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Abstract 

Circadian rhythms of gene activity, metabolism, physiology and behaviour are observed in 

all the eukaryotes and some prokaryotes. In this study, we present a model to represent 

the transcriptional regulatory network essential for the circadian rhythmicity in 

Drosophila. The model incorporates the transcriptional feedback loops revealed so far in 

the network of the circadian clock (PER/TIM and VRI/PDP1 loops). Conventional Hill 

functions are not assumed to describe the regulation of genes, instead of the explicit 

reactions of binding and unbinding processes of transcription factors to promoters are 

modelled. The model simulates sustained circadian oscillations in mRNA and protein 

concentrations in constant darkness in agreement with experimental observations. It also 

simulates entrainment by light-dark cycles, disappearance of the rhythmicity in constant 

light and the shape of phase response curves resembling that of the experimental results. 

The model is robust over a wide range of parameter variations. In addition, the simulated 

E-box mutation, perS and perL mutants are similar to that observed in the experiments. 

The deficiency between the simulated mRNA levels and experimental observations in per01, 

tim01 and clkJrk mutants suggests some difference on the part of the model from reality.  
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1. Introduction 

 

All the eukaryotes and some prokaryotes are capable of maintaining sustained 

oscillations in terms of gene activity, metabolism, physiology and behaviour with 

circadian periods. These oscillations are known as circadian rhythms. Circadian rhythms 

affect all aspects of daily life and have long provided a unique point from which to 

address fundamental and wide-ranging questions of physiology and behaviour. Now it is 

experimentally established that self-sustaining circadian clocks controlling circadian 

rhythms regulate hundreds of genes and allow organisms to anticipate daily changes to 

environmental influences (Pittendrigh 1993; 2003). In recent decades, many 

components and molecular mechanisms comprising the circadian clocks have been 

uncovered, largely due to advances in molecular biology experiments (Dunlap 1999). 

The model organisms include unicellular eukaryotes, fungi, plants, invertebrates and 

mammals (Young and Kay 2001). Among them Drosophila is one of the most 

intensively researched organisms because it is well suited to large-scale mutant 

screening and, consequently, a number of genes that contribute to the timing mechanism 

have been identified (Van Gelder, Herzog et al. 2003). 

 

Mathematical modelling is useful for providing a framework for integrating data and 

gaining insights into the static and dynamic behaviour of complex networks, especially 

in the case of genetic regulatory networks where, generally, multiple feedback loops 

exist. The models can provide coarse-grained prediction, identify gaps in our biological 

knowledge and, if well constructed, predict new behaviours that can be explored 

experimentally (Endy and Brent 2001; Kitano 2002). Given the fertile experimental data 

about the molecular components and mechanisms in Drosophila, the circadian clock 

provides an excellent example for modelling in the hope of understanding its genetic 

regulation systematically (Goldbeter 2002). It has been revealed that at least six 

transcription factors, namely Period (PER), Timeless (TIM), Vrille (VRI), Par domain 

protein 1ε (PDP1), Cycle (CYC) and Clock (CLK)1, play critical roles in the regulatory 

network of the circadian clock in Drosophila (Hardin 2005). 

1 We follow the notation that protein names are written in upper case, genes and mRNAs are in lower 

case. 
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A range of mathematical models for the circadian clock in Drosophila has been 

proposed in the literature. These models can be categorised according to their structures: 

(1) Single negative feedback model, where PER represses its own gene expression 

(Goldbeter 1995) or where PER/TIM dimers inhibit gene expression of  per and tim 

(Leloup and Goldbeter 1998; Tyson, Hong et al. 1999); (2) Two interlocking feedback 

loops model, where per and tim expressions are activated by CLK/CYC dimers and 

suppressed by PER/TIM dimers, and clk expression is repressed by CLK/CYC and de-

repressed by PER/TIM (Smolen, Baxter et al. 2001; Ueda, Hirose et al. 2002); (3) Most 

recent models involving clk expression activated by PDP1 and suppressed by VRI 

(Smolen, Hardin et al. 2004; Ruoff, Christensen et al. 2005). In this paper, we develop a 

mathematical model of gene expression for the five key components in the circadian 

clock in Drosophila. 

 

A common characteristic of the previous models is that activation and repression 

processes are described by Hill functions which imply switch-like behaviour of the 

transcriptional effects. With such transcriptional description, these models have 

produced sustained oscillations in appropriate parameter regimes. However, the models 

do not account for binding of transcription factors to promoters due to the description of 

transcriptional processes by Hill functions. A general model for the circadian clocks 

developed by Vilar (Vilar, Kueh et al. 2002) and a mammalian circadian model 

proposed by Forger (Forger and Peskin 2003) include explicit descriptions of the 

binding and unbinding processes of transcription factors to promoters. We propose that 

such description needs to be incorporated into the Drosophila clock model to explore 

transcriptional behaviour more explicitly. 

 

The purpose of this paper is to develop a deterministic model with a set of differential 

equations incorporating the core components known to us so far in the regulatory 

network (per, tim, vri, pdp1 and clk genes and their products) for simulating circadian 

rhythms of Drosophila, and to compare the behaviour of the model using the published  
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experimental data. The structure of the paper is as follows: the molecular basis of the 

circadian clock of Drosophila is reviewed in Section 2; the rationale and detailed 

development of the model are described in Section 3; the simulation results of the 

model are compared with the experimental results in Section 4. Finally, the main 

findings of the paper are discussed in Section 5. 

 

2. Review of molecular basis of the Drosophila circadian clock 

 

The circadian system consists of three parts: an input pathway that relays environmental 

signals and passes them to the circadian clock; the circadian clock that autonomously 

produces circadian oscillations of clock components, with or without external stimuli; 

and an output pathway that regulates rhythmic biochemical and physiological activities 

in the cell (Schoning and Staiger 2005). 

 

In Drosophila, a number of genes have been identified that are necessary for circadian 

clock functions. These genes can be divided into three categories according to the 

molecular nature of their protein products (Hardin 2005). These proteins include (1), 

transcriptional activators: CLK, CYC and PDP1; (2), transcriptional repressors: PER, 

TIM and VRI; and (3) the proteins that alter protein stability and subcellular 

localisation: Doubletime (DBT), Shaggy (SGG), Slimb (SLMB) and casein kinase 2 

(CK2) (Hardin 2005). 

 

Transcriptional regulation underlying the circadian clock in Drosophila includes two 

interacting feedback loops, as shown in Figure 1 (Glossop, Lyons et al. 1999; Cyran, 

Buchsbaum et al. 2003; Hardin 2005). The first loop, named the PER/TIM loop, starts 

with activation of per and tim expression from mid day. Activation of per and tim 

transcription is mediated by two transcription factors, CLK and CYC. Experiments have 

shown that CLK and CYC form dimers that target CACGTG enhancers (called E-

boxes) in the per and tim promoters (Allada, 1998). After initial activation of per and 

tim expression, there is a 4 h – 6 h delay between the peak concentrations of per and tim 

mRNAs and that of PER and TIM proteins (Zerr, Hall et al. 1990; Zeng, Qian et al. 
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1996). As a result, CLK/CYC can continue to activate transcription of per and tim 

genes, while PER and TIM proteins accumulate in the cytoplasm. PER and TIM also 

form PER/TIM dimers while accumulating. In the middle of the night PER/TIM dimers 

are transported into the nucleus. After entering the nucleus, they can bind to CLK/CYC 

dimers effectively inhibiting CLK/CYC binding ability to E-boxes without disrupting 

the dimeric structure of CLK/CYC (Lee, Bae et al. 1998). This inhibition lasts until 

PER and TIM proteins are degraded. Then the expressions of per and tim are reactivated 

by CLK/CYC dimers the following mid day. 

