical-mirror anastigmats.  
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Figure 3.6. An afocal four-spherical-mirror anastigmat of the second kind. Unlike the 
solutions of figures 3.4 and 3.5, this solution type has no special case that is comprised 
of coupled pairs of concentric mirrors. B above gives a close up view of the last three 
mirrors of the system in A. 
 
As can be seen in figures 3.4 and 3.5, this first solution family has convex 

secondary mirrors, concave tertiary mirrors, and convex quaternary mirrors. 

The second solution family represented by figures 3.6 and 3.7 has concave 

secondary mirrors and convex tertiary and quaternary mirrors. These systems 

have slightly higher central obstructions: around 70% linear central 

obstructions at best.  

75 



 

 
Figure 3.7. Focal versions of the second type of solution as shown in figure 3.6. 
Drawings B and D give an expanded view of the last three elements of systems A and C 
respectively. There is a continuum of solutions with focal ratios ranging from the afocal 
case down to about f/8 (for the scale given for these systems). In practice the image 
could be picked off to a more convenient location with a fold mirror. This type of 
system in general suffers from less high-order aberration than the systems shown in 
figures 3.4 and 3.5. The minimum linear central obstruction achievable with this type 
of system is approximately 67%. 
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 3.4.A 3.4.B 3.5.A 3.5.C 3.6 3.7.A 3.7.C 

R1 −1.61838 −2 −2 −2 −2 −2 −2 

t1 −1.0 −1.17050 −1.17050 −1.09550 −1.49005 −1.52005 −1.51005

R2 −0.61838 −0.40401 −0.40818 −0.12618 0.29939 0.35087 0.35087 

t2 0.10615 0.05809 0.09052 0.16859 0.10022 0.12631 0.12058 

R3 −0.17129 −0.11475 −0.15052 −0.18226 0.30119 0.47371 0.57943 

t3 −0.10595 −0.07272 −0.11237 −0.15859 −0.39783 −0.29493 −0.27074

R4 −0.06545 −0.04015 −0.03536 −0.01375 −0.18985 −0.09802 −0.07472

t4 ∞ ∞ 0.11148 0.01289 ∞ 0.17378 0.09704 

 
Table 1. System parameters for the systems depicted in figures 3.4-3.7. Units are 
metres. R1-R4 are the radii of the primary – quaternary mirrors. t1–t4 are inter-
mirror or in the case of t4, the mirror-focal plane separation. In each case the aperture 
stop has been set at the primary mirror, though as these systems are anastigmats the 
stop position can be set anywhere without affecting the correction of the third-order 
aberrations. The stop diameter (and hence that of the primary mirror) has been set at 
0.4 m in all cases. 
 
It is interesting to note that the system shown in figure 3.4.A is actually a 

system formed by coupling two pairs of concentric spherical anastigmats: the 

well known two-concentric-mirror anastigmat with convex primary mirror and 

the less well known two- concentric-mirror anastigmat with concave primary 

mirror that produces a virtual image. These pairs were discussed individually 

by Burch (1943-2) and Rosin (1968), and later, in combination to produce 

four-mirror systems, by Shafer (1978). It is surprising that Shafer did not 

propose the more fundamental on-axis systems presented here, despite 
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identifying both pairs of two-concentric-mirror anastigmats, and also 

proposing the concept of relaying the virtual image of the concave-primary-

mirror version of the two-concentric-mirror anastigmat using either finite 

conjugate or afocal anastigmatic relay systems. Shafer, who was the first to 

present four-spherical-mirror anastigmatic systems, reported only off-axis 

systems, that is, systems in which both the central field angle and the entrance 

pupil were offset from the system axis. 

 

Figure 3.4.B represents a version of the four-spherical-mirror afocal system 

that does not consist of individually-anastigmatic two-mirror pairs. Similarly, 

the focal family of solutions as illustrated in figure 3.5 contains, but is not 

limited to, solutions formed by pairs of individually-anastigmatic and 

concentric two-spherical-mirror systems.  

 

Unlike the solutions in figures 3.4 and 3.5, the solutions in figures 3.6 and 3.7 

do not have any versions that can be reduced to pairs of individually-

anastigmatic two-mirror systems. There are no systems corresponding to these 

in the published literature. 
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It should be noted that all of these systems can be scaled in aperture without 

affecting their anastigmatic correction in the third-order aberration sense, 

though the magnitude of high-order aberration residuals will of course change 

with this scaling.  

It should also be noted that, while these systems have valid correction in the 

“extended paraxial region”, they do suffer from residual high-order aberration. 

The third-order solutions discussed here, and in many of the references 

provided in this work, are generally understood to be good starting points for 

design. Typically, high-order aberrations can be removed by optimization and 

either introducing high-order aspheric terms, or “tweaking” the various 

constructional parameters to reintroduce small balancing quantities of third-

order aberration. An example of the latter approach is given in figures 3.8, 3.9 

and table 2. 

Other practical systems can still be extracted from the large number of 

solutions produced by this survey. There exist a number of systems within the 

solution set that are excluded because of self-obstruction when considered as 

axially-symmetrical systems, but that yield systems with small or even zero 

self-obstruction when off-axis or multi-axis systems are considered.  
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Figure 3.8. An example of high-order aberration correction.  System A is the layout of 
a third-order solution. If one starts from system A, creates a merit function in an 
optimization routine in optical design software that attempts to minimize the total 
residual RMS wavefront error and re-optimizes allowing the radii of all mirrors 
subsequent to the primary mirror to vary, along with some of the air-spaces, the result 
is shown in system B. In system B, 1076 nm of third-order spherical aberration, 95 nm 
of third-order coma and 82 nm of third-order astigmatism are balanced against the 
high-order residual aberrations in an optimal manner.  
 
 
System R1 T1 R2 T2 R3 T3 R4 T4 
3.8 A -2.0 -1.67 0.4757 0.1945 0.5179 -.4725 -.1687 0.2117
3.8 B -2.0 -1.67 0.4719 0.1941 0.4852 -.4269 -.4331 0.4154
 
Table 2. Optical design data for the systems shown in figure 3.8. In both cases the 
system stop was set on the primary and the entrance pupil diameter was set at 0.4 m. 
All units are metres. System A has a focal ratio of f/15.0; system B has a focal ratio of 
f/13.3. 
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Figure 3.9. On-axis WFE residuals, for the third-order solution from figure 3.8A (top), 
and the solution in which third-order aberration is reintroduced so as optimally to 
balance against high-order aberration from figure 3.8B (bottom). The total wavefront 
error in the system with high-order aberration taken into account is reduced by a 
factor of 6.7 from that of the third-order solution in this example.  
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Figure 3.10. An example of a four-spherical-mirror anastigmatic Schiefspiegler. 
Numerous examples of anastigmatic Schiefspiegler are presented in chapter 5. 
 
 
Figure 3.10 gives an example of one such Schiefspiegler system. In 

comparison to off-axis systems comprised of aspheric mirrors, there is a 

greatly reduced manufacturing and alignment difficulty associated with 

systems consisting of “off-axis” spherical mirrors, which of course remain 

spherical. 

While “shiefspiegler” literally means “oblique mirror”, and was originally 

used to describe systems comprised of tilted mirrors that could not be derived 

from axially-symmetrical parent systems (Kutter, 1953), it has come to mean 

reflecting telescope systems which are free from central obstruction. These can 

indeed be obtained by using mirrors that have been tilted with respect to the 
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optical axis. However the common usage of the term Schiefspiegler also 

includes unobstructed systems that are based on portions of parent systems 

that are symmetrical about some common axis.  

An axially-symmetrical parent system can be rendered as a Schiefspiegler by 

using an off-axis portion of the pupil, or by using only a small range of field 

points surrounding some off-axis field point, or by a combination of both of 

these approaches. An interesting point to note about these Schiefspiegler 

systems is that because they are derived from axially-symmetric parent 

systems, the centres of curvature of the mirrors are collinear. This fact presents 

the opportunity for Schiefspiegler systems that can be brought into alignment 

with remarkable ease when compared to the general case. Numerous examples 

of Schiefspiegler systems will be given in chapter 5. 

Also, systems with convex primary mirrors, while not deemed appropriate 

here for telescope systems, are still of interest for a variety of applications. A 

full discussion will be given of solutions in which elements are allowed to 

exceed the diameter of the primary mirror (which allows convex-primary-

mirror solutions that were disqualified from the search presented above, as 

well as concave-primary-mirror systems with large secondary-quaternary 

optics) in chapter 5 below. 
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4. Results: Four-mirror anastigmats with 

useful first-order layouts and containing 

one, two or three conicoid elements 

The results from chapter 3 are interesting, but it is unfortunate that the valid 

solution sets contain only a limited range of viable geometries. One way to 

obtain a wider range of potentially useful geometries is to introduce more 

degrees of freedom to the four-mirror system. As was discussed in section 2.3, 

with three more degrees of freedom introduced to the four-spherical-mirror 

systems, obtained by allowing three of the mirrors to become conicoids, any 

arbitrary geometrical arrangement of four mirrors can be rendered 

anastigmatic. Such a system would be a seven-plate system. While 

anastigmatic correction is easily obtained in this way, the advantage is lost of 

having a relatively simple optical system, with all-spherical surfaces that are 

much less difficult to fabricate and align than conicoids.  

4.1 Three-conicoid solution 

Section 2.3 described how the Plate Diagram algebra developed for four 

spherical mirrors could be generalized to include one, two or three conicoid 

mirrors. Following below is an example of the methods described in section 

2.3 applied to the system shown in figure 4.1.A. 
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In figure 4.1, system A is presented as a baseline system of four mirrors which 

has a potentially useful first-order layout and for which no attempt at third-

order correction has yet been made. The large transverse aberration of the 

marginal rays is clearly visible at the focal plane. System B is identical to 

system A in its first-order properties, but now has in addition on three of its 

mirrors a conicoid term giving a departure from sphericity, with the conic 

constants chosen to render the system anastigmatic.  

 
Figure 4.1. System A represents an example of a potentially useful first-order layout of 
a four-spherical-mirror system. The system is not corrected for aberration and the 
aberration is clearly visible at the focal plane. System B represents the same system, 
but in this case the aberration has been removed by a suitable choice of conicoids for 
mirrors M2, M3 and M4. 
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The method for deriving the required conic constants for these three mirrors is 

described in section 2.3.1. Table 3 gives optical parameters for the systems 

shown in figure 4.1. 

4.2 Two-conicoid solutions 

The first “non-trivial” example of the application of plate theory to producing 

four-mirror systems with some mirrors allowed to be conicoids is described in 

section 2.3.2. In applying that method in the investigation presented here, the 

baseline system from figure 4.1.A is used. While maintaining the vertex radii 

for the first three mirrors of this system, two mirrors are allowed variable 

conic constants, the secondary and tertiary mirrors in this case, and also the 

position of the centre of curvature and the radius of the quaternary mirror is 

allowed to vary. For each position of the centre of curvature of the quaternary 

mirror there will be three geometrically-distinct anastigmatic solutions, which 

are the three solutions to equation 2.38 as given in equations 2.32-2.35. 

Plotting the curvature of the quaternary versus L, the position of the image of 

the centre of curvature of the quaternary mirror in object space, 

with determined by equation 2.32, 2.33 or 2.34, gives rise to the three 

solution sets shown in figure 4.2. 

4c
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Figure 4.2. SA, SB and SC solution curves for the case in which the baseline system is 
as given in table 3, and mirrors 2 and 3 are allowed to become conicoids. SA solutions 
are given by equation 2.33, SB solutions by equation 2.34 and SC solutions by equation 
2.35. The horizontal axis here represents the initial position of the entrance pupil as 
measured from the primary mirror in object space, L, and the vertical axis represents 
the curvature of the quaternary mirror, . Representative examples of optical 
systems from these solution sets are given in figures 4.3-4.5 and in table 3. 

4c
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Examples of optical systems from these three solution sets are given in figures 

4.3- 4.5. A system closely resembling the baseline system exists, and is shown 

in figure 4.4. Interestingly, other valid solution types that are not so clearly 

related to the baseline system are also apparent. The Schiefspiegler system 

shown in figure 4.3 is an interesting and novel four-mirror anastigmatic 

design, and is similar in some respects to a design recently presented by Cook 

(2004).  

Figure 4.3. An example of a solution for two-conicoid anastigmats using the SA 
solution. While the axially-symmetric system at top is clearly impractical because of 
100% obstruction by the quaternary mirror of the light from the primary to the 
secondary mirror, a system obtained by using an off-axis portion of this parent system 
gives a useful unobstructed design. The optical design presented above is similar to but 
distinct from a system proposed by Cook (2004). 
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Figure 4.4. Examples of the SB family of two-conicoid, two-sphere anastigmatic 
solutions. Systems ordered from A to E in this figure are solutions taken from points on 
the SB solution curve of figure 4.2 from right to left. Note that the system A is afocal, 
with systems of reducing (faster) focal ratio going down the page from A to E. System 
C is closely related to the baseline system in its first-order properties, and achieves 
anastigmatic correction with only two conicoids. Optical design data for system C are 
given in table 3. 
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Figure 4.5. Two examples of solutions from the SC curves shown in figure 4.2. While 
these systems do not exhibit a particularly favourable geometry, they serve as examples 
of the varied geometrical forms of valid anastigmatic systems that can be produced by 
this method. 
 
 

4.3 One-conicoid solutions 

The final example considered in this investigation is one in which only one 

mirror is allowed to become a conicoid. As will be shown below, it is possible 

to determine solutions with first-order properties close to those of the baseline 

system shown in figure 4.1, and with anastigmatic correction achieved with 

only one mirror allowed to become a conicoid. This addition of one conicoid 

surface represents the minimum compromise towards system complexity that 

one must make in order to obtain anastigmatic correction in a system that still 
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resembles the baseline system in its first-order properties. It should be noted 

that this investigation has focussed on a specific example, not the general case.  

The algebraic method used to determine anastigmatic systems with one 

conicoid mirror is described in section 2.3.3. In the example given here the 

secondary mirror is allowed to become a conicoid. While it has not been 

shown here, it can be demonstrated that any mirror can be chosen to be the 

conicoid without adding complexity to the algebraic method given in section 

2.3.3.  

Figure 4.6 plots the solution sets over the basis vectors the curvature of the 

tertiary mirror, and the separation of the secondary and tertiary mirrors.  

3 ,c

2 ,t

Figure 4.6. Three independent sets of solutions for the case where only 2M is allowed 
to be a conicoid. SA solutions are given by equation 2.16, SB by equation 2.17 and SC 
by equation 2.18. In these plots the vertical axis represents the curvature of the tertiary 
mirror while the horizontal axis represents the separation of the secondary and 
tertiary mirrors. Solutions are represented by either black or white regions, 
representing solutions with either negative or positive Petzval sums. Grey regions 
represent regions for which no valid anastigmatic solution exists. Note that there exist 
solution regions which have the corresponding coordinates in different sets. These 
represent systems that differ only in the radius and position of the quaternary mirror. 
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To explain the increase in dimensionality of the solution sets in figure 4.6 

compared to those in figure 4.2, one must consider that in going from the two-

conicoid-mirror solution sets to the one-conicoid-mirror solution sets, we have 

removed one conicoid as a variable, in this case the conicoid variable assigned 

to the tertiary mirror, but then allowed both the position of the centre of 

curvature, and the actual curvature, of the tertiary mirror to become variable.  

This increase in variables by one explains the change from 1-dimensional to 2-

dimensional solution sets.  

Figure 4.7 gives an example of a solution type obtained from the SA solution 

set of figure 4.6. While it would obviously be unsuitable as a telescope design, 

it does have potential as a microscope objective. Numerous systems of this 

type, that is, systems with elements much larger than the entrance pupil, are 

discussed in the following chapter.  

Figure 4.8 shows a range of solutions from the SB solution set of figure 4.6. 

Clearly the SB solution set contains examples somewhat similar to the 

baseline system in the one-conicoid case, as was also the case in the two-

conicoid example discussed above. In particular the system in figure 4.8.A 

gives the focal plane in approximately the same position as the baseline 

system, but with a slower relative aperture of f/13.6. The system in figure 
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4.8.C has the same focal ratio as the baseline system, but with the focal plane 

now between the tertiary and quaternary mirrors. The optical design data for 

this system are also given in table 3.  

 

Figure 4.7. An example of a completely impractical solution for the SA solution set of 
figure 4.6. When filters which exclude solutions with impractically large mirrors are 
applied, this solution set vanishes. 
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Figure 4.8.  Representative examples from the SB solution set shown in figure 4.6. In 
particular, systems A through D inclusive come from the thin black curving region in 
the SB solution plot, while system E is from the white region.  System A most closely 
resembles the layout of the baseline system. This system has a focal ratio of f/13.6. 
System C most closely resembles the focal ratio of the baseline solution. Optical design 
data for system C are given in table 3. 
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The final system here considered is shown in figure 4.9. This system comes 

from the SC solution set of figure 4.6. It bears a superficial resemblance to a 

system proposed by Steele (1953) and also to one of the proposed “INCA” 

systems of Rosin (1968), but unlike these systems, which both incorporate 

four conicoidal mirrors and suffer from Petzval curvature, the system 

presented in figure 4.9 is a flat-field anastigmat, and achieves this performance 

with only one mirror aspherized.  

Figure 4.9.  This solution from the SC solution set of figure 4.6 bears some resemblance 
to a system proposed by Steele (1953). In this case however anastigmatic performance, 
and zero-Petzval curvature, are achieved, and these with only one conicoid mirror. 
Optical design data for this system are given in table 3. 
 

The results in this chapter show that an application of an algebraic-based 

search method to optical designs of four-mirror systems with pre-determined 

first-order characteristics is capable of yielding not only anastigmats with two 

less conicoids than are required for anastigmatic correction according to the 

generalized Schwarzschild theorem, but also that this approach delivers a 

variety of alternative solutions that may not have been previously considered.  
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System 4.1.A 4.1.B 4.3 4.4.C 4.8.C 4.9 
R1 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 

t1 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 

R2 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 

k2 0 3.1662 4.2813 3.2308 2.8618 2.3005 

t2 0.9 0.9 0.9 0.9 0.9 1.45 

R3 -0.5 -0.5 -0.5 -0.5 -0.68027 1.55134 

k3 0 -0.3506 -1.3680 -0.2344 0 0 

t3 -0.19107 -0.19107 -0.69092 -0.17652 -0.29289 -0.72812 

R4 -0.15 -0.15 0.66118 -0.19230 -0.12558 0.97917 

k4 0 -0.2667 0 0 0 0 

t4 0.27500 0.27500 1.32113 0.31166 0.19090 0.72592 

 
Table 3. Optical design data for the systems as indicated by the column headings. The 
quantities ki are the conic constants for the mirror indicated by the index number. 
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5. Results: Four-spherical-mirror 

anastigmats with elements larger than 

the entrance pupil 

This final results chapter presents the results of a survey of four-spherical-

mirror systems in which optical elements are allowed significantly to exceed 

the size of the entrance pupil. This relaxation of the conditions that were used 

in chapter 3 leads to systems that in general would not be considered useful as 

telescopes. However, there are a wide range of applications, including but not 

limited to EUV lithography, high-energy laser systems, microscopy, projection 

and hyper-spectral imaging, which all benefit from the advantages catoptric 

systems offer, such as zero chromatic dispersion, high transmission efficiency, 

high damage thresholds and good correction of optical aberrations achievable 

with relatively simple systems. In many of these applications, systems that 

have elements many times larger than the entrance pupil would not be 

considered impractical. 

One immediate result of relaxing the constraint on the size of optical elements 

is that now systems with convex primary mirrors can be considered. These 

97 



were previously ruled out as the secondary mirror is always larger than the 

entrance pupil for a convex primary system. 

To complete this survey, only minor modifications were required to be made 

to the Mathematica™ program that was used to generate solutions in chapter 

3. Firstly, constraint equations governing the maximum diameters of optics 

needed to be set new targets; in this case a cutoff was chosen that allowed 

mirrors up to fifteen times the diameter of the primary mirror.  

Then the program could be run to generate nine families of solutions for 

concave-primary-mirror systems as discussed in chapter 3, but this time with 

much larger elements allowed. Also, by simply changing the sign of the input 

value for the primary mirror radius, the program could be run again to generate 

nine families of solution for the case where the primary mirror is convex.  

The results of this new survey are presented below. There are a very large 

number of distinct anastigmatic solutions generated by this survey, a much 

larger and more varied set than in the more constrained case examined in 

chapter 3. To differentiate the various solutions, two classification systems 

have been employed. Firstly, solutions are identified as either having convex 

or concave primary mirrors. Then, for each family of solutions, two letters are 

assigned to show which of the three algebraic solutions to the cubic equation 
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used to determine the curvature of the tertiary and quaternary mirrors was 

employed in generating that solution set. For example, referring to SA, SB and 

SC as defined in equations 2.33-2.35, a solution set in which SB was used to 

determine the curvature of the tertiary mirror and SA was used to determine 

the curvature of the quaternary mirror would simply be referred to as the BA 

solution set. Thus the nine possible solution sets are named according to the 

nine possible permutations of the analytical solutions to the two cubic 

equations that are formulated in the method described in section 2.2. 

Finally, within each solution set there are often a wide variety of available 

system geometries, and the digit-based classification system described in 

section 2.4 and detailed in figure 2.4.1 is employed  further to refine the 

description of available solutions.  

5.1 AA Solutions 

There are no AA-type solutions for concave-primary-mirror systems. Only one 

type of solution exists for convex-primary AA-type solutions, as shown in figure 

5.1.1. Optical design data for this figure are given in table 4. All members from 

the relatively limited range of solutions in this family are of the 42135 type. 
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Figure 5.1.1. An AA-type 42135 system with a convex primary mirror. In this figure, 
and in all subsequent figures in this chapter, collimated light incident on the primary 
mirror from the object at infinity is travelling from left to right.  
 
 
System R1 t1 R2 t2 R3 t3 R4 t4 

5.1.1. 2.0 -0.47672 1.11099 0.62439 0.37561 -6.51739 8.47899 10.403 

 
Table 4. Optical design data for the AA-type system shown in figure 5.1.1. The primary 
mirror in this and all other non-Schiefspiegler systems presented in this paper is 0.4 m 
diameter, though this is an arbitrary value as all these systems can be scaled. Units are 
metres. The sign convention employed should be obvious from the figure and table. 
 

5.2 AB Solutions 

AB-type solutions exist for both concave- and convex-primary-mirror types. 

Concave-primary-mirror solutions are shown in figures 5.2.1 and 5.2.2, with 

design data for these systems given in table 5. There exist two distinct sub-

regions of solution in the AB concave primary mirror case. Examples from the 

first sub-region are given in figure 5.2.1. The three systems shown here can be 

classified as 24135, 24153 and 24513 systems, and they are indicative of the 

continuum of solutions within their solution family. Afocal versions also exist. 
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24531, 24351 and 24315 versions of this family also exist and some of these 

were reported in chapter 3. In these cases the tertiary mirror lies between the 

primary and secondary mirrors (the digit “3” is always between the digits “2” 

and “1” in the five-digit naming system in these cases) and is in general 

smaller in diameter than the primary mirror. There are no members of this 

family for which Petzval curvature is zero.   

Two solutions from the second solution sub-region are shown in figure 5.2.2. 

Within this particular family there also exist afocal solutions. Solution 5.2.2.A 

is an example of one of the members of this solution family that has zero 

Petzval curvature. This solution family, which can be seen to be geometrically 

distinct from the solution family shown in figure 5.2.1, contains 21435 and 

21453 type solutions. 
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Figure 5.2.1. Three examples, each from the first sub-region of AB-type concave-
primary-mirror solutions. 
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Figure 5.2.2.  Two examples, each from the second sub-region of AB-type concave-
primary-mirror solutions. 
 
 

Convex-primary-mirror solutions are shown in figure 5.2.3. All of these 

solutions occupy a single connected “volume” in solution space. Within this 
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solution family there exist examples of 21435 and 21453 systems. The system 

depicted in figure 5.2.3.C is a system previously described by Shafer (1988). 

Of the systems presented in this thesis, this is the only one that has previously 

appeared in published literature. Shafer’s system is an example of this solution 

type that has zero Petzval curvature.  Optical design data for the convex 

primary systems can be found in table 5. 

