
 

THE ISOLATION AND GENOTYPIC 

CHARACTERISATION OF  

CAMPYLOBACTER JEJUNI 

FROM ENVIRONMENTAL MATRICES 
 

__________________ 

 

A thesis 

submitted in partial fulfilment 

of the requirements for the Degree 

of Master of Science in Microbiology 

in the 

University of Canterbury 

By 

P.M.L. Devane 

 

____________________ 

 

University of Canterbury 

2006 

 



Campylobacter in environmental matrices   i 

 

Table of Contents 
 

1.1 The Genus Campylobacter .......................................................................................1 
1.1.1 Basic morphology and physiology of Campylobacter .........................................2 
1.1.2 Characteristics of the Campylobacter genome .....................................................2 
1.1.3 Incidence of species of Campylobacter implicated in campylobacteriosis ..........3 
1.1.4 Survival of Campylobacter ...................................................................................5 
1.1.5 Viable but non-culturable bacteria........................................................................7 
1.1.6 Antibiotic resistance of Campylobacter strains ..................................................10 

1.2 Epidemiological aspects of Campylobacter infection ............................................12 
1.2.1 Incidence of campylobacteriosis.........................................................................12 
1.2.2 Symptoms of campylobacteriosis .......................................................................14 
1.2.3 Complications associated with campylobacteriosis............................................14 
1.2.4 Seasonality of Campylobacter ............................................................................17 
1.2.5 Age and gender distribution................................................................................18 
1.2.6 Ethnicity..............................................................................................................18 
1.2.7 Estimating the economic burden of campylobacteriosis ....................................19 

1.3 The pathogenesis of Campylobacter.......................................................................20 
1.4 Infective dose of Campylobacter ............................................................................22 
1.5 Risk factors associated with campylobacteriosis....................................................25 

1.5.1 Cases of human campylobacteriosis associated with chicken consumption ......25 
1.5.2 Outbreaks of campylobacteriosis........................................................................27 

1.6 Research Model ......................................................................................................28 
1.6.1 Objectives ...........................................................................................................28 
1.6.2 Hypotheses..........................................................................................................30 
1.6.3 Possible outcomes...............................................................................................31 

1.7 Format of the thesis.................................................................................................32 

2.1 Introduction.............................................................................................................33 
2.1.1 Campylobacter isolation from environmental matrices......................................33 
2.1.2 Campylobacter prevalence in environmental matrices.......................................36 
2.1.3 Objectives ...........................................................................................................44 

2.2 Materials and methods ............................................................................................45 
2.2.1 Media and reagents .............................................................................................45 
2.2.2 Bacterial strains and culture conditions ..............................................................45 
2.2.3 Development of the multiplex PCR assay ..........................................................47 
2.2.4 PCR template preparation ...................................................................................48 
2.2.5 Determination of the sensitivity of the PCR.......................................................49 
2.2.6 Determination of the optimal enrichment broth for growth of C. coli and 

C. jejuni in a range of food, faecal and water matrices.......................................50 
2.3 Results.....................................................................................................................56 

2.3.1 Characteristics of the PCR developed ................................................................56 

Table of Contents i
List of Figures iv
List of Tables v
List of Abbreviations vi
Abstract  ix
1 Introduction 1

2 Method development of enrichment PCR protocol 33



ii  Campylobacter in environmental matrices 
2.3.2 The optimal enrichment broth.............................................................................57 
2.3.3 Determination of the detection limit of Campylobacter in the enriched matrices

.............................................................................................................................60 
2.4 Discussion ...............................................................................................................62 

2.4.1 Development of the enrichment-PCR method ....................................................62 
2.4.2 Conclusions.........................................................................................................69 

3.1 Introduction.............................................................................................................71 
3.1.1 Methodology for the detection of Campylobacter ..............................................71 
3.1.2 Campylobacter prevalence in live chickens and chicken meat products............72 
3.1.3 Counts per chicken carcass .................................................................................73 
3.1.4 Water as a transmission route for Campylobacter ..............................................74 
3.1.5 Subtyping methodologies....................................................................................75 
3.1.6 Objectives............................................................................................................80 

3.2 Materials and methods ............................................................................................81 
3.2.1 Media and reagents .............................................................................................81 
3.2.2 Isolation and identification of campylobacters from whole chicken carcasses ..81 
3.2.3 Collection and processing of river water samples ..............................................81 
3.2.4 Subtyping of Campylobacter isolates from water by pulsed-field gel 

electrophoresis (PFGE) .......................................................................................83 
3.3 Results.....................................................................................................................86 

3.3.1 Identification of target campylobacters in chicken carcass samples...................86 
3.3.2 Prevalence of Campylobacter in river water.......................................................87 
3.3.3 Seasonality of Campylobacter prevalence in water............................................87 
3.3.4 Detection of multiple Campylobacter subtypes in individual samples...............89 

3.4 Discussion ...............................................................................................................91 
3.4.1 The prevalence of Campylobacter in chicken produce.......................................91 
3.4.2 The detection of Campylobacter in river water samples ....................................92 
3.4.3 Conclusions.........................................................................................................95 

4.1 Introduction.............................................................................................................97 
4.1.1 The relevance of multiple subtypes of bacterial species in individual samples..97 
4.1.2 Statistical significance of multiple subtypes of bacterial species present in 

individual samples...............................................................................................99 
4.1.3 Campylobacter subtype prevalence in chicken farms.......................................100 
4.1.4 PFGE subtyping techniques ..............................................................................100 
4.1.5 Standardisation of PFGE between laboratories ................................................101 
4.1.6 The stability of the Campylobacter genome in relation to genotypic subtyping 

methods .............................................................................................................102 
4.1.7 Objectives..........................................................................................................104 

4.2 Materials and methods ..........................................................................................105 
4.2.1 Media and reagents ...........................................................................................105 
4.2.2 Characterisation of C. jejuni from chicken carcasses .......................................105 
4.2.3 Pulsed-field gel electrophoresis (PFGE)...........................................................107 

4.3 Results...................................................................................................................113 
4.3.1 Results of PFGE analysis of C. jejuni isolates from chicken carcasses............113 

4.4 Discussion .............................................................................................................122 
4.4.1 Multiple Campylobacter subtypes identified in studies of chicken matrices ...122 
4.4.2 Conclusions.......................................................................................................125

 

3 Application of the enrichment-PCR method to field studies 71

4 Multiple subtypes of C. jejuni in chicken carcasses 97



Campylobacter in environmental matrices   iii 

5.1 Introduction...........................................................................................................127 

5 Comparison of C. jejuni subtypes isolated from chicken meat and human 
clinical specimens 127

5.1.1 The association between chicken meat and campylobacteriosis cases in humans
..........................................................................................................................127 

5.1.2 Host specificity .................................................................................................128 
5.1.3 Identification of multiple subtypes of Campylobacter in human clinical samples

..........................................................................................................................130 
5.1.4 Objectives .........................................................................................................132 

5.2 Materials and methods ..........................................................................................133 
5.2.1 Analysis of PFGE subtypes ..............................................................................133 

5.3 Results...................................................................................................................134 
5.3.1 Comparison of C. jejuni isolates from chicken carcasses and humans.............134 
5.3.2 Clonal relationships between human and chicken isolates of C. jejuni ............134 

5.4 Discussion .............................................................................................................140 
5.4.1 Comparison of C. jejuni isolates from chicken carcasses and humans.............140 
5.4.2 Non-dominant subtypes ....................................................................................143 
5.4.3 Tracking the source of Campylobacter infection in human cases ....................144 
5.4.4 Methods to reduce Campylobacter contamination ...........................................145 
5.4.5 Conclusions.......................................................................................................148 

6.1 Enrichment-PCR method ......................................................................................149 
6 Concluding discussion 149

6.2 Prevalence of Campylobacter in chicken carcasses and water. ............................152 
6.2.1 Detection of multiple subtypes by the enrichment-PCR method .....................154 

6.3 Comparison of C. jejuni isolates from chicken carcasses and human clinical 
specimens..............................................................................................................158 

6.3.1 Genotypic plasticity of Campylobacter ............................................................159 
6.3.2 Chicken as a vehicle for transmission of Campylobacter to humans ...............162 

6.4 Conclusions...........................................................................................................164 
7 Acknowledgements 167
8 References 169
9 Appendix I 201

10.1 General reagents....................................................................................................205 
10 Appendix II 205

10.2 Hippurate reagents: ...............................................................................................207 
10.3 Gel electrophoresis reagents .................................................................................208 
10.4 Reagents for PFGE analysis..................................................................................209 
10.5 Phenol Chloroform reagents for DNA extraction.................................................211 

11 Appendix III 213

12.1 Description of phenotypic subtyping systems ......................................................215 
12 Appendix IV Subtyping systems 215

12.2 Description of genotypic subtyping systems ........................................................216 
 



iv  Campylobacter in environmental matrices 

 

List of Figures 
 
Figure 1: Rates of campylobacteriosis in New Zealand since 1990............................................13 

Figure 2: Flow diagram of the enrichment-PCR method for detection of Campylobacter .........51 

Figure 3: Gel electrophoresis of multiplex PCR products from the amplification of purified 

thermotolerant Campylobacter DNA...........................................................................57 

Figure 4: Seasonal prevalence of Campylobacter in chicken carcasses......................................86 

Figure 5: Seasonal trends for Campylobacter prevalence in river water ....................................88 

Figure 6: Seasonal variation of water temperatures in the Ashburton River...............................88 

Figure 7: Subtypes of C. jejuni isolated from ten chicken carcass samples..............................115 

Figure 8: KpnI profiles of CPH012693 isolates ........................................................................116 

Figure 9: KpnI digestion of visually similar SmaI subtypes ......................................................116 

Figure 10: Clonal isolates from chicken carcass CPH0111167 with different SmaI profiles....120

Figure 11: Clonal isolates from chicken carcass CPH0111167 with different KpnI profiles....121

Figure 12:  Visually similar SmaI subtypes: Sm0001 and Sm0030...........................................138 

Figure 13:  Clonal relationships between human isolates and subtype Sm0030/Kp0056 from 

chicken .......................................................................................................................138 

Figure 14:  Clonal relationships between human isolates and subtype Sm0001/Kp0033 from 

chicken .......................................................................................................................139 



Campylobacter in environmental matrices   v 

 
List of Tables 
 
Table 1: Frequency of Campylobacter isolation from the diarrhetic stools of paediatric patients 

in South Africa...............................................................................................................5 

Table 2: Rates of selected notified enteric disease in New Zealand..........................................13 

Table 3: Rates of campylobacteriosis in selected developed countries .....................................14 

Table 4: C. jejuni carriage rates in bovine animals....................................................................39 

Table 5: Prevalence of Campylobacter contamination in offal .................................................41 

Table 6: Prevalence of Campylobacter species in pets..............................................................43 

Table 7: Micro-organisms used to assess the specificity of the PCR oligonucleotide primers .46 

Table 8: Lowest number of bacterial cells detected in each matrix in combination with the trial 

broths ...........................................................................................................................59 

Table 9: Detection levels of C. jejuni and C. coli in enrichment-PCR assay compared with 

conventional plating method........................................................................................61 

Table 10: Sampling frequency for water from the Ashburton River ...........................................82 

Table 11: Prevalence of Campylobacter in water from the Ashburton River .............................87 

Table 12: Identification of campylobacters isolated from the Ashburton River..........................90 

Table 13: C. jejuni PFGE subtypes identified in Ashburton river water .....................................90 

Table 14: Biochemical identification of the thermotolerant Campylobacter ............................106 

Table 15: Subtypes of C. jejuni identified in each chicken sample ...........................................117 

Table 16: Dominant versus minority subtypes in the same chicken sample .............................118 

Table 17: Comparison of C. jejuni isolates from chicken carcasses with isolates from human 

cases of campylobacteriosis and other matrices ........................................................136 

Table 18: Sampling Attribute Plan ............................................................................................213 

Table 19: Phenotypic subtyping systems ...................................................................................215 

Table 20: Gentoypic subtyping systems ....................................................................................216 

 



vi  Campylobacter in environmental matrices 
 
List of Abbreviations 
 
AFLP  amplified fragment length polymorphism 

ATCC  American Type Culture Collection 

BHI  Brain Heart Infusion 

Bp  base pair(s) 

CCDA  (blood-free) charcoal-cefoperazone-deoxycholate agar  

CBA  Columbia blood agar 

CCUG  Culture Collection, University of Göteborg 

CDT  Cytolethal distending toxin 

cfu g-1  colony forming units per gram  

CHO  tissue culture cell lines derived from Chinese hamster ovary cells 

ddH2O  double distilled water 

DNA  Deoxyribonucleic acid 

EDTA  Ethylenediaminetetraacetic acid 

ERL  Enteric Reference Laboratory (ESR, New Zealand) 

ESR  Environmental Science and Research Ltd. 

(x) g  (times) gravity  

GBS  Guillian Barré Syndrome 

HeLa  tissue culture cell lines derived from human cervical cancer cells 

Kb  kilobase 

LPS  lipopolysaccharide 

MLST  multi-locus sequence typing 

MPN  Most probable number 

MPN gfw-1 Most Probable Number per gram of fresh weight (e.g. of intestinal contents)  

MW   molecular weight 

NCTC  National Collection of Type Cultures 

NZRM  New Zealand Reference Culture Collection, Medical Section 

PCR  polymerase chain reaction 

PBS  phosphate buffered saline 

PFGE  pulsed field gel electrophoresis 

RAPD  random amplified polymorphic DNA 

RE  restriction enzyme 

RFLP  restriction fragment length polymorphism 



Campylobacter in environmental matrices   vii 

RTQ-PCR real-time quantitative PCR 

TBE  Tris Borate EDTA Buffer 

UPGMA unweighted pairs geometrics matched analysis 

Vero cells tissue culture cell lines derived from a green monkey kidney carcinoma 

VBNC  viable but non culturable  

 



viii  Campylobacter in environmental matrices 
 



Campylobacter in environmental matrices   ix 

 
Abstract 
 

Infection by Campylobacter is the most notified gastrointestinal disease in New Zealand. 

Reliable recovery and identification of campylobacters is challenging. Improved and validated 

methods are needed to increase the power of subtyping and epidemiological studies to trace the 

sources and transmission routes of Campylobacter. An enrichment-PCR method for the 

isolation and detection of C. jejuni and C. coli was developed and sensitivity levels determined 

in 13 environmental matrices, including animal faeces, food and water. Less than ten cells per 

sample of either C. jejuni or C. coli could be detected, except for rabbit faeces where the 

minimum number of cells detected per sample was greater than ten cells for C. coli (range 3-32 

cells). The sensitivity of the method was comparable to that determined for the conventional 

methods in the same matrices. Application of the method to retail chicken carcasses (n =204) 

determined a prevalence of 27.5% C. jejuni and 1% C. coli. River water assays (n = 293) found 

55.3% of samples to contain C. jejuni and 4.1% C. coli. Furthermore, the enrichment-PCR assay 

was shown to identify up to three subtypes in individual water samples.  

 

It was proposed that the identification of non-dominant subtypes carried by a chicken carcass 

may aid the identification of subtypes implicated in human cases of campylobacteriosis. An 

average of twenty-three C. jejuni isolates from each of ten retail chicken carcass were subtyped 

by PFGE using the two restriction enzymes SmaI and KpnI. Fifteen subtypes, in total, were 

identified from the ten carcasses. One subtype was identified on three carcasses. Five carcasses 

carried a single subtype, three carcasses carried two subtypes each and two carcasses carried 

three subtypes each. Some of the subtypes carried by an individual carcass were shown to be 

clonally related raising the question of in vivo recombination events during host passage. 

Comparison of C. jejuni subtypes from chickens with those isolated from human clinical cases 

revealed three of the fifteen subtypes correlated with those from human cases. None of the 

minority subtypes were identified in human case isolate data, suggesting that the lack of 

identification of non-dominant subtypes from chicken carcasses may not hinder the 

investigation of campylobacteriosis outbreaks. 
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1 Introduction 
 
1.1 The Genus Campylobacter 
 

In 1886, Escherich described an unidentified spiral bacterium in the faeces of children suffering 

from diarrhoea. This bacterium could not be isolated on solid media. Further observations of a 

similar organism were made by German authors, in particular, over the following decade. 

Interest in this unculturable organism waned until the second half of the twentieth century when 

initial investigations placed the bacterium in the genus Vibrio due to its spiral shape and 

physiology (see Park 2002 for historical detail). Subsequent research led to the formation of the 

new genus Campylobacter and following on the work of others (Butzler 2004), Skirrow showed 

that Campylobacter jejuni was an aetiologic agent of diarrhoeal illness in humans (Skirrow 

1977). 

 

Over the last thirty years Campylobacter has become recognised as the major cause of 

gastroenteritis in developed countries, as the number of cases far exceeds those attributed to the 

better known pathogens in the genus Salmonella (Table 2). Campylobacter belongs to the 

family Campylobacteraeae, which also includes Helicobacter, Arcobacter and Wolinella 

(Nachamkin 1995, Corry et al. 1995). This family belongs to the epsilon division of the class 

Proteobacteria, also known as ribosomal RNA superfamily VI (On 2001). Currently, 16 species 

and six subspecies of Campylobacter are recognised (On 2001) including the more recent 

additions of C. hominis and C. lanienae which were both identified in human faeces (Logan et 

al. 2000, Lawson et al. 1998), and C. helveticus (Stanley et al. 1992) which was originally 

isolated from cats and dogs. The thermotolerant subgroup of the campylobacters, which 

includes C. jejuni and C. coli, C. lari and C. upsaliensis grow optimally at 42°C and comprise 

the group of campylobacters most important as pathogens of humans (Corry et al. 1995). 

C. jejuni and C. coli are the two pathogenic species that cause the majority of human cases of 

campylobacteriosis (80-90% and 5-10% respectively) in developed countries (Lawson et al. 

1999). 
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1.1.1 Basic morphology and physiology of Campylobacter 

 

The Greek language provides the source of the word Campylobacter, meaning a curved rod, and 

refers to the S-shaped or spiral morphology of cells less than 48 hours old (Griffiths and Park 

1990). Older cells form a coccoid shape, which is associated with reduced viability and the 

controversial issue of viable but non-culturable cells (refer Section 1.1.5) (Beumer et al. 1992, 

Moran and Upton 1986, Ng et al. 1985). Campylobacters are gram negative and the size of the 

spiral shaped cells ranges from 0.5 to 8.0 µm long and 0.2 to 0.5 µm wide. Most organisms have 

a single polar flagellum, although some are identified with a flagellum at each pole (Griffiths 

and Park 1990). Microscopical identification is aided by observation of its ‘corkscrew-like’ 

motility with movements including rapid jerking and instantaneous reversing. These features are 

thought to enhance the mobility of Campylobacter as it moves through the viscous mucous to 

colonise the membrane surfaces of the alimentary tract (Skirrow 2000). 

 

Campylobacters are oxidase positive and most of the themotolerant group are catalase positive 

except for C. upsaliensis which is either negative or weakly positive. They are assacharolytic 

organisms, unable to oxidize or ferment carbohydrates and therefore require alternative carbon 

sources for growth (Barros-Velázquez et al. 1999). Amino acids have been suggested as likely 

carbon sources and C. jejuni has been shown to utilise serine, aspartate, glutamate and proline 

(Leach et al. 1997). Organic acids including lactic, succinic and malic acids have been shown to 

enhance the growth of Campylobacter isolates when added as either individual or mixed 

supplements to basal broth media (Hinton 2006). The assacharolytic feature of campylobacters 

limits the biochemical tests available for their differentiation. 

 

1.1.2 Characteristics of the Campylobacter genome 

 

The genome sizes of C. jejuni and C. coli are approximately 1.6 to 1.7 megabases and the 

genome is present as a single circular DNA molecule with a low GC ratio of approximately 

30% (Taylor et al. 1992, Owen 1983). It was the low GC ratio and assacharolytic nature of 

Campylobacter that first led to its differentiation from the genus Vibrio (Moore et al. 2005, On 

2001). The first C. jejuni genome sequence (strain NCTC11168) was published in 2000 by 

Parkhill et al. and revealed a relative lack of organisation of genes into operons or clusters apart 

from those involved in ribosomal protein production and cell surface modifications. Consistent 
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with the assacharolytic phenotype of C. jejuni, there were few genes identified for the 

degradation of carbohydrates. Three copies of the ribosomal RNA operon were identified and 

no functional insertion sequence elements, retrons or prophages were evident. There was also a 

surprising lack of repetitive DNA sequences with only four repeated sequences identified. A 

standout feature of the genome was the presence of hypervariable sequences, where tracts of 

DNA revealed variation at single points between otherwise identical clones. Four-fold 

sequencing of several variants showed no differences to the original sequence, confirming that 

the differences were not due to artefacts in the sequencing method. This finding was further 

supported by direct PCR analysis and denatured polyacylamide gel electrophoresis that 

identified a conserved number of polymorphic forms within a single gene of a strain and this 

polymorphism was observed within single colonies (Wassenaar et al. 2002). These differences 

have not been associated with detectable phenotypes but are proposed to be variations 

conferring a survival advantage during infection of a host. 

 

Understanding of the genetic polymorphisms leading to the high divergence of C. jejuni 

subtypes observed in the environment (Siemer et al. 2004, Hopkins et al. 2004) has increased 

rapidly with studies showing regions of high recombination potential and regions of gene 

conservation (Poly et al. 2005, 2004; Miller et al. 2005, Karlyshev et al. 2005, Taboada et al. 

2004, Prendergast et al. 2004, Schouls et al. 2003, Sails et al. 2003b, de Boer et al. 2002, 

Pearson et al. 2000). By comparison, the genome of C. coli is recognised as relatively 

homogeneous (On and Harrington 2000, Duim et al. 1999). 

 

Plasmids have been identified in Campylobacter strains (Taylor 1992a). For example, 

mutational studies have shown that a plasmid pVir (37-kb) carries genes important in the 

invasion of host intestinal cells. Another plasmid, pTet (45-kb), confers resistance to the 

antibiotic tetracycline (Poly et al. 2005, Bacon et al. 2002, Bacon et al. 2000). 

 

1.1.3 Incidence of species of Campylobacter implicated in campylobacteriosis 

 

A United Kingdom survey of isolates from 3,378 human faecal samples used PCR detection to 

identify 493 (14.5%) samples as positive for Campylobacter (Lawson et al., 1999). When 

identified to the species level by PCR, 89% of isolates were C. jejuni and 18% were C. coli. 

These data included 19 samples that were positive for a mixed infection of C. jejuni and C. coli. 

The other Campylobacter species present were C. upsaliensis (2%), C. hyointestinalis (0.6%) 
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and C. lari (0.2%). The generally accepted figure for prevalence of Campylobacter species in 

human clinical cases of campylobacteriosis in the developed world is 80-90% C. jejuni and 

approximately 10% C. coli (Tauxe 1992, Skirrow 1990). Figures for New Zealand clinical cases 

of campylobacteriosis are difficult to obtain, as most clinical laboratories do not identify 

Campylobacter to the species level. A study conducted in the Ashburton District of the South 

Island, however, did report isolation rates of 90% for C. jejuni and 10% for C. coli from 61 

human clinical specimens (Devane et al. 2005). 

 

Over a ten year period at the Red Cross Children’s Hospital in Cape Town, South Africa, stools 

from 19,535 paediatric patients suffering from diarrhoea were examined for causative agents of 

diarrhoea (Lastovica et al. 2000). The percentage of infections caused by thermotolerant and 

other campylobacters from the South African study is presented in Table 1. The differences in 

prevalence found compared to studies in European countries may be due to the restricted age 

range, the large number of samples tested, geographical differences and/or the different 

isolation methods used between studies. The difficulty in comparing these data sets is openly 

debated in the article by Lastovica et al. 2000. The high prevalence of C. concisus may be age 

related as Engberg et al. (2000) noted that C. concisus can be isolated from healthy and 

diarrheic patients in nearly equivalent proportions but maybe associated with gastroenteritis 

when isolated from small children and infants (Engberg et al. Author’s reply in Lastovica et al. 

2000). Furthermore, it has been suggested that C. concisus should be considered as a 

commensal organism of the human gut rather than as a primary pathogen of gastroenteritis 

(Engberg et al. 2000, Van Etterijck et al. 1996). Importantly, what the South African study 

highlights, and has been noted by other researchers, is that the true incidence and species 

distribution of Campylobacter infections is largely unknown as most isolation methods are 

directed at identifying C. jejuni and C. coli by the use of selective methods that exclude other 

Campylobacter species and related organisms (Engberg et al. 2000, On 1996, Corry et al. 

1995). 

 

Campylobacter jejuni subspecies doylei is rarely isolated in developed countries. An area 

reporting a relatively high frequency of isolates is Australian aboriginal communities (Albert et 

al. 1992, Steele and Owen 1988). Although these bacteria hydrolyse hippurate like C. jejuni 

subsp. jejuni, they are unable to reduce nitrate to nitrite. Furthermore, they grow slowly at 37°C 

and generally fail to grow at 42°C and are more susceptible to the antimicrobials cephalothin 

and polymixin (Steele and Owen 1988). 
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Table 1: Frequency of Campylobacter isolation from the diarrhetic stools of paediatric 
patients in South Africa 

 
Campylobacter species Percentage positive 
C. jejuni subsp. jejuni 31.3 
C. jejuni subsp. doylei 9.2 
C. coli 2.9 
C. lari 0.1 
C. upsaliensis 23.0 
C. concisus 23.6 
C. hyointestinalis 1.3 

 

1.1.4 Survival of Campylobacter 

 
1.1.4.1 Survival in food matrices 

 

The thermotolerant campylobacters have a reputation for fastidious culture requirements (Park 

2002). They are microaerophilic organisms requiring 5-10% oxygen, 10% carbon dioxide and 

80% nitrogen and/or hydrogen. Isolation methods for Campylobacter usually require substances 

that reduce the oxygen tension and neutralise the toxic compounds that form in the presence of 

light and oxygen (Barros-Velázquez et al. 1999, Corry et al. 1995). Therefore they are unlikely 

foodborne pathogens since they do not, in general, grow in aerobic conditions, nor do they grow 

below 30°C, both of which should restrict their proliferation in food. Furthermore, they are 

readily destroyed during cooking as temperatures of 60°C for 15 minutes or 57.5°C for 30 

minutes result in death of these microrganisms (Park 2002, Barros-Velázquez et al. 1999). In 

contrast to most microbes, which show a gradual decline in growth towards their minimum 

growth temperature, the campylobacters show a rapid growth decline and yet are still observed 

to be metabolically active at temperatures as low as 4°C (Park 2002, Hazeleger et al. 1998, 

Blaser et al. 1980). Campylobacter is motile at these low temperatures and displays chemotaxis 

enabling the bacterium to move towards more favourable environments (Hazeleger et al. 1998). 

These observations highlight the need to distinguish between growth of micro-organisms and 

their viable environmental persistence, especially in food. 

 

Monitoring of the survival of 1 x 106 cfu g-1 of C. jejuni inoculated into a variety of cooked and 

raw foods and maintained over a range of temperatures (2-20°C), consistently revealed that 

C. jejuni survived best at 2°C. C. jejuni could still be detected (>50 cfu g-1) in cooked minced 

beef up to 49 days at 2°C, compared with 13 days at 10°C and 6 days at 20°C. Detection of 

 



6  Campylobacter in environmental matrices 
C. jejuni in raw chicken and raw minced beef at 2°C was limited to 24 and 27 days respectively 

(Curtis et al. 1995). Viable Campylobacter has been isolated from frozen foodstuffs, although at 

much lower levels compared to fresh food (Jørgensen et al. 2002, Dufrenne et al. 2001, 

Humphrey and Cruickshank 1985). The effect of freezing on Campylobacter will be discussed 

in regard to chicken carcasses in Chapter Three. 

 

In addition to temperature, campylobacters are sensitive to other environmental stresses. Their 

optimum pH is 6-8 and they are unable to multiply below pH 4.9 with high mortality below this 

pH (Park 2002, Barros-Velázquez et al. 1999, Blaser et al. 1980). The pH of meat has been 

shown to be critical to the survival of the organism at refrigeration temperatures, with 

significantly higher survival in beef at pH 6.4 than beef’s normal pH of 5.8 (Gill and Harris 

1982). Campylobacters are unable to grow in sodium chloride above a concentration of 2.0% 

(Doyle and Roman 1982a), suggesting sensitivity to osmotic stress. They have demonstrated 

sensitivity to drying (Kusumaningrum et al. 2003, Doyle and Roman 1982b), which is relevant 

to the contamination of food preparation surfaces, with Humphrey et al. (1995) proposing that 

Campylobacter surveillance of catering facilities should concentrate on moist areas. 

 

1.1.4.2 Survival in water 

 

A study of the survival of C. jejuni in drinking water evaluated 19 different strains isolated from 

human clinical cases, two reference strains, poultry, bovine and water sources (Cools et al. 

2003). The strains were suspended in sterilised drinking water at a concentration of ≥106 colony 

forming units per ml (cfu ml-1) and incubated in the dark at 4°C. Survival was determined by 

culture on both a selective and non-selective agar and isolates showed longer survival on the 

non-selective medium. The C. jejuni isolates from poultry remained culturable over the longest 

time period (30-52 days). This compared with the water and human clinical isolates which 

became non-culturable after 29 days. The prolonged survival of poultry isolates in drinking 

water has implications for the transmission of campylobacters and their persistence in the 

environment. A study of Campylobacter survival in water by Obiri-Danso et al. (2001) found a 

1 log reduction in numbers of campylobacters (cfu ml-1) in natural populations from river water 

after approximately 100 hours incubated at 4°C in the dark. For river water temperatures of 

10°C and 20°C, the time taken for a 1 log reduction in the number of campylobacters (cfu ml-1) 

was 90 hours and less than 12 hours respectively. Survival was somewhat better in seawater 

than river water, with natural populations surviving for up to 24 hours at 20°C and 37°C, but 
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persisting up to 120 hours at 4°C and 10°C. Natural populations of Campylobacter were below 

the level of detection within 30 minutes when exposed to sunlight (equivalent to an English 

June day) and held at 17-20oC. These results are consistent with observations that 

Campylobacter tend to be more frequently isolated from water in the winter months, as this is 

the time when the water temperature and exposure to UV will be lower (Carter et al. 1987). 

 

1.1.4.3 Survival in faeces 

 

Campylobacter has been reported to survive in sheep faeces for up to four days when left 

outside at field temperatures (Jones et al. 1999). Campylobacter inside cow pats would be 

protected from drying and UV radiation and could be expected to survive for long periods. 

Unpublished New Zealand data shows good survival (one month) under moist, cool conditions 

(personal communication, Andrew Hudson, ESR). 

 

Data provided by Keith Jones (Lancaster University) shows a maximum of seven days survival 

of Campylobacter in gull faeces deposited at a rubbish tip. As there are limited data available on 

Campylobacter survival in duck faeces, for this study, I am assuming that the survival time of 

Campylobacter in duck faeces will approximate that of its survival in gull faeces. 

 

1.1.5 Viable but non-culturable bacteria 

 

The proposal that some bacteria can enter a survival stage termed viable but non-culturable 

(VBNC) has generated considerable controversy over the last two decades. In the 1980s 

Professor Rita Colwell and her associates while investigating gram negative bacteria, 

particularly enteric pathogens, noted that when subjected to stress such as encountered in 

aquatic environments, a large proportion of culturable cells became non-culturable (Grimes et 

al. 1986). Subsequently, a proportion of these non-culturable cells could be resuscitated under 

specific conditions such as addition of nutrients (Roszak et al. 1984). These VBNC cells would 

not be detected by conventional culture techniques and thus could be overlooked as a health 

risk. A discrepancy has also been noted between the viable counts and counts observed by 

microscopy (Cappelier et al. 2000, Kogure et al. 1978). Pathogenic bacteria that have been 

reported to enter the VBNC state include E. coli (Pommepuy et al. 1996), Salmonella (Roszak 

et al. 1984), Vibrio cholerae (Binsztein et al. 2004) and C. jejuni (Rollins and Colwell 1986). 
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Opponents of the VBNC theory suggest that the VBNC phenomenon can be most readily 

explained by the well characterised mechanisms of cell injury and death (Barer and Harwood 

1999, Kell et al. 1998). They suggest that the process of cell death is not immediate but a 

gradual decline in metabolic function, the rate of which is dependent on the type of stress 

encountered, e.g. UV irradiation and temperature shifts. At some point in this metabolic decline 

a bacterium goes beyond the point of resuscitation, and cell death and lysis follows. Routine 

techniques to resuscitate injured cells in the laboratory include initial incubation at lower 

temperatures and delayed addition of antibiotics to an enrichment broth used for selection of the 

target microbe. Employing multiple types of media may also aid recovery of bacteria that are 

inactive on a particular medium. It is also recognised that some cells subjected to sunlight 

irradiation are able to repair injury from UV light even when incubated on selective media 

(Sinton et al. 2002). 

 

As the Campylobacter cell ages it has been noted that it undergoes morphological changes. 

During exponential growth the cell is the well recognised curved rod shape but when the 

bacterium encounters stress or enters the stationary phase morphology changes to a coccoid 

form, which is associated with reduced viability (Ng et al. 1985). This shape change has been 

cautiously associated with the putative viable but non-culturable state (Rollins and Colwell 

1986). Other evidence suggests, however, that the coccoid cells are degenerate, forming as a 

result of stress and/or the ageing process and therefore are undergoing degradation leading to 

their non-culturability and eventual non-viability (Hazeleger et al. 1995, Moran and Upton 

1986). Furthermore, Hazeleger et al. (1995) has shown that the formation of cocci at different 

temperatures affects their physical composition with cocci formed at 4°C having a similar 

membrane fatty acid composition as exponential curved rods. Potentially, this could suggest that 

cocci formed at lower temperatures may still be pathogenic and play a role in the transmission 

of campylobacters through the environment. It has also been shown that cells of C. coli, which 

showed reduced ability to form coccoid cells, were not disadvantaged in their rate of survival 

under non-growth conditions (Kelly et al. 2001). The latter researchers have also presented 

evidence of the occurrence of spontaneously arising mutants in the stationary growth phase that 

then overtake the growth of the original population (Kelly et al. 2003). 

 

The demonstration of the VBNC state requires employing methods to determine the metabolic 

state of cells and their (apparent) capacity to regain culturability. These attributes include cell 

integrity e.g. an intact cell membrane and the possession of some form of measurable metabolic 
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activity, such as, ATP levels, protein synthesis (Cappelier et al. 2000, Hazeleger et al. 1995) 

and cellular respiration which can be determined by using a redox dye: 5-cyano-2,3-ditolyl 

tetrazolium chloride (CTC). CTC is reduced by an electron transport chain to an insoluble red 

fluorescent CTC formazan salt. Intracellular accumulation of these red CTC crystals in the 

bacterial cells is indicative of cellular respiration (Cappelier et al. 1997). The main premise of 

these tests is that they differentiate between actively growing cells and dead cells and this has 

been one of the criticisms that such tests are, of necessity, calibrated by comparison between 

culturable and dead cells. It cannot, therefore, be reliably demonstrated that they identify VBNC 

cells. Interestingly, proteome analysis comparing the protein synthesis between VBNC cells and 

starved cells of the gram positive bacterium Enterococcus faecalis has revealed a distinct 

protein profile for VBNC cells (Heim et al. 2002). The protein profile of VBNC cells differed 

from both starved and exponentially growing cells, which the authors suggest demonstrates a 

distinct metabolic phase for E. faecalis that differs from normal growth and from the starvation 

phase where the cells are defined as remaining culturable with an inability to divide. 

 

The question of how relevant the VBNC stage is to human pathogenesis depends on the ability 

of the VBNC cell to be resuscitated during passage through an animal or human. In all VBNC 

experiments where the researcher is trying to demonstrate recovery of VBNC cells after passage 

through an animal model, the main difficulty is the verification that the initial inoculum does 

not contain a single viable bacterium which could initiate cell division. Dilution is considered 

the best way to ensure that the culturable cells are absent from the inoculum (Cappelier et al. 

1999b). 

 

The resuscitation of VBNC C. jejuni cells has been demonstrated after passage through rats 

(Saha et al. 1991), mice, and one day old chicks (Cappelier et al. 1999a), and recovery from 

inoculation into embryonated eggs (Cappelier et al. 1999b). The Campylobacter VBNC strains 

recovered from the embryonated eggs were also shown to have regained their ability to attach to 

HeLa cells (tissue culture cell lines derived from human cervical cancer cells), which suggests 

that they have maintained their pathogenicity and could pose a threat to public health. The 

C. jejuni strains passaged through rats were also demonstrated to have retained their ability to 

produce toxins. In contrast to these findings, other researchers have been unable to recover 

VBNC induced C. jejuni from animal models, which included chicks, mice and embryonated 

eggs (van de Giessen et al. 1996, Medema et al. 1992). It has been suggested that some of these 

differences could be attributed to the methods of VBNC induction of viable C. jejuni cells and 
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in the case of eggs the site of inoculation was suggested to be critical for providing an 

environment suitable for growth of campylobacters (Cappelier et al. 1999b). 

 

The debate continues between scientists who recognise a survival stage for bacteria termed the 

VBNC and those who view the recovery of VBNC cells as an outgrowth from injured cells or a 

remnant of undetected culturable cells. The relevance to research on C. jejuni is that it is 

possible that Campylobacter might enter a viable but non-culturable stage when encountering a 

stressful environment. This has relevance to this study as will be discussed in Chapter Two. 

 

1.1.6 Antibiotic resistance of Campylobacter strains 

 

Antibiotic therapy is infrequently used in the treatment of campylobacteriosis. When required 

the antibiotic of choice is erythromycin (Nachamkin 2003, Blaser and Wang 1980), to which 

most C. jejuni strains causing human infection are susceptible (Harrow et al. 2004, Gaudreau 

and Gilbert 1998, Aarestrup et al. 1997, Reina et al. 1994). C. coli, however, has been shown to 

have a higher level of resistance (up to 35% of strains isolated from human faeces) to 

erythromycin compared to C. jejuni, which has a maximum of 5.5% of strains from human 

cases showing resistance (Goodchild et al. 2001, Saenz et al. 2000, Reina et al. 1992). 

 

The antibiotic resistance of C. jejuni and C. coli isolated from ten different environmental 

sources including human and animal faeces, river water and meat products was determined in a 

study conducted in South Canterbury, New Zealand (Harrow et al. 2004). Overall, it was 

concluded that most of the Campylobacter isolates had low resistance to the clinically relevant 

antibiotics: erythromycin (e.g. resistance of 2% in C. jejuni and 11.8% in C. coli), nalidixic 

acid, ciprofloxacin and tetracycline. Five of the isolates from pig offal, however, were identified 

as being highly erythromycin resistant with their minimum inhibitory concentration (MIC) 

determined as ≥ 256 µg ml-1. These five isolates were all genetically unique as established by 

PFGE analysis and represented four strains of C. coli and one C. jejuni strain. The authors 

suggest that the use of macrolides in the prophylactic administration of antibiotics to pigs in 

New Zealand may account for the appearance of erythromycin resistant strains of 

campylobacters. A study of C. coli isolated from a farm environment in the United Kingdom 

also revealed a low level of resistance to antibiotics in samples taken from cattle, sheep, water, 

birds and soil (Leatherbarrow et al. 2004). 
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It has been noted that there is an increasing number of C. jejuni strains that are resistant to 

fluoroquinolones (e.g. ciprofloxacin), which are antibiotics used in a wide range of infections 

including those of the respiratory tract (Hooper 2001, Saenz et al. 2000, Reina et al. 1992). 

 

New Zealand studies of clinical isolates of C. jejuni and C. coli reported an increase in 

resistance to erythromycin and ciprofloxacin from 1.5% to 5.5% and 2.5 to 5.5%, respectively 

(Goodchild et al. 2001, Dowling et al. 1998). The survey conducted in 2001 noted a statistically 

significant higher level of resistance to both erythromycin and ciprofloxacin in non-C. jejuni 

compared with C. jejuni isolates. Furthermore, a study in Auckland, New Zealand administered 

a quinolone antibiotic (lomefloxacin) to patients reporting with diarrhoea. Eighty-five percent of 

these diarrhoeal cases were attributed to Campylobacter infection (Ellis-Pegler et al. 1995). The 

lomefoxacin was administered over a five day period as part of a double blind trial that included 

pacebos. Within the five day period, 28% of the Campylobacter isolates rapidly developed 

resistance to the quinolone. 

 

These trends of increasing bacterial resistance in New Zealand are being mirrored by 

international studies. A study in the U.S.A. investigating the increase in fluoroquinolone 

resistance reported a rise in the proportion of C. jejuni human isolates from 1.3% in 1992 to 

10.2% in 1998 (Smith et al. 1999). While a significant number of the resistant strains from 

humans were acquired during foreign travel, it was also noted that 14% of isolates from local 

chicken products (n = 91) were ciprofloxacin resistant. Molecular subtyping of the resistant 

strains isolated from chicken products also showed a correlation with domestically acquired 

cases of campylobacteriosis. It has been suggested that the prophylactic feeding of antibiotics 

(including fluoroquinolones) to chickens and other farm animals is leading to an increase in 

antibiotic resistant strains of pathogenic bacteria (Saenz et al. 2000, Reina et al. 1992). 

 

A Canadian study of 203 C. jejuni human clinical isolates over a three year period identified 

50% of isolates as being resistant to a minimum of 64 µg of tetracycline ml-1 (Gibreel et al. 

2004). This resistance to tetracycline had increased from 8% of isolates to 50% over a 20 year 

period. Of concern, was the finding that 37% of the tetracycline resistant C. jejuni isolates were 

resistant to MIC of 256 to 512 µg ml-1 This resistance level is higher than reported in previous 

Canadian studies which identified 128 µg ml-1 as the highest tetracycline MIC in the early 

1980s. In general, antibiotic resistance rates to other antibiotics were determined to be low with 

no isolates being resistant to chloramphenicol or erythromycin. Kanamycin resistance was 
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identified in 2.9% of isolates and 2.5 % were resistant to nalidixic acid. Four of the five 

nalidixic resistant isolates were also resistant to ciprofloxacin. This is expected as resistance to 

both antibiotics requires mutations in the gyrA subunit of the DNA gyrase enzyme (Wang et al. 

1993). Antibiotic resistance to cephalothin and susceptibility to nalidixic acid are criteria used 

in the phenotypic assignment of Campylobacter isolates to the species C. jejuni and C. coli 

(Nachamkin 2003). 

 

The debate about the use of antibiotics in food animals continues with a review by Phillips et al. 

(2004) concluding that there is only a small added danger to human health from the spread of 

antibiotic resistant bacteria derived from farmed animals. They suggest that the “precautionary 

principle” of banning the use of antibiotics in animal husbandry is based on a lack of scientific 

study and requires a full quantitative risk assessment of the facts. 

 

1.2 Epidemiological aspects of Campylobacter infection 
 

1.2.1 Incidence of campylobacteriosis 

 

Campylobacteriosis is New Zealand’s most frequently notified disease (Table 2) with an 

incidence in 2004 of 12,213 cases (326.8 per 100,000 population) which represents 53.2% of all 

notifiable cases (Anonymous 2005). There has been a sustained increase in the number of 

reported cases in New Zealand since the disease became notifiable in 1980 (Figure 1). Although 

the number of cases dropped in 2004 (Figure 1), case numbers rose again in 2005 with the 

unofficial figures being 370 cases per 100,000 (personnel communication Lisa Lopez, EpiSurv, 

ESR). It is well recognised that the true number of cases presenting to general practitioners is 

much higher than the notification rate, probably in the order of five to ten times (Withington and 

Chambers 1997). In addition, the number of campylobacteriosis cases in New Zealand far 

exceeds the numbers in other developed countries (Table 3). There is an approximately four fold 

difference in case numbers between New Zealand and Australia, and New Zealand and the 

United Kingdom, and approximately a sixteen fold difference to the United States. 
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Table 2: Rates of selected notified enteric disease in New Zealand 
 

Notifiable Disease Rate per 100,000 population 

 2004 2003 2002 2001 

Campylobacteriosis 326.8 395.6 334.3 271.5 

Cryptosporidiosis 16.4 21.9 26.1 32.3 

Giardiasis 40.5 42.0 41.4 42.9 

Salmonellosis 28.9 37.5 50.3 64.7 

VTEC/STEC infection 2.4 2.8 2.0 2.0 
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Figure 1: Rates of campylobacteriosis in New Zealand since 1990 
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Table 3: Rates of campylobacteriosis in selected developed countries 
 

Country Period Rate per 100,000 Reference 
New Zealand 2004 327 Anonymous (2005) 
USA 2001 13.8 Centers for Disease control 

and Prevention (2001) 
United Kingdom 1999 103.7 Gillespie et al. (2002) 

Canada 1986-1998 39-54 Health Canada (2001) 

Denmark 2003 66 Anonymous (2002) 

Australia* 2005 105 Communicable Diseases 
Australia (2005) 

*Figures are for the period April to June 2005 and do not include New South Wales which only 

notify cases associated with foodborne incidents. 

 

1.2.2 Symptoms of campylobacteriosis 

 

The incubation period of Campylobacter is usually between one and three days but can be as 

long as ten (Koenraad et al. 1997, Faoagali 1984). The symptoms of human campylobacteriosis 

include an initial period of fever, headaches and malaise that lasts for up to 24 hours. This is 

then followed by diarrhoea and in most cases severe abdominal pain. The fever persists, but 

nausea and vomiting are less common features of the infection occurring in approximately 40% 

of cases (Gillespie et al. 2002, Koenraad et al. 1997). The patient may excrete Campylobacter 

organisms for up to three weeks post-infection, with the Campylobacter count in faeces from 

infected humans in the range of 106 to 108 bacteria per gram (Taylor et al. 1993). 

 

1.2.3 Complications associated with campylobacteriosis 

 

Most cases of campylobacteriosis are self-limiting, however infections arising from the direct 

spread of Campylobacter from the gastrointestinal tract can include cholecystitis, pancreatitis, 

peritonitis and massive gastrointestinal haemorrhage (Allos 2001). Although rare, the following 

illnesses can occur as extraintestinal manifestations of Campylobacter: meningitis, endocarditis, 

septic arthritis, osteomyelitis and neonatal sepsis. Bacteraemia is detected in less than 1% of 

cases of campylobacteriosis and occurs predominantly in the very young or old or the 

immunocompromised (Allos 2001). A study of the short and long term effects of mortality 

associated with foodborne illness identified a higher risk of mortality up to 30 days post-
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infection compared with control cases (Helms et al. 2003). This finding was significant even 

after the factor of co-morbidity with other existing illnesses was taken into account. Analysis 

also showed that Campylobacter was associated with increased long term mortality up to one 

year after infection. This research suggests that the mortality rate from campylobacteriosis may 

be underestimated. 

 

1.2.3.1 Campylobacter cases associated with Guillian–Barré syndrome and the related Miller-

Fisher syndrome 

 

Two well recognised complications arising from infection by C. jejuni are Guillian–Barré 

syndrome (GBS) (Endtz et al. 2000) and the related Miller-Fisher syndrome (Salloway et al. 

1996). These syndromes are neuro-paralytic, autoimmune disorders that affect the peripheral 

nervous system and have led to fatal respiratory paralysis in 5% of GBS cases. Typical 

symptoms include progressive weakness beginning in the legs and moving upwards to the arms 

and cranial nerves (Hadden and Gregson 2001). Patients may experience numbness, pain and 

difficulty swallowing. GBS follows in 0.1% of campylobacteriosis cases (Nachamkin et al. 

1998). New Zealand has reported a high incidence of GBS, for example, eight cases in the 

province of Canterbury in 1995 (Withington and Chambers, 1997) which was consistent with 

case numbers from previous years. These figures are not unexpected based on the high 

incidence of Campylobacter infection in New Zealand. 

 

It is difficult to be conclusive about the relationship between GBS and campylobacteriosis 

because there is a lag of one to three weeks post-infection before the onset of paralysis. As a 

consequence, tests for campylobacters in a patient’s stool may be negative. Serologic studies, 

however, have reported a high prevalence of C. jejuni antibodies in the serum of GBS patients. 

Case control serologic studies have consistently reported higher numbers of GBS patients who 

were seropositive for Campylobacter in comparison to controls (Nachamkin et al. 1998). It has 

been suggested that GBS developed after infection by Campylobacter may result in a more 

severe and prolonged paralysis in comparison to other suspected causes of GBS. Confirmation 

of these observations will require larger patient numbers with and without prior Campylobacter 

infection (Nachamkin et al. 1998). 

 

An unusual discovery was made during the sequencing of the C. jejuni genome. Sequence 

analysis identified three sets of the genes involved in sialic acid biosynthesis (Parkhill et al. 
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2000). Sialic acid is a rare component of lipopolysaccharides (LPS) on the cell surface of 

C. jejuni that mimics the structure of certain human gangliosides. Through the process of 

molecular mimicry the sialic acid may be important in evasion of the host’s immune system but 

also confer an autoimmune disease on the host in the post-infection phase (Endtz et al. 2000, 

Salloway et al. 1996). 

 

Some studies have concluded that certain Penner serotypes of C. jejuni are associated with GBS 

e.g. HS:19 which occurs infrequently (6%, n = 554) in uncomplicated cases of Campylobacter 

infection but was identified in 67% of GBS cases related to enteritis (Takahashi et al. 2005, 

Engberg et al. 2001). In addition, a study of Campylobacter clinical isolates from Japan noted 

an association between C. jejuni serotype HS:2 and cases of Miller-Fischer syndrome 

(Takahashi et al. 2005). Other studies, however, have identified serotypes that are isolated more 

frequently from uncomplicated cases and are also isolated from patients who develop GBS 

(Dingle et al. 2001b, Endtz et al. 2000, Nachamkin et al. 1998). Furthermore, studies using 

DNA microarray analysis noted high genomic heterogeneity among isolates associated with 

GBS and did not identify any genes or regions specific to GBS for those isolates (Leonard et al. 

2004). Therefore, it is unknown as to whether certain biotypes of Campylobacter result in a 

higher incidence of GBS or Miller-Fischer syndrome associated with campylobacteriosis. In 

addition, some studies have indicated that the structure of the LPS is only partly responsible for 

the autoimmune response and that host susceptibility is also likely to play a role (Ang et al. 

2002). 

 

Another recognised complication of Campylobacter infection is reactive arthritis which occurs 

in 1-3% of campylobacteriosis cases (Colmegna et al. 2004, Altekruse et al. 1999). Reactive 

arthritis (ReA) has been described as a sterile synovitis (inflammation of the sinovial membrane 

of a joint) that develops after an infection of the gastrointestinal or genitourinary tracts by 

micro-organisms including Chlamydia, Yersinia, Salmonella, Shigella and Campylobacter. 

Recent evidence, however, has shown the detection of culturable bacteria or bacterial 

components (e.g. Campylobacter RNA and LPS) from the affected joints. This has led to ReA 

being redefined as an immune-mediated synovitis resulting from slow bacterial infections and 

showing the presence of bacterial antigens present in the joint. These antigens are thought to 

have been synthesized by bacteria residing either in the joint and/or elsewhere in the body 

(Colmegna et al. 2004). ReA is characterised by pain in multiple joints, in particular the knee 

joints, and symptoms may become chronic (Altekruse et al. 1999). Two independent studies 
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have concluded that the treatment of the gastrointestinal infection with antibiotics does not 

appear to reduce the subsequent incidence of arthritis (Colmegna et al. 2004). 

 

1.2.4 Seasonality of Campylobacter 

 

The incidence of human campylobacteriosis in New Zealand and the United Kingdom appears 

to follow the seasonal trend of being highest in summer and lowest in winter (Owen et al. 1997, 

Brieseman 1990). Early autumn is another time of year in which a large number of cases is 

reported in developed countries (Barros-Velázquez et al. 1999, Skirrow 1990). A comparison of 

seasonal trends between European countries and New Zealand noted steady seasonal patterns in 

Britain and continental countries, with the peak number of human cases consistently occurring 

in distinct weeks in spring/summer (Nylen et al. 2002, Owen et al. 1997). Interestingly, the data 

for New Zealand revealed less consistency as the peak week varied from year to year and the 

summer increase of cases was more prolonged than in the European countries. A study, which 

combined serotyping and PFGE data on strains of C. jejuni isolated from three geographically 

distinct areas in England over a one year period, noted that there was no particular HS serotype 

associated with the seasonal peak (Owen et al. 1997). Moreover, the increase in numbers during 

the peak could be attributed to an increase in the less common serotypes, in comparison to an 

increase in the numbers of normally dominant serotypes. The reasons for these peaks in reported 

cases are unknown. A typing study conducted in New Zealand also noted a lack of overlap 

between Campylobacter subtypes isolated in autumn and summer from a range of matrices 

including human faeces (Hudson et al. 1999). 

 

A New Zealand study examined the regional and seasonal variation in reported cases of 

campylobacteriosis and noted distinct differences between the seasonality of the North and 

South Islands (Hearnden et al. 2003). Furthermore, much of the rural North Island displayed 

low variation between seasons and a low summer incidence of campylobacteriosis, whereas the 

large urban areas in the upper North Island and their environs exhibited higher summer 

incidence and greater seasonality than the rural areas. The highest seasonality and highest 

summer incidence was observed in the lower North Island centres of Wellington and Lower 

Hutt and in the greater part of the South Island, including the two main urban areas of 

Christchurch and Dunedin. The authors suggest that these seasonal variations may indicate 

differences in transmission routes between these regions. 
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1.2.5 Age and gender distribution 

 

In New Zealand and other developed countries campylobacteriosis can affect all age groups, 

with the highest incidence usually occurring in infants and up to four years of age. There is also 

a pronounced secondary peak of incidence in young adults, particularly between the ages of 20 

and 28 years of age with a slight increase of males over females (Anonymous 2005, Tam 2001, 

Engberg et al. 2000, Tauxe 1992, Skirrow 1987). In New Zealand for the year 2004, the rate of 

infection was 355/100,000 population (6467 cases) for males and 287/100,000 (5495 cases) for 

females (Anonymous 2005). 

 

In developing countries there is a different age pattern with high rates of repeated infection in 

young children up to 100 times that of developed nations. The number of infections, however, is 

significantly reduced in the older population. Furthermore, studies have shown the carriage of 

Campylobacter spp. by individuals (14.8%) who do not show signs of diarrhoea (Mathan and 

Rajan 1986, Rajan and Mathan 1982). It has been suggested that the acquisition of immunity 

reduces the number of infections and adults are likely to be asymptomatic in the older 

population (Taylor et al. 1993, Taylor 1992b). This is in contrast to developed countries where 

the carriage of Campylobacter by healthy adults has not been observed. 

 

1.2.6 Ethnicity 

 

As for previous years in New Zealand, cases of reported campylobacteriosis in 2004 were 

highest in those of European descent (326/100,000 population) with Pacific Peoples reporting 

the lowest rate at 63/100,000 (Anonymous 2005). These results are supported by a case control 

study conducted in New Zealand where people of European descent made up the majority 

(>90%) of cases and Maori and Pacific Islanders made up 5.3% and 0.8% respectively of cases 

(Eberhart-Phillips et al. 1997). 
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1.2.7 Estimating the economic burden of campylobacteriosis 

 
New Zealand cases of campylobacteriosis caused by foodborne transmission have been 

estimated to cost $40,136,000 annually. This comprises almost 73% of the total cost of 

foodborne infectious intestinal disease in New Zealand (Scott et al. 2000). This cost includes all 

medical costs, the value of productive days lost and the statistical value of mortality. A similar 

figure of $40 million was quoted by Withington and Chambers (1997) when an estimate of 

those cases not presenting to a general practitioner was included and calculations based on 1995 

data. Hospitalisation arising from Campylobacter infection was reported to be 7.6% of cases in 

New Zealand in 2004, although this figure was only calculated from cases who answered the 

question relating to hospitalisation (53.6% of cases) (Anonymous 2005). The value of lost 

quality of life has not been factored into this estimation but the acute phase of the illness is very 

debilitating and unpleasant as the outline of symptoms in Section 1.2.2 suggests. 

 

Estimates of the annual cost of campylobacteriosis in the United States of America based on 

medical and productivity losses were in the order of 1.2 to 6.6 billion dollars ($US). This 

represented 6 to 19% of total foodborne illness costs when applied to a selected group of 

aetiological agents: Campylobacter, Clostridium perfringens, E. coli O157:H7, Listeria 

monocytogenes, Salmonella (non-typhoid), Staphylococcus aureus and Toxoplasma (Buzby and 

Roberts 1997). 

 

The annual USA costs of GBS-associated campylobacteriosis have been estimated as US$0.2 -

$1.8 billion. These figures are based on calculations of the economic burden due to resources 

spent on medical care and lost productivity resulting from illness or death (Buzby et al. 1997). 

These annual costs from GBS-associated campylobacteriosis are in addition to the economic 

costs quoted in Buzby and Roberts (1997). 

 

In 2000, the Economic Research Service (ERS) released new estimates of the cost of 

Campylobacter infection that included the chronic complication of GBS. The estimated annual 

cost was based on 1.9 million cases resulting in 10,539 hospitalisations and 99 deaths and was 

calculated at $1.2 billion US dollars (Economic Research Service 2004). The estimates took into 

account medical costs, productivity losses and the cost of premature death, using an age-

adjusted approach. For example, it was assumed that the cost of the death of a child less than 

one year of age was five fold higher in comparison to individuals over 84 years of age. They 
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note that these estimates are not directly comparable to earlier ERS estimates (Buzby and 

Roberts 1997, Buzby et al. 1997) which were based on earlier data and methodologies for 

valuing costs. 

 

A study conducted in the Netherlands endeavoured to establish the health burden of 

Campylobacter on the population (Havelaar et al. 2000). This analysis used the Disability 

Adjusted Life Year (DALY) methodology to integrate all of the outcomes of Campylobacter 

infection based on epidemiological and clinical data in an attempt to factor in the effects of 

disease on the quality of life. The DALYs are an estimation of the sum of the “Years of Life 

Lost” by premature mortality and the years “Lived with Disability”. Severity of illness is 

integrated into the calculation by factoring in a weighted value between zero and one. Their 

results for Campylobacter infection estimated a total health burden of approximately 1400 

DALY per year, with a range of 900 to 2000 DALY per year. The large range is indicative of 

the incomplete nature of the data available for analysis. The authors suggest that this lack of 

data requires implementation of an active surveillance for pathogens causing gastroenteritis, in 

comparison to the present situation of a passive flow of information based on clinical reports. 