 

(Figure 1) 

 

 

The second loop, named the VRI/PDP1 loop, consists a VRI-mediated negative 

feedback loop and a PDP1-medicated positive feedback loop. This loop starts with 

activation of vri and pdp1 transcription by CLK/CYC during the late day and early 

night. Like per and tim genes, E-boxes are also found in the promoters of the vri and 

pdp1 genes and CLK/CYC dimers have been shown to activate vri and pdp1 expression 

in vitro in an E-box-dependent manner (Cyran, Buchsbaum et al. 2003; Glossop, Houl 

et al. 2003). VRI accumulates first in phase with its mRNA then PDP1 accumulates 

during the mid to late evening. Both VRI and PDP1 belong to basic zipper transcription 

factors with highly conserved basic DNA binding domains, suggesting that they bind to 

the same set of target genes. Indeed in vitro experiments showed VRI binds VRI/PDP1 

box (V/P box) in the clk regulatory elements to inhibit clk transcription and PDP1 can 

compete with VRI for binding to V/P box and activates clk transcription (Cyran, 

Buchsbaum et al. 2003). The effects from the initial VRI-dependent repression in the 

early night and the subsequent PDP1-dependent activation in the middle to late night 

determine the rhythmic expression of clk. However, the newly produced CLK at the end 

of night and early morning is inactive temporally due to high levels of PER/TIM dimers 

induced by the previous produced CLK. Once PER/TIM dimers are degraded, 

CLK/CYC reactivates gene expression of per, tim, vri and pdp1 and starts a new cycle. 
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In addition to regulation at the transcriptional level, many clock components in 

Drosophila are also regulated post-transcriptionally and post-translationally. For 

example, Doubletime (DBT) destabilises PER. Casein Kinase 2 (CK2) destabilises PER 

and also affects its nuclear localisation. Shaggy (SGG) phosphorylates TIM to promote 

nuclear localisation of PER/TIM dimers. Slimb (SLMB) targets phosphorylated PER for 

degradation (Hardin 2005). These processes are important to provide time delays 

between mRNAs and proteins. For example, a 4 h – 6 h delay between accumulation of 

per mRNA in the cytoplasm and PER in the nucleus results from the initial 

destabilisation of PER by DBT dependent phosphorylation, and possibly also CK2 

dependent phosphorylation, followed by the stabilisation of PER by dimerisation with 

TIM before the nuclear entry (Price, Blau et al. 1998). 

 

3. Model description 

 

In this section we give assumptions on which the model is based on, and then provide 

the complete set of differential equations (Eq. 1 – 19). To solve the equations 

numerically, the parameters (in Table 1) and initial conditions (in Table 2) are also 

specified. 

 

3.1. Model assumptions 

 

The model of the circadian clock is schematised in detail (Figure 2). This model relies 

on a number of assumptions, and the rationale of the assumptions is as follows: 

 

(Figure 2) 

 

1. We ignore the separate nuclear and cytoplasmic compartments in the model; instead 

we assume that all the reactions take place over a whole cell. Although eukaryotic 

species have compartments separated by nuclear membranes and transcription factors 

have to be located into the nucleus in order to affect gene expression, some prokaryotes, 
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which lack a nucleus or nuclear envelope, such as cyanobacteria, can also generate 

circadian rhythms. This demonstrates that it is possible for cells to maintain sustained 

circadian rhythms without compartmentalisation. A theoretical study by Kurosawa 

(Kurosawa, Mochizuki et al. 2002) also showed that a cell can generate a sustained 

oscillation in the absence of compartmentalisation with a single negative feedback 

model. 

 

2. Translation, degradation and dissociation of complex are assumed to be first-order 

reactions, and association process of complex is assumed to be second-order reactions. 

This keeps the model simple and the number of parameters low. The study by Kurosawa 

on a single negative feedback oscillator showed that by introducing Michaelis-Menten 

(MM) type kinetics within the model, oscillations and their robustness may be enhanced 

(Kurosawa, Mochizuki et al. 2002). In fact in many of previous circadian clock models, 

MM kinetics have been used. However, there is no justification about whether MM 

kinetics are correct description for these processes as they have not been understood in 

detail yet. It will be shown later that simulated oscillations are even more robust for the 

parameter variations used in our model. 

 

3. Phosphorylation of proteins is not considered. Although we are aware that 

phosphorylation is important for providing the time delay between mRNAs and proteins 

as reviewed above, the focus of the current study is on the transcriptional regulation, 

and we do not include phosphorylation of proteins at this stage for the sake of 

simplification. 

 

4. Gene expression of per, tim, vri and pdp1 is activated by binding of CLK/CYC 

dimers to E-boxes in their promoter regions. Analysis of the first 4 kb of sequence 

upstream of the start site of pdp1 transcription revealed six E-boxes (Cyran, Buchsbaum 

et al. 2003). The vri promoter sequence was searched and four E-boxes were found 

(Blau and Young 1999). In the tim promoter, three functional E-boxes were discovered 

within about 150 bp short distance (McDonald and Rosbash 2001). In addition, two 

TER boxes (11-bp Tim E-box-like repeats) serving as additional binding sites for 

CLK/CYC dimers were also found in the tim promoter (McDonald and Rosbash 2001). 
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Therefore, we assume five binding sites, including E-boxes and E-box-like binding 

sites, in the tim promoter region. In mammals, five E-boxes were found in the per1 

promoter (Yamaguchi, Mitsui et al. 2000) and we assume the case is similar in our 

model for the per promoter. 

 

5. We assume that CLK/CYC dimers independently bind to individual E-boxes in a 

promoter. In the functional analysis of E-boxes in the mouse mPer1 promoter, the levels 

of mPer1 transcriptional expression activated by CLK/BMAL1 were roughly 

proportional to the number of conserved E-boxes (Hida, Koike et al. 2000). The result 

suggests that there is no or negligible cooperative interaction in the E-box binding 

activities of CLK/BMAL1. Since no information is available about cooperativity in the 

E-box binding activities by CLK/CYC in Drosophila, we treat it as the case in the 

mPer1 promoter. For the same reason, we also assume that if CLK/CYC is bound to just 

one E-box for a given gene, the transcription of that gene is activated and the effect of 

binding additional E-boxes on transcription activation is additive (Hida, Koike et al. 

2000). 

 

6. PER/TIM dimers are assumed not to bind to CLK/CYC dimers if the later are bound 

to promoters. In mammals, mCRY complexes bind to CLK/BMAL1 and repress 

transcription without removing CLK/BMAL1 from E-boxes (Etchegaray, Lee et al. 

2003). However in Drosophila, PER/TIM has not been shown to bind CLK/CYC 

complexes which are bound to E-boxes. (Yu, Zheng et al. 2006). 

 

7. In vitro experiments showed that the concentration of CYC is always constitutive, 

with high levels in the cells (Glossop, Lyons et al. 1999). Therefore, we assume that the 

concentration of CYC in the system is constant (100 nM is assumed) so that there is 

always enough CYC bound to CLK to form dimers. 