System R1 t1 R2 t2 R3 t3 R4 t4 

5.2.1.A -2.0 -1.49005 -10.0100 4.57732 -4.57732 -3.76881 -0.96077 4.605 

5.2.1.C -2.0 -1.41005 -5.00250 4.73340 -4.73340 -4.12223 -0.77917 1.395 

5.2.2.A -1.0 -0.19774 -1.22416 5.08832 -3.38817 -1.81143 -2.09091 6.947 

5.2.2.C -2.0 -0.51005 -5.0025 18.86250 -17.8625 -16.1996 -3.02074 8.775 

5.2.3.A 2.0 -3.30005 6.28465 5.26039 -3.78465 -0.22825 -1.62752 0.199 

5.2.3.B 2.0 -2.13005 2.77701 2.31242 -0.61242 -0.04667 -0.18168 0.269 

5.2.3.C 2.0 -3.60794 5.60795 6.95518 -1.34723 -0.07000 -1.27723 0.103 

Table 5. Optical design data for the AB-type systems shown in figures 5.2.1, -2 and -3. 
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Figure 5.2.3. Three examples from the single solution set for AB-type convex-primary-
mirror systems. A is a flat-field system originally given by Shafer (1988) and is the only 
example of an axially-symmetrical four-spherical-mirror anastigmat with infinite 
object conjugate to have appeared in previously published literature. 
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5.3 AC Solutions 

No concave-primary-mirror AC-type solutions exist. A limited range of 

convex-primary-mirror AC-type solutions exist, and a typical example is given 

in figure 5.3.1. All of these systems are of the 45213 type. Optical design data 

for these systems are given in table 6. As can be seen in figure 5.3.1.A, these 

systems suffer from a high central obstruction ratio. One way around this 

problem is illustrated in figure 5.3.1.B, which shows a completely 

unobstructed system taken from an axially-symmetrical parent system. This 

family of solutions contains no afocal systems, and no systems for which the 

Petzval curvature is zero. 

System R1 t1 R2 t2 R3 t3 R4 t4 

5.3.1 2.0 -1.10000 -5.00250 6.96588 -7.96588 -7.57213 0.80757 0.157 

Table 6. Optical design data for the AC-type system shown in figure 5.3.1.A. The 
Schiefspiegler shown in figure 5.3.1.B is simply a system produced by using an off-axis 
portion of the pupil of this system. 
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Figure 5.3.1. AC-type convex-primary-mirror solutions all resemble this solution. B 
shows a Schiefspiegler formed by using an off-axis portion of the A system. 
 
 

5.4 BA Solutions 

There are no BA-type concave-primary-mirror solutions. There is a relatively 

limited range of BA convex-primary solutions. Examples of 42315, 42135, 

24135 and 21435 variants are given in figure 5.4.1, with system design 

parameters given in table 7. There are no variants free of Petzval curvature.  
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Figure 5.4.1. BA-type convex-primary-mirror solutions. A is an example of a 21435 
system that only works as a Schiefspiegler; the axially-symmetrical parent system is 
100% self-obstructing. B, C and D are all solution types from one connected volume of 
solutions within the solution space.  
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System R1 t1 R2 t2 R3 t3 R4 t4 

5.4.1.A 1.0 -1.51502 2.49875 3.27763 0.22237 -0.33542 0.44547 0.713 

5.4.1.B 2.0 -3.06005 4.99750 6.24161 2.75839 -7.20474 8.37344 10.671 

5.4.1.C 2.0 -3.04005 4.99750 6.42442 1.57558 -6.36053 7.11601 8.379 

5.4.1.D 2.0 -3.02005 3.33222 2.56571 0.43429 -9.31763 12.9222 17.367 

Table 7. Optical design data for BA-type systems as shown in figure 5.4.1. The figure 
5.4.1.A system is an example of a system that only works as a Schiefspiegler; the 
axially-symmetrical system is totally self-obstructing. 
 
 

5.5 BB Solutions 

One connected volume of BB-type concave-primary-mirror solutions exists. 

24351, 24315, 42315, 42351, 42531, and 45231 variants are shown in figure 

5.5.1, with optical design data given in table 8. 

There is a relatively limited range of BB convex primary solutions. Examples 

of 45213, 42135 and 21435 variants are given in figure 5.5.2, with system 

design parameters given in table 8. There are no variants free of Petzval 

curvature. The system in figure 5.5.2.A only works as a Schiefspiegler as a 

result of self-obstruction in the axially-symmetrical system. It is interesting to 

note the clear first-order differences between the 45213 system in figure 

5.5.2.D and the 45213 systems in figure 5.3.1.  
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Figure 5.5.1. BB-type concave-primary solutions. The first four systems here, A-D, 
were previously reported in chapter 3, and are included here for comparison to other 
members of this solution family. The systems shown in E and F are clearly members of 
this family. 
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Figure 5.5.2. BB-type convex-primary-mirror solutions. The 24135 system shown in A 
is another example of a system that only works as a Schiefspiegler because of self-
obstruction. B, C and D are 21435, 42135 and 45213 type arrangements respectively. 
 
 
 
 
 
 
 
 
 

111 



System R1 t1 R2 t2 R3 t3 R4 t4 

5.5.1.A -2.0 -1.61747 0.44803 0.17183 0.68119 -0.34970 -0.08908 0.100 

5.5.1.B -2.0 -1.70005 0.52081 0.21256 0.78744 -0.36063 -0.13957 0.250 

5.5.1.C -2.0 -1.74005 0.55246 0.23475 0.76525 -0.36985 -0.18222 0.470 

5.5.1.D -2.0 -1.72000 0.52869 0.22013 0.78703 -0.28804 -0.23104 1.860 

5.5.1.E -2.0 -2.37005 1.16266 0.65589 1.34411 -0.53018 -0.47801 2.40928 

5.5.1.F -2.0 -2.49005 1.28189 0.75225 1.24775 -0.73961 -0.44377 1.112 

5.5.2.A 2.0 -3.08005 4.9975 6.04405 3.95595 -3.18582 4.67821 18.418 

5.5.2.B 2.0 -3.07005 4.99750 6.20993 2.79007 -2.35117 3.48385 12.352 

5.5.2.C 2.0 -1.78765 3.33322 7.21546 -5.21546 -15.8551 -3.12821 16.196 

5.5.2.D 2.0 -1.78385 3.33322 7.21216 -5.21216 -16.6497 -2.33138 4.784 

Table 8. Optical design data for BB-type systems as shown in figures 5.5.1 and 5.5.2. 
The systems shown in figures 5.5.2.C and 5.5.2.D have for the sake of clarity been 
scaled in aperture to 1 m (the primary mirror has a 1 m diameter with the stop on the 
primary). 
 
 

5.6 BC Solutions 

No concave-primary-mirror BC-type solutions exist. There is one connected 

volume of BC solutions with convex primary mirrors. Within this family there 

exist 24153, 24513, 24531 and 21453 variants as shown in figures 5.6.1.A, B, 

C and D respectively. The example given in figure 5.6.1.C has zero Petzval 

curvature.  

112 



The first–order layout of the first two mirrors of the system in figure 5.6.1.D is 

very similar to the two-mirror Schwarzschild flat-field anastigmat, though in 

that case both mirrors are conicoids. Here, instead of requiring two conicoid 

mirrors, correction of coma and astigmatism is achieved with the small set of 

tertiary and quaternary spherical mirrors. However the system has a curved 

focal plane. Optical design data for the BC solutions are given in table 9. 

System R1 t1 R2 t2 R3 t3 R4 t4 

5.6.1.A 2.0 -1.37005 1.99960 1.53636 0.46364 -0.22866 0.30563 0.131 

5.6.1.B 2.0 -1.40005 1.99960 1.49873 0.50127 -0.29596 0.35824 0.156 

5.6.1.C 2.0 -1.51005 1.99960 1.36335 0.63665 -0.66006 0.62166 0.28887 

5.6.1.D 2.0 -2.85005 3.33222 2.90352 0.09648 -0.02224 0.04863 0.019 

 
Table 9. Optical design data for BC-type solutions as shown in figure 5.6.1. 
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Figure 5.6.1. BC-type convex-primary-mirror systems from one connected volume of 
solutions. The 24531 system in C is an example of a flat-field anastigmat. 
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5.7 CA Solutions 

There are two separate solution volumes for CA-type systems with concave 

primary mirrors, and these are shown in figure 5.7.1, with optical design data 

in table 10. Both 42315 and 42351 arrangements exist. These two systems 

have relatively high numerical apertures. Also, both these systems are 

characterized by the high angles of incidence that rays make on the tertiary 

mirror. These two facts mean that these systems are less well approximated by 

third-order theory than is the norm, as the proportion of high-order to low 

order aberration in these types of system is much greater than in other systems 

so far presented.  

The convex-primary CA-type systems are shown in figure 5.7.2. The solution 

set contains systems with 21435, 24135 and 42135 arrangements. All solutions 

come from one connected volume of solutions, and there are some interesting 

variants, including versions with zero Petzval curvature (shown in figures 

5.7.2.A, B, C and D). The flat-field system shown in figure 5.7.2.D is similar 

to the system shown in figure 5.6.1.D, though the arrangement of the “small 

corrector pair” of the tertiary and quaternary mirrors is somewhat different. 

Optical design data for these systems is given in table 10.  
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Figure 5.7.1. CA-type concave-primary-mirror solutions, from two unconnected 
volumes of solution space. Both systems are characterized by high numerical aperture 
and large angles of incidence on the tertiary mirror. 
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System R1 t1 R2 t2 R3 t3 R4 t4 

5.7.1.A -2.0 -0.66005 -0.14085 0.48884 2.51116 -1.87143 2.69156 3.282 

5.7.1.B -2.0 -1.24005 -0.13889 0.13430 6.8657 -1.32947 1.65190 1.826 

5.7.2.A 2.0 -0.61005 1.24984 1.24944 0.75056 -0.67398 0.96508 1.181 

5.7.2.C 2.0 -1.21005 1.99960 3.23066 4.76934 -3.24174 5.06698 6.564 

5.7.2.D 2.0 -2.87005 3.33186 2.94074 0.05962 -0.03519 0.05794 0.080 

5.7.2.E 1.618 -2.61798 4.23598 7.00000 1.28818 -7.47487 8.76305 9.805 

Table 10. Optical design data for CA-type solutions as shown in figures 5.7.1 and 5.7.2. 
Figure 5.7.2.B is an example of a flat-field Schiefspiegler obtainable by using an off-
axis portion of the pupil of the system in figure 5.7.2.A. 
 

The system shown in figure 5.7.2.E is an example of a four-spherical-mirror 

anastigmat that consists of two individually-anastigmatic pairs of concentric 

spherical mirrors. In this case the primary and secondary mirrors form a two-

concentric-spherical-mirror anastigmat with the object at infinity, and the 

tertiary and quaternary mirrors are a two-concentric-spherical-mirror 

anastigmatic relay. 
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Figure 5.7.2. Each of the first four CA-type convex-primary-mirror solutions shown 
here has zero Petzval curvature. B is a Schiefspiegler with a relatively fast numerical 
aperture taken from the axially-symmetrical parent in A. System E is comprised of two 
individually-anastigmatic concentric-spherical-mirror pairs. Solutions such as this are 
a special case, lying in a 2-dimensional sub-space of the 3-dimensional solution space. 
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5.8 CB Solutions 

Concave-primary CB-type solutions exist in three unconnected volumes 

within the solution space.  The 45213 solutions as shown in figure 5.8.1.A 

come from one of the solution volumes. These systems only work as 

Schiefspieglers, and have relatively uninteresting geometries. The 21453 

solutions as in figure 5.8.1.B come from another distinct family of solutions 

and the 21453- and 24135-type solutions as shown in figure 5.8.1.C come 

from the third family of solutions. There are no afocal systems or systems with 

zero Petzval curvature among these solutions. Optical design data for these 

systems are given in table 11.  

There is a relatively wide variety of convex-primary-mirror CB-type solutions, 

including flat-field systems and afocal systems. 21435, 24135, 42153, 42135 

and 45213 geometries exist and examples are given in figure 5.8.2 and table 

11. These solutions come from three unconnected volumes of solution. The 

45213 example in figure 5.8.2.E shows in effect a three-spherical-mirror 

anastigmat with the secondary mirror as a flat fold mirror. While technically 

the example given has four powered mirrors, there does exist a very similar 

system to the one shown in which the secondary mirror has no power. 
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Figure 5.8.1. Three distinct families of CB-type concave-primary-mirror solutions are 
shown here. The 45213 system in A comes from one family, the 21453 solution in B 
from a second and the 24135 and 21435 systems in C and D from the third. 
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System R1 t1 R2 t2 R3 t3 R4 t4 

5.8.1.A -2.0 -1.95005 -10.0100 6.46323 -7.46323 -7.55919 -0.42120 0.264 

5.8.1.B -2.0 -0.38005 -3.33440 23.8200 -24.8200 -19.5608 -44.4246 11.610 

5.8.1.C -2.0 -0.54005 -0.23256 4.65637 -5.65637 -4.38337 -5.48759 25.449 

5.8.1.D -2.0 -0.58005 -0.19608 4.26324 -5.26324 -3.45058 -10.3864 7.797 

5.8.2.A 2.0 -2.01054 3.31934 4.54919 3.45264 -0.71567 2.04974 5.056 

5.8.2.B 2.0 -2.25005 1.99960 7.24702 -6.24702 -5.37939 -3.11477 12.531 

5.8.2.C 2.0 -1.82005 3.33220 20.8835 -19.8835 -23.1106 -3.44192 4.166 

5.8.2.D 2.0 -1.29005 -10.0100 3.18882 -5.18882 -9.15276 5.98398 22.530 

5.8.2.E 2.0 -1.00005 10000 2.23341 -5.23341 -6.80769 -3.52854 0.043 

Table 11. Optical design data for CB-type systems as shown in figures 5.8.1 and 5.8.2.  
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Figure 5.8.2. Three distinct families of CB-type convex-primary systems exist. A is an 
example of a flat-field system from one of these families. E is very close to a special-
case system in which the secondary mirror has zero power; essentially a three-
spherical-mirror anastigmat. 
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5.9 CC Solutions 

A very limited range of concave primary CC-type solutions exists as shown in 

figure 5.9.1. All solutions of this type are in the 42135 configuration. 

 

Figure 5.9.1. The system depicted here is typical of the very limited range of available 
CC-type concave-primary-mirror systems.  
 

While there is somewhat more variety with the convex-primary CC-type 

solutions, with 45231, 42531, 42351 and 42135 geometries available, all 

members of this family of solution are characterized by an extremely fast focal 

ratio. This means that the third-order aberration approximation is not so close 

to an optimum solution for this family of systems, as was the case with the CA 
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concave-primary-mirror systems. Convex-primary CC-type solutions are 

shown in figure 5.9.2, with optical design data given in table 12. 

 

Figure 5.9.2. CC-type convex-primary-mirror systems from the single available 
solution family are depicted here. All members of this family have relatively high 
numerical apertures. 
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System R1 t1 R2 t2 R3 t3 R4 t4 

5.9.1 -2.0 -0.34005 -3.33444 1.58416 1.41584 -11.0188 11.2492 11.190 

5.9.2.A 2.0 -1.81005 -1.42878 1.18685 -2.18685 -2.16756 3.71605 0.524 

5.9.2.B 2.0 -1.13005 1.11099 0.82160 0.17840 -2.88205 2.89642 2.872 

5.9.2.C 2.0 -1.08005 1.11099 0.82612 0.17388 -2.62531 2.64161 2.620 

5.9.2.D 2.0 -0.85005 1.11099 0.85118 0.14882 -1.49641 1.52108 1.513 

Table 12. Optical design data for CC-type systems as shown in figures 5.9.1 and 5.9.2.  
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6.   Concluding comments 

A closed-form analytical solution for four-spherical-mirror anastigmats has 

been derived and used to map out all possible solutions for four-spherical-

mirror anastigmatic telescopes with concave or convex primary mirrors. This 

completes discovery of the full set of “simplest possible anastigmatic 

reflecting telescopes”, a set that also includes two-conicoid-mirror systems and 

three-mirror systems with one conicoid.  

For the case in which all optical elements are constrained to have no greater 

diameter than that of the entrance pupil, the four-spherical-mirror set as 

derived in section 2.2 and presented in chapter 3 can be considered to consist 

of five geometrically distinct families of solutions mapped over 3-space, the 

basis vectors of which are three constructional parameters of the system. 

After exclusion of solutions that are deemed impractical because of large inter-

element spacing or extremely large element diameters, there remain two sets 

of viable four-spherical-mirror anastigmats. These are both novel and unique 

systems; the analytical approach employed here has shown that no other 

possibilities exist for rotationally-symmetrical, four-spherical-mirror 

anastigmats with concave primary mirrors for the case in which no element is 

allowed to have a diameter that exceeds that of the entrance pupil. 
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In section 2.3 the four-spherical-mirror algorithm derived in section 2.2 was 

generalized to include four-mirror systems in which one, two or three mirrors 

are conicoids. The last case, deemed here the most trivial, is equivalent to 

Korsch’s solution, where three conicoids are used to correct three Seidel 

aberrations. 

An example of the application of the technique has been given in chapter 4, 

where an initial system with a useful first-order layout is corrected using one, 

two or three conicoids. Starting from a baseline solution with useful first-order 

properties, it has been shown that corresponding anastigmatic systems with 

useful first-order geometries can be found even in the case where the number 

of conicoid surfaces used to correct the three targeted Seidel aberrations has 

been reduced to one. Moreover, the technique utilized here has demonstrated 

the potential to produce useful and unexpected geometries that are not so 

closely related to the baseline geometry. 

This technique is readily generalizable to systems of more than four mirrors, 

and to systems in which both the object and image conjugates are finite, and 

therefore is potentially useful to the design of reflecting systems for a wide 

range of applications. 
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A large number of solutions for four-spherical-mirror anastigmatic systems 

have been presented in chapter 5. The difference between these results and 

those of chapter 3 is that here elements were allowed to exceed the diameter  

of the entrance pupil by as much as 15 times. An immediate consequence of 

the relaxation of the constraint on diameter used in chapter 3 is that solutions 

with convex primary mirrors are considered. Eleven geometrically-distinct 

families of solution have been found to exist for convex-primary systems. 

Nine geometrically-distinct families of concave-primary-mirror type solutions 

have been found. The solution families include focal and afocal systems. 

Numerous solutions have been found that have zero Petzval curvature. Of the 

sixteen possible arrangements of four mirrors and focal plane mentioned in 

section 2.4, only the 42513 arrangement has not been found in this survey.  

Together with the systems discussed in chapter 3, the systems described in 

chapter 5 represent the full range of available possibilities for four-spherical-

mirror anastigmats with the object at infinity. Of the systems discussed in this 

thesis, only one has appeared in previously published work. This was an 

interesting system described by David Shafer (1988), which can now be seen 

to be a member of the AB-type convex-primary family of systems.  

While many of these systems may seem somewhat impractical, the practicality 

or otherwise of a given system is strongly dependent on the application. The 
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main purpose of this work has been to define the range of possible solutions, a 

task that would be very difficult if not impossible to achieve if conventional 

optical design software was employed.  

The method documented in this thesis illustrates the good results that can be 

achieved by combining an analytical approach to optical design problems with 

modern computing power to perform algebra that would have been impractical 

manually, as it would have had to have been when the Plate Diagram 

technique was originally developed. For certain classes of system this 

approach is clearly capable of providing superior global results to those that 

would be obtainable with modern optical-design software.  The fact that this 

method has produced a large number of novel on-axis, all-spherical, 

anastigmatic optical designs, and simultaneously has shown that no others can 

exist, is a testament to the power of the technique. 

It would be highly impractical if not impossible to achieve the results and 

comprehensive knowledge of solution space achieved here using ray tracing 

and global optimization algorithms alone. 
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Appendix A: Four-mirror anastigmats I: A 

complete solution set for all-spherical 

telescopic systems 

This paper was originally submitted to Optical Engineering in December 2006 

and has been provisionally accepted, with a revised manuscript re-submitted in 

February 2007. 
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ABSTRACT 
 
The concept of the simplest possible reflecting anastigmat is discussed and 
anastigmats consisting of four spherical mirrors are introduced in this context as 
being the last remaining family for which the solution set has not been 
thoroughly explored. Burch’s “Plate Diagram” method is introduced and used to 
derive a closed-form analytical solution for four-spherical-mirror anastigmatic 
telescope systems. This solution is then applied to mapping the solution space for 
four-spherical-mirror anastigmats. Two novel systems are discovered. These 
represent the first published instances of axially-symmetrical, all-spherical 
anastigmatic reflecting telescope designs with concave primary mirrors. Due to 
the completeness of the analytic description of the solution set presented here it 
can also be stated that there are no other design variants for this class of system. 
 
 

1.   INTRODUCTION 
 

Technological advances have led to more interest in the field of multi-element, 
all-reflecting (i.e. catoptric), optical designs.  While these designs are being driven 
by new demands for aberration correction, wavelength range, and in some cases 
the physical size of optical components, they are simultaneously being enabled by 
increasingly sophisticated manufacturing and alignment technologies. Two-mirror 
systems are limited both in their geometrical variety and potential for aberration 
correction. Since Paul’s1 development of the three-mirror anastigmat there has 
been a steadily growing interest in the field of multi-mirror catoptric systems. 
Today three-mirror anastigmats are increasingly finding applications in 
astronomy, the LSST2 and JWST3 being among the better- known examples.   
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 Early examples of proposals for four-mirror telescope designs are given in 
Meinel et al.4 and Robb5. With the new generation of Extremely Large Telescopes 
(ELTs) currently under development there is an increasing need to consider 
optical designs incorporating four or more mirrors.  Reasons for this include the 
fact that refracting optical components 
 have a practical limit in size of approximately 1.5 m diameter, and that the 
magnitude of aberrations requiring correction, particularly in designs with 
spherical primaries, can not be accommodated with two-mirror designs. It has 
also been pointed out that four-mirror designs have the potential to place the 
image in a more favourable location than three-mirror designs. Several 
approaches to ELT designs using four mirrors have been published6,7,8. A 
comprehensive survey of published three- and four-mirror telescope designs is 
given by Wilson9. 
 
Some of the earliest optical designs for four-mirror imaging systems were those 
of Steele10. Steele’s designs were achieved by combining pairs of two-mirror 
solutions. As one of several examples Steele presented a system comprised of a 
Cassegrain telescope as a “front-end” and a focal two-mirror system resembling 
the Schwarzschild flat-field anastigmat as a rear-end. In this work Steele was in 
fact investigating the design possibilities for catoptric microscope objectives, but 
the results are equally applicable to telescope systems. Later, Shafer11 

independently developed Steele’s approach, generalizing it to include systems 
without axial symmetry and extending it to give exclusively all-spherical, 
unobscured anastigmatic solutions. For example, one design combined the 
Offner two-mirror, three-reflection anastigmatic system with an off-axis portion 
of an axially-symmetrical, concentric two-spherical-mirror anastigmat to give an 
unobstructed four-mirror, five-reflection anastigmatic system.  
 
In most cases the designs referred to above have been achieved through one of 
two approaches. In the first case four-mirror systems are composed of sub-
systems each of which is an anastigmat, or in the case of Ref. 10, at least 
corrected for spherical aberration. In the second case optical design software is 
used to arrive at solutions through optimization. 
 
Analytical approaches to four-mirror system design have generally been regarded 
as too algebraically complex to be practical. Several authors have used analytical 
approaches to setting up systems of desirable first-order characteristics, and then 
resorted to optimization to correct aberrations12,13,14. In Ref. 13 Lerner et. al. 
stated that a closed-form analytical solution for a four-mirror lithography system 
was “not feasible”. 
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Korsch15 is the first case in the literature of a true closed form analytical solution 
for four-mirror anastigmatic telescope systems. This solution relies on conicoid 
surfaces to correct Seidel aberrations, following the well-known principle 
described by Wilson16 as the “generalized Schwarzschild theorem”. Puryayev 
et.al.17 use an approach based on Fermat’s theorem and  the satisfaction of the 
Sine Condition for the case of a four-mirror aplanat, requiring two high-order 
aspheric surfaces to correct spherical aberration and coma to an arbitrary high-
order. The authors in this case claim that they have extended their method to 
solve for third-order astigmatism at the same time, but they do not present the 
method. 

n
n

 
It is interesting to note that of all the cases discussed above, only that of Shafer 
achieves anastigmatic performance in an all-spherical four-mirror system. Shafer’s 
designs in Ref. 11. all differed from those described below in that they were all 
systems that were used off-axis in both field and pupil, giving unobscured 
systems, whereas the systems to be described below are all axially-symmetrical; 
the central field angle is co-axial with the system axis. As will be explained, these 
systems of four-spherical-mirrors are one of three families of “simplest possible” 
reflecting anastigmats. 
 