To place the calculation of the DALY in perspective, disorders such as meningitis, sepsis, upper 

respiratory infections, ulcers and accidental drowning are estimated to be in the range of 3000-

10,000 DALY per year. 

 

1.3 The pathogenesis of Campylobacter 
 

In a review of C. jejuni pathogenesis Konkel et al. (2001) proposed a model for infection based 

on current knowledge and from observations of biopsy specimens taken from piglets used as an 

animal model of campylobacteriosis because of their anatomical similarity to humans. It has 

been difficult to do invasion studies of Campylobacter in animal models because they rarely 

develop the severe symptoms associated with human infection. Infected piglets, however, 

develop similar symptoms to human infection, such as bloody diarrhoea, epithelial cell 

degeneration and production of inflammatory cells in the intestine. The exact in vivo target site 

for colonisation of the host intestinal cells is not yet known. 

 

When C. jejuni cells enter the small intestine they migrate toward the mucus-filled crypts of the 

intestinal wall. This is where motility involving the flagella and chemotaxis are thought to play 

an important role (Konkel et al. 2001, Wassenaar et al. 1995, Wallis 1994, Wassenaar et al. 

1993, Wassenaar et al. 1991). 
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In the microenvironment of the mucus-filled crypts C. jejuni cells undergo an adaptive response 

by synthesising various proteins that allow their interaction with host target cells. It is postulated 

that adhesins play a significant part in C. jejuni binding to specific host cell receptors. Putative 

adhesins include CadF, an outer membrane protein required for the binding of campylobacters 

to fibronectin on the host intestinal epithelial cells (Konkel et al. 1999a). The flagellum, 

lipopolysaccharide and the major outer membrane protein (MOMP) are also postulated to be 

involved in adherence of Campylobacter to host cells (Konkel et al. 2001, Fry et al. 2000, 

Wallis 1994)  

 

Binding is followed by internalisation into the host cell, which is aided by proteins including 

Campylobacter invasion antigens (Cia). Mutagenic studies have revealed that the absence of Cia 

protein secretion results in a significant reduction in the number of C. jejuni cells internalised by 

host epithelial cells (Konkel et al. 1999b). 

 

When bacteria become internalised in host cells they must be able to survive reactive oxygen 

species such as hydrogen peroxide and nitric oxide. C. jejuni employs several mechanisms to 

neutralise the effects of oxygen radicals. Hydrogen peroxide is inactivated by the catalase 

enzyme encoded by the katA gene (Day et al. 2000). Superoxide dismutase (SOD) inactivates 

the destructive oxygen species, superoxide and is another potential mechanism for neutralising 

toxic oxygen species (Konkel et al. 2001). 

 

Most pathogenic bacteria have developed mechanisms for acquiring iron. Free iron is a scarce 

resource in the host because it is strongly complexed with transferrin and lactoferrin and thus 

not readily available. The bioavailability of iron in the mammalian host is limited to 10-24 M, 

which is well below the minimum requirement of 10-7 M for bacterial growth (Braun and 

Hantke 2002). C. jejuni has multiple iron-uptake systems for ferric and ferrous ions including, 

the enterochelin (ceuBDCE) and the ferrichome (fhuABD) uptake systems, the hemin uptake 

operon, (ChuABCD), and the TonB system which facilitates the transport of iron sequestering 

molecules across the outer membrane (Konkel et al. 2001, Houng et al. 2001). 

 

From biopsy specimens one of the clinical signs of infection is atrophy of the villi and one 

hypothesis suggests that this is due to one or more bacterial toxins, such as cytolethal distending 

toxin (CDT) (Konkel et al. 2001, Wassenaar 1997). There is an intense inflammatory response 
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to C. jejuni infection resulting from the overproduction of cytokines. It is this inflammatory 

response that probably intensifies the symptoms of campylobacteriosis. 

 

In support of the pathogenic role of certain genes, the prevalence of seven putative virulence 

and toxin genes was investigated in C. jejuni and C. coli isolates from Danish pigs and cattle. A 

high prevalence of genes associated with adhesion (cadF), iron acquisition, (ceuE), motility and 

adhesion (flaA) and toxin production (cdtB) were identified, with the cytolethal distending toxin 

(CDT) gene cluster occurring in greater than 80% of isolates (n = 40) (Bang et al. 2003). 

 

1.4 Infective dose of Campylobacter 
 

Dose response data provides the link between exposure to an infectious agent and the 

probability of developing an infection and subsequent illness. Not all people who become 

infected/colonised by an intestinal microorganism will develop symptoms and be classified as 

ill; some will remain asymptomatic until the microorganism is cleared from their system. It is 

assumed that the longer a person is infected, the greater the probability of the person becoming 

ill (Teunis et al. 1999). 

 

Researchers studying the dose response of Campylobacter, administered C. jejuni to a total of 

111 volunteer immunocompetent young adults (Black et al. 1988). The doses of Campylobacter 

ranged from 8 x 102 to 2 x 109 organisms. Of the ten subjects given the lowest dose of 800 CFU, 

five people tested positive for C. jejuni in their stool samples and one reported illness with 

diarrhoea and fever. Another study involved a volunteer who ingested a clinical isolate of 

Campylobacter and reported illness at 500 C. jejuni (Robinson 1981). In the Black et al. (1988) 

study, all subjects at the higher doses tested positive for the excretion of C. jejuni in their faeces 

and produced an antibody response to C. jejuni, but without exhibiting any of the symptoms of 

illness. Overall, although infection occurred in subjects who ingested a higher dose, the risk of 

developing illness appeared to decrease with increasing doses. Only 22% of infected volunteers 

developed symptoms of illness and the highest ratio of illness to infection occurred at the 

intermediary dose of 9 x 104 C. jejuni (Medema et al. 1996). The doses where infection and 

illness occur for Campylobacter are much lower than for other bacterial agents of gastroenteritis 

such as Salmonella, Shigella and Vibrio cholerae (Rose and Gerba 1991). There is speculation 

that this low infective dose may be one of the explanations why Campylobacter is the most 

frequently notified enteropathogen in developed countries (Medema et al. 1996). 
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The results of models developed to assess the dose response of Campylobacter (Teunis et al. 

1999, Medema et al. 1996) appear to be in conflict with data collected from two recent 

outbreaks of campylobacteriosis in primary school children who had consumed unpasteurised 

milk (Teunis et al. 2005). Both outbreaks show a clear (exponential) relationship between the 

amount of milk consumed and the ensuing rate of illness, however the actual concentration of 

Campylobacter in the milk post-infection was not able to be determined. Using new information 

from the outbreaks and combining it with data from the Black et al. (1988) study, Teunis et al. 

(2005) produced an updated dose-response relation for C. jejuni infection. This new model 

shows increased infectivity at low doses by approximately 36 times in comparison to previous 

estimations, which were based solely on the human feeding study (Teunis and Havelaar 2000, 

Teunis et al. 1999). This also means that at low doses the probability of infection is directly 

proportional with dose. Although the dose-response relation is seen to rise exponentially at low 

doses, it flattens out and only at very high doses reaches near 100% response. This suggests that 

a small number of people will not develop an infection even when exposed to the 

microorganism at high doses. 

 

Two strains of C. jejuni were used in the Black et al. (1988) study with one showing greater 

virulence as shown by the severity of illness (e.g. increased volume of diarrhoea). This signifies 

that different strains of a bacterium can produce very different dose responses and disease 

outcomes, and therefore, a dose response model can only be regarded as indicative. 

 

Teunis et al. (1999) concluded that the host plays a major role in controlling levels of intestinal 

species in the gut as species type and concentrations differ between individuals. 

Immunocompromised people have a higher probability of infection causing illness and different 

dose responses have been observed between young children and adults ingesting milk 

contaminated with Campylobacter (Teunis et al. 2005). The latter is thought to be related to an 

acquired immune response in the adult population which protects them from subsequent 

Campylobacter infection. Although the data are lacking on this assumption, it is supported by 

the volunteer studies where people who had developed an infection and illness from C. jejuni 

after consuming contaminated milk were rechallenged with the same strain of C. jejuni one 

month after initial recovery. These people did not develop further symptoms of illness, 

however, control subjects challenged at the same time with the same strain did exhibit illness 

(Black et al. 1988). Furthermore, the high levels of Campylobacter infection that occur in 
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developing countries decrease with increasing age and this may be related to acquired immunity 

as C. jejuni-specific serum antibodies are significantly higher in children in the developing 

world compared to the United States (Taylor et al. 1993, Blaser et al. 1985). 

 

1.4.1.1 An evaluation of the 1988 dose response data from a 2004 perspective 

 

An evaluation of the data used for dose response models concluded that the models have 

negated the effect of strain variation within a species of bacteria (Coleman et al. 2004) and 

discusses the limitations of the trial, which may have led to the unexpected finding that the risk 

of illness does not increase with increasing dose of C. jejuni. 

 

Results of the feeding study of Black et al. (1988) showed that strain 81-176 caused the most 

severe diarrhoea and showed a higher invasion potential compared with strain A3249. 

Subsequent investigation demonstrated that in comparison to A3249, strain 81-176 has a 

significantly higher invasive potential in four human cell lines (Oelschlaeger et al. 1993). 

Further characterisation of strain 81-176 revealed the presence of a 45-kb plasmid that confers 

tetracycline resistance and a 37-kb virulence plasmid (Poly et al. 2005, Bacon et al. 2002, 

Bacon et al. 2000).  

 

Black et al. (1988) noted the presence of two colony morphologies for the ‘less virulent’ strain 

A3249. The non-spreading colony represented Campylobacter cells that did not produce 

flagella. In comparison, the spreading colonies represented cells that were flagellated. In 

preparing the inoculum for the dose of A3249, the researchers prepared two distinct inocula 

from each of the colony types, which were combined in the final inoculum to represent equal 

proportions. Stool cultures of volunteers infected with A3249 were observed to contain only 

colonies of the spreading type (flagellated). It has been suggested that in vivo passage may 

select for flagellated bacteria, and this concurs with the theory that flagella in C. jejuni may be 

an important virulence factor (Konkel et al. 2004, Carrillo et al. 2004). It is difficult, therefore, 

to be sure of the effective dose when it consists of a mixture of putative virulent and avirulent 

cells. 

 

The methods employed in the 1988 study may also have contributed to the results. For example, 

the tendency of Campylobacter cells to cluster together (autoagglutination) raises difficulties for 

enumeration of campylobacters by plate count methods (Miller et al. 2000), and the specific 
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growth phase of the Campylobacter cells at the time of administration was unknown. In 

addition, differences in host variability between the adult volunteers may have contributed to 

the observed anomalies (Coleman et al. 2004). 

 

1.5 Risk factors associated with campylobacteriosis 
 

Case-control studies have determined the risk factors associated with sporadic cases of 

campylobacteriosis. Although chicken consumption regularly features as a major risk factor 

(Rosenquist et al. 2003, Eberhart-Phillips et al. 1997, Ikram et al. 1994, Kapperud et al. 1992, 

Harris et al. 1986), other independent factors are also identified as being statistically significant. 

They include recent travel outside the country of origin; contact with farm animals and pets; 

consumption of shellfish/fish, any undercooked or barbequed meat and activities associated 

with recreational waters (Gillespie et al. 2002, Kapperud et al. 1992, Harris et al. 1986). New 

Zealand case-control studies have noted similar risk factors (Eberhart-Phillips et al. 1997, Ikram 

et al. 1994), although Eberhart-Phillips et al. (1997) did not identify a risk associated with meat 

consumption other than poultry. Additional factors associated with increased risk of 

campylobacteriosis in the New Zealand studies included rainwater as a source of drinking water 

and consumption of unpasteurised dairy products. 

 

Gillespie et al. (2002) have also suggested that it may be important to identify risk factors at the 

Campylobacter species level. For example, it was noted that people reporting illness associated 

with C. coli infection were more likely to have consumed bottled water and eaten specific meat 

types such as pâté in the two weeks before illness developed. In comparison, those infected with 

C. jejuni were more likely to have reported contact with animals prior to infection. These 

differences between species could be significant when investigating transmission routes for 

Campylobacter. 

 

1.5.1 Cases of human campylobacteriosis associated with chicken consumption  

 

A Danish risk assessment of cases of human campylobacteriosis associated with the 

consumption of chicken estimated that one case of Campylobacter infection arose from 14,300 

servings of chicken (Rosenquist et al. 2003). As an example, they estimated that the number of 

Campylobacter cases arising from chicken consumption in private kitchens was 14,000 per year 

(95% CI; 7753 – 20,942 cases), based on a figure of 201 million servings of chicken per year 
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ingested in Denmark. Although only 4386 human cases of campylobacteriosis were reported to 

the authorities in 2000, it is expected that the actual number of cases is from 7.6 times to 100 

times higher than the number of notified cases, suggesting that in the year 2000 the number of 

cases would have been in the range between 30,000-440,000 people (Rosenquist et al. 2003). 

These figures suggest a true frequency of campylobacteriosis in the range of 600-8300 cases per 

100,000 population in Denmark and support the estimate of 14,000 cases attributable to chicken 

consumption associated with preparation in private households. 

 

A case-control study that determined the risk factors for human campylobacteriosis was 

undertaken in Christchurch, New Zealand and identified the recent consumption of chicken in 

80% of clinical cases (Ikram et al. 1994). Chicken consumption was also identified as a major 

risk factor by another New Zealand case-control study (Eberhart-Phillips et al. 1997) with an 

increased risk associated with eating chicken in restaurants. In contrast, a protective factor was 

noted for chicken that had been roasted, baked or frozen prior to cooking. A Norwegian case-

control study determined the home consumption of chicken either purchased raw or frozen 

(Odds Ratio = 3.20; P = 0.024) to be one of the risk factors associated with sporadic cases of 

campylobacteriosis (Kapperud et al. 1992). Cross-contamination from raw chicken to other food 

products has also been noted as a risk factor with a decrease in incidence associated with 

washing of cutting boards with soap between food preparations (Rosenquist et al. 2003, Harris 

et al. 1986). The New Zealand case-control study of Eberhart-Phillips et al. 1997 did not 

identify food preparation practices in the kitchen as being a risk factor. 

 

The incidence of campylobacteriosis in Iceland peaked at 116 per 100,000 population in 1999 

and dropped to 33/100,000 the following year (Stern et al. 2003). This reduction coincided with 

a drop in prevalence of Campylobacter-positive chicken carcasses from 62% in 1999 to 15% in 

2000. No single factor could be identified as a range of interventions were implemented at the 

same time, which included freezing of chicken products from Campylobacter-positive flocks, 

public education and biosecurity procedures on farms. The implications, however, were that 

interventions in poultry husbandry and consumer awareness of the hazards associated with 

poultry pathogens led to a reduction in cases. Another incident that occurred in Belgium 

highlighted the impact that the consumption of poultry may have on campylobacteriosis cases. 

In June, 1999, a dioxin crisis attributed to contamination of feed components, resulted in the 

withdrawal of all poultry from the Belgium market (Vellinga and Van Loock 2002). Subsequent 
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analysis of Campylobacter cases for the same period suggested a significant drop in incidence 

leading to an estimation of 40% of cases associated with poultry consumption. 

 

1.5.2 Outbreaks of campylobacteriosis 

 

Tenover et al. (1995) defined outbreaks as the “increased incidence of an infectious disease in a 

specific place during a given period that is above the baseline rate for that place and time 

frame”. Outbreaks of campylobacteriosis have most often been associated with the consumption 

of poultry (Pearson et al. 2000, Rosenfield et al. 1985); drinking unpasteurised milk (Evans et 

al. 1996, Fahey et al. 1995, Brieseman 1984) or poorly/untreated water and contact with 

untreated surface waters (Inkson 2002, Miettinen et al. 2001, Stehr-Green et al. 1991, 

Brieseman 1987). Outbreaks associated with water are discussed in further detail in Chapter 

Three. Outbreaks associated with contamination by a food handler have also occurred on rare 

occasions (Olsen et al. 2001). Outbreaks, in general, are infrequent relative to the large number 

of sporadic cases of campylobacteriosis and this is partly attributed to the high genetic diversity 

observed in Campylobacter subtypes, which makes it difficult to identify common sources of 

infection (Friedman et al. 2004, Hedberg et al. 2001). Further discussion of this aspect of 

Campylobacter epidemiology is presented in Chapter Five. 
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1.6 Research Model 
 
1.6.1 Objectives 

 

The main objective of this study was to develop a robust and sensitive method to detect viable 

Campylobacter in a wide range of matrices having different PCR inhibitory properties and 

varying concentrations of contaminating campylobacters. This objective was designed to 

facilitate the investigation of environmental reservoirs that may harbour subtypes of 

Campylobacter pathogenic to humans. The choice of a single optimal enrichment broth allows 

for greater efficacy in the laboratory setting when dealing with large sample numbers of 

multiple matrices. This consideration was important when developing methods for large surveys 

intended to elucidate the transmission routes of a bacterium through the environment. It also 

fulfills the need for consistent methodology to aid the epidemiological study of transmission of 

campylobacters from the environment to humans.  

 

To fulfil the above objective it was important to ascertain if the method could determine the 

carriage rate of C. jejuni and C. coli in the matrices under investigation. Further validation 

determined whether the method could identify a wide range of Campylobacter subtypes in the 

environment to negate the possibility that certain subtypes would predominate due to the 

selective nature and other intrinsic properties of the method. The latter was achieved by 

validating the method on a matrix known to carry multiple subtypes of the same Campylobacter 

species. River water passing through farmland was chosen as being likely to receive multiple 

inputs of Campylobacter from varied sources including sheep, dairy cows, cattle, wild animals 

and birds. This validation also confirmed that the method was able to detect multiple subtypes 

present in an individual sample.  

 

This last validation was relevant because studies have recognised the importance of identifying 

multiple isolates from a single sample in order to identify both dominant and minor subtypes 

(Schouls et al. 2003, Schlager et al. 2002, Kramer et al. 2000). These researchers caution that 

basing a study on the isolation of dominant subtypes of a bacterial species may exclude 

significant information, especially where the study is examining the frequency of virulence 

factors in a bacterial population or tracking the source of an outbreak. In addition, identification 

of minor subtypes from environmental matrices may contribute to the knowledge about 
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potential host specificity of C. jejuni subtypes and whether all subtypes identified in a matrix 

contribute to human infections.  

 

This requirement for identifying all subtypes in an individual sample is highlighted by an 

outbreak case of E. coli O157:H7 where the epidemiological evidence strongly suggested that 

the cases were all linked (Proctor et al. 2002). However, only six of the isolates from nine cases 

were identical to one of the two isolates identified in the meat linked with the outbreak. The 

second isolate from the meat sample was unrelated to any of the four subtypes identified in the 

human faecal specimens. If this second subtype had been the only isolate identified from the 

meat sample then the importance of the ground beef as the source of the outbreak would have 

remained unconfirmed. 

 

Chicken meat has been implicated as a major route of infection for human campylobacteriosis. 

Cases associated with chicken consumption are reported to account for up to 70% of all 

Campylobacter infections (Stern 1992). Supporting this association is the high prevalence of the 

pathogenic campylobacters C. jejuni and C. coli harboured by broiler flocks and associated 

chicken products (Kramer et al. 2000). Furthermore, indistinguishable subtypes of 

Campylobacter have been identified in chicken meat and human clinical specimens suggesting 

either another unidentified common source or the transfer of infection between the two matrices 

(Karenlampi et al. 2003, Hänninen et al. 2000, Kramer et al. 2000). 

 

Based on the importance of chicken as a potential reservoir of Campylobacter, the second major 

objective of this thesis was to establish if chicken carcasses harboured more than one subtype of 

a pathogenic Campylobacter species. If more than one subtype was present, the aim was to 

determine whether the recognition of multiple subtypes increased the likelihood of establishing 

an epidemiological relationship between consumption of chicken meat and Campylobacter 

infection in humans. Assessment of the correlation between C. jejuni subtypes isolated from 

human faeces and chicken meat was based on identifying indistinguishable or related genotypes 

in both matrices.  
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1.6.2 Hypotheses 

 

In fulfilment of the outlined objectives, three testable hypotheses were developed. 

 

1. A robust enrichment-PCR assay can be developed to detect and identify pathogenic 

Campylobacter spp. from a range of environmental matrices. 

 

Reliable recovery and identification of campylobacters is time consuming due to their fastidious 

requirements for cultivation and the few biochemical tests that can be employed in their 

identification. Improved and validated methodology is needed to facilitate meaningful 

epidemiological studies. An enrichment-PCR method was to be developed as a tool to test a 

wide range of environmental matrices for the presence of two major pathogenic Campylobacter 

species, C. jejuni and C. coli, and ensure detection of target campylobacters at low levels. The 

matrices identified as potential reservoirs or transmission routes in this study were: human, 

dairy and beef cattle, sheep, chicken, duck, possum and rabbit faeces; meat products from cattle, 

sheep, pigs and chickens; and river water. The method was designed to simplify the cultivation 

process for large-scale surveys in routine laboratories. Identification of matrices that act as 

reservoirs or transmission routes of this bacterium through the environment to humans will 

greatly enhance the understanding of sources of campylobacteriosis. This information could 

lead to appropriate intervention measures and assessment of risk management techniques to 

reduce the likelihood of contracting campylobacteriosis. 

 

2. Chicken carcasses carry multiple subtypes of C. jejuni. 

 

Investigation of individual samples for the presence of pathogenic Campylobacter species has 

focussed on identifying isolates to the species level. This research aims to investigate another 

layer of complexity by determining if multiple subtypes of the same species are present in an 

individual chicken meat sample. C. jejuni is known to cause 80-90% of the cases of 

campylobacteriosis and therefore it was the Campylobacter species chosen as the focus for 

determining the prevalence of multiple subtypes. The carriage of multiple subtypes of C. jejuni 

will be determined by the typing method of pulsed-field gel electrophoresis (PFGE) using two 

restriction enzymes. Previous research in a chicken abattoir suggested that not all subtypes of 

C. jejuni have the same survival capabilities and showed that the carriage of C. jejuni subtypes 
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by a chicken carcass can alter during its course through the processing plant (Newell et al. 

2001). This information can be used to manage the critical points during processing from the 

farm to the consumer where there is potential for contamination by pathogenic campylobacters. 

 

3. All subtypes of C. jejuni identified on chicken carcasses are also identified in human 

faecal specimens. 

 

There is a correlation between the subtypes of pathogenic Campylobacter identified in chicken 

carcasses and those identified from human faecal specimens. Previous international 

comparisons of the subtypes isolated from chicken carcasses and human faecal specimens have 

identified unique subtypes in both matrices. This information is relevant because potentially not 

all subtypes are pathogenic to humans. Characterisation of those subtypes that occur in both 

matrices allows for a comparison with subtypes unique to one of the two matrices. This could 

lead to the investigation of potential virulence factors that confer an advantage associated with 

the multiple matrix isolates. 

 

1.6.3 Possible outcomes 

 

For a given environmental matrix to act as a reservoir or transmission route it must harbour 

Campylobacter organisms. Therefore, the first possible outcome is that the Campylobacter 

organism can be recovered from the following environmental matrices: river water; animal, bird 

and human faeces; meat and chicken products. Developing a methodology that enables the 

detection of Campylobacter organisms from these matrices can test this prediction.  

 

To establish the presence of indistinguishable or related subtypes of C. jejuni in multiple 

matrices it is important to determine if there are multiple subtypes present in an individual 

sample. Therefore, the second possible outcome is that multiple subtypes can be identified in 

samples from water and chicken carcasses. 

 

For a C. jejuni subtype to be identified as a potential infectious agent in human 

campylobacteriosis it must first be identified in human faeces. Hence, the third possible 

outcome is that C. jejuni subtypes identified in chicken meat products will also be identified in 

human faecal specimens from patients suffering from campylobacteriosis. 
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1.7 Format of the thesis 
 

Chapter One is a general introduction to Campylobacter bacteriology and epidemiology with 

the scientific relevance and background to the research detailed in subsequent chapters. In 

addition, Chapter One contains the research model for this study and outlines the specific 

objectives related to the three hypotheses that form the basis of this study. Chapters Two to Five 

each follow the generalized format of introduction, materials and methods, results and 

discussion. 

 

Chapter Two presents the development and testing of the detection limits of the enrichment-

PCR method of campylobacters in all of the environmental matrices under investigation. 

Chapter Three presents the application of the enrichment-PCR method to the environmental 

isolation of Campylobacter from chicken carcasses and water. It also contains the validation 

study of the ability of the enrichment-PCR method to isolate multiple subtypes of C. jejuni from 

an individual sample. This was achieved by the pulsed-field gel electrophoresis (PFGE) analysis 

of multiple subtypes isolated from a grab sample of river water. Chapter Four presents the 

results of PFGE molecular typing of multiple isolates of C. jejuni from chicken carcasses. 

Chapter Five discusses the correlation of indistinguishable and related subtypes isolated from 

human and chicken matrices. Chapter Six is a discussion of all the results obtained in this thesis 

and includes possibilities for future research. 
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2 Method development of enrichment PCR protocol 
 
2.1 Introduction  
 

Reliable recovery and identification of campylobacters from environmental matrices is 

challenging. Epidemiological studies to determine routes of campylobacter infection require 

improved and validated methodologies to enhance the ability to detect campylobacters from a 

wide range of environmental matrices. The large surveys required to establish a database of 

Campylobacter subtypes for comparison with clinical isolates necessitate rapid, routine 

laboratory methods that are robust and allow isolation of the target bacterium for analysis by 

subtyping technologies. Difficulties encountered when developing a method, which reliably 

detects Campylobacter from a range of environmental sources, include the low numbers present 

in/on matrices such as foodstuffs and waterways, and the presence of inhibitors intrinsic to a 

particular matrix such as faeces. These issues are examined in the following discussion. 

 

2.1.1 Campylobacter isolation from environmental matrices 

 

At present, enrichment is followed by conventional plating to obtain single colonies of 

Campylobacter for identification. Confirmation of the identity of bacterial species by 

conventional phenotypic tests requires the purification of individual colonies prior to 

identification by biochemical tests. This entails a 48 hour incubation of two consecutive 

subcultures to ensure the purity of target colonies. Some of the biochemical tests include 

antibiotic susceptibility assays which require further incubation for 48 hours. This can lead to a 

period of up to ten days for identification by the conventional method. Futhermore, 

campylobacters are not readily identified as there are few biochemical tests that can be exploited 

for their classification and they require fastidious conditions for cultivation. These factors limit 

the available phenotypic tests for differentiation at the species level. 

 

The main biochemical test used to distinguish C. jejuni from C. coli is based on the presence of 

an enzyme which breaks down hippurate. It is now known that approximately 5% of C. jejuni 

isolates are misidentified as they do not express this enzyme even though the gene is present in 

the genome (Linton et al. 1997). A study, which compared phenotypic and genotypic methods 

of identifying campylobacters (Waino et al. 2003), concluded that phenotypic identification 

schemes needed to be supplemented by genotypic methods such as species specific PCR. One 
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example of misidentification by phenotypic testing included 29% of 309 putative C. coli isolates 

identified on the basis of a negative hippurate test being re-identified as hippurate 

variable/negative C. jejuni cultures by genotypic tests. 

 

Employing techniques, such as the Polymerase Chain Reaction (PCR) that detect the DNA in an 

organism can reduce the time required for identification, as multiple species are able to be 

detected simultaneously in a sample by a rapid and cost effective test. 

 

PCR has been used extensively for detecting pathogenic microbes, including thermotolerant 

campylobacters, in many different matrices (Rudi et al. 2004, Dedieu et al. 2004, Inglis and 

Kalischuk 2003, Hong et al. 2003, Sails et al. 2002, O'Sullivan et al. 2000, Konkel et al. 1999a, 

van Doorn et al. 1999, Vanniasinkam et al. 1999, Denis et al. 1999, Waage et al. 1999, Harmon 

et al. 1997, Linton et al. 1997, Ng et al. 1997, Rasmussen et al. 1996, Waegel and Nachamkin 

1996, Ayling et al. 1996, Kirk and Rowe 1994). Rarely have these assays been developed for 

and evaluated over a wide range of matrices for the purpose of establishing a protocol to 

determine transmission routes and reservoirs of campylobacters to facilitate epidemiological 

studies. 

 

PCRs have been developed for the direct detection of C. jejuni in human faecal samples (Linton 

et al. 1997, Ng et al. 1997, Waegel and Nachamkin 1996) and chicken faeces (Rudi et al. 2004). 

These assays have been designed to accommodate the respective substrates human and chicken 

faeces which are known to have a Campylobacter count in the range of 106 to 108 (Taylor et al. 

1993) and 105 to 107 (Rudi et al. 2004) colony forming units per gram (cfu g-1) of faeces. This is 

in comparison to the significantly lower numbers of 102 to 103 cfu g-1 in dairy cows and 102 

to104 cfu g-1 in sheep (Hutchison et al. 2004, Stanley et al. 1998c, 1998b). The generally low 

numbers of campylobacters in most environmental matrices necessitates the use of enrichment 

techniques to overcome environmental stresses and facilitate growth of the target organisms. 

Direct plating of cattle and sheep faeces onto agar media has been reported to produce lower 

recoveries in comparison to enrichment techniques (Madden et al. 2000, Stanley et al. 1998c, 

1998b, Atabay and Corry 1998). Atabay and Corry (1998) also suggested that after enrichment, 

plating onto at least two different agar types was required to maximise detection of positive 

samples. Waage et al. (1999) noted that for foods analysed without enrichment, the PCR results 

were variable. They recommended the use of an enrichment step to increase the sensitivity of 

the PCR method and overcome the non-reproducibility of the results. 
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Maher et al. (2003) conducted an evaluation of methods for Campylobacter detection which 

compared direct plating on a Campylobacter selective medium with enrichment prior to plating 

on a selective medium. They concluded that there was a 30% increase in detection of 

Campylobacter from human faeces when samples were enriched in broth prior to plating onto 

the selective agar. 

 

When trying to develop a PCR assay for detection of thermolerant campylobacters in a wide 

range of matrices it is important to recognise the inhibitory effects inherent to a particular 

matrix. Humic substances in water and components in food and faecal samples, such as 

complex polysaccharides, as well as blood in enrichment media can all contribute to inhibition 

of the Polymerase Chain Reaction (Maher et al. 2003, Waage et al. 1999, Waegel and 

Nachamkin 1996, Rossen et al. 1992). Enrichment broths can aid dilution of inhibitors and 

washing of enriched cells prior to PCR can remove remaining inhibitory compounds. 

 

Competition from other microflora, usually present in higher numbers, can be partially 

overcome by employing the selective temperature of 42°C which is optimal for thermotolerant 

campylobacters (Griffiths and Park 1990). Antimicrobials in the enrichment medium also 

reduce competition from fungi and other bacteria, and the addition of compounds which reduce 

the toxic effects of oxygen benefits the stressed microaerophilic Campylobacter cells (Baylis et 

al. 2000). It should be noted, however, that the addition of antibiotics to a medium may inhibit 

the growth of injured campylobacters (Mason et al. 1999, Humphrey and Cruickshank 1985). 

Isolation from water was enhanced by delayed addition of antibiotics to the enrichment medium 

for 4-8 hours, but for poultry carcasses it was determined that the isolation rate was improved 

by addition of anitibiotic to the initial enrichment (Mason et al. 1999). A pre-incubation period 

of four hours at 37°C has been shown to be efficacious in the recovery of injured 

Campylobacter cells (Waage et al. 1999, Humphrey 1986). 

 

Taking into account all of the above parameters, selection of a suitable enrichment medium is 

difficult and as noted by Madden et al. (2000) choice of broth will take into account overall rate 

of recovery and ability to enrich different species and subtypes of a Campylobacter species of 

interest. The method reported in this study attempted to design an experimental system which 

would identify viable C. jejuni and C. coli in a range of matrices expected to have a wide 

variation of Campylobacter numbers present. Also, as noted by Scates et al. (2003), 

 



36  Campylobacter in environmental matrices 
identification of campylobacters throughout the food chain requires employment of the same 

method to each matrix to allow for genuine comparisons to aid epidemiological studies. 

 

2.1.2 Campylobacter prevalence in environmental matrices 

 

Previous studies in Christchurch examined the case histories of human campylobacteriosis cases 

(Eberhart-Phillips et al. 1997, Ikram et al. 1994) and concluded that a likely source of 

campylobacteriosis was the consumption of undercooked chicken or the contamination of other 

foods by uncooked chicken meat. This is supported by a study performed in Finland where 

subtyping analyses identified 34% of C. jejuni human isolates with indistinguishable serotype 

and genotype combinations to C. jejuni strains isolated from chickens prior to slaughter 

(Karenlampi et al. 2003). With the application of temporal data to make an association between 

the date of chicken faecal sampling and faecal sampling from infected humans, the percentage 

of indistinguishable subtypes was reduced to 21%. Ikram et al. (1994) also suggested that there 

are other, as yet, unknown environmental sources which are acting as transmission routes or 

reservoirs of Campylobacter. 

 

A Canadian study centered on Eastern townships in Quebec combined a case-control study of 

campylobacteriosis with a study of the prevalence of Campylobacter spp. in retail chickens. 

From August to October, a seasonal increase in chicken Campylobacter isolates was noted, 

whereas the human cases of campylobacteriosis peaked a month earlier in July and decreased 

ten fold for the months of September and October (Michaud et al. 2004). Furthermore, less than 

fifty percent of cases could be associated with the risk factors of eating undercooked poultry, 

consuming raw milk and its products and eating poultry in a restaurant. Other environmental 

sources of Campylobacter, such as drinking water, were suggested as being important in the 

transmission of Campylobacter to humans (Michaud et al. 2005, 2004).  

 

A reservoir is defined as “one or more epidemiologically connected populations or 

environments in which the pathogen can be permanently maintained and from which infection is 

transmitted to the defined target population” (Haydon et al. 2002). In this study, the term, 

reservoir is applied to a matrix which harbours Campylobacter and supports its replication. A 

transmission route is defined as a vehicle of bacterial transmission within which campylobacters 

are unable to multiply. Animal reservoirs, besides poultry, known to harbour campylobacters 

include cattle, dairy cows, sheep and wild birds (Savill et al. 2003, Giacoboni et al. 1993, 
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Kakoyiannis et al. 1988). Campylobacters are not able to multiply in aqueous environments but 

water can act as a transmission route for their distribution. Rivers receive input from many 

faecal sources, in particular, where high-density farming occurs alongside waterways. Other 

important transmission routes could be birds as their mobility allows them to act as intermediary 

hosts between warm-blooded animals (Jones et al. 1999). The following section provides a 

summary of the environmental matrices from which campylobacters have been isolated. These 

matrices, along with human faeces were to be included as substrates in the development of the 

enrichment-PCR method. 

 

2.1.2.1 Chicken produce 

 

Surveys have shown that 30-100% of poultry harbour Campylobacter as normal commensal 

flora of their intestinal tract (O'Sullivan et al. 2000). The Campylobacter intestinal contents of 

chickens at the time of slaughter are reported to be present in numbers up to 107 cfu g-1 (Stern 

1994). The prevalence of C. jejuni in chicken meat is also reported to be high, with 48 to 98% 

of commercial broiler carcasses testing positive (Bryan and Doyle 1995, Stern 1992, Park et al. 

1991), although one study from the Netherlands yielded a low prevalence of 16% C. jejuni 

(Stern 1992). Surveys in the United Kingdom have reported prevalences of C. jejuni as 77% 

(n = 198) (Kramer et al. 2000) and 52% in chicken pieces (Sails et al. 2003a) and C. coli from 

6.6% of the samples (Kramer et al. 2000). A Canadian study of campylobacters in whole retail 

chickens identified 41 (23%) positive samples from a total of 177 samples. C. jejuni isolates 

accounted for 90% of the positive cultures with C. coli identified in the remaining positive 

samples (Michaud et al. 2004). Prevalence of C. jejuni in fresh chicken in previous New 

Zealand studies was determined to be 54% (n = 50 whole chickens), 57% (n = 137 whole 

chickens) and 56.6% (n = 113 chicken pieces) (Anonymous et al. 1999, Campbell and Gilbert 

1995, Hudson et al. 1999) respectively. 

 

2.1.2.2 Ruminant animals 

 

Although there is a widely held assumption that poultry products are responsible for most 

sporadic cases of campylobacteriosis (Hänninen et al. 2001, Federighi et al. 1999), data from 

many studies suggest the implication of other animal reservoirs (Devane et al. 2005, Brown et 

al. 2004, Leatherbarrow et al. 2004, Acha et al. 2004, Stanley and Jones 2003, Petersen et al. 

2001a, Corry and Atabay 2001, Nielsen et al. 2000, On et al. 1998). It is known that ruminant 
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animals can shed Campylobacter in their faeces (Bailey et al. 2003, Meanger and Marshall 

1989). With the large number of ruminant animals in New Zealand these observations raise 

questions as to the potential for domesticated mammals to act as environmental reservoirs of 

Campylobacter and the significance of their role in the transmission of campylobacters through 

the environment to humans, either directly or via food, water or other transmission routes. 

 

In a UK study of thermotolerant Campylobacter isolates from sheep, the main species isolated 

was C. jejuni (90%), followed by C. coli (8%) and C. lari (2%) (Jones et al. 1999). This same 

pattern was found with the isolation of Campylobacter from sheep intestines at the time of 

slaughter (Stanley et al. 1998c). Over a one-year sampling period there were consistently high 

carriage rates of Campylobacter detected in the intestines of sheep at slaughter. Shedding of 

Campylobacter in faeces, however, was found to vary depending on feed and the season, with 

high numbers of Campylobacter isolated during the lambing season and low numbers during the 

winter period. C. jejuni was found to survive in sheep faeces left in the outside environment for 

up to four days. The numbers of campylobacters found in sheep faeces were consistently lower 

than the numbers found in their intestines. Jones et al. (1999) postulated that a sheep may shed 

up to 7 x 107 Campylobacter per day (figures from late summer sampling) which would 

contribute to the bacterial loading of runoff into streams and rivers.  

 

The seasonal variation of thermotolerant campylobacters observed in sheep also seems to be the 

case for beef and dairy cattle in the UK (Stanley et al. 1998b). The peak periods for both beef 

and dairy cattle occurred in spring and autumn. A New Zealand study by Meanger and Marshall 

(1989) found the peak period of infection to be autumn (31%) closely followed by summer 

(24%). It also demonstrated that the same genotypes of C. jejuni and C. coli were found in 

sheep and dairy cows on the same farm, which suggests cross infection between the two animal 

species.  

 

In overseas studies the intestinal cell density of Campylobacter in beef cattle, as determined by 

the Most Probable Number (MPN) technique at the time of slaughter, was 6.1 x102 MPN g-1 

fresh weight of intestinal contents (MPN gfw-1) (Stanley et al. 1998b). In the same study the 

average number of Campylobacter present in adult dairy cattle was found to be 70 MPN gfw-1 

and 3.3 x104 MPN gfw-1 in calves. A more recent study, which used real-time quantitative PCR 

to determine C. jejuni cell density in beef cattle, identified 27% of samples (n = 299) as 

containing the maximum population of between 104 and 5 x 105 cells per gram of faeces (Inglis 
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et al. 2004). A range of faecal carriage rates for C. jejuni in dairy cows has been reported 

(Table 4). 

 

Table 4: C. jejuni carriage rates in bovine animals 
 

Percentage carriage Number of animals References 
37.7 2,085 dairy cows Wesley et al. 2000 

7.0 136 dairy cows and calves Atabay and Corry, 1998 

54.0 24 calves Grau 1988 

12.5 96 adult dairy Grau 1988 

0-10.0 720 dairy cows (prevalence 
based on population per farm) 

Harvey et al. 2004 

38.0 382 beef cattle Inglis et al. 2003 
 

 
As expected because of the presence of Campylobacter in dairy herds, outbreaks of 

campylobacteriosis associated with unpasteurised milk have long been reported (Galbraith et al. 

1982). Cases are mostly reported due to a failure in pasteurisation processes (Fahey et al. 1995) 

or visits to farms where unpasteurised milk is consumed (Evans et al. 1996). Investigation of an 

outbreak associated with consumption of raw milk in Austria confirmed that isolates from 

clinical samples and the suspected dairy cows had indistinguishable subtypes as determined by 

pulsed-field gel electrophoresis analysis utilising two restriction enzymes (Lehner et al. 2000). 

 

A study explored the presence and survivability of Campylobacter in dairy slurries (Stanley et 

al. 1998d). Thermotolerant Campylobacter were readily isolated from stored slurries and from 

slurries disposed onto land during the winter. The campylobacters could be detected in the 

slurry for up to 20 days after application. This has implications for runoff of campylobacters 

into waterways, resulting in contamination of recreational aquatic environments. 

 

Although farm animals are born free of Campylobacter, various studies have demonstrated the 

transfer of campylobacters from mothers and the immediate farm environment to lambs (Jones 

et al. 1999), calves (Stanley et al. 1998b) and pigs (Weijtens et al. 1997). The higher 

Campylobacter numbers found in the offspring of farm animals decreases as they reach maturity 

as their intestinal tracts become fully developed. The Campylobacter species most commonly 

isolated from pigs is C. coli (Christensen and Sorenson, 1999). The prevalence of C. coli in pig 
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faeces has been reported as 58% (n = 203) (Munroe et al. 1983). A study by Weijtens et al. 

(1997) reported that Campylobacter counts in pig faeces ranged from 102 to 104 cfu g-1. 
 

2.1.2.3 Meat Products 

 

The ubiquitous presence of campylobacters in the intestines of cattle, sheep and pigs suggests 

that they would be common on eviscerated carcasses. This has been found to be the case but 

their numbers decline rapidly, presumably due to the sensitivity of campylobacters to drying 

(Park et al. 1991). A survey of abattoirs in Northern Ireland revealed no isolates of 

Campylobacter in 100 lamb and 100 beef carcasses (Madden et al. 1998). The same study also 

detected no Campylobacter species in 50 retail packs of beef and 50 packs of pork. A more 

recent Irish study of retail meat still found low prevalences of Campylobacter in beef (3.2%, n = 

221) and lamb (11.8%, n = 262) (Whyte et al. 2004). This concurs with a Japanese study (Ono 

and Yamamoto 1999) which failed to detect C. jejuni in beef and pork. Madden et al. (1998) 

suggested that this low prevalence could be taken as an indicator of good slaughterhouse 

hygiene practices.  

 

A report for the Danish Meat Research Institute (Christensen and Sorenson 1999) discusses the 

problems of Campylobacter contamination during the slaughter process. Campylobacter were 

found on 43-85% of pig carcasses before the tunnel chilling process. After chilling, the 

prevalence of Campylobacter had dropped to 11-18% of the carcasses. Almost all of the 

Campylobacter isolates were C. coli. An Irish study also reported a low prevalence of 5.1% of 

Campylobacter in retail pork (n = 197) (Whyte et al. 2004).  

 

Offal may be more highly contaminated by Campylobacter because of its moist nature which, 

given that the product is chilled, will enhance the survival of the organism (Park et al. 1991). In 

a survey of offal from pigs, beef, chickens and sheep the percentage isolation of C. jejuni was 

reported as 27% (n = 25) (Sails et al. 2003a). The individual prevalence of campylobacters 

identified in offal is presented in Table 5.  
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Table 5: Prevalence of Campylobacter contamination in offal 
 
Matrix Campylobacter  Percentage positive  Reference 

Lamb Liver C. jejuni  75.0 (n = 96) Kramer et al. (2000) 
  66.2 (n = 272) Cornelius et al. (2005) 

 C. coli 13.5 (n = 96) Kramer et al. (2000) 

C. jejuni 49.0 (n = 96) Kramer et al. (2000) Ox liver 

C. coli 2.1 (n = 96) Kramer et al. (2000) 

34.3 (n = 99) Kramer et al. (2000) C. jejuni 

4.8 (n = 400) Moore and Madden (1998) 

42.4 (n = 99) Kramer et al. (2000) C. coli 

9.8 (n = 400) Moore and Madden (1998) 

Pig liver 

C. lari 0.5 (n = 400) Moore and Madden (1998) 

 

2.1.2.4 Wild birds 

 

The mobility of wild birds and their internal temperature of 42°C makes them ideal candidates 

for aiding the transmission of Campylobacter through the environment (Jones 2001, Skirrow 

1990). Studies have highlighted the potential role of birds as vehicles for Campylobacter 

transmission from farm animal faeces (Brown et al. 2004, Adhikari et al. 2004). The mode of 

transmission was demonstrated to be the transfer of campylobacters by birds pecking cowpats 

(Skirrow 1994) and the same transmission route has been suggested for sheep (Jones et al. 

1999). The prevalence of C. jejuni isolated from mallard ducks has been reported as 34% (n = 

243) (Luechtefeld et al. 1980) and 40% (n = 82) (Fallacara et al. 2001). 

 

2.1.2.5 Water 

 

Thermotolerant Campylobacter are widespread in the environment and subsequently in 

waterways (Kemp et al. 2005, Devane et al. 2005, Savill et al. 2001) where their presence is a 

sign of recent contamination with animal and bird faeces, farm run-off or sewage (Jones 2001). 

Contamination of waterways by Campylobacter follows seasonal trends. The prevalence of 

Campylobacter in water increases in winter when water temperatures are lowest (Brennhovd et 

al. 1992, Carter et al. 1987). During the summer when there is an increase in ultraviolet 

radiation and the water temperature rises the prevalence of Campylobacter falls (Obiri-Danso et 

al. 2001). Campylobacter do not multiply in water because of their high minimum growth 
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temperature (circa 30oC). Instead, water acts as a transmission route between warm-blooded 

hosts. The finding of Campylobacter in groundwater during an investigation of a polluted spring 

(Stanley et al. 1998a) is significant for those who derive their drinking water supply from such 

aquifers. The C. jejuni biotypes isolated from the groundwater were indistinguishable from 

biotypes isolated from cows on a dairy farm situated within the hydrological catchment of the 

polluted spring. These results support the role of water as a transmission route for 

campylobacters through the environment to humans. Cases of campylobacteriosis associated 

with water will be discussed further in Chapter Three. 
 

2.1.2.6 Feral Animals 

 

The Australian brushtail possum (Trichosurus vulpecula) is a serious pest to the agricultural and 

forestry industries of New Zealand. The European rabbit (Oryctolagus cuniculus) causes serious 

damage to agricultural pasture lands. There are approximately 70 million Australian brushtail 

possums in New Zealand (www.maf.govt.nz/MAFnet/, accessed January 2006), and the possum 

is a significant source of infection for new cases of bovine tuberculosis in New Zealand cattle 

(Kao and Roberts 1999). The European rabbit is a laboratory model for studies of 

Campylobacter infection (Walker et al. 1992) suggesting that they may be capable of 

harbouring Campylobacter in the wild. Until recently, there have been few reports of 

Campylobacter isolation from rabbits. One study of the spatial distribution of Campylobacter in 

a defined area of farmland identified a C. coli isolate from rabbit faeces (Leatherbarrow et al. 

2004). A similar study identified C. jejuni isolates from 11% of non-avian wildlife. The 271 

non-avian wildlife samples were characterised as being derived from “mainly rabbits and 

badgers” (Brown et al. 2004). 
 

2.1.2.7 Other potential reservoirs/transmission routes of Campylobacter 

 

2.1.2.7.1 Pets as reservoirs of campylobacters 

 

All four thermotolerant campylobacters have been identified in dog faeces including 26% of 

samples which showed multiple infection by different Campylobacter species (Koene et al. 

2004). In two of these samples, three species of Campylobacter were identified in each sample. 

C. upsaliensis seems to be the most frequently isolated Campylobacter from dog and cat faeces 

(Table 6) (Burnens et al. 1992). 

 

http://www.maf.govt.nz/MAFnet/
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A Danish study investigated 45 cases of campylobacteriosis where the patients were living with 

pet dogs or cats (Damborg et al. 2004). Overall campylobacters were recovered from eleven 

pets and C. jejuni was identified in four dogs and four cats, two pets carried C. lari and one 

carried C. coli. Dogs showing signs of gastroenteritis were all one year or less in age. 

Genotyping of isolates from pets and patients revealed only one case among the 45 studied 

where an indistinguishable C. jejuni strain was identified in a patient and pet living in the same 

household. As part of the same study, a cluster analysis of other canine and human C. jejuni 

isolates from different Danish counties showed greater than 95% similarity between genotypes, 

suggesting the occurrence of closely related strains between these two matrices. 

 

A longitudinal study of the excretion of thermotolerant campylobacters by young pet dogs 

monitored the puppies from a few months old until they reached two years of age (Hald et al. 

2004a). From nine to fifteen months of age all of the puppies were excreting campylobacters 

constantly. This had reduced to 67% of the dogs carrying campylobacters at two years of age. 

Distribution of Campylobacter species in the dogs over the entire study period was: 

C. upsaliensis, 75.0%; C. jejuni 19.4%; C. lari, 2.1%; C. coli 0.7%. Unidentified 

Campylobacter species made up 2.8% of the isolates. Genotyping of C. upsaliensis isolates 

revealed a high degree of clonality of strains within individual dogs. In comparison, there was 

much higher diversity with the C. jejuni isolates, with a discrete subtype seen in most samples 

from each dog. As observed in other studies, dogs less than one year old were more likely to 

carry C. jejuni than older dogs. 

 

 

Table 6: Prevalence of Campylobacter species in pets 
 
Animal species C. jejuni C. coli C. upsaliensis C. lari References 
Dogs (n = 289) 20 6 98 ND Baker et al. 

(1999) 
         (n = 30) 12  16 3 Koene et al. 

(2004) 
Cats  (n = 195) 8 ND 22  Baker et al. 

(1999) 
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2.1.2.7.2 Flies 

 

Flies and other insects such as beetles carry Campylobacter and have been suggested as 

significant sources of contamination (Hald et al. 2004b, Adhikari et al. 2004, Berndtson et al. 

1996, Jacobs-Reitsma et al. 1995). Insects harbour campylobacters on hairs on their body and 

feet or in their alimentary tract (Rosef and Kapperud 1983). Flies have the potential to transmit 

C. jejuni to humans via the indirect route of food. A study of flies trapped outside a broiler 

house in Denmark identified 8.2% of the flies as carriers of C. jejuni (Hald et al. 2004b) and 9% 

of flies trapped on a New Zealand dairy farm were carriers of C. jejuni (Adhikari et al. 2004). 

Furthermore, an interesting observation has been made relating the seasonal summer increase in 

Campylobacter cases to the proliferation of flies at the same time of year (Nichols 2005). It is 

postulated that although most infections are sporadic they often still maintain a geographic and 

temporal distribution of subtypes and that transmission by flies could be one source of the 

“random” distribution of Campylobacter infections. 
 

2.1.3 Objectives  

 

• To aid epidemiological investigation of Campylobacter transmission by the development 

of a robust, efficient and sensitive method for the detection and identification of 

Campylobacter in a wide range of environmental matrices. The matrices include animal 

and human faeces, water and food. 

• To design a Polymerase Chain Reaction for the identification of C. jejuni and C. coli.  

• To determine the optimal broth for enrichment of the target campylobacters in each of 

the selected matrices.  

• To determine the detection levels of C. jejuni and C. coli in each of the matrices by use 

of artificially seeded water, food and faecal matrices, and compare results with the levels 

obtained by the conventional plating method. 
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2.2 Materials and methods 

 

2.2.1 Media and reagents 

 

Media and Reagents used in this research were prepared as described in Appendices I and II 

(respectively). Unless otherwise stated, the chemicals used in this methods section were 

obtained from Sigma (Castle Hill, New South Wales, Australia). 

 

2.2.2 Bacterial strains and culture conditions 

 

Campylobacter and non-Campylobacter bacterial cultures listed in Table 7 were used to 

validate the PCR oligonucleotide primers to determine the specificity of the PCR reaction. 

Thermotolerant Campylobacter spp. and subspecies of C. sputorum and C. fetus were cultured 

on Columbia Blood Agar (CBA) Base (Merck, Darmstedt, Germany) supplemented with 5% 

defibrinated sheep’s blood. Campylobacters were incubated at 42°C for thermotolerant species 

and 37°C for C. sputorum and C. fetus spp., under microaerophilic conditions generated by the 

Oxoid (Basingstoke, UK) CampyGenTM system. C. gracilis, C. showae, C. concisus and C. 

curvus were grown on Tryptic Soy BHI Vitamin K Yeast extract (TSBKY) medium at 37oC 

under anaerobic conditions, generated by the Oxoid AnaeroGenTM system. 

 

Non-Campylobacter species, with the exception of B. ureolyticus, were cultured overnight in 

Brain Heart Infusion (BHI; Difco, Detroit, MI, USA) broth at 35°C. B. ureolyticus was cultured 

on CBA with 5% defibrinated sheep’s blood at 37oC under anaerobic conditions. 

 



46  Campylobacter in environmental matrices 
 

Table 7: Micro-organisms used to assess the specificity of the PCR oligonucleotide 
primers 

 

Organism Source 
Arcobacter butzleri CCUG 30485, ATCC 49616 
Arcobacter cryaerophilus CCUG 17801, ATCC 43158 
Bacillus cereus NCTC 8035 
Bacillus subtilis NCTC 3610 
Bacteroides ureolyticus NZRM 2009 
Campylobacter coli NZRM 2607 
Campylobacter coli ERL 97/454 
Campylobacter concisus ATCC 33237 
Campylobacter curvus ATCC 35224 
Campylobacter fetus subsp. fetus NZRM 2398, NCTC 10842 
Campylobacter fetus subsp. 
venerealis 

NCTC 10354 

Campylobacter gracilis ATCC 33236 
Campylobacter hyoilei CCUG 33450, ATCC 51729 
Campylobacter jejuni NCTC 11351 
Campylobacter jejuni subsp. doylei NCTC 11951 
Campylobacter jejuni Environmental isolate F38011 
Campylobacter jejuni Environmental isolate 4135 
Campylobacter jejuni Environmental isolate ERL 96 3376 
Campylobacter jejuni Environmental isolate ERL 96 3377 
Campylobacter lari NZRM 2622 
Campylobacter lari 960786 (from Massey University, Palmerston North, 

New Zealand) 
Campylobacter showae ATCC 51146 
Campylobacter sputorum subsp. 
sputorum 

ATCC 33562 

Campylobacter upsaliensis NZRM 3675, ATCC 43954 
Enterobacter aerogenes NCTC 10006 
Enterococcus faecalis NCTC 775 
Escherichia coli ATCC 25922 
Helicobacter pylori NZRM 2925 
Klebsiella pneumoniae NCTC  9633 
Listeria innocua  NCTC 11288 
Listeria ivanovii Isolate from Ruakura Agricutlural Research Centre, 

Hamilton, New Zealand 
Listeria monocytogenes NCTC 7973 
Morganelli morganii NCTC 235 
Proteus vulgaris ATCC 13315 
Pseudomonas aeruginosa NCTC 10662 
Saccharomyces cerevisae NCTC 10716 
Salmonella Menston NCTC 7836 
Shigella flexneri NCTC 5 
Staphylococcus aureus ATCC 25923 
Staphylococcus epidermidis ATCC 12228 
Streptococcus bovis NCTC 8177 
 



Chapter 2 Method development of enrichment-PCR 47 

 
Abbreviations for Table 7 

ATCC  American Type Culture Collection 

CCUG  Culture Collection, University of Göteborg 

ERL  Enteric Reference Laboratory (ESR, New Zealand) 

NCTC  National Collection of Type Cultures 

NZRM  New Zealand Reference Culture Collection, Medical Section 

 

2.2.3 Development of the multiplex PCR assay 

 
2.2.3.1 Primer Design.  

 
Thermotolerant Campylobacter species were detected via DNA amplification of a portion of the 

23S ribosomal RNA (rRNA) gene. Species-specific identification was achieved using primers 

targeting the lpxA gene of C. jejuni and the ceuE gene of C. coli. The sequences for each of 

these genes were obtained from EMBL (http://www.embl-heidelberg.de) and Genbank 

(http://www.ncbi.nlm.nih.gov/Genbank) and aligned using ClustalW 

(http://www.ebi.ac.uk/clustalw/). Primer Express (Applied Biosystems, Foster City, California) 

was used to design the candidate primers. The primers were screened using BLAST 

(http://www.ncbi.nih.gov/blast/blast/cgi) for non-specific cross-reactivity. The 23S rRNA 

primers were modifications of primers designed by (Eyers et al. 1994, 1993) with the primer 

pair being extended at the 5’ end to increase the melting temperature to match that of the other 

primers used. An annealing temperature of 60oC was chosen to increase the specificity of the 

reaction. The 5’ to 3’ primers were Therm 1M Forward AAA TTG GTT AAT ATT CCA ATA 

CCA ACA TTA G and Therm 2M Reverse GGT TTA CGG TAC GGG CAA CAT TAG for the 

detection of thermotolerant campylobacters, LpxA Forward CCG AGC TTA AAG CTA TGA 

TAG TGG AT and LpxA Reverse TCT ACT ACA ACA TCG TCA CCA AGT TGT for the 

detection of C. jejuni, and CeuE Forward CAT GCC CTA AGA CTT AAC GAT AAA GTT 

and CeuE Reverse GAT TCT AAG CCA TTG CCA CTT GCT AG for the detection of C. coli. 

Primers were purchased from Invitrogen, (Carlsbad, CA, USA). 
 