 

8. We assume that there is only one copy of the per, tim, vri, pdp1 and clk genes in the 

model, this corresponds to concentration of 33.185 10−×  nM for each gene. The 

calculation is carried out as follows: a radius of lateral neuron in Drosophila is about 5 – 
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6 μm (Ewer, Frisch et al. 1992), and 5 μm is taken in our model. The volume of the cell 

is 3 -13V = 4/3 π r  = 5.23 10 L.×  Therefore, the number of molecules that corresponds to 1 

nM is -13 -9 231 nM = (5.23 10 L)(10 mole/L)(6 10 molecules/mole) 314 molecules.× × ≈  

 

9. Because concentrations of ‘clock’ mRNAs and proteins in the cell are not known and 

only relative concentration abundance were measured, we follow one of the previous 

theoretical models (Vilar, Kueh et al. 2002) and assume around 1000 protein molecules 

and 100 mRNA molecules in a cell, which correspond to roughly protein concentrations 

of 3 –  4 nM and mRNA concentrations of 0.3 – 0.4 nM. 

 

3.2. Kinetic equations 

 

The model schematised in Figure 2 is described by 19 differential equations outlined 

below. For clarity, we group these equations into four categories. For the better 

visualisation, we write some of the variable names and rate constants in mixed normal 

and subscript fonts in the equations, they are however all written in normal font in Table 

1, 2 and 3. The name of mRNAs is written in lower case with a subscript ‘m’ denoting 

mRNA. The name of proteins and complexes is written in upper case. Abbreviations 

used for variable names are: PDP for PDP1, CC for CLK/CYC dimer, PT for PER/TIM 

dimer and CCPT for CLK/CYC/PER/TIM complex. The biochemical meaning of the 

parameters is explained in Table 1. 

 

1. Probabilities of transcription factors binding to a binding site (E-box or V/P box) in 

promoters: 

 

The binding probabilities defined in the model are CLK/CYC binding to an E-box 

element in the per promoter ( Prcper ), in the tim promoter ( Prct ), in the vri promoter 

( Prcv ), and to the pdp1 promoter ( Prcpdp ); VRI binding to a V/P box in the clk promoter 

( Prvc ), and PDP1 binding to that in the clk promoter ( Prpc ). The first term in the right 
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side of Eq. 1 – 6 denotes binding processes, and the second term denotes unbinding 

processes. A detailed derivation of the probabilities is provided in the appendix. 

 

 (Pr ) / (1 Pr ) Prcper cper p cper pd dt bccper CC ubccper= − × × − ×  (1) 

 

 (Pr ) / (1 Pr ) Prct ct p ct pd dt bcctim CC ubcctim= − × × − ×  (2) 

 

 (Pr ) / (1 Pr ) Prcpdp cpdp p cpdp pd dt bccpdp CC ubccpdp= − × × − ×  (3) 

 

 (Pr ) / (1 Pr ) Prcv cv p cv pd dt bccvri CC ubccvri= − × × − ×  (4) 

 

 (Pr ) / (1 Pr Pr ) Prvc vc pc p vc pd dt bvriclk VRI ubvriclk= − − × × − ×  (5) 

 

 (Pr ) / (1 Pr Pr ) Prpc vc pc p pc pd dt bpdpclk PDP ubpdpclk= − − × × − ×  (6) 

 

 

2. mRNAs of per, tim, clk, vri and pdp1: 

 

The first three terms in the right side of Eq. 7 and the first two terms in that of Eq. 8 – 

11 describe the transcriptional processes, which are explained in detail in the appendix; 

the last term in these equations describes the degradation processes of mRNAs. 

 

 
( ) / Pr Pr (1 Pr Pr )m vc p pc p vc pc p

m

d clk dt tcvriclk tcpdpclk tcclk

dclkm clk

= × + × + − − ×

− ×
 (7) 

 

 ( ) / (1 (1 Pr ) ) (1 Pr )npt npt
m cper p cper md per dt tcccper tcdvpmt dperm per= − − × + − × − × (8) 

 

 ( ) / (1 (1 Pr ) ) (1 Pr )npt npt
m ct p ct md tim dt tccctim tcdvpmt dtimm tim= − − × + − × − ×  (9) 
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 ( ) / (1 (1 Pr ) ) (1 Pr )nvri nvri
m cv p cv md vri dt tcccvri tcdvpmt dvrim vri= − − × + − × − ×  (10) 

 

 
( ) / (1 (1 Pr ) ) (1 Pr )npdp npdp

m cp p cp

m

d pdp dt tcccpdp tcdvpmt

dpdpm pdp

= − − × + − ×

− ×
 (11) 

 

 

3. PER, TIM, CLK, VRI and PDP1 proteins: 

 

The first term in the right side of Eq. 12 – 16 expresses the transcriptional processes, 

and the last term expresses the degradation processes of proteins. The second term in 

that of Eq. 12 – 14 denotes the association of complexes, and the third term denotes the 

dissociation of complexes. 

  

 ( ) / md PER dt tlper per bpt PER TIM ubpt PT dper PER= × − × × + × − ×  (12) 

 

 ( ) / md TIM dt tltim tim bpt PER TIM ubpt PT dtim TIM= × − × × + × − ×  (13) 

 

( ) / md CLK dt tlclk clk bcc CLK ubcc CC dclk CLK= × − × + × − ×   (14) 

 

 ( ) / md VRI dt tlvri vri dvri VRI= × − ×  (15) 

 

 ( ) / md PDP dt tlpdp pdp dpdp PDP= × − ×  (16) 

 

 

 

4. PER/TIM, CLK/CYC and PER/TIM/CLK/CYC complexes: 

 

The first and second terms in Eq. 17 – 19 describe the association and dissociation of 

PT, CC and CCPT complexes, respectively, and the last term describes the degradation 
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processes of these complexes. The third and fourth terms in Eq. 17 – 18 denote the 

association and dissociation of CCPT complex. 

 

 
( ) /d PT dt bpt PER TIM ubpt PT bccpt PT CC ubccpt CCPT

dpt PT
= × × − × − × × + ×
− ×

 (17) 

 

 
( ) /d CC dt bcc CLK CYC ubcc CC bccpt PT CC ubccpt CCPT

dcc CC
= × × − × − × × + ×
− ×

(18) 

 

 ( ) /d CCPT dt bccpt PT CC ubccpt CCPT dccpt CCPT= × × − × − ×  (19) 

 

 

3.3. Parameters and initial conditions 

 

Experimental data to estimate parameter values are lacking. Although some information 

is available about the relationship between the transcription, translation and degradation 

of mRNAs and proteins rates in the circadian clock in plants (Shu and Hong-Hui 2004), 

no quantities for the rates have been determined. Therefore, to obtain appropriate values 

for the parameters in the model, it is necessary to rely on trial-and-error validation. 

Criteria for parameter estimation are that the model should produce sustained circadian 

oscillations of mRNAs and proteins, correct measured phase relationships between gene 

expression and proteins, and appropriate time delays between mRNAs and proteins 

under the condition of constant darkness. In addition, circadian oscillations should be 

robust in respect to parameter variations. Because this set of parameters remains 

unchanged during most of simulations, with exceptions noted in the text, we call this set 

the “standard parameters”. The standard parameters are shown in Table 1. Time is in 

hourly units. Concentrations are referenced to the total cell volume, and are in units of 

nM. 

 

(Table 1) 
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Because the system governed by Eq. (1) to (19) can maintain sustained, periodic 

oscillations using the standard set of parameters regardless of initial conditions, the 

initial conditions have no influence on the final state of the system. However, to 

eliminate the transient dynamics from the initial state to the stable oscillation state, we 

use the initial conditions listed in Table 2. The concentrations for each gene are 

constant. Additionally, as explained above, the concentration of CYC is also assumed to 

be constant. These fixed values are listed in Table 2 and remarked by a ‘*’. 

(Table 2) 

 

4. Simulation methods and results 

 

All simulations were done using Matlab and ‘ode15s’ function was used to numerically 

solve the equations (The MathWorks, Natick, MA, U.S.A). The simulations were also 

verified by CellDesigner (Funahashi 2003). The analysis of parameter sensitivity was 

performed with SBtoolbox (Schmidt and Jirstrand 2005). The SBML format file of the 

model is available upon request. 