2.   SIMPLEST POSSIBLE REFLECTING ANASTIGMATS 
 

In 1900 Aldis18 showed that an optical system consisting of four spherical 
surfaces could produce an anastigmatic image. This work was later generalized by 
C.R. Burch19,20,21 who showed that systems of two conicoid surfaces, three 
surfaces, one of which was a conicoid, or four spherical surfaces could all 
produce anastigmatic images.  Burch’s generalization of Aldis’ work utilized a 
means of describing and manipulating the Seidel aberrations of an optical system 
in wavefront measure, which he termed the “Plate Diagram” analysis.  Plate 
Diagram analysis lends itself naturally to the formulation of algebraic systems for 
multi-mirror telescopes, and a Plate Diagram based approach to determining 
four-mirror anastigmats will be described in detail in the following section. 
 
Focal anastigmats consisting of two conicoid mirrors were completely described 
by Schwarzschild22 in his classic optics papers of 1905. Two distinct families of 
solution exist, one with concave primary mirrors and the other with convex ones 
(figure 1). The Schwarzschild anastigmat set has two particularly interesting 
points on the solution curves, one representing a solution with a flat field (an 
anastigmat with zero Petzval curvature) and the other representing a special case 
where both mirrors are strictly spherical (figure 2).  
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Figure 1. These two plots represent the complete solution set for two-mirror or 
Schwarzschild anastigmats. In both cases the primary mirror has been set with 
a focal length of +/- 1 m (so c1 =  +/-  0.5 m-1). In both cases the secondary 
mirrors are concave. The horizontal line in the right-hand plot intersects the 
solution curve at the point representing a flat-field anastigmat. In both cases 
the mirrors are, in general, conicoids. 

 

 
Figure 2. Two examples of two-mirror anastigmats, similar to examples given 
by Schwarzschild. The upper system has a convex primary mirror, both 
mirrors are oblate spheroids and the Petzval curvature is zero. The lower 
system is a concave primary system. In his 1905 paper Schwarzschild 
reintroduced astigmatism to this system to flatten the field. As with all focal 
two-mirror anastigmats, the separation of the two mirrors is equal to twice the 
system focal length. 
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In both of these cases the primary mirror is convex. The concave-primary 
solutions consist of two concave, aspheric mirrors. In all cases of two-mirror 
anastigmats the separation of the primary and secondary mirrors is necessarily 
twice the system focal length. Clearly, the range of advantageous geometries for 
two-mirror anastigmats is very limited. 
 
Rakich and Rumsey23 described the complete solution set for three-mirror 
anastigmats that consist of one conicoid and two spherical mirrors, in the case 
where the primary mirror was strictly concave. A representative sample of the 
solution set is given below (figure 3).   
 

 
Figure 3. These plots are four out of the seven plots representing the complete 
solution set for three-mirror anastigmats with two strictly spherical mirrors. In 
these plots solutions with positive Petzval curvature are plotted white and 
solutions with negative Petzval curvature are plotted black (gray points 
correspond to non-physical solutions). Hence flat-field solutions lie along loci 
where black and white regions abut directly onto each other. Clearly there are 4 
families of flat-field three-mirror anastigmat with two spherical mirrors: only one 
of these appeared in the literature prior to this work. 
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The solution set for simplest possible three-mirror anastigmats contains many 
more possible system geometries than the two-mirror solution set. In the three-
mirror case the solutions occupy 2-dimensional regions of a parameter space 
defined by system constructional parameters. In this case two parameters were 
chosen; , the separation of the primary and secondary mirrors, and  , the 
curvature of the secondary mirror. The existence of seven geometrically-distinct 
families of solutions was revealed, with most of the families containing two or 
more geometrically-distinct “sub-families” of solutions. 
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These solution sets were obtained by first producing 7 distinct sets of equations, 
each of which gave, for given input values of  and , the remaining 
constructional parameters required to define an anastigmat. Then each of the 7 
sets of equations was solved repeatedly for a large number of points in the ,  
plane, thus mapping solution sets. A modest amount of computing was able to 
produce every possible variant within this class of system, leading to the discovery 
of previously unknown forms of three-mirror anastigmat, including three 
previously unknown types of flat-field three-mirror anastigmat in which only one 
mirror is aspherised24. 

1t 2c
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A similar method has now been applied to the problem of four-mirror 
anastigmats consisting entirely of spherical mirrors. The solution for four-
spherical-mirror systems completes the Aldis-Burch “triplet” of simplest possible 
reflecting anastigmats; that is systems with two conicoid mirrors, systems with 
three mirrors, one of which is a conicoid, and four spherical mirrors.  The 
derivation of the four-spherical-mirror solution and the results of its application 
to a survey of all possible such systems follow. 
 

3. METHOD 
THE PLATE DIAGRAM. 

Burch’s Plate Diagram method has been used in deriving all the solutions 
discussed in this paper. The method has been described in detail elsewhere19, 20, 21, 

25, but it seems to be a largely forgotten analysis technique, particularly among the 
younger generation of optical designers, so a brief summary will be given here.  
 
The Plate Diagram analysis of an optical system gives a system of Schmidt plates 
in collimated light which reproduce exactly the wavefront third-order aberration 
condition of a system consisting of any number of concave or convex, conicoid 
or spherical, refracting or reflecting optical surfaces and spaces. In this work we 
are limited to considering systems of mirrors.  
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Figure 4 shows how a spherical mirror can be replaced by an “anti-Schmidt plate” 
which contributes exactly the same aberrations as the mirror it replaces, without 
contributing any power. Third-order wavefront spherical aberration for a mirror 
in air with collimated incident light can be given as:  

3 4

4
cNc yW = , (3.1) 

where is the curvature of the spherical mirror and c cy is the height of the 
marginal ray of the axial paraxial pencil on the mirror and is the refractive 
index of the space immediately preceding the mirror. The “strength” of the 
anti-Schmidt plate representing the spherical mirror can be thought of as  In 
the case where the mirror is in convergent or divergent light an alternative 
expression must be used: 

N

.W

 
2 2

4
cNci yW = . (3.2) 

Here is the angle of incidence of the marginal ray of the paraxial axial pencil on 
the mirror. Primary wavefront coma can be given as: 

i

4 pc

c

y
Coma W

y
= , (3.3) 

and astigmatism as: 
2

22 pc

c

y
Astigmatism W

y
= .    (3.4) 

 
Here pcy is the height of the principal (chief) ray of the most oblique pencil, 
which will be zero if the stop position coincides with that of the plate 
representing the spherical mirror, and non-zero as the stop moves away from the 
plate. As can be seen from figure 5, pcy  is directly proportional to x , the axial 
distance from the stop to the plate representing the mirror, so we have the 
following proportionalities: 
 
Coma xW∝ , (3.5) 
 

2Astigmatism x W∝ . (3.6) 
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Figure 4.  
A. Spherical mirror with the aperture stop at the center of curvature. Coma and 
astigmatism free, but image suffers from spherical aberration over a curved field.  
B. Introducing a Schmidt plate with a spherical contribution equal in magnitude 
and opposite in sign to that of the mirror, at the center of curvature, corrects 
spherical aberration. By the Stop-Shift Theorem, the stop can now be moved 
anywhere without re-introducing coma or astigmatism. 
C. Introducing an “anti-Schmidt plate” cancels the correction described in B, 
returning the aberration condition to that of the original spherical mirror. 
D. Removing the original spherical mirror and Schmidt correcting plate leaves 
the anti-Schmidt plate, giving the same aberrations as the original spherical 
mirror, including astigmatism and coma as the stop moves away from the plate. 
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Figure 5. As the plate is moved axially away from the stop, the height of the 

intercept of the principal ray of the most oblique pencil with the plate, pcy , grows 

in direct proportion to the axial separation of the plate and the stop, x . 
 
 
In a similar way a conicoid mirror can be thought of as consisting of two plates. 
One plate represents the vertex sphere as described above, and the other plate 
represents the primary wavefront spherical aberration induced by the aspheric 
departure, given by: 

3 4

4
c

Conicoid
kc yW = .    (3.7) 

Here k  represents the conic constant of the conicoid. This plate lies on the pole 
of the conicoid mirror. Coma and astigmatism introduced by this plate arise 
exactly as for the spherical mirror as described in equations 3.3 – 3.6. 
 
For multiple-mirror telescope systems the positions of the plates are determined 
by imaging the center of curvature of spherical mirrors (or vertex spheres) and 
mirror poles in the case of conic contributions, into infinite conjugate space 
through all preceding elements in the system. Figure 6 gives an example of the 
Plate Diagram for a Paul three-mirror anastigmat. 
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Figure 6. Plate Diagram for a Paul three-mirror anastigmat. The primary mirror is 

a paraboloid giving rise to two plates,  from the vertex sphere and 1W 1ν from the 

conic departure. Note that the plates are of equal magnitude and opposite sign, 
consistent with the fact that the paraboloid has no spherical aberration. The plate 

representing the spherical secondary mirror, , is in object space at CoC2’, the 

image of the center of curvature of the secondary mirror through the primary. 

Similarly the plate representing the spherical tertiary mirror,  is at CoC3’’, the 

image of the center of curvature of the tertiary mirror through the secondary, then 

the primary. Note that and  are also equal in magnitude and opposite in 

sign, so the system spherical aberration is zero.  Using the Plate Diagram it is a 
simple matter to prove that system sums for coma and astigmatism are also zero. 

2W

3W

2W 3W

 
 
With plate strengths and distances from the entrance-pupil evaluated for multiple 
mirrors it is a simple matter to determine the aberration condition of a multi-
mirror system. The primary wavefront aberration contributions from each mirror 
are simply additive, so the system sum for each aberration can be given as: 
 

1

n

SYS i
i

Spherical W
=

= ∑  (3.8) 

1

n

SYS i i
i

Coma xW
=

∝∑  (3.9) 

2

1

n

SYS i i
i

Astigmatism x W
=

∝∑  (3.10) 
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Note that in using x instead of  we are not solving for coma and astigmatism 
exactly. As our goal is to drive these aberrations to zero only their relative 
quantities are required. The extra step of calculation is not necessary. For actual 
values of coma and astigmatism equations 3.3 and 3.4 could be substituted into 
equations 3.9 and 3.10 respectively. In the methods outlined below, the system 
sums such as in equations 3.8-3.10 are simultaneously driven to zero to produce 
anastigmatic systems. 

pcy

 
As a final point it should be noted that this approach gives systems that are valid 
in the “extended paraxial region”, or in other words in a third-order 
approximation to the real aberration condition of an optical system. In general a 
system corrected for third-order aberrations will have residuals of high-order 
aberration that can be corrected in a variety of ways. For example, high-order 
asphericity may be added to element profiles, or positions and radii of spherical 
elements can be “tweaked” using optimization software, to re-introduce small 
amounts of third-order aberration that balances against high-order aberration in 
an optimum manner. While analytical approaches do exist that deal with “total 
aberration”26 they are unsuitable for the sort of survey work that is described in 
this paper. 
 
FOUR SPHERICAL MIRRORS. 

 In the case of four spherical mirrors there are four plates, one for each of the 
mirrors. If the height of the marginal paraxial ray on the primary mirror is y1 and 
the reciprocal of the radius of the primary is , then the plate strength, , of 
the plate replacing the primary mirror is given by equation 3.1: 

1c 1W

 
                                                   

3 4
1 1 1

1 4
N c yW = −  (3.11) 

Subsequent mirrors in the system will not in general be in collimated light so the 
plate strengths of these mirrors can be found using equation 3.2: 
 

2 4

4
i i i i

i
N c i yW = −  (3.12) 

 
where  is the angle of incidence of the marginal paraxial ray and  is the 
refractive index in the space immediately preceding the i th mirror, following the 
convention for mirrors in air that the refractive index is of unit magnitude and 
changes sign on reflection.  

ii iN
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Without loss of generality we can fix the radius of the primary mirror as 2 (unit 
focal length) and the diameter  as 0.4 m. Then , by equation 3.11, we have: 

m

 
1 0.00005W = m  (3.13) 

 
                                                  
Setting up the system of simultaneous equations described above gives: 
 

2 3 40.00005 0m W W W+ + + = , (spherical aberration zeroed)                    (3.14) 
                                                                      

1 2 2 3 3 4 40.00005 0m x W x W x W x× + + + = , (coma zeroed) (3.15) 
 

2 2 2 2
1 2 2 3 3 4 40.00005 0m x W x W x W x× + + + = , (astigmatism zeroed)                             

 (3.16) 
 
An interesting step at this point is the key to solving these equations. The 
position of the entrance-pupil is of fundamental importance to the plate 
equations, as all ix  are measured from this. If we now state that the aperture stop 
for the system lies at the center of curvature of the quaternary mirror we can 
immediately simplify equations 3.15 and 3.16, as 4x  will be zero.   It is important 
to note that while setting the position of the aperture stop is an important step in 
this formulation, the resultant anastigmat is not limited by this, as, by the Stop 
Shift Theorem22, the aperture stop can later be placed anywhere in the system 
without disturbing the anastigmatic correction. Setting 4x  to zero, equations 3.15 
and 3.16 can be rearranged to give: 
 

3 3 2 2 10.00005W x W x m x= − − ×  (3.17) 
 
                          

2 2
3 3 2 2 10.00005W x W x m x= − − × 2  (3.18) 

 
At this point two further simplifications are made. Firstly the entrance-pupil 
position is set, and it can be set to any point in object space. By definition, the 
entrance-pupil position is the image in object space of the system stop, which has 
been set at the yet-to-be-located centre of curvature of the quaternary mirror. We 
are free to place the entrance-pupil anywhere in object space because at this point 
the secondary and tertiary mirrors are undefined.  
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If we define the entrance-pupil position as the axial distance from the pole of the 
primary mirror, and give it the symbol ε , we can immediately evaluate 1x (which 
is simply 1Rε − , where 1R  is the radius of curvature of the primary mirror). At this 
point we also assign arbitrary values to , the separation of primary and 
secondary mirrors, and , the curvature of the secondary mirror.  With these, 

 and 

1t

2c

2W 2x  can be calculated using 3.12 and standard relationships in paraxial 
optics27. Now the right-hand sides of equations 3.17 and 3.18 can be completely 
evaluated. 
 
This allows us to calculate  and 3W 3x by first dividing equation 3.18 by 3.17 to 
give 3x  , and then dividing equation 3.17 by the newly-acquired value of 3x  to 
give .  3W
 
We now need to translate the plate quantities 3x  and  back into optical-system 
constructional parameters. These are needed to determine the actual position of 
the center of curvature of the quaternary mirror, and finally the curvature of the 
quaternary mirror. 

3W

 
To proceed we make use of the following relationship: 
 
            

2 2 2 21 1
3 3 3 3 3 3 3 3 3 3 3 3 3 34 4( ) ( )W N c P u c P N c P u c P W= − − → − − − = 0

2

 (3.19) 
 
Here  is the angle that the marginal paraxial ray from the secondary to the 
tertiary mirror makes with the optical axis and is the length of the 
perpendicular to this ray from the center of curvature of the tertiary mirror. 
Equation 3.19 is cubic in  and as all other quantities in equation 3.19 can be 
obtained from standard paraxial relationships,  can immediately be evaluated. 
At this point the three solutions for the cubic are obtained.  

3u

3P

3c

3c

 
With each of the three values of  thus obtained, a different position of the 
center of curvature of the quaternary mirror can now be calculated by imaging 
the position of the entrance-pupil that was defined at an earlier stage back 
through mirrors 

3c

1,M M  and 3M . This determines the position of the center of 
curvature of the quaternary mirror. With the system up to the tertiary mirror 
defined (three times, once for each solution to equation 3.19) the quantities 
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4u and  can be determined, and  can be obtained from rearranging equation 
3.14 and substituting in values for  and obtained above to give : 

4P 4W

3W 2W
 
                                  

4 2 3( 0.00005 )W W W m= − + + . (3.20) 
 
Now it only remains to formulate a similar cubic to equation 3.19 and solve for 

: 4c
 

2 2 2 21 1
4 4 4 4 4 4 4 4 4 4 4 4 4 44 4( ) ( )W N c P u c P N c P u c P W= − − → − − − = 0  (3.21) 

    
 Again, there will be three solutions to this cubic in .  4c
 
 To summarize, for each point in the three dimensional parameter space defined 
by , and 1 2,t c ε , there will be a total of nine geometrically-distinct anastigmatic 
systems, arising from the nine possible combinations of the solutions to 
equations 3.19 and 3.21. 
 
This completes the derivation of the constructional parameters of nine distinct 
four-spherical-mirror anastigmats for given input values of , and 1 2,t c ε . 
 
It is a useful precaution to use an independent check that anastigmatic solutions 
have indeed been reached at this point. In this case the author utilized Zemax© 
software to check that systems output by the algorithm described above did 
indeed have zero coefficients for third-order spherical aberration, coma and 
astigmatism. In practice this is a good way to determine whether any errors have 
been made in programming. 
 
Using the method described above nine distinct anastigmatic solutions are 
obtained, because as we have seen, for each of the three values of there are 
three different values of . These nine anastigmats can justifiably be thought of 
as belonging to geometrically-distinct families; the remaining members of each 
family can be found by repeating the method described above for a large number 
of different points, sampling the 3-space defined by , and 

3c

4c

1 2,t c ε  with sufficient 
density as to map out the solution spaces.  In this work searches were made 
within the following boundaries for the parameters , and 1 2,t c ε : 
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Solutions occurring outside of those boundaries were considered to have either 
impractically large central obstructions or impractically high curvatures for the 
secondary mirror. In each case the sampling was such that at least 200 points 
were sampled for each basis vector. This was considered to be sufficiently dense 
sampling that the entire set of solutions for four-spherical-mirror anastigmats 
could be reliably mapped with a large but not unmanageable amount of 
computing. 
 
 

4. RESULTS 
 
It is interesting to note at this point that of the three four-plate systems referred 
to in the introduction, the two-conicoid mirror solutions lie along a curve in 2-
parameter space (figure 1) and the three-mirror, one conicoid solutions lie in 2-
dimensional regions (figure 3). Now we have four-spherical-mirror solutions 
occupying 3-dimensional solution spaces. While in each case there are four plates 
involved, in the case of systems with conicoid mirrors the two plates representing 
the conicoid have an extra element of coupling which effectively reduces the 
dimensionality of the solution space. 
 
The solutions obtained in this way described in section 3 are not necessarily 
physically-realizable anastigmats. Physically-unrealizable solutions fall into two 
categories. In one, the solution involves at least one mirror located in a virtual 
space. Obviously in this case the systems are not physically practical. The other 
case is a result of the derivation given above requiring the solution of two cubic 
equations. Two of the three algebraic expressions for the solution of a cubic 
equation allow for a solution with an imaginary component. Any solutions with 
imaginary components will not be physically-realizable anastigmats.  
 
The plot in figure 3 shows one map made in this way, in this case for three-mirror 
anastigmats with two spherical mirrors. In this map gray areas represent 
physically-unrealizable solutions, while white and black regions are possible 
anastigmats with positive and negative Petzval curvature respectively. While a 
large range of different system metrics could be plotted for the valid solutions, 
the Petzval curvature has been chosen in this case to allow for the ready 
identification of flat field solutions.  
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The mapping of four-spherical-mirror anastigmat sets has now been carried out. 
Of the nine distinct families of solution, four were empty sets when physically-
unrealizable solutions were filtered out. The remaining five solution sets contain a 
large amount of data. Figure 7 is an example of several cross sections of one of 
the five three-dimensional solution sets. The “out of the page” axis representsε , 
the entrance-pupil position parameter, and  and  are system parameters as 
defined for figures 1 and 3. As in figure 3, gray areas represent physically-
unrealizable solutions, and white and black regions represent solutions with 
positive and negative Petzval curvature respectively. 

1t 2c

 
Once a set of physically-realizable solutions is achieved, various conditions for 
practicality can be used to further refine the set, but the physically-realizable set 
represents the complete range of possible solutions, a truly global solution set. 
 
 Possible impracticalities include mirrors with huge diameters, large inter-mirror 
distances, and large or complete self-obstruction by system elements. Removing 
such systems from consideration is achieved by writing “filters” into the program 
used to map the solution space. This filtering approach can be implemented in 
many ways; for example one can specify a certain maximum acceptable central 
obstruction, mirror size, total system length, minimum back focal length etc. and 
these specifications can be written into the program producing the solution set as 
a series of logical operators.  
 
When further filtering is introduced to remove systems with unfeasibly large 
element spacing and diameters the number of populated solution sets reduces to 
2. It was initially reported28 that there were no such viable solutions with usefully 
low central obstructions, but recent automation of the search process for low-
obstruction systems has produced useful results. These systems represent the 
viable systems when axially-symmetrical systems are considered. Figures 8-11 
contain examples of both afocal and focal systems of each solution type. Table 1 
gives corresponding design parameters. As a result of the analytical approach 
taken in this work it can now be stated with certainty that the set of solutions 
represented by figure 8-11, and in table 1, are the only feasible all-spherical 
reflecting anastigmats with concave primary mirrors.  
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Figure 7. A number of cross sections taken from one of the five solution families. 

The horizontal and vertical axes represent and  respectively. The number in 

the center top of each plot is related to
1t 2c

ε , the initial position of the entrance-
pupil, for each cross section. White points represent solutions with positive 
Petzval curvature, black points systems with negative Petzval curvature. Flat field 
solutions lie along curves where white regions abut black regions. 
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The linear central obstructions of the systems presented here range from 50% to 
75%. With 50% central obstruction, the afocal system in figure 8A represents the 
minimum possible central obstruction for the class of system under discussion. 
This fact has been determined by successively eliminating systems while reducing 
the central obstruction allowed until finally only one solution point remains out 
of the 3-dimensional solution space. For focal systems of focal ratios less than 
f/15, the minimum-achievable linear central obstruction appears to be 
approximately 60% as represented by figure 9C. 
 
As can be seen in figures 8 and 9, this first solution family has convex secondary 
mirrors, concave tertiary mirrors, and convex quaternary mirrors. The second 
solution family represented by figures 10 and 11 have concave secondary mirrors 
and convex tertiary and quaternary mirrors. These systems have slightly higher 
central obstructions: around 70% linear central obstruction at best.  
 
It is interesting to note that the system shown in figure 8A is actually a system 
formed by coupling two pairs of concentric spherical anastigmats: the well known 
two-concentric-mirror-anastigmat with convex primary mirror and the less well 
know two- concentric-mirror-anastigmat with concave primary mirror that 
produces a virtual image. These pairs were discussed individually by Burch20 and 
Rosin29 and later by Shafer11. It is surprising that Shafer did not propose the more 
fundamental on-axis systems presented here, despite identifying both pairs of 
two-concentric-mirror anastigmats, and also proposing the concept of relaying 
the virtual image of the concave primary mirror version of the two-concentric-
mirror anastigmat using either finite conjugate or afocal anastigmatic relay 
systems. Shafer, who was the first to present four-spherical-mirror anastigmatic 
systems, reported only off-axis systems, that is, systems in which both the central 
field angle and the entrance pupil were offset from the system axis (see Ref. 11). 
 
Figure 8B represents a version of the four-spherical-mirror afocal system that 
does not consist of individually-anastigmatic two-mirror pairs. Similarly, the focal 
family of solutions as illustrated in figure 9 contains but is not limited to, 
solutions formed by pairs of individually-anastigmatic and concentric two-
spherical-mirror systems.  
 
Unlike the solutions in figures 8 and 9, the solutions in figures 10 and 11 do not 
have any versions that can be reduced to pairs of individually-anastigmatic two-
mirror systems. There are no systems corresponding to these in the published 
literature. 
 
It should be noted that all of these systems can be scaled in aperture without 
affecting their anastigmatic correction in the third-order aberration sense, though 
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the magnitude of high-order aberration residuals will of course change with this 
scaling. 
 
Other practical systems can still be extracted from the large number of solutions 
produced by this survey. There exist a number of systems within the solution set 
that are excluded due to self-obstruction when considered as axially-symmetrical 
systems, but that yield systems with small or even zero self-obstruction when off-
axis or multi-axis systems are considered. Figure 12 gives an example of one such  
Schiefspiegler system. In comparison to off-axis systems comprised of aspheric 
mirrors, there is a greatly reduced manufacturing and alignment difficulty 
associated with systems consisting of “off-axis” spherical mirrors, which of 
course remain spherical. 

 
Figure 8.  Two afocal four-spherical-mirror anastigmats. System A is 
comprised of coupled pairs of two-concentric-spherical-mirror anastigmatic 
systems. The linear central obstruction of this system is 50%. System B is a 
more general version that can not be broken down into individually-
anastigmatic sub-systems.   
 