2.2.3.2 Multiplex PCR Conditions.  

 

PCR amplifications were performed in a total volume of 50 µl using PCR buffer (0.050 mol l-1 

KCl, 0.010 mol l-1 Tris, pH 8.3) (Applied Biosystems), 5 pmol of primers LpxA forward and 

reverse, and Therm 1M forward and Therm 2M reverse, 10 pmol each of CeuE forward and 
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reverse, 1.25 Units of AmpliTaq, (Applied Biosystems) 250 µM each dNTP (Invitrogen), 1-100 

ng DNA, 4.0 mmol l-1 MgCl2. Bovine serum albumin was added (0.2 mg ml-1) to prevent 

inhibition of amplification. Thermal cycling conditions for the Perkin Elmer Thermal Cycler 

9700 (Applied Biosystems) were: an initial denaturing cycle at 94°C for 3 minutes, followed by 

40 cycles of denaturation at 94°C for 1 minute, 60°C annealing for 1 minute, 74°C extension for 

1 minute, with a final 8 minute extension step at 74°C. For each PCR run, positive (10 µl of a 

mixture of C. jejuni and C. coli, equivalent to 100 ng of DNA each) and negative (10 µl of 

molecular biology grade water) controls were included.  

 

2.2.3.3 Visualisation of PCR products. 

 

PCR products were resolved by subjecting them to 2% (w/v) agarose gel electrophoresis 

(SeaKem LE, Cambrex Bio Science, Baltimore) for approximately 75 minutes at 100 V cm-1 in 

TBE (Tris borate EDTA) buffer (0.09 mol l-1 Trizma base, 0.09 mol l-1 boric acid, 0.02 mol l-1 

EDTA, pH 8.0) containing 0.5 µl ml-1 ethidium bromide to enable visualisation of PCR 

products by UV transillumination. Molecular weight markers were included at both ends of 

each gel (1kb plus DNA ladder, Invitrogen, Carlsbad, California) to ensure the products were of 

the correct size and establish consistent interpretation of samples in the gel. Polaroid 

photographs were taken of the fluorescently stained PCR products. 
 

2.2.4 PCR template preparation 

 
2.2.4.1 DNA extraction of bacterial standards 

 

Each bacterial reference culture was grown in the appropriate enrichment medium as outlined in 

Section 2.2.2. Purified DNA was extracted from bacterial cultures by the following method. A 

large loopful of fresh bacterial culture was harvested from an agar plate and suspended in 300 µl 

of extraction buffer (0.025 mol l-1 Trizma base, 0.010 mol l-1 EDTA and 0.050 mol l-1 glucose). 

Alternatively if grown in broth, ten ml of each culture was harvested by centrifugation at 

3,300 x g for 20 minutes, the supernatant removed and 300 µl of extraction buffer added. Lysis 

was achieved by the addition of 20 µl of lysozyme (50 mg ml-1 in ddH2O) followed by 

incubation at room temperature for 5 minutes. Subsequently, 12 µl of 20% sodium dodecyl 

sulphate (SDS) and 4 µl of proteinase K (10 mg ml-1 in ddH2O) were added and further 

incubated at 37°C for 30 minutes. After lysis, DNA was extracted and purified by the 

Phenol/Chloroform method (Sambrook et al. 1989). DNA was dissolved in 20 µl of ddH2O and 
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stored at -20°C. The concentration and purity of DNA was determined by spectrophotometric 

analysis (λ = 260, 280) and the sample diluted to a final concentration of approximately 100 

ng µl-1. A 10 µl volume of each bacterial DNA standard was added to the PCR to determine 

Campylobacter primer specificity. 

 

2.2.4.2 Colony Identification 

 

Identification of bacterial colonies by PCR was achieved by removal of a portion of a single 

isolated colony and resuspension in 27.0 µl of ddH2O in a 0.5 ml thin-walled PCR tube. Within 

15 minutes from the time of colony resuspension, the tube was heated for 3 minutes at 100°C 

and then cooled to 4°C. Prepared premix was added to the PCR tube to obtain a final volume of 

50 µl. PCR analysis was performed as outlined above in Section 2.2.3.2. 

 

2.2.4.3 Enrichment Broth cultures. 

 

Cells grown in enrichment broths for PCR identification were harvested by centrifugation of 

1 ml at 4,000 x g for 20 minutes (4ºC) to pellet the cells. The supernatant was discarded and the 

pellet washed three times in sterile phosphate buffered saline (PBS) (BR14, Oxoid) before final 

resuspension in 400 µl of PBS. The washed cells were lysed by heating at 100°C for 12 minutes, 

and the sample DNA separated from cellular debris by centrifugation at 12,000 x g for 10 

minutes at 4ºC prior to transfer of 10 µl of supernatant to the PCR premix. 
 

2.2.5 Determination of the sensitivity of the PCR 

 

Reference isolates of C. jejuni (ERL96 3376) and C. coli (ERL 97/454) were grown 

microaerophilically in m-Exeter broth (described below in Section 2.2.6.1) at 42oC for 24 hours. 

The initial concentration of cells in the broths were determined by preparing a decimal dilution 

series in 0.1% peptone water (Fort Richard, New Zealand) for each species and spread plating 

100 µl volumes of each dilution (in triplicate) onto CBA plates and incubating 

microaerophilically, as described above, prior to enumeration. 

 

To determine the lowest number of C. jejuni and C. coli cells required for a positive PCR test, a 

decimal dilution series of a cocktail of these species was prepared in m-Exeter broth and the 
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cells from each (non-enriched) dilution harvested and washed (as described above) prior to heat 

lysis and testing by PCR. 

 

2.2.6 Determination of the optimal enrichment broth for growth of C. coli and C. jejuni 
in a range of food, faecal and water matrices.  

 

An overview of the enrichment-PCR method is provided in Figure 2. 

 

2.2.6.1 Preparation of enrichment broths 

 

Broths tested for their ability to enrich Campylobacter spp. were Nutrient Broth #2 (Oxoid CM 

67), Brucella broth (Difco 0495-17-3, Fort Richard), Tryptic Soy (Difco 0370), Preston 

Enrichment broth (Bolton and Robertson 1982), Exeter broth (Humphrey et al. 1995). Nutrient 

broth #2, Brucella and Tryptic Soy broths were made in accordance with the manufacturer’s 

directions and after autoclaving 2 vials of Oxoid antibiotic supplement SR117E (reconstituted in 

50:50 acetone:sterile distilled water) were added to the broths. Preston broth contained 25 g of 

Nutrient Broth #2, 950 ml of distilled water, 0.25 g ferrous sulphate, 0.25 g sodium 

metabisulphite (Bolton et al. 1982). After autoclaving the following ingredients were added: 50 

ml of lysed horse blood, two ml of 0.25 g ml-1 sodium pyruvate (filter sterilised), and 2 vials of 

Oxoid antibiotic supplement SR117E. 

 

Modified Exeter (m-Exeter) (modified from Humphrey et al. 1995) contained 25 g Nutrient 

Broth #2 dissolved in 950 ml of distilled water. After autoclaving the following supplements 

were added: 50 ml lysed horse blood, 5 ml filter-sterilised solution containing 4% sodium 

metabisulphite, 4% sodium pyruvate and 10% FeSO4.7H20 solution (stored frozen); 15 mg 

cefaperazone, and 2 vials of Oxoid antibiotic supplements SR117E or SR204E (containing 2500 

iu polymixin B, 5 mg rifampicin, 5 mg trimethoprim and 50 mg actidione [SR117E] or 5 mg 

amphotericin B as a replacement for actidione [SR204E]). M-Exeter broth varies from the 

Exeter formulation of Humphrey et al. (1995) with the inclusion of an antifungal agent, but 

provides the convenience of the commercial availability of the antibiotic supplement. The 

Oxoid antibiotic supplement SR117E was discontinued due to problems associated with the 

availability of the antifungal agent actidione (cycloheximide). Concerns have been raised about 

the toxicity of actidione for mammalian cells (Martin et al. 2002) resulting in a decrease in its 

availability and a subsequent increase in cost. Consequently, after the enrichment trials, all m-
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Exeter broth contained Oxoid antibiotic supplement SR204E. Comparative laboratory testing of 

the two antifungal agents confirmed that amphotericin B is a suitable replacement for actidione 

in Campylobacter selective media (Martin et al. 2002). 
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Figure 2: Flow diagram of the enrichment-PCR method for detection of Campylobacter 
 

2.2.6.2 Preparation of matrices 

 

Faecal matrices tested were sourced from human, sheep, cattle, dairy cow, duck, chicken, 

possum and rabbit. Meat matrices tested were lamb, beef, pork and chicken, sheep kidneys and 

livers, while water was obtained from a river. 

 

For all faecal samples, except chicken faeces, 2.5 g of each were weighed into a sterile Whirl-

Pak Bag (Nasco, Fort Atkinson, WI, USA) and the enrichment broth under test was added to a 

final weight of 50 g. A Colworth Stomacher 400 (A.J. Seward, London, UK) was used to mix 
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samples for 15 seconds. For chicken faeces the weight of faecal material added to the Whirl Pak 

bag was 1.0 g in a final volume of 50 ml of broth.  

 

For meat and offal samples 10 g of diced meat was weighed into a sterile Whirl Pak bag and 90 

ml of the appropriate enrichment broth was added. The sample was mixed in the stomacher for 

1 minute. For the swabbing of meat samples a 10 cm2 portion of the surface of each meat 

sample was swabbed in multiple directions with a sterile cotton bud which had been pre-soaked 

in BPW. The cotton bud was then aseptically put into 25 ml of the appropriate enrichment broth 

by breaking the cotton bud into two portions and disposing of the non-sterile end. 

 

Whole chicken carcasses were aseptically transferred into a sterile plastic bag with 250 ml of 

sterile buffered peptone water (pH 7.2) (BPW) (1.07228, Merck). After massaging the carcass 

with the BPW, 10 ml of the chicken rinse was transferred to a sterile Whirl Pak bag. Ninety ml 

of trial enrichment broth was added and the sample was stomached for 15 seconds. 

 

River water samples (100 ml) were aseptically filtered through HA 0.45 µm filter membranes 

(HAWG047SI, Millipore, Bedford, MA, USA). At the completion of filtering, the funnel was 

rinsed with 30 ml of BPW and the membrane aseptically transferred to a sterile bottle 

containing 25 ml of trial enrichment broth. 

 

2.2.6.3 Incubation conditions for enrichment broths 

 

For each matrix the primary enrichment broth was incubated at 37°C for a minimum of 4 hours 

under microaerophilic conditions generated by the Oxoid CampyGen™ system. This initial 4 

hours at 37°C aided the recovery of injured cells. After this recovery period enrichments were 

transferred to an incubator operating at 42°C and incubation continued up to a total of 48 hours 

in a microaerophilic atmosphere. After 48 hour incubation, 0.1 ml of the primary enrichment 

broth was transferred into a 10 ml m-Exeter secondary enrichment broth and incubated in a 

microaerophilic atmosphere at 42°C for 24 hours prior to PCR analysis. This second enrichment 

was to reduce the possibility of detecting non-viable cells by PCR (Savill et al. 2001).  

 

Controls included for all enrichment PCR experiments were positive controls of C. jejuni 

(NCTC 11351T) and C. coli (NZRM 2607T) and negative controls of E. coli (ATCC 25922) and 

uninoculated broth. Enrichment broths designated as controls were inoculated with a 24 hour 
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culture of the appropriate bacterium and incubated in a microaerophilic atmosphere in the 

temperature conditions outlined above. The negative control of uninoculated broth followed the 

same regime of incubation prior to PCR analysis. 

 

2.2.6.4 Determination of the optimal enrichment broth 

 

To determine which of the five broths consistently detected both bacterial species to the lowest 

level for all matrices, the five trial enrichment broths in combination with all of the matrices 

were inoculated with a decimal dilution series composed of clinical isolates of human 

pathogenic strains of C. jejuni (ERL 96 3376) and C. coli (ERL 97/454). The mixed dilution 

series was prepared in peptone water and 100 µl volume of each dilution was inoculated into the 

primary enrichment broths containing the various matrices. Primary and secondary enrichment 

were then performed as described above prior to detection of campylobacters by PCR. The 

numbers of C. jejuni and C. coli cells present in the inoculum were determined by separate 

serial dilution of each bacterial species, plating on blood agar in triplicate, followed by 

incubation at 42°C for 48 hours under microaerophilic conditions prior to counting. 

 

2.2.6.5 Determination of the detection limit of Campylobacter cells by the enrichment-PCR 

method for all matrices, and comparison with the technique of conventional plating 

 

2.2.6.5.1 Procedure for determining the detection limit of the enrichment-PCR method 

 

Once the optimal broth (modified-Exeter) had been chosen, it was necessary to determine how 

many bacterial cells in the original matrix could be detected using the enrichment-PCR. It was, 

therefore, required that the matrices be free of viable Campylobacter. Food and faecal matrices 

were sterilised by gamma irradiation (dosage: 10 kilograys) by Schering Plough Animal Health, 

Upper Hutt. The river water was sterilised by autoclaving 100 ml volumes at 121oC, 103.4 kPa 

for 15 minutes. Food matrices tested for the detection limit assays were limited to the chicken 

carcass rinse and offal samples from beef, pig and sheep, as these matrices had consistently 

shown the lowest number of bacterial cells detectable during the enrichment broth trials, in 

comparison to the irreproducible results obtained with red meat samples. Uninoculated controls 

containing the sterilised matrix plus m-Exeter enrichment broth were included for all 

experiments. All experiments for the determination of sensitivity levels were performed in 

duplicate. 
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M-Exeter broth in combination with each of the matrices, was inoculated with decimal dilutions 

composed of the human clinical isolates C. jejuni (ERL963376) and C. coli (ERL97/454) prior 

to enrichment. The bacterial suspensions were diluted to obtain cell numbers which ranged from 

approximately 2000 cells to one cell for both C. coli and C. jejuni in the primary enrichment. 

After incubation of the secondary enrichment the cells were harvested and washed prior to PCR 

testing as described above. 

 

2.2.6.5.2 Procedure for determining the detection limit of the conventional plating method 

 

The procedure for determining the detection limit of the conventional plating method followed 

the same setup as for the enrichment-PCR method, in that m-Exeter broth in combination with 

each of the sterilised matrices, was inoculated with decimal dilutions composed of the human 

clinical isolates C. jejuni (ERL963376) and C. coli (ERL97/454). The bacterial suspensions 

were diluted to obtain cell numbers which ranged from approximately 2000 cells to one cell for 

both C. coli and C. jejuni in the primary enrichment. The broth was incubated in a 

microaerophilic environment for four hours at 37oC and then incubation continued at 42oC up to 

a total of 48 hours. After 48 hours, 100 µl volumes from the highest dilutions (10-6 to 10-10) of 

the primary enrichments for each matrix were spread-plated onto m-Exeter plates and incubated 

in a microaerophilic environment for 48 hours at 42oC. Ten colonies from each plate showing 

bacterial growth were isolated. A hippurate hydrolysis test (On and Holmes 1992) was 

performed on each of the ten isolates to differentiate between C. jejuni and C. coli. No other 

biochemical tests were performed as all bacterial cells present in the primary enrichment were 

either C. jejuni or C. coli. 

 

This procedure follows the standard method for detection of Campylobacter by conventional 

selective plating procedures with one exception. In the standard method two to five colonies are 

usually tested. By testing ten colonies we increased the probability of detecting both 

Campylobacter species on the same plate. 
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2.2.6.5.3 Determination of the detection limits of rabbit and possum faeces 

 

Possum and rabbit faeces were not included in the initial trials. The development of the 

methodology for these matrices was different based on the knowledge gained from the 

experiments conducted on the other matrices. Changes to the methods for the possum and rabbit 

faeces comprised: 

• M-Exeter broth was chosen as the enrichment broth without trialling the other broths. 

• In contrast to using sterile matrices, possum and rabbit faeces were tested by PCR to 

ensure that they were negative for target Campylobacter species.  

• Identification of Campylobacter species for determination of the detection levels of the 

conventional plating method was based on a PCR assay as described below, rather than 

on hippurate analysis. 

 

All of the colonies present on the plate inoculated with the primary enrichment were collected 

and subcultured into m-Exeter broth for 48 hours. This broth was subcultured into a second m-

Exeter enrichment for a further 24 hour incubation to remove the possibility of detecting only 

DNA from dead cells on the plates. Both enrichments were incubated in a microaerophilic 

environment at 42oC. The cells were harvested and washed and a PCR test performed on the 

heat lysed cells as outlined previously. 
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2.3 Results 
 

2.3.1 Characteristics of the PCR developed 

 

A specific and sensitive PCR method was developed for the simultaneous identification of 

C. jejuni and C. coli in enrichment cultures. All four thermotolerant Campylobacter species 

(C. jejuni, C. coli, C. lari, C. upsaliensis) tested produced a 246 bp amplicon with the multiplex 

primers. This amplicon was the expected size for a fragment of the 23S rRNA-DNA region of 

thermotolerant campylobacters, as determined from published nucleotide sequences. 

Additionally, C. jejuni and C. coli, the species of primary interest in this study, yielded the 

expected PCR products (Figure 3) with the species-specific primers; the lpxA product of 99 bp 

(C. jejuni) or the ceuE product of 695 bp (C. coli). A positive identification of either target 

species required the simultaneous presence of two products, the thermotolerant Campylobacter 

and the species-specific amplicons. Campylobacter hyoilei yielded products characteristic of 

C. coli and this is consistent with the report that C. hyoilei is synonymous with C. coli 

(Vandamme et al. 1997). In addition, sixteen stock cultures of C. jejuni and three cultures of 

C. coli that were isolated from environmental sources in Canterbury, New Zealand by J.D. 

Klena were also used to evaluate the PCR method. These environmental isolates had previously 

been confirmed as C. jejuni and C. coli by conventional biochemical testing based on gram 

stain, motility, colony morphology, hippurate analysis and nalidixic acid susceptibility testing. 

No amplicons were detected using the DNA of other species of Campylobacter and non-

campylobacters as template. The concentration and purity of the DNA template of all bacterial 

species was confirmed by spectrophotometric analysis. 
 

Determination of the sensitivity of the PCR assay showed that it simultaneously detected 

C. jejuni and C. coli in broth culture down to a dilution which equated to 57 cells of C. jejuni 

and 69 cells of C. coli per PCR reaction. 
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Figure 3: Gel electrophoresis of multiplex PCR products from the amplification of 
purified thermotolerant Campylobacter DNA 

 

Lane 1 and 7: Molecular weight (MW) marker, 1 Kb Plus DNA, Invitrogen; Lane 2: C. jejuni 

and C. coli; Lane 3: C. jejuni; Lane 4: C. coli; Lane 5: Thermotolerant Campylobacter (C. lari);  

Lane 6: negative control 

 

2.3.2 The optimal enrichment broth 

 

The broths from the enrichment trials are presented in Table 8. The concentration of C. jejuni 

added to the broths under trial ranged from 3.5 x 105 to 1.0 x 100 cells and that of C. coli ranged 

from 1.4 x 106 to 2.0 x 100 cells. The matrices were not sterile prior to addition of the C. jejuni 

and C. coli inocula. Table 8, therefore, represents a relative comparison between the broths to 

allow the identification of the broth(s) that could consistently detect each bacterial species at 

low numbers.  

 

In some matrices such as water, cattle and sheep faeces all of the broths allowed detection of 

target campylobacters to the same low level. Overall, campylobacters in all matrices tested 
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could be enriched in m-Exeter broth and consistently detected at low numbers. M-Exeter broth 

was, therefore, selected as the optimal enrichment broth.  

 

Inhibition of the PCR by chicken faeces was overcome by increasing the volume of m-Exeter 

broth from 25 ml to 50 ml for the primary enrichment and doubling the amount of Taq 

Polymerase (from 1.25 Units to 2.5 Units) added to the PCR premix (Table 8). It has been 

suggested that the high urea concentrations found in chicken faeces may contribute to inhibition 

of the PCR (Claveau et al. 2004). Lamb and beef meats posed technical problems because the 

results were not reproducible. In particular, C. coli was often not detected in the dilution series 

or could only be detected in the lower dilutions thus requiring 104 C. coli cells to be present in 

the initial inoculum, e.g. refer to beef and beef swab in Table 8. Dilution of the enrichment 

broths after the secondary enrichment and prior to the washing of cells improved the detection 

of campylobacters, which suggested that inhibitors in the beef and lamb enrichments were 

affecting the PCR assay. In contrast to the lamb and beef matrices, the offal matrices did not 

exhibit inhibition of the PCR and have been reported to have a higher prevalence of 

campylobacters compared with meat samples (Kramer et al. 2000). Therefore, based on the 

determination of the detection limits of campylobacters in sheep kidney and liver samples 

enriched in m-Exeter broth and Preston medium (Table 8), offal was chosen as a replacement 

for the meat matrices as it provided a more consistently sensitive alternative to beef, lamb and 

pig meats for the detection of C. jejuni and C. coli. Although m-Exeter allowed detection of low 

levels of campylobacters in diced chicken meat and chicken swabs it was decided that the whole 

chicken carcass rinse would be more likely to detect campylobacters as the diluent rinse method 

washes all surfaces of the chicken including the gut cavity. 
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Table 8: Lowest number of bacterial cells detected in each matrix in combination with 
the trial broths 

 
Matrix Bacteria Lowest number of bacterial cells detected in matrix 
  Nutrient 

broth # 2 
Brucella  Tryptic 

Soy Broth 
M-Exeter 
Medium 

Preston 
Medium 

Water C. jejuni 4 4 419 4 4 
 C. coli 2 2 148 2 2 
Sheep faeces C. jejuni 35 35 35 35 35 
 C. coli 128 128 128 128 128 
Cattle faeces C. jejuni 35 35 35 35 35 
 C. coli 128 128 128 128 128 
Chicken faeces C. jejuni 35 x 104 NPD 35 x 104 35 x 104 35 x 104

(1g/25 ml) C. coli 128 128 128 1.28 x 104 128 
Chicken faeces C. jejuni NT NT NT 26 26 
(1g/50 ml)* C. coli NT NT NT 144 144 
Dairy faeces C. jejuni 4 4 4 4 4 
 C. coli 2 2 2 2 2 
Duck faeces C. jejuni 4 NPD NPD 4 419 
 C. coli 2 NPD NPD 2 148 
Human faeces C. jejuni 35 3.5 x 103 35 35 35 
 C. coli 128 128 1.28 x 104 128 128 
Lamb C. jejuni 92 92 92 92 92 
 C. coli NPD NPD NPD 92 x 104 NPD 
Lamb swab C. jejuni 92 9.2 x 105 9.2 x 105 92 92 
 C. coli 7 9.2 x 105 9.2 x 105 7 702 
Beef  C. jejuni 92 92 92 92 92 
 C. coli 7 NPD NPD 7 NPD 
Beef swab C. jejuni 92 92 9.2 x 103 92 92 
 C. coli 7.0 x 104 7.0 x 104 7.0 x 104 7 702 
Chicken  C. jejuni 92 92 92 92 92 
 C. coli 7 7 NPD 7 702 
Chicken swab C. jejuni 92 92 9.2 x 103 92 92 
 C. coli NPD NPD NPD 7 7 
Chicken  C. jejuni NT NT NT 26 NT 
carcass C. coli NT NT NT 144 NT 
Pork C. jejuni 92 9.2 x 105 92 92 9.2 x 105

 C. coli 7.0 x 102 7.0 x 104 NPD 7 7.0 x 104

Pork swab C. jejuni 92 92 92 92 92 
 C. coli NPD 7.0 x 104 NPD 7 7 
Sheep kidney C. jejuni NT NT NT 1 1 
 C. coli NT NT NT 12 12 
Sheep liver C. jejuni NT NT NT 1 1 
 C. coli NT NT NT 12 12 
 
NT = not tested 

NPD = no PCR product detected 

*To overcome inhibition the volume of enrichment broth was increased and 2.5 Units of Taq 

Polymerase added to the PCR reaction. 

 



60  Campylobacter in environmental matrices 
 

2.3.3 Determination of the detection limit of Campylobacter in the enriched matrices 

 

A comparison of the conventional and PCR-based methods for the detection of C. jejuni and 

C. coli in m-Exeter broth is presented in Table 9. This study demonstrated a good correlation 

between the two methods. All uninoculated controls in the study were negative by enrichment 

PCR and conventional plating methods (data not shown). The results in Table 9 show that the 

enrichment PCR assay can detect less than ten viable cells per sample of either C. jejuni or 

C. coli in each matrix tested. The exception was rabbit faeces where the lowest detection level 

of C. coli was 32 cells in one sample and 3.2 cells in a replicate. As all findings are based on 

duplicate tests, a result was not reported unless it was replicated, which at these extremely low 

inoculum levels becomes more difficult and requires multiple samples to be tested.  

 

Conventional plating, with the exception of C. jejuni in duck faeces and C. coli in rabbit faeces, 

detected less than 10 viable cells per sample of either C. jejuni or C. coli in each matrix tested. 

The detection limit for C. jejuni in duck faeces was 15 viable cells per sample. The detection 

limit for C. coli in rabbit faeces was the same in both methods i.e. 32 viable cells per sample. Of 

the 13 matrices tested, 11 (85%) gave the same result for the two detection methods. 

Examination of the data for the 13 matrices showed that all samples positive by culture were 

positive by PCR, but PCR detected lower levels of C. jejuni in one of the matrices (duck faeces) 

and lower levels of C. coli in one of the matrices (chicken carcass) in comparison with 

conventional plating.  
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Table 9: Detection levels of C. jejuni and C. coli in enrichment-PCR assay compared with 
conventional plating method 

 

PCR method detection level of 
viable cells 

Conventional method detection 
level of viable cells 

Matrix 

C. jejuni C. coli C. jejuni C. coli 

Beef liver  
(per 10 grams) 

1 1 1 1 

Pig liver  
per 10 grams) 

1 1 1 1 

Sheep liver  
(per 10 grams) 

1 1 1 1 

Chicken carcass  
(per 10 ml washing) 

1 1 1 7 

River water  
(per 100 ml) 

1 1 1 1 

Duck faeces  
(per 2.5 grams) 

1 1 15 1 

Chicken faeces  
(per 1.0 gram) 

1 2 1 2 

Human faeces  
(per 2.5 grams) 

2 8 2 8 

Cattle faeces  
(per 2.5 grams) 

2 8 2 8 

Dairy faeces  
(per 2.5 grams) 

1 1 1 1 

Sheep faeces  
(per 2.5 grams) 

2 7 2 7 

Possum faeces  
(per 2.5 grams) 

2 3 2 3 

Rabbit faeces  
(per 2.5 grams) 

1 32 1 32 
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2.4 Discussion 
 
2.4.1 Development of the enrichment-PCR method 

 

A multiplex enrichment PCR assay was developed which can simultaneously detect C. jejuni 

and C. coli. The confirmation of identity for either species required the presence of two 

amplicons, one based on the thermotolerant group of campylobacters and the second being 

specific for either C. jejuni or C. coli. This allowed for a double confirmation of identity. No 

other Campylobacter species or non-Campylobacter species produced the target or non-specific 

amplicons of other molecular sizes. 

 

On and Jordan (2003) evaluated eleven PCR assays developed to identify C. jejuni and C. coli 

and concluded that no single assay was 100% sensitive and/or specific for C. jejuni. In contrast, 

four of five assays were specific and sensitive for the C. coli strains tested. Amplified fragment 

length polymorphic studies (AFLP) of C. jejuni concluded that the genome of C. jejuni is very 

diverse, contributing to the complexity in developing PCR-based identification systems (Duim 

et al. 1999). The same study found C. coli to contain a relatively homogeneous genome in 

comparison to C. jejuni and this was supported by the above finding that the PCR assays of 

C. coli were specific and sensitive (On and Jordan 2003). The authors concluded that a 

polyphasic approach to PCR identification was required.  

 

The assay developed in this study provides a double confirmation by utilising two genes to 

confirm identity of each species. Furthermore, the method allows for culture from the 

enrichment broth to confirm the phenotypic identity of campylobacters detected by PCR and to 

facilitate the typing of Campylobacter isolates for epidemiological studies. 

 

Four of the seven C. jejuni-specific PCRs examined by On and Jordan (2003) were able to 

identify less than 40% of the test strains (n = 5) of C. jejuni subsp. doylei, and only one PCR 

gave 100% correct identification. C. jejuni subsp. doylei is recognised as an infrequent cause of 

gastroenteritis in humans (On 1996) and it is seldom identified in communities of the developed 

world (Steele and Owen 1988). The PCR assay developed for this study was shown to produce 

the appropriate amplicons for C. jejuni subsp. doylei which would identify it as C. jejuni. It 

should also be noted, however, that C. jejuni subsp. doylei has an optimum temperature of 37°C 
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(Steele and Owen 1988), and therefore the selective temperature may need to be reduced to 

37°C during enrichment if this subspecies is the target of interest.  

 

It was noted during the optimisation experiments that all negative controls had primer-dimer 

formation (Figure 3). The formation of primer-dimers has been used in PCR as an internal 

control for amplification of the PCR (Rasmussen et al. 1996). Therefore primer-dimers were a 

useful internal control whose absence suggested that there was either an inhibition problem in 

the sample or a reagent failure of the PCR. Thus the primer-dimer formation reduces the 

likelihood of reporting a false negative result. 

 

2.4.1.1 Determination of the optimal broth 

 

In this study, modified-Exeter (m-Exeter) broth was determined to be the optimal enrichment 

broth for the enrichment and detection of the target Campylobacter species by multiplex PCR. 

M-Exeter broth contains blood and the supplements ferrous sulphate, sodium pyruvate and 

sodium metabisulphite which are known to act as oxygen quenching or detoxifying agents 

(Bolton et al. 1984). These supplements assist oxygen sensitive Campylobacter during isolation 

procedures when they are exposed to aerobic atmospheres. Addition of antibacterial and 

antifungal agents in the m-Exeter medium aids the suppression of competing microflora. The 

choice of a single optimal enrichment broth allows for greater efficacy in the laboratory setting 

when dealing with large sample numbers of multiple matrices. This consideration is important 

when developing methods for large surveys intended to elucidate the transmission routes of a 

bacterium through the environment and fulfils the need for consistent methodology to aid the 

epidemiological study of campylobacters in the environment (Scates et al. 2003). 

 

2.4.1.1.1 Viable but non-culturable bacteria 

 

There is debate between scientists who recognise a survival stage for stressed bacteria termed 

the viable but non-culturable (VBNC) and those who view the recovery of “VBNC” cells as an 

outgrowth from injured cells or a remnant of undetected culturable cells (for more detail, refer 

to Chapter One). The relevance to this research is the possibility that Campylobacter could be 

an organism that is able to enter a VBNC stage when encountering a stressful environment, such 

as waterways. This theory was relevant to the development of a method for determining the 

prevalence of thermotolerant campylobacters in various matrices. Taking into account the 
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VBNC theory was one of the factors contributing to the decision to use an enrichment method 

rather than direct PCR, which could have led to the detection of dead cells and those in a 

degenerate (possibly VBNC) form. The double enrichment, therefore, was employed in the 

enrichment-PCR method to reduce the prospect of detecting non-viable cells by the PCR. It had 

been previously determined that the number of non-viable cells that would need to be present in 

a 100 ml water sample in order to produce a false positive result in a secondary enrichment was 

at least 7.5 x106 cells (Savill et al. 2001). It was considered that it was highly unlikely that this 

level of non-viable cells would be present in a 100 ml water sample, reducing the likelihood of a 

false positive. This level of cells, however, maybe detected on a chicken carcass, albeit 

infrequently (Stern and Robach 2003) and after processing the cells may be dead or in the 

VBNC state, therefore viability should be confirmed by conventional plating. 

 

Recent innovations may negate the need to employ a double enrichment to exclude the inclusion 

of non-viable/dead cells from detection by PCR. Addition of ethidium monoazide (EMA) to 

samples was shown to differentiate between viable and dead cells because the EMA covalently 

binds to DNA in dead cells and prevents PCR amplification of their DNA (Rudi et al. 2005). 

Selective amplification of DNA in viable cells occurs because the EMA can only penetrate cells 

that have damaged cell membranes. This system has been evaluated with C. jejuni in mixed 

bacterial populations and complex samples that included food and faeces, and the effects of 

disinfection and antibiotic treatments were also tested (Rudi et al. 2005). Another interesting 

technique being employed in Real-time PCR is the novel method of flotation which is based on 

variations in buoyant densities between different bacterial species and allows separation of the 

target organism (Wolffs et al. 2005). Furthermore, it has been shown to reduce PCR inhibition 

due to removal of inhibitors present in environmental matrices such as chicken rinse samples. 

Viable cells of Campylobacter could be separated from dead and VBNC cells by the flotation 

treatment thereby eliminating false positive results due to detection of DNA from non-viable 

cells. Further validation of these promising techniques will verify their use for routine PCR 

applications. 

 

2.4.1.1.2 Effect of incubation temperature 

 

A comparative study of the effect of incubation temperature on the recovery and genotypes 

found in chicken pieces and lamb livers reported that the incubation temperature (37°C versus 

42°C) for enrichment in Preston broth had no significant effect on the number of positive 
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samples obtained or on the Campylobacter species isolated (Scates et al. 2003). A significant 

difference was noted, however, in the diversity of genotypes isolated at the two incubation 

temperatures. Although, the diversity of genotypes was higher at 42°C, the authors strongly 

suggest that when conducting epidemiological surveys of Campylobacter genotypes the use of 

37°C and 42°C will yield a higher diversity of genotypes. This could improve the assessment of 

the importance of transmission routes and reservoirs of campylobacters.  

 

2.4.1.2 Choice of matrix and preparation method  

 

Studies of pork, lamb and beef offal have indicated a high prevalence of Campylobacter 

(Kramer et al. 2000, Bolton et al. 1985). Offal was, therefore, chosen as the matrix of choice 

over pork, lamb and beef meat which produced inconsistent results for all trial enrichment 

broths. Whole chicken carcasses were chosen instead of chicken swabs or 10 g subsamples of 

chicken meat as the rinse method allows detection of Campylobacter from all surfaces of the 

chicken, including the gut cavity. Jørgensen et al. (2002) identified higher numbers (one order 

of magnitude) of campylobacters from carcass rinse samples with and without entire skin 

compared with Campylobacter numbers from neck skin samples. Averages of Campylobacter 

ranged from log10 4.1 to log10 5.1 cfu per chicken. 

 

2.4.1.3 Sensitivity tests for the enrichment-PCR method 

 

The results of the sensitivity tests for detection of C. jejuni and C. coli in m-Exeter broth 

showed that in most matrices less than ten cells per sample of either C. jejuni or C. coli could be 

detected in the original sample by multiplex PCR. The highest level of detection was reported 

for C. coli in rabbit faeces where the range of detection was 3-32 cells in the original sample. 

These limits of detection correspond to the sensitivity reported for other Campylobacter PCR 

assays (Waage et al. 1999, Hernandez et al. 1995, Eyers et al. 1994, 1993, Oyofo et al. 1992). 

The low levels of detection validated the simultaneous enrichment and PCR detection of the two 

Campylobacter species in the same broth. It also confirmed that PCR detection was not 

compromised by inhibition by blood in the enrichment medium, or components of faeces or 

food products which have demonstrated inhibitory effects in previous studies (Wilson 1997, 

Rossen et al. 1992). Determination of the sensitivity levels in non-sterile possum and rabbit 

faeces indicates that even in the presence of high levels of background microflora, the 

enrichment-PCR assay can detect low levels of Campylobacter. 
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2.4.1.4 Comparative study between conventional plating and enrichment-PCR methods 

 

The comparison of the developed enrichment-PCR method with the conventional plating 

method produced few anomalies. The PCR assay had the same level of sensitivity as the 

conventional plating method, except for chicken carcasses and duck faeces. In these two 

matrices, the number of cells per sample as determined by PCR assay was lower than the 

conventional plating method. The poorer detection by the conventional plating method may be 

due to the smaller proportion of broth (approximately 10-20 µl) used to inoculate an agar plate 

in comparison with the 1 ml of enrichment broth taken for PCR detection. Therefore, if a 

smaller inoculum size is used for analysis where a calculation of the dilution suggests only one 

cell is present, the likelihood of detection of that one cell is reduced (Johnson et al. 1998). 

 

With the exception of the possum and rabbit faeces, the sensitivity levels for the conventional 

plating method in this study are based on the results of testing ten colonies from each plate by 

the hippurate reaction. The hippurate hydrolysis test identified the lowest numbers of C. jejuni 

which could be detected on the plates from the primary enrichment. The chicken carcass and 

duck faecal enrichments were examples where the standard laboratory practice of testing less 

than five colonies from the plate of the primary enrichment could show an absence of C. jejuni. 

This was in comparison to the PCR test which showed the presence of C. jejuni and C. coli 

down to a level of one viable cell in the same sample. In the case of the duck faeces this led to 

the sensitivity for detecting C. jejuni by the conventional plating method being one order of 

magnitude higher, (15 cells per sample) compared with the PCR test. This shows the advantage 

of detection by PCR over conventional plating where a higher proportion of cells present in the 

enrichment are represented in the sample. Although this research only reports on artificially 

contaminated matrices for determination of sensitivity levels, subsequently this method has 

been further validated by a comparison with conventional plating during a survey of naturally 

occurring thermotolerant Campylobacter contaminating the surfaces of poultry packs (Wong et 

al. 2004). Sensitivity of the enrichment-PCR method was similar to conventional plating. 

Furthermore, in combination with the Most Probable Number technique (MPN), the 

enrichment-PCR method detected Campylobacter to a level of 6MPN/100 ml chicken rinse. 

 

Interestingly, Kramer et al. (2000) and Sails et al. (2002) noted the preferential enrichment of 

C. coli over C. jejuni, whereas direct plating favoured the isolation of C. jejuni. In subsequent 
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studies (personal communication, Paula Scholes, ESR) the enrichment-PCR method has also 

shown that where C. jejuni and C. coli are identified by PCR in the same enrichment, 

subsequent isolation of C. jejuni from the enrichment broth onto agar plates proved difficult due 

to the high numbers of C. coli on the plate. This suggests the benefits of PCR detection over 

conventional plating, where the multiplex PCR is able to identify multiple target species in a 

sample. In the case of Campylobacter species, the colony morphology of multiple target 

bacteria is difficult to differentiate. This would suggest that many more than five colonies per 

plate may need to be characterised by biochemical tests to be confident that all Campylobacter 

species have been identified. 

 

2.4.1.5 Direct PCR and Real Time PCR methods for the detection of Campylobacter. 

 

Direct PCR for the detection of Campylobacter in human faeces (Linton et al. 1997) has been 

developed by various researchers. The low concentration of C. jejuni and C. coli has, however, 

hindered attempts to develop direct PCR from bovine faeces. A PCR has been developed for the 

direct detection of campylobacters, including C. jejuni and C. coli, in bovine faeces (Inglis and 

Kalischuk 2003). This PCR used an internal control to detect PCR inhibition by faecal 

components such as bile salts and complex polysaccharides (Monteiro et al. 1997). A two-step 

nested PCR was employed for C. coli and C. jejuni detection to increase the sensitivity of the 

method. This resulted in detection of 100% of faecal samples inoculated with 104 cfu g-1 of 

either C. jejuni or C. coli. At inoculation levels of 103 cfu g-1, 83% of C. coli samples were 

positive compared to 67% of C. jejuni samples. C. coli was not detected at seeded levels of 102 

cfu g-1, whereas 17% of C. jejuni samples inoculated at 102 cfu g-1 produced a PCR amplicon. 

Stanley et al. (1998b) noted that the average concentration of campylobacters in bovine faeces 

was 102 cfu g-1 for adults and 104 cfu g-1 for calves. This would suggest that the lower detection 

limit for this PCR is at the average Campylobacter concentration for adult cattle and 

consequently some samples would report false negative results if tested. This is confirmed by 

the isolation of C. jejuni and C. coli by conventional plating on various media designed for 

these target organisms (e.g. (blood-free) charcoal-cefoperazone-deoxycholate agar, CCDA) 

which showed greater sensitivity than the PCR assay in 13% of the bovine faecal samples. 

 

Inglis and Kalischuk (2003) used the QIAamp DNA Stool minikit for DNA extraction from 

bovine faeces, because it is designed to remove PCR inhibitors derived from faeces. The 

amount of faeces used per sample was 200 mg in comparison to the 10 grams for enrichment 
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used in this study. Because little is known about the spatial distribution of the low levels of 

campylobacters in cowpats, it may be necessary to increase the number of samples analysed 

from a single cowpat if adequate detection of campylobacters is to be achieved by direct PCR 

analysis using the minikit system.  

 

Subsequent research by this team resulted in the development of a real-time quantitative PCR 

(RTQ-PCR) for the detection of C. jejuni in bovine faeces (Inglis and Kalischuk 2004). RTQ-

PCR has the advantage of greater specificity compared with gel-based PCR due to the inclusion 

of a probe which recognises sequence internal to the primer set (Josefsen et al. 2004). It is also 

faster as no electrophoresis is performed and contamination is reduced in the closed tube 

assembly, with elimination of contamination carryover by incorporation of dUTP in the 

reaction. In comparison to direct PCR, the RTQ-PCR method of Inglis and Kalischuk (2004) 

did not employ a nested PCR as it did not improve the sensitivity for C. jejuni which was 3 x 

103 cfu g-1 of faeces. The results of detection by RTQ-PCR in naturally contaminated bovine 

faeces were comparable with the results of conventional plating methods. 

 

An RTQ-PCR has also been developed for detection of C. jejuni in foods (Sails et al. 2003a). 

This method required enrichment at 37°C for 24 hours, followed by incubation at 42°C for 

another 24 hours prior to RTQ-PCR. The limit of detection was approximately 12 genome 

equivalents and a comparative assay with detection by culture reported 57 positive samples by 

plating, in comparison to 63 positive samples using the RTQ-PCR method. Another RTQ-PCR 

developed for assaying C. jejuni in water did not use enrichment prior to PCR and discrepancies 

between culture negative and RTQ-PCR positive samples were tentatively attributed to non-

viable or dead cells (Yang et al. 2003). 
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2.4.2 Conclusions 

 

In conclusion, an enrichment-PCR assay was developed for the detection of C. jejuni and C. coli 

from 13 different environmental matrices including animal faeces and meat products, river 

water and human faeces. The specificity of the PCR assay was confirmed by the lack of cross 

reactivity when the multiplex PCR was tested against a range of other Campylobacter species 

and other bacteria.  

 

Sensitivity tests of the assay showed that in most matrices less than ten cells per sample of 

either C. jejuni or C. coli could be detected in the original sample. Rabbit faeces was the only 

matrix where sensitivity was greater than ten cells (range 3-32 cells of C. coli) but this was 

comparable with the range determined by the conventional method for C. coli cells in the same 

matrix. The enrichment-PCR method has similar sensitivity levels to the conventional plating 

method for identifying Campylobacter but has the advantage of reducing the time required for 

identification from a maximum of ten days by the conventional method to 4-5 days. This time 

period is still longer than the rapid methods of direct PCR and RT-PCR. Also, since samples 

were enriched to increase sensitivity, this negates possible quantification of the initial 

concentration of Campylobacter in the sample. The ability of the enrichment PCR method to 

allow the growth of a wide range of Campylobacter subtypes of the same species is described in 

Chapter Three. 

 

In food laboratories, due to a limitation of resources, only a few colonies (approximately two to 

five) per plate are tested for confirmation by phenotypic techniques. The comparative assay 

performed in this study showed the advantages of PCR detection where a higher proportion of 

cells present in the enrichment are represented in the sample, allowing increased detection of 

both C. jejuni and C. coli in the same sample. 

 

The main benefit of this study resides in the employment of a single enrichment broth for the 

low level detection of C. jejuni and C. coli in 13 environmental matrices. In contrast, most 

assays have been validated against a small range of matrices, such as poultry carcasses (Hong et 

al. 2003), bovine faeces (Inglis and Kalischuk 2004, 2003), water (Kirk and Rowe 1994) and 

human faeces (Maher et al. 2003). Yang et al. (2003) have developed a RT-PCR method for the 
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detection of C. jejuni in poultry, milk and environmental waters which is one of the few assays 

developed for detection in a multiple range of matrices. 

 

The enrichment-PCR assay, therefore, allows the efficient identification of pathogenic 

campylobacters in a wide range of environmental matrices. Employment of a single enrichment 

broth for 13 matrices will assist the large surveys required to better understand the transmission 

of Campylobacter through the environment to humans. The use of a single method to identify 

Campylobacter in these matrices will facilitate epidemiological studies in investigating an 

infection source.  
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3 Application of the enrichment-PCR method to field studies 
 

3.1 Introduction 
 

The enrichment-PCR method was applied in field trials to determine if it could detect the 

prevalence of C. jejuni and C. coli in whole chicken carcasses and to ascertain if the method 

was able to identify multiple subtypes of a single species of Campylobacter in a water sample. 

 

3.1.1 Methodology for the detection of Campylobacter 

 

Campylobacter species are unusual foodborne pathogens in that they have strict requirements 

for a microaerophilic atmosphere (5% oxygen and 10% carbon dioxide) and a restricted 

temperature range for growth (Corry et al. 1995). They will, generally, not grow below 30°C 

and therefore, in comparison, to other more robust food pathogens they are not expected to 

multiply in food or during food storage (Park 2002). The specific growth conditions required in 

the laboratory to maximise recovery of stressed campylobacters from environmental matrices, 

such as food, has led to a large number of different formulations for enrichment broths and 

agars (Corry et al. 1995). These include media that contain blood and/or other oxygen 

quenchers and antimicrobials which counteract competition from other microflora. Comparative 

studies of methods used to isolate campylobacters from environmental matrices have identified 

differences in the prevalence of campylobacters in an individual matrix, which could be 

attributed to features of the methods employed (Tangvatcharin et al. 2005, Baserisalehi et al. 

2004, Jørgensen et al. 2002, Moore 2000, Baylis et al. 2000, Scotter et al. 1993). 

 

There is always a balance between selectivity of a method to reduce competition from other 

microflora and the recovery and growth of the target micro-organisms. The enrichment-PCR 

method uses an incubation temperature of 42°C in m-Exeter broth to enrich for Campylobacter 

followed by plating onto m-Exeter agar. The temperature of 42°C is selective for thermotolerant 

campylobacters (Griffiths and Park 1990), which include C. jejuni and C. coli, the two major 

pathogenic species of interest to this study. Also, the m-Exeter broth contains antibiotics that are 

selective for the target campylobacters (Humphrey et al. 1995). It is known that some of the 

antibiotics in m-Exeter, such as rifampicin and polymixin B, can be inhibitory to both injured 
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campylobacters and certain subtypes of Campylobacter species (Baylis et al. 2000, Humphrey 

1990).  

 

The discrepancies in prevalences reported by different methods may be partially ascribed to the 

differences between strains within a Campylobacter species (Murphy et al. 2005, Baylis et al. 

2000). The identification of a high diversity of C. jejuni subtypes in environmental matrices as 

determined by subtyping techniques is well documented (Stern et al. 2004, Hopkins et al. 2004, 

Siemer et al. 2004, Dickins et al. 2002). This high diversity may be attributed to the 

heterogeneous nature of its genome as recognised when the DNA sequence of C. jejuni was first 

published by Parkhill et al. (2000). It has been suggested that the plasticity of the genome of 

C. jejuni contributes to its ability to adapt to new and hostile environments (de Boer et al. 2002) 

which makes it a successful pathogen despite its supposed physiological fragility (Park 2002). 

This high diversity contributes to the difficulty of establishing a method which identifies all 

Campylobacter subtypes relevant to the aetiology of human campylobacteriosis. 

 

It is probable that given the selective nature of the enrichment-PCR method the growth 

characteristics of each environmental Campylobacter subtype in the enrichment broth will vary. 

The degree of this variation is unknown and consequently if the initial sample contained equal 

numbers of two subtypes it is possible that one may grow faster in the selective conditions and 

be identified by subtyping because it is the dominant strain present on the plate (Dickins et al. 

2002). In reality, it is probable that the concentrations of each subtype in the water sample will 

be variable. Therefore, if the proportion of each subtype on the agar plate is dependent on its 

initial concentration in the water sample and subsequent growth rate, it is important to ascertain 

if the method will detect only a limited number of subtypes. 

 

3.1.2 Campylobacter prevalence in live chickens and chicken meat products 

 

It was important to ascertain if the enrichment-PCR method was able to detect campylobacters 

in the matrices under investigation. Chicken carcasses were chosen to assess the prevalence of 

Campylobacter contamination as estimated using the enrichment-PCR method. Surveys have 

shown that 30-100% of poultry harbour Campylobacter as normal commensal flora of their 

intestinal tract where they colonise the caecum and colon (Newell 2002, O'Sullivan et al. 2000). 

The Campylobacter intestinal contents of chickens at the time of slaughter are reported to be 

present in numbers up to 107 cfu g-1 (Newell 2002, Stern et al. 1984). A survey of the caecal 
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contents of 2,325 broiler chickens in Quebec, Canada (Nadeau et al. 2002) reported a high 

prevalence of campylobacters with a majority (67%) of the farms testing positive for 

campylobacters and C. jejuni being identified in 95.2% of the positive birds, followed by 4.8% 

C. coli. 

 

The high prevalence of campylobacters identified in live chickens is reflected in the prevalence 

of Campylobacter in chicken products. For example, a 2001 UK-wide survey found an average 

of 50% of commercial fresh and frozen chicken products positive for Campylobacter 

(www.foodstandards.gov.uk/news/chickensum.htm). The 4881 samples tested included fresh, 

frozen, chicken portions and whole chickens in proportion to the market share. Fresh chicken 

had a prevalence of 63% while a lower prevalence of 33% was found in frozen chicken. This 

was similar to the 50% prevalence of Campylobacter identified in 444 retail chickens in Ireland 

(Whyte et al. 2004). Another United Kingdom study identified 83% of 241 fresh and frozen 

chicken carcasses as harbouring Campylobacter (Jørgensen et al. 2002). C. jejuni comprised 

98% of the isolates from this UK study with the remaining isolates being identified as C. coli. 

 

3.1.3 Counts per chicken carcass 

 

A study undertaken in the United Kingdom found that average Campylobacter counts were 

log10 4.9 and log10 5.1 cfu per chicken (n = 241) for carcass rinse and carcass rinse plus whole 

skin samples, respectively (Jørgensen et al. 2002). Approximately 20% of fresh chicken 

carcasses carried between log10 5.0 and log10 6.99 Campylobacter species per carcass, with one 

carcass containing >log10 9.0 cfu. In the same study, frozen chickens (n = 4) had a range of 2.8-

4.4 log10 cfu campylobacters per carcass. A Dutch study determined the levels of 

Campylobacter contamination on fresh retail chickens (n = 45) and identified 18% of the 

chickens as having >5500 Campylobacter cells per carcass (Dufrenne et al. 2001). Another 18% 

of the fresh retail chickens had less than ten campylobacters per carcass. Over half (57%) of the 

frozen chickens (n = 44) contained less than ten campylobacters per carcass. A larger Danish 

study reported a range of <0.4 to 400 cfu g-1campylobacters in frozen chicken products (n = 

474), with 80% negative (<0.4 cfu g-1). In comparison, the range for fresh chicken products (n = 

558) was <0.4 to >4000 cfu g-1 with approximately 55% of fresh chicken products negative 

(<0.4 cfu g1) for campylobacters (Anonymous, 2002). These findings support the theory that 

freezing of chicken carcasses reduces the levels of Campylobacter contamination. 
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3.1.4 Water as a transmission route for Campylobacter 

 
Reported cases of campylobacteriosis in New Zealand attributed to water, include an outbreak 

in the township of Ashburton (Brieseman 1987). In this incident, contamination of the town 

water supply after heavy rains was implicated as the likely source of infection. The water for the 

town supply is derived from the Ashburton River which is surrounded by sheep and beef farms. 

Prior to this contamination event, chlorination of the supply only occurred at times of heavy 

rainfall and the delay in beginning chlorination after the onset of rain may have allowed 

Campylobacter into the town supply. Other water-related Campylobacter outbreaks are a camp 

and convention centre in Christchurch (Stehr-Green et al. 1991) and a College, where a 

malfunctioning UV treatment light may have caused the influx of Campylobacter into the water 

supply (Inkson 2002). 

 

The Canadian Walkerton Inquiry (Hrudey et al. 2003, Clark et al. 2003) highlights the dangers 

of waterborne transmission of pathogens. Seven people died and over 2,300 became ill when 

Walkerton Town’s water supply became contaminated with Campylobacter and E. coli 

O157:H7. It was presumed that the contamination arose from farm animal run-off into a shallow 

well, from which the water supply was taken as subtyping of Campylobacter and E. coli 

O157:H7 isolates revealed indistinguishable molecular subtypes and phage types for the 

majority of isolates from clinical specimens and farm animal manure collected around one of 

the contaminated wells. 

 

Numerous waterborne outbreaks of gastroenteritis have been reported in Finland (Hänninen et 

al. 2003, Miettinen et al. 2001) with several being linked with Campylobacter infection. Three 

of these outbreaks, which were associated with Campylobacter, were investigated using Penner 

serotyping and PFGE analysis (Hänninen et al. 2003). In only one of the outbreaks did analysis 

of water samples and clinical samples identify indistinguishable subtypes of C. coli, confirming 

the source of the outbreak as contaminated drinking water from groundwater. Although 

campylobacters were identified in the drinking water samples from another outbreak they were 

not identical to the patients’ clinical isolates and no campylobacters were isolated from 

environmental samples in the third outbreak. These outbreaks illustrate the difficulty of 

determining the sources of an outbreak due to the delay between exposure and recognition of a 

potential transmission route. Campylobacters were identified in the wells and surrounding water 
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sources in one of the outbreak incidences suggesting a constant flow of campylobacters through 

the drinking water system. At the time of sampling, however, none of these environmental 

isolates matched the clinical isolates and therefore a direct link to the groundwater wells could 

not be confirmed. 

 

The case of a large waterborne outbreak involving Campylobacter and E. coli O157:H7 

occurred in the United States at a county fair (Bopp et al. 2003). E. coli O157:H7 was isolated 

from the stools of 128 people who attended the fair and suffered a gastrointestinal illness. A 

very high proportion (91.5%) of these 128 isolates were confirmed as being related subtypes by 

PFGE typing analyses. The same E. coli O157:H7 subtypes were isolated from samples taken 

from the water distribution system at the fairground suggesting that water was the transmission 

route for this organism. At the time of this outbreak the potable water was obtained from six 

shallow wells, four of which were not chlorinated. C. jejuni was isolated from the stools of 44 

who reported a diarrhoeal illness after attending the same county fair. Only one case of co-

infection with C. jejuni and E. coli O157:H7 was confirmed. PFGE results for the C. jejuni 

isolates revealed that 29 of the 35 human isolates that were subtyped had indistinguishable 

PFGE patterns. C. jejuni was not identified in water or septic tanks sampled during this 

investigation and therefore the cases of campylobacteriosis could not be confirmed as a 

waterborne outbreak. As the authors noted the high proportion of a single strain type is 

suggestive of a large contamination from a single source. 
 

A recent study investigated the ability of the freshwater crustacean Daphnia carinata to reduce 

populations of C. jejuni in simulated natural aqueous conditions (Schallenberg et al. 2005). 

Daphnia is recognised as an efficient grazer of aquatic bacteria. The study showed that 

ingestion and passage through Daphnia reduced the population of C. jejuni and lack of survival 

of C. jejuni after passage through Daphnia was confirmed by determining the culturability of 

C. jejuni in the faecal material of the crustacean. The authors suggest that this finding could 

have implications for the water industry in terms of the potential role of Daphnia in the 

biocontrol of human bacterial pathogens in recreational waters and drinking water reservoirs. 

 

3.1.5 Subtyping methodologies 

 

The characterisation of Campylobacter subtypes from various sources and a determination of 

their relative contribution to human infection is a prerequisite for the investigation of the 
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transmission routes of a pathogen. It also allows the detection of changes in infectious disease 

aetiology. 

 

The high diversity of Campylobacter strains identified in the environment necessitates a 

validation of the enrichment-PCR method to ensure that it is capable of detecting a wide range 

of Campylobacter subtypes in a matrix and multiple subtypes within an individual sample. 

 

Numerous methods for the subtyping of Campylobacter have been described. The international 

literature was reviewed by the author to determine the optimal genotypic approach for this 

project. No single ideal method has been identified as suitable for all research studies (Nielsen 

et. al. 2000, McKay et al. 2001). Therefore each typing method was evaluated according to the 

criteria of discrimination, typeability, reproducibility and cost effectiveness (Wassenaar and 

Newell, 2000). A short description of each phenotypic and genotypic typing system mentioned 

in this thesis is presented in Appendix IV. 

 

The advantages and disadvantages of Amplified Fragment Length Polymorphism (AFLP) and 

Multi Locus Sequence Typing (MLST), and the more commonly used Pulsed Field 

Electrophoresis (PFGE) are considered below. These are the typing systems receiving the 

greatest international recognition because of the advent of computer assisted software 

technologies which has simplified data interpretation and increased accessibility for laboratories 

reporting on disease surveillance. 

 

3.1.5.1 Amplified Fragment Length Polymorphism (AFLP) 

 

AFLP fingerprinting is used for strain identification and differentiation of genetically related 

bacteria. Automation of the technique allows for high throughput and rapid sample analysis for 

epidemiological investigations (Wassenaar and Newell 2000). The method can be standardised 

to allow interlaboratory comparisons. The discriminatory power of AFLP is generated by the 

choice of restriction enzymes and selective primers. The first step involves digestion of the total 

genome with two restriction enzymes. Subsequent PCR amplification targets only those 

digested fragments that are flanked by both restriction enzyme sites. The large number of bands 

generated can be reduced by incorporating one or more specific nucleotides adjacent to the 

restriction site. This additional step allows selective amplification of those fragments containing 

the specific nucleotide(s) flanking the restriction site. The PCR primers are fluorescently 
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labelled and analysis of the amplicons is performed on denaturing polyacrylamide gels 

(Wassenaar and Newell 2000).  

 

AFLP generates between 50 and 80 bands. The high number of multiple small bands makes it 

less likely that this technique is susceptible to genomic instability (Wassenaar and Newell, 

2000) and is highly discriminatory between isolates (Lindstedt et al. 2000). A comparison of 

molecular genotyping methods identified AFLP as the most discriminatory method, and 

subdivided 50 Campylobacter strains derived from poultry into 41 distinct genotypes (de Boer 

et al. 2000). The next most discriminatory method was PFGE using SmaI digestion, which 

identified 38 genotypes, followed by flaA RFLP (31 genotypes) and ribotyping (26 genotypes). 