 

 

4.1. Circadian oscillations in constant darkness (DD) 

 

For simulations under conditions of DD, the parameters did not change in the course of 

time. Numerical solution of the model showed sustained oscillations with 24 h period in 

the concentrations of per, tim, vri, pdp1 and clk mRNAs and their corresponding 

proteins using the standard parameter set given in Table 1. 

 

Oscillations in mRNA concentrations from the simulation were plotted in Figure 3A. 

The oscillations of per and tim mRNAs are in phase and their levels peak at circadian 

time (CT)12. The oscillation of clk mRNA is in anti-phase with per and tim mRNAs; it 

peaks at CT3 and subsequently bottoms in CT13.5. These results are consistent with 

observations that per and tim mRNA levels oscillate in phase to one another and they 
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reach peak levels early in the evening at CT12 – CT16 (Hardin, Hall et al. 1990); clk 

mRNA levels oscillate in anti-phase to per and tim mRNA levels and clk mRNA levels 

peak at late night to early in the morning (CT23 – CT4) (Bae, Lee et al. 1998); the 

simulated concentration of vri mRNA reaches a peak at CT11.5 and that of pdp1 mRNA 

reaches its maximum at CT13.5 with a 2 h delay. This agrees with experimental data 

that vri mRNA oscillates in anti-phase with clk mRNA, and pdp1 mRNA oscillates with 

a similar phase to vri mRNA after several hours delay (Cyran, Buchsbaum et al. 2003; 

Glossop, Houl et al. 2003). 

 

Figure 3B illustrates the oscillations in concentrations of proteins. On the one hand, the 

peaks of PER and TIM concentrations are at CT15, the peak of VRI concentration is at 

CT12 and that of PDP1 is at CT18. On the other hand, the concentration of CLK peaks 

at CT4.5 and bottoms at CT14.5. In vitro experimental data showed that protein levels 

of PER and TIM are at their highest in the middle of the night with 4 h – 6 h delay to 

their mRNA peaks (Zeng, Qian et al. 1996), and a lag of 3 h – 6 h exists between the 

rise of VRI and that of PDP1 (Cyran, Buchsbaum et al. 2003). The phase of the 

maximum and minimum from the simulated results are all in good agreement with the 

experimental observations. 

 

(Figure 3) 

 

4.2. Robustness to parameter variations 

 

Robustness is the ability of a system to maintain its functionality across a range of 

operational conditions. Robustness for cells means that cells can function normally with 

modest environmental changes, which might cause variability in concentrations of 

cellular components and in parameters of cellular biochemical reactions. Biochemical 

parameters may be also vary from individual cell to cell due to intrinsic differences 

from each other. The circadian clock is known to have the ability of regulating the phase 

relationships of different physiological processes in a daily cycle. Normally, it should 

maintain circadian rhythms with a period close to 24 h regardless of parameter 
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variations. It has been reported that there is only 0.1 h variation from the mean value of 

24.3 h for wild-type (WT) flies (Levine, Funes et al. 2002). In another report, 0.06 h 

variation from the mean value has been found at o29 C , and 0.1 and 0.2 h variations at 
o20 C  and o25 C , respectively (Bao, Rihel et al. 2001). It should be noted that under 
o20 C  and o25 C , there are non-negligible percentages of flies appearing arrhythmic 

(4/15 and 3/20, respectively). Therefore in a model of the circadian clock, modest 

parameter variations should only result in minor period changes given that arrhythmic 

flies are not considered. 

 

 As there are 44 parameters to be tested (not including three parameters for the number 

of E-boxes in promoters), it is not possible to explore the behaviour of the system in full 

dimensional parameter spaces. To investigate the behaviour of the system to parameter 

variations, we followed the methods used in previous models (Lema, Golombek et al. 

2000; Leloup and Goldbeter 2003; Smolen, Hardin et al. 2004). One parameter was 

changed at a time while keeping the others at their standard values. Perturbations were 

simulated by increasing or decreasing 20% from its standard value for each individual 

parameter. 

 

Oscillations were preserved in all the simulations. From Figure 4 we can see that the 

periods vary less than 0.8 h from the control values of 24 h with 20% perturbation to 

each parameter. The largest period increase (+0.75 h) is caused by increase in binding 

rate of PDP1 to clk promoter. The largest two periods of decrease are very close (-0.8 h), 

and are caused by a decrease in binding rates of CLK/CYC to pdp1 and per promoters. 

In comparison with previous models using Michaelis-Menten kinetics (Leloup and 

Goldbeter 2003; Smolen, Hardin et al. 2004), our model had a less period variation. 

 

(Figure 4) 

 

4.3. Response of the circadian clock to light 
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On the one hand, the circadian clocks are robust to parameter variations, on the other 

hand, a fundamental characteristic of the circadian clocks is that they are also entrained 

(phase-adjusted) by Zeitgeber (Zeitgeber means “time giver”, it provides an 

environmental time cue). This entrain-ability gives the circadian systems a proper phase 

in synchrony with the outside world. Although both ambient light and temperature 

cycles on a daily basis, light is often thought to be the predominant Zeitgeber. Here we 

test the entrain-ability of our circadian clock model in response to light. 

 

Entrainment by light is generally considered by changing particular parameters in the 

circadian clocks. In Drosophila, it has been shown experimentally that light enhances 

degradation of TIM, and consequently degradation of TIM in the light alters the level of 

other clock components and, thus, resets of phase of a oscillator (Zeng, Qian et al. 

1996). In terms of modelling, increase in TIM degradation rate has been used to model 

light response and entrainment to LD cycles in some previous models (Leloup and 

Goldbeter 1998; Tyson, Hong et al. 1999). As TIM stabilises PER in the cytoplasm, the 

indirect effect of light is to regulate the localisation of PER and in turn to decrease the 

PER level in the nucleus. Therefore, change in degradation rate of PER has also been 

used in some models (Scheper, Klinkenberg et al. 1999; Lema, Golombek et al. 2000; 

Smolen, Hardin et al. 2004). Indeed, experimental findings have shown that tim01 

mutants inducing an absence of TIM lead to a substantial lowering of PER abundance 

(Vosshall, Price et al. 1994; Price, Dembinska et al. 1995), an effect that happens to be 

similar to the result of exposing flies to constant light (Zerr, Hall et al. 1990; Price, 

Dembinska et al. 1995). Because we did not include the detailed translocation 

mechanisms of PER and TIM into the nucleus, as well as associated Sgg-dependent 

TIM phosphorylation and CK2-dependent PER phosphorylation processes in the model 

(Shafer, Rosbash et al. 2002), we simulated the effect of light by increasing the 

degradation rates of both TIM and PER. Consequently, a new parameter klight replaced 

dtim and dper to denote the new degradation rates. 

 

To model entrainment to LD cycles we used a higher value of klight ( > 0.62) in the light 

phase at Zeitgeber time (ZT) 0 –  ZT12, and restored its original dark value (0.62) 

during the dark phase ZT12 –  ZT24. The value of klight during light phase was 
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arbitrarily chosen. Figure 5A shows that oscillations in all proteins are maintained 

during entrainment by LD. The phase and anti-phase relationship between mRNAs and 

proteins (data not shown) were also maintained as in condition of DD. Simulations have 

shown that the phase changes are dependent upon the magnitude of klight during light 

exposure. For ease of comparison in the phase changes, we plotted CLK concentration 

using different klight  values in Figure 5B, which shows the phases have been delayed for 

several hours depending on the different klight values we chose. 