While “shiefspiegler” literally means “oblique mirror”, and was originally used to 
describe systems comprised of tilted mirrors that could not be derived from 
axially-symmetrical parent systems30, it has come to mean reflecting telescope 
systems which are free from central obstruction. These can indeed be obtained by 
using mirrors that have been tilted with respect to the optical axis. However the 
common usage of the term Schiefspiegler also includes unobstructed systems that 
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are based on portions of parent systems that are symmetrical about some 
common axis. An axially-symmetrical parent system can be rendered as a 
Schiefspiegler by using an off-axis portion of the pupil, or by using only a small 
range of field points surrounding some off-axis field point, or by a combination 
of both of these approaches An interesting point to note about these 
Schiefspiegler systems is that as they are derived from axial-symmetric parent 
systems, the centers of curvature of the mirrors are collinear. This fact presents 
the opportunity for Schiefspiegler systems that can be brought into alignment 
with remarkable ease when compared to the general case, as will be discussed in 
detail in a future paper. 

 
Also, systems with convex primary mirrors, while not deemed appropriate here 
for telescope systems, are still of interest for a variety of applications.  
 
While a thorough investigation of the convex-primary and Schiefspiegler forms 
latent within the four-spherical-mirror on-axis system solution sets is beyond the 
scope of this paper, this topic is the subject of ongoing work and will be 
presented in a future publication.  
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Figure 9. Two examples of focal versions of the solution type shown in figure 8. 
Drawings B and D give an expanded view of the last three elements of systems 
A and C respectively. This solution type contains as special cases systems that 
are comprised of two pairs of concentric two-spherical-mirror anastigmats.  
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Figure 10. An afocal four-spherical mirror anastigmat of the second kind. Unlike 
the solutions of figures 8 and 9, it has no special case that is comprised of 
coupled pairs of concentric mirrors. 
 

 8 A 8 B 9 A 9 B 10 11 A 11 B 
R1 −1.61838 −2 −2 −2 −2 −2 −2 
T1 −1.0 −1.17050 −1.17050 −1.09550 −1.49005 −1.52005 −1.51005
R2 −0.61838 −0.40401 −0.40818 −0.12618 0.29939 0.35087 0.35087 
T2 0.10615 0.05809 0.09052 0.16859 0.10022 0.12631 0.12058 
R3 −0.17129 −0.11475 −0.15052 −0.18226 0.30119 0.47371 0.57943 
T3 −0.10595 −0.07272 −0.11237 −0.15859 −0.39783 −0.29493 −0.27074
R4 −0.06545 −0.04015 −0.03536 −0.01375 −0.18985 −0.09802 −0.07472
T4 ∞ ∞ 0.11148 0.01289 ∞ 0.17378 0.09704 

 
Table 1. System parameters for the systems depicted in figures 8-11. Units are 
metres. R1-R4 are the radii of the primary – quaternary mirrors. T1–T4 are 
inter-mirror or in the case of T4, the mirror-focal plane separation. In each 
case the aperture stop has been set at the primary mirror, though as these 
systems are anastigmats the stop position can be set anywhere without 
affecting the correction of the third-order aberrations. The stop diameter (and 
hence that of the primary mirror) has been set at 0.4 m in all cases. 
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5. CONCLUSION 
 

A closed-form analytical solution for four-spherical-mirror anastigmats has 
been derived and used to map out all possible solutions for four-spherical-
mirror anastigmatic telescopes with concave primary mirrors. This completes 
the set of simplest possible anastigmatic reflecting telescopes, a set that also 
includes two-conicoid-mirror systems and three-mirror systems with one 
conicoid. The four-spherical-mirror set as derived above can be considered to 
consist of five geometrically distinct families of solutions mapped over 3-space, 
the basis vectors of which are three constructional parameters of the system. 
 
After exclusion of solutions that are deemed impractical due to large inter-
element spacing or extremely large element diameters, there remain two sets of 
viable four-spherical mirror anastigmats. These are both novel and unique 
systems, the analytical approach employed here has shown that no other 
possibilities exist for rotationally-symmetrical, four- spherical-mirror 
anastigmats with concave primary mirrors. 
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Figure 11. Focal versions of the second type of solution as shown in figure 10. 
Drawings B and D give an expanded view of the last three elements of systems A 
and C respectively. There is a continuum of solutions with focal ratios ranging 
from the afocal case down to about f/8 (for the scale given for these systems). In 
practice the image could be picked off to a more convenient location with a fold 
mirror. This type of system in general suffers from less high-order aberration than 
the systems shown in figures 8 and 9. The minimum linear central obstructions 
achievable with this type of system are of the order of 67%.  

 
Ongoing investigation of the solution set will be aimed at extracting useful 
Schiefspiegler and multi-axis systems from the large number of possibilities.  It is 
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expected that a survey off the full solution set for useful Schiefspiegler forms will 
result in the discovery of additional practical solutions. 
 
Further work will also be done to identify potentially useful systems with convex 
primary mirrors. 
 
The method documented here illustrates the good results that can be achieved 
by combining an analytical approach to optical design problems with modern 
computing power. For certain classes of  
 

 
 
Figure 12. An example of a four-spherical-mirror anastigmatic Schiefspiegler. 
Numerous examples of anastigmatic Schiefspiegler are likely to be uncovered 
Schiefspiegler-oriented sifting of the solution sets. 

 
 
system this approach is clearly capable of providing superior global results to 
those that would be obtainable with modern optical-design software.  The fact 
that this method has produced the apparently novel on-axis, all-spherical, 
concave-primary-mirror anastigmatic optical designs, and simultaneously has 
shown that no others can exist, is a testament to the power of the technique. 
 
It would be highly impractical if not impossible to achieve the results and 
comprehensive knowledge of solution space achieved here using ray tracing and 
global optimization algorithms alone. 
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Appendix B: Four-mirror anastigmats II: A 

complete solution set for all-spherical 

telescopic systems 

This paper was originally submitted to Optical Engineering in December 2006 

and has been provisionally accepted with some revisions required. 
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ABSTRACT 
In the first paper of this series the author described a closed-form analytical 
approach to obtaining the complete solution set for four-mirror anastigmats in 
which all the mirrors were spherical. Two novel types of four-spherical-mirror 
anastigmat with concave primary were reported. This approach has been 
modified by setting up baseline systems with good first-order characteristics and 
adding the minimum number of aspheres necessary to provide anastigmatic 
correction. In this way, searches for useful four-mirror anastigmats with one, two 
or three-mirrors kept strictly spherical have been carried out. The example given 
in this paper shows that by using this technique a system with only one conicoid 
mirror can be found which has very similar first-order properties and equivalent 
correction to a system with three conicoids.   
 
Keywords: anastigmat, reflecting telescope, four-mirror, Schiefspiegler 
 

1.   INTRODUCTION 
 

In the first paper of this series the author produced an analytical solution for 
four-spherical mirror anastigmats with concave primary mirrors1,2. Nine distinct 
solutions were derived for each point in a 3-dimensional parameter space. The 
solution was applied iteratively over the 3-dimensional parameter space to map 
every possible solution for four-spherical mirror anastigmatic systems with 
concave primary mirrors. 
 
This was the second example of an analytical solution for four-mirror systems in 
the published literature3,4 and the only one that deals with four-spherical mirror 
anastigmatic telescopes. It was found that there were two types of axially-
symmetric systems of practical interest. At the time of writing Ref. 1 no valid 
systems had been found, but a refined search method uncovered the two solution 
sets and these are reported in Ref. 2. 
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This paper has taken a different approach to obtaining useful four-mirror 
anastigmatic systems using an analytical method. Here the global solution 
technique previously developed for four-spherical mirror systems has been 
generalized  to accommodate four-mirror systems with one or more conicoid 
surfaces. 
 
Using this method, a practical unobstructed first-order layout is first produced. 
Using this baseline system, analytical solutions are first derived and then applied 
to find anastigmatic systems utilizing a decreasing numbers of conicoid surfaces 
(but retaining four-mirrors in all cases). In this way, systems with useful on-axis 
geometries and minimum optical complexity are uncovered. In the following 
section a brief description of the plate diagram method will be provided, followed 
by an outline of the technique used to solve for several cases of four-mirror 
telescopes with decreasing numbers of conicoids. These cases are: 
 
• Four mirrors: three conicoids (with a spherical primary). This relatively trivial 
solution involves setting up an exact first-order layout, then solving for the three 
conic constants required to eliminate primary spherical aberration, coma and 
astigmatism. This set is included here as an interesting example of the relative 
simplicity of the method. 
 
• Four mirrors: two conicoids. In this system two conic constants on two mirrors 
of fixed radii and position, together with the position and curvature of the 
quaternary mirror are free to vary. In this case three 1-dimensional solution sets 
are obtained. 
 
• Four mirrors: one conicoid, the conic constant on the secondary mirror is 
allowed to vary. Also the tertiary and quaternary mirrors are free to vary in 
position and curvature. Three 2-dimensional solution sets in 2-parameter space 
are obtained. 
 
The results obtained in the following examples show that the analytical method is 
capable of giving useful results similar to the baseline system as well as 
unexpected and potentially useful variants. The final section will consist of a brief 
discussion of these results.  
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2. METHOD  
 
THE PLATE DIAGRAM. 

Burch’s “Plate Diagram method”, a generalization of earlier work by Aldis5, has 
been used to formulate the analytical solutions in this paper. The method has 
been described in detail elsewhere1,2,.5,6,7,8,9 , and in particular section 3 of Ref. 2 
describes the use of a plate diagram based approach to deriving solutions for 
four-spherical-mirror anastigmats. Only the briefest of summaries of the Plate 
Diagram method will be given here.  
 
The Plate Diagram method utilizes a transformation in which systems of 
powered spherical or conicoid mirrors are converted to afocal systems comprised 
of zero-powered Schmidt plates. In these plate systems each plate gives an equal 
contribution to the third order system aberration sum as the spherical mirror or 
conicoid surface it replaces. A spherical mirror can be replaced with one plate, 
which lies at its centre of curvature if it is the primary mirror, or at the image of 
the centre of curvature in object space for subsequent mirrors in the system. A 
conicoid mirror is represented by two plates, one representing the vertex sphere 
as above, and the other representing the conicoid figure. The conicoid 
replacement plate lies either at the pole of the primary mirror or at the image of 
the pole of the mirror in object space for subsequent mirrors in the system. 
 
These afocal systems replicate exactly the primary aberrations of the original 
powered systems that they have replaced, but allow for a relatively simple 
analytical treatment of the system aberration sums, as will be shown below. In all 
cases the assumption is made that these systems are operating in air. 
 
To start with we consider a spherical mirror, with a primary spherical aberration 
coefficient in wavefront measure given by:  

     
3 4

4
cc yW = in collimated incident light, 

or 
2 2

4
cci yW = in non-collimated incident light.                                                      (2.1) 

Here is the curvature of the spherical mirror and c cy is the height of the 
marginal ray of the axial paraxial pencil on the mirror and is the angle of 
incidence of the marginal ray of the paraxial axial pencil on the mirror. The 
“strength” of the Schmidt plate representing the spherical mirror can be thought 
of as W .   

i
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The plate representing a conicoid figure has a “strength”, or primary wavefront 
spherical aberration coefficient given by: 
 

3 4

4
c

k
kc yW = .                                                                                                (2.2) 

Here k  represents the conic constant of the conicoid.  
 
For multiple mirror telescope systems the positions of the plates are determined 
by imaging the center of curvature of spherical mirrors (or vertex spheres and 
mirror poles in the case of conic surface contributions), into infinite conjugate 
space (“star space” in Burch’s terminology) through all preceding elements in the 
system. In the case where no infinite conjugate space exists naturally in the optical 
system, it is a simple matter to create one artificially for the purposes of the 
analysis, and this can be done without in any way modifying the properties of the 
system under investigation. 
 
It can be shown5,6,9 that the system sums of primary wavefront aberration 

coefficients for a system of  plates arising from n n a− spherical mirrors and 
2
a  

conicoid mirrors (where  and  are positive integers and n a
2
a n≤ ) can be given 

as: 
 

1

n

SYS i
i

Spherical W
=

= ∑                                                     (2.3) 

1
1

n

SYS i i
i

C Coma xW
=

× =∑  (2.4) 

2
2

1

n

SYS i i
i

C Astigmatism x W
=

× =∑  (2.5) 

Here x is the distance of the plate W from the entrance pupil position. Note that 
equations 2.4 and 2.5 give system sums that are proportional to the respective 
aberrations through the constants  and  respectively. While it would be a 
simple extension to obtain actual values for system coma and astigmatism, our 
goal is to drive these aberrations to zero so only their relative quantities are 
required. The extra step of calculation is not necessary and the proportionality 
constants drop out in the next step of calculation and so can be ignored. In the 
methods outlined below, the system sums in 2.3-2.5 are simultaneously driven to 
zero to produce anastigmatic systems. 

1C 2C
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Note that while the systems derived below are corrected for primary, or third-
order, aberrations, there will commonly be some residual of higher-order 
aberrations. In practice, and particularly for catoptric systems, fine tuning a third-
order solution by optimization with optical design software and allowing the re-
introduction of small amounts of third-order aberration to balance optimally 
against high-order residuals will lead to a well-corrected system that differs very 
little from the pure third-order solution. The third-order approximation to a 
baseline system is much better than the first-order approximation in this sense. 

 
3. EXAMPLES 

FOUR-MIRRORS; THREE CONICOIDS. 

The first case considered is the almost trivial case of four-mirrors with three of 
these mirrors being conicoids. Here we set up a system of spherical mirrors with 
a useful first-order layout such as that shown in figure 1. System constructional 
parameters for this and subsequent systems are given in table 1. Then three-
mirrors are allowed to become conicoids and conic constants are found that 
simultaneously zero spherical aberration, coma and astigmatism. This is a trivial 
exercise in a modern ray-tracing program but the plate diagram approach is 
included here as an example. 
 
With the radii and positions of the four-mirrors set we can immediately calculate 
plate strengths and positions in object space using equations 2.1, 2.2 and simple 
paraxial optics. Setting the position of the entrance pupil to any convenient 
location allows us to calculate ix  and hence system sums for spherical aberration, 
coma and astigmatism following equations 2.3 – 2.5. To obtain the necessary 
combination of conicoids required for anastigmatic correction it is simply a 
matter of formulating and solving the following linear system of plate equations 
for , using standard paraxial optics relationships to determine the fixed values 
of 

kiW

ix : 
 

2 3 4k k k SW W W Spherical+ + =− YS  (2.6) 

2 2 3 3 4 4 1k k k k k k SYSx W x W x W C Coma+ + =− ×  (2.7) 
2 2 2

2 2 3 3 4 4 2k k k k k k SYSx W x W x W C Astigmatism+ + =− ×  (2.8) 
 
Here we have set up the system to have a spherical primary mirror, but in practice 
any of the four mirrors could be chosen to remain spherical. It then simply 
remains to rearrange equation 2.2 to obtain the three values of . For the 
spherical primary example given in figure 1 these are; 

and 

ik

ik

2 33.166, 0.351k k= = − 4 0.267k = − . The simplicity of this approach  
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Figure 1. First-order layout using spherical mirrors initially, giving a useful 
geometry but requiring three conicoids for anastigmatic correction.  System A 
represents the first-order layout which can be seen to have large spherical 
aberration at the focal plane. In system B primary spherical aberration, coma and 
astigmatism have been corrected by an appropriate choice of conicoids. The three 
conicoid system parameters are given in table 1. 

 
compares favourably to that given by Korsch3,4. Furthermore, Korsch’s approach 
required conicoid surfaces to correct  Seidel aberrations, according to what 
Wilson describes as “the generalized Schwarzschild Theroem”10. The next two 
examples give examples of analytical solutions for systems in which  Seidel 
aberrations are corrected with less than  conicoid surfaces.   

n n

n
n

 
FOUR-MIRRORS; TWO CONICOIDS. 

In this example two mirrors, the primary and quaternary mirrors, will remain 
strictly spherical. The secondary and tertiary mirrors are allowed to be conicoids. 
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To achieve anastigmatic correction the position and curvature of the quaternary 
mirror must be varied. This is only one of six possible arrangements of two 
conicoids amongst four mirrors, but serves as a representative example. In this 
case we will start with the primary, secondary and tertiary mirrors retaining some 
arbitrary but promising first-order layout, such as in the configuration given in 
figure 1. We then will solve for the position and radius of the quaternary mirror. 
 
 To proceed we imagine that the aperture stop is placed at the center of curvature 
of the quaternary mirror. Also, we assign some arbitrary position to the entrance 
pupil, which after imaging through primary, secondary and tertiary mirrors, will 
locate the center of curvature of the quaternary mirror. In this way, equations 2.7 
and 2.8 are reduced to: 
 

2 2 3 3 1k k k k SYSx W x W C Coma+ =− ×    (2.9) 
2 2

2 2 3 3 2k k k k SYSx W x W C Astigmatism+ =− ×  (2.10 
 
That is, only contributions from the two conicoids provide variables to balance 
against system coma and astigmatism; by placing the stop on the center of 
curvature of the quaternary mirror the x value for the plate associated with this 
mirror is now zero so its coma and astigmatism contributions are necessarily zero. 
Note that here and SYSComa− SYSAstigmatism−  are values calculated from the 
spherical primary and vertex spheres of the secondary and tertiary mirrors. Values 
of kix can be obtained and equations 2.7 and 2.8 can be used to solve for and 
hence, using equation 2.7, for  and . Using the values of thus obtained 
we can now solve for the spherical aberration contribution of the quaternary 
mirror by rearranging equation 2.6 (and substituting for in this case): 

kiW

2k 3k kiW

quatW 4kW
 

2quat SYS k kW Spherical W W=− − − 3  (2.11) 

 
Now we have the position of the center of curvature of the quaternary mirror 
(from setting the initial position of the entrance pupil) and the spherical 
aberration contribution of the quaternary mirror from equation 2.11. Also, by 
simple paraxial optics we have , the angle the marginal ray of the axial paraxial 
pencil makes with the axis after reflection from the tertiary. We can also calculate 
a quantity, , which is the length of the perpendicular from the center of 
curvature of the quaternary mirror to the marginal ray of the axial paraxial pencil 
after reflection from the tertiary mirror. Using these, and the following 
relationship; 

4u

P

21
4 4 44 (quatW c P u c P= − − 2) . (2.12) 
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we can obtain the following cubic equation in  (the curvature of the quaternary 
mirror): 

4c

 
2 21

4 4 44 ( ) quatc P u c P W− − − 0=  (2.13) 

 
If we define: 
 

4
0 1 24 2

4 4

4 2; ;quatW u ua a a
P P

−
= = = 4

4P
, (2.14) 

and further define: 
 

2 2
1 2 0 1 2 33 ; 27 9 ; 4Y a a Z a a a a Q Y Z= − = − + − = +3 2 ,                                       

(2.15) 
 
then the three solutions to 2.13 can be compactly expressed as: 
 

2 3 3

33

2
3 3 3 2

Z Qa YSA
Z Q

+−
= − +

+
 (2.16) 

 
 
                                                                  

2 3

33

(1 3)(1 3)
3 3 4( ) 6 2

i Za i YSB
Z Q

Q+ +− −
= + −

+
 (2.17) 

 
 
                                                                  

2 3

33

(1 3)(1 3)
3 3 4( ) 6 2

i Za i YSC
Z Q

Q− +− +
= + −

+
. (2.18) 

 
 
 
Using these three solutions, for each initial position of the entrance pupil (and 
therefore the position of center of curvature of the quaternary mirror) we obtain 
a maximum of three distinct anastigmatic telescopes. These telescopes differ only 
in the position and curvature of the quaternary mirror (and hence in other related 
parameters such as f/#, Petzval curvature and central obscuration). It remains to 
scan through the available solution space and build up a curve representing 

167 



available solutions. Figure 2 shows these solution curves in 2-parameter space; 

 
Figure 2. SA, SB and SC solution curves for the case in which the baseline system is as 
given in table 1, and mirrors 2 and 3 are allowed to become conicoids. SA solutions are 
given by equation 2.16, SB by equation 2.17 and SC by equation 2.18. The horizontal 
axis here represents the initial position of the entrance pupil as measured from the 
primary mirror in object space, L, and the vertical axis represents the curvature of the 

quaternary mirror for each of the three solution sets, . Representative examples of 
optical systems from these solution sets are given in figures 3-5 and table 1. 

4c
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the horizontal axis represents the initial position of the entrance pupil, and 
therefore is directly related to the original position of the centre of curvature of 
the quaternary mirror, whereas the vertical axis represents the curvature of the 
quaternary mirror (negative is concave). Note also that while the position of the 
aperture stop and hence entrance pupil was set initially to reduce the number of 
unknowns in equations 2.7 and 2.8, once an anastigmatic system is achieved the 
aperture stop can be moved to any convenient location without affecting the 
anastigmatic correction, as given by the stop-shift theorem. 
 
Figure 3 shows some examples of optical systems represented by the solution 
curves in figure 2. Note that the “ ” solutions contain an example that is very 
close to the baseline system shown in figure 1. However in all of these solutions 
only two conicoids are required to produce anastigmatic correction.                                  
  

SB

 
A final point is that the anastigmats derived in this way are not necessarily 
practical systems, or even physically realizable. For example, if one or more of the 
solutions to equation 2.13 have imaginary components then this will not lead to 
an actual anastigmat. Also, there is no guarantee that the light path after each 
reflection will remain real.  
 
Once physically meaningless systems have been disqualified, as they have been in 
the solution curves provided in figure 2, there is still the chance that the solution 
will be impractical, for example the quaternary mirror could become too large. 
Figure 3 gives an example of an impractical solution from the SA family of 
solutions. It can also be seen from figure 3 that practical off-axis solutions can 
still be extracted from impractical axially-symmetric parent systems.  
 
Figure 4 shows a range of solutions from the SB curve in figure 2. The third 
system from the top in figure 2 is closely related to the baseline system of figure 
1, but achieves anastigmatic performance with one less conicoid. Systems are 
arranged from top to bottom in figure 4 have decreasing values of L , and 
therefore are taken from points running from right to left on the SB family of 
solutions in figure 2. It can be seen the f/# of these solutions decreases from an 
afocal system in figure 4.A to a relatively fast f/2 system in figure 4.E. 
 
Figure 5 shows SC solutions. While these solutions are valid anastigmatic 
solutions with usefully-low central obscurations, they are extremely fast and 
probably of limited practical value. 
However, the solution sets SA, SB and SC have illustrated that starting from a 
first-order layout of interest, anastigmatic solutions can be found that lie close to 
the baseline solution in layout, and correct three Seidel aberrations with less than 
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three conicoids. Furthermore, the method has shown that it can generate 
potentially useful geometries that are quite different from the baseline geometry. 
 

 
Figure 3. An example of a solution for two-conicoid anastigmats using the SA 
solution. While the axially-symmetric  system at top is clearly impractical due to 
100% obscuration by the quaternary mirror of the light from the primary to the 
secondary mirror, a system obtained by using an off-axis portion of this parent 
system gives a useful unobstructed design. 
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Figure 4. Examples of the SB family of two-conicoid, two-sphere anastigmatic 
solutions. Systems ordered from A to E in this figure are solutions taken from 
points on the SB solution curve of figure 2 from right to left. Note that the system 
A is afocal, with systems of reducing (faster) focal ratio going down the page 
from A to E. System C is closely related to the baseline system in its first-order 
properties, and achieves anastigmatic correction with only two conicoids. 
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Figure 5. Two examples of solutions from the SC curves shown in figure 2. While 
these systems do not exhibit a particularly favourable geometry, they serve as 
examples of the varied geometrical forms of valid anastigmatic system that can 
be produced by this method. 

 
 
FOUR-MIRRORS; ONE CONICOID. 