During a survey of campylobacters isolated from chicken faeces Wittwer et al. (2005) also 

found AFLP typing to be more discriminatory than RFLP typing of the flagellin gene and 

antibiotic resistance typing.  

 

Disadvantages of the AFLP method are that an automated DNA sequencer and computer 

assisted analysis are essential for identification and therefore a major capital investment is 

required (Duim et al. 1999). A simpler version of AFLP has been trialled which allows its use in 

more laboratories. It is called single-enzyme-amplified fragment length polymorphism (SAFLP) 

and uses a single restriction enzyme for digestion of the DNA followed by ligation of digested 

fragments with an adapter sequence. PCR amplification of the adapter–tagged fragments is 

performed with a single primer which is complementary to the adapter sequence (Gibson et al. 

1998). Electrophoretic separation of the 8-10 amplicons generated by SAFLP of the 

Campylobacter genome is achieved on a 1.5 % agarose gel using ethidium bromide for 

visualisation of the banding pattern (Champion et al. 2002). A comparison of PFGE and SAFLP 

techniques for distinguishing outbreaks of campylobacteriosis showed that SAFLP was as 

discriminatory as PFGE and less labour intensive (Champion et al. 2002). Further research may 

lead to the validation of SAFLP as a less expensive alternative to PFGE for outbreak 

identification. 

 

3.1.5.2 Multi Locus Sequence Typing (MLST) 

 

MLST is another typing technique able to distinguish between closely related strains as it is 

based on sequence polymorphisms within seven to ten conserved housekeeping genes. Analysis 
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of the number of unique alleles per gene allows the generation of different combinations 

(sequence types) so that all strains can be distinguished from each other. 

 

MLST population studies of C. jejuni have revealed a low overall degree of sequence diversity 

(Suerbaum et al. 2001). C. jejuni, however, has high rates of intraspecies recombination which 

creates many different combinations of alleles suitable for generating a large number of 

discriminatory sequence subtypes (Suerbaum et al. 2001). 

 

MLST is a highly reproducible method that generates data that is readily comparable between 

laboratories but it has a requirement for high capital investment, similar to AFLP, and requires 

complex data analysis. These techniques may be useful as non-routine methods for high 

resolution genotyping where further discrimination between isolates is required for the 

determination of genetic lineages. 

 

3.1.5.3 Pulsed-field gel electrophoresis  

 

Pulsed-field gel electrophoresis (PFGE) is the more widely used genotypic method for routine 

subtyping. The basic premise of PFGE is that the total DNA content (chromosomal and plasmid 

DNA) present in a bacterial cell is subjected to digestion by a restriction enzyme which cleaves 

the DNA infrequently (Wassenaar and Newell, 2000). The digested DNA fragments are 

separated on the basis of molecular size by agarose gel electrophoresis using a technique 

involving switching the orientation of the electric field over a 120°C angle in a pulsed manner. 

This successfully separates the large DNA fragments and the resultant patterns of migration of 

DNA are recorded as an isolate’s PFGE “fingerprint”. In practice, the interpretation of DNA 

fragments is restricted to those that fall within the size range of 25-700 kb (Michaud et al. 

2001). This is designed to exclude plasmid DNA (<25 kb) and fragments above 700 kb which 

are not well resolved on the PFGE gel as they tend to co-migrate. 

 

In a comparative commentary on molecular methods of genotyping PFGE was described as 

being the “gold standard” for DNA-based subtyping (Olive and Bean 1999). PFGE was 

depicted as having high discrimination power between strains but with moderate set up costs in 

comparison to AFLP and DNA sequencing techniques, such as MLST.  
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An evaluation of subtyping methods used to distinguish between C. jejuni isolates associated 

with a campylobacteriosis outbreak and those isolates linked to sporadic illness (Fitzgerald et al. 

2001a) concluded that PFGE was the most discriminatory subtyping method. The other methods 

evaluated were Penner serotyping, restriction fragment length polymorphisms (RFLP) of the 

flagellin (flaA) gene, sequencing a region of the flaA gene (582 bp) and sequencing the entire 

flaA gene. The PFGE, serotyping and sequencing of the 582-bp region all separated the 

outbreak from sporadic cases.  

 

The discriminatory power of PFGE is attributed to its ability to determine polymorphisms 

derived from the entire bacterial genome rather than relying on differences within one or two 

genes (or gene products), as is the case with the other subtyping schemes tested by Fitzgerald et 

al. (2001a). This conclusion was supported by a comparative study of six typing methods which 

found that the genotypic techniques of PFGE and random amplified polymorphic DNA (RAPD) 

were highly discriminatory (Nielsen et al. 2000). In comparison, RFLP of the flagellin gene 

(RFLP flaA), denaturing gradient gel electrophoresis of the flagellin gene (fla-DGGE) and 

riboprinting were found to be less discriminatory. 

 

A study of plasmids and their affect on typing systems was undertaken for the bacterium 

Enterococcus faecium (Werner et al. 2003). Twenty-four transconjugants from a genetically 

isogenic strain collection, differing in their possession of non-identical resistance-conferring 

plasmids, were typed by RAPD, AFLP and PFGE (SmaI). RAPD was the least discriminatory 

and AFLP the most discriminatory. The authors concluded that PFGE could still be 

recommended as the gold standard based on its ability to distinguish between highly related 

strains where 22 of the 24 transconjugants differed by less than three bands in comparison to the 

wild-type (parent) strain.  

 

3.1.5.3.1 Choice of restriction enzyme for PFGE 

 

A comparative study investigated the utility of using SmaI as the restriction enzyme (RE) of 

choice for PFGE analysis (On et al. 1998). They compared the profile groups obtained with 

SmaI and three other restriction enzymes and concluded that SmaI is a “generally robust means 

of accurately determining C. jejuni strain relationships”. This finding was supported by 

Fizgerald et al. (2001) who employed PFGE analysis using two enzymes: SmaI and SalI to 

determine the source of an outbreak attributed to a foodhandler. The SmaI digest was shown to 
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be more discriminatory than the SalI RE digestion. On et al. (1998), however, also noted that 

some isolates giving the same profile for SmaI digestion could be further subdivided by the use 

of a second RE. Tenover et al. (1995) suggested that the use of two restriction enzymes is 

potentially useful in cases where isolates are collected over an extended period of time.  

For the work described in this study, PFGE using SmaI was determined to be the most 

appropriate method for the validation of the enrichment-PCR method to identify multiple 

subtypes. This was based on its high discriminatory power and low set up cost and the ability to 

standardise the method between laboratories, which allows for interlaboratory comparisons at 

the international level, as discussed in Chapter Four. 

 

3.1.6 Objectives 

 

• To establish the ability of the enrichment-PCR method to determine prevalence of 

Campylobacter in environmental matrices and test the ability of the enrichment-PCR to 

detect multiple subtypes in a single sample. 

• To evaluate the prevalence of Campylobacter in chicken products at the point of 

purchase. 

• To determine whether the method is able to detect a wide range of Campylobacter 

subtypes and that certain strains do not predominate using the enrichment-PCR method. 

River water flowing through farmland is expected to have multiple inputs of 

campylobacters from varied sources and is chosen as a suitable matrix for this 

validation. The subtyping method employed is pulsed-field gel electrophoresis (PFGE) 

using SmaI as the restriction enzyme. 

 

 



Chapter 3 Application of enrichment-PCR 81 

 

3.2 Materials and methods  
 
3.2.1 Media and reagents 

 

Media and Reagents used in this research were prepared as described in Appendices I and II 

(respectively). Unless otherwise stated, the chemicals used in this methods section were 

obtained from Sigma (Castle Hill, New South Wales, Australia). 

 

3.2.2 Isolation and identification of campylobacters from whole chicken carcasses 

 
All chicken products were purchased from retail stores as fresh whole chickens over a one year 

period from retail outlets in a rural town. Six chicken carcasses were sampled fortnightly for the 

first four months of the project and this number was increased to nine chickens for the 

remaining eight months. This resulted in 204 chicken carcasses being tested. The chicken 

carcasses were transported to the laboratory under refrigeration at 4°C and processed by the 

enrichment-PCR method within 24 hours of purchase. The enrichment-PCR method for chicken 

carcasses is described in Chapter Two. PCR identification was performed on one purified 

isolate per chicken carcass. 

 

3.2.3 Collection and processing of river water samples 

 

3.2.3.1 Survey of Campylobacter in river water 

 

The prevalence of Campylobacter in river water was determined over a one year period. Three 

sites along the Ashburton River were sampled. The site below the infiltration gallery (Region A) 

was sampled every week and two sites (Region B and C) on the Upper Branches of the 

Ashburton River which were adjacent to farm land were sampled every fortnight (Table 10). 
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Table 10: Sampling frequency for water from the Ashburton River 
 

Ashburton River 

Site 

Sampling 

frequency 

Number of samples 

collected 

Sampling plan 

Region A Weekly 

 

4 Collected on same day 
2 in morning, 
2 in afternoon 

Region B Fortnightly 

 

2 Collected on same day 
1 in morning, 
1 in afternoon 

Region C Fortnightly 

 

2 Collected on same day 
1 in morning, 
1 in afternoon 

 

The samples were transported to the laboratory under refrigeration at 4°C and processed by the 

enrichment-PCR method within 24 hours. Water samples were filtered in one litre volumes for 

all sampling events. Filter papers (HA 0.45 µm filter membranes, Millipore) were put into 100 

ml of m-Exeter broth (in Whirl Pak stomacher bags) for one litre volumes. Microaerophilic 

enrichment conditions and all further processing methods, including controls are as described in 

Chapter Two for the enrichment-PCR method. 

 

In brief, the primary enrichment was incubated for an initial 4 hours at 37ºC and then incubated 

for a further 44 hours at 42ºC. All incubations were carried out under microaerophilic 

conditions to enrich for Campylobacter. Forty eight hours after the primary enrichment was 

incubated, a 100 µl volume of the primary enrichment was transferred to a secondary 

enrichment of 10 ml of m-Exeter broth. The secondary enrichment was incubated at 42ºC for 24 

hours under microaerophilic conditions. After 24 hours a 1 ml volume was removed from the 

secondary enrichment and washed according to the method for cell harvesting and preparation 

for the PCR reaction (Chapter Two). 

 

3.2.3.2 Collection and processing of water samples to determine the carriage of multiple 

subtypes of Campylobacter 

 
The site from which samples were obtained for determination of multiple subtypes was the 

infiltration gallery that supplies the drinking water for the township of Ashburton. Water 

samples were collected at 10 a.m. and noon on three separate days within a period of six days. 

The samples were transported to the laboratory under refrigeration at 4°C and processed by the 
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enrichment-PCR method within 24 hours. Water samples were filtered in 100 ml volumes and 

one litre volumes for all sampling events. For two of the samples, 800 ml volumes were filtered 

instead of 1000 ml. This smaller volume was due to the difficulty of filtering turbid water. Filter 

papers (HA 0.45 µm filter membranes, Millipore) were put into 25 ml of m-Exeter broth for 100 

ml filtered volumes and 100 ml of m-Exeter broth (in Whirl Pak stomacher bags) for one litre 

volumes. All further processing was as outlined in Section 3.2.3.1 above. 

 

Enrichment broths that gave a positive result for Campylobacter by PCR were inoculated onto 

m-Exeter plates and individual colonies purified by multiple subcultures onto Columbia blood 

agar (CBA) and incubation at 42°C under microaerophilic conditions. Twelve to fifteen pure 

colonies were isolated from each water sample and subjected to Campylobacter multiplex PCR 

confirmation. Colonies testing positive for C. jejuni by PCR were confirmed by the hippurate 

hydrolysis method (Lior 1984). For long term storage of cultures, bacterial growth was removed 

from a 48 hour plate of CBA with a sterile, disposable inoculating loop and suspended in sterile 

Nunc cryotubes (Milian, Gahanna, Ohio, USA) containing sterilised glass beads with Brain 

Heart Infusion broth (BHI) supplemented with 20% glycerol. Cryotubes were left at room 

temperature for half an hour prior to freezing at -80°C.  

 

3.2.4 Subtyping of Campylobacter isolates from water by pulsed-field gel electrophoresis 

(PFGE) 

 

The method used for preparation of the agarose plugs, digestion of plugs and gel electrophoresis 

was based on the PFGE method for C. jejuni (Gibson et al. 1994). Modifications to this protocol 

are described below and included cell density preparation using the McFarland scale 

(bioMerieux: Cat No. 69280); incubation of plugs overnight to achieve cell lysis, and the use of 

the Lambda-concatamer PFGE marker (New England Biolabs, Ipswich, Massachusetts) as the 

electrophoretic molecular weight standard. 

 

3.2.4.1 Preparation of agarose embedded chromosomal DNA 

 

Growth from a 48 hour plate of CBA was collected using a sterile, cotton tipped applicator pre-

moistened in Phosphate Buffered Saline (PBS) and resuspended in 2 ml of PBS in a Falcon 

2054 tube (Becton Dickinson, Franklin Lakes, NJ, USA). 
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The turbidity of the cell suspension was adjusted to 1.0 on the McFarland Scale, this equated to 

resuspending 4-6 colonies of Campylobacter. The suspension was transferred into a sterile 1.5 

ml Eppendorf tube and centrifuged for 10 minutes at 6,600 x g (4°C). The supernatant was 

discarded and the pellet resuspended in 1 ml of PBS. A 400 µl aliquot of the cell suspension was 

transferred to a 1.5 ml tube containing 20 µl of Proteinase K (20 mg ml-1) solution and mixed 

gently to avoid shearing of the DNA. Molten Megabase agarose (1.4%) (Biorad, Alfred Noble 

Drive, Hercules, California), equilibrated to 55-60°C, was added to the cell suspension in an 

equal volume. Gentle mixing was achieved by pipetting two or three times using a 1 ml pipette 

tip immediately prior to dispensing the mixture into two wells of a plug mold (2 cm x 1 cm x 

1.5 mm) (Biorad). Plugs were solidified at room temperature for 15 minutes or at 4°C for 5 

minutes. 

 

Solidified plugs were carefully removed from plug molds and placed in 50 ml polypropylene 

screw-capped Cell-Star tubes (Greiner Bio-One, Longwood, Florida) which contained 5 ml of 

EC Lysis Buffer and 25 µl of Proteinase K (20 mg ml-1) solution. Tubes were incubated at 55°C 

overnight. 

 

Following incubation the plugs were initially rinsed in 10-15 ml of sterile Milli-Q water (APS 

Water Services Corp., Van Nuys, California) preheated to 55°C. This was followed by two 15 

minute washes in 10-15 ml of sterile Milli-Q water (55°C) while the tubes were held in a 

shaking 55°C waterbath. 

 

The next three washes were performed in Tris-EDTA buffer (TE), preheated to 55°C. The tubes 

were shaken in a 55°C waterbath for 15 minutes. At the completion of washing the plugs were 

transferred to 2 ml graduated microcentrifuge tubes (Quality Scientific Plastics, Porex, 

Petaluma, California) containing 1.6 ml of TE buffer (room temperature) and stored at 4°C until 

required for enzyme digestion. 

 

3.2.4.2 Restriction enzyme digestion of DNA in agarose plugs 

 

Digests of 1 mm slices of Campylobacter DNA plugs were performed in 20 Units of SmaI 

enzyme (Roche Diagnostics GmbH, Sandhoferstrasse, Mannheim, Germany) in 100 µl of the 

appropriate (1x) restriction enzyme buffer (Roche Buffer A). Reactions were incubated at 25°C 

overnight. 



Chapter 3 Application of enrichment-PCR 85 

 

3.2.4.3 PFGE electrophoresis of DNA embedded agarose plugs 

 

Gels were prepared from 1% Megabase agarose (Biorad) in 100 ml of 0.5 x TBE buffer 

(prepared from 10 x TBE, USB Corp, Cleveland, USA) using 20-well combs. The plug slices of 

the samples were loaded into the pre-cast agarose wells. Three plugs of the molecular weight 

standard Lambda-concatamer PFGE marker (New England Biolabs, Ipswich, Massachusetts) 

were loaded into wells on the two outer most lanes and the centre lane. Plugs in the wells were 

covered with molten 1% Megabase agarose (Biorad) to prevent movement of the plugs. 

Electrophoresis was performed in 2.2 litres of 0.5 x TBE running buffer on a CHEF DRIII 

system (BioRad) with the cooling module set at 14°C. The conditions for each electrophoresis 

run were a gradient of 6.0 volts cm-1; included angle of 120°, an initial switch time of 10 

seconds and a final switch time of 35 seconds, and a running time of 22 hours.  

 

Following electrophoresis, the gels were stained for 20 minutes in 400 ml of Milli-Q water 

containing 40 µl of 10 mg ml-1 ethidium bromide. Gels were destained in 400 ml of Milli-Q 

water for up to one hour. The electrophoretic image was captured by Polaroid photograph and 

band patterns were analysed manually. 
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3.3 Results 
 
3.3.1 Identification of target campylobacters in chicken carcass samples 

 
3.3.1.1 Prevalence of campylobacters in chicken carcasses 

 

C. jejuni was the predominant species identified in chicken carcasses sampled from retail 

outlets, being detected in 56 of the 204 samples (27.5%), compared with two (1.0%) samples 

positive for C. coli. 

 

3.3.1.2 Seasonality of campylobacters in chicken carcasses 

 
The prevalence of C. jejuni in chicken carcasses was highest in the summer, autumn and spring 

quarters, with lower prevalence over winter (Figure 4). The low numbers of C. coli identified in 

the carcasses precludes representation of the data on a seasonal basis. 

 
 

0

10

20

30

40

50

Jan-Mar Apr-Jun Jul-Sept Oct-Dec
Time of year

Pr
ev

al
en

ce
 (%

)

 
 

Figure 4: Seasonal prevalence of Campylobacter in chicken carcasses 
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3.3.2 Prevalence of Campylobacter in river water 

 

The prevalence of C. jejuni and C. coli for each of the water sites is shown in Table 11. 

Region B is the area adjacent to both banks of the South Branch of the Ashburton River and 

Region C is the area surrounding two tributaries of the South Branch. Region A is below the 

confluence of the rivers flowing through Regions B and C and is the site of the infiltration 

gallery for the drinking water supply for the township of Ashburton. All sampling sites are 

adjacent to areas of sheep and dairy/cattle farming. 

 

Samples of water from the river draining Region B demonstrate a lower prevalence of C. jejuni 

compared with the other two water sampling sites (χ2, p<0.0001). C. coli was not isolated from 

Region B and C water sampling sites which are upstream of the Region A water site. 

Differences between water prevalence among regions are not significant for C. coli (Fisher’s 

exact test, p=0.46). The isolation of C. coli from Region A water sampling site may be the result 

of a four fold higher sampling rate between this site and the other two water sites.  

 

Table 11: Prevalence of Campylobacter in water from the Ashburton River 
 

Site % Isolation of  
C. jejuni 

% Isolation of C. coli Total sample numbers

Region A 59 6 193 

Region B 16 0 50 

Region C 60 0 50 

Total 55.3 4.1 293 

 

 

3.3.3 Seasonality of Campylobacter prevalence in water 

 

As observed in previous studies (Obiri-Danso and Jones 1999, Brennhovd et al. 1992) the 

prevalence of Campylobacter in the river water was highest over the winter months and lower 

during the summer when water temperatures were highest (Figure 5). As can be seen in Figure 6 

the coldest water temperatures in the Ashburton River occurred during the winter months of 

June-August. 
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Figure 5: Seasonal trends for Campylobacter prevalence in river water 
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Figure 6: Seasonal variation of water temperatures in the Ashburton River 
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3.3.4 Detection of multiple Campylobacter subtypes in individual samples 

 

Results for the identification of campylobacters in water samples from the Ashburton River are 

presented in Table 12. Three of the six 100 ml water samples were positive for C. jejuni. In 

contrast, five of the six 800 ml to one litre water samples were positive for C. jejuni. C. coli was 

not identified in any water sample. Two samples tested positive for a thermophilic 

Campylobacter species which was not identified as either C. jejuni or C. coli. Therefore, no 

further isolation of bacteria was performed on these samples.  

 

Five of the six samples (83%) collected at 10 a.m. of each sampling day were positive for target 

campylobacters. This is in comparison to the samples collected at noon of each sampling day, 

where three of the six (50%) water samples were positive.  

 

The number of colonies purified from the water samples varied between 12 and 15 colonies per 

sample. Seven PFGE C. jejuni subtypes were identified from the five C. jejuni positive water 

samples (Table 13). Three of the seven PFGE C. jejuni subtypes were identified on only one 

sampling occasion. No individual subtype was identified in more than two water samples. At 

least two subtypes were identified in every Campylobacter-positive sample and in one sample 

three subtypes were identified.  

 

One PFGE subtype of C. jejuni was dominant in each sample (presented in boldface in Table 

13) ranging from 87% to 93% of the total number of colonies. Of the four subtypes that were 

identified in two samples, three of the four were dominant in one sample and then detected as 

the minor subtype in the other sample. The fourth subtype (PFGE 7) was a minor subtype in 

both samples. Three subtypes were identified only once in a sample. Two of these subtypes 

(PFGE 3 and 6) were identified as the dominant subtype in their respective water samples. 
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Table 12: Identification of campylobacters isolated from the Ashburton River 
 

 

Sample number Time of sampling Volume of water 
filtered

Campylobacter 
identified 

299 10 am 100 ml C. jejuni 
  800 ml C. jejuni 

300 noon 100 ml C. jejuni 
  800 ml C. jejuni 

301 10 am 100 ml Thermotolerant Campylobacter 
  1000 ml C. jejuni 

302 noon 100 ml Negative 
  1000 ml Thermotolerant Campylobacter 

305 10 am 100 ml C. jejuni 
  1000 ml C. jejuni 

306 noon 100 ml Negative 
  1000 ml C. jejuni 

 

 

 

 

Table 13: C. jejuni PFGE subtypes identified in Ashburton river water 
 

 

Water Sample  
 

SmaI PFGE subtype 
 

Number of isolates  

299  1 13 
 7  1 

300  2 12 
 4  1 

301  4 12 
 2  1 

305 6 11 
 7  1 

306 
 

3 
5 

13 
 1 

 1  1 
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3.4 Discussion 
 
3.4.1 The prevalence of Campylobacter in chicken produce 

 

It is important to validate the enrichment-PCR method by testing it on environmental samples. 

To this end, whole chicken carcasses were sampled at the point of purchase to the consumer. 

Sampling from retail outlets allowed a comparison of rates of Campylobacter isolation with 

previous New Zealand and international studies. 

 

The prevalence of C. jejuni in fresh chicken was lower in this study than has been observed in 

previous New Zealand studies where the prevalence was found to range between 54 to 60% 

(Anonymous et al. 1999, Hudson et al. 1999, Campbell and Gilbert 1995). International studies, 

however, have shown a wide variation of prevalence of campylobacters in chicken products. A 

study of the prevalence of Campylobacter in raw retail meats in the USA identified 71% of 

chicken carcasses (n = 184) as being contaminated with Campylobacter (identified by PCR as 

either C. jejuni or C. coli) (Zhao et al. 2001). A United Kingdom study found that 77% of 

chicken portions (thigh and breast) (n= 198) were contaminated with C. jejuni and 7% were 

contaminated with C. coli (Kramer et al. 2000). In studies discussed by Stern (1992) C. jejuni 

was isolated from chicken carcasses at rates from 48 to 98%, although one study from the 

Netherlands yielded a low 16% of C. jejuni isolates.  

 

Low prevalences were reported in a study from Finland where C. jejuni was isolated from 

chicken portions purchased from retail shops over a three-year period concentrating on the 

months, June to September, when cases of campylobacteriosis were at their peak (Hänninen et 

al. 2000). In the first year of sampling 13 % (n = 80) of chicken portions were positive, 14% (n 

= 206) positive in the second year of study and 21% (n = 243) in the third year. This study used 

enrichment in Lab M broth prior to culture on charcoal-cefoperazone-desoxycholate agar 

(CCDA) for the isolation of C. jejuni from chicken. A lower prevalence was also found in a 

Danish study when campylobacters were isolated from 35% of raw chicken products (n = 1096) 

(Anonymous, 2002).  

 

Reasons for the lower prevalences reported in this study compared to previous New Zealand 

studies include differences in isolation methods. Other New Zealand studies (Hudson et al. 

1999, Campbell and Gilbert 1995) used Preston as the enrichment broth and plated from the 

 



92  Campylobacter in environmental matrices 
broth onto selective agar plates to identify Campylobacter colonies. Another consideration is 

that whole chicken carcasses were sampled in this study and by Campbell and Gilbert (1995), in 

contrast to the chicken portions surveyed in the New Zealand study of Hudson et al. (1999). It is 

probable that the extra handling and manipulation required for the preparation of chicken 

portions may increase the likelihood of cross-contamination resulting in higher prevalence of 

campylobacters. This reasoning is supported by a recent New Zealand survey of Campylobacter 

contamination in retail chickens that had been minced, diced or supplied in strips (Wong et.al. 

2005). The survey employed the same m-Exeter enrichment method as developed for the 

present study except that enrichment samples were plated out to determine positive 

campylobacters and then their identity was confirmed by the PCR assay developed in this 

enrichment-PCR method. These chicken samples (n = 230) in Wong et.al. (2005) were collected 

over a one year period from the nation’s five main cities and reported a prevalence of 89%, with 

most of these isolates (>86.5%) being C. jejuni. In comparison, the whole chicken carcasses 

surveyed in this study were obtained from the two chicken brand names that had the highest 

volume of sales from retail outlets in the test area. It was subsequently discovered that both 

brands of chickens were from the same supplier, who is a nationwide provider of chicken 

products with one of the higher proportions of the market share. It may be that this large 

company has lower rates of Campylobacter contamination due to an improvement in controls 

during processing. Another possibility is that differences in sampling geography affect 

prevalence whereby localised survey results are compared with results from nationwide surveys. 

 

3.4.2 The detection of Campylobacter in river water samples 

 

Overall prevalence of C. jejuni isolated from the Ashburton River was 55.3% and 4.1% for 

C. coli. Water samples showed slightly lower prevalences in the summer period as compared 

with winter prevalence (Figure 5) and this can be seen to correlate with river temperatures. The 

annual temperature variations of the Ashburton River, as measured at Region A water sampling 

site, are presented in Figure 6. The temperatures varied from a summer high of 18°C in March 

to a wintertime low of 3°C in July. Seasonal variation of Campylobacter prevalence is usually 

observed in water samples due to differences in sunlight and water temperature, with isolations 

of Campylobacter spp. being more frequent in winter (Brennhovd et al. 1992). 

 

A New Zealand study of the prevalences of Campylobacter in river water during the summer 

(n = 48) and winter periods (n = 36) showed lower prevalence in summer months (31%) in 
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comparison to the winter (75%) (Hudson et al. 1999). Another New Zealand survey of 

Campylobacter in river water identified prevalences of 60% for thermotolerant Campylobacter 

collected over a six month period (spring and summer) (Savill et al. 2001). Evaluation of the 

concentration of Campylobacter by the most Probable Number (MPN) technique identified a 

median range of 0.18 MPN 100 ml-1 and a range of <0.12 - >11 MPN 100 ml-1 in the river 

waters (Savill et al. 2001). 

 

International studies have identified thermotolerant Campylobacter prevalences in surface 

waters at 74% (n = 69) (Sails et al. 2002); 53% (n = 60) (Rosef et al. 2001); 41% (n = 119) 

(Kemp et al. 2005); 44% (n = 96) (Brennhovd et al. 1992) and 17% (n =139) from a study of 

surface waters in Finland (Horman et al. 2004). Therefore the prevalences reported for 

Campylobacter in this study concur with previous studies. 

 

In this study, C. coli was rarely identified in the water samples. Previous studies using culture 

and enrichment methods of campylobacters in surface waters have reported lower levels of 

detection of C. coli in contrast to C. jejuni (Horman et al. 2004, Brennhovd et al. 1992, Bolton 

et al. 1987). These data are supported by laboratory studies which report that C. jejuni survived 

longer in culturable form than C. coli in lake water incubated at 4°C and 20°C (Korhonen and 

Martikainen 1991). In contrast, higher prevalences of C. coli compared to C. jejuni were 

detected in studies where detection was also based on culture (Kemp et al. 2005, Sails et al. 

2002, Rosef et al. 2001).  

 

3.4.2.1 The detection of multiple subtypes of Campylobacter in river water samples 

 
To test the ability of the method to enrich for multiple subtypes river water was chosen as a 

matrix that had a high probability of containing multiple Campylobacter subtypes in a single 

grab sample. This premise was based on the potential multiple inputs of Campylobacter e.g. 

from animal and bird faeces, that are received by a river system. The Ashburton River in 

Canterbury, New Zealand, was chosen as a suitable surface water for sampling as the river 

passes through densely farmed areas where sheep and cattle graze alongside the river and there 

are considerable populations of wild birds and feral animals in the surrounding environment. 

 

The results suggest that sampling a larger volume (800 ml-one litre) of water is more likely to 

identify target campylobacters. The samples were collected on three different days over a six 

day period. On each sampling day, water was collected at 10 a.m. and noon to see if the time of 
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sampling affected the survival of C. jejuni and C. coli, as it is known that ultraviolet irradiation 

can be detrimental to Campylobacter survival in water (Obiri-Danso et al. 2001). Fifty percent 

of the samples collected at noon were positive for C. jejuni, this compares with 83% of the 

samples collected at 10 a.m. The small sample size, however, precludes statistical analysis of 

the findings. Analysis of results from a larger sample size for both time periods and water 

volumes would be required before confirming the suggestion that collectors should avoid 

sampling at times of the day when UV radiation is expected to be at its highest. 

 

In all of the samples that tested positive for C. jejuni (5 of 6), more than one subtype was 

identified, with a maximum of three subtypes per sample. One subtype was dominant in each 

sample but importantly, each subtype that was identified as being >85% of the typed colonies 

was also identified as a minor subtype (6.7-8.3%) in another sample. This suggests that these 

subtypes are not selected preferentially over other strains and that the method allows for the 

detection of a wider range of subtypes when they are present. Whether a particular strain is 

dominant in an individual sample may be dependent on factors which include its ability to 

compete with other campylobacters based on its genomic repertoire of survival strategies (Moen 

et al. 2005, Murphy et al. 2003). Another factor is its concentration in the water at the time of 

sampling, including the numbers of injured cells present for that particular strain. The 

intermittent pattern of subtypes detected is not unexpected since many of the strains could be 

derived from direct/indirect input of faeces from the farm animals and wildlife that inhabit the 

fields surrounding the river system.  

 

It is recognised that the problem of dominant subtypes may be overcome by employing more 

than one enrichment procedure for each sample to enable identification of individual subtypes 

that vary under different growth conditions (Kramer et al. 2000). One of the aims of this method 

development, however, was to enable the implementation of large surveys to better understand 

the transmission of Campylobacter through the environment to humans. The use of a single 

method for all matrices would allow cost effective identification of pathogenic campylobacters 

in a wide range of environmental matrices and facilitate a high sampling frequency within a 

routine laboratory set up. 

 

The variation of PFGE subtypes identified in the study suggest that sampling at different times 

on one day will lead to the isolation of different C. jejuni subtypes. It also suggests, however, 
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that multiple sampling over an extended period has the potential to provide a better 

representation of C. jejuni strains present in a river system.  

 

3.4.3 Conclusions 

 

The prevalences of C. jejuni and C. coli in retail chickens were lower than that obtained from 

previous studies in New Zealand but are similar to international studies in Denmark, Finland 

and the Netherlands. Differences between the New Zealand studies may be due to this survey 

obtaining retail chickens from a major supplier for the country who is expected to have 

improved techniques which minimise the contamination of chicken carcasses during processing. 

Another point of difference is that this survey was conducted on whole fresh chickens rather 

than chicken portions, which due to the increased handling, might be expected to be exposed to 

more cross contamination events than the prepackaged whole chicken.  

 

The prevalence of C. jejuni in river water was similar to international findings and previous 

studies of New Zealand rivers. The low prevalence of C. coli although supported by some 

international literature, is also in contrast to other overseas studies where C. coli has been 

identified at higher prevalences than C. jejuni. The identification of Campylobacter followed 

seasonal trends with lower prevalence in warmer summer water compared with winter 

conditions. 

 

The results of this validation supported the proposal that the enrichment-PCR method is 

facilitating the identification of different C. jejuni PFGE subtypes and indicates that an overlap 

of C. jejuni subtypes will be identified when sampling at different time periods. It is a 

reasonable assumption, therefore, that the isolation regime of selecting one colony per sample 

over an extended temporal survey, as compared with typing multiple isolates from fewer 

samples, will reveal a variation of Campylobacter subtypes. This would result in an accurate 

assessment of the Campylobacter types present in an environmental matrix.  

 

The greater the number of Campylobacter subtypes detected, the higher is the likelihood of 

establishing potential transmission routes of C. jejuni and C. coli from the environment to 

humans. This assessment of single colonies per sample may not hold true when investigating 

outbreak cases of campylobacteriosis, as will be examined in the following chapter. 
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In conclusion, this work supports the hypothesis that a robust enrichment-PCR assay has been 

developed to detect and identify pathogenic Campylobacter from chicken and water samples. 

Identification of multiple subtypes of C. jejuni in a river water sample validates the ability of 

this method to confirm or repudiate the third hypothesis for this current study that chicken 

carcasses carry multiple subtypes of the pathogenic species C. jejuni.  
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4 Multiple subtypes of C. jejuni in chicken carcasses 
 

4.1 Introduction 
 

As discussed in the previous chapter, the isolation of one colony from environmental samples is 

a valid strategy when testing large numbers of samples over an extended time period. However, 

when investigating outbreak cases of campylobacteriosis single isolates from a suspected source 

may not provide an accurate assessment of the presence of pathogenic subtypes. The 

distribution of C. jejuni subtypes in the environment may be more accurately represented if 

dominant and minor subtypes from potential reservoirs were isolated from the same sample. 

Recognition of the importance of multiple subtypes of campylobacters present in the same 

sample is beginning to emerge (Schouls et al. 2003, Dickins et al. 2002, Jørgensen et al. 2002, 

Newell et al. 2001). In general, these studies on Campylobacter have tested low numbers of 

colonies (3-5) per sample. They have, also, not presented statistical justification to establish the 

number of colonies required to determine the probable proportions of multiple subtypes present 

in a single sample. 

 

4.1.1 The relevance of multiple subtypes of bacterial species in individual samples. 

 

The relevance of multiple subtypes of a bacterial species in individual samples is illustrated by 

the following investigation into an outbreak of E. coli O157:H7 associated with ground beef. 

Analysis identified more than one subtype of E. coli O157:H7 in the single meat package 

recovered for testing (Proctor et al. 2002). From the nine patients tested for E. coli O157:H7 

four genetically distinct subtypes of E. coli O157:H7 were identified, but epidemiological 

evidence strongly suggested that these cases were all linked. The authors highlight that based on 

the genotyping evidence, not all patients would have been linked to the same outbreak event as 

only six of the nine cases were identical to one of the two isolates from the meat package. The 

second isolate from the meat sample was unrelated to any of the four subtypes identified in the 

human faecal specimens. If this subtype was the only one isolated from the meat sample, then 

the importance of the ground beef as the source of the outbreak would have been unconfirmed. 

Proctor et al. (2002) concluded that based on the evidence from previous studies (Besser et al. 

1997, Faith et al. 1996), which have recognised distinguishable but related PFGE patterns when 
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isolating E. coli O157:H7 from the faeces of the same cow, it is important to test multiple 

isolates from the same sample in order to detect all of the subtypes involved in an outbreak.  

 

These findings have relevance for the investigation of campylobacteriosis cases. It is well 

documented that multiple subtypes of C. jejuni may be circulating on one farm (Hiett et al. 

2002, Thomas et al. 1997) and some studies have observed multiple C. jejuni subtypes present 

in the same faecal sample from a human case (Steinbrueckner et al. 2001, Richardson et al. 

2001). Therefore the identification of only one isolate per sample limits the information 

available for tracing the source of a campylobacteriosis incident. As most cases are recognised 

as being sporadic (Pebody et al. 1997), this information may suggest that at least some of these 

sporadic outbreaks are not recognised as being linked because not all of the available subtypes 

have been identified from either the clinical faecal specimens or the suspected source of the 

outbreak. 

 

4.1.1.1 Identification of multiple subtypes in chicken carcasses 

 

While previous studies have shown that flocks of chickens may carry multiple subtypes 

(Nadeau et al. 2002, Newell et al. 2001), there is mounting evidence that individual chickens 

also harbour multiple subtypes of C. jejuni. Schouls et al. (2003) performed a pilot experiment 

to assess the number of multiple subtypes that could be isolated from three chickens. Four 

colonies from a caecal sample of each chicken were isolated and typed by three different 

genotyping techniques. Three of the four colonies from each faecal sample were identified as 

C. jejuni, with the other colonies being identified as C. coli. Typing data revealed that all three 

C. jejuni isolates from an individual chicken were of different subtypes. 

 

Newell et al. (2001) conducted research in a chicken abattoir which tracked the changes in 

composition of C. jejuni subtypes isolated from chicken carcasses as the individual carcasses 

travelled through the processing plant. Their research indicated that some of the C. jejuni 

subtypes identified in the bird prior to slaughter were not present in the carcass after processing 

and that other C. jejuni subtypes predominated after carcasses had travelled through the 

processing plant. Therefore, the dominant subtype detected in the final product from the abattoir 

may represent a C. jejuni subtype that was not identified in the initial flock prior to slaughter. 

This included subtypes identified in processed carcasses when the initial flock had tested 

negative for Campylobacter prior to slaughter or transport to the abattoir. The authors suggest 
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that changes in subtype composition in carcasses may be due to environmental selection 

pressures on the C. jejuni subtypes. Certain subtypes may be capable of better survival in the 

abattoir environment than the subtype identified in the original flock.  

 

The study of Newell et al. (2001) would have benefited from a more rigorous statistical 

methodology in establishing the presence/absence of subtypes within individual birds. For 

example, only one or two colonies from the caeca of each individual bird (n = 10) were 

analysed for each flock prior to slaughter. This number of colonies would not be sufficient to 

fulfil the criteria for establishing the presence of minor subtypes in the caeca where high 

numbers of Campylobacter reside. A minor subtype is defined as a clone that represents <10% 

of typed isolates in a sample (Schlager et al. 2002). This survey of the subtypes colonizing a 

flock is highly significant to the rest of the study where subtypes isolated in the subsequent 

processing procedures are compared with the initial subtypes identified in the flock. The method 

used to determine the subtypes in the original flock must be robust to ensure the identification 

of the majority of subtypes present. If this is not the case then it calls into question the 

conclusion that subtypes identified in the original flock are replaced by more environmentally 

stable subtypes as the carcass progresses through the abattoir. 

 

4.1.2 Statistical significance of multiple subtypes of bacterial species present in 

individual samples 

 

In a study of E. coli subtypes in the human faeces, Schlager et al. (2002) have discussed the 

importance of multiple isolations from a single stool sample to identify both dominant and 

minor subtypes. They caution that basing a study on the isolation of dominant subtypes of a 

bacterial species may exclude significant information, especially where the study is examining 

the frequency of virulence factors in a bacterial population. Identification of minor subtypes 

from chicken carcasses may contribute to the knowledge about potential host specificity of 

C. jejuni subtypes and whether all subtypes identified in chickens contribute to the pathogenesis 

of humans. Schlager et al. (2002) describe a dominant subtype as a clone which is represented 

by >50% of typed isolates in a sample. A minor subtype is defined as a clone that represents 

<10% of typed isolates in a sample. They used a binomial formula to determine the number of 

randomly selected colonies required to achieve a 90% probability of identifying a minor clone: 

1-(1-p)n, where p is the frequency of the minor clone (ie p = 0.10) and n is the number of 

colonies picked. 
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4.1.3 Campylobacter subtype prevalence in chicken farms 

 

It is generally thought that although Campylobacter is known to be a genetically polymorphic 

organism (Parkhill et al. 2000), an individual chicken flock is colonised by only one or two 

subtypes within a Campylobacter species (Ayling et al. 1996). Examples of this include a high 

genetic diversity of Campylobacter subtypes reported from a survey of the caecal contents of 

2,325 broiler chickens in Quebec, Canada (Nadeau et al. 2002). PFGE profiling identified 49 

distinct genotypes in 56 of the positive lots. Despite this genetic diversity, the majority (76.8%) 

of these lots were colonised by a unique genotype, suggesting a single source of infection. A 

similar result was found using AFLP and RFLP typing of the flagellin gene (refer to Appendix 

IV) during a survey of 100 chicken farms in Switzerland. Despite an overall high genetic 

diversity of C. jejuni and C. coli, the study found that, in general, isolates from a single farm 

had an AFLP similarity level of >97% (Wittwer et al. 2005). Conversely, a study in the United 

States identified multiple clones of Campylobacter (up to six per farm) (Hiett et al. 2002). The 

study used flaA (flagellin gene) short variable region typing to distinguish subtypes. This 

finding was further supported by a Danish study which used genotyping (fla-typing and PFGE) 

and serotyping to identify up to 3 clones in broiler flocks and up to six clones in parent flocks 

supplying the broiler farms (Petersen et al. 2001b).  

 

4.1.4 PFGE subtyping techniques 

 

Researchers have suggested that indistinguishable patterns based on PFGE can only be 

ascertained with the employment of a minimum of two restriction enzymes (Singer et al. 2004). 

Comparisons by various researchers of the profile groups obtained with SmaI and other 

restriction enzymes, including KpnI and SalI have concluded that SmaI accurately determines 

C. jejuni subtype relationships (Fitzgerald et al. 2001b, On et al. 1998). However, they and 

other researchers have noted that some isolates giving the same profile for SmaI digestion could 

be further subdivided by the use of a second restriction enzyme (Lindmark et al. 2004, Damborg 

et al. 2004). It has been suggested that the use of two restriction enzymes is potentially useful in 

population studies where isolates are collected over a period of one year or longer (Tenover et 

al. 1995). 
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The two restriction enzymes most widely used to determine PFGE patterns of C. jejuni isolates 

are SmaI and KpnI. A comparison of the two enzymes by researchers in Quebec, revealed that 

C. jejuni clusters that were epidemiologically related to one another correlated better with PFGE 

data and showed a higher diversity when based on KpnI digestions rather than the restriction 

enzyme SmaI (Michaud et al. 2001). This observation was further supported by other studies 

(Hald et al. 2004a), including a study of human cases of campylobacteriosis in Christchurch, 

New Zealand, where the researchers identified 71 different KpnI patterns for 183 C. jejuni 

isolates compared with 57 patterns when using SmaI as the restriction enzyme (Gilpin et al. 

2006) When combined the results from these two restriction enzymes produced 77 SmaI/KpnI 

profiles. 

 

4.1.5 Standardisation of PFGE between laboratories 

 

Pulsenet is a USA-based National Molecular Typing Network for Foodborne Disease 

Surveillance which was established by the National Centre for Infectious Diseases and the 

Centers for Disease Control and Prevention (CDC). A paper published by Pulsenet (Ribot et al. 

2001) investigated the reproducibility of SmaI PFGE protocols for the subtyping of C. jejuni. 

The aim was to determine standardised protocols which would produce high quality 

interlaboratory comparisons of data. These protocols allow for rapid comparison of DNA 

fingerprints of C. jejuni isolates from geographically dispersed laboratories to enhance the 

national surveillance of foodborne diseases. In this survey, five independent laboratories typed 

the same seven isolates and gel image results were compared using computer-assisted analysis. 

In each case there was a perfect match between the PFGE patterns for each of the isolates, 

indicating the reproducibility and utility of this method. Pulsenet use the restriction enzyme 

SmaI as its primary enzyme for PFGE but acknowledge that a secondary enzyme can be useful 

for further discriminatory power where the results with SmaI are inconclusive. 

 

It is expected that the importance of data exchange between international laboratories will 

increase as global epidemiological studies are undertaken to detect emerging infectious diseases 

and changes in disease aetiology (Woodward and Rodgers 2002, Wassenaar and Newell 2000, 

Olive and Bean 1999, Stephens and Farley 1996). It is recommended that this important aspect 

of data exchange be taken into consideration when adopting a particular methodology. The 

Pulsenet protocol for Campylobacter PFGE analysis was adopted in this section of the thesis, 

based on the reproducibility of results and the ability to exchange data between international 
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laboratories. In this section the PFGE molecular weight marker used as the standard on each of 

the agarose gels was Salmonella Braenderup H9812, which has recently been verified by 

Pulsenet as a universal standard for PFGE electrophoresis for all of their bacteria of interest 

(Hunter et al. 2005). 

 

4.1.6 The stability of the Campylobacter genome in relation to genotypic subtyping 

methods  

 

An important aspect of a subtyping system is its stability over an extended period of time. 

Campylobacter is a naturally competent bacterium (Duim et al. 1999) which means it is able to 

take up foreign DNA from its surrounding environment and incorporate the DNA into its own 

genome. This natural competence, as well as internal rearrangements of the genome may be 

important for increasing an organism’s ability to survive within a changing environment 

(Manning et al. 2001). This is important for Campylobacter which can be isolated from a wide 

range of diverse habitats. Genetic instability could undermine the applicability of genetic 

subtyping. For example, RFLP subtyping of the Campylobacter flagellin gene locus has 

demonstrated hypervariable regions that are subject to recombination events (Harrington et al. 

1997). Ideally, genetic subtyping methods need to target highly conserved genes with a low 

frequency of recombination. Methods, such as PFGE, which use the entire genome are 

inherently more stable than those which focus on one or two genes (Wassenaar and Newell 

2000).  

 

A Danish study compared serotypes, flagellin RFLP (fla type) and PFGE subtypes of C. jejuni 

isolates from broiler flocks, humans, wild animals and birds (Petersen et al. 2001a). The isolates 

were collected over a three-year period and a wide geographical area within Denmark. 

Comparison of the PFGE profiles produced by three different restriction endonucleases 

identified clonal lineages that had been genetically stable over long time periods (e.g. two and a 

half years) and wide geographical ranges (within Denmark). Studies by Manning et al. (2001) 

have demonstrated longer-term genetic stability of environmental isolates collected over a two 

month period in 1998, which clustered with human isolates from an outbreak in 1981. The 

related human and environmental isolates had the same PFGE subtype when cut with three 

different endonucleases. Furthermore, AFLP subtyping demonstrated 90% genetic homology 

between the same isolates. One of the isolates from the human waterborne outbreak was 

subsequently used as an international standard strain for C. jejuni. It showed the same genotypic 
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stability even though it had been subcultured frequently and showed reduced colonisation 

potential when used for infection studies of chickens. The presence of stable Campylobacter 

subtypes in a diverse range of habitats was supported by a United Kingdom study which 

conducted a three year survey of isolates from the farm environment and identified many 

genotypes continuously over the length of the study (Fitzgerald et al. 2001b). From these data 

Manning et al. (2001) have proposed that “genome shuffling may not be as essential for 

Campylobacter stress adaptation as previously thought” and that these mechanisms need further 

investigation but do not undermine the usefulness of genotyping, at least for short term 

epidemiological studies. Both of these studies confirmed the use of genotyping techniques such 

as PFGE for the investigation of complex epidemiologies. 

 

4.1.6.1 The genetic diversity of C. jejuni  

 

The genetic diversity attributed to the Campylobacter genome is due to a high frequency of both 

intra and inter-species recombination in C. jejuni (Schouls et al. 2003). This polymorphic nature 

of Campylobacter subtypes (Duim et al. 1999) adds to the complexity when trying to deduce 

the source of an infection.  

 

The sequencing of the C. jejuni genome revealed that it contained hypervariable regions 

associated with genes known to encode the biosynthesis of modification of surface structures 

(Parkhill et al. 2000) which maybe important in mechanisms to evade the host immune system. 

This finding is supported by data from a meta-analysis study which used comparative genomic 

hybridisation to analyse the genetic diversity between C. jejuni isolates from dissimilar 

geographical and epidemiological backgrounds (Taboada et al. 2004). The study found that 

36.6% of genes (n = 1,597) were variable in at least one of the 97 strains analysed. Analysis of 

the non-variable genes and those in which the sequence varied in only one of the 97 strains 

showed that 78.6% of the genes showed a high degree of intraspecies conservation and therefore 

probably form the core set of genes required by C. jejuni. This suggests that overall the C. jejuni 

chromosome has a low level of genome plasticity.  

 

Most of the variable genes mapped to 16 defined hypervariable regions, which included 

functionally related groups of genes associated with lipopolysaccharide biosynthesis, capsular 

polysaccharide biosynthesis and flagellar biosynthetic loci. The heterogeneity in cell surface 
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structures conferred by these divergent loci is recognised as being important for adaptation of 

C. jejuni to different host environments. 

 

From these studies it would appear that the PFGE subtype of C. jejuni isolates is relatively 

stable in the environment and although genomic rearrangements can occur in a population it is a 

rarer event than generally accepted (Manning et al. 2001) being confined to approximately one 

third of the genome that enables the pathogen to adapt to a variety of host habitats.  

 

4.1.7 Objectives 

 

• To determine if chicken carcasses carry multiple subtypes of C. jejuni by analysing 

isolates using PFGE typing with the restriction enzyme SmaI and based on the protocol 

implemented by Pulsenet, USA. To confirm that isolates of the same SmaI PFGE 

subtype are truly indistinguishable, KpnI will be used as the secondary enzyme. 

• To determine the prevalence of non-dominant clones of C. jejuni in chicken carcasses, 

by subtyping a maximum of 25 isolates from each of ten chicken carcasses. Based on the 

binomial formula used by Schlager et al. (2002), 25 isolates per sample would have a 

93% probability of identifying a minor clone. 

• To determine whether isolates from a single chicken carcass are related or distinct 

subtypes. 
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4.2 Materials and methods 
 

4.2.1 Media and reagents 

 

Media and Reagents used in this research were prepared as described in Appendices I and II 

(respectively). Unless otherwise stated, the chemicals used in this methods section were 

obtained from Sigma (Castle Hill, New South Wales, Australia). 

 

4.2.2 Characterisation of C. jejuni from chicken carcasses 

 

Twenty-five isolates from ten samples that had tested positive for C. jejuni only, in the chicken 

carcasses in Chapter Three were selected for further purification and subtyping by PFGE 

analysis. Purification of isolates was achieved by two subcultures on CBA agar and isolates 

were prepared for long term storage. Bacterial growth was removed from a 48 hour plate of 

CBA with a sterile, disposable inoculating loop and suspended in sterile Nunc cryotubes (In 

Vitro Technologies, Victoria, Australia) containing sterilised glass beads with Brain Heart 

Infusion broth (BHI) supplemented with 20% glycerol. Cryotubes were left at room temperature 

for half an hour prior to storage at -80°C.  

 

4.2.2.1 Colony identification by PCR 

 

Identification of bacterial colonies by PCR directly from plate cultures, was achieved by 

removal of a portion of a single isolated colony and resuspension in 27.0 µl of ddH2O in a 0.5 

ml thin-walled PCR tube. Within 15 minutes from the time of colony resuspension, the tube was 

heated for 3 min at 100°C and then cooled to 4°C. Prepared premix was added to the PCR tube 

to obtain a final volume of 50 µl. PCR analysis was performed as outlined in Chapter Two. PCR 

confirmation was performed on up to five isolates per PFGE subtype identified in each chicken 

carcass (Dickins et al. 2002).  

 

4.2.2.2 Colony identification by biochemical analysis 

 

Phenotypic characterisations of up to four isolates per PFGE subtype identified in each chicken 

carcass were subjected to confirmatory identification by the following biochemical tests. 
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Positive controls of C. jejuni (ERL96 3376) and C. coli (ERL 97/454) were included for all 

tests. Table 14 outlines the biochemical tests used to differentiate between thermotolerant 

Campylobacter and related organisms (Barros-Velázquez et al. 1999, Griffiths and Park 1990). 

 

Table 14: Biochemical identification of the thermotolerant Campylobacter 
 

Biochemical Test C. jejuni C. coli C. lari C. upsaliensis

 subsp. 
jejuni 

subsp. 
doylei 

   

Gram Stain - - - - - 

Hippurate hydrolysis + + - - - 

Catalase production + + + + -/W 

Oxidase production + + + + + 

Nitrate reduction + - + + + 

Nalidixic acid 

resistance 

S S S R S 

Cephalothin 

resistance 

R V R R S 

Growth at 25°C - - - - - 

Aerobic growth - - - - - 

 

W: weak; V: variable; S: sensitive; R: resistant 

 

4.2.2.2.1 Gram stain, colony and bacterium morphology 

Gram stain, colony and bacterium morphology were determined on 48 hour cultures on CBA 

plates. 

4.2.2.2.2 Oxidase test  

The oxidase reaction was determined using the Dry SlideTM system (Becton Dickinson, Sparks, 

Maryland, USA). 

4.2.2.2.3 Catalase Test 

The catalase reaction was performed by addition of a colony portion to hydrogen peroxide 

droplets on a slide. Production of bubbles indicated a positive catalase reaction. 
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4.2.2.2.4 Hippurate hydrolysis 

Hippurate hydrolysis was performed by the method of Lior (1984). Briefly, a large 10 µl loopful 

of the presumptive Campylobacter was incubated in 1.0% sodium hippurate at 37°C for 2 hours. 

Following incubation, 5 drops of ninhydrin reagent (stain dropper, Difco, BBL, Becton 

Dickinson) were added to the tube and incubation continued for a further 10 minutes. The 

appearance of a purple colour indicates hippurate hydrolysis (Lior 1984). 

4.2.2.2.5 Antibiotic susceptibility 

Sensitivity to nalidixic acid and resistance to cephalothin was confirmed by placing 30 µg 

antibiotic discs (BD, BBL, Sensi-Disc, Becton Dickinson) onto CBA plates inoculated by 

swabbing from a broth culture of the test isolate. Incubation of plates was performed 

microaerophilically at 42°C for 48 hours. 

4.2.2.2.6 Aerobic growth 

Aerobic growth was determined by inoculation of CBA plates and incubation at 25°C for one 

week. This test eliminated the misidentification of Arcobacter species, which are able to grow 

aerobically at 25°C, but are otherwise biochemically similar to the thermotolerant 

campylobacters. 

 

4.2.3 Pulsed-field gel electrophoresis (PFGE) 

 

The method used for preparation of the agarose plugs, digestion of plugs and gel electrophoresis 

employed a 24 hour methodology for the rapid analysis of gram negative microbes (Ribot et al. 

2001) and is the method recommended by PulseNet, USA, except for the Megabase agarose, for 

which Pulsenet now recommends Seakem Gold agarose (FMC BioProducts, Rockland, Maine) 

(Swaminathan et al. 2001). The PulseNet protocol is presented below. 

 

4.2.3.1 Preparation of agarose embedded chromosomal DNA 

 

Campylobacter growth from a 48 hour plate of CBA was collected using a pre-moistened (in 

PBS) sterile, cotton tipped applicator and emulsified in 2 ml of PBS in a Falcon 2054 tube 

(Becton Dickinson). 

 

The turbidity of the cell suspension was adjusted to 0.35-0.45 on the digital output of a Dade 

Microscan Turbidity Meter (Dade Behring, West Sacramento, California). A 400 µl volume of 

the cell suspension was transferred to a 1.5 ml Eppendorf tube containing 20 µl of Proteinase K 
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(20 mg ml-1) solution and mixed gently. Molten Megabase agarose (1.4%) (Biorad, Alfred 

Noble Drive, Hercules, California), equilibrated at 55-60°C was added to the cell suspension in 

an equal volume. Gentle mixing was achieved by pipetting two or three times using the 1000 µl 

pipette tip, immediately prior to dispensing the mixture into two wells of a plug mould (2 cm x 

1 cm x 1.5 mm, Biorad). Plugs were solidified at room temperature for 15 minutes or at 4°C for 

5 minutes. 

 

Solidified plugs were carefully removed from plug moulds and placed in 50 ml polypropylene 

screw-capped tubes Cell-Star tubes (Greiner Bio-One) containing 5 ml of EC Lysis Buffer and 

25 µl of Proteinase K (20 mg ml-1) solution. Tubes were incubated in a shaking waterbath (175-

200 rpm) at 55°C for one hour. 

 

Following incubation the plugs were rinsed in 10-15 ml of sterile Milli-Q water preheated to 

55°C. This was followed by two 15 minute washes in 10-15 ml of sterile Milli-Q water (55°C) 

where the tubes were held in a shaking 55°C waterbath. 

 

The next three washes were performed in TE buffer, preheated to 55°C. The tubes were shaken 

in a 55°C waterbath for 15 minutes. At the completion of washing, the plugs were transferred to 

2 ml graduated microcentrifuge tubes (Quality Scientific Plastics) containing 1.6 ml of TE 

buffer (room temperature) and stored at 4°C until required for enzyme digestion. 

 

4.2.3.2 Restriction enzyme digestion of DNA in agarose plugs 

 
4.2.3.2.1 SmaI restriction enzyme digestion  

 

Digests of 1 mm slices of Campylobacter DNA plugs were performed in 40 Units of SmaI 

enzyme (Roche) in 100 µl of the appropriate (1x) restriction enzyme buffer (Roche Buffer A). 

Reactions were incubated at 25°C for 2-4 hours. Digests of the PFGE molecular size standard: 

Salmonella Braenderup H9812, were performed in 30 Units of XbaI enzyme (Roche) in 100 µl 

of the appropriate (1x) restriction enzyme buffer (Roche Buffer H) (Hunter et al. 2005). 

Reactions were incubated at 37°C for 2-4 hours. 

 

 

 

 



Chapter 4 Multiple subtypes of C. jejuni in chicken 109 

 

4.2.3.2.2 KpnI restriction enzyme digestion  

 

A subset of the 25 isolates from each chicken sample (refer Section 4.2.3.2.3) were restricted 

with a second enzyme KpnI (New England Biolabs (NEB), Hitchin, United Kingdom) to 

establish if the isolates, which were indistinguishable from each other when digested with SmaI, 

showed differing DNA fingerprints with digestion in KpnI. 