 

As shown experimentally, disappearance of the rhythmicity in flies in constant light 

(LL) can also be simulated by holding klight at a high constant value. It was found that 

the oscillations were damped in LL when klight value was close or more than five. We 

plotted the damped protein oscillations using a klight value of five in Figure 5C. 

 

(Figure 5) 

 

Next we investigated the oscillatory behaviour of the clock model under influence of 

light pulse. Phase responses were simulated by applying a 2 h duration light pulse to the 

system at different time points during the free-running conditions of DD. Two hours 

duration was chosen since normally 1 – 4 h duration was used in previous models 

(Leloup, Gonze et al. 1999; Smolen, Hardin et al. 2004). The phase shifts were 

determined from the difference in the maximum values of a specified protein between 

the free-running system and the perturbed system. Because all the proteins oscillate with 

a same period, the choice of protein should not make any difference to the phase shifts. 

The phase shifts were measured after the transient effect of the light pulse was over. 

This procedure was applied 24 times by increasing one hour in the time of application 

of the light pulse each time. Phase response curve (PRC) was determined by plotting the 

phase shifts as a function of the circadian time at which perturbation was applied. We 

defined CT0 – CT12 as subjective day and CT12 – CT24 as subjective night.  

 

Similar to the simulations of entrainment by LD, the effect of light pulse was simulated 

by replacing degradation rates of PER and TIM by klight. Simulations showed that the 
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magnitude of the phase shifts varied depending on the value of klight. The bigger the 

value, the more significant phase shifts obtained (data not shown). The best fit with 

experimental PRC was obtained by using klight=1.3 as plotted in Figure 6. Like the 

PRC plot in Smolen et al. (2004), the mean value of the PRC obtained by Konopka et 

al. (1991) was also plotted for comparison. 

 

From Figure 6, it is shown that the simulated data show a consistent 5 h time lag from 

the experimental data. To clearly compare the actual values of the theoretical PRC from 

our model with the PRC obtained from the in vitro experimental, we shifted the 

simulated PRC by advancing it by 5 h. The reason of a 5 h lag between the theoretical 

(simulated) PRC and the experimental PRC could be that we did not include 

phosphorylation of PER and TIM and the separate nuclear and cytoplasmic 

compartments in the model. However, phosphorylation and nuclear entry of PER and 

TIM provide an important time delay between cytoplasmic PER and TIM and nuclear 

PER/TIM. This time delay also implies a time lag between the effects of light and the 

repression of CLK/CYC by PER/TIM, which is not presented in the current model. 

 

(Figure 6) 

 

4.4. Mutations 

 

A number of mutations that influence circadian rhythms have been reported in 

Drosophila. Mutations can be readily simulated in the model by changing particular 

parameters according to the functionality of mutants while keeping the rest of 

parameters as in the standard set. 

 

We first explored E-box mutations. As explained in Section 2, we use the number of E-

boxes of five in the per and tim genes, six in the pdp1 gene and four in the vri gene. 

Here we reduced the number of E-boxes in one gene and kept the others unchanged for 

a single E-box mutation. We also reduced the number of E-boxes in more than one gene 

simultaneously for multiple E-boxes mutations. In all the simulations, oscillations in 
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concentrations of all the mRNAs and proteins were preserved with a shorter period and 

at lower amplitudes. The periods of the oscillations and the amplitudes of the phases 

were reduced by different extents for different E-box mutations. Figure 7 shows mRNA 

oscillations where only one copy of E-box exists in each gene. The phase and anti-phase 

relationship between mRNAs are maintained and the period of oscillations (22.5 h) is 

close to WT, as shown in Figure 3. The notable difference between the E-box mutation 

and WT is that the transcription levels of all the genes are reduced. This is consistent 

with experimental observations that the rhythmic per and tim transcription are remained 

in E-box mutations, although the transcription level is reduced (McDonald and Rosbash 

2001). 

 

(Figure 6) 

 

Next we tested some arrhythmic mutants. In Drosophila per01, tim01 and clkJrk refer to 

null mutations in per, tim and clk genes which produce non-functional proteins. These 

mutations were simulated by setting the translation rates of their respective proteins to 

zero. Figure 8 illustrates that sustained oscillations are abolished in per01, tim01 and 

clkJrk. The results are consistent with the reports that rhythmicity of per, tim and clk 

mRNAs is blocked in per01, tim01 and clkJrk (Bae, Lee et al. 1998), and oscillations in 

pdp1 and vri mRNA levels are also blocked by these mutations (Cyran, Buchsbaum et 

al. 2003). However some simulated mRNA levels, particularly per and tim, greatly 

differ from the experimental reports. Experiments have shown that in mutants lacking 

PER (per01) and TIM (tim01),  per and tim mRNA levels are constitutive and low (So 

and Rosbash 1997); vri mRNA levels are at intermediate (Blau and Young 1999); pdp1 

mRNA levels are high (Cyran, Buchsbaum et al. 2003); and the levels of clk mRNA are 

low (Glossop, Lyons et al. 1999). The simulated results show high levels of per, tim, vri 

and pdp1 mRNAs and a low level of clk mRNA (Figure 8A). These results can be 

explained by the structure of the model: per01 and tim01 induced absences of PER and 

TIM lead to a loss of PER/TIM, which, in turn, causes a very high level of CLK. As the 

activation effects of CLK/CYC, per, tim, vri and pdp1 mRNAs are all higher than their 

peaks in WT. Consequently, high concentrations of VRI and PDP1 are produced. 

Because we have assumed that VRI has a stronger binding ability to the clk promoter 
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than PDP1 (probabilities of VRI and PDP1 binding to the clk promoter are 0.65574 and 

0.304181 in this condition from calculation), strong repression from VRI makes a low 

level of clk mRNA. 

 

In clkJrk flies, experimental data have shown low levels of per, tim, vri and pdp1 

mRNAs (Allada, White et al. 1998; Cyran, Buchsbaum et al. 2003), and a high level of 

clk mRNA which is near the WT peak (Glossop, Lyons et al. 1999). The simulated data 

(Figure 8B) agree in terms of the low levels of per, tim, vri and pdp1 mRNAs, but show 

a disparity in the low level of clk mRNA. The mechanism underlying these resulting 

data from the model can be explained as follows. Because of the absence of activation 

effects which are from functional CLK, low levels of per, tim, vri and pdp1 mRNAs are 

produced. Consequently, low levels of PER, TIM, VRI and PDP1 follow. A small 

amount of clk mRNA is present because the repression effect from VRI is higher than 

the activation effect from PDP1 under the assumptions of this model. 

 

(Figure 8) 

In vitro experiments, besides arrhythmic mutants in Drosophila,  a number of short and 

long mutants also have been observed. For example, perL mutants lengthen the free-

running periods to 29 h and perS mutants shorten the free-running periods to 19 h 

(Konopka and Benzer 1971). It was suggested in a previous theoretical study that 

Drosophila’s  perS and perL mutants can be modelled computationally by altering 

stability of the PER protein or PER-protein interactions (Ruoff and Rensing 1996). In 

our model, perS mutants were simulated by setting a enhanced rate of degradation of the 

PER/TIM dimmer (dpt) according to the results from Curtin el al. (1995). Similar to the 

simulations carried out by Ruoff et al. (2005), perL mutants were represented by 

increasing in the PER/TIM stability although this has not been experimentally 

confirmed. Figure 9 shows the PER plots of perS and perL mutants with a period of 19 h 

and 29 h where the degradation rate of PER/TIM was set to 0.9 and 0.08, respectively. 