In this final example we look at the case in which there is one conicoid mirror 
and three spheres. While in this case the secondary mirror has been chosen to be 
the conicoid, the method described below is readily adapted to accommodate any 
choice of mirror as the conicoid one. The primary and secondary mirrors have 
the same characteristics and positions as in figure 1. Now the curvatures and 
positions of the tertiary and quaternary mirrors are varied to solve for 
anastigmats. The first step is similar to that in the previous example. As in the 
previous example, the initial position of the aperture stop is chosen to eliminate 
one set of variables from the plate equations 2.7 and 2.8. In this case placing the 
aperture stop at the pole of the secondary mirror prevents the plate associated 
with the conic constant of the secondary mirror from having any effect on the 
coma or astigmatism of the system. Now we can form the equations: 
 

r r(tert tert quat quat p im p im sec secx W x W x W x W )+ =− + , (2.19) 
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2 2 2 2
r sec(tert tert quat quat prim p im secx W x W x W x W+ =− + ) . (2.20) 

 
Here “prim, “sec”, “tert” and “quat” refer to quantities derived from the 
spherical primary through quaternary mirrors respectively (or vertex sphere in the 
case of the conicoid secondary mirror). Equation 2.19 is the condition for zero 
coma and equation 2.20 the condition for zero astigmatism. Quantities on the 
RHS are known. To proceed further we assign values to , the separation of the 
secondary and tertiary mirrors and , the radius of the tertiary mirror, from 
which we can calculate 

2t

3r

tertx and .  tertW
 
Moving all known quantities in the above equations to the  and dividing 
equation 2.20 by 2.19 gives: 

RHS

 
2 2 2

r sec

r r

prim p im sec tert tert
quat

p im p im sec sec tert tert

x W x W x W
x

x W x W x W
+ +

=
+ +

, (2.21) 

from which we obtain: 
r r( )p im p im sec sec tert tert

quat
quat

x W x W x W
W

x
+ +

=− . (2.22) 

 
Now that all  are known apart from the one associated with the conicoid, we 
can solve for the conicoid using the spherical aberration plate sum equation 2.6 
and a rearranged 2.2: 

iW

 

2 sec3 4
2 2

4 ( prim tert quatk W W W W
c y
−

= + + + ) . (2.23) 

It is interesting to note that the necessary spherical aberration contribution from 
the quaternary mirror is thus defined before the radius or position of the 
quaternary mirror is determined. The final remaining step is to solve for the 
radius and position of the quaternary mirror, which is done exactly by deriving 
necessary paraxial quantities and solving equation 2.13. As in the previous case, 
this leads to three distinct systems for each choice of the starting values and . 
Again, as in the previous case, each of the three exact algebraic solutions to 
equation 2.13 can be evaluated independently for a large number of initial values 
of the parameters and . In this way a map of the solutions can be built up 
over this 2-parameter space, as is shown in figure 6 for solutions SA, SB and SC. 
In these maps anastigmats that are physically impossible can be filtered out, and 
there is also the opportunity to write custom filters targeting systems with 

2t 3c

2t 3c
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particular characteristics, for example sizes of mirrors, space envelope, central 
obscuration etc.  
 

 
Figure 6. Three independent sets of solutions for the case where only 2M is 

allowed to be a conicoid. SA solutions are given by equation 2.16, SB by equation 
2.17 and SC by equation 2.18. In these plots the vertical axis represents the 
curvature of the tertiary mirror while the horizontal axis represents the separation 
of the secondary and tertiary mirrors. Solutions are represented by either black or 
white regions, representing solutions with either negative or positive Petzval sums. 
Grey regions represent regions for which no valid anastigmatic solution exists. 
Note that there exist solution regions which have the corresponding coordinates in 
different sets. These represent systems that differ only in the radius and position of 
the quaternary mirror. 

 
 
Figure 7 gives an example of the type of system that would be removed by these 
custom filters. This SA type solution is a valid anastigmat in that it is a physically 
realizable solution, however it is obviously completely impractical. Figure 8 shows 
a selection of valid SB solutions. As with the two-conicoid case, in the one-
conicoid case investigated here the SB solutions are the most closely related to 
the baseline solution. The system shown at the top of the figure places the focal 
plane at approximately the same place as it is in the baseline system, though here 
the focal ratio is increased to f/13.6. Details of this system are given in table 1. 
The third system from the top of figure 8 matches the focal ratio of the baseline 
system. Members of the SB family of solutions in this particular case can be seen 
to have useful first-order geometries and to achieve anastigmatic correction with 
only one conicoid surface. 
 
An example from the family of SC solutions is presented in figure 9. The layout 
of this system bears some resemblance to one of the earliest four-mirror forms 
for imaging systems, proposed by Steele11 in 1953. Steele gave several four-mirror 
concepts based on the idea of coupling pairs of corrected two-mirror systems. 
One of these pairs consisted of a Cassegrain front end and a Schwarzschild flat-
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field rear end.  A similar approach was later independently developed and 
extended by Shafer12, to produce off-axis, all-spherical, four-mirror anastigmats. 
 

 
Figure 7. An example of a completely impractical solution for the SA solution set of 
figure 6. When filters which exclude solutions with impractically large mirrors are 
applied, this solution set vanishes.  

 
 
The system shown in figure 9 is similar in appearance to one of Steele’s four-
mirror couplings of two-aspheric-mirror systems, but achieves anastigmatic 
correction with only one aspheric mirror. Details for this system are provided in 
table 1. 

 
3. CONCLUSION 

 
In previous work the author has presented the first example of a closed-form 
analytical solution for telescope systems consisting of four spherical mirrors. In 
this paper that solution has been generalized to include four-mirror systems in 
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which one, two or three mirrors are conicoids. The last case, deemed here the 
most trivial, is equivalent to Korsch’s solution, where three conicoids are used to 
correct three Seidel aberrations. 
 

 
Figure 8.  Representative examples from the SB solution set shown in figure 6. In 
particular, systems A through D inclusive come from the thin black curving 
region in the SB solution plot, while system E is from the white region.  System A 
most closely resembles the layout of the baseline system. This system has a focal 
ratio of f/13.6. System C most closely resembles the focal ratio of the baseline 
solution. 
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 baseline 

system 
(figure 1) 

baseline 
with 3 
conicoids 
(figure 1) 

2 conicoid 
SB solution 
(3rd from 
the top of 
figure 3) 

1 conicoid 
SB 
solution ( 
top of 
figure 8) 

1 conicoid 
SC 
solution 
(from 
figure 9) 

M1 radius  −2.000 −2.000 −2.000 −2.000 −2.000 
k1 0 0 0 0 0 
t1  −0.60000 −0.60000 −0.60000 −0.60000 −0.60000 
M2 radius  −0.800 −0.800 −0.800 −0.8000 −0.800 
k2 0 3.166 3.189 2.752 2.301 
t2 0.90000 0.90000 0.90000 0.90000 1.45000 
M3 radius −0.500 −0.500 −0.5000 −0.68729 1.551 
k3 0 −0.351 −0.235 0 0 
t3 −0.19107 −0.19107 −.17384 −0.28092 −0.72812 
M4 radius −0.150 −0.150 −0.194 −0.14889 0.979 
k4 0 −0.26669 0 0 0 
t4 0.27497 0.27497 0.35417 0.39834 0.72592 

 
 

Table 1. Optical parameters for several of the optical systems described in this 
paper are given here. The sign convention employed should be self-evident 
considering that the first column of data in the table corresponds to the baseline 
system of figure 1. In all cases presented in this paper the primary mirror was set 
with an aperture of 0.4 m. All mirror radii and mirror separations are given in units 
of meters. The stop is set on the primary mirror, but can of course be relocated 
anywhere in the system without adversely effecting the anastigmatic correction. 
 

 
Figure 9.  This solution from the SC solution set of figure 6 bears some resemblance to a 
system proposed by Steele11. In this case however anastigmatic performance is achieved, 
and that with only one conicoid mirror. 
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An example of the technique has been given where an initial system with a useful 
first-order layout is corrected using one, two or three conicoids. Starting from a 
baseline solution with useful first-order properties, it has been shown that 
corresponding anastigmatic systems with useful first-order geometries can be 
found even in the case where the number of conicoid surfaces used to correct the 
three targeted Seidel aberrations has been reduced to one. Moreover, the 
technique utilized here has demonstrated the potential to produce useful and 
unexpected geometries that are not so closely related to the baseline geometry. 
 
This technique is readily generalizable to systems of more than four mirrors, and 
to systems in which both the object and image conjugates are finite, and therefore 
is potentially useful to the design of reflecting systems for a wide range of 
applications. 
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ABSTRACT 

In the first paper in this series closed-form analytical solutions for 
four-spherical-mirror anastigmats were developed and used to map the 
solution space for such systems. In all cases systems investigated had 
objects at infinity, concave primary mirrors, and the primary mirror 
was always the element with the largest diameter. This work extends 
the survey to include systems with elements larger than the primary 
mirror, and now includes both new types of concave-primary-mirror 
systems and also all of the convex-primary-mirror systems, which were 
previously excluded. Numerous systems are presented, including new 
forms of concentric-mirror systems and systems that have zero Petzval 
curvature. Also investigated are off-axis or Schiefspiegler forms, 
which include systems excluded from the previous survey due to large 
central obstructions when considered as on-axis systems. The fact that 
closed-form solutions are used to map out all solutions over the 
relevant parameter space means that the systems presented here 
(together with the first paper in this series) represent the full and final 
range of possibilities for four-spherical-mirror anastigmats for which at 
least one of the system imaging conjugates is infinite. 

 
Keywords: anastigmat, reflecting telescope, four-mirror, Schiefspiegler 
 

1.   INTRODUCTION 
 

All-reflecting or catoptric optical systems are useful in a range of 
applications in science and industry. A range of applications including but 
not limited to EUV lithography, high energy laser systems, microscopy, 
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projection and hyper-spectral imaging all benefit from the advantages 
catoptric systems offer, such as zero chromatic dispersion, high transmission 
efficiency, high damage thresholds and good correction of optical aberrations 
achievable with relatively simple systems.  
 
This paper is concerned with catoptric systems comprised of four spherical 
mirrors in which the third-order aberrations that affect image sharpness, 
namely spherical aberration, coma and astigmatism, are simultaneously 
corrected; i.e. anastigmatic optical systems. In the first paper in this series1 a 
closed-form analytical solution for four-spherical-mirror anastigmats was 
developed and applied to a survey of systems of potential usefulness as 
telescopes. This meant that the investigation was limited to systems in which 
the largest optical element was a concave primary mirror.  
 
While this limitation is sensible in the case of astronomical telescopes 
systems, there are numerous types of optical system in which the largest 
optical element can be many times greater in diameter than the entrance 
pupil. For example catoptric microscope objectives, projection systems and 
camera objectives commonly have pupils and primary optics that are smaller 
than succeeding elements in the system. This paper presents the results of a 
broader survey of four-spherical-mirror anastigmats than that previously 
presented. As well as systems with larger optics, other systems that were 
excluded from the previous survey on the basis that the on-axis parent 
systems were 100% self-obstructed, are shown to become viable as 
“Schiefspiegler” or off-axis unobstructed systems.  

 
This survey has resulted in the discovery of a large number of four-spherical-
mirror anastigmatic systems, only one of which had previously been 
reported2. The nature of the survey technique means that it is certain that all 
possible types of four-spherical-mirror anastigmat have been now been 
discovered. This would be a difficult claim to make if one had attempted to 
employ a global optimization routine to determine these solutions.  Another 
advantage of the analytical technique used here to find these solutions is that 
there is a clear mathematical basis for classifying the various solution 
families that arises from their underlying geometry. This will be discussed in 
the following section, together with a summary of the survey method. 
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2. METHOD 
 
The closed form solution for four-spherical-mirror anastigmats employed 
here was developed and presented in full in earlier work1,3. In short, 
equations 3.1-3.21 of reference 1 develop an analytical solution for four-
spherical-mirror anastigmats for given values of three input parameters. 
These parameters are the curvature of the secondary mirror, the separation of 
the primary and secondary mirrors and the position of the centre of curvature 
of the quaternary mirror. It is shown that for any point in this three-parameter 
space, anastigmatic systems can be found by solving two cubic equations, 
one each for the radii of curvature of the tertiary and quarternary mirrors. 
These cubics are given as equations 3.19 and 3.21 in reference 1.  
 
Analytical expressions for the solutions for the general cubic equation: 

 
2 3
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where: 
 

2 2
1 2 0 1 2 33 ; 27 9 ; 4Y a a Z a a a a Q Y Z= − = − + − = +3 2 .                                (2.5) 

By sampling the three-parameter space with sufficient density and solving each of 
the nine possible combinations of solutions for the two cubics for each sampled 
point one can build up nine sets of geometrically distinct anastigmatic systems. In 
the following presentation of results these geometrically distinct families will be 
grouped according to which of the three analytical solutions to the each of two 
cubics are employed to obtain the anastigmatic system. For example, the solution 
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set derived when the solution is used to determine the radius of curvature of 
the tertiary mirror and the  solution is used to determine the radius of 
curvature of the quaternary mirror will be referred to as the “BA” family of 
solutions.  If the  solution is used for the tertiary mirror radius of curvature 
and the solution is used to obtain the quaternary mirror radius of curvature 
the solution set of anastigmatic systems thus obtained is referred to as the “CB” 
set, and so on.  

SB
SA

SC
SB

 
 Clearly it is possible for any of , or  to have imaginary components. 
In the case where one of these solutions has an imaginary component the 
resultant system is not anastigmatic.  Therefore the 3-D solution space for 
anastigmatic systems is comprised of volumes of valid solution and 
complementary volumes of invalid solutions. 

SA SB SC

 
The solutions thus found encompass every possible anastigmatic system 
comprised of four co-axial spherical mirrors and with an infinite object conjugate. 
In the survey undertaken in reference 1 the survey was limited to systems in 
which no element had a diameter exceeding that of the primary mirror, and all 
solutions had concave primary mirrors. In the survey undertaken here, elements 
have been allowed to exceed the diameter of the primary mirror by as much as 15 
times, and both concave primary and convex primary mirror systems have been 
surveyed. 
 
Filters are written into the algorithm for successively determining anastigmatic 
systems over a large numbers of points in the three-parameter space described 
above. These filters are used to exclude systems with excessive element sizes, 
excessive lengths and large or total central obscuration. Of the systems that are 
totally self-obstructing when considered as axially symmetrical systems a further 
test is used to determine whether or not useful Schiefspiegler can be obtained by 
using an off-axis portion of the pupil.  
 
The algorithm for calculating system self-obstruction required the sorting of each 
system into one of sixteen possible arrangements of relative placement of mirrors 
and image surface. If we label the primary through quarternary mirrors as 1 
through 4 and the image space as 5, then a five digit number comprised of these 
five numerals can be used to categorize the system according to the order that the 
optical components are arranged. For example, with incident collimated light 
traveling from left to right, a system designated “21435” would be a system in 
which the order of placement of elements from left to right would be secondary 
mirror, primary mirror, quaternary mirror, tertiary mirror and focal plane. An 
example of a 45231 system is given in figure 1.  
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Figure 1. Illustration of the five digit classification system. For the system shown, with 
the object to the left of the page, the order from left to right of the various surfaces is 
quaternary mirror, focal plane, secondary mirror, tertiary mirror, primary mirror. In 
the classification system used throughout this paper this system would be described as 
a 45231 arrangement. 
 
 
It turns out that there are 16 possible permutations of the “order of occurrence” 
of four mirrors and focal plane in valid four-mirror imaging systems. Using the 
system described above, these can be represented by the following sets of digits: 
 
21435, 21453, 24513, 24153, 24135, 24531, 24351, 24315, 45213, 42513, 42153, 
42135, 45231, 42531, 42351 and 42315. 
 
This classification system can be useful. For example, when designing microscope 
objectives it would make sense to limit the investigation to systems with “5” as 
the last digit, representing systems for which the “image” was beyond all of the 
optics (though for a microscope objective the “image” here would typically be the 
object and the image space would have the infinite long conjugate). 
 
Because of the large number of solutions found, only representative examples 
from each family of solutions will be presented in this paper. Several points 
should be noted about the solutions presented here. Firstly, these solutions are 
third-order solutions only. Better results will almost always be available if these 
solutions are used as starting points for optimization, and then thicknesses and 
curvatures are allowed to vary. In practice slight variations in system parameters 
from the third-order solution will allow the re-introduction of small amounts of 
third-order aberrations to balance optimally against high-order residuals. In most 
cases this high-order balancing can be achieved without noticeably changing the 
general configuration of the third-order solution. 
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Secondly, no attempt has been made to discuss the practicality or usefulness of 
the systems presented here. The fact that these systems exist at all and the 
disclosure of available forms of four-spherical-mirror anastigmat is the main 
point of this paper, and the suitability or otherwise of a particular system for a 
particular application will, in general, not be discussed. 
 
Another important point is that while all of these solutions are geometrically 
distinct from each other, each unique solution can be scaled either in pupil or 
geometrically scaled in three dimensions without affecting the third-order 
correction. The former case allows for a certain range of selection of f/ratios for 
a given solution, and the latter case allows for sizing to match a given application. 
Of course, scaling the pupil will affect the ratio of high-order to third-order 
aberrations in the system. All systems presented here have a primary mirror 
diameter of 0.4 m, and the radius of curvature of the primary mirror is 2 m, 
unless otherwise stated. 
 
Finally, while representative examples of the various families of solution are 
presented in this paper, the fact is that there are variations within each family 
which can not be fully described in one paper. It is suggested that designers 
interested in the full range of solutions available in a particular family follow the 
procedure outlined in reference 1, by which they can obtain every possible 
solution.  
 
 

3. Results 
 
3.1 AA SOLUTIONS 

There are no AA-type solutions for concave primary mirror systems. Only one 
type of solution exists for convex primary AA-type solutions, as shown in figure 
2. Optical design data for this figure are given in table 1. The relatively limited 
range of solutions in this family are all of the 42135 type. 
 
3.2 AB SOLUTIONS 

AB-type solutions exist for both concave and convex primary mirror types. 
Concave primary mirror solutions are shown in figures 3 and 4, with design data 
for these systems given in table 2. There exist two distinct sub-regions of solution 
in the AB concave primary mirror case. Examples from the first sub-region are 
given in figure 3. The three systems shown here can be classified as 24135, 24153 
and 24513 systems, and they are indicative of the continuum of solutions within 
their solution family. Afocal versions also exist. 
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Figure 2. An AA-type 42135 system with convex primary mirror. In this figure, and in 
all subsequent figures in this paper, collimated light from the object at infinity incident 
on the primary mirror is traveling from left to right.  
 
 
System R1 t1 R2 t2 R3 t3 R4 t4 
Fig 2 2.0 -0.47672 1.11099 0.62439 0.37561 -6.51739 8.47899 10.403 

 
Table 1. Optical design data for the AA-type system shown in figure 2. The primary 
mirror in this and all other non-Schiefspiegler systems presented in this paper is 0.4 m 
diameter, though this is an arbitrary value as all these systems can be scaled. Units are 
meters. The sign convention employed should be obvious from the figure. 
 
24531, 24351 and 24315 versions of this family also exist and some of these were 
reported in reference 1. In these cases the tertiary mirror lies between the primary 
and secondary mirrors (the digit “3” is always between the digits “2” and “1” in 
the five digit naming system in these cases) and is in general smaller in diameter 
than the primary mirror. There are no members of this family for which Petzval 
curvature is zero.  
 
Two solutions from the second solution sub-region are shown in figure 4. Within 
this particular family there also exist afocal solutions. Solution 4.a is an example 
of one of the members of this solution family that has zero Petzval curvature. 
This solution family, which can be seen to be geometrically distinct from the 
solution family shown in figure 3, contains 21435 and 21453 type solutions. 
 
 
Convex primary mirror solutions are shown in figure 5. All of these solutions 
occupy a single connected “volume” in solution space. Within this solution family 
there exist examples of 21435 and 21453 systems. The system depicted in figure 
5.c is a system previously described by Shafer2. Of the systems presented in this 
paper, this is the only one that has previously appeared in published literature. 
Shafer’s system is an example of this solution type that has zero Petzval 
curvature.  Optical design data for the convex primary systems can be found in 
table 2. 
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Figure 3. Two examples, each from the first sub-region of AB-type concave primary 
mirror solutions. 
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Figure 4.  Two examples, each from the second sub-region of AB-type concave primary 
mirror solutions. 
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Figure 5. Three examples from the single solution set for AB-type convex primary 
mirror systems. 5.a is a flat-field system originally given by Shafer2 and is the only 
example of a flat-field, axially symmetrical four-spherical-mirror anastigmat with 
infinite object conjugate to have appeared in previously published literature. 
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System R1 t1 R2 t2 R3 t3 R4 t4 
Fig 3.a -2.0 -1.49005 -10.0100 4.57732 -4.57732 -3.76881 -0.96077 4.605 

Fig 3.c -2.0 -1.41005 -5.00250 4.73340 -4.73340 -4.12223 -0.77917 1.395 

Fig 4.a -1.0 -0.19774 -1.22416 5.08832 -3.38817 -1.81143 -2.09091 6.947 

Fig 4.c -2.0 -0.51005 -5.0025 18.86250 -17.8625 -16.1996 -3.02074 8.775 

Fig 5.a 2.0 -3.30005 6.28465 5.26039 -3.78465 -0.22825 -1.62752 0.199 

Fig 5.b 2.0 -2.13005 2.77701 2.31242 -0.61242 -0.04667 -0.18168 0.269 

Fig 5.c 2.0 -3.60794 5.60795 6.95518 -1.34723 -0.07000 -1.27723 0.103 

Table 2. Optical design data for the AB-type systems shown in figures 3, 4 and 5. 
 
3.3 AC SOLUTIONS 

 
No concave primary mirror AC-type solutions exist. A limited range of convex 
primary mirror AC-type solutions exist, and a typical example is given in figure 6. 
All of these systems are of the 45213 type. Optical design data for these systems 
are given in table 3. As can be seen in figure 6.a, these systems suffer from a high 
central obscuration ratio. One way around this problem is demonstrated in figure 
6.b, which shows a wholly unobstructed system taken from an axially-symmetrical 
parent system. This family of solutions contains no afocal systems, and no 
systems for which the Petzval curvature is zero. 
 
 
3.4 BA SOLUTIONS 

There are no BA-type concave primary mirror solutions. There is a relatively 
limited range of BA convex primary solutions. Examples of 42315, 42135, 24135 
and 21435 variants are given in figure 7, with system design parameters given in 
table 4. There are no variants free of Petzval curvature.  
 
3.5 BB SOLUTIONS 

One connected volume of BB-type concave primary mirror solutions exists. 
24351, 24315, 42315, 42351, 42531, and 45231 variants are shown in figure 8, 
with optical design data given in table 5. 
 
There is a relatively limited range of BB convex primary solutions. Examples of 
45213, 42135 and 21435 variants are given in figure 9, with system design 
parameters given in table 5. There are no variants free of Petzval curvature. The 
system in figure 9.a only works as a Schiefspiegler due to self-obstruction in the 
axially symmetrical system. It is interesting to note the clear first-order differences 
between the 45213 system in figure 9.d. and the 45213 systems in figure 6.  
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Figure 6. AC-type convex primary mirror solutions all resemble this solution. 6.b 
shows a Schiefspiegler formed by using an off-axis portion of the 6.a system. 
 
System R1 t1 R2 t2 R3 t3 R4 t4 
Fig 6 2.0 -1.10000 -5.00250 6.96588 -7.96588 -7.57213 0.80757 0.157 

 
Table 3. Optical design data for the AC-type system shown in figure 6.a. The 
Schiefspiegler shown in figure 6.b is simply a system produced by using an off-axis 
portion of the pupil of this system. 
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Figure 7. BA-type convex primary mirror solutions. 7.a is an example of  a 21435 
system that only works as a Schiefspiegler, the axially symmetrical parent system is 
100% self-obstructing. 7.b, 7.c and 7.d are all solution types from one connected 
volume of solutions within the solution space.  
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System R1 t1 R2 t2 R3 t3 R4 t4 
Fig 7.a 1.0 -1.51502 2.49875 3.27763 0.22237 -0.33542 0.44547 0.713 

Fig 7.b 2.0 -3.06005 4.99750 6.24161 2.75839 -7.20474 8.37344 10.671 

Fig 7.c 2.0 -3.04005 4.99750 6.42442 1.57558 -6.36053 7.11601 8.379 

Fig 7.d 2.0 -3.02005 3.33222 2.56571 0.43429 -9.31763 12.9222 17.367 

Table 4. Optical design data for BA-type systems as shown in figure 7. The figure 7.a. 
system is an example of a system that only works as a Schiefspiegler, the axially 
symmetrical system is totally self-obstructing. 

 
Figure 8. BB-type concave primary solutions. The first four systems here, 8.a-8.d, were 
previously reported in reference 1, and are included here for comparison to other 
members of this solution family. The systems shown in 8.e and 8.f are clearly members 
of this family. 