 

Digests of 1 mm slices of Campylobacter DNA plugs were performed in 40 Units of KpnI 

enzyme (NEB) in 100 µl of the appropriate (1x) restriction enzyme buffer (NEB Buffer A). 

Reactions were incubated at 37°C for 1 hour. The preparation of the PFGE molecular size 

standard, Salmonella Braenderup H9812, was performed as outlined in Section 4.2.3.2.1 above. 

 

4.2.3.2.3 Statistical calculation of sample size for KpnI digestion 

 

Due to budget and time constraints not all of the 25 isolates from each chicken sample were 

analysed by KpnI digestion and electrophoresis. A statistical method termed Sampling Attribute 

Plan was employed to calculate the sample size required to determine 95% confidence levels in 

the results (Speck 1984). 

 

This analysis determined that if a sample of ten isolates from a batch of 25 indistinguishable 

SmaI subtypes was tested and identified, and none of the ten isolates produced a different KpnI 

profile then there would be 95% confidence that the batch of 25 will have no more than eight 

isolates (0-30.8%) that have a different KpnI profile (Table 18, Appendix III). If the sample 

number is increased to 15 from the batch of 25 indistinguishable SmaI subtypes, and none of the 

15 isolates produced a different KpnI profile then there would be 95% confidence that the batch 

of 25 will have no more than five isolates (0-21.8%) with a different KpnI profile. Based on 

these confidence levels, 15 from each batch of 25 isolates were digested with KpnI enzyme to 

determine the presence of non-dominant PFGE subtypes. 

 

4.2.3.3 PFGE electrophoresis 

 

Gels were prepared from 1% Megabase agarose (Biorad) in 100 ml of 0.5 x TBE buffer 

(prepared from 10 x TBE, USB Corp, Cleveland, USA) using 20-well combs (BioRad). The 
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plug slices of the samples and standards were loaded into the pre-cast agarose wells and 

electrophoresed in 2.2 litres of 0.5 x TBE running buffer on a CHEF DRIII system (BioRad) 

with the cooling module set at 14°C. 

 

4.2.3.3.1 Running conditions for electrophoresis of SmaI restriction enzyme digested plugs 

 

The conditions for each electrophoresis run were a gradient of 6.0 volts cm-1; included angle of 

120°, an initial switch time of 6.8 seconds, a final switch time of 38.4 seconds and a running 

time of 18 hours. Please note that these conditions are different from the running conditions 

used in Chapter Three for the water isolates of C. jejuni. 

 

4.2.3.3.2 Running conditions for electrophoresis of KpnI restriction enzyme digested plugs 

 

The conditions for each electrophoresis run were a gradient of 6.0 volts cm-1; included angle of 

120°, an initial switch time of 5.2 seconds, a final switch time of 42.3 seconds and a running 

time of 19 hours. 

 

4.2.3.3.3 Staining of gels 

 

Following electrophoresis, the gels were stained for 20 minutes in 400 ml of Milli-Q water 

containing 40 µl of 10 mg ml-1 of ethidium bromide. Gels were destained in 400 ml of Milli-Q 

water for up to 1 hour. 

 

4.2.3.3.4 Bionumerics software analysis 

 

The electrophoretic image was captured with a Gel Doc 2000 gel documentation system 

(BioRad), and band patterns analysed and compared using BioNumerics software (Applied 

Maths, Kortrijk, Belgium). Only fragments in the range 700 to 50 kb were analysed for SmaI 

and 700 to 80 kb fragments were analysed for KpnI (Michaud et al. 2005). Smaller fragments 

were not consistently resolved. The analytic parameters used were in accordance with the 

PulseNet, USA standard procedure and used the band-based Dice similarity coefficient and the 

unweighted pairs geometric matched analysis (UPGMA) dendrogram type with a position 

tolerance setting of 1.5% for optimization and position tolerance of 1.5% band comparison. All 

test isolates were normalized to the known molecular size bands of the Salmonella Braenderup 
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H9812 standard subtype (Hunter et al. 2005). In addition, all gels were run with a well-

characterised subtype of C. jejuni: CPH011453 which acted as a control for the digestion 

reaction for both restriction enzymes. 

 

4.2.3.3.5 Determination of related PFGE subtypes 

 

The following section describes the criteria employed in this study to determine if two isolates, 

with similar but distinguishable PFGE subtypes, were clonally related. 

 

Definition of “clonally related” 

Tenover et al. (1995) described clones as genetically related isolates which are: 

isolates that are indistinguishable from each other by a variety of genetic tests (e.g.,  
PFGE and ribotyping) or that are so similar that they are presumed to be derived from 
 a common parent ‘Given the potential for cryptic genetic changes detectable only by  
DNA sequencing or other specific analyses, evidence for clonality is best considered  
relative rather than absolute’ (Eisenstein 1989). 

 

Interpretative criteria for determining relatedness between isolates have been proposed by 

Tenover et al. (1995) for outbreaks of pathogens. It is more difficult, however, to apply these 

criteria over the time period of longer-term studies. Ribot (2002) suggests that studies which 

collect samples over a period of more than one year require careful interpretation of results. It is 

recognised that there are differences in genome stability between pathogenic species. For 

example, Escherichia coli O157:H7, is considered a highly clonal organism and has a stable 

genome and therefore single band differences may signal unrelatedness (Ribot 2002). This is in 

contrast to C. jejuni which is now regarded as genetically diverse with a high frequency of DNA 

recombination events within and between organisms (de Boer et al. 2002). Therefore one to 

three PFGE band differences may be interpreted as signaling a degree of relatedness. Ribot 

(2002), however, cautions against the over interpretation of results and stresses the importance 

of epidemiological information to confirm linkages. 

 

 

The isolates for this study were collected over a seven month sampling period and therefore 

analysis of related PFGE subtypes was based on a conservative interpretation of the criteria 

developed by Tenover et al. (1995). All subtypes defined as clonally related had to have 

information on both restriction enzyme profiles, SmaI and KpnI, which suggested that both 
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profiles were either indistinguishable or clonally related within their respective RE digestion 

profile. PFGE subtypes were considered to be “clonally related” when: 

i) The subtypes digested with the same enzyme differed by one band shift which indicated 

a single genetic event had occurred resulting in a DNA fragment running as a larger or smaller 

band due to either an insertion or deletion of DNA (respectively). 

ii) A large molecular weight band was replaced by two smaller molecular weight bands, the 

sum of whose DNA approximated the original larger molecular weight band. This change in 

PFGE pattern using the same RE, represents a single genetic event, indicative of the gain of a 

new restriction site resulting in the formation of two new bands, and the loss of the larger 

molecular weight band. 
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4.3 Results 
 
4.3.1 Results of PFGE analysis of C. jejuni isolates from chicken carcasses 

 

Ten of the C. jejuni-positive chicken carcasses (Chapter Three) were further analysed for 

multiple subtypes of C. jejuni. This was achieved by selecting 25 isolates derived from a single 

chicken sample enrichment cultured on m-Exeter agar. Initially, a single isolate from a batch 

was confirmed as C. jejuni by PCR analysis (Chapter Two). Following identification of 

indistinguishable PFGE profiles from the same chicken sample up to five isolates per PFGE 

profile (Dickins et al. 2002) were subjected to multiplex PCR (Chapter Two) and biochemical 

confirmation of C. jejuni (Table 14). These isolates were identified as C. jejuni by the multiplex 

PCR and biochemical tests. All tested isolates were gram negative, oxidase, catalase and 

hippurate positive, grew at 42°C microaerophilically but not at 25°C aerobically, and were 

nalidixic acid susceptible and resistant to cephalothin.  

 

Attrition due to isolate death during storage (maximum of a three year period) reduced the real 

number of isolates per sample to a range of 21 to 25, with a mean of 22.7 analysed by SmaI 

PFGE per sample. Based on the binomial formula of Schlager et al. (2002), this would achieve a 

91% probability of identifying a minor clone for an average of 23 isolates per sample and a 89% 

probability of detection of minor clones if 21 isolates per sample were analysed (Section 4.1.2 

above). 

 

To differentiate isolates further, and confirm whether isolates with indistinguishable SmaI 

profiles were of the same subtype, KpnI digest was performed on a subset of these isolates. A 

minimum of 15 isolates per chicken carcass sample was subjected to KpnI digestion and 

electrophoresis. 

 

4.3.1.1 Characterisation of PFGE profiles 

 

Employing SmaI as the initial restriction enzyme revealed that four of the ten chickens carried 

two subtypes of C. jejuni, while only one C. jejuni subtype per carcass was identified in the 

remaining six (Table 15) (Figure 7). Further differentiation by KpnI digestion showed that one 

more chicken carcass was carrying multiple subtypes. Isolates from chicken sample 

CPH012693 did not cut with SmaI, but digestion with KpnI revealed three distinguishable 

 



114  Campylobacter in environmental matrices 
subtypes (Figure 8), two of which were clonally related (refer to Section 4.2.3.3.5 above). 

CPH012077 carried two subtypes of comparable prevalences, which looked visually similar by 

SmaI digestion but were revealed as clonally unrelated by the many band differences in the 

KpnI profile (Figure 9). Chicken sample CPH0111167 carried two clonally related SmaI 

C. jejuni subtypes (Figure 10) and the SmaI subtype Sm0106 was further differentiated into two 

clonally related KpnI subtypes (Figure 11) suggesting three different, but closely related, 

subtypes were carried by the carcass (Table 15).  
 

Overall five of the ten chicken carcasses carried more than one subtype of C. jejuni (Figure 7). 

In total, 15 distinguishable subtypes were identified from the ten carcasses, and this included the 

identification of subtype Sm0030/Kp0056 in three different chicken samples. Sample 

CPH014912 as seen in Figure 7 carried a band at approximately 25 kb which was present 

intermittently, suggesting it may have been a plasmid. As SmaI profiles were analysed between 

700 and 50 kb only, the intermittent nature of this DNA band did not affect interpretation of the 

subtype. In the five chicken carcasses that were identified with multiple subtypes, two subtypes 

were present in three carcasses and three subtypes present in two carcasses.  

 

C. jejuni CPH011453 was included on gels as a standard for the digestion reaction and replicate 

profiles of this strain were related at the 99.99% level for SmaI digests and 94.7% level for KpnI 

digests. The cutoff for determining an indistinguishable strain was set at 90% (Nadeau et al. 

2003, de Boer et al. 2000). From Table 15 it can be seen that the cutoff value for each subtype 

in a sample ranged between 95.00 - 99.99% for SmaI digests with an average cutoff of 99.57%. 

For KpnI digests the range was 95.24 - 99.99% with an average cutoff of 98.08%. Thus 

technical reproducibility was high. 
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Table 15: Subtypes of C. jejuni identified in each chicken sample 
 

Chicken isolate SmaI type Cutoff for Sma I 
pattern (%) 

KpnI type Cutoff for Kpn I 
pattern (%) 

Chicken samples carrying single subtypes 

CPH0112821 Sm0037 n = 21 99.99 Kp0038 n  = 15 95.70 

CPH014584 Sm0173 n = 22 99.99 Kp0157 n  = 16 95.24 

CPH0110920 Sm0034 n = 25 99.99 Kp0151 n  = 15 99.99 

CPH0110379 Sm0030 n = 21 99.99 Kp0056 n  = 15 99.99 

CPH014912 Sm0030 n = 23 99.99 Kp0056 n  =15 99.99 

Chicken samples carrying multiple subtypes 

Sm0030 n = 12 99.99 Kp0056 n  = 8 99.99 CPH0112077 

Sm0001 n = 11 99.99 Kp0033 n  = 8 99.99 

Sm0106 n = 18 99.99 Kp0155 n  = 13 96.00 CPH0111167 

Sm0106 n = 2 99.99 Kp0156 n  = 2 99.99 

 Sm0106a n = 1 99.99‡ Kp0155 n  = 1 96.00† 

Sm0038 n = 1 99.99* Kp0158 n  = 1 96.00 CPH014376 

Sm0184 n = 23 99.99 Kp0158 n  = 16 96.00 

Kp0152 n  = 14 99.99 

Kp0153 n  = 2 99.99** 

CPH012693 Non cutting 
n = 25 

NA 

Kp0154 n  = 1 NA* unique 
Kpn 

Sm0225 n = 5 99.99 Kp0159 n  = 5 96.30 CPH0112839 

Sm0094 n = 17 95.00 Kp0049 n  = 10 96.01 

 

NA = not applicable to calculate cutoff point 

NA* = not applicable to calculate cutoff point as a single isolate of this subtype 

‡ 99.99% similarity to Sm0106 (refer to text for explanation) 

†96.00% cutoff point determined by comparison with other Kp0155 profiles ie subtype 

Sm0106/Kp0155 

* cutoff point determined by comparison with other C. jejuni from different samples with same 

PFGE profile 

**94.1% similarity to Kp0152 
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4.3.1.2 Dominant versus minor subtypes in the same chicken sample 

 

Table 16 outlines the percentage of minor, intermediate and dominant subtypes identified in 

each of the five carcasses carrying multiple subtypes. The percentages calculated in the first 

three samples were based on the total number of isolates per sample because the KpnI digestion 

did not further differentiate the SmaI subtype. In contrast, the last two samples contained 

subtypes that were further resolved by KpnI digestion and therefore the percentage calculations 

were based on the number of isolates subjected to KpnI digestion only (n = 17 and 16 

respectively). The exception was minor subtype Sm0106a/Kp0155 where the calculation was 

based on the total number of Sm0106 isolates (n = 21). 

 

Based on the definition of dominant and minor subtypes (>50% and <10% of typed isolates in a 

sample, respectively) proposed by Schlager et al. (2002), each chicken carcass carried one 

dominant subtype. Two samples (CPH0112839 and CPH0112077) carried another subtype that 

would be described as intermediate in prevalence. The dominant subtype in CPH0112077 

(Sm0030/Kp0056) was also identified as the only subtype harboured by two other chicken 

carcasses. Sample CPH014376 carried a minor and a dominant subtype, while CPH012693 and 

CPH0111167 each carried a minor and intermediate subtype as well as the dominant subtype. 

 

Table 16: Dominant versus minority subtypes in the same chicken sample 
 

Sample 
number 

Subtype designation Total isolate 
numbers per 

sample 

Number 
of each 
subtype 

% subtype 

 SmaI type KpnI type    
CPH0112839 Sm0225 Kp0159 22 5 23 

 Sm0094 Kp0049  17 77 
CPH0112077 Sm0001 Kp0033 23 11 48 

 Sm0030 Kp0056  12 52 
CPH014376 Sm0038 Kp0158 24 1 4 

 Sm0184 Kp0158  23 96 
CPH012693 Non-cutting Kp0154 17 1 6 

  Kp0153  2 12 
  Kp0152  14 82 

CPH0111167 Sm0106 Kp0156 16 2 13 
 Sm0106 Kp0155  14 87 
 Sm0106a Kp0155 21 1 5 
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4.3.1.2.1 Genetic relatedness of isolates from the same chicken carcass 

 

Comparison of the KpnI digests of isolates from sample CPH012693 identified two genotypes 

(Kp0152 and Kp0153) which were likely to be clonally related due to a one band difference 

between the isolates (Figure 8). Profile Kp0154, although looking superficially similar to 

Kp0152 and Kp0153, had too many different bands from either subtype (5 and 4 band 

differences, respectively) to be considered clonally related by the criteria of Tenover et al. 

(1995) outlined in Section 4.2.3.3.5.  

 

The benefits of a double RE digestion were revealed in Figure 9, where the SmaI fingerprint for 

the two subtypes isolated from sample CPH0112077 suggested that the two subtypes were 

visually similar and could be clonally related. The large 370 kb band in subtype Sm0030 could 

have been due to the co-migration of two DNA fragments of a similar molecular weight. It was 

possible that the appearance of the approximately 300 kb band in subtype Sm0001 was due to a 

single deletion event in one of the approximately 370 kb bands in Sm0030. Further 

discrimination was revealed by the KpnI digest, however, and the patterns of the two isolates no 

longer suggested that they were clonally related. 

 

Chicken sample CPH0112839 contained two distinct subtypes as distinguished by SmaI and 

KpnI PFGE profiles (Figure 7). One isolate from sample CPH014376 had the same unique KpnI 

profile as the other isolates in the same sample, but a different SmaI pattern (Sm0038). 

Therefore sample CPH014376 carried two distinct subtypes, which based on the dissimilarity of 

the SmaI profiles could not be described as clonally related (Figure 7). 

 

Sample CPH0111167 contained one isolate out of 21 that was a minor subtype by SmaI 

digestion (Figure 10) and two isolates out of 16 that were an intermediate subtype by KpnI 

digestion (Figure 11). In both cases, these subtypes were likely to be clonally related to the 

dominant subtype as they had a single band difference. These band shifts were not seen as 

differences by the parameters used for computer analysis as all minor subtypes were 99.99% 

similar to the dominant subtype. However when isolates were run together on the same gel these 

band shifts were clearly differentiated (Figure 10 and Figure 11). Based on the data from this 

study the direction of genetic change between subtypes could not be confirmed, however it was 

reasonable to assume that the band differences were due to single deletion or insertion events in 

the slightly higher molecular weight (MW) band seen in the dominant subtypes.  
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Figure 10: Clonal isolates from chicken carcass CPH0111167 with different SmaI profiles 

 

Lanes 1, 11, 20, Salmonella Braenderup H9812 molecular weight marker; 

Lanes 2-10, 12 isolates from sample CPH0110920 

Lanes 13-18 isolates from sample CPH0111167; Lane 16, Sm0106a, band shift at 

approximately 217 kb band; Lane 19 digestion standard CPH011453. 
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Figure 11: Clonal isolates from chicken carcass CPH0111167 with different KpnI profiles 
 

Lanes 1, 10 and 20, Salmonella Braenderup H9812 molecular weight marker; 

Lanes 2-18 isolates from sample CPH0111167; 

Lanes 8 and 12 band shift; Lane 19 Digestion Standard CPH011453. 
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4.4 Discussion 
 

4.4.1 Multiple Campylobacter subtypes identified in studies of chicken matrices 

 

The study by Wassenaar et al. (1998) highlighted the unusual occurrence where 14 clonally 

related subtypes of C. jejuni were identified from 30 packs of chicken (n = 21 isolates in total) 

collected sequentially after packaging. Although not isolated from an individual chicken, these 

subtypes were identified from chicken products derived from the same source farm and 

highlighted the extensive recombination events that can occur within a flock, leading to minor 

variations in PFGE patterns even though isolates were identified as having the same serotype 

and fla type. Due to the high level of clonality observed between isolates it is unlikely that their 

presence on the chicken products was caused by cross-contamination during processing. 

Therefore if such variation can be identified within a batch of chicken products then the 

variations in related PFGE patterns of subtypes isolated from an individual chicken is not 

unexpected. 

 

In this study, multiple subtypes were isolated from five of ten chicken carcasses with a 

maximum of three subtypes isolated from an individual carcass on two occasions (CPH0112693 

and CPH0111167). All three subtypes carried by sample CPH0111167 and at least two subtypes 

identified in CPH012693 had similar PFGE patterns suggestive of a clonal relationship between 

subtypes from the same carcass. The other three chicken samples that harboured multiple 

subtypes all contained two subtypes that were genetically distinct from each other. 

 

An investigation of Campylobacter contamination of raw meat and poultry utilised both direct 

plating and enrichment methods for the isolation of campylobacters (Kramer et al. 2000). 

Thirty-five samples (17.7%) of Campylobacter-positive chicken pieces contained multiple 

subtypes of C. jejuni as determined by a combination of serotyping, phage typing and antibiotic 

resistance typing. Multiple subtypes of C. coli were not identified in the chicken portions. 

Selection of multiple isolates was based on a single colony from both the direct and the 

enrichment plates and further colonies were isolated from either method based on differing 

colony morphology. 
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In another study, 70 different PFGE patterns were identified from 59 Campylobacter-positive 

chicken carcasses by a direct plating method (Dickins et al. 2002). An average of 6.2 isolates 

was obtained from each carcass with a range of 1 to 10 isolates per carcass. In the carcasses (n = 

39) where only C. jejuni was identified, 33% harboured two subtypes, 10% each harboured 

three and four subtypes, and one carcass (2.6%) harboured five subtypes. For the carcass where 

five subtypes were identified the subtypes could be split into three groups with two groups 

containing clonally related PFGE types. Another study analysed the caecal swabs of three 

chickens and identified four Campylobacter isolates from each chicken by direct plating onto an 

unspecified agar (Schouls et al. 2003). Three C. jejuni isolates were identified from each 

chicken and the typing data revealed that each chicken carried three different subtypes of 

C. jejuni as determined by genotyping techniques that included MLST and AFLP. 

 

Lindmark et al. (2004) carried out a pilot study using enrichment of chicken carcass rinses in 

Preston broth at 42°C under microaerophilic conditions to determine the number of genotypes 

of C. jejuni carried by a chicken carcass. Two to five C. jejuni colonies from each chicken 

carcass (n = 10) were subtyped by PFGE revealing that all isolates from an individual carcass 

belonged to the same PFGE subtype.  

 

None of the research papers discussed above selected enough colonies for subtyping to meet the 

criteria of Schlager et al. (2002) who used a binomial formula to determine the number of 

randomly selected colonies required to achieve a 90% probability of identifying a minor clone 

(refer 4.1.2 above). The higher numbers of subtypes of C. jejuni identified from individual 

chicken carcasses by some researchers may be dependent on the method of isolation e.g. direct 

plating (Schouls et al. 2003, Dickins et al. 2002) versus the enrichment-PCR method developed 

here. Although the Schouls et al. (2003) paper only tested four isolates from three chicken 

faecal samples and Dickins et al. (2002) tested 72 carcasses with an average of 6.2 colonies 

from each carcass, both papers report a higher number of multiple subtypes from an individual 

sample compared to the enrichment-PCR method, where an average of 23 colonies were tested 

per carcass. Comparisons between carcasses and faeces, however, are invalid due to the higher 

numbers of Campylobacter routinely encountered in faeces compared to carcasses. 

 

The enrichment step employed in this assay was designed to detect only viable C. jejuni and 

C. coli cells as well as aiding the recovery of sublethally injured bacteria from stressful 

environments such as food surfaces. The enrichment procedure, however, may allow selection 
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of rapidly growing Campylobacter strains which outcompete slower growing strains that 

otherwise may be detected by direct plating (Dickins et al. 2002). To obtain a better 

representation of the true population of strains harboured on chicken carcasses and other food 

matrices, it maybe necessary to utilise both an enrichment and a direct plating method (Kramer 

et al. 2000). Furthermore, improvement of recovery of injured strains in the broth enrichment 

may be enhanced by delayed addition of antibiotics (Humphrey 1986). 

 

4.4.1.1 Minor and dominant subtypes in a sample  

 

The results of subtyping multiple isolates of C. jejuni in chicken carcasses are presented in 

Table 16. Samples CPH014376, CPH0111167 and CPH012693 contained minor subtypes 

which have a lower probability of being isolated compared with dominant subtypes when less 

than five colonies per sample are isolated. This could also hold true for those “intermediate” 

subtypes (Sm0225/Kp0159, NC/Kp0153, Sm0106/ Kp0156) that constitute less than 25% of the 

isolates in their respective samples. Sample CPH0111167 carried three subtypes that had single 

small insertions/deletions of DNA. Although visually similar, these differences involve DNA of 

several thousand base pairs and could relate to different phenotypic characteristics between the 

subtypes which may be important in determining virulence and thus pathogenicity potential. 

The relevance of minor and intermediate subtypes to human cases of campylobacteriosis will be 

further investigated in Chapter Five. 

 

4.4.1.1.1 Clonal relationships between C. jejuni subtypes from the same chicken carcass 
 
In this study, recognition of the clonal relationship between different isolates from the same 

chicken carcass led to the question of stability of C. jejuni subtypes during colonisation of the 

chicken intestine. In three of the five chicken carcasses that contained multiple subtypes, the 

subtypes were not clonally related. In comparison, the sample CPH0112693 contained a mixture 

of related (NC/Kp0152 and NC/Kp0153) and unrelated subtypes (NC/Kp0154), whereas sample 

CPH0111167 carried three subtypes with minor PFGE variations (Figures 8, 10 and 11).  

 

Previous studies have reported varying degrees of genetic instability during both in vivo and in 

vitro experiments as outlined below. The genomic instability observed by Wassenaar et al. 

(1998) in 21 clonally related C. jejuni subtypes derived from a single batch of processed poultry 

was attributed to genomic variation due to in vivo recombination events. The same study 
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investigated the stability of the 14 PFGE subtypes in vitro and confirmed that, after repeated 

subculturing (ten passages) of each isolate, the PFGE subtypes remained stable. Another study 

examined the stability of four isolates over 50 in vitro passages in the laboratory (Dickins et al. 

2002). Only one of the four isolates revealed minor changes (one and two band differences) to 

the original isolate after 30 passages. These isolates were labelled variant A and B and from 

passage 30 onwards the original PFGE pattern was not isolated. One of the isolates was also 

passaged in vivo in two 1-day old chicks. All 20 C. jejuni re-isolated after five days from each 

chick’s caecal contents had the same PFGE genotype as the original infective strain. This 

suggests no recombination events had occurred during in vivo passage of C. jejuni. 

 

A similar study by Hänninen et al. (1999), however, did find phenotypic and genomic changes 

detected by PFGE and serotyping in two of twelve C. jejuni isolates inoculated into chicks. The 

occurrence of natural transformation within the chicken gut was also investigated by the in vivo 

passage of isogenic mutants containing two different antibiotic resistance markers (Wassenaar 

et al. 1998). There was no DNA exchange observed between these two mutants.  

 

A study by de Boer et al. (2002) provides substantial experimental evidence for horizontal DNA 

transfer among heterologous C. jejuni strains during their colonisation of chickens. 

Intragenomic alterations were also observed which added to the genetic diversity detected by 

changes in PFGE subtypes. Subsequently, these same strains were passaged more than 300 

times in the laboratory and showed no genomic recombinations when typed by PFGE. These 

findings concur with those mentioned above, indicating the stability of strains cultured in the 

laboratory and that genetic differences may be generated by in vivo environmental selection 

pressures. It may be worthwhile to characterise further the subtypes identified on chicken 

carcass CPH0112693 to determine their level of relatedness by MLST, which can provide 

information on the evolutionary divergence of clonal complexes (Feil et al. 2004). 

 

4.4.2 Conclusions 

 

Multiple subtypes of C. jejuni were identified on individual chicken carcass samples using the 

enrichment-PCR isolation method developed in Chapter Two. Subtyping was determined by 

PFGE typing using SmaI as the initial enzyme and employing KpnI as the secondary enzyme for 

further discrimination of subtypes with an indistinguishable SmaI profile. An average of 23 

colonies were analysed by SmaI PFGE per sample and based on the binomial formula of 
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Schlager et al. (2002), this would achieve a 91% probability of identifying a minor clone. 

Although the cutoff for determining an indistinguishable strain was set at 90% (de Boer et al. 

2000), the average cutoff for SmaI digests was 99.6% and 98.1% for KpnI digests demonstrating 

that technical reproducibility was high. 

 

Five of the ten carcasses revealed multiple subtypes. Fifteen distinguishable subtypes were 

identified from the ten carcasses, and this included the identification of one subtype 

Sm0030/Kp0056 in three different chicken samples. In the five chicken carcasses that were 

identified with multiple subtypes, two subtypes were identified in three carcasses and three 

subtypes in two carcasses. 

 

Two carcasses carried subtypes that were clonally related, and four carcasses carried subtypes 

that were not clonally related. In the example where the same subtype was identified on three 

carcasses, on one of those carcasses, it was identified as the co-dominant strain and the other 

strain was clonally unrelated. 
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5 Comparison of C. jejuni subtypes isolated from chicken meat 

and human clinical specimens 
 

5.1 Introduction 
 

5.1.1 The association between chicken meat and campylobacteriosis cases in humans 

 

The high prevalence of Campylobacter in chicken and its derived meat products is now well 

established (Kramer et al. 2000, Nielsen and Nielsen 1999). In addition, numerous studies 

comparing the subtypes of C. jejuni from various matrices including humans, broilers and 

chicken products have concluded that subtypes of human isolates are highly represented in the 

subtypes isolated from chickens and chicken meat (Lindmark et al. 2004, Karenlampi et al. 

2003, Broman et al. 2002, Petersen et al. 2001a, Hänninen et al. 2000, Duim et al. 1999, Ziprin 

et al. 1999, Hänninen et al. 1999). A New Zealand study by Kakoyiannis et al. (1988) used 

genotypic typing to show that nearly half (49.7%) of the human isolates typed were 

indistinguishable from poultry isolates. This was supported by another New Zealand study 

(Hudson et al. 1999) which used Penner serotyping and PFGE to show common subtypes of 

C. jejuni present in chicken portions and human cases of campylobacteriosis.  

 

Most of these studies also noted, however, a high diversity of genotypes in C. jejuni isolates 

from human specimens, surface waters and various meat products, including chicken. In one 

study, Lindmark et al. (2004) identified five clusters of PFGE subtypes which comprised 88 of 

the sample set of 162 SmaI profiles. Following KpnI digestion, most of these isolates were still 

indistinguishable within each cluster apart from the fifth cluster which was separated into many 

smaller clusters. Although PFGE revealed a high level of diversity, the study also concluded 

that there are some PFGE subtypes which are isolated frequently. The largest cluster comprised 

of human, chicken meat and one water isolate, although in general, the water isolates were not 

present in the clusters. Other clusters were comprised of human and meat isolates. Lindmark et 

al. (2004), along with other researchers (Gilpin et al. 2006, Michaud et al. 2001) have suggested 

that the clusters of cases may be caused by subtypes responsible for smaller outbreaks which are 

not detected by routine surveillance strategies. The non-recognition of outbreaks may occur 

because of time delays between the identification of indistinguishable subtypes of 
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Campylobacter and the epidemiological follow-up of cases, which could connect seemingly 

unrelated episodes of campylobacteriosis. 

 

Outbreaks of campylobacteriosis directly attributed to the consumption of chicken have been 

reported (Pearson et al. 2000, Rosenfield et al. 1985), but outbreaks, in general, are infrequent 

relative to the large number of sporadic cases of campylobacteriosis (Hedberg et al. 2001, 

Blaser 1997). For example, in New Zealand in 2004 there were 31 recorded outbreaks which 

involved 130 of the 12,213 notified cases for the entire year (Anonymous 2005). More research 

involving rapid epidemiological follow-up of human cases is required to better define the 

sporadic nature of campylobacteriosis in comparison to outbreak cases (Gilpin et al. 2006, 

Michaud et al. 2001). 

 

5.1.2 Host specificity 

 

With the advent of new genotypic techniques for the typing of bacterial species there has been 

renewed interest in the typing of Campylobacter strains to assess the host specificity of a 

particular C. jejuni strain. A study using Multilocus Sequence Typing (MLST) to study C. jejuni 

isolates from farm animals and their environment concluded that there was some evidence for 

an association between some strains and a farm animal host (Colles et al. 2003). As an example, 

it was noted that certain strains were dominant among the poultry isolates but absent from sheep 

isolates and the converse also occurred. This work is supported by MLST studies of C. jejuni 

isolates from human and various animal and food matrices (Siemer et al. 2004, Manning et al. 

2003). Although both studies identified a high diversity of genotypes among individual 

matrices, including humans, several clonal complexes were recognised that indicated some host 

specificity may exist.  

 

A study, which conducted a structured spatiotemporal sampling of farm environments in a 

100 km2 area over a ten week time interval (French et al. 2005), concluded that there was 

evidence for a relationship between genotypes of C. jejuni (as determined by MLST) and host. 

The samples collected from wildlife (birds, rabbits and badgers) and water formed a cluster with 

many of the genotypes being unique to that study. In addition, many of these water/wildlife 

isolates of C. jejuni shared common alleles which were found infrequently in isolates from other 

matrices. A comparison with human cases of campylobacteriosis, however, did identify some 

important human–associated sequence types in the isolates from water and wildlife, suggesting 
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that these matrices could still be significant as reservoirs of pathogenic campylobacters. 

Subtypes isolated from cattle clustered into several large clonal clusters, one of which was 

frequently associated with human infection. The French et al. (2005) study supports the 

conclusions from a year long New Zealand survey in a rural environment which compared 

subtypes isolated from a variety of environmental matrices with human clinical isolates. The 

study concluded that the greatest similarity of indistinguishable serotype:PFGE subtypes of 

C. jejuni to isolates from humans was with isolates from ruminants (Devane et al. 2005, Baker 

et al. 2002). 

 

In contrast, other studies comparing subtypes between matrices did not reveal any association 

with a particular host (Hopkins et al. 2004, Schouls et al. 2003). Matrices investigated in these 

studies included humans, pigs, cattle, poultry and retail meats. They concluded that C. jejuni 

strains of the same subtype colonise a wide range of hosts, which means that it is difficult to 

identify the source of an infection when investigating an outbreak of campylobacteriosis. 

Interestingly, in the study of Schouls et al. (2003) the genotypes isolated from the cattle 

specimens were more closely associated with human subtypes than with poultry subtypes. 

Based on their observations of the numbers of multiple Campylobacter subtypes colonising 

individual chickens Schouls et al. (2003) have suggested that perhaps the C. jejuni that cause 

disease in humans are minor subtypes in chicken microflora and therefore are not being 

identified by traditional bacteriological techniques where only a single colony is selected for 

typing. 

 

Champion et al. (2005) used comparative phylogenomic analyses via DNA microarrays to 

identify potential genes associated with a specific host. Analysis revealed two separate clades 

comprising livestock-derived isolates and non-livestock isolates. Only 44% of the 111 human 

isolates were found in the livestock clade which was comprised of chickens, bovines and 

ovines. This again highlighted that there are other reservoirs/transmission routes of 

Campylobacter in the environment besides farmed animals and their meat products. 

 

As indicated above, previous international comparisons of the subtypes isolated from chicken 

carcasses and human faecal specimens have identified unique subtypes in both matrices, as well 

as common subtypes between the two matrices. When trying to establish host specificity, it is 

important that the samples are collected with regard to a relationship in time and place. The 

identification of unique subtypes, which maybe host specific, suggests that not all subtypes are 

 



130  Campylobacter in environmental matrices 
pathogenic to humans or survive to cause human exposure. Characterisation of those subtypes 

that occur in multiple animal matrices allows for a comparison with subtypes unique to one 

matrix. This could lead to the investigation of potential virulence factors which confer an 

advantage to those subtypes capable of infecting multiple animal types. Recognition of genes 

encoding virulence factors could provide an efficient screening test for potentially pathogenic 

subtypes. Identification of multiple matrix subtypes may also enhance the management of 

contamination controls, allowing producers to focus on eradication of virulent subtypes which 

are of public health significance.  

 

Inoculation of chickens with strains of C. jejuni and C. coli isolated from dairy cows 

demonstrated the ability of these isolates to colonise the ceca of chicks with 100% efficiency 

(Ziprin et al. 2003). The challenge isolate of Campylobacter was recovered from the caeca of 

the chickens 1-2 weeks after inoculation and determined to be the same colonizing strain by 

comparison of their ribotypes. These results suggest that these particular Campylobacter strains 

are not host specific. 

 

It is possible to determine that a particular subtype is highly prevalent in one matrix compared 

to another matrix, but it is very difficult to demonstrate that a subtype is restricted to a particular 

host. Subtypes have been identified which are associated only with cases of human 

campylobacteriosis and, to date, recorded cases of human-to-human transmission of 

Campylobacter are infrequent, and generally occurred where there was direct contact with 

infectious material such as the changing of dirty nappies, bathing of children together and 

nosocomial infection between neonates (Graham et al. 2005, Llovo et al. 2003, Friedman et al. 

2000); and poor hygiene associated with foodhandlers (Fitzgerald et al. 2001a). It is generally 

assumed, therefore, that not all of the reservoirs of Campylobacter have been identified and/or 

the particular subtypes have not, thus far, been isolated from known environmental reservoirs. It 

is yet to be conclusively proven that a particular Campylobacter subtype has adapted to a 

specific host. 

 

5.1.3 Identification of multiple subtypes of Campylobacter in human clinical samples 

 

A study to determine the presence of multiple Campylobacter strains in individual human 

clinical samples concluded that human infection with more than one Campylobacter strain was 

a rare event (Steinbrueckner et al. 2001). Four individual colonies from each patient (n=50) 
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were analysed by the two genotypic methods of PFGE and ERIC-PCR (refer Appendix 4). A 

dual infection with C. jejuni and C. coli was not detected in any of the samples and two co-

infecting strains of C. jejuni were identified in only two of the clinical samples. For one of these 

samples the band patterns for the two different isolates were very similar indicating a strong 

genetic relationship, perhaps supporting the hypothesis of in vivo recombination events. 

Therefore out of 50 clinical samples only one sample was confirmed as having a multiple 

infection with more than one strain of C. jejuni. 

 

The results of Steinbrueckner et al. (2001) were supported by a similar study which used three 

phenotypic methods and two genotypic methods to type isolates from individual human faecal 

samples (Richardson et al. 2001). Campylobacter was isolated from 53 human faecal samples. 

Two methods of isolating Campylobacter were employed and five colonies were taken from 

each isolation method resulting in 10 colonies being typed for each sample. Only one patient 

was infected with C. coli, the remainder of the strains were identified as C. jejuni. The results of 

typing the isolates identified four of the samples (7.5%) as having two strains of C. jejuni 

present. 

 

A study of campylobacteriosis in the population of Central Australia identified 86% of cases 

(n=218) as harbouring C. jejuni and 14% harbouring C. coli and 4% of cases who had a mixed 

infection of C. jejuni and C. coli (Albert et al. 1992). At least 13 cases were identified as having 

multiple infections of C. jejuni as determined by the presence of up to three different serotypes 

in single stool samples. Some cases were also found to have repeated reinfection with different 

Campylobacter serotypes and long term excretion (up to 73 days in one case) of the same 

serotype. It could not be ruled out, however, that the long term excretion was not due to another 

reinfection event by the same serotype. Kramer et al. (2000) who recognised multiple 

phenotypic subtypes of C. jejuni in red meat and chicken also reported that the Public Health 

Laboratory Service had identified co-infection with multiple strains of Campylobacter species 

in 5-10% of human cases. Their findings led them to highlight the importance of selecting more 

than one isolate per sample.  
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5.1.4 Objectives 

 
• To compare subtypes identified in chicken carcasses (Chapter Four) with human clinical 

subtypes of C. jejuni collected nationwide, including a subset of human isolates 

collected from the same geographical area and over the same timeframe as the chicken 

samples.  

• To identify if isolates from chicken meat are pathogenic to humans. 

• To address the issue of whether the subtyping information generated is limited by the 

selection of single isolates from samples when compared with selecting multiple isolates 

which have a higher probability of identifying non-dominant clones in a sample. 

• Using the findings of this study, propose appropriate strategies for the use of subtyping 

in the tracking of the environmental sources of Campylobacter with respect to both 

sporadic and outbreak cases. 
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5.2 Materials and methods 
 

The 15 PFGE subtypes identified from chicken carcasses were compared with the 1518 isolates 

held in the PulseNet Aoteoroa New Zealand Database, Environmental Science and Research Ltd 

(ESR) Christchurch, New Zealand. This database contained data for 376 human isolates 

collected nationwide, including 61 human clinical isolates collected from the same geographical 

area and within the same time frame as the chicken carcass isolates analysed in this study. 

Human clinical isolates of C. jejuni in the database which had not been analysed with RE KpnI 

and were of interest to this study were subjected to PFGE KpnI digestion as described in 

Chapter Four. 

 

5.2.1 Analysis of PFGE subtypes 

 
PFGE band patterns were analysed and compared using BioNumerics software (Applied Maths, 

Kortrijk, Belgium). Only fragments in the range 700 to 50 kb were analysed for SmaI and 700 to 

80 kb fragments were analysed for KpnI (Michaud et al. 2005). Smaller fragments were not 

consistently resolved. The analysis parameters used were in accordance with the PulseNet, USA 

standard procedure and utilized the band-based Dice similarity coefficient and the unweighted 

pairs geometric matched analysis (UPGMA) dendrogram type with a position tolerance setting 

of 1.5% for optimization and position tolerance of 1.5% band comparison. All test isolates were 

normalized to the known molecular size bands of the Salmonella Braenderup H9812 standard 

subtype (Hunter et al. 2005). In addition, all gels were run with a well-characterised subtype of 

C. jejuni: CPH011453 which acted as a control for the digestion reaction for both restriction 

enzymes. 
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5.3 Results 
 

5.3.1 Comparison of C. jejuni isolates from chicken carcasses and humans 

 

Results of the comparison between C. jejuni isolates from humans and chicken carcasses are 

presented in Table 17. Additional information on their identification in other matrices and other 

chicken meat samples from previous studies is also shown. Not all of the 1518 isolates in the 

database have, as yet, information on KpnI digestion and therefore it has been noted in Table 17 

where the correlation with environmental matrices is by SmaI typing data only. Human isolates 

that had the same PFGE SmaI subtype as a chicken isolate were digested with KpnI to establish 

whether they were an indistinguishable or a related subtype to the chicken isolate. 

 

Twelve of the 15 subtypes isolated in chicken carcasses were not identified in any other matrix 

(Table 17). Furthermore, the same twelve subtypes were not implicated in any of the human 

cases of campylobacteriosis. Three subtypes were identified in human clinical samples and two 

of those subtypes were identified in three and four human clinical samples each. Although only 

three subtypes were identified as indistinguishable to isolates from human cases, five of the ten 

chicken carcasses carried those pathogenic Campylobacter subtypes. Eight clinical isolates were 

identified as indistinguishable to chicken subtypes but seven of those human isolates were 

collected at a different time and location to the chicken carcasses.  

 

For four of the chicken samples that carried multiple subtypes, none of the non-dominant 

subtypes correlated with any isolates from human cases. In the fifth sample (CPH0112077) that 

carried two subtypes which were both close to 50% prevalence, one of those subtypes was 

identified in three isolates from human cases. This subtype (Sm0030/Kp0056) was also 

identified in two other chicken carcasses tested in this study and collected at different time 

periods. 

 

5.3.2 Clonal relationships between human and chicken isolates of C. jejuni 
 

Both of the subtypes from sample CPH0112077 had human isolates that were clonally related, 

as assessed by examination of their subtype profiles. As noted in Chapter Four, these two 

isolates have SmaI types Sm0001 and Sm0030 which are visually similar due to a single band 
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shift (Figure 12). The KpnI profile of chicken isolate Sm0030/Kp0056 is presented in Figure 13 

along with the three human isolates that had an indistinguishable profile by SmaI and KpnI 

digestion. Also shown are two human isolates that are potentially clonally related to 

Sm0030/Kp0056. Human C. jejuni isolate CPH0210257 (Sm0001/Kp0200) is 89% similar to 

Kp0056 using position tolerance 1.5% and optimization of 1.0% and human isolate CSC-

_CPH0311539-01 (sm0030/Kp0116) is 84% similar to Kp0056 using the same parameters 

(Figure 13).The critieria of Tenover et al. (1995) (refer to Chapter Four) is more relevant for 

determining clonal relationships than basing relatedness on a dendrogram. By employing these 

criteria the KpnI profile of CPH021057 is assessed as closely related to the chicken isolate 

(Sm0030/Kp0056) as it has two band shifts in comparison to the Kp0056 profile. This suggests 

a single genetic event whereby a deletion of DNA from the band at approximately 350 kb in 

Kp0056 has resulted in that band disappearing in subtype Kp0200 and a smaller DNA band 

appearing at approximately 300 kb (Figure 13). 

 

The human isolate CSC_CPH0311539-01 has the same SmaI profile as chicken subtype 

Sm0030/Kp0056 but a different KpnI profile (Figure 13). This KpnI profile (Kp0116) is, by the 

criteria of Tenover et al. (1995) “possibly related” because it has four band differences to 

Kp0056. These band differences are consistent with the occurrence of two genetic events, being 

deletions in the bands occurring at approximately 350 and 175 kb in Kp0056 and appearing as 

bands at approximately 250 and 130 kb (respectively) in Kp0116. It should be noted that 

directionality of the band shifts between subtypes cannot be inferred from these experiments 

and therefore the differences in band patterns for all of the above genetic events could be either 

deletions or insertions of DNA. 

 

Isolate Sm0001/Kp0033 which was identified in 48% of the isolates from chicken carcass 

CPH0112077 was not identified in any human cases of campylobacteriosis. Subtype 

Sm0001/Kp0032, however, is clonally related to Sm0001/Kp0033 as the band at approximately 

160 kb in Kp0033 does not appear in Kp0032, but two bands appear at approximately 70 and 90 

kb in Kp0032 (Figure 14). This is suggestive of a single genetic event resulting in a new 

restriction enzyme site in the 160 kb fragment (Kp0033) which is cleaved by KpnI into two 

fragments of 70 and 90 kb (Kp0032). The subtype Sm0001/Kp0032 was isolated from a human 

case of campylobacteriosis (CSC_CPH0214589-01) and from a sample of roof water 

(CSC_CPH0315218) (Figure 14). 
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5.4 Discussion 
 

5.4.1 Comparison of C. jejuni isolates from chicken carcasses and humans 

 

It has been established in previous discussions (Chapters Two to Four) that broiler chickens and 

their chicken products carry pathogenic campylobacters which represent a wide diversity of 

C. jejuni genotypes. There still remains a lack of understanding, however, as to the impact of 

these findings on the incidence of campylobacteriosis in the human population. 

 

Chapter Five was designed to evaluate the third hypothesis of this thesis that all subtypes of 

C. jejuni identified on chicken carcasses are also identified in human faecal specimens. This is 

important to determine so as to increase the understanding of the impact of chicken 

consumption on the number of campylobacteriosis cases, as there are varying reports ranging 

from 40 up to 70% of human cases (Michaud et al. 2004, Vellinga and Van Loock 2002, Stern 

1992) being attributed directly to chicken meat. It is widely accepted, however, that the role of 

chickens and chicken meat is very important in the transfer of Campylobacter to humans 

(Friedman et al. 2004, Rosenquist et al. 2003). 

 

The 15 subtypes isolated from the ten chicken carcasses tested in this study were compared with 

the 1518 Campylobacter isolates in the ESR database. The database contains 376 human 

isolates, including 61 human isolates collected from the same location and timeframe as the 

chicken isolates during a year long survey in a rural district. Three subtypes were identified in 

up to four human clinical samples each (Table 17). Therefore, twelve of the subtypes were not 

implicated in any of the human cases of campylobacteriosis, leading to a repudiation of the third 

hypothesis. 

 

Subtype Sm0094/Kp0049 was isolated as the dominant subtype (77% prevalence) from sample 

CPH0112839 and was also identified in one human clinical isolate and in chicken meat from 

previous studies, but no other matrices. The SmaI subtype was identified in three other chicken 

carcasses, but in comparison, these isolates all had a different and unrelated KpnI profile, 

namely Kp0056. The intermediate subtype identified in the same sample CPH0112839 was not 

clonally related to the dominant subtype nor was it identified in any other matrices. 
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Subtype Sm0037/Kp0038 was the sole subtype identified in sample CPH0112821 and it had 

been isolated from four human clinical samples as well as dairy cow faeces and chicken meat in 

other studies. 

 

Subtype Sm0030/Kp0056 was identified in three chicken carcasses, where it was the only 

subtype detected in two of those samples and found at close to 50% prevalence in the third 

sample (CPH0112077). This subtype had been isolated from three clinical cases and therefore is 

pathogenic to humans. Sm0030 had also been previously identified in other chicken meat 

samples, sheep faeces, veal and pork, suggesting that this SmaI type is ubiquitous in the 

environment. The two subtypes identified in almost equal proportions in sample CPH0112077 

had SmaI profiles (Sm0001 and Sm0030) that differed by the presence of one band and thus the 

profiles were visually similar (Figure 12). Their KpnI profiles were very different, however 

(seven band difference) and therefore they were not defined as clonally related.  

 

Interestingly, one human isolate CPH0210257 (Sm0001/Kp0200) was identified as clonally 

related to Sm0030/Kp0056, the subtype identified in three chicken carcasses. The PFGE profile 

of CPH0210257 had one band difference to Sm0030 and two band differences to Kp0056 

(Figure 13). This tentatively increased the number of human isolates to four for the subtype 

Sm0030/Kp0056 (not shown in Table 17). Furthermore, another human isolate 

CSC_CPH0311539-01 was determined to be “possibly clonally” related to chicken isolate 

Sm0030/Kp0056 because it had an indistinguishable SmaI type and the difference in its KpnI 

profile could be attributed to two genetic events (Figure 13).  

 

The issue of clonality is further exemplified by the case where an isolate (Sm0001/Kp0033) that 

was co-dominant in a chicken carcass did not correlate with indistinguishable subtypes isolated 

from human cases. A clonally related isolate, however, was identified in a human case of 

Campylobacter and in a sample of roof water, which could have implications for waterborne 

transmission of this subtype (Figure 14). In addition, the SmaI subtype that this isolate belonged 

to is one of the most common subtypes encountered in the environment as can be observed from 

its isolation from all four meat matrices, duck and sheep faeces, and river sediment (Table 17). 

However, when KpnI digestion is applied to isolates of this SmaI type, the number of different 

subtypes generated is large (personal communication, Brent Gilpin, ESR), which emphasizes 

the importance of basing subtyping information on two restriction enzymes. 
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Evidence for putative genetic divergence during Campylobacter colonisation of the human 

intestine has also been suggested. This divergence gives rise to clonally related subtypes during 

the bacterium’s passage through the human host, which further complicates the tracking of an 

outbreak source. The same paper that investigated the occurrence of multiple subtypes of 

Campylobacter in individual human faecal samples (Section 5.1.3 above) also studied the 

subtypes isolated from the same patient over the course of a Campylobacter infection 

(Steinbrueckner et al. 2001). The time interval between the collection of isolates from each 

patient was on average 23 days with a median of 15 days. Fifty-two patients were involved in 

the study and only four patients were identified as harbouring more than one subtype of the 

same Campylobacter species over the course of their infection. Because of the time intervals 

between collections of samples, it could not be determined, definitively, if the different isolates 

were due to re-infection events or co-infection by the two subtypes. Two of the patients, 

however, exhibited subtypes with between two and six band differences (as determined by 

PFGE) suggesting that they may have been clonally related (Tenover et al. 1995). The authors 

concluded that based on the low level of simultaneous infection (4%) observed in the first part 

of the study (Section 5.1.3 above), that it was likely that the isolation of clonally related 

subtypes of the same species was due to genetic instability of the primary infecting strain. These 

isolates were passaged in vitro 45 times on non-selective media, and as for previous studies 

(reviewed in Chapter Four) the PFGE patterns of the isolates did not change during laboratory 

passage suggesting that the genetic instability of the strains was not high. The authors suggest 

that the observation whereby Campylobacter strains can undergo genetic changes during an 

infection episode, must be taken into account when conducting epidemiological investigations. 

 

Overall, the number of subtypes isolated from chicken samples and correlated with subtypes 

from human clinical specimens was low at 20%. However, the three subtypes identified in 

human cases were isolated from five (50%) of the ten chicken carcasses, although the small 

sample number precludes meaningful conclusions. Furthermore, there was no bias in the 

subtype correlations towards the 61 human isolates collected from the same region and the same 

time period. Only one of those 61 human isolates had an indistinguishable subtype to a chicken 

isolate (Subtype Sm0037/Kp0038). In addition, subtyping analysis of all the Campylobacter 

isolates (n = 58) identified in chickens during the same one year survey (n = 204 chickens) 

showed a low overall similarity to the 61 human isolates (Devane et al. 2005, Baker et al. 

2002). The other seven human isolates that were indistinguishable to the chicken subtypes were 

not linked to the chicken isolates by a temporal/spatial relationship. However, all eight human 
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isolates were from people who lived in the same province where the chicken and 61 human 

isolates were collected but the campylobacteriosis cases occurred nine to 15 months after the 

conclusion of the year long survey. In addition, five of the eight cases lived in the largest urban 

centre (population 400,000) of that province. 

 

Twelve of the 15 subtypes were not identified in any other environmental matrix represented in 

the 1518 isolates in the ESR database. When based on SmaI profiles alone, three of those twelve 

subtypes were identified in other matrices besides chicken meat (Table 17). The matrices in the 

database include sheep, cattle, dairy cow, duck, possum and rabbit faeces, river water, oxidation 

pond water, river sediments, beef, sheep and pig liver, veal, lamb, beef and pork. These results 

are not definitive of host specificity of the subtypes to chicken meat as there are many reasons 

why a subtype has not been identified in another matrix. These reasons include that the number 

of isolates present in the database is likely to be miniscule in comparison to those present in the 

environment. Also, the lack of consistency in PFGE typing designations and standardized 

methods between laboratories prevents comparison of PFGE subtypes between international 

laboratories and even between laboratories within New Zealand. This leads to the non-

recognition of indistinguishable subtypes in different research projects. This issue is being 

addressed by the establishment of the PulseNet Aoteoroa NZ Database and international 

linkages with databases using the same standardised methods for typing. 

 

5.4.2 Non-dominant subtypes 

 

One of the aims of this study was to ascertain the importance of minor and intermediate 

subtypes and whether isolating one or two colonies was limiting the subtype information 

pertinent to tracking the source of an outbreak in a community. Furthermore, did the low 

probability of isolation of these non-dominant subtypes prevent the identification of an outbreak 

which was associated with a minority subtype? This finding would have suggested that the 

sporadic nature of campylobacteriosis cases was over reported. 

 

From the information derived from this study, non-dominant subtypes identified in chicken 

meat did not correlate with any isolates from human cases. This result suggests that important 

information linking human cases to a common source is not being missed by employing the 

enrichment-PCR method and other methods that isolate only a few colonies from an individual 

sample. The caveat to this is the low number of carcasses tested for multiple isolates and that 
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the results reflect the situation in chicken meat only. As noted by various researchers, however, 

using two or more methods such as direct plating and enrichment has increased the diversity of 

genotypes identified in a sample (Dickins et al. 2002, Newell et al. 2001). It may be useful to 

employ the same comparative subtyping between human and chicken isolates, as outlined in this 

chapter, to evaluate whether the employment of two isolation methods increases the probability 

of tracing the source of an infection. It could also establish whether it is more efficacious to 

subtype one/two isolates from each method, rather than analyzing a large number of colonies 

derived from a single method. 

 

5.4.3 Tracking the source of Campylobacter infection in human cases 

 
A survey conducted in Quebec, Canada endeavoured to combine the power of C. jejuni 

subtyping by KpnI with epidemiological information from sufferers of campylobacteriosis 

(Michaud et al. 2005). They were specifically questioning the current idea that most cases of 

campylobacteriosis are not associated with an outbreak incident (Blaser 1997, Pebody et al. 

1997). Some researchers, however, have identified a high proportion of cases that report other 

illness in the home or community concurrent with their illness, which could be suggestive of an 

outbreak incident (Gillespie et al. 2003). The aim of the Michaud et al. (2005) study was to 

determine if rapid typing of clinical Campylobacter isolates could be combined with a well-

timed epidemiological follow-up of clinical cases to identify a link between cases that had the 

same Campylobacter PFGE subtype. This information was used to establish if there was an 

identical source, indicative of an outbreak incident, between apparently unrelated cases. 

 

Their study, however, led them to conclude that the epidemiological information was insensitive 

and unreliable as analysis rarely led to the establishment of a common infection source for 

indistinguishable C. jejuni subtypes. Reasons for this interpretation about the clinical descriptive 

data included the time delay between infection, onset of symptoms and questionnaire interview, 

and the limitations of the types of questions in the survey. The subtyping data of C. jejuni also 

revealed a high diversity of subtypes as found by other researchers of C. jejuni and discussed in 

Chapter Four.  

 

Another study of Campylobacter isolates collected from clinical cases of campylobacteriosis 

over a year long period in Minnesota, USA, came to a similar conclusion (Hedberg et al. 2001). 

Researchers identified that from the 673 Campylobacter isolates, 74% of the 248 

indistinguishable PFGE subtypes were represented by only one or two isolates. PFGE data 
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identified eight temporal clusters which involved 9% of the total number of isolates. Two 

outbreaks were identified by routine epidemiological methods but overall 87% of the cases 

could not be linked by PFGE subtype, time and/or geographical location. 

 

Such findings led the researchers to question the validity of investigating sporadic cases of 

campylobacteriosis in an attempt to determine common causality to routes of infection 

(Michaud et al. 2005, Hedberg et al. 2001). The fact remains, however, that subtyping evidence 

has revealed many cases of campylobacteriosis are coming from, as yet, unidentified 

transmission routes and/or reservoirs in the environment. This is shown by the detection of 

subtypes of Campylobacter in cases of human infection that have not been identified in other 

environmental matrices (Champion et al. 2005). One of the methods to overcome the limitations 

of our knowledge in relation to these unidentified sources is to increase our data surveillance 

techniques. A large database of molecular and epidemiological information, therefore, may 

reveal commonalities between sources that have previously remained undetected.  

 

5.4.4 Methods to reduce Campylobacter contamination  

 

From the results in this study, twelve of the subtypes from chickens were not identified in any 

other environmental matrix besides chicken meat. As discussed above this may be due to 

limitations in the low numbers tested and represented in the database. It may also be, however, 

that some of these isolates represent subtypes that are found only in the chicken matrix as they 

are specifically adapted to colonisation of chickens and poorly adapt to colonisation of humans 

and other animals. If this were the case then these subtypes are of low pathogenic potential to 

humans and could be useful as controls in the study of infection and invasion of host intestinal 

cells. Comparative studies involving low and highly pathogenic subtypes of Campylobacter 

could identify virulence factors and survival mechanisms that confer an advantage to a highly 

pathogenic Campylobacter subtype. These studies could potentially lead to the design of genetic 

markers for identification of subtypes that carry specific virulence genes and therefore are likely 

to be pathogenic (Champion et al. 2005). 