In vitro experiments, it has been shown that nuclear entry of PER is delayed in the three 

perL types compared with that in WT flies (Curtin, Huang et al. 1995; Lee, Parikh et al. 

1996) and a larger proportion of PERS are phosphorylated at an earlier time in the 

morning than PER in perS mutants (Edery, Zwiebel et al. 1994). However, as the current 
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model does not include phosphorylation of PER and separation of the nucleus and the 

cytoplasm, we intend to simulate these experimental findings in a more complete model 

in future. 

 

5. Discussion 

 

In this research we have presented a model for the circadian clock in Drosophila 

incorporating the key clock component genes identified so far. This model has unique 

properties compared with most previous models. (1) The model incorporates the 

transcriptional regulation of the per, tim, vri, pdp1 and clk genes. (2) Conventional Hill 

functions to describe the regulation of gene expression are not assumed in the model; 

this paves the way to study for transcriptional regulation in the circadian clock at a more 

detailed level. (3) First-order reactions are used to describe translation and degradation 

processes; this makes the model simple and easy to analyse. 

 

Using a set of parameters, the model produces autonomous sustained oscillations in 

conditions corresponding to constant darkness. The simulated results show right phases 

of all the components in the system, correct phase and anti-phase relationship of 

mRNAs and proteins, as well as appropriate lags between mRNAs and proteins. These 

are in good agreement with experimental data. The model also accounts for the 

disappearance of the oscillations in constant light. 

 

Robustness is an important characteristic of the circadian clock, which should produce 

close to 24 h periodic oscillations regardless of modest variations in parameters under 

certain conditions. We have measured the variations in period by increasing and 

decreasing each parameter 20% at a time. The oscillatory patterns remain in all the 

cases with the largest period variation being around 0.8 h for 20% parameter 

perturbations. Parameter sensitivity analysis has suggested that several of the most 

sensitive parameters are binding rate of PDP1 to clk promoter, and binding rates of 

CLK/CYC to pdp1 and per promoters. These are all positive elements in the network. 
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It is also essential that the circadian clock should have the ability to reset phases in 

response to Zeitgeber, where light is the most important. We have simulated the effect 

of light by increasing the degradation rates of TIM and PER. Simulations have shown 

the entrainment of the system by LD cycles and the induction of phase shifts by light 

pulses. In the entrainment by LD, the phase relationship in mRNAs and proteins are 

well maintained with a period of 24 h and the phase of oscillations is delayed depending 

on the particular degradation rates we chose. We have also constructed a phase-response 

curve to represent the phase shifts induced by temporal promotion of TIM and PER 

degradation. When shifting the simulated PRC by advancing it for 5 h, the agreement 

between the shifted and experimental PRCs appears very good. Both data show a dead 

zone in the middle of the subjective day, a phase delay during the early subjective night, 

and a phase advance during the late subjective night. The time lag between the 

simulated and the experimental data suggests that some unpresented mechanisms in the 

model, such as phosphorylation and nuclear entry of TIM and PER, are important to 

provide a time delay in response to light. 

 

We also have carried out a number of tests for simulating mutations. Mathematical 

mutants are simulated by setting an appropriate parameter value according to the 

functionality of mutants. The simulated short and long mutants, perS and perL , resemble 

their phenotypes where 19 h and 29 h of period are found, respectively. In arrhythmic 

mutants, oscillations of all the mRNAs and proteins are blocked in per01, tim01 and clkJrk 

as shown in experiments. However, some mRNAs levels differ significantly from the 

experimental data. In particular simulated data have shown high levels of per and tim 

mRNA in per01 and tim01 and low level of clk mRNA in clkJrk, which are opposite values 

to those found in the experiments. This deficiency obviously comes from the structure 

of the model, as discussed previously. In the model we assume that the per, tim, vri, and 

pdp1 promoters are all strongly activated by CLK/CYC. The low levels of per and tim 

mRNAs in per01 and tim01 cannot be explained by this model because the loss of 

PER/TIM directly results in a high level of CLK and, consequently, high levels of per 

and tim mRNAs. Furthermore, although the assumption of strong binding ability of VRI 

to CLK gives a reasonable low level of clk mRNA in per01 and tim01, this assumption 

nevertheless produces a low level of clk mRNA in clkJrk, which is, again, different from 

the experimental observations in which a high level of clk mRNA is found. The 
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deficiency of the model could indicate the possibility of unknown part in the genetic 

regulatory network of the circadian clock in Drosophila. 

 

An important property of the model, which distinguishes it from the previous models, is 

the way that the regulation of transcription processes is modelled. In previous models, 

transcriptional regulation was modelled by Hill functions without explicit descriptions 

of binding and unbinding processes of transcription factors to E-boxes elements in 

promoters (Allada, White et al. 1998; Leloup and Goldbeter 1998; Glossop, Lyons et al. 

1999; Ueda, Hagiwara et al. 2001; Smolen, Hardin et al. 2004). Hill cooperativity 

coefficient may correspond to the number of binding sites of genes (Hill 1910; Segel 

1993). Different models used different Hill cooperativity coefficients to make sustained 

oscillations. The exact value of the minimum cooperativity coefficients depends on the 

choice of the model structure and model parameters. In most of the previous models, a 

Hill coefficient of more than one was used to describe the activation of per expression 

by CLK or repression of per expression by PER to create oscillations, whereas in some 

models it was found that oscillations were preserved with a Hill coefficient of one if 

other parameters were properly chosen (Leloup and Goldbeter 1998; Tyson, Hong et al. 

1999; Kurosawa, Mochizuki et al. 2002). Using the explicit description of transcription 

factors binding to promoters and activating or repressing gene expressions, our model 

can readily take account of different binding sites and cooperativity. The simulation has 

shown that even with one E-box in per, tim, vri and pdp1 promoters, oscillations are 

preserved with reduced transcription levels in agreement with in vitro experiments that 

only one copy of E-box does not abolish rhythmic per and tim transcription, although 

the transcription levels are reduced (McDonald and Rosbash 2001). 

 

Finally, we would like to make some comparisons with two previous models as the core 

mechanisms of these models are similar (Smolen, Hardin et al. 2004; Ruoff, Christensen 

et al. 2005). All the models contain two interlocked transcription and translation 

feedback loops where, on the one hand, PER represses its own gene expression by 

binding to its activator CLK and, on the other hand, VRI and PDP1 regulate the gene 

expression of clk. 
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In the model proposed by Ruoff et al. (2005), the core mechanism is that VRI and PDP1 

regulate clk expression with negative and positive feedback loops and CLK, the product 

of clk expression, activates vri, pdp1 and per/tim (two genes were combined) 

expression. The simulation showed that VRI and PDP1 feedback loops generated 

sustained oscillations even in the absence of PER/TIM. Therefore, the authors 

concluded that positive and negative feedback loops of VRI and PDP1 were essential 

for the overall oscillations, whereas PER/TIM played a role in amplification and 

stabilization of the oscillations. This result is in contrast to the findings from the model 

proposed by Smolen et al. (2004) in which the PER feedback loop was found to be 

crucial for oscillations. Ruoff et al. (2005) suggested that the discrepancy of the findings 

may be because Smolen’s model used differential equations with delay terms where 

delay terms alone can generate oscillation. In our model, per01 and tim01 mutants 

suggested that PER and TIM are required for the oscillations of all the mRNAs and 

proteins, and removal of VRI and/or PDP1 feedback loops did not remove rhythmicity 

of per, tim and clk expression. Our findings confirm the roles of the PER/TIM and 

VRI/PDP1 feedback loops made by Smolen et al. using a different model without delay 

terms involved. 