193 



System R1 t1 R2 t2 R3 t3 R4 t4 
Fig 8.a -2.0 -1.61747 0.44803 0.17183 0.68119 -0.34970 -0.08908 0.100 

Fig 8.b -2.0 -1.70005 0.52081 0.21256 0.78744 -0.36063 -0.13957 0.250 

Fig 8.c -2.0 -1.74005 0.55246 0.23475 0.76525 -0.36985 -0.18222 0.470 

Fig 8.d -2.0 -1.72000 0.52869 0.22013 0.78703 -0.28804 -0.23104 1.860 

Fig 8.e -2.0 -2.37005 1.16266 0.65589 1.34411 -0.53018 -0.47801 2.40928 

Fig 8.f -2.0 -2.49005 1.28189 0.75225 1.24775 -0.73961 -0.44377 1.112 

Fig 9.a 2.0 -3.08005 4.9975 6.04405 3.95595 -3.18582 4.67821 18.418 

Fig 9.b 2.0 -3.07005 4.99750 6.20993 2.79007 -2.35117 3.48385 12.352 

Fig 9.c 2.0 -1.78765 3.33322 7.21546 -5.21546 -15.8551 -3.12821 16.196 

Fig 9.d 2.0 -1.78385 3.33322 7.21216 -5.21216 -16.6497 -2.33138 4.784 

Table 5. Optical design data for BB-type systems as shown in figures 8 and 9. The 
systems shown in figures 9.c and 9.d have been scaled in aperture to 1 m (the primary 
mirror has a 1 m diameter with the stop on the primary) for the sake of clarity. 
 

 
Figure 9. BB-type convex primary mirror solutions. The 24135 system shown in 9.a is 
another example of a system that only works as a Schiefspiegler due to self-obstruction. 
9.b, 9.c and 9.d are 21435, 42135 and 45213 type arrangements respectively. 
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3.6 BC SOLUTIONS 

No concave primary mirror BC-type solutions exist. There is one connected 
volume of BC solutions with convex primary mirrors. Within this family there 
exist 24153, 24513, 24531 and 21453 variants as shown in figures 10.a., 10.b., 
10.c., and 10.d. respectively. The example given in figure 10.c. has zero Petzval 
curvature.  
 
The first–order layout of the first two mirrors of the system in figure 10.d. is very 
similar to the two-mirror Schwarzschild flat-field anastigmat, though in that case, 
both the mirrors are conicoids. Here, instead of requiring two conicoid mirrors, 
correction of coma and astigmatism is achieved with the small set of tertiary and 
quaternary spherical mirrors. However the system has a curved focal plane. 
Optical design data for the BC solutions are given in table 6. 
 
 
System R1 t1 R2 t2 R3 t3 R4 t4 
Fig 10.a 2.0 -1.37005 1.99960 1.53636 0.46364 -0.22866 0.30563 0.131 

Fig 10.b 2.0 -1.40005 1.999960 1.49873 0.50127 -0.29596 0.35824 0.156 

Fig 10.c 2.0 -1.51005 1.99960 1.36335 0.63665 -0.66006 0.62166 0.28887 

Fig 10.d 2.0 -2.85005 3.33222 2.90352 0.09648 -0.02224 0.04863 0.019 
Table 6. Optical design data for BC-type solutions as shown in figure 10. 
 
3.7 CA SOLUTIONS 

There are two separate solution volumes for CA-type systems with concave 
primary mirrors, and these are shown in figure 11, with optical design data in 
table 7. 42315 and 42351 arrangements exist. Both systems have relatively high 
numerical apertures. Also, both these systems are characterized by the high angles 
of incidence rays make on the tertiary mirror. These two facts mean that these 
systems are less well approximated by third-order theory than is the norm, as the 
proportion of high-order to low-order aberration in these types of system is 
much higher than in other systems so far presented. 
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Figure 10. BC-type convex primary mirror systems from one connected volume of 
solutions. The 24531 system in 10.c is an example of a flat-field anastigmat. 
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Figure 11. CA-type concave primary mirror solutions, from two unconnected volumes 
of solution space. Both systems are characterized by high numerical aperture and large 
angles of incidence on the tertiary mirror. 
 
 
The convex primary CA-type systems are shown in figure 12. The solution set 
contains systems with  21435, 24135 and 42135 arrangements. All solutions come 
from one connected volume of solutions, and there are some interesting variants, 
including versions with zero Petzval curvature (shown in figures 12.a., 12.b., 12.c. 
and 12.d.). The flat-field system shown in figure 12.d is similar to the system 
shown in figure 10.d, though the arrangement of the “small corrector pair” of the 
tertiary and quaternary mirrors is somewhat different. Optical design data for 
these systems is given in table 7.  
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System R1 t1 R2 t2 R3 t3 R4 t4 
Fig 11.a -2.0 -0.66005 -0.14085 0.48884 2.51116 -1.87143 2.69156 3.282 

Fig 11.b -2.0 -1.24005 -0.13889 0.13430 6.8657 -1.32947 1.65190 1.826 

Fig 12.a 2.0 -0.61005 1.24984 1.24944 0.75056 -0.67398 0.96508 1.181 

Fig 12.c 2.0 -1.21005 1.99960 3.23066 4.76934 -3.24174 5.06698 6.564 

Fig 12.d 2.0 -2.87005 3.33186 2.94074 0.05962 -0.03519 0.05794 0.080 

Fig 12.e 1.618 -2.61798 4.23598 7.00000 1.28818 -7.47487 8.76305 9.805 
Table 7. Optical design data for CA-type solutions as shown in figures 11 and 12. 
Figure 12.b is an example of a flat-field Schiefspiegler obtainable by using an off-axis 
portion of the pupil of the system in figure 12.a. 
 

 
Figure 12. Each of the first four CA-type convex primary mirror solutions shown here 
has zero Petzval curvature. 12.b is a Schiefspiegler with a relatively fast numerical 
aperture taken from the axially symmetrical parent in 12.a. The system in 12.e is 
comprised of two individually anastigmatic concentric spherical mirror pairs. 
Solutions such as this are a special case, lying in a 2-dimensional sub-space of the 3-
dimesional solution space. 
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The system shown in figure 12.e. is an example of a four-spherical mirror 
anastigmat that consists of two individually anastigmatic pairs of concentric 
spherical mirrors. In this case the primary and secondary mirrors form a two-
concentric spherical-mirror anastigmat with the object at infinity, and the tertiary 
and quaternary mirrors are a two-concentric-spherical-mirror anastigmatic relay. 
 

 
Figure 13. Three distinct families of CB-type concave primary mirror solutions are 
shown here. The 45213 system in13.a comes from one family, the 21453 solution in 13.b 
from a second and the 24135 and 21435 systems in 13.c and 13.d from the third. 
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3.8 CB SOLUTIONS 

Concave primary CB-type solutions exist in three unconnected volumes within 
the solution space.  45213 solutions as shown in figure 13.a come from one of the 
solution volumes. These systems only work as Schiefspiegler, and have relatively 
uninteresting geometries. The 21453 solutions as in figure 13.b come from 
another distinct family of solutions and 21453- and 24135-type solutions as 
shown in figure 13.c come from the third. There are no afocal systems or systems 
with zero Petzval curvature among these solutions. Optical design data for these 
systems are given in table 8.  
 
There is a relatively wide variety of convex primary mirror CB-type solutions, 
including flat-field systems and afocal systems. 21435, 24135, 42153, 42135 and 
45213 geometries exist and examples are given in figure 14 and table 8. These 
solutions come from three unconnected volumes of solution. The 45213 example 
in figure 14.e. shows in effect a three-mirror anastigmat with the secondary 
mirror as a flat fold mirror. While technically the example given has four powered 
mirrors, there does exist a very similar system to the one shown in which the 
secondary mirror has no power. 
 
 
System R1 t1 R2 t2 R3 t3 R4 t4 
Fig 13.a -2.0 -1.95005 -10.0100 6.46323 -7.46323 -7.55919 -0.42120 0.264 

Fig 13.b -2.0 -0.38005 -3.33440 23.8200 -24.8200 -19.5608 -44.4246 11.610 

Fig 13.c -2.0 -0.54005 -0.23256 4.65637 -5.65637 -4.38337 -5.48759 25.449 

Fig 13.d -2.0 -0.58005 -0.19608 4.26324 -5.26324 -3.45058 -10.3864 7.797 

Fig 14.a 2.0 -2.01054 3.31934 4.54919 3.45264 -0.71567 2.04974 5.056 

Fig 14.b 2.0 -2.25005 1.99960 7.24702 -6.24702 -5.37939 -3.11477 12.531 

Fig 14.c 2.0 -1.82005 3.33220 20.8835 -19.8835 -23.1106 -3.44192 4.166 

Fig 14.d 2.0 -1.29005 -10.0100 3.18882 -5.18882 -9.15276 5.98398 22.530 

Fig 14.e 2.0 -1.00005 10000 2.23341 -5.23341 -6.80769 -3.52854 0.043 
Table 8. Optical design data for CB-type systems as shown in figures 13 and 14.  
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Figure 14. Three distinct families if CB-type convex primary systems exist. 14.a is an 
example of a flat-field system from one of these families. 14.e is very close to a special 
case system in which the secondary mirror has zero power; essentially a three-
spherical mirror anastigmat. 
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Figure 15. The system depicted here is typical of the very limited range of available 
CC-type concave primary mirror systems.  
 
 
System R1 t1 R2 t2 R3 t3 R4 t4 
Fig 15 -2.0 -0.34005 -3.33444 1.58416 1.41584 -11.0188 11.2492 11.190 

Fig 
16.a 

2.0 -1.81005 -1.42878 1.18685 -2.18685 -2.16756 3.71605 0.524 

Fig 
16.b 

2.0 -1.13005 1.11099 0.82160 0.17840 -2.88205 2.89642 2.872 

Fig 
16.c 

2.0 -1.08005 1.11099 0.82612 0.17388 -2.62531 2.64161 2.620 

Fig 
16.d 

2.0 -0.85005 1.11099 0.85118 0.14882 -1.49641 1.52108 1.513 

Table 9. Optical design data for CC-type systems as shown in figures 15 and 16.  
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Figure 16. CC-type convex primary mirror systems from the single available solution 
family are depicted here. All members of this family have relatively high numerical 
apertures. 
 

3.9 CC SOLUTIONS 

A very limited range of concave primary CC-type solutions exists as shown in 
figure 15. All solutions of this type are in the 42135 configuration. 
 
While there is somewhat more variety with the convex primary CC-type 
solutions, with 45231, 42531, 42351 and 42135 geometries available, all members 
of this family of solution are characterized by an extremely fast focal ratio. This 
means that the third-order aberration approximation is not so close to an 
optimum solution for this family of systems, as was the case with the CA concave 
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primary mirror systems. Convex primary CC-type solutions are shown in figure 
16, with optical design data given in table 9. 
 

4. Conclusion 
 

A large number of solutions for four-spherical-mirror anastigmatic systems 
have been presented in this paper. Eleven geometrically distinct families of 
solution have been found to exist for convex primary systems. Nine 
geometrically distinct families of concave-primary mirror type solutions 
have been found. The solution families include focal and afocal systems. 
Numerous solutions have been found that have zero Petzval curvature. Of the 
sixteen possible arrangements of four mirrors and focal plane mentioned in 
section 2, only the 42513 arrangements have not been found in this survey.  
 
Together with the systems discussed in reference 1, the systems described 
here represent the full range of available possibilities for four-spherical 
mirror anastigmats with the object at infinity. Of the systems discussed in 
this paper and in reference 1, only one has appeared in previously published 
work. This was an interesting system described by David Shafer2, which can 
now be seen to be a member of the AB-type convex primary systems.  
 
While many of these systems may seem somewhat impractical, the 
practicality or otherwise of a given system is strongly dependent on the 
application. The main purpose of this work has been to define the range of 
possible solutions, a task that would be very difficult if not impossible to 
achieve if conventional optical design software was employed.  
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Appendix D: Sample Mathematica File 

This appendix presents as an example the Mathematica program used to 

generate one of the families of solutions as described in chapter 3 of this 

thesis. No attempt is made to explain the program, but it may prove useful to 

people interested in replicating the results presented in this thesis. 

The core mathematical development occurs on the first two pages (pp 209-

210). Subsequent pages are mainly concerned with filters used to determine 

practicality, and iteration. 
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Appendix E: Schwarzschild Paper 

The following paper was published in the Proceedings of SPIE, Volume 5875, 

in 2005, from the 2005 conference “Novel Optical Systems Design and 

Optimization VIII”. This paper describes Schwarzschild’s first two 1905 

optics papers, which are referred to extensively throughout this thesis. 
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The 100th Birthday of the conic constant and 
Schwarzschild’s revolutionary papers in optics. 

 
 

Andrew Rakich  
EOS Space Systems, 111 Canberra Ave, Griffith, ACT 2603, Australia 

 
 

ABSTRACT 
 
In 1905 Karl Schwarzschild published three papers on optics, two of which 
revolutionized the field of reflecting telescope optics. In his first paper he 
developed a full theory of the aberrations of reflecting telescopes, generalizing the 
Eikonal of Bruns to take into account systems with an infinite long conjugate. In 
the second paper Schwarzschild applied his formulation to a masterful analysis of 
2 mirror anastigmatic systems, along the way discovering the  so called Ritchey-
Chrétien aplanat, 18 years Ritchey and Chrétien’s announcement. Numerous 
other innovations are given in what must be seen as being among the most 
important papers on the aberrations of optical systems ever written. 
 
Keywords: anastigmat, reflecting telescope, Schwarzschild 
 

1. INTRODUCTION 
 

There is a famous quotation attributed to George Satayana “Those who forget 
the lessons of history are doomed to repeat them".  This is certainly true in the 
field of optical design, where there are numerous examples of published work 
presented as novel despite clear prior examples existing in the literature. There are 
many misconceptions and ambiguities surrounding Schwarzschild’s 1905 work in 
optics, works of immense significance and historical importance to the 
development of the aberration theory of reflecting optical systems. 
 
For example there is the widespread misconception that Schwarzschild 
discovered the concentric 2-spherical-mirror anastigmat (he didn’t). Numerous 
textbooks and papers refer to this as the “Schwarzschild anastigmat”. The fact is 
that the true originator of this system is unclear. It has also been attributed to 
C.R. Burch, but inspection of Burch’s publications reveals that he makes no claim 
of invention and treats the concentric two-spherical-mirror anastigmat as an 
already well known system1. While Schwarzschild’s formulation of an aberration 
theory for two mirror systems lead to the two-concentric-spherical-mirror system 
as a trivial result, Schwarzschild himself never sought this solution, almost 
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certainly because of his focus on systems with flat-focal planes and of practical 
use to astronomy. 
 
Likewise, it does not seem to be well known that Schwarzschild presented the 
formulation for the two-mirror aplanatic telescope 17 years before Ritchey and 
Chrétien2, or that Schwarzschild was a pioneer in the field of high-order 
aberration theory. 
 
This year, as the world celebrates the International Year of Physics, with its 
strong emphasis on the 100th anniversary of Einstein’s 1905 papers, and as SPIE 
celebrates its 50th anniversary, it seems fitting to make some mention of the 100th 
anniversary of Karl Schwarzschild’s monumental achievements in optics 
 

 
2. BACKGROUND 

 
Karl Schwarzschild was born in Frankfurt in 1873, the eldest of six children in 
the family of a well to do Jewish businessman. He was the only member of his 
family to pursue a career in science. At the age of 16 he had published his first 
two papers, on the orbital dynamics of binary stars.  
 
After obtaining his Doctorate from the University of Munich, Schwarzschild 
went on to work as an assistant at a Vienna Observatory. It was here that he 
developed an interest in the relatively new field of photographic astronomy.  He 
was the first to realize the significance in the difference in stellar magnitudes 
obtained visually and photographically (that these differences were related to the 
temperatures of the stellar atmospheres).  
 
In 1901 Schwarzschild took up a position at Göttingen Observatory, first as an 
extraordinary professor; within a year he had been promoted to full professor. 
Here he developed his interests in the application of photography to the science 
of astronomy and in 1910 published the first part of the one of the first large 
scale photographic surveys of stellar magnitudes. It was most likely his interest in 
photographic astronomy that led him into geometrical optics.  
 
To better understand the significance of Schwarzschild’s contribution to 
geometrical optics it is helpful to consider his work in its historical context. To 
this end the following brief synopsis of relevant developments in the field in 
chronological order is presented: 
 
• Early visual reflecting telescopes: Spherical aberration solutions by 
Descartes, Mersenne, Gregory, Newton and Cassegrain. Slow relative apertures 

222 



and limited field of view eyepieces mean that there is little pressure to correct 
field aberrations.  
  
• 1795, G.S. Klügel: The invention of iterative trigonometric ray tracing through 
successive surfaces on a single axis. 
 
• 1829, J. Fraunhofer: The heliometer for Königsberg was roughly corrected for 
field coma as well as for spherical aberration. How this was achieved is unclear. 
 
• 1833, W.R. Hamilton: Hamilton defined the “Characteristic Function”, a 
general definition of the nature of the aberrations of a centered optical system in 
terms of fundamental system parameters. 
 
• 1835-1840, The early development of practical photography: For the first 
time there is real pressure for the development of a practical field aberration 
theory, since significant angular fields were required. 
 
• 1835-1840, C.F.Gauss: The “first-order” theory of a centered optical system. 
 
• 1843, J. Petzval: Probably the first to possess a practical theory of primary (and 
secondary) aberrations in the sense that he could calculate them from 
constructional parameters. Schwarzschild himself refers to Petzval’s 5th order 
aberration theory in his first optics paper. Sadly, none of this work was published 
(a manuscript for a book was stolen from his house and his wife burned all his 
papers on his death). 
 
• 1856, L. Seidel: First to publish a complete and practical theory of third-order 
aberrations, named the Seidel aberrations in his honor. 
 
• 1873, E. Abbé: Abbé discovered the “sine condition”, a general condition for 
freedom from spherical aberration and coma, and defined the term “aplanatic” 
for a system free of these aberrations. 
 
• 1873-1890: This period saw much development of optical design techniques 
using ray tracing and third-order theory. No significant work done on reflecting 
systems. 
 
• 1895, H. Bruns: Bruns developed the “Eikonal”, a set of differential equations 
giving the optical path length and relating object and image space, an extension of 
Hamilton’s approach. Bruns took the Eikonal which he was familiar with from 
his use of it in mechanics and applied it to optics, apparently ignorant of the fact 
that Hamilton had first developed his characteristic function as an optical theory. 
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• ca. 1900: Astronomical photography with slow emulsions was pushing thinking 
towards faster relative apertures and larger fields than had previously been sought 
in astronomical telescopes. 
 
In the early 1900’s, when Schwarzschild was working towards large scale 
photographic sky surveys, astrograph objectives were exclusively refracting 
systems. In particular the Cooke Triplet anastigmats were providing the right 
combination of good aberration correction over a wide field of view and fast 
relative aperture.  
 
Reflecting systems were considered useless for this sort of work as they were 
generally limited by field aberrations to slow relative apertures and narrow fields 
of view. In this environment Schwarzschild began his investigations into the 
aberration theory of optical systems, leading to some remarkable breakthroughs. 
 
 

2. INVESTIGATIONS INTO GEOMETRICAL OPTICS I. 
 

  
There is no better introduction to Schwarzschild’s optics papers than his own 
introduction to his first paper, which is translated below: 
 
1. The current report presents a general introduction to the aberration theory of 
optical systems with the intention on the one hand to give the non-specialist reader a compact 
overview on the area and on the other hand to produce for my own benefit a source of reference 
material to be used in future investigations. The representation is based on Hamilton’s 
“Characteristic Function” which I will name together with Mr. Bruns as the “Eikonal”. I 
would like to show herewith that the practical calculating optician does not have to fear the 
Eikonal as something highly theoretical, that one can get very comfortably from the Eikonal to 
the practical laws and especially to Seidel’s formulae. Hamilton himself must have been very 
conscious on the applicability of his theorems, but completed (or at least published) investigations 
of only a few very simple cases of several lenses with axial object points. The derivation of the 
general calculation formulae directly from the Eikonal does not appear anywhere. This might 
have been caused by difficulties in the elimination of the so-called “intermediate variables”, which 
can be overcome simply by the introduction of the “Seidel Variables” and the “Seidel Eikonal” 
(below 5 & 6). 

 
The advantage of the application of the Eikonal is no less significant in investigations of 5th order 
aberrations than in the theory of 3rd order aberrations (which Seidel’s formulae refer to). The 
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compilation of complete terms for the 5th order aberrations of a given optical system would not be 
too complicated following the formulae in § 5. The number of independent aberrations of the 5th 
order amounts, without more detail, to 9. Petzval, the calculator of the first “portrait lens” gave 
this number as 12, from which seems to follow that despite his calculations extending to 
aberration coefficients of the 9th order, he did not see through the relationship all too deeply. 
Apart from the general outline on the 5th order aberrations of an optical system in 11 this report 
presents therefore only well-known facts in a changed form. New material will be developed in my 
subsequent investigations. 
 
There are several interesting points to take from this introduction. First and 
foremost, Schwarzschild explicitly refers to a derivation of high-order aberration 
coefficients by Joseph Petzval. This is of great historical importance as no record 
of this work survives today; Schwarzschild’s comments add to a large body of 
evidence suggesting that Petzval had a well developed aberration theory, 
including high-order aberration coefficients, at least a decade before Seidel 
published. 
 
Schwarzschild’s somewhat disparaging reference to Petzval having got the 
number of 5th order aberration coefficients wrong is in fact further evidence for 
the case that Petzval had indeed correctly derived high-order aberration 
coefficients. Recently de Meijere and Velzel3 showed that one could obtain either 
9 or 12 independent 5th order aberration coefficients depending on the choice of 
pupil-coordinate definitions.  
 
While Schwarzschild modestly states that “this report presents therefore only 
well-known facts in a changed form”, this is far from the case, as is shown below. 
 
After outlining the Bruns Eikonal Schwarzschild immediately went on to develop 
the first significant innovation in this paper, the “Angle Eikonal”. The Bruns 
Eikonal was only able to deal with systems with finite conjugates, and with his 
astronomical interests this clearly was not satisfactory to Schwarzschild. His 
Angle Eikonal generalized Bruns’s work to allow the treatment of systems with 
infinite conjugates, as is the case with astronomical telescopes. A further 
development leads to what Schwarzschild calls the “Seidel variables”, which he 
uses to obtain primary wavefront aberration coefficients. Schwarzschild points 
out the advantage of these wavefront aberration coefficients in that the individual 
surface contributions for each aberration are simply additive to give the system 
sum, unlike the transverse coefficients given by Seidel and others. In this 
connection Schwarzschild makes the following comments: 
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This equation shows that the aberrations of the 3rd order of an entire 
system are made up from the accumulated aberrations of the 
individual systems . If this result seems simple the credit for this is solely due to the use 
of the Seidel variables and the definition of the individual image aberrations by the coefficients of 
the Eikonal expansion especially with these variables. As soon as you turn to other linear 
combinations of the Seidel variables, which change from system to system, one obtains for each 
expansion coefficient of the combined Eikonal a complicated linear equation of all the 
aberrations of the individual Eikonals.  So this is the point, where the advantage of the Seidel 
variables is clearly evident. The formula (39) shows that the 5th order aberrations are not directly 
subjected to the accumulative rule, but their composition is readily aparrent.  

 
The transition from the composition of two surfaces to an abitrary number is so obvious, that 
writing of equations is unnecessary, I suppose. 
 
The discovery that individual primary wavefront aberration coefficients are 
simply additive to give system sums must be regarded as a very significant one. 
Also Schwarzschild noted that the simple additvity of primary aberration 
coefficients did not continue with secondary aberrations. The simple additivity of 
primary wavefront aberration coefficients had far reaching implications and is 
deserving of recognition as a fundamental discovery in the aberration theory of 
optical systems. Schwarzschild puts this result to work with immediate effect. 
 
Schwarzschild proceeded to make what was, to the author’s knowledge, the first 
clear published statement of what is known today as the stop-shift theorem.  This 
is another fundamental theorem in the aberration theory of optical systems, and 
another first in this remarkable work. 
 
As mentioned previously Schwarzschild then goes on to derive aberration 
coefficients for the nine 5th order aberrations. To date the author is unaware of 
any prior publication of the complete set of 5th order aberration coefficients and 
so, in the absence of surviving work by Petzval, it seems that Schwarzschild 
deserves recognition for his priority here. There does not seem to be any 
widespread recognition of Schwarzschild’s priority in the development of the 
complete set of 5th order aberrations. 
 
The final development in this paper is to apply this newly developed algebra to 
the analysis of a general axially symmetrical lens system of n elements. In doing 
so Schwarzschild introduces yet another innovation, the now famous 
“Schwarzschild constant” or as it is more commonly known “conic constant”. 
The fact that this constant is almost universally used in modern optics to define 
conicoid surfaces is a testament to the fact that, while in hindsight it was a 
seemingly trivial innovation to replace 2e−  with b , where is the eccentricity of e
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a conicoid, it was a very handy one and another “first” for Schwarzschild in his 
first optics paper. 
 