 

The implications for the poultry industry would include the ability to concentrate on eradication 

of subtypes known to be pathogenic to humans, such as the three subtypes identified in five of 

the ten chicken carcasses analysed in this study. This is of particular concern if those subtypes 

are detected in specified areas of the processing chain, where their genomic repertoire has 
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enabled them to survive the hostile environment so they can cross-contaminate chicken 

carcasses traveling through the production line. 

 

This scenario was suggested by the research of Newell et al. (2001) who observed different 

subtypes on carcasses after processing which were not present prior to slaughter. This included 

subtypes identified in processed carcasses when the initial flock had tested negative for 

Campylobacter prior to slaughter or transport to the abattoir. Cross-contamination attributable 

to re-using Campylobacter contaminated crates for the transport of chickens to the abattoir was 

also identified in several studies as a risk factor (Slader et al. 2002, Hiett et al. 2002, Newell et 

al. 2001). The campylobacters identified in the crates were subsequently identified at low levels 

on processed carcasses from birds that had tested negative for Campylobacter prior to slaughter 

or had tested positive for different Campylobacter subtypes. 

 

Certain subtypes may be capable of better survival in the abattoir/crate environment than the 

subtype identified in the original flock. It would also be important, however, to investigate the 

colonisation potential of those subtypes that contaminate chicken products during abattoir 

transport and processing. Gaynor et al. (2004) reported a reduction in colonisation potential of 

laboratory strains exposed to atmospheric oxygen, and therefore exposure to non-host 

environments may have affected the ability of these abattoir/crate subtypes to re-colonise a host 

lowering their pathogenic potential. 

 

As observed by Lindmark et al. (2004) large abattoirs can distribute chickens to retailers on a 

nation wide basis allowing for the wide dissemination of Campylobacter clones that are virulent 

to humans. The reduction of Campylobacter incidence on retail poultry products can be targeted 

at various control points during the processing of the chicken from the farm to the consumer’s 

table. The high prevalence of campylobacters on chicken meat products at point of sale suggests 

that interventions to lower numbers on the chicken carcass during abattoir processing should be 

accompanied by efforts to reduce Campylobacter colonisation of chickens at the farm level. 

Many researchers have concluded that prevention of Campylobacter colonisation on broiler 

farms is the most effective way to prevent the contamination of poultry meat (Rivoal et al. 

2005). 

 

Rosenquist et al. (2003) have shown by a quantitative risk assessment model that a 2-log 

reduction of Campylobacter numbers on chicken carcassses could reduce the incidence of 
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campylobacteriosis associated with chicken consumption by 30 times. A similar reduction in the 

number of campylobacteriosis cases could be obtained by reduction of the Campylobacter flock 

prevalence by 30 times (e.g. from 90% to 3%). Conversely, the introduction of logistical 

slaughter policies, whereby Campylobacter-negative flocks are slaughtered prior to positive 

flocks was expected to have only a limited influence (by a factor of 1.16) on campylobacteriosis 

incidence in humans. This was most likely due to the low numbers of Campylobacter 

transferred to the negative carcasses via cross-contamination. It was, therefore, considered more 

efficient to concentrate on strategies to reduce Campylobacter numbers on carcasses. 

 

Competitive exclusion by intestinal microflora of the chicken that can outcompete 

campylobacters preventing colonisation of the intestinal tract, or vaccination of chickens are 

thought to be some of the most efficient potential strategies for reducing Campylobacter 

colonisation. Competitive exclusion has been successfully developed for Salmonella and shows 

promise for Campylobacter (Chen and Stern 2001, Stern 1994). Chen and Stern (2001) have 

used C. jejuni strains identified only in chickens to determine their potential to exclude C. jejuni 

isolates from humans. They found that those strains which had superior colonizing abilities 

were predominant, independent of when the chicken was exposed to the strain or whether they 

were pathogenic to humans. They suggest that research requires identification of non-

pathogenic campylobacters with strong colonisation potential to further test the competitive 

exclusion hypothesis. As has been discussed, the existence of strains that are truly host specific 

to chickens is still open to debate. 

 

To date, unlike Salmonella vaccination, the task of developing an effective vaccine to prevent 

Campylobacter colonisation of chickens (Sahin et al. 2003) has proved difficult (Rice et al. 

1997, Widders et al. 1996). New vaccine strategies are continuing to be developed, including 

immunization with an avirulent Salmonella vaccine strain which carried a C. jejuni gene 

expressing a highly immunogenic protein to protect against colonisation by Campylobacter 

(Wyszynska et al. 2004).  
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5.4.5 Conclusions 

 

Twelve of the subtypes in chicken carcasses were not implicated in any of the human cases of 

campylobacteriosis thus negating the third hypothesis that all subtypes of C. jejuni identified on 

chicken carcasses are also identified in human faecal specimens. Furthermore, these twelve 

subtypes were not identified in any other matrix. Three subtypes were identified in human 

clinical samples and two of those subtypes were identified in three and four human clinical 

samples each. Moreover, the three subtypes identified in human cases of campylobacteriosis 

were carried by five of the ten chickens analysed for multiple subtypes. 

 

In addition, it was demonstrated that in the four samples which carried minor and/or 

intermediate subtypes, these non-dominant subtypes did not correlate with any isolates from 

human cases. In the fifth sample, which carried two C. jejuni subtypes that were both close to 

50% prevalence, one of these subtypes was identified in three isolates from human cases. This 

subtype (Sm0030/Kp0056) was also identified in two other chicken carcasses tested in this 

study and collected at different time periods. In contrast to Schlager et al. (2002), the results 

suggest that the non-identification of minor/intermediate subtypes using the enrichment-PCR 

method from chicken carcasses may not be limiting the information relevant to tracking the 

source of an infection to chicken carcasses. 

 

Analysis revealed a few human isolates that were distinct but clonally related to chicken 

isolates. For example, a human isolate was identified that had one band difference to Sm 0030 

and two band differences to Kp0056. This tentatively increased to four the number of human 

isolates that correlated with the subtype Sm0030/Kp0056 isolated from three chickens. 

 

A comparison of the results from this study with other published research concluded that it may 

be worthwhile to evaluate whether the employment of two isolation methods enhances the 

identification of diverse subtypes. Furthermore, if two methods reveal an increased diversity 

will this aid in the tracking of the source of an infection? It could also establish whether it is 

more efficacious to subtype one/two isolates from each method, rather than analyzing a large 

number of colonies derived from a single method. 
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6 Concluding discussion 
 
6.1 Enrichment-PCR method 
 

The ability to distinguish between Campylobacter species is important in the identification of 

Campylobacter sources and transmission routes (Wassenaar and Newell 2000). My thesis 

reports an enrichment-PCR assay that was developed for the detection of C. jejuni and C. coli 

from 13 environmental matrices: human, dairy cow, cattle, sheep, chicken, duck, possum and 

rabbit faeces; sheep, beef, pig liver; chicken meat, and river water. PCR was employed to 

identify campylobacters after an initial enrichment step. 

 

Advantages of PCR-based assays over conventional plating methods and phenotypic testing for 

identification purposes include speed and cost-effectiveness (Olive and Bean 1999). For 

example, purification of individual colonies prior to identification by biochemical tests requires 

a 48 hour incubation of two consecutive subcultures. When coupled with antibiotic 

susceptibility assays, which require a further 48 hours of incubation, this can lead to a period of 

up to ten days for identification by the conventional method. Futhermore, there are few 

biochemical tests that differentiate campylobacters at the species level and the hippurate 

hydrolysis test that discriminates between C. coli and C. jejuni is known to misidentify C. jejuni 

based on the non-expression of the hippuricase enzyme (Waino et al. 2003). By comparison, 

PCR increases efficiency by identifying multiple species in one step, whereas clinical 

laboratories, using culture methods, often do not identify a Campylobacter isolate to the species 

level (Lawson et al. 1999). This results in a lack of data relating to the prevalence of individual 

Campylobacter species and mixed infections. 

 

The initial step in the development of an enrichment-PCR assay required the design of specific 

PCR primers for C. jejuni and C. coli and optimisation of the multiplex PCR. The specificity of 

the PCR assay was confirmed by the lack of cross reactivity and non-specific amplicons when 

the multiplex PCR was tested against a range of Campylobacter species and other bacteria. The 

confirmation of C. jejuni and C. coli detection required the presence of two amplicons, one 

based on the thermotolerant group of campylobacters and the second being specific for either 

C. jejuni or C. coli. This allowed for confirmation of identity at the genus and species level. 
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The variation in numbers of campylobacters in environmental matrices necessitated the use of 

enrichment techniques to overcome environmental stresses and facilitate growth of the target 

organisms. Comparative studies of direct plating and enrichment of samples including human, 

cattle and sheep faeces have reported lower recoveries from direct plating compared with 

enrichment techniques. (Maher et al. 2003, Madden et al. 2000, Stanley et al. 1998c, 1998b, 

Atabay and Corry 1998). Waage et al. (1999) noted that direct PCR of food samples produced 

variable results in comparison to enrichment prior to PCR. They recommended the use of an 

enrichment step for food analysis to increase the sensitivity of the PCR method and overcome 

the non-reproducibility of results. In developing a single method that would detect 

Campylobacter in a diverse range of matrices, many factors were taken into consideration, some 

of which are outlined below. 

 

Many environmental matrices contain substances that inhibit the PCR. Humic substances in 

water and components in food and faecal samples, such as complex polysaccharides, as well as 

the blood in enrichment media can all contribute to inhibition (Maher et al. 2003, Waage et al. 

1999, Waegel and Nachamkin 1996, Rossen et al. 1992). Enrichment broths can aid dilution of 

inhibitors and washing of enriched cells prior to PCR can remove remaining inhibitory 

compounds. 

 

Consideration of factors such as these led to the conclusion that an initial enrichment of the 

sample would increase the reproducibility of results across all matrices. Selection of a suitable 

enrichment medium is difficult and, as noted by Madden et al. (2000), the choice of broth will 

take into account overall rate of recovery and ability to enrich different species and subtypes of 

Campylobacter. A trial of five different enrichment broths in combination with all matrices was 

performed and m-Exeter broth was determined to be the optimal broth. 

 

The incubation temperature of 42°C is selective as it is optimal for thermotolerant 

campylobacters (Griffiths and Park 1990) and inhibitory for other microflora. In addition, a pre-

incubation period of four hours at 37°C was incorporated into the method as it has been shown 

to be efficacious in the recovery of injured Campylobacter cells (Waage et al. 1999, Humphrey 

1986). Antimicrobials in the enrichment medium reduced competition from fungi and other 

bacteria but may also inhibit the growth of injured campylobacters (Mason et al. 1999, 

Humphrey and Cruickshank 1985). 
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Sensitivity tests of the enrichment-PCR assay showed that in most matrices less than ten cells 

per sample of either C. jejuni or C. coli could be detected in the sample. Rabbit faeces was the 

only matrix where sensitivity was greater than ten cells (range 3-32 cells of C. coli), but this was 

comparable with the range determined by the conventional method for C. coli cells in the same 

matrix. The enrichment-PCR method had similar sensitivity levels to the conventional plating 

method for identifying Campylobacter, but had the advantage of reducing the time required for 

identification from a maximum of ten days by the conventional method to 4-5 days. In food 

laboratories, due to a limitation of resources, only a few colonies (five or less) per plate are 

tested for confirmation by phenotypic techniques. The comparative assay performed in this 

study showed the advantages of PCR detection where a higher proportion of cells present in the 

enrichment were represented in the sample, allowing increased detection of both C. jejuni and 

C. coli in the same sample. 

 

Scates et al. (2003) compared the diversity of subtypes isolated when employing two incubation 

temperatures (37°C versus 42°C) with the same broth and noted that although the prevalence 

and Campylobacter species identified were similar for both temperatures, a different range of 

genotypes was identified. They recommended employing two different incubation temperatures 

to increase the diversity of subtypes from a matrix. It should be noted, however, that Scates et 

al. (2003) did not employ an initial incubation of 37°C for four hours prior to incubating at 

42°C for a further 44 hours, as employed in the current study. This initial 37°C incubation is 

incorporated to aid recovery of those Campylobacter cells that are injured or stressed. It would, 

therefore, be interesting to re-evaluate the diversity of genotypes isolated at the two 

temperatures when an initial 37°C recovery period is employed prior to further incubation at 

42°C. 

 

The time period for the enrichment-PCR method is longer than the rapid methods of direct PCR 

and real-time quantitative PCR (RTQ-PCR). Also, samples were enriched to increase 

sensitivity, which negates quantification of the initial concentration of Campylobacter cells. It 

would be possible, however, to modify the multiplex PCR developed for this study to 

incorporate a RTQ-PCR assay by designing probes for each of the PCR primer sets. This would 

require validation of the RTQ-PCR against all of the matrices included in the current study, but 

would provide concurrent data on the concentration of target campylobacters in samples, in 

addition to their prevalence in matrices. 
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The main benefits of the enrichment-PCR method reside in the employment of a single 

enrichment broth for detection of C. jejuni and C. coli in 13 environmental matrices. Most 

assays have been validated against a small range of matrices, such as poultry carcasses (Hong et 

al. 2003), bovine faeces (Inglis and Kalischuk 2004, 2003), water (Kirk and Rowe 1994) and 

human faeces (Maher et al. 2003), although Yang et al. (2003) have developed a RT-PCR 

method for the detection of C. jejuni in poultry, milk and environmental waters. 

 

Scates et al. (2003) noted that identification of campylobacters throughout the food chain 

requires use of the same method with each matrix to allow genuine comparisons that aid 

epidemiological studies. This is because the presence/absence of a subtype in a matrix is 

partially reliant on the method employed. Each method has its own intrinsic biases that may 

allow the growth of one subtype over another. 

 

The enrichment-PCR assay, therefore, allows the efficient identification of potentially 

pathogenic campylobacters in a wide range of environmental matrices. Employment of a single 

enrichment broth for 13 matrices will assist the large surveys required to better understand the 

transmission of Campylobacter through the environment to humans. In conclusion, the first 

hypothesis was confirmed, in that a robust enrichment-PCR assay was developed to detect and 

identify pathogenic Campylobacter from a range of environmental matrices. 

 

6.2 Prevalence of Campylobacter in chicken carcasses and water. 
 

Validation of the enrichment-PCR was accomplished by application of the method to field 

studies to test the prevalence of Campylobacter in two environmental matrices: chicken meat 

and river water. To this end, whole chicken carcasses were sampled at the point of purchase to 

the consumer. Sampling from retail outlets allowed a comparison of rates of Campylobacter 

isolation with previous New Zealand and international studies. A river system that flowed 

through land stocked by sheep, cattle and dairy cows was chosen as the site for testing river 

water for Campylobacter prevalence. The multiple inputs of Campylobacter from animals and 

wildlife received by this river system also made it an ideal site for determining if the 

enrichment-PCR was able to identify multiple subtypes in an individual water sample.  

 

The prevalences of C. jejuni and C. coli in retail chickens were lower than those obtained from 

previous studies in New Zealand, but similar to international studies in Denmark, Finland and 
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the Netherlands. Differences between New Zealand studies may be due to this survey obtaining 

retail chickens from a major supplier for the country who is expected to have improved 

techniques that minimise the contamination of chicken carcasses during processing. Another 

point of difference is that this survey was conducted on whole fresh chickens rather than 

chicken portions, which, due to the increased handling, might be expected to be exposed to 

more cross contamination events than the prepackaged whole chicken. Subsequent surveys 

using the enrichment-PCR method have shown high prevalences of Campylobacter in a variety 

of environmental matrices which included minced chicken, sheep liver and ruminant faeces 

(Wong et al. 2005, Devane et al. 2005). 

 

As has been noted internationally, there are no standardised methods for Campylobacter 

isolation, which has limited the ability to compare data between surveys (Rosef et al. 2001, 

Corry et al. 1995, Humphrey et al. 1995). This lack of standardised methods was part of the 

rationale behind development of the enrichment-PCR method for a wide range of environmental 

matrices. The wide variation in prevalence identified in chicken may be due to differences in 

sampling geography (i.e. local surveys compared to nationwide surveys), differences in methods 

of isolation, and differences in cuts of meat surveyed. 

 

The prevalence of C. jejuni in river water was similar to international findings and previous 

studies of New Zealand rivers. The low prevalence of C. coli, although supported by some 

international literature, is also in contrast to other overseas studies where C. coli has been 

identified at higher prevalences than C. jejuni. This discrepancy between studies may be a 

reflection of the differences in the animal types contributing to the Campylobacter load in 

water. For example, pigs are known to harbour a higher prevalence of C. coli compared with 

C. jejuni, therefore the siting of a pig farm near a river system could affect the Campylobacter 

species identified in nearby waterways (Guevremont et al. 2004, Moore and Madden 1998). As 

expected from overseas studies the identification of Campylobacter followed seasonal trends 

with lower prevalence in warm summer water with high sunlight levels in comparison to winter 

conditions. 

 

In conclusion, this work supports the hypothesis that a robust enrichment-PCR assay was 

developed to detect and identify pathogenic Campylobacter from chicken and water samples. 
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6.2.1 Detection of multiple subtypes by the enrichment-PCR method  

 

The typing of bacterial isolates from various sources and determining their relative contribution 

to human infection is a prerequisite for the investigation of the transmission routes of a 

pathogen. It also allows the detection of changes in infectious disease aetiology. Furthermore, 

the distribution of virulence determinants in C. jejuni subtypes might be more accurately 

represented if dominant and minor subtypes from potential reservoirs are isolated from the same 

sample. Recognition of the importance of multiple subtypes of campylobacters present in a 

sample is only beginning to emerge. 

 

Multiple subtypes identified on chicken carcasses add to the knowledge about the host 

specificity of C. jejuni subtypes and whether all subtypes identified in chickens contribute to 

human infection. Therefore, the identification of a single isolate per sample limits the 

information available to trace the source of a campylobacteriosis incident. As most cases of 

campylobacteriosis are recognised as being sporadic, this information may suggest that at least 

some of these sporadic cases are not recognised as being linked because not all of the available 

subtypes have been identified from either the clinical faecal specimens or the suspected 

transmission vehicle. This has become more relevant as evidence grows of multiple infections 

of Campylobacter in animal hosts. Flocks of chickens have been shown to carry multiple 

subtypes (Hiett et al. 2002) and evidence is emerging that individual chickens harbour multiple 

subtypes of C. jejuni (Schouls et al. 2003, Thomas et al. 1997). In addition, co-infection in 

human cases by two subtypes of the same Campylobacter species has been observed, albeit as a 

rare event (Steinbrueckner et al. 2001, Richardson et al. 2001). 

 

In a study of E. coli strains from human faeces, Schlager et al. (2002) discussed the importance 

of multiple isolations from a single stool sample to identify both dominant and minor strains. 

They described a dominant strain as a clone that was represented by >50% of typed isolates in a 

sample. A minor strain was defined as a clone that represented <10% of typed isolates in a 

sample. They used a binomial formula to determine the number of randomly selected colonies 

required to achieve a 90% probability of identifying a minor clone. Schlager et al. (2002) 

caution that basing a study on the isolation of dominant clones of a bacterial species may 

exclude significant information, especially where the study is examining the frequency of 

virulence factors in a bacterial population. 
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The second hypothesis in this study stated that chicken carcasses carry multiple subtypes of 

C. jejuni. Prior to testing this hypothesis it was important to confirm that the enrichment-PCR 

method was capable of detecting multiple subtypes in a sample and that certain strains did not 

dominate the enrichment process. Whether a particular subtype is dominant in an individual 

sample may be dependent on various factors including its ability to compete with other 

microflora, and this capacity will be partly based on its genomic repertoire of survival strategies 

(Moen et al. 2005, Murphy et al. 2003). Another factor is the subtype’s concentration in the 

water matrix at the time of sampling, including the numbers of injured cells of that particular 

strain. 

 

Validation of this method required testing on a matrix known to carry multiple subtypes of 

Campylobacter. The matrix chosen was river water flowing through farmland as it was expected 

to have multiple inputs of campylobacters from varied sources including farm animals, feral 

animals and birds. Thus a river water sample was considered likely to contain more than one 

subtype of either C. jejuni or C. coli. 

 

In all of the water samples that tested positive for C. jejuni (5 of 6), more than one subtype was 

identified, with a maximum of three subtypes found in one sample. One subtype was identified 

as dominant in each sample but, importantly, each subtype that was identified as being >85% of 

the typed colonies in one sample, was also identified as a minor subtype (6.7-8.3%) in another. 

This suggests that these subtypes were not selected preferentially over other strains, and that the 

method allowed for the detection of a wider range of subtypes when they were present. This 

suggestion, however, requires further confirmation to establish that the method is not selecting a 

limited range of subtypes. This could be achieved by testing a larger sample size from water and 

analysing the number of distinct subtypes identified. 

 

Identification of multiple subtypes of C. jejuni in individual river water samples validates the 

ability of this method to test the second hypothesis: that chicken carcasses carry multiple 

subtypes of C. jejuni. In addition, the results supported the proposal that the enrichment-PCR 

method is facilitating the identification of different C. jejuni PFGE subtypes and indicated that 

an overlap of C. jejuni subtypes will be identified when sampling at different time periods. It is 

reasonable to assume, therefore, that the isolation regime of selecting one colony per sample 

over an extended temporal survey will reveal a variation of Campylobacter subtypes. This 
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would result in an accurate assessment of the Campylobacter subtypes present in an 

environmental matrix. The greater the number of Campylobacter subtypes detected, the higher 

is the likelihood of establishing potential transmission routes of C. jejuni and C. coli from the 

environment to humans. This assessment of a single colony per sample, in contrast to multiple 

isolates, may not hold true when investigating sporadic cases of campylobacteriosis where the 

aim is to establish a source of infection. The issue of isolate numbers from a single sample will 

be discussed further in the proceeding section. 

 

6.2.1.1 Identification of multiple subtypes of C. jejuni in chicken carcasses 

 

In this study multiple subtypes of C. jejuni were identified on individual chicken carcasses using 

the enrichment-PCR method. Subtyping was determined by PFGE typing using SmaI as the 

initial enzyme and KpnI as the secondary enzyme for further discrimination of subtypes with the 

same SmaI profile. An average of 23 colonies were analysed by SmaI PFGE per sample and, 

based on the binomial formula of Schlager et al. (2002), this would achieve a 91% probability 

of identifying a minor clone. Although the cutoff for determining an indistinguishable subtype 

was set at 90% (Nadeau et al. 2003, de Boer et al. 2000), the average cutoff for SmaI digests 

was 99.6% and 98.1% for KpnI digests demonstrating that technical reproducibility was high. 

 

Five of the ten carcasses revealed multiple subtypes. Fifteen distinguishable subtypes were 

identified from the ten carcasses, and this included the identification of subtype 

Sm0030/Kp0056 in three different chicken samples. In the five chicken carcasses that were 

identified with multiple subtypes, two subtypes were identified in three carcasses and three 

subtypes in two carcasses. The second hypothesis was upheld, therefore, as chicken carcasses 

were observed to carry multiple subtypes of C. jejuni. 

 

It was interesting to note that the literature reported differences in the numbers of subtypes 

identified in individual samples by various methods. Lindmark et al. (2004), using enrichments, 

did not identify more than one subtype per chicken carcass when typing up to five isolates per 

sample. In comparison, Dickins et al. (2002) employed direct plating from chicken carcasses to 

identify three to five subtypes in 22.6% of the Campylobacter positive carcasses (n = 39) by 

testing a mean of 6.2 isolates per sample. 
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Two other studies of direct plating from chicken faeces also revealed multiple subtypes of 

between three and four per sample when four and five isolates per sample (respectively) were 

typed (Schouls et al. 2003, Thomas et al. 1997). While faecal studies are not directly 

comparable to chicken carcasses, partly due to the generally higher numbers of Campylobacter 

in faeces, these two studies lend support to the case for investigating whether identification of 

multiple subtypes is aided by direct plating compared with enrichment. Studies using direct 

plating have noted higher numbers of subtypes carried by samples when on average less than 

seven colonies per sample were tested. In contrast, a maximum of three subtypes were identified 

in this study using the enrichment assay and testing up to 25 isolates per sample and only one 

subtype was identified in the enrichment study of Lindmark et al. (2004). It should also be 

noted that geographical differences between countries may also be responsible for less subtypes 

being identified per individual sample. For example, this study reports the first investigation 

into the presence of multiple subtypes in chicken carcasses in New Zealand. 

 

It is probable, given the selective nature of the enrichment-PCR method that growth 

characteristics of each environmental Campylobacter subtype in the enrichment broth will vary. 

The degree of this variation is unknown and consequently, if the initial sample contained equal 

numbers of two subtypes, it is possible that one may grow faster and be identified by subtyping 

as being dominant due to its growth characteristics. The same premise will hold true for direct 

plating where injured/stressed cells have a lower probability of recovery in comparison to 

enrichment (Dickins et al. 2002). In reality, it is probable that the concentrations of each 

subtype in the original sample will be variable as was shown in this study, where the dominant 

subtype in a water sample was identified as a minor subtype in another water sample. It is 

recognised that the problem of dominant strains may be overcome by employing more than one 

procedure for each sample to enable identification of individual strains that vary under different 

growth conditions (Kramer et al. 2000).  

 

None of these factors undermine the use of the enrichment-PCR as a tool for the long term 

isolation of campylobacters from a wide range of environments. It does suggest, however, that if 

studies are time limited and sample numbers are small then enrichment should be combined 

with direct plating or enrichment should employ two incubation temperatures (37°C and 42°C) 

as suggested by Scates et al. (2003). This may achieve a higher diversity of subtypes from 

individual samples with less input of labour, as fewer colonies per sample may need to be typed. 

In the case of direct plating the multiplex PCR developed in this study could be used to confirm 
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colonies as C. jejuni or C. coli by PCR identification directly from the plate. A comparative 

study of the diversity of subtypes isolated by enrichment versus direct plating may be 

worthwhile to establish the benefits of either method and to determine if it is better to use both 

methods and subtype only one or two colonies isolated from each. 

 

6.3  Comparison of C. jejuni isolates from chicken carcasses and human 

clinical specimens  
 

The high diversity of genotypes present in the Campylobacter population is well documented 

and the polymorphic nature of Campylobacter adds to the complexity when trying to deduce the 

source of an infection (Schouls et al. 2003, Duim et al. 1999). Analysis of DNA sequence data 

showed that this diversity is due to a high frequency of both intra- and inter-species 

recombination in C. jejuni (Suerbaum et al. 2001, Duim et al. 1999). Since multiple subtypes of 

C. jejuni are present in chickens it has been suggested that the subtypes causing disease in 

humans may be minor strains in chicken microflora and therefore are not identified by 

conventional bacteriological techniques where only a single colony is typed (Schouls et al. 

2003). 

 

The third hypothesis for this study was that all subtypes of C. jejuni found on chicken carcasses 

were also found in human faecal specimens. Therefore, if this hypothesis was confirmed it 

would imply that non-dominant subtypes in chicken meat are important in the aetiology of 

campylobacteriosis. This would suggest that isolation techniques need to be directed toward 

identifying both dominant and non-dominant subtypes in a sample. 

 

In this study twelve of the 15 SmaI/KpnI subtypes identified in chicken carcasses were not 

implicated in any of the human cases of campylobacteriosis identified, to date, in New Zealand. 

This finding contradicts the third hypothesis. Furthermore, these twelve subtypes were not 

identified in any other matrix, besides chicken carcasses. Three subtypes were identified in 

human clinical samples and two of those subtypes were identified in three and four human 

clinical samples each. These three subtypes, which have been implicated in human cases of 

campylobacteriosis, were identified in five of the ten chicken carcasses analysed for multiple 

subtypes in this study. 
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In addition, it was demonstrated that in the four samples that carried minor and/or intermediate 

subtypes, the non-dominant subtypes did not correlate with any isolates from human cases. In 

the fifth sample, which carried multiple C. jejuni subtypes that were both close to 50% 

prevalence and could be said to be co-dominant, one of these subtypes was identified in three 

human cases. This subtype (Sm0030/Kp0056) was also identified in two other chicken carcasses 

which were independent samples, having been collected at different times. In contrast to the 

suggestions of Schlager et al. (2002) and Schouls et al. (2003), these results imply that the non-

identification of minor/intermediate subtypes using the enrichment-PCR method from chicken 

carcasses may not be limiting the information relevant to tracking the source of an infection to 

chicken carcasses. Confirmation of this suggestion regarding non-dominant subtypes would 

require a larger dataset of multiple subtypes collected from a large number of chickens and 

compared with human isolates from the same geographical area and timeframe.  

 

6.3.1 Genotypic plasticity of Campylobacter 

 

During this investigation, the question of the relevance of clonally related subtypes identified in 

the same sample was identified as warranting further research in relation to the information 

required for establishing the source of an outbreak (Steinbrueckner et al. 2001). Sample 

CPH012693 carried three C. jejuni strains, two of which were clonally related by the criteria of 

Tenover et al. (1995). One of the clonally related subtypes was identified in 82% of isolates for 

that sample; the other was intermediate in prevalence (12%) suggesting it would have a low 

probability of being identified. Therefore, if this intermediate subtype was identified in a human 

case it may not be correlated with the dominant chicken subtype, which highlights the 

importance of examining identical and closely related banding patterns. 

 

Another example was Sm0030/Kp0056, the subtype identified in three chicken carcasses. The 

PFGE profile of a human isolate had one band difference to Sm0030 and two band differences 

to Kp0056 suggesting it was clonally related to the chicken subtype. This tentatively increased 

the number of human isolates to four for the subtype Sm0030/Kp0056, and raised the question 

as to whether, in an outbreak investigation, the two subtypes would have been recognised as 

clonally related. Further genotypic and phenotypic characterisation of the chicken subtype 

Sm0030/Kp0056 and the clonally related human isolate may be required to determine their 

degree of relatedness. The genotypic plasticity inferred by these isolates and their putative 

relatedness must be kept in context as Sm0030/Kp0056 was isolated from two other chicken 
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samples in this study that were collected at different times, the closest interval between the three 

samples being six weeks. Based on the times of collection, this subtype has shown stability as it 

was isolated from different chicken carcasses over a four month period. Furthermore, its 

isolation from three human clinical samples and a variety of matrices suggests it is stable in the 

environment. This does not, however, negate mutational or recombinational events occurring 

during host passage which could have led to the genetic divergence noted in the subtypes above. 

 

The passage of C. jejuni in the laboratory has, in general, revealed few changes as shown by 

genotypic typing schemes (Dickins et al. 2002, Wassenaar et al. 1998). A new study (Gaynor et 

al. 2004) has shown, however, that there maybe changes in colonisation potential of a 

susceptible host during laboratory passage that are not identified by genotyping schemes such as 

PFGE and MLST. The comparative study of Gaynor et al. (2004) investigated the differences 

between the genome-sequenced variant of strain NCTC 11168 (designated 11168-GS) and the 

original strain (11168-O) that had been frozen since it was first isolated from a patient by 

Martin Skirrow in 1977. It was noted that 11168-GS had reduced potential to colonise one-day–

old chicks in comparison to the parent strain 11168-O which retained its ability to colonise. 

 

The colonisation differences observed between the two variant strains of NCTC 11168 provided 

a useful platform for the study of Gaynor et al. (2004) to assess virulence determinants 

significant in host colonisation. The study employed micro-array based transcriptional profiling 

to screen the bacterial variants and determine minor genomic differences that had occurred but 

were not detected by high resolution genotypic techniques such as MLST. These minor genomic 

differences translated into differences in gene expression when the two strains were grown 

under microaerophilic and anaerobic conditions which affected virulence-associated phenotypes 

such as motility, and invasion and translocation into host cells. Targeted sequencing revealed 

single nucleotide polymorphisms in genes encoding each sigma factor (a protein component of 

RNA polymerase that is important for the initiation of transcription). Furthermore, differences 

in expression were shown in genes associated with respiration and metabolism, affecting 

adaptation to environments with varying oxygen tension. The authors suggested that during 

laboratory passage 11168-O had adapted to survive exposure to aerobic environments, which 

compromised its ability to readapt to the anaerobic environment of the host intestine. It is a new 

finding that adaptation to different oxygen environments is an important factor in colonisation 

potential. The results of Gaynor et al. (2004) suggest caution when applying genotyping 
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techniques to the identification of passaged laboratory strains relevant to the study of virulence-

associated phenotypes.  

 

A study that employed transcriptional profiling investigated the expression of genes necessary 

for colonisation of one-day-old chicks by C. jejuni (Woodall et al. 2005). The study identified 

59 genes that were differentially expressed in vivo in comparison with in vitro expression. These 

genes included those that regulate electron transport allowing C. jejuni to adapt to the low 

oxygen conditions found in the chick caecum. These findings supported Gaynor et al. (2004) in 

suggesting that adaptation to different oxygen environments is important for colonisation 

potential.  

 

The observations of Gaynor et al. (2004) are also relevant to the genetic stability of subtypes 

during passage through the host (human or animal) and whether the virulence potential of a 

strain is compromised or enhanced by genetic events that occur in vivo. 

 

Based on the observation that the minor and intermediate subtypes in this study were not 

prevalent in subtypes important in human infection, it may suggest that factors leading to 

recombination events within a chicken intestine may lead to avirulent campylobacters which do 

not colonise the human intestine as successfully. Confirmation of this hypothesis, however, also 

requires understanding of the direction of genetic change between clonally related subtypes, 

because the converse could also be true. The direction of genetic change may be from the minor 

to dominant subtype, which becomes more successful in both chicken and human colonisation. 

Investigating differences in virulence potential and the direction of genetic change between 

clonally related subtypes could involve monitoring the population changes that occur when a 

dominant and non-dominant subtype identified in the same chicken/chicken product or in a 

flock of chickens are inoculated individually into different one-day-old chicks. 

 

From the methods used in this study, the direction of genetic change cannot be ascertained 

between a minor and dominant subtype. Schouls et al. (2003), employing MLST to investigate 

the host range of Campylobacter subtypes, recognised that inter- and intra-recombination events 

were approximately 50 times more frequent than mutational events in the Campylobacter 

genome. MLST can be used to track the lineage of clonal complexes and therefore could be 

useful in exploring the changes within clonally related subtype populations (Feil et al. 2004, 

Suerbaum et al. 2001, Dingle et al. 2001a). From the findings of Gaynor et al. (2004), however, 
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it may be necessary for MLST studies to target those genes that have shown differences during 

transcriptional profiling of (a)virulent strains. It is also worth noting that the definition of 

dominant and minor may be dependent on the isolation method employed and/or the initial 

numbers of each respective subtype in the original sample. Therefore future comparisons of 

multiple subtypes in a sample should include quantitative studies such as those afforded by real-

time PCR. 

 

More research is required to investigate whether the identification of subtypes that are clonally 

related to an outbreak subtype are important in establishing the source. For example, if only one 

of two clonally related subtypes in a chicken sample was detected but the other subtype was 

identified in a clinical isolate within the same timeframe and locality, would the 

epidemiological information link the two subtypes? The advent of computer-assisted analysis 

allows better tracking of subtypes that are distinguishable but clonally related. This will, 

however, require recognition by public health researchers that these related subtypes may be 

relevant to the identification of the source of an outbreak. 

 

6.3.2 Chicken as a vehicle for transmission of Campylobacter to humans 

 
The large number of subtypes from chickens (12 of 15), that were not identified in human cases 

raises the question as to whether those subtypes are adapted to grow in chickens, as they were 

also not identified in any other matrix than chickens. In contrast, five of the ten chicken 

carcasses did carry three subtypes of Campylobacter identified in human cases of 

campylobacteriosis, suggesting that it may be a small proportion of subtypes identified on 

chicken carcasses that predominate in human cases attributed to chicken consumption. Further 

investigation of multiple isolates from a larger sample size of chicken carcasses would be 

required to confirm this proposal. Validation of this suggestion would emphasise the need to 

study these pathogenic campylobacters for virulence factors that increase successful infection in 

humans over the majority of other subtypes carried by chicken carcasses. 

 

The chicken carcass isolates studied in this research were collected from a distinct geographical 

area and within a seven month interval. The human isolates (n = 376) used for comparison with 

these chicken isolates were collected nationwide, although 61 of these isolates originated from 

the same defined area and within a one year time period, which included the same seven month 

period as the chicken sampling. The prevalence of Campylobacter (28.5%) detected in the 

chicken carcasses from this defined region was lower in comparison with previous New Zealand 
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studies (54-60%), however one could still have expected a higher correlation of the 15 chicken 

subtypes with 376 human isolates.  

 

Identification of non-dominant chicken subtypes, in this study, did not clarify the importance of 

whether chicken acts as a reservoir and vehicle for the transmission of Campylobacter to 

humans. The lack of correlation between non-dominant subtypes in chicken carcasses and 

human cases, particularly the 61 cases from the same region and timeframe, is unexpected when 

it is generally accepted that 40-70% of cases are attributed to chicken consumption. Another 

factor, however, that may have affected this outcome was the rural nature of the region where 

this study was conducted. The fact that five of the ten chickens were contaminated with 

subtypes implicated in human campylobacteriosis but only one of those human cases was 

identified within the study region may suggest other routes of transmission of campylobacters 

for this area. Human cases were mainly derived from abattoir workers, farmers, their families 

and farm workers, and from the largest town in the area, which had a population of 14,000. 

Subsequent analysis of human cases and subtypes isolated from the environment revealed that 

the highest similarity to human cases was with subtypes isolated from ruminant animals (sheep, 

dairy cows and cattle) (Devane et. al. 2005, Baker et al. 2002). The higher similarity between 

human and ruminant isolates may suggest that the close contact between farm/abattoir workers 

and the animals they work with is a more likely route of Campylobacter infection in comparison 

with chicken consumption for this rural community. This premise is further supported by a 

review of Campylobacter infection in poultry workers, which concluded that there is an 

increased risk (three fold) of poultry workers developing campylobacteriosis compared to the 

general population, particularly during their first months on the job (Wilson 2004). 

 

A study in Finland typed human isolates (n = 176) from two geographically distinct rural and 

urban areas and found that out of the 69 PFGE subtypes identified in the two areas, only nine 

were identified in both regions. This suggests geographic differences for sources of infection 

between these two areas (Hänninen et al. 1998). In the Finland study, isolates of C. jejuni from 

chicken faeces (n = 48) and chicken meat (n = 25) were collected at the same time as the human 

isolates, and subtypes compared. Although overall subtype diversity was high for the human 

isolates, there were five predominant subtypes identified in the urban area comprising 42% of 

isolates, and another five predominant subtypes (three of which were also in the urban 

predominant group) that comprised 44% of isolates from the rural area. Interestingly, four of the 

five predominant subtypes identified in the urban area were found in chickens and only two of 
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the five predominant in the rural area were identified in the chicken isolates. This supports a 

possible distinction between routes of infection in rural and urban environments. 

 

The results of this study do not support the suggestion that the non-identification of minor 

subtypes in chicken carcasses is preventing identification of campylobacteriosis outbreaks 

attributed to chicken consumption. The small sample number of chicken carcasses, however, 

may be a limiting factor in the information generated by this study and larger surveys are 

required to clarify these findings. If it is to be proven that the number of outbreaks due to 

Campylobacter is underreported, the most likely approach to confirm this supposition would 

require a concerted effort to combine epidemiological information with subtyping data. This 

would have to be undertaken so as to overcome the delays between identification of 

indistinguishable subtypes and interviews with campylobacteriosis sufferers. 

 

6.4 Conclusions 
 

In accordance with the first hypothesis, a robust enrichment-PCR assay was developed to detect 

and identify pathogenic Campylobacter from 13 environmental matrices that included human, 

duck and animal faeces, meat products and river water. Application of the enrichment-PCR 

method to water and chicken carcass samples identified multiple subtypes of C. jejuni in 

individual samples in each matrix, which confirmed the second hypothesis. The third hypothesis 

was repudiated in that not all of the subtypes of C. jejuni identified on chicken carcasses were 

identified in human faecal specimens. This latter point has implications for host specificity 

suggesting that there may be subtypes that are adapted to colonisation of chickens but have low 

potential for pathogenicity in humans. These subtypes could be further investigated to determine 

if they lack virulence factors in comparison to human isolates. Such a finding could have 

implications for the design of PCR markers to identify virulent subtypes that are of infectious 

significance to the consumer. 

 

Results suggest that the non-identification of minor/intermediate subtypes carried by chicken 

carcasses was not hindering the identification of a source of Campylobacter infection attributed 

to chicken consumption in this study. However, a larger number of chicken carcasses would 

need to be surveyed for multiple C. jejuni subtypes to confirm this suggestion. Although there 

was a low correlation between chicken isolates and subtypes identified in human clinical 

samples, five of the ten chickens carried a pathogenic subtype of C. jejuni. Correlation of 
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human and chicken isolates of C. jejuni suggested that PFGE subtype analysis needs to include 

recognition of subtypes that are clonally related as observed genomic plasticity during host 

passage can lead to small changes in PFGE subtype. Non-recognition of these minor changes 

may hinder identification of an outbreak source. Investigation of the direction of genetic change 

between clonally related subtypes identified in the same sample may provide further insight into 

adaptation of the bacterium to its environment and whether colonisation in an animal/bird host 

enhances virulence in humans. From the results of this study it is suggested that a comparative 

study between direct plating and enrichment methods is conducted to ascertain whether the use 

of two methods is more efficient and would reveal a higher correlation of environmental 

subtypes with human isolates. 

 

 



166  Campylobacter in environmental matrices 
 

 



Acknowledgements  167 

 

7 Acknowledgements 
 
I would like to thank the following people for their time, assistance, support and wise counsel 
over the last few years. 
 
First and foremost I would like to thank my supervisors Associate Professor Tony Cole 
(University of Canterbury), Dr. Andrew Hudson and Dr. Brent Gilpin of Enviromental Science 
and Research (ESR) for their guidance, encouragement, invaluable scientific criticism and 
endless patience. Words are not enough to describe their help and commitment, and all that I 
have learnt during this process due to their efforts. 
 
I would like to thank the Ministry of Health for their funding of the method development 
section of this thesis. 
 
Many thanks to all my work colleagues and friends at ESR. In particular, I would like to thank 
Marion Savill and Andrew Hudson for getting this project off the ground. To Beth Robson and 
Paula Scholes, in addition to your friendship, I would like to thank you both for your continuous 
technical support and expertise. Thanks to Wendy Williamson for proof reading and sound 
advice. 
 
For my family, Mum and Dad (who is not here to see it come to an end); my sister Penney, 
John, Caitlin, Sophie; my brother Geoff (for inspiring conversations), Ann, Kieran and Kelly; 
for you and all our extended family I give thanks. You have been with me in love and support 
throughout this long journey, and I am grateful for each one of you and all that you individually 
offer.  
 
To my friends who put up with my long absences and continued to encourage and support me, 
many thanks and let’s get together! A Big thankyou to Big John for IT support and keeping my 
computer in top working order. 
 
In the end it came down to Greg and Tomas, who sustained me through the long hours and 
tiredness. Heartfelt thanks to Greg, who provided childcare, encouragement and patience, and to 
Tom who provided me with delightful breaks from writing and work, and lots of hugs and 
cuddles (and to the thesis which provided me with a break from chasing a busy toddler!). 
Finally, my thanks to Samgirl, Sam, Sophie, and Mosey Dog who missed out on a lot of good 
walks and still remained loving. 
 
 

 



168  Campylobacter in environmental matrices 
 

 

 

 



References  169 

 

8 References 
 
Aarestrup, F.M., Nielsen, E.M., Madsen, M. and Engberg, J. (1997) Antimicrobial susceptibility 
patterns of thermophilic Campylobacter spp. from humans, pigs, cattle, and broilers in 
Denmark. Antimicrobial Agents and Chemotherapy 41(10): 2244-2250. 
 
Acha, S.J., Kuhn, I., Jonsson, P., Mbazima, G., Katouli, M. and Mollby, R. (2004) Studies on 
calf diarrhoea in Mozambique: prevalence of bacterial pathogens. Acta Veterinaria 
Scandinavica 45(1-2): 27-36. 
 
Adhikari, B., Connolly, J.H., Madie, P. and Davies, P.R. (2004) Prevalence and clonal diversity 
of Campylobacter jejuni from dairy farms and urban sources. New Zealand Veterinary Journal 
52(6): 378-383. 
 
Albert, M.J., Leach, A., Asche, V., Hennessy, J. and Penner, J.L. (1992) Serotype distribution of 
Campylobacter jejuni and Campylobacter coli isolated from hospitalized patients with diarrhea 
in central Australia. Journal of Clinical Microbiology 30(1): 207-210. 
 
Allos, B.M. (2001) Campylobacter jejuni Infections: update on emerging issues and trends. 
Clinical Infectious Diseases 32(8): 1201-1206. 
 
Altekruse, S.F., Stern, N.J., Fields, P.I. and Swerdlow, D.L. (1999) Campylobacter jejuni - An 
emerging foodborne pathogen. Emerging Infectious Diseases 5: 28-35. 
 
Ang, C.W., Noordzij, P.G., de Klerk, M.A., Endtz, H.P., van Doorn, P.A. and Laman, J.D. 
(2002) Ganglioside mimicry of Campylobacter jejuni lipopolysaccharides determines 
antiganglioside specificity in rabbits. Infection and Immunity 70(9): 5081-5085. 
 
Anonymous (2005) Notifiable and other diseases in New Zealand: Annual report 2004. 26-27. 
http://www.esr.cri.nz/
 
Anonymous (2004) Annual Report on Zoonoses in Denmark, 2003. Ministry of Food, 
Agriculture and Fisheries, Copenhagen, Denmark. http://www.dzc.dk 
http://www.dfvf.dk/Files/Filer/Zoonosecentret/Publikationer/Annual%20Report/Annual_Report
_fra_trykkeri.pdf (english version) 
 
Anonymous (2002) Annual Report on Zoonoses in Denmark, 2001. Ministry of Food, 
Agriculture and Fisheries, Copenhagen, Denmark. http://www.dzc.dk 
http://www13.ages.at/web/ages/content.nsf/73b5f92ac245b957c1256a9a004e1676/f0475597198
b25d2c1256e4e0044f6c9/$FILE/Denmark_Report_2001.pdf (english version) 
 
Anonymous (1999) Chicken tonight? Consumer (381): 6-9. 
 
Atabay, H.I. and Corry, J.E. (1998) The isolation and prevalence of campylobacters from dairy 
cattle using a variety of methods. Journal of Applied Microbiology 84(5): 733-740. 
 
Ayling, R.D., Woodward, M.J., Evans, S. and Newell, D.G. (1996) Restriction fragment length 
polymorphism of polymerase chain reaction products applied to the differentiation of poultry 

 

http://www.esr.cri.nz/
http://www.dzc.dk/
http://www.dfvf.dk/Files/Filer/Zoonosecentret/Publikationer/Annual Report/Annual_Report_fra_trykkeri.pdf
http://www.dfvf.dk/Files/Filer/Zoonosecentret/Publikationer/Annual Report/Annual_Report_fra_trykkeri.pdf
http://www.dzc.dk/
http://www13.ages.at/web/ages/content.nsf/73b5f92ac245b957c1256a9a004e1676/f0475597198b25d2c1256e4e0044f6c9/$FILE/Denmark_Report_2001.pdf
http://www13.ages.at/web/ages/content.nsf/73b5f92ac245b957c1256a9a004e1676/f0475597198b25d2c1256e4e0044f6c9/$FILE/Denmark_Report_2001.pdf


170  Campylobacter in environmental matrices 
campylobacters for epidemiological investigations. Research in Veterinary Science 60(2): 168-
172. 
 
Bacon, D.J., Alm, R.A., Hu, L., Hickey, T.E., Ewing, C.P., Batchelor, R.A., Trust, T.J. and 
Guerry, P. (2002) DNA sequence and mutational analyses of the pVir plasmid of 
Campylobacter jejuni 81-176. Infection and Immunity 70(11): 6242-6250. 
 
Bacon, D.J., Alm, R.A., Burr, D.H., Hu, L., Kopecko, D.J., Ewing, C.P., Trust, T.J. and 
Guerry, P. (2000) Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. 
Infection and Immunity 68(8): 4384-4390. 
 
Bailey, G.D., Vanselow, B.A., Hornitzky, M.A., Hum, S.I., Eamens, G.J., Gill, P.A., Walker, 
K.H. and Cronin, J.P. (2003) A study of the foodborne pathogens: Campylobacter, Listeria and 
Yersinia, in faeces from slaughter-age cattle and sheep in Australia. Communicable Diseases 
Intelligence 27(2): 249-257. 
 
Baker, M., Ball, A., Devane, M., Garrett, N., Gilpin, B., Hudson, A., Klena, J.K., Nicol, C., 
Savill, M., Scholes, P. and Williams, D. (2002) Potential transmission routes of Campylobacter 
from environment to humans. Environmental Institute of Science and Research Limited, Client 
Report FW0246 prepared for the Ministry of Health, New Zealand. 
 
Baker, J., Barton, M.D. and Lanser, J. (1999) Campylobacter species in cats and dogs in South 
Australia. Australian Veterinary Journal 77(10): 662-666. 
 
Bang, D.D., Nielsen, E.M., Scheutz, F., Pedersen, K., Handberg, K. and Madsen, M. (2003) 
PCR detection of seven virulence and toxin genes of Campylobacter jejuni and Campylobacter 
coli isolates from Danish pigs and cattle and cytolethal distending toxin production of the 
isolates. Journal of Applied Microbiology  94(6): 1003-1014. 
 
Barer, M.R. and Harwood, C.R. (1999) Bacterial viability and culturability. Advances in 
Microbial Physiology 41: 93-137. 
 
Barros-Velázquez, J., Jimenez, A. and Villa, T.G. (1999) Isolation and typing methods for the 
epidemiologic investigation of thermotolerant campylobacters. International Microbiology 2: 
217-226. 
 
Baserisalehi, M., Bahador, N. and Kapadnis, B.P. (2004) A novel method for isolation of 
Campylobacter spp. from environmental samples, involving sample processing, and blood- and 
antibiotic-free medium. Journal of Applied Microbiology 97(4): 853-860. 
 
Baylis, C.L., MacPhee, S., Martin, K.W., Humphrey, T.J. and Betts, R.P. (2000) Comparison of 
three enrichment media for the isolation of Campylobacter spp. from foods. Journal of Applied 
Microbiology 89: 884-891. 
 
Berndtson, E., Danielsson-Tham, M.L. and Engvall, A. (1996) Campylobacter incidence on a 
chicken farm and the spread of Campylobacter during the slaughter process. International 
Journal of Food Microbiology 32(1-2): 35-47. 
 
Besser, T.E., Hancock, D.D., Pritchett, L.C., McRae, E.M., Rice, D.H. and Tarr, P.I. (1997) 
Duration of detection of faecal excretion of Escherichia coli O157:H7 in cattle. Journal of 
Infectious Diseases 175: 726-729. 

 



References  171 

 
Beumer, R.R., de Vries, J. and Rombouts, F.M. (1992) Campylobacter jejuni non-culturable 
coccoid cells. Internation Journal of Food Microbiology 15: 153-163. 
 
Binsztein, N., Costagliola, M.C., Pichel, M., Jurquiza, V., Ramirez, F.C., Akselman, R., 
Vacchino, M., Huq, A. and Colwell, R. (2004) Viable but nonculturable Vibrio cholerae O1 in 
the aquatic environment of Argentina. Applied and Environmental Microbiology 70(12): 7481-
7486. 
 
Black, R.E., Levine, M.M., Clements, M.L., Hughes, T.P. and Blaser, M.J. (1988) Experimental 
Campylobacter jejuni infection in humans. The Journal of Infectious Diseases 157(3): 472-479. 
 
Blaser, M.J. (1997) Epidemiologic and clinical features of Campylobacter jejuni infections. 
Journal of Infectious Diseases 176 (Suppl 2): S103-105. 
 
Blaser, M.J., Black, R.E., Duncan, D.J. and Amer, J. (1985) Campylobacter jejuni-specific 
serum antibodies are elevated in healthy Bangladeshi children. Journal of Clinical Microbiology 
21(2): 164-167. 
 
Blaser, M.J., Hardesty, H.L., Powers, B. and Wang, W.L. (1980) Survival of Campylobacter 
fetus subsp. jejuni in biological milieus. Journal of Clinical Microbiology 11(4): 309-313. 
 
Blaser, M.J. and Wang, W.L. (1980) Campylobacter infections in human beings. Journal of 
Pediatrics 96(2): 343. 
 
Bolton, F.J., Coates, D. and Hutchinson, D.N. (1984) The ability of Campylobacter media 
supplements to neutralize photochemically induced toxicity and hydrogen peroxide. Journal of 
Applied Bacteriology 56(1): 151-157. 
 
Bolton, F.J., Coates, D., Hutchinson, D.N. and Godfree, A.F. (1987) A study of thermophilic 
campylobacters in a river system. Journal of Applied Bacteriology 62(2): 167-176. 
 
Bolton, F.J., Dawkins, H.C. and Hutchinson, D.N. (1985) Biotypes and serotypes of 
thermophilic campylobacters isolated from cattle, sheep and pig offal and other red meats. The 
Journal of Hygiene 95(1): 1-6. 
 
Bolton, F.J., Hinchliffe, P.M., Coates, D. and Robertson, L. (1982) A most probable number 
method for estimating small numbers of campylobacters in water. The Journal of Hygiene 
89(2): 185-190. 
 
Bolton, F.J. and Robertson, L. (1982) A selective medium for isolating Campylobacter 
jejuni/coli. Journal of Clinical Pathology 35(4): 462-467. 
 
Bopp, D.J., Sauders, B.D., Waring, A.L., Ackelsberg, J., Dumas, N., Braun-Howland, E., 
Dziewulski, D., Wallace, B.J., Kelly, M., Halse, T., Musser, K.A., Smith, P.F., Morse, D.L. and 
Limberger, R.J. (2003) Detection, isolation, and molecular subtyping of Escherichia coli 
O157:H7 and Campylobacter jejuni associated with a large waterborne outbreak. Journal of 
Clinical Microbiology 41(1): 174-180. 
 

 



172  Campylobacter in environmental matrices 
Braun, V. and Hantke, K. (2002) Mechanisms of bacterial iron transport. In Microbial transport 
systems. pp.289-311. Winkelman, G.(ed). Wiley-VCH Verlag GmBH and Co., Berlin, 
Germany. 
 
Brennhovd, O., Kapperud, G. and Langeland, G. (1992) Survey of thermotolerant 
Campylobacter spp. and Yersinia spp. in three surface water sources in Norway. International 
Journal of Food Microbiology 15(3-4): 327-338. 
 
Brieseman, M.A. (1990) A further study of the epidemiology of Campylobacter jejuni 
infections. New Zealand Medical Journal 103: 207-209. 
 
Brieseman, M.A. (1987) Town water supply as the cause of an outbreak of Campylobacter 
infection. New Zealand Medical Journal 100: 212-213. 
 
Brieseman, M.A. (1984) Raw milk consumption as a probable cause of two outbreaks of 
Campylobacter infection. New Zealand Medical Journal 97: 411-413. 
 
Broman, T., Palmgren, H., Bergstrom, S., Sellin, M., Waldenstrom, J., Danielsson-Tham, M.L. 
and Olsen, B. (2002) Campylobacter jejuni in black-headed gulls (Larus ridibundus): 
prevalence, genotypes, and influence on C. jejuni epidemiology. Journal of Clinical 
Microbiology 40(12): 4594-4602. 
 
Brown, P.E., Christensen, O.F., Clough, H.E., Diggle, P.J., Hart, C.A., Hazel, S., Kemp, R., 
Leatherbarrow, A.J., Moore, A., Sutherst, J., Turner, J., Williams, N.J., Wright, E.J. and French, 
N.P. (2004) Frequency and spatial distribution of environmental Campylobacter spp. Applied 
and Environmental Microbiology 70(11): 6501-6511. 
 
Bryan, F.L. and Doyle, M.P. (1995) Health risks and consequences of Salmonella and 
Campylobacter jejuni in raw poultry. Journal of Food Protection 58(3): 326-344. 
 
Burnens, A.P., Angeloz-Wick, B. and Nicolet, J. (1992) Comparison of Campylobacter carriage 
rates in diarrheic and healthy pet animals. Zentralblatt fur Veterinarmedizin. Reihe B. Journal of 
Veterinary Medicine. Series B 39(3): 175-180. 
 
Butzler, J.P. (2004) Campylobacter, from obscurity to celebrity. Clinical Microbiology and 
Infection 10(10): 868-876. 
 
Buzby, J.C., Allos, B.M. and Roberts, T. (1997) The economic burden of Campylobacter-
associated Guillain-Barré syndrome. Journal of Infectious Diseases 176 Suppl 2: S192-197. 
 
Buzby, J.C. and Roberts, T. (1997) Economic costs and trade impacts of microbial foodborne 
illness. World Health Statistics Quarterly. Rapport Trimestriel de Statistiques Sanitaires 
Mondiales 50(1-2): 57-66. 
 
Campbell, K.W. and Gilbert, S.A. (1995) Poultry Quality Assessment. Public Health Research 
Commission: Ministry of Health, Wellington, New Zealand. 
 
Cappelier, J.M., Rossero, A. and Federighi, M. (2000) Demonstration of a protein synthesis in 
starved Campylobacter jejuni cells. International Journal of Food Microbiology 55(1-3): 63-67. 
 

 



References  173 

Cappelier, J.M., Magras, C., Jouve, J.L. and Federighi, M. (1999a) Recovery of viable but non-
culturable Campylobacter jejuni cells in two animal models. Food Microbiology 16: 375-383. 
 
Cappelier, J.M., Minet, J., Magras, C., Colwell, R.R. and Federighi, M. (1999b) Recovery in 
embryonated eggs of viable but nonculturable Campylobacter jejuni cells and maintenance of 
ability to adhere to HeLa cells after resuscitation. Applied and Environmental Microbiology 
65(11): 5154-5157. 
 
Cappelier, J.M., Lazaro, B., Rossero, A., Fernandez-Astorga, A. and Federighi, M. (1997) 
Double staining (CTC-DAPI) for detection and enumeration of viable but non-culturable 
Campylobacter jejuni cells. Veterinary Research 28(6): 547-555. 
 