 

The main difference in terms of model representation between Smolen’s and the present 

model is that different assumptions are used to capture the essence of various 

interactions. Smolen’s model uses Hill functions and Michaelis-Menten rate expression 

describing transcriptional activation and phosophorylation processes, and discrete time 

delay terms are included in the equations to describe the time lags between proteins. 

Our model takes account of binding and unbinding processes of transcription factors to 

promoters but ignores the nuclear entry of proteins and phosophorylation of PER. 

However, the simulated results of two models are very similar regarding oscillations in 

constant darkness, photic entrainment of oscillations, the PRC and null mutations of per 

and clk. Nevertheless different predictions are made by two models. For example, E-box 

mutations are readily simulated in our model whereas some short and long period 

mutants are observed in Smolen’s model. This confirms the statement made by Murray 

James (2002) that different mathematical models might be able to create similar 

behaviours and they are mainly distinguished by the different predictions they suggest 

and how close they are to the real biology. As both models have been simplified to some 
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extent from the real network, we expect that a more sophisticated model should be 

developed in future as more data emerge from experiments. 

 

In summary, we have presented a circadian clock model to represent biochemical 

mechanisms responsible for the circadian rhythms in Drosophila for simulating free-

running periods, entrainment to light, phase responses and mutants. This model can 

provide a means to investigate the complicated genetic regulatory network of the 

circadian clock. Some possible improvements of the present study are: (1) inclusion of 

more detailed post-transcriptional and post-translational regulations, such as 

phosphorylation of proteins; (2) inclusion of separate compartments in an extended 

model; (3) conversion to stochastic models to explore stochastic effects in terms of 

internal noise and external perturbations. 
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Appendix 

 

1. Probabilities of CLK/CYC binding to E-boxes in per, tim, vri and pdp1 promoters 

and transcription rates of their genes 

 

Suppose there are n E-boxes in a promoter where CLK/CYC dimers can bind. Since we 

assume that CLK/CYC dimers bind to individual E-box independently, we can consider 

each E-box separately. The binding and unbinding processes of CLK/CYC to an E-box 

can be formulated below: 

 

 bt

bt

b

ub
B T BT+ , (20) 

 

where B is the binding site, i.e. an E-box; T is the transcription factor CLK/CYC; and 

BT  denotes CLK/CYC bound to the E-box; btb  is rate of CLK/CYC binding to the E-

box and btub  is the rate of CLK/CYC releasing from the E-box. We can get Eq. (21) 

using mass-action kinetics, 

  

 [ ] / [ ] [ ] [ ]bt btd BT dt B T b BT ub= − . (21) 

 

Suppose the volume of the cell is .V  The number of B and BT in the cell are [ ]B V  and 

[BT] .V  Since the total number of B and BT, is n, then we get 

 

 [ ] / (( / ) [ ]) [ ] [ ]bt btd BT dt n V BT T b BT ub= − − . (22) 
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Let Prbt  be the number of occupied E-boxes over the total number of E-boxes. [BT] = 

Total number of E-boxes /V × Prbt . Since the total number of E-boxes is n, Eq. (22) 

becomes 

 (( / ) Pr ) / (( / ) ( / ) Pr ) [ ] ( / ) Prbt bt bt bt btd n V dt n V n V T b n V ub= − − . (23) 

 

Simplify it to 

 Pr / (1 Pr ) [ ] Prbt bt bt bt btd dt T b ub= − − . (24) 

 

Now we can calculate probabilities for CLK/CYC binding to the whole promoter in a 

gene. Assume CLK/CYC can bind independently to any of n E-boxes and if one or 

more E-boxes are bound, transcription of that gene is activated at a rate avtc  otherwise 

at a deactivated rate dvpmttc . The probability of none of E-boxes being bound is 

(1 Pr ) .n
bt−  The rate of transcription would then be 

 (1 (1 Pr ) ) (1 Pr )n n
av bt dvpmt bttc tc− − + − . (25) 

 

2. Probabilities of VRI and PDP1 binding to V/P box in clk promoter and transcription 

rate of clk gene 

 

Assume there is only one binding site B, i.e. V/P box, in the clk promoter and an 

activator PDP1, denoted by A, and a repressor VRI, denoted by R, compete to bind that 

site. We write the reactions as below: 

 

 ba

ba

b

ub
B A BA+ ; (26) 

 br

br

b

ub
B R BR+ . (27) 
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Where bab  is rate of PDP1 binding to the V/P box, and baub  is rate of PDP1 releasing 

from V/P box; brb  is rate of VRI binding to the V/P box, and brub  is rate of VRI 

releasing from V/P box. We can get Eq. (26) and (27) simply using mass-action kinetics: 

 

 [ ] / [ ] [ ] [ ]ba bad BA dt B A b BA ub= − ; (28) 

 [ ] / [ ] [ ] [ ]br brd BR dt B R b BR ub= − . (29) 

 

Suppose the volume of the cell is V . The number of B, BA and BR in the cell are 

[B] ,V  [BA]V  and [BR] .V  As the total number of B, BA and BR is one, we eliminate 

B from the above two equations and get 

  

 [ ] / (1/ [ ] [ ]) [ ] [ ]ba bad BA dt V BA BR A b BT ub= − − − ; (30) 

 [ ] / (1/ [ ] [ ]) [ ] [ ]br brd BR dt V BR BA R b BT ub= − − − . (31) 

 

Let Prba  and Prbr  be the probabilities of A bound to B and R bound to B. We can write 

Eq. (30) and (31) in the form of probabilities: 

 

 Pr / (1 Pr Pr ) [ ] Prba ba br ba ba bad dt A b ub= − − − ; (32) 

 Pr / (1 Pr Pr ) [ ] Prbr ba br br br brd dt R b ub= − − − . (33) 

 

Assume if a PDP1 is bound to a V/P box, transcription of clk gene occurs at a rate of  

pctc ; if a VRI is bound to the V/P box, transcription rate is vctc  and if nether PDP1 nor 

VRI binds the V/P box, transcription occurs at a deactivated rate dvpmttc . The 

transcription rate of clk gene would then be 

 Pr Pr (1 Pr Pr )pc ba vc br dvpmt ba brtc tc tc+ + − − . (34) 
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Tables and figures 

Table 1 Parameters of the model: The units of binding rates and association rates are nM-1h-1 and 

the units of the other parameters are h-1. 