3. INVESTIGATIONS INTO GEOMETRICAL OPTICS 2. 
 
    
Having developed a very powerful set of tools in his first paper, Schwarzschild in 
his second paper embarks on a voyage of discovery. The field of reflecting 
telescope optics had been left unmodified for more than two centuries, with no 
significant innovations since the work of Newton, Cassegrain and Gregory. In 
one paper Schwarzschild lays the framework for the entire edifice of 20th century 
reflecting telescope aberration theory. 
 
Schwarzschild makes it clear in his opening comments of the second paper that 
his main purpose is in this work is to find the reflecting equivalents of Cooke 
triplets: 
 
1. In the competition between refractors and reflectors, the reflectors are at 
present gaining ground. Many and various of  the former doubts concerning the precision and 
stability of  large mirrors have been dismissed by the technical progress of  recent years. At 
present glass mirrors with a silver-plated front side are commonly used. As the thickness of  the 
silver layer turns out very even from experience, the exact form giving process used in the 
fabrication of  lenses is also suitable for the fabrication of  mirrors. Warping and temperature 
related strain can be reduced to a harmless measure by suitable mounting (Ritchey, Chicago). 
The low weather resistance (the silver layer quickly loses its high gloss) is compensated for by 
arranging the elements in such a way that the mirror can easily be taken out and can be freshly 
silvered during the course of  a single day. 
 
With this obstacle removed, the advantages of  reflecting telescopes are plainly shown, two of  
which stand in first place. The first to emphasize is the economic advantage offered by reflectors. 
An ordinary achromatic lens has four polished surfaces, the reflecting telescope (apart from the 
small plane mirror) has only one and the quality demand of  the glass mass of  the mirror 
(although it must be good) is not the very highest. Consequently, the price ratio between lenses 
and mirrors of  the same diameter can rise up to 10:1 with large dimensions.  
In addition the mirror is free from all colour aberrations. While the secondary spectrum of  the 
so-called achromatic lens is still it’s worst defect, no colour separation at all occurs at the mirror.  
As well has having zero dispersion, the reflection capability of  silver reaches far into the ultra 
violet, which is very valuable for photographic and spectral recordings. 
These advantages are opposed by one substantial di sadvantage at least with the present 
reflecting telescopes: the r es tr i c t ion o f  the v isual  f i e ld . A parabolic mirror delivers a 
perfect image on the axis, but only half  a degree from the axis with an aperture ratio of  1/4, a 
coma the size of  29" appears. In the following investigation the question is asked whether 
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progress cannot be achieved in this point by using two mirrors of  a suitably calculated shape 
instead of  the commonly used parabolic mirrors with diagonal plane mirrors. The answer is a 
positive one.  I t  i s  poss ibl e  to  des ign te l es copes with 2 mir r ors,  that  de l iver  the  
same expansion o f  the usable  v isual  f i e ld (2°-3° diameter)  at  an aper tur e 
rat io o f  1/3, cor r esponding ,  for  example,  to  the r e fractors  o f  the same 
diameter  commonly used in the enter pr ise  o f  pr oducing photographic  sky 
maps.  With this, it seems another application area is opening up for reflecting telescopes. 

 
Schwarzschild proceeds to lay the ground work for his investigations into two 
mirror systems by conducting an analysis of the field aberrations of a single 
mirror. While the results of Seidel for lens systems had been available for 50 
years, Schwarzschild was apparently the first to produce a complete third-order 
analysis of the aberrations of a single mirror. 
 
Using the results from his first paper this analysis is completed easily, 
Schwarzschild provides an example of an f/10 paraboloid mirror, which he 
shows compares favorably to an f/10 refracting objective of similar aperture. He 
also points out that at f/3 a paraboloid mirror suffers badly from coma and is 
unsuitable as an “astrograph objective” as the coma causes apparent stellar 
positions to be a function of their brightness.  
 
Immediately he moved on to an investigation of two mirror systems, and in the 
first paragraph he gives the formulation for what is to become the most 
significant astronomical telescope form of the 20th century, the so-called Ritchey-
Chrétien telescope: 
 
8. Explicit  aber ration ter ms. The conditions required to make the spherical 
aberration and the coma disappear  for 2 mirrors are given below:  

 
 
               Astigmatism and image curvature are defined by: 
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From the first two equations one can see that with any arbitrary arrangement of  the mirror 
system one can choose the deformations   b1 and  b2  so that spherical aberration and coma 
disappear. We ask, what image blurring aberrations then still remain?  
 
This statement, “that with any arbitrary arrangement of the mirror system one 
can choose the deformations   b1 and  b2  so that spherical aberration and coma 
disappear” is the clear invention of the two-mirror aplanatic telescope.  It should 
be noted that this invention was published 18 years prior to the publication of 
Ritchey and Chrétien2. However, a mere aplanat was not suitable for 
Schwarzschild’s purposes. After answering his own question posed above (the 
answer was “unacceptably large”), Schwarzschild concluded that what was 
required was a flat-field anastigmat. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                        
 
 
 
    
 Figure 1. The Schwarzschild flat-field two mirror anastigmat (both mirrors are oblate 
spheroids). 
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The ease with which he proceeded to the only possible solution (figure 1) is a 
tribute to the power and clarity of his analysis. 
 
 This system was a disappointment to Schwarzschild, who had been hoping for a 
concave-primary-mirror flat-field anastigmat. He saw the convex-primary 
solution as impractical for astronomical purposes and immediately discounted it. 
The system was subsequently picked up by microscopists, in particular the great 
C.R. Burch produced modified versions of it4,5, and it has also been used as a 
spectrograph camera. It is interesting to note that many textbooks on optical 
design wrongly attribute the concentric-spherical-mirror-pair anastigmat to 
Schwarzschild. While this system was implicit in his formulation, and would have 
been a trivial result had Schwarzschild turned his attention to spherical mirror 
pairs, Schwarzschild was clearly not interested in systems with convex primary 
mirrors and certainly did not produce it.   
 
The concentric mirror pair has also been attributed by some to C.R. Burch, but 
again, Burch does not claim novelty and discusses the concentric mirror pair as an 
already well known system in the 1940’s. Schwarzschild has in fact a far greater 
claim to naming rights to the Ritchey-Chrétien telescope as was shown 
previously. 
 
After failing to find an acceptable flat-field anastigmat, Schwarzschild turned his 
attention to concave primary systems in which some astigmatism was allowed to 
flatten the field. He produced a design with two concave mirrors which met his 
performance goals, giving superior performance to that obtainable with a Cooke 
triplet of comparable field and relative aperture.  
 
Due to manufacturing difficulties and inconvenient focal plane position few of 
these were ever made. Apparently two were made in the USA, a 12” and a 24” 
version, in the period between WWI and WWII6. A better performing system was 
later obtained by Couder7 by correcting astigmatism fully and obtaining a flat-field 
using a field flattening lens.       
 
However, Wilson8 makes the point well: “the precise form of the original 
Schwarzschild proposal is completely unimportant. His aims were later satisfied 
by Schmidt telescopes, and either by the primary foci of large telescopes with 
field correctors, or by Cassegrain foci with focal reducers. The fundamental 
importance of his work was the theoretical formulation in third-order theory 
which opened the design path to all modern telescope solutions.” 
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4. CONCLUDING COMMENTS 
 
Schwarzschild’s first two optics papers stand as monumental works in the field of 
the geometrical aberration theory of optical systems. The author is unaware of 
any other work in optical aberration theory in which so much new material is 
developed, so much new ground opened up, at once. A third paper was presented 
in this set of papers that the author has not had translated. This dealt with the 
application of Schwarzschild’s techniques to the design of refracting systems. 
 
Karl Schwarzschild’s career continued on its upward trajectory in the years 
following his work in geometrical optics. He took up a prestigious role as the 
director of the Astrophysical Observatory at Potsdam in 1909 and was elected to 
the Berlin academy in 1913. 
 
On the outbreak of war in 1914 Schwarzschild enlisted in the army, to the 
amazement of his colleagues. When questioned as to why he would abandon his 
luminous career in science to join the army he replied that “as a German Jew I 
feel duty bound to stand up and fight for the state of Prussia, which has been the 
most hospitable state to the Jewish people in all of Europe”9.  
 
Schwarzschild died of a disease he contracted while serving on the Eastern front 
in 1916, unaware of the bitter historical irony of his sacrifice. 
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Appendix F: SPIE Four-spherical-mirror 

paper 

The following paper was the presented at the SPIE “Optical Design and 

Engineering” conference in 2003, and published in SPIE proceedings volume 

5249 in 2004. This paper was the basis for the paper presented in Appendix A 

and for material presented in chapter 3 of this thesis. 
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ABSTRACT 
 
The concept of the simplest possible reflecting anastigmat is discussed and 
anastigmats consisting of four spherical mirrors are introduced in this context as 
being the last remaining family for which the solution set has not been 
thoroughly mapped. A method for mapping the solution space for four-spherical-
mirror anastigmats is described and results are presented. Analysis of the large 
number of solutions obtained in this way is in its initial stages, and some of the 
early results are presented here. 
 
Keywords: anastigmat, reflecting telescope, 4-mirror, Schiefspiegler 
 

1.   INTRODUCTION 
 

Optical systems in which spherical aberration, coma and astigmatism are all well 
corrected in the image are known as anastigmats. In the Seidel (or third-order) 
approximation the lowest orders of spherical aberration, coma and astigmatism 
are brought to zero. While the aberration function of a real optical system will 
in general contain higher order terms as well, systems for which the Seidel 
aberrations are made zero are usually very close to optimum solutions in which 
small amounts of non-zero Seidel aberrations balance against higher order 
aberrations.  The Seidel aberration approximation to a system’s aberration 
function is particularly useful in all-reflecting, or catoptric, systems. This is 
because, for a given power, a reflecting surface will in general have ~ ¼ of the 
curvature of a refracting surface, and the contribution of a surface to the 
increasingly high-order terms in the aberration function grows as increasingly 
high powers of this curvature. Therefore for a given power the Seidel 
approximation will be better for a reflecting surface than for a refracting 
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surface. The anastigmats referred to in the following are all anastigmats in the 
Seidel aberration sense. 

 

In 1900 Aldis1 showed that an optical system consisting of four spherical 
surfaces could produce an anastigmatic image. This work was later generalized 
by C.R. Burch2,3,4 who showed that systems of two conicoid surfaces, three 
surfaces, one of which was a conicoid, or four spherical surfaces could all 
produce anastigmatic images.  Burch’s generalization of Aldis’ work utilized a 
means of describing and manipulating the Seidel aberrations of an optical 
system in wavefront measure, which he termed the “plate diagram” analysis.  
Plate diagram analysis lends itself naturally to the formulation of algebraic 
systems for multi-mirror telescopes, and a plate diagram based approach to 
determining four-mirror anastigmats will be described in detail in the following 
section. 

 

Anastigmats consisting of two conicoid mirrors were completely described by 
Schwarzschild5 in his classic optics papers of 1905. Two distinct families of 
solution exist, one with concave primary mirrors and the other with convex 
primary mirrors (figure 1).  The Schwarzschild anstigmat set has only two 
interesting points on the solution curves, one representing a solution with a flat 
field (an anastigmat with zero Petzval curvature) and the other representing a 
very special case where both mirrors are strictly spherical. Clearly, the range of 
advantageous geometries for two-mirror anastigmats is very limited.  

 

Rakich and Rumsey6,7,8 described the complete solution set for three-mirror 
anastigmats that consist of one conicoid and two spherical mirrors. A 
representative sample of the solution set is given below (figure 2).  The solution 
set for simplest  
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Figure 1. These two plots represent the complete solution set for two-mirror or 
Schwarzschild anastigmats. In both cases the primary mirror has been set with 
a focal length of +/- 1 m (so c1 =  +/-  0.5 m-1). In both cases the secondary 
mirrors are concave. The horizontal line in the right hand plot intersects the 
solution curve at the point representing a flat-field anastigmat. In both cases 
the mirrors are in general conicoids. 

 

 
 

Figure 2. One of seven plots representing all possible three-mirror anastigmats in 
which two mirrors are spherical and one mirror is a conicoid. This example 
represents one of three families in which the primary mirror is aspherised. White 
regions represent solutions with positive Petzval curvature and black regions 
represent regions with negative Petzval curvature, while grey regions represent 
configurations for which no solutions exist. Flat-field solutions exist at points 
where black regions abut directly onto white regions. 
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possible three-mirror anastigmats contains many more possible system 
geometries than the two-mirror solution set. In the three-mirror case the 
solutions occupy 2-dimensional regions of the ,  parameter space, and there 
are seven distinct families of solutions, with most of the families containing two 
or more geometrically distinct “sub-families” of solutions. 

1t 2c

 
 
These solution sets were obtained by first producing 7 distinct sets of equations, 
each of which gave, for given input values of  and , the remaining 
constructional parameters required to define an anastigmat. Then each of the 7 
sets of equations was solved repeatedly for a large number of points in the ,  
plane, thus mapping solution sets. A modest amount of computing was able to 
produce every possible variant within this class of system, leading to the discovery 
of previously unknown forms of three-mirror anastigmat, including three 
previously unknown types of flat-field three-mirror anastigmat in which only one 
mirror is aspherised. 

1t 2c

1t 2c

 
A similar method has now been applied to the problem of four-mirror 
anastigmats consisting entirely of spherical mirrors. The solution for four-
spherical mirror systems completes Burch’s “triplet” of simplest possible 
reflecting anastigmats.  The derivation and some of the initial analysis are 
presented here. 
 
 

2. Method 
 
Burch’s plate diagram method has been described in detail elsewhere2,7,9, so only a 
brief summary will be given here. The plate diagram analysis of an optical system 
gives a system of Schmidt plates in collimated light which reproduce exactly the 
wavefront primary aberration condition of a system consisting of any number of 
concave or convex, conicoid or spherical, refracting or reflecting surfaces. In this 
work we are limited to considering systems of mirrors. A spherical mirror will be 
replaced by a Schmidt plate which contributes exactly the same spherical 
aberration in wavefront measure as the mirror it replaces. In the case of the 
primary mirror of a telescope this plate will lie at the center of curvature of the 
original mirror, in the case of any subsequent mirror in the system the Schmidt 
plate is placed at the Gaussian image in object space of the center of curvature of 
the mirror as imaged sequentially through any preceding elements starting with 
the immediately preceding element.  
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Conicoid mirrors are represented by two Schmidt plates, one representing the 
primary wavefront spherical aberration contribution of the underlying vertex 
sphere of the conicoid, positioned as described above, and the other giving the 
same primary wavefront spherical aberration contribution as the mirror’s 
asphericity. This second plate lies at the pole of the mirror if it is the primary 
mirror or otherwise at the Gaussian image of the pole of the mirror in  object 
space.  
 
Once a plate system is produced in this way the only other quantities required to 
completely determine the primary spherical aberration, coma and astigmatism of 
the system are the displacements of each of the plates from the system’s entrance 
pupil.  Then if we denote the spherical aberration contribution of the ith plate as 

 and the displacement of this plate from the entrance pupil as iW ix  then the 
following sums give the system spherical aberration, coma and astigmatism: 
 

1
i

n

W∑        (spherical aberration sum),                                                                (1) 

1

n

i iW x∑      (coma sum),                                                                                      (2) 

2

1

n

i iW x∑ .    (astigmatism sum).                                                                            (3) 

 
 
Equating these sums to zero and solving simultaneously will give an anastigmatic 
plate system. The minimum number of plates required for the general solution 
will be four (with some notable exceptions; for example the Schmidt camera for 
which only two plates are required for anastigmatic performance). 
 
 
 In the case of four spherical mirrors there are four plates, one for each of the 
mirrors. If the height of the marginal paraxial ray on the primary mirror is y1 and 
the reciprocal of the radius of the primary is , then the plate strength, , of 
the plate replacing the primary mirror is given by: 

1c 1W

 
3 4

1 1 1
1 4

N c yW = − .                                                                                                  (4) 

 
Subsequent mirrors in the system will not in general be in collimated light so the 
plate strengths of these mirrors can be found by: 
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2 4

4
i i i i

i
N c i yW = − ,                                                                                    (5) 

 
where  is the angle of incidence of the marginal paraxial ray and  is the 
refractive index in the space immediately preceding the ith mirror, following the 
convention for mirrors in air that the refractive index is of unit magnitude and 
changes sign on reflection.  

ii iN

 
Without loss of generality we can fix the radius of the primary mirror as 2 (unit 
focal length) and the diameter as  

m

0.4 . Then , by (4), we have: m
 

1 0.00005W = m                                                                                                   (6) 
 
 
Setting up the system of simultaneous equations described above gives: 
 

2 3 40.00005 0m W W W+ + + =  (spherical aberration zeroed)                             (7) 
                  

1 2 2 3 3 4 40.00005 0m x W x W x W x× + + + =  (coma zeroed)                                   (8) 
 
  (astigmatism zeroed)                       (9) 2 2 2 2

1 2 2 3 3 4 40.00005 0m x W x W x W x× + + + =
 
An interesting step at this point is the key to solving these equations. The 
position of the entrance pupil is of fundamental importance to the plate 
equations, as all ix  are measured from this. If we now state that the aperture stop 
for the system lies at the center of curvature of the quaternary mirror we can 
immediately simplify (8) and (9), as 4x  will be zero.   It is important to note that 
while setting the position of the aperture stop is an important step in this 
formulation, the resultant anastigmat is not limited by this, as, by the Stop Shift 
Theorem, the aperture stop can later be placed anywhere in the system without 
disturbing the anastigmatic correction (8) and (9) can be rearranged to give: 
 

3 3 2 2 10.00005W x W x m x= − − ×                                                                         (10) 
 

2 2
3 3 2 2 10.00005W x W x m x= − − × 2                                                                        (11) 
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At this point two further simplifications are made. Firstly the entrance pupil 
position is set, and it can be to any point in object space. The entrance pupil 
position is also the location of the image of the center of curvature of the 
quaternary mirror  from above. We are free to place the entrance pupil anywhere 
in object space because at this point the secondary and tertiary mirrors are 
undefined. With the entrance pupil position defined we can immediately evaluate 

1x . At this point we also assign arbitrary values to , the separation of primary 
and secondary mirrors, and , the curvature of the secondary mirror.  With 
these  and 

1t

2c

2W 2x  can be calculated using (5) and standard relationships in paraxial 
optics. Now the right hand side of equations (10) and (11) can be completely 
evaluated. 
 
This allows us to calculate  and 3W 3x by first dividing (11) by (10) to give 3x  and 
then dividing (10) with the newly acquired value of 3x  to give . At this point 

 can also be obtained by substituting the values for  and into (7). 
3W

4W 1 2,W W 3W

 
We now need to translate the plate quantities 3x  and  back into optical system 
constructional parameters. These are needed to determine the actual position of 
the center of curvature of the quaternary mirror, and finally the curvature of the 
quaternary mirror. 

3W

 
To proceed we make use of the following relationship: 
 

2 2 2 21 1
3 3 3 3 3 3 3 3 3 3 3 3 3 34 4( ) ( )W N c P u c P N c P u c P W= − − → − − − = 0                      (12) 

 
Here  is the angle the marginal paraxial ray from the secondary to the tertiary 
mirror makes with the optical axis and is the length of the perpendicular from 
the center of curvature of the tertiary mirror to the marginal paraxial ray from the 
secondary mirror to the tertiary mirror. (12) is cubic in  and as all other 
quantities in (12) can be obtained from standard paraxial relationships,  can 
immediately be evaluated. At this point the three solutions for the cubic are 
obtained.  

3u

3P

3c

3c

 
With each of the three values of  thus obtained, a different position of the 
center of curvature of the quaternary mirror can now be calculated by imaging 
the previously fixed position of the entrance pupil back through mirrors 

3c

1 2,M M  
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and 3M . This determines the position of the center of curvature of the 
quaternary mirror. With the system up to the tertiary mirror defined (three times, 
once for each solution of ) the quantities and  can be determined, and  
can be obtained from rearranging (7): 

3c 4u 4P 4W

 
4 2 3( 0.00005 )W W W m= − + +                                                                           (13) 

 
Now it only remains to formulate a similar cubic to (12) and solve for : 4c
 

2 2 2 21 1
4 4 4 4 4 4 4 4 4 4 4 4 4 44 4( ) ( )W N c P u c P N c P u c P W= − − → − − − = 0                    (14) 

 
This completes the derivation of the constructional parameters of nine distinct 
four-spherical-mirror anastigmats for given input values of , and 1 2,t c ε , where 
ε is the position of the entrance pupil with respect to the origin of whatever 
coordinate system was chosen. 

3. Results 
 
Using the method described above nine distinct anastigmatic solutions are 
obtained, because as we have seen for each of the three values of there are 
three different values of . These nine anastigmats can justifiably be thought of 
as belonging to geometrically distinct families; the other members of each family 
can be found by repeating the method described above for a large number of 
different points , and 

3c

4c

1 2,t c ε .  By choosing and solving for enough points in this 
parameter space the entire set of solutions for four-spherical-mirror anastigmats 
can be mapped with a large but not unmanageable amount of computing.  
 
The solutions obtained in this way are not necessarily physically realizable 
anastigmats. Physically unrealizable solutions fall into two categories. In one, the 
solution involves at least one mirror located in a virtual space. Obviously in this 
case the systems are not physically practical. The other case is a result of the 
derivation given above requiring the solution of two cubic equations. Two of the 
three algebraic expressions for the solution of a cubic equation allow for a 
solution with an imaginary component. Any solutions with imaginary 
components will not be physically realizable anastigmats.  
 
It is a relatively simple matter to sift the solutions to remove these physically 
meaningless solutions during the mapping process. The plot in figure 2 shows 
one map made in this way, in that case for three-mirror anastigmats with two 
spherical mirrors. In this map gray points represent physically unrealizable 
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solutions, while white and black points are possible anastigmats. Once a set of 
physically realizable solutions is achieved various conditions for practicality can 
be used to further refine the set, but the physically realizable set represents the 
complete range of possible solutions, a truly global solution set. 
 
 Possible impracticalities include mirrors with huge diameters, large inter-mirror 
distances, and large or complete self-obscuration by system elements. Removing 
such systems from consideration is simply a matter of writing “filters” into the 
program used to map the solution space. This filtering approach can be used in 
many ways, for example one can specify a certain maximum acceptable central 
obscuration, mirror size, total system length, minimum back focal length etc.  
 
The mapping of four-spherical-mirror anastigmat sets has now been carried out. 
Of the nine distinct families of solution, four were empty sets when physically 
unrealizable solutions were filtered out. The remaining solution sets contain a 
large amount of data. Figure 3 is an example of several cross sections of one of 
the five three-dimensional solution sets. The “out of the page” axis represents ε , 
the entrance pupil position parameter, and  and  are system parameters as 
defined for figures 1 and 2. As in figure 2, gray areas represent physically 
unrealizable solutions, and white and black regions represent solutions with 
positive and negative Petzval curvature respectively. 

1t 2c

 
An initial investigation of these results indicates that there are no physically 
realizable four-spherical-mirror anastigmats with an acceptably low central 
obstruction when on axis systems are considered. Wilson10 anticipated this 
disappointing result. A more detailed analysis of the solution sets will soon be 
undertaken to confirm that no reasonably unobstructed axially symmetrical four-
spherical-mirror anastigmats exist. 
 
Ongoing investigation will also focus on identifying viable four-spherical-mirror 
anastigmatic Schiefspiegler and multi-axis systems. In this study Schiefspiegler 
will be taken as systems that use off-axis portions of the pupil, are off-axis in field 
(do not include the axial pencil say) or both. However, the center of curvature of 
the component mirrors will remain co-axial, the degrees of freedom available by 
breaking this symmetry are not covered in this analysis. Examples of multi-axis 
four-mirror anastigmats with conicoid surfaces can be found in Wilson11. A 
significant positive feature of solutions available from the four-spherical-mirror 
anastigmat set is that there is a greatly reduced manufacturing and alignment 
difficulty for systems with off axis spherical mirrors, which of course remain 
spherical. This is very advantageous when compared to Schiefspiegler obtained 
from systems with conicoid or other aspheric components. 
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Figure 3. These plots are a number of cross-sections taken from one of the five 

solution families. The horizontal and vertical axes represent and  

respectively, the number in the center top of each plot is related to
1t 2c

ε , the initial 
position of the entrance pupil, for each cross section. 
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Figure 4. An example of a four-spherical-mirror anastigmatic Schiefspiegler. 
Numerous examples of anastigmatic Schiefspiegler, including flat-field 
examples, are likely to be uncovered in a more detailed analysis of the solution 
sets. 
 

4. Conclusion 
 

The method outlined in section two has been used to map out all possible 
solutions for four-spherical-mirror anastigmatic telescopes. This completes the 
set of simplest possible reflecting anastigmatic telescopes, a set that also includes 
two-conicoid mirror systems and three-mirror systems with one conicoid. The 
four-spherical-mirror set as derived above can be considered to consist of five 
geometrically distinct families of solutions mapped over 3-space, the basis vectors 
of which are three constructional parameters of the system. 
 