Carrillo, C.D., Taboada, E., Nash, J.H., Lanthier, P., Kelly, J., Lau, P.C., Verhulp, R., 
Mykytczuk, O., Sy, J., Findlay, W.A., Amoako, K., Gomis, S., Willson, P., Austin, J.W., Potter, 
A., Babiuk, L., Allan, B. and Szymanski, C.M. (2004) Genome-wide expression analyses of 
Campylobacter jejuni NCTC11168 reveals coordinate regulation of motility and virulence by 
flhA. Journal of Biological Chemistry 279(19): 20327-20338. 
 
Carter, A.M., Pacha, R.E., Clark, G.W. and Williams, E.A. (1987) Seasonal occurrence of 
Campylobacter spp. in surface waters and their correlation with standard indicator bacteria. 
Applied and Environmental Microbiology 53(3): 523-526. 
 
Centers for Disease Control and Prevention (2002) Preliminary FoodNet data on the incidence 
of foodborne illnesses-selected sites, United States, 2001 Morbidity and Mortality Weekly 
Report 51: 325-9 http://www.cdc.gov/ (site accessed January 2006) 
 
Champion, O.L., Gaunt, M.W., Gundogdu, O., Elmi, A., Witney, A.A., Hinds, J., Dorrell, N. 
and Wren, B.W. (2005) Comparative phylogenomics of the food-borne pathogen 
Campylobacter jejuni reveals genetic markers predictive of infection source. Proceedings of the 
National Academy of Sciences of the United States of America 102(44): 16043-16048. 
 
Champion, O.L., Best, E.L. and Frost, J.A. (2002) Comparison of pulsed-field gel 
electrophoresis and amplified fragment length polymorphism techniques for investigating 
outbreaks of enteritis due to campylobacters. Journal of Clinical Microbiology 40: 2263-2265. 
 
Chen, H.-C. and Stern, N.J. (2001) Competitive exclusion of heterologous Campylobacter spp. 
in chicks. Applied and Environmental Microbiology 67(2): 848-851. 
 
Christensen, H. and Sorenson, R. (1999) Pig Slaughter in Denmark: challenges and possibilties 
regarding zoonotic pathogens. Danish Meat Research Institute Ref. no. 52.130 (manuscript no. 
1442E). 
 
Clark, C.G., Price, L., Ahmed, R., Woodward, D.L., Melito, P.L., Rodgers, F.G., Jamieson, F., 
Ciebin, B., Li, A. and Ellis, A. (2003) Characterization of waterborne outbreak-associated 
Campylobacter jejuni, Walkerton, Ontario. Emerging Infectious Diseases 9(10): 1232-1241. 
 
Claveau, S., Sasseville, M. and Beauregard, M. (2004) Alcohol-mediated error-prone PCR. 
DNA and Cell Biology 23(11): 789-795. 
 

 

http://www.cdc.gov/


174  Campylobacter in environmental matrices 
Coleman, M.E., Marks, H.M., Golden, N.J. and Latimer, H.K. (2004) Discerning strain effects 
in microbial dose-response data. Journal of Toxicology and Environmental Health Part A 67(8-
10): 667-685. 
 
Colles, F.M., Jones, K., Harding, R.M. and Maiden, M.C. (2003) Genetic diversity of 
Campylobacter jejuni isolates from farm animals and the farm environment. Applied and 
Environmental Microbiology 69(12): 7409-7413. 
 
Colmegna, I., Cuchacovich, R. and Espinoza, L.R. (2004) HLA-B27-associated reactive 
arthritis: pathogenetic and clinical considerations. Clinical Microbiology Reviews 17(2): 348-
369. 
 
Communicable Diseases Australia 
http://www.health.gov.au/internet/wcms/Publishing.nsf/Content/Communicable+Diseases+Aust
ralia-1 (site accessed January 2006). 
 
Cools, I., Uyttendaele, M., Caro, C., D'Haese, E., Nelis, H.J. and Debevere, J. (2003) Survival 
of Campylobacter jejuni strains of different origin in drinking water. Journal of Applied 
Microbiology 94(5): 886-892. 
 
Cornelius, A.J., Nicol, C. and Hudson, J.A. (2005) Campylobacter spp. in New Zealand raw 
sheep liver and human campylobacteriosis cases. International Journal of Food Microbiology 
99(1): 99-105. 
 
Corry, J.E. and Atabay, H.I. (2001) Poultry as a source of Campylobacter and related 
organisms. Symposium Series for the Society of Applied Microbiology 30: 96S-114S. 
 
Corry, J.E.L., Post, D.E., Colin, P. and Laisney, M.J. (1995) Culture media for the isolation of 
campylobacters. International Journal of Food Microbiology 26(1): 43-76. 
 
Curtis, L.M., Patrick, M. and Blackburn, C.D. (1995) Survival of Campylobacter jejuni in foods 
and comparison with a predictive model. Letters in Applied Microbiology 21(3): 194-197. 
 
Damborg, P., Olsen, K.E., Moller Nielsen, E. and Guardabassi, L. (2004) Occurrence of 
Campylobacter jejuni in pets living with human patients infected with C. jejuni. Journal of 
Clinical Microbiology 42(3): 1363-1364. 
 
Day, W.A., Sajecki, J.L., Pitts, T.M. and Joens, L.A. (2000) Role of catalase in Campylobacter 
jejuni intracellular survival. Infection and Immunity 68(11): 6337-6345. 
 
de Boer, P., Wagenaar, J.A., Achterberg, R.P., van Putten, J.P.M., Schouls, L.M. and Duim, B. 
(2002) Generation of Campylobacter jejuni genetic diversity in vivo. Molecular Microbiology 
44(2): 351-359. 
 
de Boer, P., Duim, B., Rigter, A., van Der Plas, J., Jacobs-Reitsma, W.F. and Wagenaar, J.A. 
(2000) Computer-assisted analysis and epidemiological value of genotyping methods for 
Campylobacter jejuni and Campylobacter coli. Journal of Clinical Microbiology 38(5): 1940-
1946. 
 
Dedieu, L., Pages, J.M. and Bolla, J.M. (2004) Use of the omp50 gene for identification of 
Campylobacter species by PCR. Journal of Clinical Microbiology 42(5): 2301-2305. 

 

http://www.health.gov.au/internet/wcms/Publishing.nsf/Content/Communicable+Diseases+Australia-1
http://www.health.gov.au/internet/wcms/Publishing.nsf/Content/Communicable+Diseases+Australia-1


References  175 

 
Denis, M., Soumet, C., Rivoal, K., Ermel, G., Blivet, D., Salvat, G. and Colin, P. (1999) 
Development of a m-PCR assay for simultaneous identification of Campylobacter jejuni and C. 
coli. Letters in Applied Microbiology 29(6): 406-410. 
 
Devane, M.L., Nicol, C., Ball, A., Klena, J.D., Scholes, P., Hudson, J.A., Baker, M.G., Gilpin, 
B.J., Garrett, N. and Savill, M.G. (2005) The occurrence of Campylobacter subtypes in 
environmental reservoirs and potential transmission routes. Journal of Applied Microbiology 
98(4): 980-990. 
 
Dickins, M.A., Franklin, S., Stefanova, R., Schutze, G.E., Eisenach, K.D., Wesley, I. and Cave, 
M.D. (2002) Diversity of Campylobacter isolates from retail poultry carcasses and from humans 
as demonstrated by pulsed-field gel electrophoresis. Journal of Food Protection 65(6): 957-962. 
 
Dingle, K.E., Colles, F.M., Wareing, D.R., Ure, R., Fox, A.J., Bolton, F.E., Bootsma, H.J., 
Willems, R.J., Urwin, R. and Maiden, M.C. (2001a) Multilocus sequence typing system for 
Campylobacter jejuni. Journal of Clinical Microbiology 39(1): 14-23. 
 
Dingle, K.E., Van-Den-Braak, N., Colles, F.M., Price, L.J., Woodward, D.L., Rodgers, F.G., 
Endtz, H.P., Van-Belkum, A. and Maiden, M.C. (2001b) Sequence typing confirms that 
Campylobacter jejuni strains associated with Guillain-Barré and Miller-Fisher syndromes are of 
diverse genetic lineage, serotype, and flagella type. Journal of Clinical Microbiology 39(9): 
3346-3349. 
 
Dowling, J., MacCulloch, D. and Morris, A.J. (1998) Antimicrobial susceptibility of 
Campylobacter and Yersinia enterocolitica isolates. New Zealand Medical Journal 111: 281. 
 
Doyle, M.P. and Roman, D.J. (1982a) Response of Campylobacter jejuni to sodium chloride. 
Applied and Environmental Microbiology 43(3): 561-565. 
 
Doyle, M.P. and Roman, D.J. (1982b) Sensitivity of Campylobacter jejuni to drying. Journal of 
Food Protection 45: 507-510. 
 
Dufrenne, J., Ritmeester, W., Delfgou-van Asch, E., van Leusden, F. and de Jonge, R. (2001) 
Quantification of the contamination of chicken and chicken products in the Netherlands with 
Salmonella and Campylobacter. Journal of Food Protection 64(4): 538-541. 
 
Duim, B., Wassenaar, T.M., Rigter, A. and Wagenaar, J. (1999) High-resolution genotyping of 
Campylobacter strains isolated from poultry and humans with amplified fragment length 
polymorphism fingerprinting. Applied and Environmental Microbiology 65(6): 2369-2375. 
 
Eberhart-Phillips, J., Walker, N., Garrett, N., Bell, D., Sinclair, D., Rainger, W. and Bates, M. 
(1997) Campylobacteriosis in New Zealand: results of a case-control study. Journal of 
Epidemiology and Community Health 51(6): 686-691. 
 
Economic Research Service (2004) Briefing Room: Economics of foodborne disease: feature 
article (http://www.ers.usda.gov/briefing/FoodborneDisease/features.htm) (website accessed 
February 2005) 
 
Eisenstein, B.I. (1989) New molecular techniques for microbial epidemiology and the diagnosis 
of infectious diseases. Journal of Infectious Diseases 161: 595-602. 

 



176  Campylobacter in environmental matrices 
 
Ellis-Pegler, R.B., Hyman, L.K., Ingram, R.J. and McCarthy, M. (1995) A placebo controlled 
evaluation of lomefloxacin in the treatment of bacterial diarrhoea in the community. Journal of 
Antimicrobial Chemotherapy 36(1): 259-263. 
 
Endtz, H.P., Ang, C.W., van-Den-Braak, N., Duim, B., Rigter, A., Price, L.J., Woodward, D.L., 
Rodgers, F.G., Johnson, W.M., Wagenaar, J.A., Jacobs, B.C., Verbrugh, H.A. and van-Belkum, 
A. (2000) Molecular characterization of Campylobacter jejuni from patients with Guillain-Barré 
and Miller Fisher syndromes. Journal of Clinical Microbiology 38(6): 2297-2301. 
 
Engberg, J., Nachamkin, I., Fussing, V., McKhann, G.M., Griffin, J.W., Piffaretti, J.C., Nielsen, 
E.M. and Gerner-Smidt, P. (2001) Absence of clonality of Campylobacter jejuni in serotypes 
other than HS:19 associated with Guillain-Barré syndrome and gastroenteritis. Journal of 
Infectious Diseases 184(2): 215-220. 
 
Engberg, J., On, S.L., Harrington, C.S. and Gerner-Smidt, P. (2000) Prevalence of 
Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as 
estimated by a reevaluation of isolation methods for campylobacters. Journal of Clinical 
Microbiology 38(1): 286-291. 
 
Evans, M.R., Roberts, R.J., Ribeiro, C.D., Gardner, D. and Kembrey, D. (1996) A milk-borne 
Campylobacter outbreak following an educational farm visit. Epidemiology and Infection 
117(3): 457-462. 
 
Eyers, M., Chapelle, S., Van Camp, G., Goossens, H. and De Wachter, R. (1993) 
Discrimination among thermophilic Campylobacter species by polymerase chain reaction 
amplification of 23S rRNA gene fragments [published erratum appears in Journal of Clinical 
Microbiology 1994 Jun;32(6):1623]. Journal of Clinical Microbiology 31(12): 3340-3343. 
 
Eyers, M., Chapelle, S., Van Camp, G., Goossens, H. and De Wachter, R. (1994) 
Discrimination among thermophilic Campylobacter species by polymerase chain reaction 
amplification of 23S rRNA gene fragments. Journal of Clinical Microbiology 32(6): 1623. 
 
Fahey, T., Morgan, D., Gunneburg, C., Adak, G.K., Majid, F. and Kaczmarski, E. (1995) An 
outbreak of Campylobacter jejuni enteritis associated with failed milk pasteurisation. The 
Journal of Infection 31(2): 137-143. 
 
Faith, N.G., Shere, J.A., Brosch, R., Arnold, K.W., Ansay, S.E., Lee, M.S., Luchansky, J.B. and 
Kaspar, C.W. (1996) Prevalence and clonal nature of Escherichia coli O157:H7 on dairy farms 
in Wisconsin. Applied and Environmental Microbiology 62(5): 1519-1525. 
 
Fallacara, D.M., Monahan, C.M., Morishita, T.Y. and Wack, R.F. (2001) Fecal shedding and 
antimicrobial susceptibility of selected bacterial pathogens and a survey of intestinal parasites in 
free-living waterfowl. Avian Diseases 45(1): 128-135. 
 
Faoagali, J.L. (1984) Campylobacter in New Zealand. New Zealand Medical Journal 97: 560-
561. 
 
Federighi, M., Magras, C., Pilet, M.F., Woodward, D., Johnson, W., Jugiau, F. and Jouve, J.L. 
(1999) Incidence of thermotolerant Campylobacter in foods assessed by NF ISO 10272 
standard: results of a two year study. Food Microbiology 16: 195-204. 

 



References  177 

 
Feil, E.J., Li, B.C., Aanensen, D.M., Hanage, W.P., Spratt, B.G. (2004) eBURST: inferring 
patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus 
sequence typing data. Journal of Bacteriology 186: 1518-1530. 
 
Fitzgerald, C., Helsel, L.O., Nicholson, M.A., Olsen, S.J., Swerdlow, D.L., Flahart, R., Sexton, 
J. and Fields, P.I. (2001a) Evaluation of methods for subtyping Campylobacter jejuni during an 
outbreak involving a food handler. Journal of Clinical Microbiology 39(7): 2386-2390. 
 
Fitzgerald, C., Stanley, K., Andrew, S. and Jones, K. (2001b) Use of pulsed-field gel 
electrophoresis and flagellin gene typing in identifying clonal groups of Campylobacter jejuni 
and Campylobacter coli in farm and clinical environments. Applied and Environmental 
Microbiology 67(4): 1429-1436. 
 
French, N.P., Barrigas, M., Brown, P.E., Ribiero, P., Williams, N.J., Leatherbarrow, A.J., 
Birties, R., Bolton, E., Fearnhead, P. and Fox, A. (2005) Spatial epidemiology and natural 
population structure of Campylobacter jejuni colonizing a farmland ecosystem. Environmental 
Microbiology 7(8): 1116-1126. 
 
Friedman, C.R., Hoekstra, R.M., Samuel, M., Marcus, R., Bender, J., Shiferaw, B., Reddy, S., 
Ahuja, S.D., Helfrick, D.L., Hardnett, F., Carter, M., Anderson, B. and Tauxe, R.V. (2004) Risk 
factors for sporadic Campylobacter infection in the United States: A case-control study in 
FoodNet sites. Clinical Infectious Diseases 38 (Suppl 3): S285-296. 
 
Friedman, C.R., Neimann, J., Wegener, H.C. and Tauxe, R.V. (2000) Epidemiology of 
Campylobacter jejuni infections in the United States and other industralized nations. In 
Campylobacter. pp.121-138. Nachamkin, I. and Blaser, M.J.(ed). ASM Press, Washington, DC. 
 
Fry, B.N., Feng, S., Chen, Y.Y., Newell, D.G., Coloe, P.J. and Korolik, V. (2000) The galE 
gene of Campylobacter jejuni is involved in lipopolysaccharide synthesis and virulence. 
Infection and Immunity 68(5): 2594-2601. 
 
Galbraith, N.S., Forbes, P. and Clifford, C. (1982) Communicable disease associated with milk 
and dairy products in England and Wales 1951-80. British Medical Journal (Clinical Research 
Ed.) 284(6331): 1761-1765. 
 
Garaizar, J., Lopez-Molina, N., Laconcha, I., Lau-Baggesen, D., Rementeria, A., Vivanco, A., 
Audicana, A. and Perales, I. (2000) Suitability of PCR fingerprinting, infrequent-restriction-site 
PCR, and pulsed-field gel electrophoresis, combined with computerized gel analysis, in library 
typing of Salmonella enterica serovar Enteritidis. Applied and Environmental Microbiology 
66(12): 5273-5281. 
 
Gaudreau, C. and Gilbert, H. (1998) Antimicrobial resistance of clinical strains of 
Campylobacter jejuni subsp. jejuni strains isolated from 1985 to 1997 in Quebec, Canada. 
Antimicrobial Agents and Chemotherapy 42(8): 2106-2108. 
 
Gaynor, E.C., Cawthraw, S., Manning, G., MacKichan, J.K., Falkow, S. and Newell, D.G. 
(2004) The genome-sequenced variant of Campylobacter jejuni NCTC 11168 and the original 
clonal clinical isolate differ markedly in colonisation, gene expression, and virulence-associated 
phenotypes. Journal of Bacteriology 186(2): 503-517. 
 

 



178  Campylobacter in environmental matrices 
Giacoboni, G.I., Itoh, K., Hirayama, K., Takahashi, E. and Mitsuoka, T. (1993) Comparison of 
fecal Campylobacter in calves and cattle of different ages and areas in Japan. Journal of 
Veterinary Medical Science 55(4): 555-559. 
 
Gibreel, A., Tracz, D.M., Nonaka, L., Ngo, T.M., Connell, S.R. and Taylor, D.E. (2004) 
Incidence of antibiotic resistance in Campylobacter jejuni isolated in Alberta, Canada, from 
1999 to 2002, with special reference to tet(O)-mediated tetracycline resistance. Antimicrobial 
Agents and Chemotherapy 48(9): 3442-3450. 
 
Gibson, J.R., Slater, E., Xerry, J., Tompkins, D.S. and Owen, R.J. (1998) Use of an amplified-
fragment length polymorphism technique to fingerprint and differentiate isolates of 
Helicobacter pylori. Journal of Clinical Microbiology 36(9): 2580-2585. 
 
Gibson, J.R., Sutherland, K. and Owen, R.J. (1994) Inhibition of DNAse activity in PFGE 
analysis of DNA from Campylobacter jejuni. Letters in Applied Microbiology 19(5): 357-358. 
 
Gill, C.O. and Harris, L.M. (1982) Survival and growth of Campylobacter fetus subsp. jejuni on 
meat and in cooked foods. Applied and Environmental Microbiology 44: 259-263. 
 
Gillespie, I.A., O'Brien, S.J., Adak, G.K., Tam, C.C., Frost, J.A., Bolton, F.J. and Tompkins, 
D.S. (2003) Point source outbreaks of Campylobacter jejuni infection-are they more common 
than we think and what might cause them? Epidemiological Infections 130(3): 367-375. 
 
Gillespie, I.A., O'Brien, S.J., Frost, J.A., Adak, G.K., Horby, P., Swan, A.V., Painter, M.J. and 
Neal, K.R. (2002) A case-case comparison of Campylobacter coli and Campylobacter jejuni 
infection: a tool for generating hypotheses. Emerging Infectious Diseases 8(9): 937-942. 
 
Gilpin, B., Cornelius, A., Robson, B., Boxall, N., Ferguson, A., Nicol, C. and Henderson, T. 
(2006) Application of pulsed-field gel electrophoresis to identify potential outbreaks of 
campylobacteriosis in New Zealand. Journal of Clinical Microbiology 44(2): 406-412. 
 
Goodchild, C., Dove, B., Riley, D. and Morris, A.J. (2001) Antimicrobial susceptibility of 
Campylobacter species. New Zealand Medical Journal 114: 560-561. 
 
Graham, C., Whyte, R., Gilpin, B., Cornelius, A., Hudson, J.A., Morrison, D., Graham, H. and 
Nicol, C. (2005) Outbreak of campylobacteriosis following pre-cooked sausage consumption. 
Australian and New Zealand Journal of Public Health 29(6): 507-510. 
 
Grau, F.H. (1988) Campylobacter jejuni and Campylobacter hyointestinalis in the intestinal 
tract and on the carcasses of calves and cattle. Journal of Food Protection 51(11): 857-861. 
 
Griffiths, P.L. and Park, R.W.A. (1990) Campylobacters associated with human diarrhoeal 
disease. Journal of Applied Bacteriology 69: 281-301. 
 
Grimes, D.J., Atwell, R.W., Brayton, P.R., Palmer, L.M., Rollins, D.M., Roszak, D.B., 
Singleton, F.L., Tamplin, M.L. and Colwell, R.R. (1986) The fate of enteric pathogenic bacteria 
in estuarine and marine environments. Microbiological Sciences 3(11): 324-329. 
 
Guevremont, E., Higgins, R. and Quessy, S. (2004) Characterization of Campylobacter isolates 
recovered from clinically healthy pigs and from sporadic cases of campylobacteriosis in 
humans. Journal of Food Protection 67(2): 228-234. 

 



References  179 

 
Hadden, R.D. and Gregson, N.A. (2001) Guillain-Barré syndrome and Campylobacter jejuni 
infection. Journal of Applied Microbiology 90 Suppl: 145S-154S. 
 
Hald, B., Pedersen, K., Waino, M., Jorgensen, J.C. and Madsen, M. (2004a) Longitudinal study 
of the excretion patterns of thermophilic Campylobacter spp. in young pet dogs in Denmark. 
Journal of Clinical Microbiology 42(5): 2003-2012. 
 
Hald, B., Skovgard, H., Bang, D.D., Pedersen, K., Dybdahl, J., Jespersen, J.B. and Madsen, M. 
(2004b) Flies and Campylobacter infection of broiler flocks. Emerging Infectious Diseases 
10(8): 1490-1492. 
 
Hänninen, M.L., Haajanen, H., Pummi, T., Wermundsen, K., Katila, M.L., Sarkkinen, H., 
Miettinen, I. and Rautelin, H. (2003) Detection and typing of Campylobacter jejuni and 
Campylobacter coli and analysis of indicator organisms in three waterborne outbreaks in 
Finland. Applied and Environmental Microbiology 69(3): 1391-1396. 
 
Hänninen, M.L., Perko-Makela, P., Rautelin, H., Duim, B. and Wagenaar, J.A. (2001) Genomic 
relatedness within five common Finnish Campylobacter jejuni pulsed-field gel electrophoresis 
genotypes studied by amplified fragment length polymorphism analysis, ribotyping, and 
serotyping. Applied and Environmental Microbiology 67(4): 1581-1586. 
 
Hänninen, M.-L., Perko-Makela, P., Pitkala, A. and Rautelin, H. (2000) A three-year study of 
Campylobacter jejuni genotypes in humans with domestically acquired infections and in 
chicken samples from the Helsinki area. Journal of Clinical Microbiology 38: 1998-2000. 
 
Hänninen, M.L., Hakkinen, M. and Rautelin, H. (1999) Stability of related human and chicken 
Campylobacter jejuni genotypes after passage through chick intestine studied by pulsed-field 
gel electrophoresis. Applied and Environmental Microbiology 65(5): 2272-2275. 
 
Hänninen, M.L., Pajarre, S., Klossner, M.L. and Rautelin, H. (1998) Typing of human 
Campylobacter jejuni isolates in Finland by pulsed-field gel electrophoresis. Journal of Clinical 
Microbiology 36(6): 1787-1789. 
 
Harmon, K.M., Ransom, G.M. and Wesley, I.V. (1997) Differentiation of Campylobacter jejuni 
and Campylobacter coli by polymerase chain reaction. Molecular and Cellular Probes 11: 195-
200. 
 
Harrington, C.S., Thomson-Carter, F.M. and Carter, P.E. (1997) Evidence for recombination in 
the flagellin locus of Campylobacter jejuni: implications for the flagellin gene typing scheme. 
Journal of Clinical Microbiology 35(9): 2386-2392. 
 
Harris, N.V., Weiss, N.S. and Nolan, C.M. (1986) The role of poultry and meats in the etiology 
of Campylobacter jejuni/coli enteritis. American Journal of Public Health 76(4): 407-411. 
 
Harrow, S.A., Gilpin, B.J. and Klena, J.D. (2004) Characterization of erythromycin resistance in 
Campylobacter coli and Campylobacter jejuni isolated from pig offal in New Zealand. Journal 
of Applied Microbiology 97(1): 141-148. 
 
Harvey, R.B., Droleskey, R.E., Sheffield, C.L., Edrington, T.S., Callaway, T.R., Anderson, 
R.C., Drinnon, D.L., Ziprin, R.L., Scott, H.M. and Nisbet, D.J. (2004) Campylobacter 

 



180  Campylobacter in environmental matrices 
prevalence in lactating dairy cows in the United States. Journal of Food Protection 67(7): 1476-
1479. 
 
Havelaar, A.H., de Wit, M.A., van Koningsveld, R. and van Kempen, E. (2000) Health burden 
in the Netherlands due to infection with thermophilic Campylobacter spp. Epidemiology and 
Infection 125(3): 505-522. 
 
Haydon, D.T., Cleaveland, S., Taylor, L.H. and Laurenson, M.K. (2002) Identifying reservoirs 
of infection: a conceptual and practical challenge. Emerging Infectious Diseases (serial online) 
http://www.cdc.gov/ncidod/EID/vol8no12/01-0317.htm. 
 
Hazeleger, W.C., Wouters, J.A., Rombouts, F.M. and Abee, T. (1998) Physiological activity of 
Campylobacter jejuni far below the minimal growth temperature. Applied and Environmental 
Microbiology 64(10): 3917-3922. 
 
Hazeleger, W.C., Janse, J.D., Koenraad, P.M., Beumer, R.R., Rombouts, F.M. and Abee, T. 
(1995) Temperature-dependent membrane fatty acid and cell physiology changes in coccoid 
forms of Campylobacter jejuni. Applied and Environmental Microbiology 61(7): 2713-2719. 
 
Health Canada http://www.hc-sc.gc.ca/index e.html (site accessed January 2006) 
 
Hearnden, M., Skelly, C., Eyles, R. and Weinstein, P. (2003) The regionality of 
campylobacteriosis seasonality in New Zealand. International Journal of Environmental Health 
Research 13(4): 337-348. 
 
Hedberg, C.W., Smith, K.E., Besser, J.M., Boxrud, D.J., Hennessy, T.W., Bender, J.B., 
Anderson, F.A. and Osterholm, M.T. (2001) Limitations of pulsed-field gel electrophoresis for 
the routine surveillance of Campylobacter infections. Journal of Infectious Diseases 184(2): 
242-244. 
 
Heim, S., Lleo, M.M., Bonato, B., Guzman, C.A. and Canepari, P. (2002) The viable but 
nonculturable state and starvation are different stress responses of Enterococcus faecalis, as 
determined by proteome analysis. Journal of Bacteriology 184(23): 6739-6745. 
 
Helms, M., Vastrup, P., Gerner-Smidt, P. and Molbak, K. (2003) Short and long term mortality 
associated with foodborne bacterial gastrointestinal infections: registry based study. British 
Medical Journal (Clinical Research Ed.) 326(7385): 357. 
 
Hernandez, J., Alonso, J.L., Fayos, A., Amoros, I. and Owen, R.J. (1995) Development of a 
PCR assay combined with a short enrichment culture for detection of Campylobacter jejuni in 
estuarine surface waters. Federation of European Microbiological Societies (FEMS) 
Microbiology Letters 127(3): 201-206. 
 
Hernandez, J., Fayos, A., Alonso, J.L. and Owen, R.J. (1996) Ribotypes and AP-PCR 
fingerprints of thermophilic campylobacters from marine recreational waters. Journal of 
Applied Bacteriology 80(2): 157-164. 
 
Hiett, K.L., Stern, N.J., Fedorka-Cray, P., Cox, N.A., Musgrove, M.T. and Ladely, S. (2002) 
Molecular subtype analyses of Campylobacter spp. from Arkansas and California poultry 
operations. Applied and Environmental Microbiology 68(12): 6220-6236. 
 

 

http://www.hc-sc.gc.ca/index e.html


References  181 

Hinton, A., Jr. (2006) Growth of Campylobacter in media supplemented with organic acids. 
Journal of Food Protection 69(1): 34-38. 
 
Hong, Y., Berrang, M.E., Liu, T., Hofacre, C.L., Sanchez, S., Wang, L. and Maurer, J.J. (2003) 
Rapid detection of Campylobacter coli, C. jejuni, and Salmonella enterica on poultry carcasses 
by using PCR-enzyme-linked immunosorbent assay. Applied and Environmental Microbiology 
69(6): 3492-3499. 
 
Hooper, D.C. (2001) Emerging mechanisms of fluoroquinolone resistance. Emerging infectious 
Diseases 7(2): 337 - 341. 
 
Hopkins, K.L., Desai, M., Frost, J.A., Stanley, J. and Logan, J.M. (2004) Fluorescent amplified 
fragment length polymorphism genotyping of Campylobacter jejuni and Campylobacter coli 
strains and its relationship with host specificity, serotyping, and phage typing. Journal of 
Clinical Microbiology 42(1): 229-235. 
 
Horman, A., Rimhanen-Finne, R., Maunula, L., von Bonsdorff, C.H., Torvela, N., Heikinheimo, 
A. and Hanninen, M.L. (2004) Campylobacter spp., Giardia spp., Cryptosporidium spp., 
noroviruses, and indicator organisms in surface water in southwestern Finland, 2000-2001. 
Applied and Environmental Microbiology 70(1): 87-95. 
 
Houng, H.-S.H., Sethabutr, O., Nirdnoy, W., Katz, D.E. and Pang, L.W. (2001) Development of 
a ceuE-based multiplex polymerase chain reaction (PCR) assay for direct detection and 
differentiation of Campylobacter jejuni and Campylobacter coli in Thailand. Diagnostic 
Microbiology and Infectious Diseases 40: 11-19. 
 
Hrudey, S.E., Payment, P., Huck, P.M., Gillham, R.W. and Hrudey, E.J. (2003) A fatal 
waterborne disease epidemic in Walkerton, Ontario: comparison with other waterborne 
outbreaks in the developed world. Water Science and Technology 47(3): 7-14. 
 
Hudson, J.A., Nicol, C., Wright, J., Whyte, R. and Hasell, S.K. (1999) Seasonal variation of 
Campylobacter types from human cases, veterinary cases, raw chicken, milk and water. Journal 
of Applied Microbiology 87(1): 115-124. 
 
Humphrey, T., Mason, M. and Martin, K. (1995) The isolation of Campylobacter jejuni from 
contaminated surfaces and its survival in diluents. International Journal of Food Microbiology 
26: 295-303. 
 
Humphrey, T.J. (1990) The synergistic inhibition of Campylobacter jejuni by rifampicin and 
hydrogen peroxide. Letters in Applied Microbiology 10: 97-100. 
 
Humphrey, T.J. (1986) Techniques for the optimum recovery of cold injured Campylobacter 
jejuni from milk or water. Journal of Applied Bacteriology 61(2): 125-132. 
 
Humphrey, T.J. and Cruickshank, J.G. (1985) Antibiotic and deoxycholate resistance in 
Campylobacter jejuni following freezing or heating. Journal of Applied Bacteriology 59(1): 65-
71. 
 
Hunter, S.B., Vauterin, P., Lambert-Fair, M.A., Van Duyne, M.S., Kubota, K., Graves, L., 
Wrigley, D., Barrett, T. and Ribot, E. (2005) Establishment of a universal size standard strain 

 



182  Campylobacter in environmental matrices 
for use with the PulseNet standardized pulsed-field gel electrophoresis protocols: converting the 
national databases to the new size standard. Journal of Clinical Microbiology 43(3): 1045-1050. 
 
Hutchison, M.L., Walters, L.D., Avery, S.M., Synge, B.A. and Moore, A. (2004) Levels of 
zoonotic agents in British livestock manures. Letters in Applied Microbiology 39(2): 207-214. 
 
Ikram, R., Chambers, S., Mitchell, P. and Brieseman, M. (1994) A case control study to 
determine the risk factors for Campylobacter infection in Christchurch in the summer of 1992-
1993. New Zealand Medical Journal 107: 430-432. 
 
Inglis, G.D. and Kalischuk, L.D. (2004) Direct quantification of Campylobacter jejuni and 
Campylobacter lanienae in feces of cattle by real-time quantitative PCR. Applied and 
Environmental Microbiology 70(4): 2296-2306. 
 
Inglis, G.D. and Kalischuk, L.D. (2003) Use of PCR for direct detection of Campylobacter 
species in bovine feces. Applied and Environmental Microbiology 69(6): 3435-3447. 
 
Inglis, G.D., Kalischuk, L.D. and Busz, H.W. (2004) Chronic shedding of Campylobacter 
species in beef cattle. Journal of Applied Microbiology 97(2): 410-420. 
 
Inglis, G.D., Kalischuk, L.D. and Busz, H.W. (2003) A survey of Campylobacter species shed 
in faeces of beef cattle using polymerase chain reaction. Canadian Journal of Microbiology 
49(11): 655-661. 
 
Inkson, I. (2002) Campylobacteriosis outbreak traced to a school water supply. Water and 
Health 10: 1-2. 
 
Jacobs-Reitsma, W.F., van de Giessen, A.W., Bolder, N.M. and Mulder, R.W. (1995) 
Epidemiology of Campylobacter spp. at two Dutch broiler farms. Epidemiology and Infection 
114(3): 413-421. 
 
Johnson, J.L., Brooke, C.L. and Fritschel, S.J. (1998) Comparison of the BAX for screening/E. 
coli O157:H7 method with conventional methods for detection of extremely low levels of 
Escherichia coli O157:H7 in ground beef. Applied and Environmental Microbiology 64: 4390-
4395. 
 
Jones, K. (2001) Campylobacters in water, sewage and the environment. Journal of Applied 
Microbiology 90 Suppl: 68S-79S. 
 
Jones, K., Howard, S. and Wallace, J.S. (1999) Intermittent shedding of thermophilic 
campylobacters by sheep at pasture. Journal of Applied Microbiology 86(3): 531-536. 
 
Jørgensen, F., Bailey, R., Williams, S., Henderson, P., Wareing, D.R., Bolton, F.J., Frost, J.A., 
Ward, L. and Humphrey, T.J. (2002) Prevalence and numbers of Salmonella and 
Campylobacter spp. on raw, whole chickens in relation to sampling methods. International 
Journal of Food Microbiology 76(1-2): 151-164. 
 
Josefsen, M.H., Jacobsen, N.R. and Hoorfar, J. (2004) Enrichment followed by quantitative 
PCR both for rapid detection and as a tool for quantitative risk assessment of food-borne 
thermotolerant campylobacters. Applied and Environmental Microbiology 70(6): 3588-3592. 
 

 



References  183 

Kakoyiannis, C.K., Winter, P.J. and Marshall, R.B. (1988) The relationship between intestinal 
Campylobacter species isolated from animals and humans as determined by BRENDA. 
Epidemiology and Infection 100(3): 379-387. 
 
Kao, R.R. and Roberts, M.G. (1999) A comparison of wildlife control and cattle vaccination as 
methods for the control of bovine tuberculosis. Epidemiology and Infection 122(3): 505-519. 
 
Kapperud, G., Skjerve, E., Bean, N.H., Ostroff, S.M. and Lassen, J. (1992) Risk factors for 
sporadic Campylobacter infections: results of a case-control study in southeastern Norway. 
Journal of Clinical Microbiology 30(12): 3117-3121. 
 
Karenlampi, R., Rautelin, H., Hakkinen, M. and Hanninen, M.L. (2003) Temporal and 
geographical distribution and overlap of Penner heat-stable serotypes and pulsed-field gel 
electrophoresis genotypes of Campylobacter jejuni isolates collected from humans and chickens 
in Finland during a seasonal peak. Journal of Clinical Microbiology 41(10): 4870-4872. 
 
Karlyshev, A.V., Champion, O.L., Churcher, C., Brisson, J.R., Jarrell, H.C., Gilbert, M., 
Brochu, D., St Michael, F., Li, J., Wakarchuk, W.W., Goodhead, I., Sanders, M., Stevens, K., 
White, B., Parkhill, J., Wren, B.W. and Szymanski, C.M. (2005) Analysis of Campylobacter 
jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and 
the ability to form complex heptoses. Molecular Microbiology 55(1): 90-103. 
 
Kell, D.B., Kaprelyants, A.S., Weichart, D.H., Harwood, C.R. and Barer, M.R. (1998) Viability 
and activity in readily culturable bacteria: a review and discussion of the practical issues. 
Antonie Van Leeuwenhoek 73(2): 169-187. 
 
Kelly, A.F., Martinez-Rodriguez, A., Bovill, R.A. and Mackey, B.M. (2003) Description of a 
"phoenix" phenomenon in the growth of Campylobacter jejuni at temperatures close to the 
minimum for growth. Applied and Environmental Microbiology 69(8): 4975-4978. 
 
Kelly, A.F., Park, S.F., Bovill, R. and Mackey, B.M. (2001) Survival of Campylobacter jejuni 
during stationary phase: evidence for the absence of a phenotypic stationary-phase response. 
Applied and Environmental Microbiology 67(5): 2248-2254. 
 
Kemp, R., Leatherbarrow, A.J., Williams, N.J., Hart, C.A., Clough, H.E., Turner, J., Wright, 
E.J. and French, N.P. (2005) Prevalence and genetic diversity of Campylobacter spp. in 
environmental water samples from a 100-square-kilometer predominantly dairy farming area. 
Applied and Environmental Microbiology 71(4): 1876-1882. 
 
Kirk, R. and Rowe, M.T. (1994) A PCR assay for the detection of Campylobacter jejuni and 
Campylobacter coli in water. Letters in Applied Microbiology 19(5): 301-303. 
 
Koene, M.G., Houwers, D.J., Dijkstra, J.R., Duim, B. and Wagenaar, J.A. (2004) Simultaneous 
presence of multiple Campylobacter species in dogs. Journal of Clinical Microbiology 42(2): 
819-821. 
 
Koenraad, P.M.F.J., Rombouts, F.M. and Notermans, S.H.W. (1997) Epidemiological aspects of 
thermophilic Campylobacter in water-related environments: A review. Water Environmental 
Research 69(1): 52-63. 
 

 



184  Campylobacter in environmental matrices 
Kogure, K., Simidu, U. and Taga, N. (1978) A tentative direct microscopic method for counting 
living marine bacteria. Canadian Journal of Microbiology 25: 415-420. 
 
Konkel, M.E., Klena, J.D., Rivera-Amill, V., Monteville, M.R., Biswas, D., Raphael, B. and 
Mickelson, J. (2004) Secretion of virulence proteins from Campylobacter jejuni is dependent on 
a functional flagellar export apparatus. Journal of Bacteriology 186(11): 3296-3303. 
 
Konkel, M.E., Monteville, M.R., Rivera-Amill, V. and Joens, L.A. (2001) The pathogenesis of 
Campylobacter jejuni-mediated enteritis. Current Issues in Intestinal Microbiology 2(2): 55-71. 
 
Konkel, M.E., Gray, S.A., Kim, B.J., Garvis, S.G. and Yoon, J. (1999a) Identification of the 
enteropathogens Campylobacter jejuni and Campylobacter coli based on the cadF virulence 
gene and its product. Journal of Clinical Microbiology 37(3): 510-517. 
 
Konkel, M.E., Kim, B.J., Rivera-Amill, V. and Garvis, S.G. (1999b) Bacterial secreted proteins 
are required for the internalization of Campylobacter jejuni into cultured mammalian cells. 
Molecular Microbiology 32(4): 691-701. 
 
Korhonen, L.K. and Martikainen, P.J. (1991) Comparison of the survival of Campylobacter 
jejuni and Campylobacter coli in culturable form in surface water. Canadian Journal of 
Microbiology 37(7): 530-533. 
 
Kramer, J.M., Frost, J.A., Bolton, F.J. and Wareing, D.R. (2000) Campylobacter contamination 
of raw meat and poultry at retail sale: identification of multiple types and comparison with 
isolates from human infection. Journal of Food Protection 63(12): 1654-1659. 
 
Kusumaningrum, H.D., Riboldi, G., Hazeleger, W.C. and Beumer, R.R. (2003) Survival of 
foodborne pathogens on stainless steel surfaces and cross-contamination to foods. International 
Journal of Food Microbiology 85(3): 227-236. 
 
Lastovica, A.J., le Roux, E. Engberg, J., Gerner-Smidt, P., On, S.L.W. and Harrington, C.S. 
(2000) Efficient isolation of Campylobacteria from stools. Journal of Clinical Microbiology 
38(7): 2798-2799. 
 
Lawson, A.J., Logan, J.M.J., O'Neill, G.L., Desai, M. and Stanley, J. (1999) Large-scale survey 
of Campylobacter species in human gastroenteritis by PCR and PCR-enzyme-linked 
immunosorbent assay. Journal of Clinical Microbiology. 37(12): 3860-3864. 
 
Lawson, A.J., Linton, D. and Stanley, J. (1998) 16S rRNA gene sequences of 'Candidatus 
Campylobacter hominis', a novel uncultivated species, are found in the gastrointestinal tract of 
healthy humans. Microbiology 144 (Pt 8): 2063-2071. 
 
Leach, S., Harvey, P. and Wali, R. (1997) Changes with growth rate in the membrane lipid 
composition of and amino acid utilization by continuous cultures of Campylobacter jejuni. 
Journal of Applied Microbiology 82(5): 631-640. 
 
Leatherbarrow, A.J., Hart, C.A., Kemp, R., Williams, N.J., Ridley, A., Sharma, M., Diggle, P.J., 
Wright, E.J., Sutherst, J. and French, N.P. (2004) Genotypic and antibiotic susceptibility 
characteristics of a Campylobacter coli population isolated from dairy farmland in the United 
Kingdom. Applied and Environmental Microbiology 70(2): 822-830. 
 

 



References  185 

Lehner, A., Schneck, C., Feierl, G., Pless, P., Deutz, A., Brandl, E. and Wagner, M. (2000) 
Epidemiologic application of pulsed-field gel electrophoresis to an outbreak of Campylobacter 
jejuni in an Austrian youth centre. Epidemiology and Infection 125(1): 13-16. 
 
Leonard, E.E., 2nd, Tompkins, L.S., Falkow, S. and Nachamkin, I. (2004) Comparison of 
Campylobacter jejuni isolates implicated in Guillain-Barré syndrome and strains that cause 
enteritis by a DNA microarray. Infection and Immunity 72(2): 1199-1203. 
 
Lindmark, H., Harbom, B., Thebo, L., Andersson, L., Hedin, G., Osterman, B., Lindberg, T., 
Andersson, Y., Westoo, A. and Olsson Engvall, E. (2004) Genetic characterization and 
antibiotic resistance of Campylobacter jejuni isolated from meats, water, and humans in 
Sweden. Journal of Clinical Microbiology 42(2): 700-706. 
 
Lindstedt, B.A., Heir, E., Vardund, T., Melby, K.K. and Kapperud, G. (2000) Comparative 
fingerprinting analysis of Campylobacter jejuni subsp. jejuni strains by amplified-fragment 
length polymorphism genotyping. Journal of Clinical Microbiology 38(9): 3379-3387. 
 
Linton, D., Lawson, A.J., Owen, R.J. and Stanley, J. (1997) PCR detection, identification to 
species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from 
diarrheic samples. Journal of Clinical Microbiology 35(10): 2568-2572. 
 
Lior, H. (1984) New, extended biotyping scheme for Campylobacter jejuni, Campylobacter 
coli, and "Campylobacter laridis". Journal of Clinical Microbiology 20(4): 636-640. 
 
Llovo, J., Mateo, E., Munoz, A., Urquijo, M., On, S.L. and Fernandez-Astorga, A. (2003) 
Molecular typing of Campylobacter jejuni isolates involved in a neonatal outbreak indicates 
nosocomial transmission. Journal of Clinical Microbiology 41(8): 3926-3928. 
 
Logan, J.M., Burnens, A., Linton, D., Lawson, A.J. and Stanley, J. (2000) Campylobacter 
lanienae sp. nov., a new species isolated from workers in an abattoir. 50 Pt 2: 865-872. 
 
Luechtefeld, N.A., Blaser, M.J., Reller, L.B. and Wang, W.L. (1980) Isolation of 
Campylobacter fetus subsp. jejuni from migratory waterfowl. Journal of Clinical Microbiology 
12(3): 406-408. 
 
Madden, R.H., Moran, L. and Scates, P. (2000) Optimising recovery of Campylobacter spp. 
from the lower porcine gastrointestinal tract. Journal of Microbiological Methods. 42(2): 115-
119. 
 
Madden, R.H., Moran, L. and Scates, P. (1998) Frequency of occurrence of Campylobacter spp. 
in red meats and poultry in Northern Ireland and their subsequent subtyping using polymerase 
chain reaction-restriction fragment length polymorphism and the random amplified polymorphic 
DNA method. Journal of Applied Microbiology 84(5): 703-708. 
 
Maher, M., Finnegan, C., Collins, E., Ward, B., Carroll, C. and Cormican, M. (2003) Evaluation 
of culture methods and a DNA probe-based PCR assay for detection of Campylobacter species 
in clinical specimens of feces. Journal of Clinical Microbiology 41(7): 2980-2986. 
 
Manning, G., Dowson, C.G., Bagnall, M.C., Ahmed, I.H., West, M. and Newell, D.G. (2003) 
Multilocus sequence typing for comparison of veterinary and human isolates of Campylobacter 
jejuni. Applied and Environmental Microbiology 69(11): 6370-6379. 

 



186  Campylobacter in environmental matrices 
 
Manning, G., Duim, B., Wassenaar, T., Wagenaar, J.A., Ridley, A. and Newell, D.G. (2001) 
Evidence for a genetically stable strain of Campylobacter jejuni. Applied and Environmental 
Microbiology 67(3): 1185-1189. 
 
Martin, K.W., Mattick, K.L., Harrison, M. and Humphrey, T.J. (2002) Evaluation of selective 
media for Campylobacter isolation when cycloheximide is replaced with amphotericin B. 
Letters in Applied Microbiology 34(2): 124-129. 
 
Mason, M.J., Humphrey, T.J. and Martin, K.W. (1999) Isolation of sublethally injured 
campylobacters from poultry and water sources. British Journal of Biomedical Science 56(1): 2-
5. 
 
Mathan, V.I. and Rajan, D.P. (1986) The prevalence of bacterial intestinal pathogens in a 
healthy rural population in southern India. Journal of Medical Microbiology 22(2): 93-96. 
 
McKay, D., Fletcher, J., Cooper, P. and Thomson-Carter, F.M. (2001) Comparison of two 
methods for serotyping Campylobacter spp. Journal of Clinical Microbiology 39(5): 1917-
1921. 
 
Meanger, J.D. and Marshall, R.B. (1989) Campylobacter jejuni infection within a laboratory 
animal production unit. Laboratory Animals 23(2): 126-132. 
 
Medema, G.J., Teunis, P.F., Havelaar, A.H. and Haas, C.N. (1996) Assessment of the dose-
response relationship of Campylobacter jejuni. International Journal of Food Microbiology 
30(1-2): 101-111. 
 
Medema, G.J., Schets, F.M., van de Giessen, A.W. and Havelaar, A.H. (1992) Lack of 
colonisation of 1 day old chicks by viable, non-culturable Campylobacter jejuni. Journal of 
Applied Bacteriology 72(6): 512-516. 
 
Michaud, S., Menard, S. and Arbeit, R.D. (2005) Role of real-time molecular typing in the 
surveillance of Campylobacter enteritis and comparison of pulsed-field gel electrophoresis 
profiles from chicken and human isolates. Journal of Clinical Microbiology 43(3): 1105-1111. 
 
Michaud, S., Menard, S. and Arbeit, R.D. (2004) Campylobacteriosis, Eastern Townships, 
Quebec. Emerging Infectious Diseases 10(10): 1844-1847. 
 
Michaud, S., Menard, S., Gaudreau, C. and Arbeit, R.D. (2001) Comparison of SmaI-defined 
genotypes of Campylobacter jejuni examined by KpnI: a population-based study. Journal of 
Medical Microbiology 50(12): 1075-1081. 
 
Miettinen, I.T., Zacheus, O., von-Bonsdorff, C.H. and Vartiainen, T. (2001) Waterborne 
epidemics in Finland in 1998-1999. Water Science and Technology 43(12): 67-71. 
 
Miller, W.G., Pearson, B.M., Wells, J.M., Parker, C.T., Kapitonov, V.V. and Mandrell, R.E. 
(2005) Diversity within the Campylobacter jejuni type I restriction-modification loci. 
Microbiology 151(Pt 2): 337-351. 
 

 



References  187 

Miller, W.G., Bates, A.H., Horn, S.T., Brandl, M.T., Wachtel, M.R. and Mandrell, R.E. (2000) 
Detection on surfaces and in Caco-2 cells of Campylobacter jejuni cells transformed with new 
gfp, yfp, and cfp marker plasmids. Applied and Environmental Microbiology 66(12): 5426-5436. 
 
Moen, B., Oust, A., Langsrud, O., Dorrell, N., Marsden, G.L., Hinds, J., Kohler, A., Wren, 
B.W. and Rudi, K. (2005) Explorative multifactor approach for investigating global survival 
mechanisms of Campylobacter jejuni under environmental conditions. Applied and 
Environmental Microbiology 71(4): 2086-2094. 
 
Monteiro, L., Bonnemaison, D., Vekris, A., Petry, K.G., Bonnet, J., Vidal, R., Cabrita, J. and 
Megraud, F. (1997) Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori 
model. Journal of Clinical Microbiology 35(4): 995-998. 
 
Moore, J.E., Corcoran, D., Dooley, J.S.G., Fanning, S., Lucey, B., Matsuda, M., McDowell, 
D.A., Mégraud, F., Millara, B.C., O'Mahony, R., O'Riordan, L., O'Rourke, M., Rao, J.R., 
Rooney, P.J., Sails, A., and Whyte, P. (2005) Campylobacter. Veterinary research 36: 351-382. 
 
Moore, J.E. (2000) Comparison of basal broth media for the optimal laboratory recovery of 
Campylobacter jejuni and Campylobacter coli. Irish Journal of Medical Science 169(3): 187-
189. 
 
Moore, J.E. and Madden, R.H. (1998) Occurrence of thermophilic Campylobacter spp. in 
porcine liver in Northern Ireland. Journal of Food Protection 61(4): 409-413. 
 
Moran, A.P. and Upton, M.E. (1986) A comparative study of the rod and coccoid forms of 
Campylobacter jejuni ATCC 29428. Journal of Applied Bacteriology 60(2): 103-110. 
 
Munroe, D.L., Prescott, J.F. and Penner, J.L. (1983) Campylobacter jejuni and Campylobacter 
coli serotypes isolated from chickens, cattle and pigs. Journal of Clinical Microbiology 18(4): 
877-881. 
 
Murphy, C., Carroll, C. and Jordan, K.N. (2005) The effect of different media on the survival 
and induction of stress responses by Campylobacter jejuni. Journal of Microbiological Methods 
62(2): 161-166. 
 
Murphy, C., Carroll, C. and Jordan, K.N. (2003) Identification of a novel stress resistance 
mechanism in Campylobacter jejuni. Journal of Applied Microbiology 95(4): 704-708. 
 
Nachamkin, I. (2003) Campylobacter and Arcobacter. In Manual of Clinical Microbiology. 1. 
Chapter 57 pp.902-915 Murray, P.R.(ed). American Society for Microbiology, Washington, 
D.C. 
 
Nachamkin, I., Allos, B.M. and Ho, T. (1998) Campylobacter species and Guillain-Barré 
syndrome. Clinical Microbiology Reviews 11(3): 555-567. 
 
Nachamkin, I. (1995) Campylobacter and Arcobacter. In Manual of Clinical Microbiology. 1. 
Chapter 37. pp.483-491. Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C. and Yolken, 
F.C.(eds). American Society for Microbiology, Washington, D.C. 
 

 



188  Campylobacter in environmental matrices 
Nadeau, E., Messier, S. and Quessy, S. (2003) Comparison of Campylobacter isolates from 
poultry and humans: association between in vitro virulence properties, biotypes, and pulsed-
field gel electrophoresis clusters. Applied and Environmental Microbiology 69(10): 6316-6320. 
 
Nadeau, E., Messier, S. and Quessy, S. (2002) Prevalence and comparison of genetic profiles of 
Campylobacter strains isolated from poultry and sporadic cases of campylobacteriosis in 
humans. Journal of Food Protection 65(1): 73-78. 
 
Newell, D.G. (2002) The ecology of Campyobacter jejuni in avian and human hosts and in the 
environment. International Journal of Infectious Diseases 6: 3516-3521. 
 
Newell, D.G., Shreeve, J.E., Toszeghy, M., Domingue, G., Bull, S., Humphrey, T. and Mead, G. 
(2001) Changes in the carriage of Campylobacter strains by poultry carcasses during processing 
in abattoirs. Applied and Environmental Microbiology 67(6): 2636-2640. 
 
Ng, N.K., Kingombe, C.I., Yan, W., Taylor, D.E., Hiratsuka, K., Malik, N. and Garcia, M.M. 
(1997) Specific detection and confirmation of Campylobacter jejuni by DNA hybridization and 
PCR. Applied and Environmental Microbiology 63: 4558-4563. 
 
Ng, L.K., Sherburne, R., Taylor, D.E. and Stiles, M.E. (1985) Morphological forms and 
viability of Campylobacter species studied by electron microscopy. Journal of Bacteriology 
164(1): 338-343. 
 
Nichols, G.L. (2005) Fly transmission of Campylobacter. Emerging Infectious Diseases 11(3): 
361-364. 
 
Nielsen, E., Engberg, J., Fussing, V., Petersen, L., Brogren, C.-H. and On, S.L. (2000) 
Evaluation of phenotypic and genotypic methods for subtyping Campylobacter jejuni isolates 
from humans, poultry and cattle. Journal of Clinical Microbiology 38(10): 3800-3810. 
 
Nielsen, E.M. and Nielsen, N.L. (1999) Serotypes and typability of Campylobacter jejuni and 
Campylobacter coli isolated from poultry products. International Journal of Food Microbiology 
46(3): 199-205. 
 
Nylen, G., Dunstan, F., Palmer, S.R., Andersson, Y., Bager, F., Cowden, J., Fierel, G., 
Galloway, Y., Kapperud, G., Megraud, F., Molbak, K., Petersen, L.R. and Ruutu, P. (2002) The 
seasonal distribution of Campylobacter infection in nine European countries and New Zealand. 
Epidemiology and Infection 128: 383-390. 
 
O'Sullivan, N.A., Fallon, R., Carroll, C., Smith, T. and and Maher, M. (2000) Detection and 
differentiation of Campylobacter jejuni and Campylobacter coli in broiler chicken samples 
using a PCR/DNA probe membrane using colorimetric detection assay. Molecular and Cellular 
Probes 14: 7-16. 
 
Obiri-Danso, K. and Jones, K. (1999) Distribution and seasonality of microbial indicators and 
thermophilic campylobacters in two freshwater bathing sites on the River Lune in northwest 
England. Journal of Applied Microbiology 87(6): 822-832. 
 
Obiri-Danso, K., Paul, N. and Jones, K. (2001) The effects of UVB and temperature on the 
survival of natural populations and pure cultures of Campylobacter jejuni, Camp. coli, Camp. 

 



References  189 

lari and urease-positive thermophilic campylobacters (UPTC) in surface waters. Journal of 
Applied Microbiology 90: 256-267. 
 
Oelschlaeger, T.A., Guerry, P. and Kopecko, D.J. (1993) Unusual microtubule-dependent 
endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. 
Proceedings of the National Academy of Sciences of the United States of America 90(14): 6884-
6888. 
 
Olive, D.M. and Bean, P. (1999) Principles and applications of methods for DNA-based typing 
of microbial organisms. Journal of Clinical Microbiology 37(6): 1661-1669. 
 
Olsen, S.J., Hansen, G.R., Bartlett, L., Fitzgerald, C., Sonder, A., Manjrekar, R., Riggs, T., Kim, 
J., Flahart, R., Pezzino, G. and Swerdlow, D.L. (2001) An outbreak of Campylobacter jejuni 
infections associated with food handler contamination: the use of pulsed-field gel 
electrophoresis. Journal of Infectious Diseases 183(1): 164-167. 
 
On, S.L.W. and Jordan, P.J. (2003) Evaluation of 11 PCR assays for species-level identification 
of Campylobacter jejuni and Campylobacter coli. Journal of Clinical Microbiology 41(1): 330-
336. 
 
On, S.L.W. (2001) Taxonomy of Campylobacter, Arcobacter, Helicobacter and related 
bacteria: current status, future prospects and immediate concerns. Symposium series (Society for 
Applied Microbiology) 90: 1S-15S. 
 
On, S.L. and Harrington, C.S. (2000) Identification of taxonomic and epidemiological 
relationships among Campylobacter species by numerical analysis of AFLP profiles. Federation 
of European Microbiological Societies (FEMS) Microbiology Letters 193(1): 161-169. 
 
On, S.L., Nielsen, E.M., Engberg, J. and Madsen, M. (1998) Validity of SmaI-defined 
genotypes of Campylobacter jejuni examined by SalI, KpnI, and BamHI polymorphisms: 
evidence of identical clones infecting humans, poultry, and cattle. Epidemiology and Infection 
120(3): 231-237. 
 
On, S.L.W. (1996) Identification methods for campylobacters, helicobacters, and related 
organisms. Clinical Microbiology Reviews 9(3): 405-422. 
 
On, S.L. and Holmes, B. (1992) Assessment of enzyme detection tests useful in identification of 
Campylobacteria. Journal of Clinical Microbiology 30: 746-749. 
 
Ono, K. and Yamamoto, K. (1999) Contamination of meat with Campylobacter jejuni in 
Saitama, Japan. International Journal of Food Microbiology 47(3): 211-219. 
 