Parameter Index Value Biochemical significance 

bccpdpp 1 0.062 binding rate of CLK/CYC to an E-box in pdp1 promoter 

bccperp 2 0.069 binding rate of CLK/CYC to an E-box in per promoter 

bcctimp 3 0.069 binding rate of CLK/CYC to an E-box in tim promoter 

bccvrip 4 0.1 binding rate of CLK/CYC to an E-box in vri promoter 

bpdpclkp 5 1.155 binding rate of PDP1 to a V/P box in clk promoter 

bvriclkp 6 1.858 binding rate of VRI  to a V/P box in clk promoter 

ubccpdpp 7 0.145 unbinding rate of CLK/CYC to an E-box in pdp1 promoter 

ubccperp 8 0.262 unbinding rate of CLK/CYC to an E-box in per promoter 

ubcctimp 9 0.262 unbinding rate of CLK/CYC to an E-box in tim promoter 

ubccvrip 10 0.276 unbinding rate of CLK/CYC to an E-box in vri promoter 

ubpdpclkp 11 0.952 unbinding rate of PDP1 to a V/P box in clk promoter 

ubvriclkp 12 1.043 unbinding rate of VRI  to a V/P box in clk promoter 

bcc 13 2.349 association rate of CLK/CYC dimer 

bpt 14 1.1 association rate of PER/TIM dimer 

bccpt 15 51 association rate of CLK/CYC/PER/TIM complex 

ubcc 16 0.89 dissociation rate of CLK/CYC dimer 

ubpt 17 2.93 dissociation rate of PER/TIM dimer 

ubccpt 18 7.89 dissociation rate of CLK/CYC/PER/TIM complex 

tcccpdpp 19 9.831 transcription rate of CLK/CYC-activated pdp1 gene 

tcccperp 20 11 transcription rate of CLK/CYC-activated per gene 

tccctimp 21 11 transcription rate of CLK/CYC-activated tim gene 

tcccvrip 22 16.86 transcription rate of CLK/CYC-activated vri gene 

tcpdpclkp 23 125.54 transcription rate of PDP1-activated clk gene  

tcvriclkp 24 0.028 transcription rate of VRI-repressed clk gene 

tcclkp 25 1.42 transcription rate of clk gene binding neither PDP1 nor VRI 

tcdvpmt 26 0.053 transcription rate of deactivated per, tim, vri or pdp1 gene 

tlclk 27 35 translation rate of clk mRNA 

tlpdp 28 1.87 translation rate of pdp1 mRNA 

tlper 29 36 translation rate of per mRNA 

tltim 30 36 translation rate of tim mRNA 

tlvri 31 14.68 translation rate of vri mRNA 
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dclkm 32 0.643 degradation rate of clk mRNA 

dpdpm 33 0.06 degradation rate of pdp1 mRNA 

dperm 34 0.053 degradation rate of per mRNA 

dtimm 35 0.053 degradation rate of tim mRNA 

dvrim 36 0.07 degradation rate of vri mRNA 

dclk 37 0.2 degradation rate of CLK protein 

dpdp 38 0.156 degradation rate of PDP1 protein 

dper 39 0.62 degradation rate of PER protein 

dtim 40 0.62 degradation rate of TIM protein 

dvri 41 1.226 degradation rate of VRI protein 

dpt 42 0.279 degradation rate of PER/TIM dimer 

dcc 43 0.184 degradation rate of CLK/CYC dimer 

dccpt 44 15.122 degradation rate of CLK/CYC/PER/TIM complex 

npt 45 5 number of E-boxes in per or tim promoter 

nvri 46 4 number of E-boxes in vri promoter 

npdp 47 6 number of E-boxes in pdp1 promoter 
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Table 2 Initial conditions. Abbreviations: CC – CLK/CYC, PT – PER/TIM, CCPT – 

CLK/CYC/PER/TIM. Constant values in the system are remarked by *. 

Specie Concentration 

(nM) 

Specie Concentration 

(nM) 

CC 0.5566 clkp* 0.003185 

CCPT 0.4982 pdpp* 0.003185 

CLK 3.6628 perp* 0.003185 

clkm 0.2583 timp* 0.003185 

PDP 4.1953 vrip* 0.003185 

pdpm 0.3175   

PER 2.7527   

perm 0.2395  Probability  Value 

PT 0.4014 prcpdp 0.08 

TIM 2.7527 prcper 0.0431 

timm 0.2395 prct 0.043 

VRI 3.175 prcv 0.0585 

vrim 0.2571 prpc 0.426 

CYC* 100.0 prvc 0.489 

 



 - 34 - 

 

 

 

 

Figure 1 Two interacted loop model (Adapted from Cryan, 2003): In summary, circadian rhythms 

are generated by the action of two interacting feedback loops, named the PER/TIM loop and the 

VRI/PDP1 loop. In the first loop, rhythmic transcription of the per and tim genes is controlled by 

feedback from their own protein products, which form PER/TIM dimers and inhibit the activity of 

their positive transcription factors CLK/CYC dimers. In the second loop, transcription of vri and 

Pdp1 genes is activated by CLK/CYC, and their products VRI and PDP1 activate and repress clk 

gene respectively.  The two feedback loops are linked together by requirement of CLK/CYC 

dependent transcription and start simultaneously.  
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Figure 2 The schematic diagram of the model. The model shows the regulatory relationships among 

genes, mRNAs and proteins in the negative and positive transcriptional feedback loops. 

Transcription of per, tim, vri and pdp1 genes are activated by CLK/CYC dimers binding to E-boxes 

in their promoter regions.  In one loop, per and tim mRNAs are translated to PER and TIM 

proteins which form PER/TIM dimers. PER/TIM binds to CLK/CYC to form 

PER/TIM/CLK/CYC complex. In another loop, vri and pdp1 mRNAs are translated to VRI and 

PDP1 proteins. They compete to bind a V/P box in the promoter in clk gene. Transcription of clk 

gene is repressed by VRI and activated by PDP1. clk mRNA is translated to CLK which forms 

CLK/CYC dimer with CYC. Proteins, mRNAs, dimers and complexes are degraded at certain 

kinetic rates. CYC is assumed to be constant therefore there is no degradation of CYC. Variable 

names used in the model are indicated in the parentheses. The number of E-boxes in the promoters 

is not shown here. 
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Figure 3 Sustained oscillations for the concentrations of the mRNAs and the proteins: (A) 

Oscillations for the mRNAs and (B) oscillations for the proteins. The Time scale of clk in (A) and 

PDP1 in (B) has been enlarged for better visualisation. 
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Figure 4 Period variations of the circadian oscillations in respect of parameter variations, one 

parameter was increased or decreased by 20% once while the other parameters were kept at the 

basal values. The most sensitive parameters are indicated. Parameter names corresponding to the 

parameter index are denoted in Table 1.



 - 38 - 

Time (h)
0 4 8 12 16 20 24

C
on

ce
nt

ra
tio

ns
 (n

M
)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

VRI
PDP1 
CLK 
PER and TIM

A 

 

Time (h)
120 124 128 132 136 140 144

C
on

ce
nt

ra
tio

n 
of

 C
LK

 (n
M

)

2.5

3.0

3.5

4.0

4.5

5.0

5.5
klight = 0.62, 0.68, 0.8 

 

B 

 

Time (h)
0 48 96 144 192 240 288

C
on

ce
nt

ra
tio

ns
 (n

M
)

0

2

4

6

8

10

VRI 

PDP1 

CLK 

PER and TIM 

C 

 



 - 39 - 

Figure 5  (A). Entrainment by LD cycle. klight is increased (0.8) during the light phase and remains 

at the original value (0.62) during the dark phase. Simulation was done with ZT0 lights on, ZT12 

lights off. (B). The phases of oscillations after entrainment depend on the different values of klight . 

We plotted the 6th cycle after the cycles were stable to eliminate the transient effect of light. (C). 

Rhythmicity disappears in constant light condition when klight > 5. A klight value of 5 was used to 

produce this figure. 
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Figure 6 Phase response curve (PRC) obtained by using klight = 1.3. The x-axis represents the time of 

onset of each light pulse, and on the y-axis positive values represent phase advance and the negative 

values represent phase delays. The means of experimental values for phase shifts from Konopka 

(1991) are denoted by diamonds. The simulated PRC is shown by the dashed curve and the shifted 

simulated PRC is shown by the solid curve. The shifted simulated PRC was obtained by advancing 

the simulated PRC by 5 h, and it is plotted here only for comparison purpose. 
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Figure 7 mRNA oscillations in E-boxes mutation simulation, where only one copy of E-box remains 

in each type of gene. 
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Figure 8 Simulation of arrhythmic mutants. Parameter values are as in Table 1, expect for tlper=0 

for per01, tltim=0 for tim01 and tlclk=0 for clkJrk. 
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Figure 9  Simulation of short and long mutants. Parameters values are as in Table 1, expect for 

dpt=0.9 for perS and dpt=0.08 for perL. 

 
 