Initial investigation of the solution set indicates that rotationally symmetrical 
solutions will all suffer from unacceptably high central obstruction. Ongoing 
investigation of the solution set will be aimed at extracting useful Schiefspiegler 
and multi-axis systems from the large number of possibilities.   
 
The method documented here illustrates the good results that can be achieved by 
combining an analytical approach to optical design problems with modern 
computing power. For certain classes of system this approach is clearly capable of 
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providing superior global results to those that would be obtainable with modern 
optical design software.   
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Appendix G: SPIE 1, 2 or 3 conicoid 

mirror paper 

The following paper was the presented at the SPIE “Novel Optical Systems 

Design and Optimization” conference in 2004, and published in SPIE 

proceedings volume 5524 in 2004. This paper was the basis for the paper 

presented in Appendix B and material in chapter 4 of this thesis. 
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ABSTRACT 
 
Recently the author described a method that gave the complete solution set for 
four-mirror anastigmats in which all the mirrors were spherical1. Even though a 
large variety of such systems were shown to exist, most of these were not 
practical due to large central obstructions. The author has now modified his 
previous approach by setting up “partial” systems with good first-order 
characteristics and adding the minimum number of aspheres necessary to give 
anastigmatic correction. In this way, surveys of useful four-mirror anastigmats 
with one, two or three-mirrors kept strictly spherical can be carried out. 
 
Keywords: anastigmat, reflecting telescope, 4-mirror 
 

1.   INTRODUCTION 
 

Primary, or Seidel, aberrations are particularly well suited to surveys of reflecting, 
as opposed to refracting, optical systems. This is because a mirror will achieve the 
same power as a refracting surface with approximately ¼ of the curvature. High-
order aberration terms grow with increasing powers of the curvature of an optical 
surface, so a reflecting surface will give rise to less high-order aberration than an 
refracting surface of equal power, making the primary aberration approximation 
more accurate for reflecting systems than for refracting systems of equal power. 
 
Burch2 showed that there are three families of “simplest possible” reflecting 
anastigmats. They are systems consisting of two conicoid mirrors, three-mirrors 
of which only one is a conicoid, and four spherical mirrors. 
 
In 1905 Schwarzschild published a paper3 in which he laid down the 
mathematical basis for solving for the first of these families, two-mirror 
anastigmats with two conicoid mirrors. Designs he presented included a two-

247 



mirror anastigmat with two hyperboloid mirrors and zero Petzval curvature, and 
a system with two concave mirrors, as shown in Figure 1. Figure 2 shows a plot 
of all available solutions for the two cases in which the primary mirror is either 
convex or concave. The solution set for the two-mirror anastigmat family is 
shown as a one dimensional set in a 2-parameter space where the axes are defined 
by two of the constructional parameters of the optical systems.  
 
The second family of simplest possible reflecting anastigmats consists of three-
mirror anastigmats in which only one mirror is a conicoid. The first three-mirror 
anastigmat was of this family, the Paul4 anastigmat, which was later independently 
re-discovered by Baker5. 
 

 

 
Figure 1.  Two examples of two-mirror anastigmats, similar to examples given by 
Schwarzschild. The upper system has a convex primary mirror, both mirrors are 
oblate spheroids and the Petzval curvature is zero. The lower system is a concave 
primary system. In his 1905 paper Schwarzschild reintroduced astigmatism to 
this system to flatten the field. As with all two-mirror anastigmats, the separation 
of the two-mirrors is equal to twice the system focal length. 
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Since Paul’s first paper in 1935 numerous other examples of three-mirror 
anastigmats with one conicoid mirror have been published, notably by Cook6, 
Rumsey7 and Korsch8. In 2002 the author together with Rumsey9 presented a 
paper in which the complete solution set for three-mirror telescopes with one 
conicoid mirror (and concave primary mirrors) was presented. The solutions were 
mapped over the same 2-parameter space as used in Figure 2 for the 
Schwarzschild solutions. The conicoid can occur on either the primary, secondary 
or tertiary mirrors, giving three main divisions of solution. 

 

 
Figure 2. These two plots represent the complete solution set for two-mirror or 
Schwarzschild anastigmats, mapped over a parameter space defined by the 
curvature of the secondary mirror and the separation of the two-mirrors. In 
both cases the primary mirror has been set with a focal length of +/- 1 m (so c1 
=  +/-  0.5 m-1). In both cases the secondary mirrors are concave. The 
horizontal line in the right hand plot intersects the solution curve at the point 
representing a flat-field anastigmat shown in Figure 1. In both cases the 
mirrors are in general conicoids. 
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Figure 3. These plots are four out of the seven plots representing the complete 
solution set for three-mirror anastigmats with two strictly spherical mirrors. In 
these plots solutions with positive Petzval curvature are plotted white and 
solutions with negative Petzval curvature are plotted black (gray points 
correspond to non-physical solutions). Hence flat-field solutions lie along loci 
where black and white regions abut directly onto each other. Clearly there are 4 
families of flat-field three-mirror anastigmat with two spherical mirrors, only one 
of these appeared in the literature prior to this work. 

 
In the cases where the conicoid was on the primary or secondary mirrors, three 
distinct anastigmatic systems can be found for each point in the 2 parameter 
space used. In the case of a conicoid tertiary a numerical method yielded single 
solutions for each point in the two parameter space. Excluding physically 
unrealizable solutions (solutions with virtual images or imaginary components) 
leaves maps of parameter space with regions containing all possible anastigmats. 
 
This complete mapping of the solution space included all previously described 
anastigmats of this type, and uncovered a number of geometries not previously 
described in the literature. In particular, four families of flat-field anastigmats 
were uncovered, only one of which had previously appeared in the literature10. 
Figure 3 shows the seven independent solution regions found using this method.  
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In 2003 the author described the application of the same solution mapping 
technique to telescope systems consisting of four spherical mirrors1. The 
complete mapping of solution space for four spherical mirror anastigmats 
completed Burch’s triplet of simplest possible reflecting anastigmats. It was found 
that five distinct families of solutions could be obtained over a 3-dimensional 
parameter space. An example of cross-sections from one of these 3-dimensional 
solution sets is shown in Figure 4. In this case the parameters forming the basis 
of the solution 3-parameter space were the curvature of the secondary mirror, the 
separation of the primary and secondary mirrors and the position of the image of 
the center of curvature of the quaternary mirror as imaged by all preceding 
mirrors in the system, that is, the image in object space. 
 
It was found that no solution from the large variety of solutions for four spherical 
mirror anastigmats was useful when they were considered as rotationally 
symmetrical systems due to self-obstruction by one or more of the systems 
mirrors. There are, however, a number of interesting off-axis or “Schiefspiegler” 
solutions that can be obtained from suitable rotationally symmetrical bases. These 
systems can use either an off-axis portion of the pupil, a field centered on a non-
axial field point, or a combination of both of these. The off-axis solutions are 
particularly attractive in this case as they consist of purely spherical mirrors so 
there is none of the difficulty usually associated with systems of off-axis aspheres. 
The identification of useful Schiefspiegler from among the large variety of 
possible solutions is the subject of an ongoing investigation. 
 
Following the “null-result” for on-axis four spherical mirror anastigmats the 
author has investigated applying the global solution technique to four-mirror 
systems in which desirable first-order layouts are first produced. Searches around 
these solutions are then carried out with decreasing numbers of conicoid surfaces 
(but retaining four-mirrors in all cases). In this way it is hoped that systems with 
useful on-axis geometries and minimum optical complexity will be uncovered. In 
the following section a brief description of the plate diagram method will be 
given and an outline of the technique used to solve for several cases of four-
mirror telescope with decreasing numbers of conicoids. These cases are: 
 
• Four-mirrors: three conicoids (with a spherical primary). This trivial solution 
involves setting up an exact first-order layout, then solving for three conicoids 
required to eliminate primary spherical aberration, coma and astigmatism. This set 
is included here for completeness. 
 
• Four-mirrors: two conicoids, quaternary mirror free to vary in position and 
curvature. In this case three1-dimensional solution sets in 2-parameter space are 
obtained, similar to those in Figure 2. 
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• Four-mirrors: one conicoid, tertiary and quaternary mirrors free to vary in 
position and curvature. In this case three 2-dimensional solution sets in 2-
parameter space are obtained, similar to those in Figure 3. 
 
The final section will consist of a brief discussion of initial results. 

 
Figure 4. These plots are a number of cross-sections taken from one of the five 
solution families for four spherical mirror anastigmats. The horizontal and 
vertical axes represent the separation of the primary and secondary mirrors and 
the curvature of the secondary mirrors respectively, the number in the center top 
of each plot is related toε , the position of the image of the center of curvature of 
the quaternary mirror as imaged by all preceding mirrors, in object space, for 
each cross section. 

 
2. METHOD 

 
THE PLATE DIAGRAM. 

Burch’s plate diagram method has been used in deriving all the solutions 
discussed in this paper. The method has been described in detail elsewhere2,11,12,13, 
but it seems to be a largely forgotten analysis technique, particularly among the 
younger generation of optical designers, so a brief summary will be given here.  
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The plate diagram analysis of an optical system gives a system of Schmidt plates 
in collimated light which reproduce exactly the wavefront primary aberration 
condition of a system consisting of any number of concave or convex, conicoid 
or spherical, refracting or reflecting surfaces. In this work we are limited to 
considering systems of mirrors. Figure 5 shows how a spherical mirror can be 
replaced by an “anti- Schmidt plate” which contributes exactly the same 
aberrations as the mirror it replaces, without contributing any power. Primary 
wavefront spherical aberration for a mirror in air with collimated incident light 
can be given as:  

3 4

4
cc yW = , (2.1) 

where is the curvature of the spherical mirror and c cy is the height of the marginal ray of 
the axial paraxial pencil on the mirror. The “strength” of the anti-Schmidt plate representing 
the spherical mirror can be thought of as W .  In the case where the mirror is in convergent 
or divergent light an alternative expression must be used: 
 

2 2

4
ci yW = . (2.2) 

 
Here is the angle of incidence of the marginal ray of the paraxial axial pencil on 
the mirror. Primary wavefront coma can be given as: 

i

4 pc

c

y
Coma W

y
= , (2.3) 

and astigmatism as: 
2

22 pc

c

y
Astigmatism W

y
= . (2.4) 

 
Here pcy is the height of the principal (chief) ray of the most oblique (paraxial) 
pencil, which will be zero if the plate is at the center of curvature of the spherical 
mirror, and non-zero as the plate moves away from the center of curvature of the 
mirror. As can be seen from Figure 6, pcy  is directly proportional to x , the axial 
distance from the stop to the plate, so we have the following proportionalities: 
 
Coma xW∝ , (2.5) 
 

2Astigmatism x W∝ . (2.6) 
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Figure 5.  

A. Spherical mirror with the aperture stop at the center of curvature. Coma and 
astigmatism free but image suffers from spherical aberration over a curved field.  

B. Introducing a Schmidt plate with a spherical contribution equal in magnitude 
and opposite in sign to that of the mirror, at the center of curvature, corrects 
spherical aberration. By the stop-shift theorem, the stop can now be moved 
anywhere without re-introducing coma or astigmatism. 

C. Introducing an “anti-Schmidt plate” cancels the correction described in B, 
returning the aberration condition to that of the original spherical mirror. 

D. Removing the original spherical mirror and Schmidt correcting plate leaves the 
anti-Schmidt plate, giving the same aberrations as the original spherical mirror, 
including astigmatism and coma as the stop moves away from the plate. 
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Figure 6. As the plate is moved axially away from the stop pcy , the height of the 

intercept of the principal ray of the most oblique pencil with the plate grows in 
direct proportion to the axial separation of the plate and the stop, x . 
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Figure 7. Plate diagram for a Paul three-mirror anastigmat. The primary mirror is 

a paraboloid giving rise to two plates,  from the vertex sphere and 1W 1ν from the 

conic departure. Note that the plates are of equal magnitude and opposite sign, 
the paraboloid has no spherical aberration. The plate representing the spherical 

secondary mirror, , is in object space at CoC2’, the image of the center of 

curvature of the secondary mirror through the primary. Similarly the plate 

representing the spherical tertiary mirror,  is at CoC3’’, the image of the center 

of curvature of the tertiary mirror through the secondary, then the primary. Note 

that and  are also equal in magnitude and opposite in sign, so the system 

spherical aberration is zero, and that the plate 

2W

3W

2W 3W

1ν  representing the paraboloid lies 

on the entrance pupil, so it has no contribution to coma or astigmatism. 
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In a similar way a conicoid mirror can be thought of as consisting of two plates. 
One plate represents the vertex sphere as described above, and the other plate 
represents the primary wavefront spherical aberration induced by the aspheric 
departure, given by: 

3 4

4
c

Conicoid
kc yW = . (2.7) 

Here  represents the conic constant of the conicoid. This plate lies on the pole of the 
conicoid mirror. Coma and astigmatism introduced by this plate arise exactly as for the 
spherical mirror as described in 2.3 - 2.6. 

k

 
For multiple mirror telescope systems the positions of the plates are determined 
by imaging the center of curvature of spherical mirrors (or vertex spheres) and 
mirror poles in the case of conic contributions, into infinite conjugate space (“star 
space” after Burch) through all preceding elements in the system. Figure 7 gives 
an example of the plate diagram for a Paul three-mirror anastigmat. 
 
With plate strengths and distances from the entrance pupil evaluated for multiple 
mirrors it is a simple matter to determine the aberration condition of a multi-
mirror system. The primary wavefront aberration contributions from each mirror 
are simply additive, so the system sum for each aberration can be given as: 
 

1

n

SYS i
i

Spherical W
=

= ∑  (2.8) 

1

n

SYS i i
i

Coma xW
=

∝∑  (2.9) 

2

1

n

SYS i i
i

Astigmatism x W
=

∝∑  (2.10) 

Note that in using x instead of  we are not solving for coma and astigmatism 
exactly. As our goal is to drive these aberrations to zero only their relative 
quantities are required. The extra step of calculation is not necessary. For actual 
values of coma and astigmatism equations 2.3 and 2.4 could be substituted into 
2.9 and 2.10 respectively. In the methods outlined below, the system sums such 
as in 2.8-2.10 are simultaneously driven to zero to produce anastigmatic systems. 

pcy

 
FOUR-MIRRORS; 3 CONICOIDS. 

The first case considered is the almost trivial case of four-mirrors with three of 
these mirrors being conicoids. Here we set up a system of spherical mirrors with 
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a useful first-order layout such as that shown in Figure 8. Then three-mirrors are 
allowed to become conicoids and conic constants are found that simultaneously 
zero spherical aberration, coma and astigmatism. This is a trivial exercise in a 
modern ray-tracing program but the plate diagram approach is included here as 
an example. 
 
With the radii and positions of the four-mirrors set we can immediately calculate 
plate strengths and positions in object space using equations 2.1, 2.2 and simple 
Gaussian optics. Setting the position of the entrance pupil to any convenient 
location allows us to calculate ix  and hence system values for spherical 
aberration, coma and astigmatism following equations 2.8 – 2.10. To obtain the 
necessary combination of conicoids required for anastigmatic correction it is 
simply a matter of formulating and solving the following linear system of plate 
equations for , using Gaussian optics to determine the values of kiW ix : 
 

1 2 3k k k SW W W Spherical+ + =− YS , (2.11) 

1 1 2 2 3 3k k k k k k SYSx W x W x W Coma+ + =− , (2.12) 
2 2 2
1 1 2 2 3 3k k k k k k SYSx W x W x W Astigmatism+ + =− . (2.13) 

 
It then simply remains to rearrange equation 2.7 to obtain the three values of . 
For the spherical primary example given in Figure 8 these are; 

and 

ik

ik

1 274.885, 3.952k k= = − 3 1.061k = − . This example should serve to 
illustrate the relative ease of use of the plate equations in solving for multi-mirror 
anastigmats. The next examples should serve to illustrate the power of the 
technique. 

 
Figure 8. First-order layout using spherical mirrors initially, giving a useful 
geometry but requiring three conicoids for anastigmatic correction. 
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FOUR-MIRRORS; 2 CONICOIDS. 

In this example two-mirrors, the primary and quaternary mirror, will remain 
strictly spherical. The secondary and tertiary mirrors are allowed to be conicoids. 
To achieve anastigmatic correction the position and curvature of the quaternary 
mirror must be varied. This is only one of 6 possible arrangements of two 
conicoids on four-mirrors, but serves as a representative example. In this case we 
will start with the primary, secondary and tertiary mirrors retaining some arbitrary 
but useful first-order layout, such as in the configuration given in Figure 8. To 
proceed we imagine that the aperture stop is placed at the center of curvature of 
the quaternary mirror. Also, we assign some arbitrary position to the entrance 
pupil, which after imaging through primary, secondary and tertiary mirrors, will 
locate the center of curvature of the quaternary mirror. In this way, equations 
2.12 and 2.13 are reduced to: 
 

1 1 2 2k k k k SYSx W x W Coma+ =−  (2.14) 
2 2
1 1 2 2k k k k SYSx W x W Astigmatism+ =− . (2.15) 

 
That is, only contributions from the two conicoids contribute to the system coma 
and astigmatism; by placing the stop on the center of curvature of the quaternary 
mirror the x value for the plate associated with this mirror is now zero so its 
coma and astigmatism contributions are necessarily zero. Note that here 

and  are values calculated from the spherical 
primary and vertex spheres of the secondary and tertiary mirrors. Values of 

SYSComa− SYSAstigmatism−

kix can be obtained and equations 2.14 and 2.15 can be used to solve for and 
hence, using equation 2.7, for  and . Using the values of thus obtained 
we can now solve for the spherical aberration contribution of the quaternary 
mirror by rearranging equation 2.11 (and substituting for in this case): 

kiW

1k 2k kiW

quatW 3kW
 

1quat SYS k kW Spherical W W=− − − 2 . (2.16) 

 
Now we have the position of the center of curvature of the quaternary mirror 
(from setting the initial position of the entrance pupil) and the spherical 
aberration contribution of the quaternary mirror from equation 2.16. Also, we 
have , the angle the marginal ray of the axial paraxial pencil makes to the axis 
after reflection from the tertiary. We can also calculate a quantity, , which is the 
length of the perpendicular from the center of curvature of the quaternary mirror 
to the marginal ray of the axial paraxial pencil after reflection from the tertiary 
mirror. Using these, and the following relationship; 

4u
P
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21
4 4 44 (quatW c P u c P= − − 2) , (2.17) 

 
we can obtain a cubic equation in  (the curvature of the quaternary mirror) 
which can be solved to give a maximum of three distinct quaternary mirrors.  

4c

 
2 21

4 4 44 ( ) quatc P u c P W− − − 0= . (2.18) 

 
In this way, for each initial position of the entrance pupil (and therefore the 
position of center of curvature of the quaternary mirror) we obtain a maximum 
of three distinct anastigmatic telescopes. These telescopes differ only in the 
position and curvature of the quaternary mirror. It remains to scan through the 
available solution space and build up a curve representing available solutions. 
Figure 9 in the next section shows curves in 2-parameter space, the horizontal 
axis is the separation of the tertiary and quaternary mirrors and the vertical axis 
represents the curvature of the quaternary mirror (negative is concave). Note the 
similarity in the dimensionality of the solution sets to those for the Schwarzschild 
solution set shown in Figure 2. Note also that while the position of the aperture 
stop and hence entrance pupil was set initially to reduce the number of unknowns 
in equations 2.14 and 2.15, once an anastigmatic system is achieved the aperture 
stop can be moved to any convenient location without affecting the anastigmatic 
correction, as given by the stop-shift theorem. 
 
A final point is that the anastigmats derived in this way are not necessarily 
practical systems, or even physically realizable. For example, if one or more of the 
solutions to equation 2.18 have imaginary components then this will not lead to 
an actual anastigmat (unless one can make mirrors with imaginary components as 
well). Also, there is no guarantee that the light path after each reflection will 
remain real. Simple filters can be built into the evaluation algorithm to disqualify 
such solutions as they arise. 
 
FOUR-MIRRORS; 1 CONICOID. 

In this final example we look at the case in which there is one conicoid mirror 
and three spheres. Here the secondary mirror has been chosen to be the conicoid. 
The primary and secondary mirrors have the same characteristics and positions as 
in Figure 8. Now the curvatures and positions of the tertiary and quaternary 
mirrors are varied to solve for anastigmats. The first step is similar to that in the 
previous example. As in the previous example the initial position of the aperture 
stop is chosen to eliminate one set of variables from the plate equations. In this 
case placing the aperture stop at the pole of the secondary mirror stops the plate 
associated with the conic constant of the secondary mirror from having any affect 
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on the coma or astigmatism of the system (analogous to the way the paraboloid 
in Figure 7 makes no contribution to the system coma or astigmatism when the 
entrance pupil is on the primary mirror). Now we can form the equations: 
 

r r(tert tert quat quat p im p im sec secx W x W x W x W )+ =− + , (2.19) 
2 2 2 2

r sec(tert tert quat quat prim p im secx W x W x W x W+ =− + ) . (2.20) 

 
Here “prim, “sec”, “tert” and “qaut” refer to quantities derived from the 
spherical primary through quaternary mirrors respectively (or vertex sphere in the 
case of the conicoid secondary mirror). Quantities on the  are known. To 
proceed further we assign values to , the separation of the secondary and 
tertiary mirrors and , the radius of the tertiary mirror, from which we can 
calculate 

RHS
2t

3r

tertx and .  tertW
 
Moving all known quantities in the above equations to the  and dividing 
2.20 by 2.19 gives: 

RHS

 
2 2 2

r sec

r r

prim p im sec tert tert
quat

p im p im sec sec tert tert

x W x W x W
x

x W x W x W
+ +

=
+ +

, (2.21) 

from which we obtain: 
r r( )p im p im sec sec tert tert

quat
quat

x W x W x W
W

x
+ +

=− . (2.22) 

 
Now that all  are know apart from that associated with the conicoid we can 
solve for the conicoid using the spherical aberration plate sum and a rearranged 
equation 2.7: 

iW

 

2 sec3 4
2 2

4 ( prim tert quatk W W W W
c y
−

= + + + ) . (2.23) 

 
 
The final remaining step is to solve for the radius and position of the quaternary 
mirror, which is done exactly by deriving necessary Gaussian quantities and 
applying equations 2.17 and 2.18. As in the previous case, this leads to three 
distinct systems for each choice of starting values for and . Again as in the 
previous case each of the three exact algebraic solutions to 2.18 can be applied 
independently to a large number of initial values of the parameters and . In 

2t 3c

2t 3c
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this way a map of the solutions can be built up over this 2-parameter space, 
similar to the maps in Figure 3. In these maps anastigmats that were physically 
impossible can be filtered out, and there is also the opportunity to write custom 
filters targeting systems with particular characteristics, for example sizes of 
mirrors, space envelope, central obscuration etc. 
 
 
 
3. RESULTS AND CONCLUSION 
 
At the time of writing this paper the methods outlined in the previous section 
have been successfully implemented and some solution sets of anastigmats have 
been obtained for the 2-conicoid and 1-conicoid cases starting from several 
different base systems (the 3-conicoid case is trivial, the solution set consists of 1 
member for each configuration). Figure 9 shows an example of results from the 
2-conicoid case and Figure 10 shows an example of a solution set from the 1-
conicoid case. A full investigation of solutions is a relatively laborious task and is 
still in its very early stages.  
 
Similar techniques to those described in this paper have proven to be successful 
means of surveying the simplest possible three and four-mirror anastigmat cases, 
revealing previously unknown optical configurations with good correction and 
minimum complexity. Examples of a further generalization of these techniques to 
more complicated optical systems of four-mirrors have been presented here. 
While the technique is now established, a full evaluation as to whether this 
approach will provide a useful tool for the optical design of the type of system 
presented in this paper still needs to be carried out. Initial results show that this 
method will be capable of yielding useful systems of minimum complexity, but 
the efficiency of this method as opposed to methods employing modern optical 
design software remains to be determined. 
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Figure 10. Three independent sets of solutions for the case where only 2M is 

allowed to be a conicoid. Note that there exist solution regions which have the 
same coordinates in each set, these represent systems that differ only in the radius 
and position of the quaternary mirror. 
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Figure 11. The upper layout diagram is a four-mirror anastigmat which was given 
an initial first-order layout, then was rendered anastigmatic by solving for three 
conicoids. The lower diagram is a solution taken from a set similar to those in 
Figure 10, with only the secondary mirror a conicoid.  
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