Owen, R.J. (1983) Nucleic acids in the classification of campylobacters. European Journal of 
Clinical Microbiology 2(4): 367-377. 
 
Owen, R.J., Slater, E.R., Telford, D., Donovan, T. and Barnham, M. (1997) Subtypes of 
Campylobacter jejuni from sporadic cases of diarrheal disease at different locations in England 
are highly diverse. European Journal of Epidemiology 13: 837-840. 
 

 



190  Campylobacter in environmental matrices 
Oyofo, B.A., Thornton, S.A., Burr, D.H., Trust, T.J., Pavlovskis, O.R. and Guerry, P. (1992) 
Specific detection of Campylobacter jejuni and Campylobacter coli by using polymerase chain 
reaction. Journal of Clinical Microbiology 30(10): 2613-2619. 
 
Park, R.W., Griffiths, P.L. and Moreno, G.S. (1991) Sources and survival of campylobacters: 
relevance to enteritis and the food industry. Society for Applied Bacteriology Symposium Series 
20: 97S-106S. 
 
Park, S.F. (2002) The physiology of Campylobacter species and its relevance to their role as 
foodborne pathogens. International Journal of Food Microbiology 74(3): 177-188. 
 
Parkhill, J., Wren, B.W., Mungall, K., Ketley, J.M., Churcher, C., Basham, D., 
Chillingworth, T., Davies, R.M., Feltwell, T., Holroyd, S., Jagels, K., Karlyshev, A.V., 
Moule, S., Pallen, M.J., Penn, C.W., Quail, M.A., Rajandream, M.A., Rutherford, K.M., 
van Vliet, A.H., Whitehead, S. and Barrell, B.G. (2000) The genome sequence of the food-
borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature: Letters to 
Nature 403: 665-668. 
 
Patton, C.M., Wachsmuth, I.K., Evins, G.M., Kiehlbauch, J.A., Plikaytis, B.D., Troup, N., 
Tompkins, L. and Lior, H. (1991) Evaluation of 10 methods to distinguish epidemic-associated 
Campylobacter strains. Journal of Clinical Microbiology 29(4): 680-688. 
 
Pearson, A.D., Greenwood, M.H., Donaldson, J., Healing, T.D., Jones, D.M., Shahamat, M., 
Feltham, R.K. and Colwell, R.R. (2000) Continuous source outbreak of campylobacteriosis 
traced to chicken. Journal of Food Protection 63(3): 309-314. 
 
Pebody, R.G., Ryan, M.J. and Wall, P.G. (1997) Outbreaks of campylobacter infection: rare 
events for a common pathogen. Communicable Disease Report. CDR review. 7(3): R33-37. 
 
Petersen, L., Nielsen, E.M., Engberg, J., On, S.L. and Dietz, H.H. (2001a) Comparison of 
genotypes and serotypes of Campylobacter jejuni isolated from Danish wild mammals and birds 
and from broiler flocks and humans. Applied and Environmental Microbiology 67(7): 3115-
3121. 
 
Petersen, L., Nielsen, E.M. and On, S.L. (2001b) Serotype and genotype diversity and hatchery 
transmission of Campylobacter jejuni in commercial poultry flocks. Veterinary Microbiology 
82(2): 141-154. 
 
Phillips, I., Casewell, M., Cox, T., De Groot, B., Friis, C., Jones, R., Nightingale, C., Preston, R. 
and Waddell, J. (2004) Does the use of antibiotics in food animals pose a risk to human health? 
A critical review of published data. Journal of Antimicrobial Chemotherapy 53(1): 28-52. 
 
Poly, F., Threadgill, D. and Stintzi, A. (2004) Identification of Campylobacter jejuni ATCC 
43431-specific genes by whole microbial genome comparisons. Journal of Bacteriology 
186(14): 4781-4795. 
 
Poly, F., Threadgill, D. and Stintzi, A. (2005) Genomic diversity in Campylobacter jejuni: 
identification of C. jejuni 81-176-specific genes. Journal of Clinical Microbiology 43(5): 2330-
2338. 
 

 



References  191 

Pommepuy, M., Butin, M., Derrien, A., Gourmelon, M., Colwell, R.R. and Cormier, M. (1996) 
Retention of enteropathogenicity by viable but nonculturable Escherichia coli exposed to 
seawater and sunlight. Applied and Environmental Microbiology 62(12): 4621-4626. 
 
Prendergast, M.M., Tribble, D.R., Baqar, S., Scott, D.A., Ferris, J.A., Walker, R.I. and 
Moran, A.P. (2004) In vivo phase variation and serologic response to lipooligosaccharide of 
Campylobacter jejuni in experimental human infection. Infection and Immunity 72(2): 916-922. 
 
Proctor, M.E., Kurzynski, T., Koschmann, C., Archer, J.R. and Davis, J.P. (2002) Four strains 
of Escherichia coli O157:H7 isolated from patients during an outbreak of disease associated 
with ground beef: importance of evaluating multiple colonies from an outbreak-associated 
product. Journal of Clinical Microbiology 40(4): 1530-1533. 
 
Rajan, D.P. and Mathan, V.I. (1982) Prevalence of Campylobacter fetus subsp. jejuni in healthy 
populations in southern India. Journal of Clinical Microbiology 15(5): 749-751. 
 
Rasmussen, H.N., Olsen, J.E., Jorgensen, K. and Rasmussen, O.F. (1996) Detection of 
Campylobacter jejuni and Camp. coli in chicken faecal samples by PCR. Letters in Applied 
Microbiology 23(5): 363-366. 
 
Reina, J., Ros, M.J. and Serra, A. (1994) Susceptibilities to 10 antimicrobial agents of 1,220 
Campylobacter strains isolated from 1987 to 1993 from feces of pediatric patients. 
Antimicrobial Agents and Chemotherapy 38(12): 2917-2920. 
 
Reina, J., Borrell, N. and Serra, A. (1992) Emergence of resistance to erythromycin and 
fluoroquinolones in thermotolerant Campylobacter strains isolated from faeces 1987-1991. 
European Journal of Clinical Microbiology & Infectious Diseases 11: 1163-1166. 
 
Ribeiro, C.D., Thomas, M.T., Kembrey, D., Magee, J.T. and North, Z. (1996) Resistotyping of 
campylobacters: fulfilling a need. Epidemiology and Infection 116(2): 169-175. 
 
Ribot, E. (2002) Standardized molecular subtyping of foodborne bacterial pathogens by Pulsed-
Field Gel Electrophoresis. Section 13: Interpreting PFGE patterns. National Center for 
Infectious Diseases, CDC Division of Bacterial and Mycotic Diseases Foodborne and Diarrheal 
Diseases Branch, Centers for Disease Control and Prevention, United States of America.  
 
Ribot, E.M., Fitzgerald, C., Kubota, K., Swaminathan, B. and Barrett, T.J. (2001) Rapid pulsed-
field gel electrophoresis protocol for subtyping of Campylobacter jejuni. Journal of Clinical 
Microbiology 39(5): 1889-1894. 
 
Rice, B.E., Rollins, D.M., Mallinson, E.T., Carr, L. and Joseph, S.W. (1997) Campylobacter 
jejuni in broiler chickens: colonisation and humoral immunity following oral vaccination and 
experimental infection. Vaccine 15(17-18): 1922-1932. 
 
Richardson, J.F., Frost, J.A., Kramer, J.M., Thwaites, R.T., Bolton, F.J., Wareing, D.R. and 
Gordon, J.A. (2001) Coinfection with Campylobacter species: an epidemiological problem? 
Journal of Applied Microbiology 91(2): 206-211. 
 
Rivoal, K., Ragimbeau, C., Salvat, G., Colin, P. and Ermel, G. (2005) Genomic diversity of 
Campylobacter coli and Campylobacter jejuni isolates recovered from free-range broiler farms 

 



192  Campylobacter in environmental matrices 
and comparison with isolates of various origins. Applied and Environmental Microbiology 
71(10): 6216-6227. 
 
Robinson, D.A. (1981) Infective dose of Campylobacter jejuni in milk. British Medical Journal 
(Clinical Research Ed.) 282: 1584. 
 
Rollins, D.M. and Colwell, R.R. (1986) Viable but nonculturable stage of Campylobacter jejuni 
and its role in survival in the natural aquatic environment. Applied and Environmental 
Microbiology 52(3): 531-538. 
 
Rose, J.B. and Gerba, C.P. (1991) Use of risk asssessment for development of microbial 
standards. Water Science and Technology 24: 29-34. 
 
Rosef, O., Rettedal, G. and Lageide, L. (2001) Thermophilic campylobacters in surface water: a 
potential risk of campylobacteriosis. International Journal of Environmental Health Research 
11(4): 321-327. 
 
Rosef, O. and Kapperud, G. (1983) House flies (Musca domestica) as possible vectors of 
Campylobacter fetus subsp. jejuni. Applied and Environmental Microbiology 45(2): 381-383. 
 
Rosenfield, J.A., Arnold, G.J., Davey, G.R., Archer, R.S. and Woods, W.H. (1985) Serotyping 
of Campylobacter jejuni from an outbreak of enteritis implicating chicken. The Journal of 
Infection. 11(2): 159-165. 
 
Rosenquist, H., Nielsen, N.L., Sommer, H.M., Norrung, B. and Christensen, B.B. (2003) 
Quantitative risk assessment of human campylobacteriosis associated with thermophilic 
Campylobacter species in chickens. International Journal of Food Microbiology 83(1): 87-103. 
 
Rossen, L., Norskov, P., Holmstrom, K. and Rasmussen, O.F. (1992) Inhibition of PCR by 
components of food samples, microbial diagnostic assays and DNA-extraction solutions. 
International Journal of Food Microbiology 17(1): 37-45. 
 
Roszak, D.B., Grimes, D.J. and Colwell, R.R. (1984) Viable but nonrecoverable stage of 
Salmonella enteritidis in aquatic systems. Canadian Journal of Microbiology 30(3): 334-338. 
 
Rudi, K., Hoidal, H.K., Katla, T., Johansen, B.K., Nordal, J. and Jakobsen, K.S. (2004) Direct 
real-time PCR quantification of Campylobacter jejuni in chicken fecal and cecal samples by 
integrated cell concentration and DNA purification. Applied and Environmental Microbiology 
70(2): 790-797. 
 
Rudi, K., Moen, B., Dromtorp, S.M. and Holck, A.L. (2005) Use of ethidium monoazide and 
PCR in combination for quantification of viable and dead cells in complex samples. Applied and 
Environmental Microbiology 71(2): 1018-1024. 
 
Saenz, Y., Zarazaga, M., Lantero, M., Gastanares, M.J., Baquero, F. and Torres, C. (2000) 
Antibiotic resistance in Campylobacter strains isolated from animals, foods, and humans in 
Spain in 1997-1998. Antimicrobial Agents and Chemotherapy 44(2): 267-271. 
 
Saha, S.K., Saha, S. and Sanyal, S.C. (1991) Recovery of injured Campylobacter jejuni cells 
after animal passage. Applied and Environmental Microbiology 57(11): 3388-3389. 
 

 



References  193 

Sahin, O., Luo, N., Huang, S. and Zhang, Q. (2003) Effect of Campylobacter-specific maternal 
antibodies on Campylobacter jejuni colonisation in young chickens. Applied and Environmental 
Microbiology 69(9): 5372-5379. 
 
Sails, A.D., Fox, A.J., Bolton, F.J., Wareing, D.R. and Greenway, D.L. (2003a) A real-time 
PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Applied 
and Environmental Microbiology 69(3): 1383-1390. 
 
Sails, A.D., Swaminathan, B. and Fields, P.I. (2003b) Clonal complexes of Campylobacter 
jejuni identified by multilocus sequence typing correlate with strain associations identified by 
multilocus enzyme electrophoresis. Journal of Clinical Microbiology 41(9): 4058-4067. 
 
Sails, A.D., Bolton, F.J., Fox, A.J., Wareing, D.R.A. and Greenway, D.L.A. (2002) Detection of 
Campylobacter jejuni and Campylobacter coli in environmental waters by PCR Enzyme-Linked 
Immunosorbent Assay. Applied and Environmental Microbiology 68(3): 1319-1324. 
 
Salloway, S., Mermel, L.A., Seamans, M., Aspinall, G.O., Nam Shin, J.E., Kurjanczyk, L.A. 
and Penner, J.L. (1996) Miller-Fisher Syndrome associated with C. jejuni bearing 
lipopolysaccharide molecules that mimic human ganglioside GD3. Infection and Immunity 
64(8): 2945-2949. 
 
Sambrook, J., Fritsch, E.F. and Mianiatis, T. (1989) Molecular cloning: a laboratory manual. 
(2nd Ed.) Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York. 
 
Savill, M.G., Hudson, A., Devane, M., Garrett, N., Gilpin, B. and Ball, A. (2003) Elucidation of 
potential transmission routes of Campylobacter in New Zealand. Water Science Technology. 
47(3): 33-38. 
 
Savill, M.G., Hudson, J.A., Ball, A., Klena, J.D., Scholes, P., Whyte, R.J., McCormick, R.E. 
and Jankovic, D. (2001) Enumeration of Campylobacter in New Zealand recreational and 
drinking waters. Journal of Applied Microbiology 91(1): 38-46. 
 
Scates, P., Moran, L. and Madden, R.H. (2003) Effect of incubation temperature on isolation of 
Campylobacter jejuni genotypes from foodstuffs enriched in Preston broth. Applied and 
Environmental Microbiology 69(8): 4658-4661. 
 
Schallenberg, M., Bremer, P.J., Henkel, S., Launhardt, A. and Burns, C.W. (2005) Survival of 
Campylobacter jejuni in water: effect of grazing by the freshwater crustacean Daphnia carinata 
(Cladocera). Applied and Environmental Microbiology 71(9): 5085-5088. 
 
Schlager, T.A., Hendley, J.O., Bell, A.L. and Whittam, T.S. (2002) Clonal diversity of 
Escherichia coli colonizing stools and urinary tracts of young girls. Infection and Immunity 
70(3): 1225-1229. 
 
Schouls, L.M., Reulen, S., Duim, B., Wagenaar, J.A., Willems, R.J., Dingle, K.E., Colles, F.M. 
and Van-Embden, J.D. (2003) Comparative genotyping of Campylobacter jejuni by amplified 
fragment length polymorphism, multilocus sequence typing, and short repeat sequencing: strain 
diversity, host range, and recombination. Journal of Clinical Microbiology 41(1): 15-26. 
 
Scott, W.G., Scott, H.M., Lake, R.J. and Baker, M.G. (2000) Economic cost to New Zealand of 
foodborne infectious disease. New Zealand Medical Journal 113: 281-284. 

 



194  Campylobacter in environmental matrices 
 
Scotter, S.L., Humphrey, T.J. and Henley, A. (1993) Methods for the detection of 
thermotolerant campylobacters in foods: results of an inter-laboratory study. Journal of Applied 
Bacteriology 74(2): 155-163. 
 
Siemer, B.L., Harrington, C.S., Nielsen, E.M., Borck, B., Nielsen, N.L., Engberg, J. and 
On, S.L. (2004) Genetic relatedness among Campylobacter jejuni serotyped isolates of diverse 
origin as determined by numerical analysis of amplified fragment length polymorphism (AFLP) 
profiles. Journal of Applied Microbiology 96(4): 795-802. 
 
Singer, R.S., Sischo, W.M. and Carpenter, T.E. (2004) Exploration of biases that affect the 
interpretation of restriction fragment patterns produced by pulsed-field gel electrophoresis. 
Journal of Clinical Microbiology 42(12): 5502-5511. 
 
Sinton, L.W., Hall, C.H., Lynch, P.A. and Davies-Colley, R.J. (2002) Sunlight inactivation of 
fecal indicator bacteria and bacteriophages from waste stabilization pond effluent in fresh and 
saline waters. Applied and Environmental Microbiology 68(3): 1122-1131. 
 
Skirrow, M.B. (2000) Microbiology and Epidemiology of Campylobacter infection. 2000 
UpToDate® www.uptodate.com  
 
Skirrow, M.B. (1994) Diseases due to Campylobacter, Helicobacter and related bacteria. 
Journal of Comparative Pathology 111(2): 113-149. 
 
Skirrow, M.B. (1990) Campylobacter. Lancet 336: 921-923. 
 
Skirrow, M.B. (1987) A demographic survey of campylobacter, salmonella and shigella 
infections in England. A Public Health Laboratory Service Survey. Epidemiology and Infection 
99(3): 647-657. 
 
Skirrow, M.B. (1977) Campylobacter enteritis: a "new" disease. British Medical Journal 
2(6078): 9-11. 
 
Slader, J., Domingue, G., Jorgensen, F., McAlpine, K., Owen, R.J., Bolton, F.J. and Humphrey, 
T.J. (2002) Impact of transport crate reuse and of catching and processing on Campylobacter 
and Salmonella contamination of broiler chickens. Applied and Environmental Microbiology 
68(2): 713-719. 
 
Smith, K.E., Besser, J.M., Hedberg, C.W., Leano, F.T., Bender, J.B., Wicklund, J.H., 
Johnson, B.P., Moore, K.A. and Osterholm, M.T. (1999) Quinolone-resistant Campylobacter 
jejuni infections in Minnesota, 1992-1998. Investigation Team. New England Journal of 
Medicine 340(20): 1525-1532. 
 
Speck, M.L. (1984) Sampling plans. Compendium of methods for the microbiological 
examination of foods. American Public Health Association, Washington DC. 
 
Stanley, J., Burnens, A.P., Linton, D., On, S.L., Costas, M. and Owen, R.J. (1992) 
Campylobacter helveticus sp. nov., a new thermophilic species from domestic animals: 
characterization, and cloning of a species-specific DNA probe. Journal of General 
Microbiology 138 (Pt 11): 2293-2303. 
 

 

http://www.uptodate.com/


References  195 

Stanley, K. and Jones, K. (2003) Cattle and sheep farms as reservoirs of Campylobacter. 
Journal of Applied Microbiology 94: 104S-113S. 
 
Stanley, K., Cunningham, R. and Jones, K. (1998a) Isolation of Campylobacter jejuni from 
groundwater. Journal of Applied Microbiology 85(1): 187-191. 
 
Stanley, K.N., Wallace, J.S., Currie, J.E., Diggle, P.J. and Jones, K. (1998b) The seasonal 
variation of thermophilic campylobacters in beef cattle, dairy cattle and calves. Journal of 
Applied Microbiology 85(3): 472-480. 
 
Stanley, K.N., Wallace, J.S., Currie, J.E., Diggle, P.J. and Jones, K. (1998c) Seasonal variation 
of thermophilic campylobacters in lambs at slaughter. Journal of Applied Microbiology 84(6): 
1111-1116. 
 
Stanley, K.N., Wallace, J.S. and Jones, K. (1998d) Note: Thermophilic campylobacters in dairy 
slurries on Lancashire farms: seasonal effects of storage and land application. Journal of 
Applied Microbiology 85: 405-409. 
 
Steele, T.W. and Owen, R. J. (1988) Campylobacter jejuni subsp. doylei subsp. nov., a 
subspecies of nitrate-negative Campylobacter isolated from human clinical specimens. 
International Journal of Systematic Bacteriology 38: 316-318. 
 
Stehr-Green, J.K., Nicholls, C., McEwan, S., Payne, A. and Mitchell, P. (1991) Waterborne 
outbreak of Campylobacter jejuni in Christchurch: the importance of a combined epidemiologic 
and microbiologic investigation. New Zealand Medical Journal 104: 356-358. 
 
Steinbrueckner, B., Ruberg, F. and Kist, M. (2001) Bacterial genetic fingerprint: a reliable 
factor in the study of the epidemiology of human Campylobacter enteritis? Journal of Clinical 
Microbiology 39(11): 4155-4159. 
 
Stephens, D.S. and Farley, M.M. (1996) Editorial. The American Journal of the Medical 
Sciences 311(1): 1-2. 
 
Stern, N.J. (1994) Mucosal competitive exclusion to diminish colonisation of chickens by 
Campylobacter jejuni. Poultry Science 73: 402-407. 
 
Stern, N.J. (1992) Reservoirs for Campylobacter jejuni and approaches for intervention in 
poultry. In Campylobacter jejuni: Current status and future trends. Nachamkin, I., Blaser, M.J. 
and Tompkins, L.S.(eds). American Society for Microbiology, Washington DC. 
 
Stern, N.J., Bannov, V.A., Svetoch, E.A., Mitsevich, E.V., Mitsevich, I.P., Volozhantsev, N.V., 
Gusev, V.V. and Perelygin, V.V. (2004) Distribution and characterization of Campylobacter 
spp. from Russian poultry. Journal of Food Protection 67(2): 239-245. 
 
Stern, N.J., Hiett, K.L., Alfredsson, G.A., Kristinsson, K.G., Reiersen, J., Hardardottir, H., 
Briem, H., Gunnarsson, E., Georgsson, F., Lowman, R., Berndtson, E., Lammerding, A.M., 
Paoli, G.M. and Musgrove, M.T. (2003) Campylobacter spp. in Icelandic poultry operations and 
human disease. Epidemiology and Infection 130(1): 23-32. 
 
Stern, N.J. and Robach, M.C. (2003) Enumeration of Campylobacter spp. in broiler feces and in 
corresponding processed carcasses. Journal of Food Protection 66(9): 1557-1563. 

 



196  Campylobacter in environmental matrices 
 
Stern, N.J., Green, S.S., Thaker, N., Krout, D.J. and Chiu, J. (1984) Recovery of Campylobacter 
jejuni from fresh and frozen meat and poultry collected at slaughter. Journal of Food Protection 
47: 372-374. 
 
Suerbaum, S., Lohrengel, M., Sonnevend, A., Ruberg, F. and Kist, M. (2001) Allelic diversity 
and recombination in Campylobacter jejuni. Journal of Bacteriology 183(8): 2553-2559. 
 
Swaminathan, B., Barrett, T.J., Hunter, S.B., Tauxe, R.V. (2001) Pulsenet: the molecular 
subtyping network for foodborne bacterial disease surveillance, United States. Emerging 
Infectious Diseases 7: 382-389. 
 
Taboada, E.N., Acedillo, R.R., Carrillo, C.D., Findlay, W.A., Medeiros, D.T., Mykytczuk, O.L., 
Roberts, M.J., Valencia, C.A., Farber, J.M. and Nash, J.H. (2004) Large-scale comparative 
genomics meta-analysis of Campylobacter jejuni isolates reveals low level of genome plasticity. 
Journal of Clinical Microbiology 42(10): 4566-4576. 
 
Takahashi, M., Koga, M., Yokoyama, K. and Yuki, N. (2005) Epidemiology of Campylobacter 
jejuni isolated from patients with Guillain-Barré and Fisher syndromes in Japan. Journal of 
Clinical Microbiology 43(1): 335-339. 
 
Tam, C.C. (2001) Campylobacter reporting at its peak year of 1998: don't count your chickens 
yet. Communicable Disease and Public Health. 4(3): 194-199. 
 
Tangvatcharin, P., Chanthachum, S., Kopaiboon, P., Inttasungkha, N. and Griffiths, M.W. 
(2005) Comparison of methods for the isolation of thermotolerant Campylobacter from poultry. 
Journal of Food Protection 68(3): 616-620. 
 
Tauxe, R.V. (1992) Epidemiology of Campylobacter jejuni infections in the United States and 
other industrialized nations. In Campylobacter jejuni: Current status and future trends. pp.9-19. 
Nachamkin, I., Blaser, M.J. and Tompkins, L.S.(eds). American Society for Microbiology, 
Washington DC. 
 
Taylor, D.E. (1992a) Genetics of Campylobacter and Helicobacter. Annual Review of 
Microbiology 46: 35-64. 
 
Taylor, D.N. (1992b) Campylobacter infections in developing countries. In Campylobacter 
jejuni: Current status and future trends. pp.754. Nachamkin, I., Blaser, M.J. and Tompkins, 
L.S.(eds). American Society for Microbiology, Washington D.C. 
 
Taylor, D.N., Perlman, D.M., Echeverria, P.D., Lexomboon, U. and Blaser, M.J. (1993) 
Campylobacter immunity and quantitative excretion rates in Thai children. The Journal of 
Infectious Diseases 168(3): 754-758. 
 
Taylor, D.E., Eaton, M., Yan, W. and Chang, N. (1992) Genome maps of Campylobacter jejuni 
and Campylobacter coli. Journal of Bacteriology 174(7): 2332-2337. 
 
Tenover, F.C., Arbeit, R.D., Goering, R.V., Mickelsen, P.A., Murray, B.E., Persing, D.H. and 
Swaminathan, B. (1995) Interpreting chromosomal DNA restriction patterns produced by 
pulsed-field gel electrophoresis: criteria for bacterial strain typing. Journal of Clinical 
Microbiology 33(9): 2233-2239. 

 



References  197 

 
Teunis, P., Van den Brandhof, W., Nauta, M., Wagenaar, J., Van den Kerkhof, H. and Van Pelt, 
W. (2005) A reconsideration of the Campylobacter dose-response relation. Epidemiology and 
Infection 133(4): 583-592. 
 
Teunis, P.F. and Havelaar, A.H. (2000) The Beta Poisson dose-response model is not a single-
hit model. Risk Analysis 20(4): 513-520. 
 
Teunis, P.F., Nagelkerke, N.J. and Haas, C.N. (1999) Dose response models for infectious 
gastroenteritis. Risk Analysis 19(6): 1251-1260. 
 
Thomas, L.M., Long, K.A., Good, R.T., Panaccio, M. and Widders, P.R. (1997) Genotypic 
diversity among Campylobacter jejuni isolates in a commercial broiler flock. Applied and 
Environmental Microbiology 63(5): 1874-1877. 
 
van de Giessen, A.W., Heuvelman, C.J., Abee, T. and Hazeleger, W.C. (1996) Experimental 
studies on the infectivity of non-culturable forms of Campylobacter spp. in chicks and mice. 
Epidemiology and Infection 117(3): 463-470. 
 
van Doorn, L.J., Verschuuren-van Haperen, A., Burnens, A., Huysmans, M., Vandamme, P., 
Giesendorf, B.A., Blaser, M.J. and Quint, W.G. (1999) Rapid identification of thermotolerant 
Campylobacter jejuni, Campylobacter coli, Campylobacter lari, and Campylobacter upsaliensis 
from various geographic locations by a GTPase-based PCR-reverse hybridization assay. Journal 
of Clinical Microbiology 37(6): 1790-1796. 
 
Van Etterijck, R., Breynaert, J., Revets, H., Devreker, T. Vandenplas, Y., Vandamme, P. and 
Lauwers, S. (1996) Isolation of Campylobacter concisus from feces of children with and 
without diarrhea. Journal of Clinical Microbiology 34(9): 2304-2306. 
 
Vandamme, P., Van Doorn, L.J., al Rashid, S.T., Quint, W.G., van der Plas, J., Chan, V.L. and 
On, S.L. (1997) Campylobacter hyoilei Alderton et al. 1995 and Campylobacter coli Veron and 
Chatelain 1973 are subjective synonyms. International Journal of Systematic Bacteriology 
47(4): 1055-1060. 
 
Vanniasinkam, T., Lanser, J.A. and Barton, M.D. (1999) PCR for the detection of 
Campylobacter spp. in clinical specimens. Letters in Applied Microbiology. 28: 52-56. 
 
Vellinga, A. and Van Loock, F. (2002) The dioxin crisis as experiment to determine poultry-
related campylobacter enteritis. Emerging Infectious Diseases 8(1): 19-22. 
 
Waage, A.S., Vardund, T., Lund, V. and Kapperud, G. (1999) Detection of small numbers of 
Campylobacter jejuni and Campylobacter coli cells in environmental water, sewage, and food 
samples by a seminested PCR assay. Applied and Environmental Microbiology 65(4): 1636-
1643. 
 
Waegel, A. and Nachamkin, I. (1996) Detection and molecular typing of Campylobacter jejuni 
in fecal samples by polymerase chain reaction. Molecular and Cellular Probes 10(2): 75-80. 
 
Waino, M., Bang, D.D., Lund, M., Nordentoft, S., Andersen, J.S., Pedersen, K. and Madsen, M. 
(2003) Identification of campylobacteria isolated from Danish broilers by phenotypic tests and 
species-specific PCR assays. Journal of Applied Microbiology 95(4): 649-655. 

 



198  Campylobacter in environmental matrices 
 
Walker, R.I., Rollins, D.M. and Burr, D.H. (1992) Studies of Campylobacter infection in the 
adult rabbit. In Campylobacter jejuni: Current Status and Future Trends. Nachamkin, I., Blaser, 
M.J. and Tompkins, L.S.(eds). American Society for Microbiology, Washington, D.C. 
 
Wallis, M.R. (1994) The pathogenesis of Campylobacter jejuni. British Journal of Biomedical 
Science 51(1): 57-64. 
 
Wang, Y., Huang, W.M. and Taylor, D.E. (1993) Cloning and nucleotide sequence of the 
Campylobacter jejuni gyrA gene and characterization of quinolone resistance mutations. 
Antimicrobial Agents and Chemotherapy 37(3): 457-463. 
 
Wassenaar, T.M. (1997) Toxin production by Campylobacter spp. Clinical Microbiology 
Reviews 10(3): 466-476. 
 
Wassenaar, T.M., Wagenaar, J.A., Rigter, A., Fearnley, C., Newell, D.G. and Duim, B. (2002) 
Homonucleotide stretches in chromosomal DNA of Campylobacter jejuni display high 
frequency polymorphism as detected by direct PCR analysis. Federation of European 
Microbiological Societies (FEMS) Microbiology Letters 212(1): 77-85. 
 
Wassenaar, T.M. and Newell, D.G. (2000) Genotyping of Campylobacter spp. Applied and 
Environmental Microbiology 66(1): 1-9. 
 
Wassenaar, T.M., Geilhausen, B. and Newell, D.G. (1998) Evidence of genomic instability in 
Campylobacter jejuni isolated from poultry. Applied and Environmental Microbiology 64(5): 
1816-1821. 
 
Wassenaar, T.M., Fry, B.N. and van der Zeijst, B.A. (1995) Variation of the flagellin gene locus 
of Campylobacter jejuni by recombination and horizontal gene transfer. Microbiology 141 (Pt 
1): 95-101. 
 
Wassenaar, T.M., van der Zeijst, B.A., Ayling, R. and Newell, D.G. (1993) Colonisation of 
chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A 
expression. Journal of General Microbiology 139 Pt 6: 1171-1175. 
 
Wassenaar, T.M., Bleumink-Pluym, N.M. and van der Zeijst, B.A. (1991) Inactivation of 
Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but 
not flaB is required for invasion. The EMBO journal 10(8): 2055-2061. 
 
Weijtens, M.J.B.M., van der Plas, J., Bijker, P.G.H., Urlings, H.A.P., Koster, D., van Logtestijn, 
J.G. and Huis in't Veld, J.H.J. (1997) The transmission of Campylobacter in piggeries; an 
epidemiological study. Journal of Applied Microbiology 83: 693-698. 
 
Werner, G., Willems, R.J., Hildebrandt, B., Klare, I. and Witte, W. (2003) Influence of 
transferable genetic determinants on the outcome of typing methods commonly used for 
Enterococcus faecium. Journal of Clinical Microbiology 41(4): 1499-1506. 
 
Wesley, I.V., Wells, S.J., Harmon, K.M., Green, A., Schroeder-Tucker, L., Glover, M. and 
Siddique, I. (2000) Fecal shedding of Campylobacter and Arcobacter spp. in dairy cattle. 
Applied and Environmental Microbiology 66(5): 1994-2000. 
 

 



References  199 

Whyte, P., McGill, K., Cowley, D., Madden, R.H., Moran, L., Scates, P., Carroll, C., 
O'Leary, A., Fanning, S., Collins, J.D., McNamara, E., Moore, J.E. and Cormican, M. (2004) 
Occurrence of Campylobacter in retail foods in Ireland. International Journal of Food 
Microbiology 95(2): 111-118. 
 
Widders, P.R., Perry, R., Muir, W.I., Husband, A.J. and Long, K.A. (1996) Immunisation of 
chickens to reduce intestinal colonisation with Campylobacter jejuni. British Poultry Science 
37(4): 765-778. 
 
Wilson, I.G. (1997) Mini Review: Inhibition and facilitation of nucleic acid amplification. 
Applied and Environmental Microbiology 63: 3741-3751. 
 
Wilson, I.G. (2004) Airborne Campylobacter infection in a poultry worker: case report and 
review of the literature. Communicable Disease and Public Health 7(4): 349-353. 
 
Withington, S.G. and Chambers, S.T. (1997) The cost of campylobacteriosis in New Zealand in 
1995. New Zealand Medical Journal 110: 222-224. 
 
Wittwer, M., Keller, J., Wassenaar, T.M., Stephan, R., Howald, D., Regula, G. and Bissig-
Choisat, B. (2005) Genetic diversity and antibiotic resistance patterns in a Campylobacter 
population isolated from poultry farms in Switzerland. Applied and Environmental 
Microbiology 71(6): 2840-2847. 
 
Wolffs, P., Norling, B., Hoorfar, J., Griffiths, M. and Radstrom, P. (2005) Quantification of 
Campylobacter spp. in chicken rinse samples by using flotation prior to real-time PCR. Applied 
and Environmental Microbiology 71(10): 5759-5764. 
 
Wong, T., Hollis, L., Cornelius, A.J., Nicol, C., Hudson, J.A. and Cook, R. (2005) Prevalence 
and numbers of Campylobacter jejuni and C. coli in uncooked retail meats in New Zealand. 
Journal of Food Protection Supplement T2-06, 162. Paper presented at the 92nd Annual Meeting 
of the International Association for Food Protection, Baltimore, MD, USA. 
 
Wong, T., Devane, M., Hudson, J., Scholes, P., Savill, M. and Klena, J. (2004) Validation of a 
PCR method for Campylobacter detection on poultry packs. British Food Journal 106(9): 642-
650. 
 
Woodall, C.A., Jones, M.A., Barrow, P.A., Hinds, J., Marsden, G.L., Kelly, D.J., Dorrell, N., 
Wren, B.W. and Maskell, D.J. (2005) Campylobacter jejuni gene expression in the chick 
cecum: evidence for adaptation to a low-oxygen environment. Infection and Immunity 73(8): 
5278-5285. 
 
Woodward, D.L. and Rodgers, F.G. (2002) Identification of Campylobacter heat-stable and 
heat-labile antigens by combining the Penner and Lior serotyping schemes. Journal of Clinical 
Microbiology 40(3): 741-745. 
 
Wyszynska, A., Raczko, A., Lis, M. and Jagusztyn-Krynicka, E.K. (2004) Oral immunization of 
chickens with avirulent Salmonella vaccine strain carrying C. jejuni 72Dz/92 cjaA gene elicits 
specific humoral immune response associated with protection against challenge with wild-type 
Campylobacter. Vaccine 22(11-12): 1379-1389. 
 

 



200  Campylobacter in environmental matrices 
Yang, C., Jiang, Y., Huang, K., Zhu, C. and Yin, Y. (2003) Application of real-time PCR for 
quantitative detection of Campylobacter jejuni in poultry, milk and environmental water. 
Federation of European Microbiological Societies (FEMS) Immunology and Medical 
Microbiology 38: 265-271. 
 
Zhao, C., Ge, B., De-Villena, J., Sudler, R., Yeh, E., Zhao, S., White, D.G., Wagner, D. and 
Meng, J. (2001) Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars 
in retail chicken, turkey, pork, and beef from the Greater Washington, D.C. area. Applied and 
Environmental Microbiology 67(12): 5431-5436. 
 
Ziprin, R.L., Sheffield, C.L., Hume, M.E., Drinnon, D.L. and Harvey, R.B. (2003) Cecal 
colonisation of chicks by bovine-derived strains of Campylobacter. Avian Diseases 47(4): 1429-
1433. 
 
Ziprin, R.L., Young, C.R., Stanker, L.H., Hume, M.E. and Konkel, M.E. (1999) The absence of 
cecal colonisation of chicks by a mutant of Campylobacter jejuni not expressing bacterial 
fibronectin-binding protein. Avian Diseases 43(3): 586-589. 
 
 

 



Appendix I Media 201 

 

9 Appendix I 
 

Media were sterilised at 121oC, 103.4 kPa for 15 minutes.  

 

Brain Heart Infusion (BHI) Broth 

 

Typical formula     per 500 ml 

Beef Heart infusion (Difco)    12.5 g 

Calf brain infusion      10.0 g 

Protease peptone       5.0 g  

NaCl         2.5 g 

Na2HPO4:12H2O       1.25 g 

Glucose        1.0 g 

 

Brain Heart Infusion (BHI) Broth containing 20% Glycerol

 

Brain Heart Infusion Broth (Merck 1.10493)  3.7 g 

Glycerol (BDH # 10118 4K)    20 ml 

Deionised water      80 ml 

 

Weigh the required amount of broth into a Schott bottle and add the water.  Mix thoroughly to 

dissolve broth, microwaving if necessary. Autoclave at 121°C for 15 minutes. Allow to cool and 

check the pH is 7.4 + 0.2. Store at 2-8°C for up to 3 months. 

 

Brucella Broth 

 

Brucella broth (Difco 0495-17-3) 28 g 

Distilled Water   I L 

 

pH = 7.0 ± 0.2 at 25ºC 

 

Mix thoroughly to dissolve and dispense 500 ml into screw capped bottles.  Autoclave at 121°C 

for 15 min.  Temper to 50°C in a waterbath.  Aseptically add Antibiotic Supplement SR117E 
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(Oxoid) 1 vial per 500 ml (reconstitute by adding 2 ml of a 50:50 solution of acetone and sterile 

distilled water per vial). 

 

m-Exeter medium  

 

Nutrient broth No. 2 (Oxoid) made according to instructions per one litre volumes.  After 

autoclaving, add the following per litre: 50 ml  lysed horse blood, 5 ml filter-sterilised 

solution containing 4% sodium metabisulphite, 4% sodium pyruvate and 10% iron sulphate 

solution, (aseptically dispense solution in 5 ml amounts and store in the freezer) 15 mg 

cefaperazone, (add 2ml litre-1 of filter sterilised stock solution, 7.5 mg ml-1) 2 vials Oxoid 

supplement SR117E. 

 

Each vial of supplements supplies 2500 i.u. polymixin B, 5 mg rifampicin, 5 mg trimethoprim 

and 50mg actidione. These components vary from the “Exeter” formulation by the inclusion of 

actidione, but it provides the convenience of the commercial availability of the antibiotic 

supplement. 

 

m-Exeter agar 

 

Add 15 g of agar to a litre of nutrient broth No. 2 and boil to dissolve before autoclaving.  

Proceed as above for m-Exeter medium. 

 

Nutrient broth No.2

 

Nutrient broth No 2 (Oxoid CM67)   25g 

Distilled water      1 L 

 

Mix thoroughly to dissolve and dispense 500 ml into screw capped bottles. Autoclave at 121°C 

for 15 min. Temper to 50°C in a waterbath. Aseptically add Antibiotic Supplement SR117E 

(Oxoid) 1 vial per 500 ml (reconstitute by adding 2 ml of a 50:50 solution of acetone and sterile 

distilled water per vial). 
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Preston Enrichment (PE) broth

 

Nutrient broth No 2 (Oxoid)   25g 

Ferrous sulphate (BDH)   0.25g 

Sodium metabisulphate (BDH)  0.25g 

Distilled water     900 ml 

 

Mix thoroughly to dissolve and dispense 450 ml into screw capped bottles. Autoclave at 121°C 

for 21 min. Temper to 50°C in a waterbath. Aseptically add the following: 

Sodium pyruvate (BDH)   0.25g 

Lysed horse blood    50 ml 

Antibiotic Supplement SR117E (Oxoid) 1 vial per 450 ml (reconstitute by adding 2 ml of a 

50:50 solution of acetone and sterile distilled water per vial). 

Adjust pH if necessary to pH 7.5 ± 0.2. 

 

TBSKY Broth and Media 

 

TBSKY for cultivation of anaerobic Campylobacter species. 

 

Trypticase Soy Broth    15 g 

Brain Heart Infusion Broth   18.5 g 

Yeast Extract (Oxoid LP0021B)  10 g 

Hemin solution    10 ml 

Distilled Water    Make to one litre 

For agar plates: add 15 g l-1 agar 

 

Autoclave 121oC, 20 min. 

After sterilising add 1ml/l Vitamin K solution (filter sterilised), and 5% defibrinated sheep’s 

blood. 

 

 



204  Campylobacter in environmental matrices 
 

Hemin Solution (1%) 

 

Hemin (Sigma #H2250)   50 mg 

Dipotassium phosphate (anhydrous)  1.74g in 100 ml of distilled water 

 

Boil to dissolve, aliquot and store at –20oC. 

 

Vitamin K Solution (water soluble Vit. K3) 

 

Menadione sodium bisulfite    4 mg 

(Sigma #M5750) 

Distilled Water    10ml 

 

TSBKY agar plates were made by addition of 15g l-1 agar to the TSBKY broth. 

 

Tryptic Soy Broth  

 

Tryptic Soy broth (Difco 0370)  28 g 

Distilled Water    I L 

 

pH = 7.0 ± 0.2 at 25ºC 

 

Mix thoroughly to dissolve and dispense 500 ml into screw capped bottles. Autoclave at 121°C 

for 15 min. Temper to 50°C in a waterbath. Aseptically add Antibiotic Supplement SR117E 

(Oxoid) 1 vial per 500 ml (reconstitute by adding 2 ml of a 50:50 solution of acetone and sterile 

distilled water per vial). 
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10 Appendix II 
 

All solutions are prepared from Milli-Q water and sterilised (103.4kPa, 121°C) even if made 

using sterile Milli-Q water. 

RT = room temperature 

 

10.1 General reagents 
 

Bovine serum albumin (BSA) preparation (2 mg ml-1)

 

Weigh out 100 mg BSA (Albumin, Sigma A-4503 from Global Science) into a Falcon tube  

Add 50 ml sterile dd H20 (2 mg ml-1) 

Dissolve by shaking.  Filter sterilise through a 0.2 µm filter  

Dispense aseptically in 1ml aliquots into sterile 1.5 ml tubes 

Store in freezer at -20ºC 

 

Buffered Peptone Water 1% (BPW) 

 

Peptone Water (Merck # 1.07228)  25.5 gram 

Distilled Water    1 litre 

pH      7.2 

Autoclave at 121oC for 21 minutes 

 

0.5 M EDTA, pH 8.0 

 

  Per L  

Na2EDTA.2H2O 186.1 g  

10 N NaOH ~50 ml  

Milli-Q water made up to 1000 ml 

 

1. Mix the EDTA with 800 ml of water. 

2. Add 10 N NaOH slowly, checking the pH with a pH meter until the pH is 8.0.  N.B.  

EDTA will not dissolve until close to pH 8.0. 
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3. Make the volume up to 1000 ml and then dispense 500 ml volumes in 1 L bottles. 

4. Autoclave at 121°C for 15 min. 

 

10 N NaOH 

 

  Per L  

NaOH  400 g  

Milli-Q water made up to 1000 ml 

RT 

 

1. Carefully dissolve NaOH in 800 ml of water. 

CAUTION: extremely exothermic reaction. Perform in fume cupboard and cool the solution. 

2. Cool to RT and make the volume up to 1000 ml. 

3. Dispense 500 ml volumes in 1 L bottles and autoclave at 121°C for 15 min. 

 

PBS 

(Phosphate Buffered Saline) 

 

Prepared from Oxoid tablets which are pH 7.3, 0.16 M NaCl (8 g l-1 = 0.8%), 0.003 M KCl, 

0.008 M Na2HPO4 and 0.001 M KH2PO4. 

 

Oxoid PBS Tablets 10  

Milli-Q water 1 L  

RT 

 

1. Dissolve the tablets in the water. 

2. Dispense into either 500 ml volumes in 1 L bottles or 100 ml volumes in 100 ml bottles. 

3. Autoclave at 121°C for 15 min 

4. Dispense 500 ml volumes in 1 L bottles and autoclave at 121°C for 15 min. 

 

10 x TBE Buffer  

(Tris-borate-EDTA buffer) 

   Per litre 

Tris-HCl (1M final conc.)   121.1 g 
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Boric Acid (1M final conc.)    61.83 g 

0.5M EDTA (2mM final conc.)     4 ml 

Milli-Q water  made up to 1000 ml 

 

or purchase 10 x TBE powder from USB # 70454 which makes 200ml aliquots when 

reconstituted. 

 

TE Buffer 

(10 mM Tris:1 mM EDTA, pH 8.0) 

  Per L  

1 M Tris, pH 8.0 10 ml  

0.5 M EDTA, pH 8.0 2 ml  

Milli-Q Water made up to 1000 ml 

RT 

 

1. Mix the solutions and dispense 500 ml volumes into 1 L bottles. 

2. Autoclave at 121°C for 15 min. 

 

1 M Tris, pH 8.0 

  Per L  

Tris -HCl 157.6 g  

Milli-Q water made up to 1000 ml 

RT 

 

5. Dissolve the Tris-HCl in 800 ml of water. 

6. Let the solution come to RT. 

7. Adjust the pH to 8.0 and then make the volume up to 1000 ml. Stir for at least one hour 

before rechecking the pH. 

 

10.2 Hippurate reagents: 
 

Sodium Hippurate 

Prepare a 1% solution of Hippuric acid (sodium salt) Sigma #H9380 in distilled water.  

Dispense in 0.5 ml volumes in screw-capped tubes.  eep frozen at –20ºC until needed. 
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Ninhydrin Solution 

 

Prepare a 3.5% solution of ninhydrin (0.35g 10ml-1) in a 1:1 mixture of acetone and butanol.  

 

10.3 Gel electrophoresis reagents 
 

2% Agarose gel

 

1 g  Agarose  2% 

5 mls  10 x TBE  1 x TBE 

45 mls   dd H20 

2.5 µl  Ethidium Bromide 0.5 µg ml-1

(10 mg ml-1 stock)  

 

Prior to heating allow agarose to swell in water for 15 minutes. 

Gradually heat in microwave until all agarose has dissolved. 

 

DNA Ladder 

 

Make stock solution: 

1kb plus  DNA (1.0 µg µl-1)    30 µl 

 (Gibco # 10787-018, Life Technologies) 

1 x TBE Buffer             150 µl 

Loading Dye     40 µl 

 

Aliquot into Eppendorf tubes and store at –20ºC 

 

Ethidium bromide (10 mg ml-1)

 

Weigh 10 mg Ethidium bromide (Sigma E-8751) into an Eppendorf tube. Add 1 ml of dd H20.  

Store at 4ºC. 
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Gel-loading buffer –for agarose gels

 

0.25% bromophenol blue (Sigma #B0128) 

30% glycerol (BDH #10118 4K) in water 

Store at 4ºC 

 

1 x TBE (working TBE)  

 

  200 ml 10 x TBE  0.09M 

1800 ml dd H20    

  100 µl Ethidium Bromide 0.5 µg ml-1

(10 mg ml-1 stock)  

or dilute 10 x TBE stock solution 1:10 in distilled water. 

 

10.4 Reagents for PFGE analysis 
 

EC Lysis Buffer 

 

50 mM Tris:50 mM EDTA, pH 8.0 + 1% Sarcosyl 

  Per 200 ml  

1 M Tris, pH 8.0 10 ml  

0.5 M EDTA, pH 8.0 20 ml  

10% Sarcosyl 20 ml  

Milli-Q water 150 ml  

RT 

1. Measure the Sarcosyl, Tris, EDTA, and water into a 500 ml Schott bottle and mix 

gently. Autoclave at 121°C for 15 min. 

 

1.4% Megabase Agarose in TE Buffer 

 

For making embedded DNA agarose plugs 

  Per 20 ml  

Megabase Agarose 0.28 g  

Sterile TE Buffer 20 ml  
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1. Weigh the agarose into a 250 ml Schott bottle  

2. Add the TE buffer and swirl gently to disperse the agarose. Leave at RT for 15 min. 

3. Microwave for 20 sec, mix gently and repeat heating for 10 sec intervals until the 

agarose is completely dissolved. 

4. Equilibrate to 55-60°C. 

5. This agarose should not be reheated more than once as it quickly loses gel strength. 

 

1.0% Megabase Agarose in TBE Buffer 

 

For gel casting 

  Per 100 ml  

Megabase Agarose 1.0 g  

0.5 xTBE Buffer  99 ml  

 

1. Weigh the agarose into a 500 ml Schott bottle  

2. Add the TBE buffer and swirl gently to disperse the agarose. Leave at RT for 15 min. 

3. Microwave for 20 sec, mix gently and repeat heating for 10 sec intervals until the 

agarose is completely dissolved. 

4. Equilibrate to 55-60°C . 

 

0.5 x TBE buffer 

 

   Per 2 litre 

10 x TBE (USB, Cleveland, #70454) 100 ml 

Milli-Q water  1900 ml 

 

Made up immediately prior to use. 
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10.5 Phenol Chloroform reagents for DNA extraction 
 

Ammonium acetate 7.5 M 

 

Dissolve 57.75 g of Ammonium acetate into 80 ml of dd H2O. Adjust volume to 100 ml. 

Sterilise by filtration through a 0.22 µm filter. 

 

Lysozyme (50mg/ml) 

 

Dissolve 50 mg lysozyme (Sigma L-7651) in 1 ml sterile dd H20. Aliquot and store frozen 

 at -20°C. 

 

20 mg/ml Proteinase K Solution 

  Per 20 ml  

Proteinase K 0.40 g  

Sterile Milli-Q water 20 ml  

RT 

 

1. Weigh the Proteinase K into a sterile 30 ml vial and add the measured water. 

2. Mix to dissolve and then filter through 0.2 µm filter into a sterile 30 ml vial. 

3. Dispense 400 µl volumes into sterile 1.5 ml tubes. 

 

10% Sarcosyl 

(N-Lauroylsarcosine, sodium salt. Available from Sigma L-9150) 

  Per 100 ml  

Sarcosyl 10 g  

Sterile Milli-Q water 90 ml  

 

1. Carefully add the sarcosyl to the water in a sterile container. 

2. Dissolve by mixing gently and warming to 50-60°C. 
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Sodium Acetate 3M

 

Dissolve 12.3 g sodium acetate (Sigma S-2889) in 40 mls of dd H20 and adjust pH to 5.2 with 

glacial acetic acid. Make up to 50 mls before autoclaving. 
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11 Appendix III 
 

Table 18: Sampling Attribute 
Plan 

Lower Upper

0 10 0% 100% 0.0% 30.8%
1 10 10% 90% 0.3% 44.5%
2 10 20% 80% 2.5% 55.6%
3 10 30% 70% 6.7% 65.2%
4 10 40% 60% 12.2% 73.8
5 10 50% 50% 18.7% 81.3
6 10 60% 40% 26.2% 87.8
7 10 70% 30% 34.8% 93.3
8 10 80% 20% 44.4% 97.5
9 10 90% 10% 55.5% 99.7
0 10 0% 100% 0.0% 41.1%
1 10 10% 90% 0.1% 54.4%
2 10 20% 80% 1.1% 64.8%
3 10 30% 70% 3.7% 73.5%
4 10 40% 60% 7.7% 80.9%
5 10 50% 50% 12.8% 87.2
6 10 60% 40% 19.1% 92.3
7 10 70% 30% 26.5% 96.3
8 10 80% 20% 35.2% 98.9
9 10 90% 10% 45.6% 99.9
0 15 0% 100% 0.0% 21.8%
1 15 7% 93% 0.2% 31.9
2 15 13% 87% 1.7% 40.5%
3 15 20% 80% 4.3% 48.1%
4 15 27% 73% 7.8% 55.1%
5 15 33% 67% 11.8% 61.6
6 15 40% 60% 16.3% 67.7
7 15 47% 53% 21.3% 73.4
8 15 53% 47% 26.6% 78.7
9 15 60% 40% 32.3% 83.7

10 15 67% 33% 38.4% 88.2%
11 15 73% 27% 44.9% 92.2%
12 15 80% 20% 51.9% 95.7%
13 15 87% 13% 59.5% 98.3%
14 15 93% 7% 68.1% 99.8

0 15 0% 100% 0.0% 29.8%
1 15 7% 93% 0.0% 40.2
2 15 13% 87% 0.7% 48.6%
3 15 20% 80% 2.4% 56.1%
4 15 27% 73% 4.9% 62.7%
5 15 33% 67% 8.0% 68.8%
6 15 40% 60% 11.7% 74.4
7 15 47% 53% 15.9% 79.5
8 15 53% 47% 20.5% 84.1
9 15 60% 40% 25.6% 88.3

10 15 67% 33% 31.2% 92.0%
11 15 73% 27% 37.3% 95.1%
12 15 80% 20% 43.9% 97.6%
13 15 87% 13% 51.4% 99.3%
14 15 93% 7% 59.8% 100.0

CIs for pNumber 
Positive

Number 
Sampled

Proportion 
Positive (p)

Proportion 
Negative 

(q)

   
   

   
   

   
  9
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 C

I
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  Sampling Attribute Plan 

employed to calculate the 

sample size required to 

determine 95% confidence 

levels in the sample size for 

KpnI digestion of 25 chicken 

isolates (refer to Chapter 4 for 

interpretation). 
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12 Appendix IV Subtyping systems 
 
12.1 Description of phenotypic subtyping systems 
 
Table 19 describes the phenotyping methods referred to in this thesis. References for this table 

were: Woodward and Rodgers (2002), McKay et al. (2001), Nielsen et al. (2000), Nielsen and 

Nielsen (1999), Ribeiro et al. (1996), Patton et al. (1991). 

 

Table 19: Phenotypic subtyping systems 
 
Subtyping Method Target Brief Description 

Antibiotic Resistance 

Typing [also known 

as multiple drug 

resistance (MDR)] 

Gene(s) that 

confer resistance 

to antimicrobial 

agent(s) 

Bacteria are subjected to increasing 

concentrations of an antimicrobial agent to 

determine their susceptibility/resistance to the 

target antibiotic. A profile of the organisms 

susceptibility to various agents is used to compare 

with other isolates. 

Penner Serotyping Heat stable 

antigens on 

bacterial surface 

Passive haemagglutination to differentiate 

Campylobacter strains on the basis of soluble 

heat-stable (HS) antigens 

Laboratory of Enteric 

Pathogens (LEP) 

Heat stable 

antigens on 

bacterial surface 

Modification of Penner serotyping system which 

uses absorbed antisera in an effort to overcome 

cross reactivity associated with the Penner scheme

Lior serotyping Heat labile 

antigens on 

bacterial surface 

Slide agglutination procedure using live bacteria 

together with unabsorbed and absorbed antisera 

Multi Locus Enzyme 

Electrophoresis 

(MLEE) 

Isoenzymes i.e. 

alleles of the same 

enzyme 

Protein extracts are electrophoresed through 

starch gels and screened for various enzymes. The 

different mobilities of each enzyme are dependent 

on allelic differences. 

Plasmid Profile 

Analysis 

Plasmids The presence /absence of plasmids is ascertained 

for each bacterial isolate (based on a plasmid size 

library for each bacterial species) 

Phage subtyping Bacteriophage The susceptibility to lysis by a panel of phage is 

ascertained for each bacterial isolate 
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12.2 Description of genotypic subtyping systems 
 
Table 20 briefly describes the principles of genotyping methods referred to in this thesis. 

References for this table were Ribot (2002), Steinbrueckner et al. (2001), Fitzgerald et al. 

(2001a), Nielsen et al. (2000), Wassenaar and Newell (2000), Garaizar et al. (2000), Hernandez 

et al. (1996), Patton et al. (1991). 

 

Table 20: Gentoypic subtyping systems 
 
Genotypic Subtyping 

Method 

Target Brief Description 

Pulsed-Field Gel 

Electrophoresis (PFGE) 

Entire Genome Restriction enzyme (RE) cleavage followed 

by DNA separation on agarose gel. 

Different DNA cleavage patterns are 

indicative of strain variation. 

Denaturing Gradient 

Gel Electrophoresis 

(DGGE) 

Entire genome or 

specific gene  

(e.g. flagellin) 

RE Cleavage of DNA is followed by 

denaturing gradient gel electrophoresis 

which detects differences in the melting 

behaviour of small DNA fragments (200-

700 bp) that differ by as little as a single 

base substitution 

Restriction Fragment 

Length Polymorphism 

(RFLP) 

Gene(s) specific  

(e.g. flagellin, fla 

typing) 

PCR amplification of a specific gene(s) 

followed by RE cleavage and separation by 

electrophoresis. Different DNA patterns are 

indicative of strain variation.  

Random Amplified 

Polymorphic DNA 

(RAPD) 

Entire genome PCR amplification using short random 

(non-specific) primers which amplify 

regions of the genome. The number and 

location of these sites varies for different 

strains of a bacterial species. Separation of 

the PCR products by electrophoresis 

generates different patterns which are 

indicative of strain variation. 
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Genotypic Subtyping 

Method 

Target Brief Description 

Enteropathogenic 

repetitive intergenic 

consensus (ERIC) 

sequences 

Entire genome Similar concept to RAPD analysis but 

primers target specific repetitive sequences 

(ERICs) within the genome. Low 

stringency conditions are used for 

Campylobacter which do not contain highly 

conserved repetitive sequences that would 

allow high fidelity amplification. 

Amplified Fragment 

Length Polymorphism 

(AFLP) 

Entire genome Restriction digestion of genomic DNA by 

two RE. PCR of the fragments by two 

primers based on the two RE sequences 

amplifies only those fragments flanked by 

both RE sites. One of the primers contains a 

fluorescent or radioactive label and PCR 

products are analysed on denaturing 

polyacrylamide gels. 80–100 bands are 

generated by this technique. 

Multi Locus Sequence 

Typing (MLST) 

Entire genome Double stranded DNA sequencing of at 

least 7 conserved genes in an organism. 

Comparison of the allelic differences within 

each gene is indicative of strain variation. 

Ribotyping/riboprinting Multiple copies of 

ribosomal RNA gene 

(rRNA) 

Cleaved genomic DNA is electrophoresed 

followed by Southern blot hybridisation 

with a probe specific for rRNA genes. NB 

Campylobacter contains only three copies 

of rRNA genes. 
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